Micromechanical analysis of fatigue crack initiation and growth behaviour of recycled cast aluminium silicon piston alloys

Obiko Oirere Japheth

A thesis submitted in partial fulfillment of the requirement for the Degree of Master of Science in Mechanical Engineering in the Jomo Kenyatta University of Agriculture and Technology

2015
DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

Signature………………………………………Date……………………………………

Obiko Oirere Japheth

This thesis has been submitted for examination with our approval as the University supervisors:

Signature…………………………………… Date……………………………………

Dr. Thomas Ochuku Mbuya

University of Nairobi, Kenya

Signature…………………………………… Date……………………………………

Dr. Robert Bruno Mose

JKUAT, Kenya
DEDICATION

To my loving wife, Gladys and our two sons, Ephantus and Fredrick; you are my driving force. Thank you.
ACKNOWLEDGEMENT

The research work presented in this thesis, while full of challenges, turned out to be an exciting, instructive and joyful experience that benefited from the appropriate direction of my supervisors; Dr. T.O. Mbuya and Dr. R. B. Mose. I am extremely grateful for their dedicated supervision, constant encouragement, academic guidance and constructive discussions during the course of this work. I also like to express my acknowledgement to the Chairman of the department of Mechanical and manufacturing Engineering of the University of Nairobi (UoN) for allowing me to use the laboratory facilities in UoN.

Last but not least, I am grateful to my wife for her constant support and encouragement. Her moral and spiritual support encouraged me to push on with the research even during desperate times. Thanks a lot.
NOTATION AND SYMBOLS

ABBREVIATION

\(ACPD \) Alternating current potential difference
\(BMD \) Bending moment diagram
\(CTOD \) Crack tip opening displacement
\(DCPD \) Direct Current Potential Difference
\(EDX \) Energy Dispersive X-Ray
\(LEFM \) Linear Elastic Fracture Mechanics
\(OICC \) Oxide induced crack closure
\(OM \) Optical Microscopy
\(PSBS \) Persistent Slip Bands
\(R \) Stress ratio
\(RICC \) Roughness Induced Crack Closure
\(RT \) Room Temperature
\(SDAS \) Secondary Dendrite Arm Spacing
\(SEM \) Scanning Electron Microscopy
\(SENB \) Single Edge Notch Bend
\(SFCs \) Short fatigue cracks
\(SFD \) Shear force diagram
\(UTS \) Ultimate tensile strength
\(K \) Stress Intensity Factor Range
\(da/dN \) Crack growth rate

\(c \) Paris constant parameter

\(m \) Paris exponent
\(K \) Cooling material constant
\(\Delta K_{eff} \) Effective stress intensity range
\(K_{max} \) Maximum stress intensity factor
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_{op}</td>
<td>Crack opening stress intensity factor</td>
</tr>
<tr>
<td>U</td>
<td>Effective stress intensity factor range ratio</td>
</tr>
<tr>
<td>σ_{nom}</td>
<td>Nominal maximum stress</td>
</tr>
<tr>
<td>w</td>
<td>Specimen width</td>
</tr>
<tr>
<td>$M_f(0)$</td>
<td>Correction factor allowed for semi elliptical crack shape</td>
</tr>
<tr>
<td>$E_{(K)}$</td>
<td>Elliptical integral of the second kind</td>
</tr>
<tr>
<td>σ_b</td>
<td>Maximum bending stress</td>
</tr>
<tr>
<td>a</td>
<td>Half crack length</td>
</tr>
<tr>
<td>B_w</td>
<td>Finite area correction function due to tension</td>
</tr>
<tr>
<td>c</td>
<td>Bulk crack length</td>
</tr>
<tr>
<td>A_A</td>
<td>Area fraction</td>
</tr>
<tr>
<td>L_A</td>
<td>Lineal fraction</td>
</tr>
<tr>
<td>P_p</td>
<td>Point fraction</td>
</tr>
<tr>
<td>V_f</td>
<td>Volume fraction</td>
</tr>
<tr>
<td>K_c</td>
<td>Fracture toughness</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION..i
ACKNOWLEDGEMENT..iii
NOTATION AND SYMBOLS..iv
ABBREVIATION..iv
TABLE OF CONTENTS...vi
LIST OF FIGURES...ix
LIST OF TABLES..xiv
ABSTRACT...xv
Chapter 1..1
INTRODUCTION..1
 1.1 Background ..1
 1.2 Problem Statement and Justification .. Error! Bookmark not defined.
 1.3 Aim and Objectives .. Error! Bookmark not defined.
 1.3.1 Aim ... Error! Bookmark not defined.
 1.3.2 Objectives .. Error! Bookmark not defined.
Chapter
2.. Error!
Bookmark not defined.
LITERATURE
REVIEW.. Error! Bookmark not defined.
 2.1 Introduction ... Error! Bookmark not defined.
 2.2 Cast Aluminum Alloys ... Error! Bookmark not defined.
 2.2.1 Cast Al-Si-Cu Alloys ... Error! Bookmark not defined.
 2.2.2 Cast Al-Si-Mg Alloys .. Error! Bookmark not defined.
 2.2.3 Cast Al-Si Piston Alloys ... Error! Bookmark not defined.

2.3.1 Effects of cooling rate on microstructure.

2.3.2 Effects of solution treatment on Si particles.

2.3.3 Effects of solution treatment on Cu-rich phases.

2.3.4 Effects of solution treatment on Fe-rich phases.

2.3.5 Effect of solution treatment on mechanical properties of Al-Si-Cu alloys.

2.4 Factors controlling fatigue damage.

2.4.1: Effects of microstructure on crack initiation.

2.4.2: Effects of casting defects.

2.5: Micromechanisms of fatigue crack growth.

2.5.1: Introduction.

2.5.2: Fatigue crack initiation.

2.5.3: Crack propagation.

2.5.4 Crack closure.

2.5.5: Short Fatigue Crack Propagation.

2.5.6: Long Fatigue Crack Propagation.

2.6: S-N Fatigue Curves.

2.7: Summary.

Chapter

3.

MATERIALS AND EXPERIMENTAL METHODS.
3.3 Microstructural analysis ... Error! Bookmark not defined.
3.4 Theory of crack measurement technique Error! Bookmark not defined.
 3.4.1 Replication technique .. Error! Bookmark not defined.
3.5 Four point bend fatigue testing Error! Bookmark not defined.
3.6: S-N and short fatigue crack tests Error! Bookmark not defined.
 3.6.1 Material samples ... Error! Bookmark not defined.
 3.6.2 Experimental procedure ... Error! Bookmark not defined.
 3.6.3 Finite element analysis ... Error! Bookmark not defined.
 3.6.4 Data analysis method ... Error! Bookmark not defined.

Chapter

4.. Error! Bookmark not defined.

RESULTS AND DISCUSSION... Error! Bookmark not defined.

4.1: Introduction ... Error! Bookmark not defined.
4.2 Microstructure Characterization Error! Bookmark not defined.
4.3: Fatigue crack initiation and S-N fatigue results Error! Bookmark not defined.
 4.3.1: Tensile data and Si particles Error! Bookmark not defined.
 4.3.2: S-N Fatigue data and life distribution Error! Bookmark not defined.
 4.3.3: Post failure analysis .. Error! Bookmark not defined.
 4.3.4: Discussion .. Error! Bookmark not defined.
4.4: Short fatigue crack growth and initiation Error! Bookmark not defined.
 4.4.1: Short fatigue crack growth data Error! Bookmark not defined.
 4.4.2. Crack growth micromechanisms Error! Bookmark not defined.
 4.4.3 Discussion ... Error! Bookmark not defined.
 4.4.4 Summary .. Error! Bookmark not defined.
Chapter

5...

Bookmark not defined.

CONCLUSIONS

RECOMMENDATIONS..Error! Bookmark not defined.

5.1 Conclusion ... Error! Bookmark not defined.

5.2 Recommendations ... Error! Bookmark not defined.

REFERENCES...Error!

or! Bookmark not defined.

APPENDICES..Error!

or! Bookmark not defined.

LIST OF FIGURES
Figure 1-1: Typical microstructure of a near eutectic Al-Si piston alloy showing various phases including AlCuNi based intermetallics.

Figure 2-1: A sample microstructure of secondary AlSi9Cu3 cast alloy.

Figure 2-2: Typical microstructure of as-cast A356 with 0.12%Fe.

Figure 2-3: (a) Optical image showing microstructure of Al-Si piston alloy (b) Backscattered electron SEM image showing various intermetallic phases.

Figure 2-4: The variation in grain size, SDAS and UTS as a function of cooling rate.

Figure 2-5: Effect of solution treatment on eutectic Si morphology.

Figure 2-6: Evolution of Al-Al2Cu-Si phase during solution treatment.

Figure 2-7: Effects of solution treatment on Fe-rich intermetallics.

Figure 2-8: The influence of solution treatment conditions on (a) Brinell hardness (b) Tensile strength.

Figure 2-9: Typical long fatigue crack growth behaviour.

Figure 2-10: Typical fatigue crack growth rate behaviour for short and long fatigue cracks.

Figure 2-11: Failure Mechanism of Particles (a) debonding (b) fracture.
Figure 2-12: Typical S-N curves

Figure 4-1: SEM micrograph of the base alloy showing intermetallic phases and porosity

Figure 4-2: Additional phases identified for the base alloy at high magnification

Figure 4-3: SEM micrograph of PSG alloy showing modified Si and intermetallic phases

Figure 4-4: Low magnification SEM image showing some PSG microstructural phases

Figure 4-5: SEM image showing identified phases in PC alloy

Figure 4-6: Low magnification SEM image showing intermetallic phases in PC alloy

Figure 4-7: SEM image of PMC alloys showing star and script like α-AlFeMnCrSi phases

Figure 4-8: High magnification SEM image showing other intermetallics in PMC alloy

Figure 4-9: Weibull probability distribution plot for particle size data

Figure 4-10: S-N results of stress versus number of cycles to failure

Figure 4-11: S-N results of strain versus number of cycles to failure

Figure 4-12: Fracture surface showing initiation sites for alloy P

Figure 4-13: SEM image showing pore at initiation site in P alloy
Figure 4-14: Pore at initiation site in PSG alloy

Figure 4-15: Al₉FeNi particle at initiation site in PSG alloy as identified by EDX analysis

Figure 4-16: Fatigue crack initiating from Al₉FeNi intermetallic phase in PMC alloy

Figure 4-17: SEM image showing a pore surrounded with intermetallic particles in PMC alloy

Figure 4-18: Al₉FeNi particle at initiation site in PC alloy

Figure 4-19: Short fatigue crack growth data for all cracks analyzed in all specimens tested showing da/dN vs. the corresponding loading cycles

Figure 4-20: Short fatigue crack growth data for all cracks analyzed in all specimens tested showing da/dN vs. K values

Figure 4-21: Short fatigue crack growth data for alloy P showing crack tip growth vs. the corresponding loading cycles

Figure 4-22: Short fatigue crack growth data for alloy P showing crack tip growth vs. the K values

Figure 4-23: Fatigue crack growth data for PSG alloy crack vs. the corresponding loading cycles

Figure 4-24: Fatigue crack growth data for PSG alloy crack vs. the K

Figure 4-25: Fatigue crack growth data vs. corresponding loading cycles for PMC alloy

Figure 4-26: Fatigue crack growth data vs. K values for PMC alloy

Figure 4-27: Fatigue crack growth data for PC alloy crack tips vs. corresponding loading cycles
Figure 4-28: Fatigue crack growth data for PC alloy crack tips vs. K.

Figure 4-29: First initiation site in P alloy (a) is the acetate replica and (b) is the SEI fracture surface micrograph showing initiation.

Figure 4-30: Second initiation site for P alloy (a) acetate replica and (b) SEI fracture surface micrograph showing initiation.

Figure 4-31: Third initiation site in P alloy (a) is the acetate replica and (b) is the SEM image showing initiation site.

Figure 4-32: SEM image showing crack-microstructure interaction indicating points of crack retardation for P alloy.

Figure 4-33: SEM image of right crack tip showing large crack deflection in P alloy.

Figure 4-34: Typical (a) SEM micrograph showing the crack initiation site for PSG alloy (b) SEM image of high magnification showing intermetallic phase in the pore (c) EDX spectrum used to identify the intermetallic particle as Al\textsubscript{9}FeNi phase.

Figure 4-35: Showing crack propagation through the Si cluster in PSG alloy (modified alloy)

Figure 4-36: (a) replica showing full crack length and (b) SEM image of full crack profile showing crack interaction with the microstructure in PSG alloy and points of crack retardation.

Figure 4-37: Short fatigue crack retardation events of the crack tips for PSG alloy in (a) vs. the corresponding loading cycles and (b) K.

Figure 4-38: (a) Low magnification SEM images of crack initiation sites for PMC alloy and (b) high magnification SEM images showing that fatigue cracks initiated through debonding and cracking of intermetallic particles.
Figure 4-39: (a) A replica record of initiation and early short crack growth in PMC alloy (b) An SEM micrograph around the initiation site. Initiation occurred due to fracturing and debonding of intermetallic particle.

Figure 4-40: (a) An SEM image showing coalescence of two cracks initiated from the same specimen in PMC alloy (b) higher magnification SEM images indicating particle fracturing and debonding along the crack path.

Figure 4-41: (a) A SEM image showing crack-microstructure interaction of short crack for PMC alloy.

Figure 4-42: Graph (b) and (c) indicates short crack retardation events of the crack da/dN vs number of loading cycles and K respectively.

Figure 4-43: Replica image showing the first initiation site for PC alloy and crack growth at different loading cycles.

Figure 4-44: Replica image showing the second initiation site and early growth of a short crack in PC alloy.

Figure 4-45: SEM image showing parts of the crack in PC alloy with multiple crack growth behaviour; crack is deflected towards particles that have fractured ahead of crack tip. Crack propagation behaviour is due to fracture and debonding of particles along the crack path.

Figure C-1: Tensile stress-strain curves for Al-Si piston alloys.

Figure C-2: The loading geometry used in short crack growth fatigue testing.

Figure C-3: Finite Element model geometry.

Figure C-4: FE analysis showing stress distribution.

Figure C-5: FE analysis showing stress equivalent (von mises).
Figure C-6: FE analysis showing stress intensity ...112
LIST OF TABLES

Table 1-1: Chemical composition (wt. %) of the recycled Al-Si Piston.

Table 1-2: Alloy variants investigated by previous researcher.

Table 3-1: Composition of alloy variants to be investigated (wt. %).

Table 4-1: Quantitative measurements of phases in the alloy variants.

Table 4-2: Particle and tensile data for piston alloys under investigation.

Table 4-3: Results of SEM investigation on fatigue crack initiation.

TableC-1: FEM analysis results.

Table C-2: Shows the number of cycles to failure of each alloy variants.
ABSTRACT

There are significant economic and ecological benefits of aluminum recycling. However, recycled aluminum alloys have not yet found widespread application in premium components. This is mainly due to difficulties in controlling the chemical composition of the recycled alloys attributed to the varied compositions of cast aluminum scrap. For this reason, existing secondary alloys (e.g. 319 type alloys) tend to have relatively more tolerant impurity element specifications and broader limits for major alloying elements. As useful as this may be, it does not alleviate the problems associated with recycling as regards to chemical composition control. This research is part of a wider investigation whose overall aim is to develop new high performance recycled alloys for selected automotive component applications. Previous work within the group has mainly concentrated on the development of recycle-friendly alloys for automotive piston applications. A preliminary evaluation of mechanical performance has been carried out on a suggested model secondary piston alloy that can be obtained via direct reuse of piston scrap. The current work involved a more detailed analysis of the microstructure-mechanical property characteristics of this alloy as affected by selected minor elements. The emphasis here was to assess the effect of microstructure on the fatigue performance of the base alloy as well as the effect of Sr, Mn, Cr and grain refinement.

Fatigue crack initiation was investigated at room temperature using S-N and short fatigue crack growth experiments. A 4-point bend test configuration was adopted for laboratory tests. Post failure analysis indicated that pores and intermetallic particles were detrimental in causing fatigue crack initiation. Porosity was observed to act as fatigue crack initiation sites in the base alloy, the alloy containing Cr, and in the alloy with a combined addition of Sr and Al-Ti-B grain refiner. In the alloy containing a combined addition of Mn and Cr, intermetallic particles were observed to cause fatigue crack
initiation. Using EDX, the intermetallic particles were identified to be Al$_9$FeNi phases. Different fatigue crack growth behaviour was observed for all the alloys investigated. The highest crack growth rates were observed in the base alloy, and in the alloy with a combined addition of Sr and Al-Ti-B grain refiner as compared to the alloys containing Cr, or a combined addition of Mn and Cr.

From SEM images, all the alloys under investigation exhibited complex multiphase intermetallic phases. As result, the micromechanisms of fatigue are due to particle fracture and debonding for crack propagation continuity. The level of crack continuity depends largely on micro-damage behaviour experienced at the crack tip. It is the extent of this damage in the alloys that control the fatigue crack growth rates exhibited.
Chapter 1

INTRODUCTION

1.1 Background

The excellent properties of Al-Si alloys have led to the diversified range of application of these alloys [HYPERLINK \l "Placeholder2" 1]. They have become the popular choice material for various applications in automotive, construction, aerospace and marine industries mainly due to their high strength to weight ratio, excellent castability, high corrosion resistance and good mechanical properties 2]