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ABSTRACT 

In this study, stokes problem of a convective flow past a vertical infinite plate in a 

rotating system in presence of variable magnetic field is considered. The fluid flow is 

unsteady and a variable magnetic field is transversely applied to the plate. Evaluation of 

velocity gradients and temperature gradients across the plate is done. Observations and 

discussions of the effects of various parameters on flow variables is done. The non-

dimensional parameters observed and discussed are Hall parameter, m; Magnetic 

number, M
2
; Eckert number, Ec and Rotational parameter, Er. The velocity profiles and 

temperature profiles are presented graphically for both free convectional heating and 

free convectional cooling of the plate. The skin friction and rate of heat transfer values 

are obtained and presented in tables. For free convectional heating and cooling of the 

plate, the Grashof number is taken as constants -0.5 and 0.5 respectively. Prandtl number 

is 0.71 which corresponds to air. The variation of the parameters mentioned above is 

noted to increase or decrease or had no effect on the skin friction, rate of heat transfer, 

the velocity profiles and temperature profiles. 
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CHAPTER ONE 

1.0 INTRODUCTION AND LITERATURE REVIEW 

1.1 OVERVIEW  

In this chapter, definitions of the main terms used in the thesis are done. Literature 

review related to the present work is also given. Objectives and justifications of the 

study are also stated and finally at the end of the chapter, an outline of the thesis is 

presented.  

 

1.2 INTRODUCTION AND LITERATURE REVIEW 

A fluid is defined as a substance that deforms continuously when acted on by a shearing 

stress of any magnitude. A shearing stress (force per unit area) is created whenever a 

tangential force acts on a surface. Common fluids such as water, oil, and air satisfy the 

definition of a fluid, that is, they will flow when acted on by a shearing stress. In this 

thesis it will be assumed that all the fluid characteristics of interest (pressure, velocity, 

e.t.c) vary continuously throughout the fluid, that is, we treat the fluid as a continuum. 

This concept will certainly be valid for all the circumstances considered in the thesis. 

 

Fluid Mechanics is the study of fluid motion and forces that cause the motion. Fluid 

Mechanics is categorized into two namely: Fluid kinematics and fluid dynamics. Fluid 

kinematics involves forces which induces or causes motion of fluid. i.e. a branch of fluid 
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mechanics that is concerned with the forces that cause the fluid motion. Fluid dynamics 

is the study of fluid motion. 

The experimental observation that the fluid “sticks” to the solid boundaries is a very 

important one in fluid mechanics and is usually referred to as the no-slip condition. 

Many fluids, both liquids and gases, satisfy this condition.  

Fluids fall under two categories: Incompressible and compressible fluids. 

Incompressible fluids are those fluids that do not change significantly in volume when 

subjected to change in pressure and temperature. A fluid is termed as compressible when 

there is significant change in the pressure and temperature that are sufficiently large to 

cause density changes of the fluid.  

The shearing stress and rate of shearing strain (velocity gradient) is given by a 

relationship of the form: (Currie, 1974) 

dy

du
            (1.1) 

where the constant of proportionality is designated by the Greek symbol   (mu) , 

referred to as the viscosity of the fluid. Fluids in which the shearing stress is linearly 

related to the rate of shearing strain (also referred to as the rate of angular deformation) 

are designated as Newtonian fluids. Fluids for which the shearing stress is not linearly 

related to the rate of shearing strain are designated as non-Newtonian fluids. This study 

considers a Newtonian fluid. As such fluids can be classified according to the relation 

between shear   and rate of angular deformation: 

0      Ideal fluids     (1.2) 
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dy

du
       Newtonian fluids    (1.3) 











dy

du
Const      Ideal plastics or Bingham plastics  (1.4) 

n

dy

du
Const 








      Thyxotropic fluids    (1.5) 

n

dy

du








       Non-Newtonian fluids    (1.6) 

For non-Newtonian fluids, if n is less than unity, they are called Pseudo-plastics while 

fluids in which n is greater than unity are known as dilatants. 

 

If F is a flow or fluid property such as velocity, pressure, mass, density or temperature, 

then the following types of flows have been defined: 







































0:

0:

secint

secint

tionorpoaat

tionorpoaat

t

F
flowUnsteady

t

F
flowSteady

     (1.7) 












































0:

0:

tot

tot

t

F
flowuniformNon

t

F
flowUniform

     (1.8) 

Where 



 20 

   
 
  














tzyxFFensionalThree

tyxFFensionalTwo

tsFortxFFensionalOne

,,,dim

,,:dim

,,:dim

     (1.9) 

 

Magnetohydrodynamics (MHD) is a branch of science of the dynamics of fluid flowing 

in presence of electromagnetic field, especially where induced currents in the fluid by 

induction modify the field, so that the field and dynamics equations are coupled. MHD 

treats; in particular, certain conducting fluids, whether liquid or gaseous, in which some 

phenomenon are accepted. The phenomenon is, Maxwell displacement current is 

neglected and the fluid is treated as a continuum, without mean-free path effects 

(Calvert, 2002). 

 

The study of rotating fluids has had considerable progress in the last few decades. For 

instance, the effect of an applied variable magnetic field on unsteady free convection 

flow along a vertical plate has been given considerable interest because of its application 

in the cooling of nuclear reactors or in the study of the structures of stars and planets. 

Important engineering applications in which the study of MHD flows of rotating fluids 

with variable magnetic field poises includes: power generators, heat exchangers, 

reactors and MHD accelerators among other devices. 

 



 21 

Many investigators have considered the flow problem of MHD natural convection past 

an infinite or semi infinite vertical moving plate with uniform magnetic field (Ram and 

Kinyanjui, 1995; Aldoss et al, 2005; Takhar et al, 1995; Dorch, 2007). 

 

1.2.1 Unsteady and steady flow.  

For steady flow the velocity at any given point in space does not vary with time, 0




t

v
. 

In reality almost all flows are unsteady in some sense, that is, the velocity varies with 

time. An example of a non-periodic, unsteady flow is that produced by turning off a 

faucet to stop the flow of water. In other flows the unsteady effects may be periodic, 

occurring time after time in basically the same manner. The periodic injection of the air-

gasoline mixture into the cylinder of an automobile engine is such an example. In many 

situations the unsteady character of a flow is quite random, that is, there is no repeated 

regular variation to the unsteadiness. This behavior occurs in turbulent flow and is 

absent in laminar flow. The “smooth” flow of highly viscous syrup onto a pancake 

represents a “deterministic” laminar flow. It is quite different from the turbulent flow 

observed in the “irregular” splashing of water from a faucet onto the sink below it. The 

“irregular” gustiness of the wind represents another random turbulent flow. In an 

unsteady flow, the flow variables such as velocity and the thermodynamic properties at 

every point in space vary with respect to time. On the other hand, in steady flows none 

of the fluid variables will vary with time.  
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1.2.2 Hydromagnetic 

Hydrodynamics is the study of the motion of fluid when forces are applied. The 

interaction between electric and magnetic fields is referred to as electromagnetism. 

Hydromagnetics is a branch of science in which hydrodynamics and electromagnetism 

interact. It is also referred to as magnetohydrodynamics (MHD). Therefore, in 

hydromagnetic flows there are three non-linear terms in the governing equation while in 

hydrodynamic flows there is only one. The flow of an electrically conducting fluid such 

as mercury under a magnetic field in general gives rise to an induced electric current 

that yields mechanical forces that are exerted by the magnetic force. The induced 

electric current also produces induced magnetic field thus the original magnetic field is 

changed.  

 

1.2.3 Free convection flow  

Due to the varied range of application in engineering and universe, MHD free 

convection flow has become significant. A fluid flow in which the motion is as a result 

of body force acting on the fluid in which there are density gradients is called a free 

convection flow. Temperature or concentration gradients existing in the fluid yields 

density gradients while the gravitational force yields the body force. Thus the action of 

the body force on the fluid amounts to buoyancy force that eventually induces free 

convection current. 
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1.2.4 Heat transfer  

This constitutes the study of energy transfer that takes place between bodies due to 

temperature difference. The temperature difference may be as a result of a fluid 

dissipating heat or introduction of heat to the flow field. Heat transfer can be either by 

conduction, radiation or convection. Conduction is heat transfer that takes place when a 

temperature gradient exists in a stationary medium which may be solid or fluid. The 

mode of heat transfer that takes place between a surface and a fluid in motion at 

different temperatures is termed as convection. The motion of the fluid is as a result of 

imbalance on forces acting on the fluid flow. Free or natural convection is the mode of 

heat transfer in which the flow is as a result of density gradient created by temperature 

variation while forced convection occurs when the flow is caused by some external 

forces. Radiation is type of heat transfer in which there is a net heat transmission due to 

electromagnetic wave propagation that takes place in a vacuum as well as in a medium. 

In our study heat transfer by free convection is considered. 

 

1.2.5 Mass transfer  

The relative motion of a mixture’s species as a result of concentration gradients is 

termed as mass transfer. Thus, this is mass in transit caused by concentration difference 

of the species in a mixture. Modes of heat transfer that are similar to convection and 

conduction do exist.  

Mass transfer by free convection will be studied in this study. In natural convection, 

external forces are not required since effects of buoyancy and the force of gravity induce 
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the motion thereby resulting in the heat transfer. Thus both heat transfer and fluid flow 

due to convection rely on the fundamental principles of heat transfer and fluid flow. 

Significant laws of convection include: conservation of mass, momentum conservation 

and energy conservation law.  

 

1.2.6 Boundary layer  

A thin layer of fluid near the surface of a body or solid in which the flow is affected by 

viscous forces is called Boundary layer. In analyzing flow problems that involve transfer 

by convection, boundary layer theory plays a significant role.  

 

Three boundary layers may exist when a fluid flows on a surface. These are thermal, 

concentration and velocity boundary layer. A zero velocity is assumed by fluid particles 

when they come into contact with a surface (no-slip condition). Velocity boundary layer 

is the region in which the velocity gradient is large. 

These fluid particles attain a thermal equilibrium state when they come into contact with 

an isothermal plate on its surface temperature.  Thermal boundary layer is the region on 

the fluid in which temperature gradients exist.   

 

A concentration boundary layer is the layer on the fluid in which concentration gradient 

is present, i.e., it is region that develops if the concentration of species at the surface 

differs from that in the free stream. In this study, the three boundary layers are 

considered and investigation of convection of heat transfer and the skin friction is done. 
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If the fluid were non-viscous, the streamlines would be parallel to the plate and nothing 

very interesting happens. For a viscous fluid, however, we must apply the no-slip 

boundary condition on the surface of the plate. The thickness of the boundary layer, 

which is denoted by , is the distance required for the velocity profile to approach its 

free stream value (see Figure 1.1). Considering that the viscosity is a measure of the 

diffusion of velocity (or vorticity), the thickness of the boundary layer after a time t is 

approximately given by  

 .~ vt                                                                                  (1.10) 

Now in a time t an element of fluid which starts at the leading edge of the plate will 

have moved a distance Utx ~ , so that the boundary layer thickness a distance x from the 

leading edge is  

   ~ .
U

vx
                                                                                  (1.11)

  

Therefore, the boundary layer thickness at the trailing edge of the plate, measured 

relative to the length of the plate itself, is  

 
x

x

l


~ 2

1

Re


x                                                           (1.12) 
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where, it has been observed that the boundary layer thickness decreases with increasing 

Reynolds number (for an assumed laminar flow).  

 

Figure 1.1: Geometry for viscous flow past a thin plate 

In the present study, a laminar flow is considered, hence possesses the following 

characteristics: 

i. “No-slip” at the boundary, i.e. because of viscosity, velocity of fluid at 0y  is 

zero if boundary is stationary or is equal to velocity of the boundary if it is in 

motion. 

ii. Because of viscosity there is shear between fluid layers which is given by 

dy

du
  (since the fluid is Newtonian) for flow in x-direction. 

iii. The flow is rotational. 
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iv. There is continuous dissipation of energy due to viscous shear and energy must 

be supplied externally to maintain the flow. 

v. There is no mixing between different fluid layers except by molecular motion, 

which is very small. 

vi. Flow remains laminar as long as 


Ul
 is less than what is known as the critical 

value of Reynolds number. 

vii. Energy loss is proportional to first power of velocity and first power of viscosity. 

1.2.7 Skin friction  

Friction (sometimes called skin friction) is a resistance to motion created by two objects 

rubbing against one another. When a fluid flows past an object, the amount of friction is 

determined by: the viscosity of the fluid; and the smoothness of the surface of the object. 

Viscosity mu   is a measure of how much a fluid will resist flowing. e.g. honey versus 

water. 

Quite often viscosity appears in fluid flow problems combined with the density in the 

form 




   

This ratio is referred to as the Kinematic viscosity and is denoted by the Greek symbol 

  (nu). 

The boundary layer produces a drag on the plate due to the viscous stresses which are 

developed at the wall. This drag is often referred to as skin friction, and is due to the 
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viscous stresses acting on the surface of the plate. If the boundary layer remain attached 

to the body (which it may not), then this is the sole source of drag on a body. The 

turbulent mixing of the fluid near the surface of a solid body leads to more efficient 

momentum transport away from the body, increasing the gradient of the velocity profile 

at the surface and therefore the viscous stress on the plate. If the boundary layer can be 

persuaded to remain laminar, then boundary layers which remain attached to a body the 

drag due to skin friction can be reduced. At high Reynolds number, the flow will be 

turbulent. In this thesis   is taken as the Coefficient of Viscosity,   as the Kinematic 

Viscosity and   as the Dynamic Viscosity.  

 

1.2.8 Inviscid flow 

Flow fields in which the shearing stresses are assumed to be negligible are said to be 

inviscid, non-viscous or frictionless. These terms are used interchangeably. 

 

1.2.9 Kinematic similarity 

Kinematic similarity is similarity of motion. If at the corresponding (or homologous) 

points in the model and in the prototype, the velocity or acceleration ratios are the same, 

the velocity or acceleration vectors point in the same direction, the two flows are said to 

be kinematically similar. 
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1.2.10 Dynamic similarity 

Dynamic similarity is the similarity of forces. The flows in the model and in the 

prototype are dynamically similar if at all the corresponding points, identical types of 

forces are parallel and bear the same ratio. In dynamic similarity, the force polygons of 

the two flows can be superimposed by change in force scale. 

 

1.2.11 Hall and Ion-slip Currents 

The electrical current density J


represents the relative motion of charged particles in a 

fluid. The equation of electric current density may be derived from the diffusion 

velocities of the charged particles. When electric field E


is applied, there will be an 

electrical current in the direction of E


. If the magnetic field H


is perpendicular to E


, 

there will be an electromagnetic force BJ


 which is perpendicular to both E


and H


. 

Thus, there is a new component of electric current density in the direction perpendicular 

to both E


 and H


,which is known as Hall Current. For the same electromagnetic force, 

the motion of ions is different from that of electrons, when the electromagnetic force is 

very large (such as in a very strong magnetic field) the diffusion velocity of ions cannot 

be neglected. If the diffusion velocity of ions is considered then this results to Ion-slip 

current. In our present investigation, the effect of Hall currents neglecting the Ion-slip 

current on the flow field is studied. 
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1.3 LITERATURE REVIEW  

The concept of MHD was first introduced by Hartman (1938) when he studied the 

effects of a conductor in an electrically conducting fluid. In the last two decades, 

considerable progress has been made in the general theory of rotating fluids. It was 

proved that in a rotating fluid near a flat plate, an Ekman layer exists. Some of the 

researchers who investigated on such a layer are Raptis et al (1983) and Gupta (1975).  

The important point is that the flow of electrically conducting fluid such as mercury 

under a magnetic field in general gives rise to an induced electric current. Much work in 

MHD was done by Alfven (1942) who established transverse waves in electrically 

conducting fluids and explained many astrophysical phenomena with it. 

 

Linguistics (1952) showed that the interaction between the two branches 

(Electromagnetic and Hydrodynamics) is significant if the non-dimensional number 

√BL (σμe/ρ)
1/2

>1 where B is the magnetic field, L- characteristic length, σ- electrical 

conductivity, μe is the magnetic permeability and ρ is  the density of the fluid. 

 

An analytical study of the flow past an impulsively started semi-infinite plate was done 

by Stewardsone (1951). Kinyanjui et al (1998) studied stokes problem of convective 

flow from a vertical infinite plate in a rotating fluid. Rossow (1958) studied Stokes 

problem under a transversely applied magnetic field. A software tool using finite 

elements for the solution of fluid flow problems was investigated by Naroua et al 

(2004). Plaut (2003) studied the non linear dynamics of traveling waves in rotating 
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Rayleigh-Bernard convection in which he examined the effects of the boundary 

conditions and of the topology. 

 

Stokes (1851) studied the flow of an incompressible viscous fluid past an impulsively 

started infinite horizontal plate. Ogulu and Prakash (2004) studied the effect of slip 

velocity on oscillatory MHD flow with radiative heat transfer and variable suction. 

Ram et al (1990) analyzed the effects of Hall current and wall temperature oscillation on 

convective flow in a rotating fluid through porous medium bounded by an infinite 

vertical limiting surface. The effects of various parameters on the velocity and shear 

stress were determined. Ram et al (1991) employed the finite difference method to 

analyze the MHD Stokes problem for a vertical plate with Hall and Ion-slip currents. 

Ram et al (1995) discussed MHD Stokes problem of a convective flow of a vertical 

infinite plate in a dissipative rotating fluid with Hall current, an analysis of the effects of 

various parameters on the concentration, velocity and temperature profiles was done. 

 

Aldoss et al (2005) studied the transient hydrodynamics and thermal behaviour of free 

connective flow over an isothermal vertical flat plate while hydromagnetic convective 

flow heat generating fluid past a vertical plate with Hall current and heat flux through a 

porous medium was studied by Takhar et al (1995). 

 

Sachdeva (1994) studied the fundamentals of engineering heat and mass transfer. 

Kinyanjui et al (2001) studied MHD free convective heat and mass transfer of a heat 
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generating fluid past an impulsively started infinite vertical porous plate with Hall 

current and radiation absorptions. MHD stokes problem for a vertical infinite plate in a 

dissipative rotating fluid with Hall current was studied by Chaturvedi (1998). Kwanza et 

al (2003) analyzed   MHD stokes free convection flow past an infinite vertical porous 

plate subjected to constant heat flux with ion-slip current and radiation absorption. Seth 

(1986) studied unsteady hydromagnetic flow in a rotating channel in the presence of 

inclined magnetic field. Soundalgekar (1973) studied hydromagnetic free convention 

flow past a vertical infinite porous plate in a rotating fluid. Soundalgekar (1980) dwelled 

with the effects of free convective current on the oscillatory flow past a vertical semi-

infinite plate. Chaudhary (2006) studied combined heat and mass transfer effects on 

MHD free convection flow past an oscillating plate embedded in porous medium. 

Muthucumaraswamy et al (2001) investigated mass diffusion effects on flow past a 

vertical surface. Ghaddar (1998) studied an analytical model of induced electric current 

from a free convection loop placed in a transverse magnetic field. Error analysis due to 

two dimensional approximations in heat transfer analysis of welds was analyzed by 

Kamala (1993).  

 

Chamkha (2000) studied hydromagnetic combined heat and mass transfer by natural 

convection from a permeable surface embedded in a fluid saturated porous medium. 

Chamkha and Khaled (2001) investigated coupled heat and mass transfer in MHD free 

convection flow from an inclined plate in the presence of internal heat generation or 

absorption. Aboeldahab and Elbarbary (2001) took into account the Hall current effect 
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on MHD free convection heat and mass transfer over a vertical surface upon which the 

flow is subjected to a strong external magnetic field. Emad et al (2001) studied Hall 

current effect on magnetohydrodynamic free-convection flow past a semi-infinite 

vertical plate with mass transfer. They discussed the effects of magnetic parameter, Hall 

parameter and the relative buoyancy force effect between species and thermal diffusion 

on the velocity, temperature, and concentration. Sahoo (2003) investigated 

Magnetohydrodynamic unsteady free convection flow past an infinite vertical plate with 

constant suction and heat sink. Researchers Camargo et al (1996) conducted a numerical 

study of the natural convective cooling of a vertical plate. An analysis of the MHD flow 

of a conducting fluid past a plate in presence of radiation has been studied by Rapits and 

Massalas (1997). Ogulu et al (2002) studied the unsteady free convection and mass 

transfer of a fluid past an infinite plate in presence of thermal diffusion.  

 

Feng-Chen et al (2005) investigated MHD effect on the flow structure and heat transfer 

characteristics. This was studied numerically for a liquid-gas annular flow under a 

transverse magnetic field. The results showed that temperature distribution in the liquid 

film and the Nusselt number distribution in the angular direction were influenced by the 

flow structures with the side walls. 

 

Hang and Shi-Jun (2005) presented the unsteady magnetohydrodynamic viscous flows 

of non-Newtonian fluids caused by an impulsive stretching plate. Chamkha (2004) 

considered unsteady, two-dimensional, laminar, boundary-layer flow of a viscous, 
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incompressible, electrically conducting and heat-absorbing fluid along a semi-infinite 

vertical permeable moving plate in the presence of a uniform transverse magnetic field. 

In the same year he studied unsteady heat and mass transfer by mixed convection flow 

over a vertical permeable cone rotating in an ambient fluid with a time dependent 

angular velocity in the presence of a magnetic field and heat generation or absorption 

effects. 

Zakari (2004) analyzed heat transfer from a non-isothermal stretching sheet in the 

presence of a transverse magnetic field by means of the successive approximation 

method. In the same year Chien (2004) analyzed the problem of combined heat and 

mass transfer of an electrically conducting fluid in MHD free convection adjacent to a 

vertical surface taking into account the effects of Ohmic heating. Emad et al (2005) 

studied the effects of viscous dissipation and joule heating on MHD free convection 

flow past a semi-infinite vertical plate in the presence of combined effect of Hall and 

Ion-slip currents for the case of power-law variation of the wall temperature. They found 

that the magnetic field acts as a retarding force on the tangential flow but has a 

propelling effect on the induced lateral flow. The skin friction factor for the tangential 

flow and the Nusselt number decreases but the skin friction factor for the lateral flow 

increases as the magnetic field increases. The skin friction factor for the tangential and 

lateral flows is increased while the local Nusselt number is decreased if the effect of 

viscous dissipation joule heating and heat generation are considered. 
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Chaturvedi (2006) has also considered the flow of a polar fluid past an infinite plate 

with constant suction. Alam and Rahman (2005) studied local similarity solutions for 

unsteady MHD free convection and mass transfer flow past an impulsively started 

vertical plate with Dufour and Soret Effects. Singha and Deka (2006) analyzed Skin-

friction for unsteady free convection MHD flow between two heated parallel plates. 

Seddeek and Abdelmeguid (2004) investigated Hall and Ion-Slip effects on magneto-

micropolar fluid with combined forced and free convection in boundary layer flow over 

a horizontal plate. When the strength of the variable magnetic field is high, hall currents 

become significant and have to be considered in the analysis. 

 

Jordan (2007) analyzed the effects of thermal radiation and viscous dissipation on MHD 

free-convection flow over a semi-infinite vertical porous plate. The network simulation 

method is used to solve the boundary layer equations based on the finite difference 

formulation. It was found that an increase in viscous dissipation leads to an increase in 

both velocity and temperature profiles, an increase in the magnetic parameter leads to an 

increase in the temperature profiles and a decrease in the velocity profiles finally an 

increase in the suction parameter leads to an increase in the local skin friction and 

Nusselt number. Osalusi et al (2007) studied the effects of ohmic heating and viscous 

dissipation on unsteady MHD and slip flow over a porous rotating disk with variable 

properties in the presence of Hall and Ion-slip currents. Stokes (1951) studied the flow 

of an incompressible viscous fluid past an impulsively started horizontal plate.  
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From the literature review, much has not been done on Stokes problem of a convective 

flow past an infinite vertical plate in a rotating system in presence of a variable magnetic 

field. The present research therefore seeks to study Stokes problem of a convective flow 

past an infinite vertical plate in a rotating system in presence of a variable magnetic 

field. The present investigation is to study the effects of a variable magnetic field 

resulting to Hall currents on MHD stokes problem for a vertical infinite plate in a 

rotating system. When there is a variable magnetic field, motion of the fluid is 

decelerated and Hall currents, Hartman numbers become significant and hence their 

consideration in the analysis is important. 

 

1.4 STATEMENT OF THE PROBLEM 

When an electrically conducting fluid flows past a vertical infinite plate in a rotating 

system in presence of a variable magnetic field, the motion of the fluid is retarded and 

thus velocity and temperature changes are observed. 

 

This study therefore intends to obtain an approximate solution to the shape of the 

velocity and temperature profiles. A study of a variable magnetic field, H, which is 

assumed to be applied transversely to the direction of the flow as shown in Figure 1.2 

below. A sketch diagram of the research problem is shown in Figure 1.2.  
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Fig 1.2: The flow configuration with the co-ordinate system of Stokes Problem of a Convective Flow 

 Past a Vertical Infinite Plate in a Rotating System in Presence of Variable Magnetic Field. 

 

 

1.5 JUSTIFICATION  

For the sake of application, we consider a magnetohydrodynamic Stokes problem of 

convective flow for a vertical infinite plate in a rotating system in presence of a variable 

magnetic field. Magnetohydrodynamic (MHD) convection flow has many important 

engineering applications in the design of power generators, heat exchangers, pumps and 

flow meters, in solving space vehicle propulsion, control and re-entry problems; in 

designing communications and radar system; in creating novel power generating 
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systems; in developing confinement schemes for controlled fusion and in design of 

nuclear cooling reactors and MHD accelerators. 

 

1.6 RESEARCH OBJECTIVES  

The objectives of our study are: 

1) To determine both the velocity and temperature distribution for electrically 

conducting fluid flowing past a vertical infinite plate in a rotating system 

subjected to variable magnetic field. 

2) To investigate the effect of the various parameters (Hall parameter, Eckert 

number, Grashof number, magnetic parameter) on the flow field. 

3) To analyze the skin friction and   rate of heat transfer. 

 

1.7 OUTLINE OF THESIS  

Chapter one constitutes introduction in which the main terms used are defined. 

Literature review, research objectives and applications are also outlined in chapter one.  

Equations governing the flow including mass conservation equation, momentum and 

energy equations are given in chapter two. Chapter three presents the numerical method 

employed in solving the non linear equations. 

  

Chapter four considers Stokes problem of a convective flow past a vertical infinite plate. 

The vertical infinite plate is subject to strong transverse variable magnetic field that is 

applied perpendicularly. The fluid considered is viscous and in a rotating system. Finite 
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difference method has been used to obtain the velocity and temperature profiles as the 

governing equations obtained are non-linear. The results of velocity and temperature 

profiles are presented using graphs. To calculate the skin friction, numerical 

differentiation using Newton interpolation formula has been used. Nusselt number is 

employed in the computation of the rate of heat transfer. Results of rate of heat transfer 

are presented by using tables. At the end of the chapter, discussion of the effects various 

parameters on the velocity and temperature profiles are given. 

  

Chapter six is a summary of the conclusions and recommendations. References have 

also been provided with their names arranged alphabetically (Harvard Referencing 

system).  The equations of an electrically conducting incompressible, viscous fluid flow 

past an impulsively started infinite vertical plate in presence of transverse variable 

magnetic field are outlined in their general form in the next chapter. 
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CHAPTER TWO  

2.0 GOVERNING EQUATIONS 

2.1 INTRODUCTION 

This chapter considers the governing equations of magneto-hydrodynamics that are 

obtained from a combination of electromagnetic theory and fluid mechanics. The 

approximations made in this particular flow problem are also considered. Conservation 

equations namely conservation of mass, momentum and energy are stated. 

Electromagnetic equations such as Maxwell’s Equation and Ohms’ Law are considered. 

In chapter 2 section 2.3, the general dimensional form of the equations governing the 

fluid flow is presented. Non-dimensional numbers are then defined. Non-

dimensionalization of the governing equations is then done by selecting certain 

characteristic quantities. Finite difference method is then used to solve the final set of 

non-dimensionalized equations. 

 

2.2 ASSUMPTIONS AND APPROXIMATIONS 

In order to reduce complexity and achieve the outlined objectives in the previous 

chapter, the following assumptions and approximations were made. 

i) Assume the ratio of the square of the fluid velocity v  and that of the square 

of the velocity of light C  are too small, i.e. 1
2

2


C

v
  

ii) The fluid flow is restricted to a laminar domain. 
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iii) The fluid is incompressible hence the density of the fluid is assumed to 

remain constant. 

iv) There no chemical reactions taking place in the fluid. 

v) There is no externally applied electric current thus the Lorenz Force is given 

by BJ


 . Thus the force Ee


  due to electric field (induced) is negligible i.e. 

0E


. 

vi) The induced magnetic field due to the fluid motion and presence of magnetic 

field does not affect the original externally applied magnetic field and if this 

happens, it’s negligible. 

vii) The induced magnetic field is assumed negligible which is justified for very 

small Reynolds number.  

viii) The plate is non-conducting 

ix) The following properties are assumed to be isotropic; permittivity, 

permeability and conductivity. Thus D


 and J


have the same direction as E


, 

and B


 has the same direction as H


 and we write HB e


 in any frame of 

reference. 

x) Ohm’s law is given by  BVEEJ


  ' ,and JJ


' since Ue


 is 

negligible compared with  BVE


  
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xi) For high conductivity i.e.  , ohm’s law indicates that for finite J


then 

0'E


 and BVE


 .The current is then determined by JH


  and not 

ohm’s law. 

 

2.3 THE GOVERNING EQUATIONS 

We consider the flow of a homogeneous, isotropic, viscous, electrically conducting 

incompressible fluid with constant density  , constant conductivity and constant 

coefficient of viscosity , with velocity vector q


, having components wvu ,, or jU  in the 

direction jX    3,2,1j  and pressure . Further let H


denote the magnetic field strength 

with components yx HH ,  and zH  or jH ,electric field E


 with components yx EE ,  and zE  

or jE ,the electrical current density J


 with components zyx JJJ ,,  or jJ  and e  be the 

excess electrical charge. Classical thermodynamics postulates that the thermal state of a 

fluid is determined by only two independent thermodynamic properties. A third 

thermodynamic property is related to two independent properties by the equation of state 

of the fluid for example   ,  where the physical quantities have their usual 

meaning as given in the nomenclature. 

 

The fundamental equations of fluid dynamics are based on the following universal laws 

of conservation namely: Conservation of mass, momentum and energy. 
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2.3.1 Equation of continuity 

Conservation of mass equation (also called the equation of continuity) can be expressed 

as (Hughes and Gaylord, 1964) 

  0








j

j

U
xt



         (2.1) 

The equation of continuity (conservation of mass equation) is based on two fundamental 

principles namely: 

1. The fluid is neither created nor destroyed in the field of flow i.e. the fluid mass is 

conserved. 

2. There are no empty spaces between particles that were in contact and that the 

fluid volume is not affected by an increase in pressure i.e. the flow is continuous. 

This is the so called continuum hypothesis. 

 

2.3.2 Equation of conservation of momentum (Equation of motion) 

Equation of conservation of momentum is derived from Newton’s second law of motion 

which states that the sum of resultant forces is equal to the rate of change of momentum 

of the flow i.e. the net rate of momentum must be equal to the net sum of forces acting 

on the fluid. The momentum of a body is defined as the product of its mass and velocity. 

Thus, when a force is applied to an incompressible fluid of any given mass, its velocity 

changes. This equation may be expressed mathematically and in tensor form as follows 

(Donald et al, 1997): 
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Since this study involves viscous fluids and hence from Newton’s constitutive law we 

have 
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      (2.3) 

In which case ji , ij  and   are the stress tensor, kronecker delta and dynamic viscosity 

respectively. For incompressible flow, Equation (2.3) reduces to 




















j

i

j

i
jji

x

u

x

u
iP          (2.4) 

On substitution of equation (2.4) into (2.2) and using the fact that the flow is 

incompressible with invariant viscosity, equation (2.2) (equation of conservation of 

momentum) yields: 

ii

ij

i
j

j
Fu

x

P

x

u
U

t

u
 





















 2
      (2.5) 

Both gravitation force g  and electromotive force (Laplace force) influences the fluid 

under consideration so that the volume of density of the external forces is given by the 

equation (Holman, 1992) 

BJgF


           (2.6) 

Substituting (2.6) in (2.5) we obtain 

  BJguPuu
t

u 












11 2
     (2.7) 

Equation (2.7) can be written as  
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  geo FFiqvPqq
t

q

Dt

qD 















 2     (2.8) 

In which case, oi


 is the stress tensor, gF


is the non-electric force per unit volume for 

instance, gravitational force F


 and eF


 is the electromagnetic force which 

mathematically can be expressed as 

BJEF ee


             (2.9) 

Where Ee


  is the electrostatic force and the second term is BJ


  is the pondermotive 

force which is well known as the driving force of an electric motor. This pondermotive 

force is defined as the vector product of the electric current density J


and the magnetic 

induction, HB e


  where e  is the magnetic permeability. The interaction between the 

magnetic field and the flow field has been considered as the only important term in the 

dynamics of conducting fluid in this study. The pondermotive force  eF


 is in the 

direction perpendicular to both the magnetic field H


 and the electrical current 

density J


. Therefore the direction of the magnetic field H


 will have significant 

influence on the flow field. 

 

If equation (2.8) is divided both sides by the density,  , then the first term on the L.H.S 

represents the temporal acceleration and the second term is the convective acceleration. 

The convective acceleration is responsible for the acceleration even when the flow is 

steady. 
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On the R.H.S, the first term represents pressure gradient force, second term is the 

viscous force, third term is the stress tensor force, the fourth term is the Lorentz force 

(electromagnetic force) and the fifth term is the gravitational force. The combination of 

the gravitational force and the Lorentz force takes care of the body force. Since the flow 

is along the vertical plane and the gravitational force acts in a vertical direction 

downwards, the gravitational force term cannot be neglected. Thus, the equation of 

momentum in simplified form incorporating all the forces under consideration can be 

written as: 

fvpvv
t

v













 2        (2.10) 

where 












vv

t

v
  is the inertia term, 

t

v




 is the unsteady acceleration, vv   is the 

convective acceleration, p  is the Pressure gradient, v2  is the Viscous forces and 

f  represents "other" body forces (forces per unit volume), such as gravity, Lorentz 

force or centrifugal force. 

 

It should be noted that only the convective terms are non linear for incompressible 

Newtonian flow. The convective acceleration is an acceleration caused by a (possibly 

steady) change in velocity over position, for example the speeding up of fluid entering a 

converging nozzle. Though individual fluid particles are being accelerated and thus are 

under unsteady motion, the flow field will not necessarily be time dependent. 
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2.3.3 Equation of conservation of thermal energy (Energy Equation) 

This equation results from the first law of thermodynamics which states that the amount 

of heat added to a system dQ equals to the change in internal energydE plus the work 

done dW i.e. dWdEdQ  . In tensor form, the energy equation can be expressed 

mathematically as: 
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      (2.11) 

Where
j

i
ij

x

u
i



          (2.12) 

is known as the dissipation function, iji is the viscous stress tensor is the specific 

enthalpy and jq  is the local rate of heat transfer per unit area. In equation (2.11), heat 

produced by external forces has been neglected. For an incompressible fluid flow in two 

dimensions, we have 
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From the Fourier law the conduction can be obtained as 

j
j

x

T
kq



*           (2.13) 

where in this case k is the thermal conductivity.  Equation (2.11) can be simplified using 

the definition of h which is given as 



P
eh                       (2.14) 
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in which e is the specific internal energy. In differential form equation (2.14) can be 

written as 













11
pddpdedh         (2.15) 

Applying the first and second laws of thermodynamics to equation (2.14) yields   


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
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

1
PdTdsde          (2.16) 

In this case s is the specific enthalpy. Substituting equation (2.16) into (2.15) yields 

dPTdsdh


1
          (2.17) 

Since enthalpy is a property it can be expressed as  Tpss , so that on differentiating 

both sides of this equation yields 
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On application of the following generalized thermodynamic relations 



 *














T
p

s
 and

T

C

T

s p

p













, 






































p

T

1

 

to equation (2.18) yields 

dT
T

C
dpds

p




 *
        (2.19) 
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In which * is the volumetric coefficient of expansion and pC  is the specific heat at 

constant pressure. Substituting equation (2.19) into (2.17) we obtain 

 dpTdTCdh p 


 1
1

        (2.20) 

Making use of equation (2.20) and (2.13) and further substituting into equation (2.11), 

the energy equation can be expressed mathematically as  
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In this study, it is assumed that the hydromagnetic flow of a viscous incompressible and 

undilatable electrically conducting fluids have constant physical properties .Thus 

equation (2.21) is altered by the presence of electrical dissipation which is the heat 

energy produced by work done by the electrical currents. The work done by electrical 

currents is equal to '.Ej


 where HVEE


  is called the effective electric field.   

21 j  is the dissipative heat due to electrical current. On substitution of this dissipative 

heat into equation (2.21), it yields 
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where 



 v

tDt

D
 and   is the grad operator.  

On neglecting the energy dissipated into heat due to joule effect then equation (2.22) 

yields  
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In vector form equation (2.23) can be expressed as 

  
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



T

C

k
Tq

t

T

p

2.


        (2.24) 

where q


is the velocity vector. 

 

To determine the velocity and temperature distributions of a hydromagnetic flow, 

equations (1.13), (2.8) and (2.24) together with appropriate boundary conditions and 

Maxwell equations is used iteratively by  use of a  computer program. 

 

2.3.4 Electromagnetic equations 

To analyze and describe the action of charged particles (electrons and ions) on each 

other, the concept of point charge is useful. However in electrodynamics of continuous 

media we must accept that electric charge is a continuously distributed quantity. 

Maxwell equations are the governing equations in electromagnetic fields. The Maxwell 

equations relate the field of the vectors, E


, B


, D


, H


, J


and the charge density Q  

independently on the properties of the matter. Since these equations represent 

mathematical equations of certain experimental results, it may not be easy to prove them 

though their applicability to any situation can be verified. 

The Maxwell’s equations for time- varying magnetic are expressed as (Moreau, 1990): 
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                                        (2.25c) 

In which E


, B


 , D


 ,Q  and H


are  the electric field, magnetic field, electric induction, 

density of electric charge and magnetic induction respectively. In our study, we are 

interested in electrically conducting fluids which are sufficiently conducting, thus the 

charge relaxation time is much shorter than the transit time of electromagnetic waves. 

Equation (2.25 b) has been obtained owing to the fact that the magnetic field is 

considered as divergenceless i.e. using the assumption that there are no magnetic flux 

sources and sinks within the flow field. Thus the Maxwell equations in our study 

reduces to 

0Bdiv


                       (2.26a) 
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ECurl
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JHCurl


          (2.26c) 

Equation (2.26b) represents the Faraday’s law. The equation expresses the postulate for 

electromagnetic induction which asserts that the electric field intensity in a region of 

time- varying magnetic flux density is non-conservative and cannot be expressed as 
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gradient or scalar potential. On the other hand, equation (2.26 c) represents the 

Amperes’ law. 

 

The physical conservation laws of electric charge and equations of electrical current 

density are required in describing MHD phenomenon mathematically. 

 

2.3.4.1 Equations of electrical current density (Ohm’s law) 

This law (Ohm’s law) is a characteristic feature of the ability of a material to transport 

electric charge under the influence of an applied magnetic field. In reference to 

laboratory results, it had been realized that, in a metal at constant temperature the 

current density is linearly proportional to the electric field. In other words, for an 

electrically conducting fluid at rest, the electric current density can be written 

mathematically as: 

EJ


           (2.27) 

where  is the conductivity of the material. When a fluid moves, the magnetic field 

induces a current in the conductor which is of magnitude BJ  .As a result therefore, in 

this motion two types of force exist: electric force E


(due to electric field) and magnetic 

force, BU


 (due to magnetic field).The sum of these two forces give the Lorentz force 

which is the total electromagnetic force eF


on a unit electric charge which in 

mathematical form is given as BUEFe


 .The Lorentz force acts on the fluid 

particles. Equation (2.27) represents a constitutive law (Ohm’s) which characterizes the 
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ability of the material to transport electric charge under the influence of an applied 

electrical field. Ohm’s law also holds in an electrically conducting fluid in which the 

electric current density is due to the regulating motion of charged particles in the field. 

For an observer attached to the particle, this property of matter holds true for fluids in 

motion. Let 'J


 and 'E


 be respectively the current density and electric field as seen by 

this observer (Principle of special relativity). To retain the symbols J


 and E


for these 

quantities in the laboratory frame of reference then equation (2.27) can be expressed as 

'' EJ


           (2.28) 

 

By the Lorentz transformation 
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BUEE

and

uqjJ





'

''

                                               (2.29a, b)  

in which U


 and B


 are the fluid velocity and magnetic field respectively. The transport 

of electric charge by convection in equation 2.29 (a) is denoted by the term uq'


.In our 

study, this term has been neglected as compared to the transport by conduction which is 

proportional to . On substitution of equation 2.29 (a, b) in equation (2.28) and 

consideration this approximation we obtain 

 BUEJ


                                                      (2.30) 
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Equation (2.30) is referred to as the generalized ohm’s law. In the present study, the 

flow of an electrically conducting fluid in presence of a strong variable magnetic field is 

considered. This equation will be handled in the next chapter when the Hall currents are 

incorporated and neglecting the Ion-slip. 

 

2.3.4.2 The principle of conservation of electric field 

(Equation of conservation of electric charge) 

This principle is analogous to the conservation of mass and it must be satisfied at all 

times. It states that if *Q  is the charge of a given quantity of matter, its particular 

derivative 
dt

dQ*
 must be zero. In mathematical form, the law can be expressed as 

(Shercliff, 1965) 

   
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dvVUQdiv
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Q

dt

dQ
0

*
      (2.31) 

In which Q  is the volume density of electric charge, U is the local velocity of the matter 

in the given frame and V is the relative velocity of the charge carriers with respect to the 

matter. For equation (2.31) to be true for any choice of D , then at any point the 

following relations should be true 

0
*

 Jdiv
dt

dQ 
         (2.32) 

The charge Qof a domain D , is defined as 


D

QdvQ*           (2.33) 
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From equation (2.33), the particular derivative of the volume integral can be expressed 

as: 

 

   dvVUQ
t

q
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dt
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                             (2.34) 

In which S is the closed surface which bounds the domain D . 

Since this study deals with electrically conducting fluids, the charge density becomes 

negligible, and the equation of conservation of charge i.e. by definition of Jdiv


equation 

(2.32) yields 

JJdiv


.           (2.35) 

In this equation, it can be deduced that J


 belongs to the class of conservative vector 

fields and the RH.S shows that the rate of change of charge density with respect to time 

vanishes. This is the equation of charge conservation and it results from the equation of 

continuity. 

 

2.3.4.3 Induction equation  

The main objective in MHD is to study velocity and magnetic field distributions and 

their interactions. In order to study the transport of plasma and magnetic field lines 

quantitatively, consider the fundamental induction equation, i.e. Faraday‘s law in 

combination with the simple phenomenological Ohm‘s law, relating the electric field in 

the plasma frame with its current:   
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 BVEj o


          (2.36) 

Using Ampere‘s law for slow time variations, without the displacement current and the 

fact that the field is free of divergence  0. B , yields the induction equation (with 

conductivity 0) (Polovin, 1990): 

  HHV
t

H
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21







       (2.37)

  

where  HV   is the convection and H
oo

21



is the diffusion. 

In an ideal collisionless plasma in motion with infinite conductivity the induction 

equation becomes 

 HV
t

H
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


         (2.38) 

The field lines are constrained to move with the plasma  frozen-in field. If plasma 

patches on different sections of a bundle of field lines move oppositely, then the lines 

will be deformed accordingly. Electric field in plasma frame, E' = 0,   voltage drop 

around closed loop  is equal to zero. Assuming the plasma streams at bulk speed V, then 

the induction equation can be written in simple dimensional form as: 

dB

B

L

VBB


                                 (2.39) 
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The ratio of the first to the second term gives the so-called magnetic Reynolds number, 

LBVR oom   which is useful to decide whether plasma is diffusion or convection 

dominated.   

From the generalized ohm’s law 

  VBVEJ e


          (2.40) 
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On opening the brackets it yields 
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Taking the curl of the above equation and eliminating E  we have 
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Thus rearranging the equation yields 
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Dividing both sides by e  yields 
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But from laboratory results, 0

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 hence the equation yields 
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Expanding Ve using the cross product we have; 
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Substituting this expansion in equation (2.54) and simplifying yields 
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  HHVCurl
t

H 21







        (2.56) 

Where e   is called the electrical diffusivity of the fluid and the equation is known 

as the induction equation. 

Further,  recalling that JH


 ,then 
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This equation reduces to 

    HHuHHu
t

H 


2





        (2.58) 

where   and H  are assumed to be constants. 

For large electrical conductivity, then 0H  since 0
1


e

 as e . Hence equation 

(2.58) becomes 
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
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       (2.59) 

 

2.3.5 DESCRIPTION OF THE FLOW 

In the present study Stokes flow past an infinite vertical plate in rotating system in 

presence of a variable magnetic field is considered. The magnetic field is applied 

transversely along the z-axis and perpendicular to the vertical plate. The plate is non-

conducting and the fluid is electrically conducting. 
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At 0t , the vertical plate is set into impulsive motion in its own plane (x-axis 

direction) at a constant velocity U . The transverse inhomogeneous magnetic field is in 

the z-direction. The vertical plate is kept at a lower temperature than the fluid i.e. 

wTT  . Fluid flow is assumed incompressible, Newtonian, electrically conducting and 

the density fluctuations are Boussinesq approximated. The Boussinesq approximations 

means that the density differences are confined to the buoyancy term, without violating 

the assumption of incompressibility and that the effect of the pressure on the fluid 

density is negligible. The fluid flow being studied is free convectional and takes place 

along the x-axis under the action of transverse variable magnetic field. 

 

2.3.5.1 Flow conditions  

The flow conditions for this problem are                                                   
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   (2.60) 

Where oU and oH are the characteristic velocity and magnetic field respectively and  is 

the constant fluid density. The fluid velocity in x-direction depends on z and t only, the 

magnetic field intensity is a function of x and t only and the pressure depend on z and t 

only. The partial derivatives with respect to z vanish since the flow field is infinite in 

extent in the Z-direction or in other words it is unbounded in this direction. The vertical 
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plate is electrically insulated and the velocity of the fluid particles in contact with the 

boundaries is equal to that of the plates due to the no-slip condition. 

 

2.4 FINAL SET OF EQUATIONS 

In the present study, MHD Stokes problem of free convection flows of electrically 

conducting fluids past an impulsively started infinite plate (or vertical channel) to which 

a variable strong magnetic field is applied in the normal direction to the plate is studied 

(Fig 2.1). The motion of the fluid is impeded by the variable magnetic field which exerts 

a restraining force. The system is rotating and hence this makes the problem more 

complicated than the same problem in either electromagnetic theory or in fluid 

mechanics.  

Owing to the fact that the flow under consideration is due to density differences, these 

differences are very small such that the velocities are also small. Hence as in the case of 

forced convection the assumption of incompressibility i.e.  = a constant (Boussinesq 

approximation) is justified. From now onwards, dimensional quantities are denoted by 

star (superscript).The flow considered would be governed by the equations outlined as: 
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Because of the no-slip condition, the velocity is equal to zero at wall and it increases to a 

maximum then decreases to zero at the edge of the boundary layer as the free stream 

conditions are at rest in the convection system (Fig 2.1). 
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In this case, we choose *jx  to be the coordinate along the plate and *ix  coordinate 

perpendicular to the plate. For the flow along a vertical infinite plate all the variables 

except pressure of the fluid are functions of *ix  and *t .The pressure gradient
*jx

p




 in 

equation(2.7), in *jx  direction results from the elevation up the plate, and hence 

g
x
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j
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


*
          (2.62) 

That is, change in pressure over a height *jdx   equal to the weight per unit area of the 

fluid elements. The weight is the same as the force in this fluid element i.e. g . On 

substitution of this weight and equation (2.62) in equation (2.7) we obtain the equation 

of motion for the problem under consideration in mathematical form as 
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Or 
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The density differences    may be expressed in terms of volume coefficient of 

expansion ' defined by 
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 Or  
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On substitution of (2.65) into (2.64) yields  
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The energy equation remains the same as equation (2.24).Thus the equation becomes: 
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In which the energy dissipated as heat due to joule effect has been neglected from 

equation (2.67). 

The induction equation becomes 
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But for large mR then 0
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Equation (2.66) and (2.67) are non linear equations and hence to solve them some initial 

and boundary conditions are imposed. 

  

2.5 NON-DIMENSIONALIZATION 

A dimensionless group is the ratio of two similar physical quantities. The dimensionless 

groups are useful means of defining the conditions, which exist in a physical system, 
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and indicating which properties are of importance. Dimensional groups are useful in our 

present investigation since; 

(i) The analysis of these dimensionless groups helps in experimental 

investigation of reducing the number of variables in the problem. The result 

of the analysis is to replace an unknown relation between n variables by a 

relationship between a smaller numbers, n-m, of dimensionless groups. Any 

reduction in the number of variables greatly reduces the labor of 

experimental investigation. 

(ii) Dimensionless presentation of experimental data is independent of the units 

employed and should, therefore, be internationally intelligible and 

convenient to use.  

 

There are four fundamental primary dimensions namely mass ( m ), temperature ( ), 

time ( t ) and length ( L ). The four basic dimensions form the basis for all other physical 

variables of any phenomenon that can be obtained from these basic dimensions. 

Thus the non-dimensionalization process is important so that the results obtained can be 

applied to a surface experiencing the set of conditions to a geometrically similar surface. 

A suitable non-dimensional, scheme is therefore necessary in order to normalize the 

boundary layer equations. The method by which the number of independent variables in 

the problem can be reduced into dimensionless groups such as Grashof number, Nusselt 

number is referred to as dimensional analysis. 
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A non-dimensionalization scheme normalizes the boundary layer equations. This 

process is necessary in fluid mechanics problem analysis so that the results obtained can 

be applied to a surface experiencing the set of conditions to a geometrically similar 

surface. The nature of fluid velocity or size of the surface determines the variations of 

the conditions. Efficiency and boundedness of experimental and analytical results can be 

achieved through selection of an appropriate scheme. Since the velocity scale is not 

imposed by the boundary condition, the choice of the velocity scale in free convection is 

difficult. Often there exists two or more velocity scales in different regions of the flow. 

In our case we choose the characteristic velocity as the free stream velocity oU . All other 

physical properties are made dimensionless by their respective values at a reference 

temperature. The non-dimensionalization in our study is based on the following 

variables: 
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In which 0U  is the free-stream velocity, ** s  is the temperature difference 

between the surface and free-stream temperature.  *s  is the convenient temperature 

which will result in   being bounded in the solution. The dimensional variables are 

denoted by the superscript (*) star. 
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On substitution of the non-dimensional variables (2.69) into continuity equation (2.61) 

the momentum equation (2.66) and energy equation (2.67) we obtain the following 

equations 
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In vector form, equation (2.70) and (2.71) yields 
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in which case q


 is the velocity vector with components u , v  and w  in three 

dimensions. All variables and equations referenced will be assumed to be non-

dimensional. . The boundary conditions have been converted to conditions in the non-

dimensional variables. Equation (2.70)-(2.72) above are written in their general form 

since a number of non-dimensional schemes are possible. 

 

 

 



 67 

2.5.1 DIMENSIONLESS PARAMETERS AND THEIR SIGNIFICANCE  

In this study, the fundamental equations of MHD include all the terms of fundamental 

equations of hydrodynamics. In this section hydrodynamic parameters and other extra 

parameters which result due to the interaction between the hydrodynamics variables and 

the electromagnetic variables are outlined. Using the scale variables in equation (2.69) 

and introducing extra non-dimensional variables commonly used in MHD, we now let 

oU , oP  , L , ot  , oH , and oE  respectively be the representative values of velocity , 

pressure, length, time, magnetic field and electric field, then the following parameters 

relevant and significant to the flow can be defined. 

 

2.5.1.1 Time Parameter tR  

The time parameter  

 
L

U
tR

o
ot   

characterizes the time scale of the problem with respect to flow velocity. In our 

investigation we only consider case where tR  is of the order unity or greater. 

 

2.5.1.2 Mach number 

Mach number is the measure of the compressibility of a fluid due to high flow velocity 

and is defined as the ratio of flow velocity u  to the speed of sound oa .The ratio of the 

variation of density of the fluid to the variation of velocity is, to the first approximation, 

proportional to the square of the Mach number of the flow. Thus, for a very small mach 
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number, the variation of density i.e. the compressibility effect due to variation of 

velocity of the flow field is negligible, and the fluid may be considered as 

incompressible. 

 

2.5.1.3 The Pressure Parameter pR  

For incompressible fluid flow, the pressure number 
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o
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P
R
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is usually of the order of unity. It should be noted that the fundamental equations of 

MHD are applicable to flow of an ionized gas if the Mach number is small. pR  is 

inversely proportional to the square of the reference Mach number. 

 

2.5.1.4 The Reynolds number Re  

The Reynolds number is given by 

 


 LULU oo
Re  

For forced viscous flow, this number is one of the important parameters. When Re  of 

the system is small, the viscous force is predominant and the effect of viscosity is 

important in the whole flow field, on the other hand if Re  is large, the inertial force is 

predominant and the effect of viscosity is important only in the narrow boundary layer 

region near the solid boundary or in any other region of large variation in velocity such 

as inside of shockwave. 
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2.5.1.5 Magnetic Reynolds number Rm 

This number is given as 
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and is similar to ordinary Reynolds number, with magnetic diffusivity H  in place of 

kinematics viscosity. Physically, magnetic Reynolds number mR is also similar to 

Reynolds number Re. It represents the diffusion of magnetic field while Re  represents 

the diffusion of momentum. If mR  is negligibly small, the magnetic field is practically 

unaffected by the flow field. On the other hand ,if mR  is very large, then magnetic field 

will stay with the so called “frozen” in fields , and it will be greatly influenced by the 

motion of the fluid. 

 

2.5.1.6 Magnetic Pressure number HR  

This number is given by 
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in which Hv  is the speed of Alfrens’ wave. Alfren (1942) showed that if there is a 

homogeneous magnetic field oH  in an incompressible fluid and inviscid fluid of density 

  and of infinite electrical conductivity  , the disturbance in this liquid will 

propagate a wave in the direction of oH  with speed of Hv -Alfren’s wave speed. In this 

study the interest is free-convection MHD flow with a variable magnetic field. Hence, 
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the need to introduce more non-dimensional parameters that are significant in this type 

of flow. 

 

2.5.1.7 Prandtl number Pr  

This is a non-dimensional parameter which represents the ratio of momentum diffusivity 

  to thermal diffusivity,  this number is given by 

Prandtl Number =Momentum diffusivity 

                             Thermal diffusivity 

 

Mathematically, it is expressed as 

 
k

C

k

C pp 
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As defined, Pr then provides a measure of relative effectiveness of momentum and 

energy transport of diffusion in the velocity and thermal boundary layers respectively, 

e.g. incase of gases Pr is nearly equal to unity therefore energy and momentum transfer 

by diffusion are comparable whereas for liquid metals Pr<1  and energy diffusion rate 

greatly exceeds the momentum diffusion rate. On the other hand incase of oils Pr<1. 

From this interpretation it applies that value of Pr  influences the growth of the velocity 

and thermal boundary layer. Thus the Prandtl number acts as the conducting link 

between the velocity field and the temperature field since it involves momentum transfer 

that consequently yields heat transfer. 
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2.5.1.8 Grashof number Gr  

This is a non-dimensional parameter that occurs in natural convection problems 

.Grashof number is given by 
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Gr  Provides a measure of the ratio of buoyancy forces to viscous forces in the velocity 

boundary layer, its role in free-convection is much the same as the Reynolds number in 

forced convection. 

 

2.5.1.9 Eckert number Ec  

Eckert number is used in momentum and heat transfer in general and compressible flow 

calculations in particular. This number is given by 
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which is the measure of the kinetic energy of the flow relative to the enthalpy difference 

across the boundary layer, this number plays an important role in high speed flows for 

which dissipation is significant. 
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2.5.1.10 Hartmann number M  

It is obtained from the ratio of the magnetic force to viscous force and is defined as  
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Hartmann was the first scientist to use this number in the study of flow in channels 

where the important forces are the magnetic force and viscous force. 

 

2.5.1.11 Magnetic Parameter 1M  

This number is obtained from the ratio of electromagnetic force to the inertial force and 

is defined mathematically as 
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The section that follow presents the final set of laminar boundary layer equations (in 

non-dimensional form) governing the flow of an electrically conducting viscous 

incompressible Newtonian fluid, past a vertical infinite plate in presence of a strong 

transverse variable magnetic field. 
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2.6 FINAL SET OF GOVERNING EQUATIONS IN NON-DIMENSIONAL                                                      

FORM 

To come up with the governing equations described in the previous sections, the 

following simplification which involves the Boussinesq’s approximations is made: 

i. All the transport properties except for the density   ,are treated as 

constants 

ii. The variation in density is negligible except when it directly causes 

buoyancy forces. 

iii. The density varies linearly with temperature and the deviation from a 

reference value  o  is small. 

The use of the Boussinesqs approximations allows the buoyancy effect to be handled 

without added complication of having to consider a fully compressible fluid. On 

application of these assumptions and the use of dimensionless parameters in the 

conservation equations (equation (2.70) and equation (2.71)) and equation of energy we 

have the final form of the governing equations for an incompressible hydromagnetic 

laminar flow as  
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The last term in equation (2.76) represents the electromagnetic force; the final form of 

this term depends on the problem considered. 

In the present flow problem the displacement current is neglected. The variable 

transverse magnetic field induces a current given by 
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Applying the vector cross product rule equation (2.78) simplifies to 

 
x

H
j

x

H
j

y

H
i

H

zyx

kji

H
z

e
zz

e

z

ee



































 

00


                       (2.79)      

The component of the current in the x-direction vanishes since any derivative with 

respect to y is equal to zero i.e. 0xJ . The resultant induced current which is in the y-

direction can be expressed as 
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The Lorentz force is obtained as                                                
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Substituting yJ  from equation (2.80) into equation (2.81) yields 
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This force which acts on the fluid particles is in the negative x-direction and therefore 

trying to oppose the flow. From Ohm’s law we have; 
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Or in component form we have 
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Substituting the values of the Lorentz force obtained above in component form gives the 

momentum equation to be used in the next section. 

 

The induction equation (2.59) is modified by substituting the magnetic field intensity H 

with the magnetic induction vector B. We consider that B is in the direction of H and 

HB e
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  yielding 
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This equation can be expanded as follows: 
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Using the fact that    zzyx HHHHH ,0,0,,   and that the fluid flow depends on z and t 

only while the applied magnetic field depends on x and t, then 0 wu . Then the 

above equation reduces to  
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The next section of the thesis presents the numerical method used to solve equations 

(2.75)-(2.77) together with the corresponding initial and boundary conditions, which 

depends on the problem under consideration. 
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CHAPTER THREE 

3.0 NUMERICAL METHODS 

3.1 Overview 

Many real life problems generally do not have “analytical” solutions. Mathematics being 

one of the scientific research disciplines that lead to real life situations requires 

numerical techniques to accomplish non-analytical solutions. The part of numerical 

analysis which has been most changed so far, is the solution of partial differential 

equations by difference methods. This is owing to the fact that second-order partial 

differential equations govern many of the real-life physical phenomena. Such equations 

include Maxwell’s equations, heat and momentum equations and Newton’s laws of 

motion. A very powerful and quite a general method of dealing with most second-order 

(partial) differential equations is the finite difference method. 

 

3.2 FINITE DIFFERENCE METHOD 

This is a numerical method that makes use of finite difference codes/solvers that take 

low computational memory and is easy to program and modify, hence more 

advantageous to use in electrical problems. Before numerical computations are made, 

there are three important properties of finite difference equations that must be 

considered, namely; 
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 Convergence: A finite difference equation is convergent if the solution of finite 

difference equation approaches the exact solution of the partial differential 

equation as the mesh sizes approaches zero. 

 Consistency: When a truncation error goes to zero, a finite difference equation is 

said to be consistent or compatible with a partial differential equation. 

 Stability: The difference between a partial differential equation and the 

equivalent finite difference expression is referred to as truncation error. A 

numerical process is said to be stable if it limits amplification of all components 

of the initial conditions. 

  

The governing equations described in the previous section are approximated by the 

application of finite difference techniques. The use of the finite difference techniques for 

the solution of partial differential equation is a three step process namely: 

1) The partial differential equations are approximated by a set of linear equations 

relating to the values of the functions at each mesh point. 

2) The set of the algebraic equations, generated in (1) must be solved and  

3) An iteration procedure has to be developed which takes into account the non-

linear character of the equation. 

 

The solution of the finite difference equation (FDE) requires a suitable technique to 

advance the transient fluid motion through time. If the transient solutions are not 
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required then the transient terms in the equations are dropped and the problem is 

simplified and reduced to just determining the steady state solution. In this study the 

partial differential equations governing the flow are replaced by a set of difference 

equations which are solved by successive over-relation method (SOR) to converge at 

each time interval. On the other hand the governing equations (2.75)-(2.77) together 

with initial and boundary conditions imposed (depending on the problem considered) 

are properly posed (i.e. their solution exists, is unique and depends on the given 

conditions) thus any finite difference set of equations to them which satisfies 

consistency conditions and is stable ensure that the method is convergent. In order to 

solve the system of finite difference equations, a computer program will be used for the 

iterative scheme. In order to approximate the difference equation (2.76)-(2.77) by a set 

of finite difference equation we first define a suitable mesh in the next section. 

 

3.3 DEFINITION OF MESH 

In order to give an explicit relation between the partial derivatives in equations (2.75)-

(2.77) and the function values at the adjacent nodal points, we use a uniform mesh. This 

type of mesh involves subdividing the rectangular region of interest (Figure 3.1) into 

uniform rectangular elements, centered about mesh point whose coordinates are denoted 

by integer variables. 
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               'i  

  Figure 3.1 Mesh notation of the computation domain 

'i  and 'j  i.e. from fig.1, indices 'i  and 'j refers to y and t respectively. If we let t  

represent increment in t and y  represent increment in y then tjt  '  and yiy  ' . 

In viscous flow, the problem arises where the solution varies rapidly over a small 

domain but over the rest of the domain they change very slowly. At very large Reynolds 

number viscous fluid flow pattern changes rapidly in narrow boundary layers close to 

the wall where the fluid is brought to rest. In some cases e.g. turbulent shear drives flow, 

it is possible to drive asymptotic expansion applicable in the boundary layers which can 

be matched easily to a numerical or analytical solution in the interior. However this is 

usually not possible and the boundary layer has been solved numerically by ensuring 

that several mesh point fall with them. 

y

 ',' ji 1',' ji

 ',1' ji 

 1',' ji

 t

'j

0 1 2 3 41
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The calculation of the first and second derivatives by applying either central differences 

or forward differences or backward differences on a uniform mesh gives 

approximations, which are   20 t  or  20 y , accurate in the mesh interval. In order to 

apply the finite difference approximations to the partial differential equations, mesh 

point variable are typically denoted by  

      tjyiji  1',1'','            (3.1) 

 

The notation is rendered more compact by omitting arguments when they have default 

values 'i   or 'j ,   thus  

 ',' ji  

   ',1'1' jii    

Using the Taylor’s series expansion of   about point 0 and 2 (see figure 3.2) results in  
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Fig 3.2 Mesh points for expression of  1' i  
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On eliminating   ''  from (3.2) we have: 
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in which HOT is an abbreviation for higher order terms (this denotes the truncation error 

of   20 y  which can be minimized by choosing a very small value of y .  The finite 

y y

o
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difference approximation to the second order partial derivative is obtained by 

eliminating '   from   (3.2) which yields 
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Equations (3.2) and (3.3) are the central difference formulae for the first and second 

order partial derivatives of  1  (with respect to y) respectively.  Similarly, the central 

difference formulae for the first and second partial derivatives with respect to t can be 

written as  

   

     
  

























HOT
t

iii

and

HOT
t

ii

2
1

1

1'21
''

2

1''1'
'







         (3.5) 

In forward difference from equations form (3.2) to (3.5) in their general form can be 

written as 

   

     
 

   

     
  










































HOT
t

jijiji

HOT
t

jiji

HOT
y

iii

HOT
y

ii

2

2

1,,21,
''

,1,
'

121
''

21
'













       (3.6) 

 



 85 

The finite difference equations used in this study were obtained by direct use of both the 

first and second forward difference approximation for the partial derivatives.  

Substituting equations (2.67) in equations (2.75) to (2.77), then the finite difference 

form of the equations governing the flows considered in this thesis becomes  
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We lastly express the induction equation (2.95) in implicit finite difference form via 

time step 1iH considering that the magnetic flux is dependent on x and t yielding  
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Multiplying through by mR we obtain 
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The order of the local truncation error in equation (2.76) is  y0 , in (3.8) the order 

is   2
0 xxt  and in (3.9) the order is   tyt 

2
0 .In our computation, the 
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overall truncation error is neglected.  In the later chapters of this thesis depending on the 

initial and boundary condition imposed on the problem, the  numerical differentiation 

using Newton’s’ interpolation formulae is used to compute both the skin friction and 

average rate of heat transfer at the plate. The chapters which follow present various 

results of the velocity, temperature, skin friction and rate of heat transfer followed by 

discussion of the results in terms of the various parameters. 
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CHAPTER FOUR 

4.0 STOKES PROBLEM OF A FREE CONVECTIVE FLOW PAST A 

VERTICAL INFINITE PLATE IN A ROTATING FLUID WITH 

HALL CURRENTS IN PRESENCE OF A VARIABLE MAGNETIC 

FIELD. 

4.1 INTRODUCTION 

The two dimensional Newtonian electrically conducting fluid, convective flow problem 

past an impulsively started vertical infinite non-conducting plate, in the presence of a 

strong transverse variable magnetic field is considered.  The coupled non-linear 

equations are solved by explicit finite difference method.  Expressions for velocity, 

temperature, skin friction and rate of heat transfer at the plate have been obtained in 

dimensionless forms putting into consideration the effects of the hall currents, rotation 

and Grashof number, on the flow field. 

 

In this case the flow field for the fluid is obtained, the results are discussed in terms of 

the parameters considered and are compared with those of Ram (1990) for water. 

 

However in practical application another situation arises, in which the system is in a 

state of rigid relation in presence of a strong magnetic field, such that the effects of the 

Hall currents, ion-slips currents and rotation affects of the flow field significantly.  

Hence the purpose of this chapter is to study the effects of Hall currents, ion-slip 
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currents and mutation on MHD stokes problem for a vertical infinite plate in a rotating 

fluid system. 

 

4.2 MATHEMATICAL ANALYSIS 

Consider the flow of an electrically conducting fluid past an impulsively started vertical 

infinite plate.  A strong magnetic field of variable strength is assumed to be applied 

transversely to the direction normal to the flow as shown in Figure 1.2 (Chapter 1). 

 

Let the fluid and the plate be in a state of rigid rotation with uniform angular velocity   

about the z* axis taken normal to the plate.  In this study the plate is taken to be of 

infinite length, thus all variables are functions of z* and t* only.  Initially the 

temperature of the fluid and the plate are assumed to be the same.  At time t* >O, the 

plate starts moving impulsively in its own plane with a constant velocity oU   and its 

temperature is instantaneously raised or lowered to *wT  which is maintained constant. 

At a later stage it is assumed that the induced magnetic field is negligible so that   

 zHH ,0,0 , an assumption which is justified when the magnetic Reynolds is very 

small (Moreau (1990)). The equation of electric charge (i.e. equation (2.34)) 

0 J


(since the displacement current is neglected), gives tConsJz tan* ,where 

 **,*, zyx JJJJ


  . This constant is assumed to be zero, since 0*zJ at the plate which is 

electrically non-conducting, thus 0*zJ everywhere in the flow. The generalized ohm’s 
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law (i.e. equation (2.29)) including the effects of Hall currents and variable magnetic 

field (Cowling (1957)) is  
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Where  is the electrical conductivity, e the magnetic permeability, e the cyclotron 

frequency, e the collision time, e the electric charge, e the number density of electron 

and eP the electron pressure respectively. In equation (3.11), q


denotes the fluid velocity 

with components *u , *v  and *w in the *x , *y  and *z -axis directions respectively. In 

equation (4.1) the effects of ion-slip and thermoelectric are neglected. In our study we 

only consider a short circuit problem in which the applied electric field 0E


. Under 

these assumptions expanding equation (4.1) we have 
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Equating the *x and *y components equation (4.2) yields 
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Or 
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where eem   is the Hall parameter. Eliminating *xJ  from (4.4) we have 
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Similarly on eliminating *yJ  from (4.4) we have 
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In equation (4.3) and (4.4) electron pressure has been neglected. 

In rotating frame of reference the equation of motion i.e. equation (2.66) including the 

Coriolis force (i.e. q2 ) Greenspan (1963), in components form become: 

 





zye HJ
TTg

z

u
v

t

u *
***

*

*
*2

*

*
2

2










        (4.7) 






zxe HJ

z

u
u

t

u *

*

*
*2

*

*
2

2










         (4.8) 

Where g is the acceleration due to gravity, *  the coefficient of volume expansion,   

kinematics viscosity and  the density of the fluid. On neglecting the energy dissipated 

as heat, energy equation (2.67) becomes 
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Where  is the thermal conductivity, pC  the specific heat of the gas at constant pressure. 

In (4.7) *T and *T  denote the temperature in the boundary layer and free stream 

respectively, *xJ and *yJ are the current density components and *u , *v are the 

velocity components in the *x  and *y  directions respectively. 

This thesis considers a fully developed flow, thus in equations (4.7) to (4.9) the inertia 

terms have been neglected (Hermann Schlichting, 1968). As a result of this the solution 

obtained will be true for a short time after the motion started and temperature jump at 

the wall (i.e. the results are true in the boundary layer).  

The interest in this study is free convection flows only thus together with the condition 

of no-slip of the fluid at the wall the boundary and the initial conditions of this problem 

are: 
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In order to normalize equations (4.7) to (4.9) the following non-dimensional variables 

are introduced: 
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Using (129a) the partial derivatives in equations (4.7) becomes 
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Similarly partial derivatives in (4.8) becomes 
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Substituting (4.5), (4.6), (4.12) and (4.11a, b, c, d, e, f) in equation (4.7) and (4.8) we 

have; 

 
 

 

 
 

 

 
  


































































umv
m

HM
G

z

u
E

t

u

umv
mu

uHH

u

TTg

z

u

u

u

t

u

or

umv
m

uHH
TTg

z

uu
u

t

uu

z
rr

o

ozoe

o

w

o

o

ozoe
w

o
o

o

2

22
1

2

2

22

222

32

2

2

2

222

2

233

1
2

1

**'2

1
**'2

















  (4.14) 



 93 

 
 

 
 









































vmu
m

HM

z

v
E

t

v

or

vmu
m

uHH

z

vu
u

t

vu

z
ru

ozoeo
ou

o

2

22
1

2

2

2

222

2

233

1
2

1
2







    (4.15) 

Multiplying equation (4.15) by i ( i  is the complex number given by 1i ) and adding 

to (4.14) we have: 
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This can be written as 
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Where 

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1

2  and viuq 


is the complex velocity of the fluid. 

Equation (4.16) is the momentum equation in non-dimensional form of the flow 

considered in this section. Similarly using the non-dimensional quantities (4.11a, b, c, e, 

f) the partial derivatives (4.9) are 
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Substituting (4.17), (4.11b) and (4.18) in equation (4.9) we have  
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This is the equation of energy for this analysis.  

 

Non-dimensionalising induction equation 
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Which on simplification yields 
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Where moe RLU  , the Magnetic Reynolds number. 

 

According to Calvert (2002), the electrical conductivity is ‘infinite’ when mR  is large 

and magnetic effect may be expected to be prominent. If mR  is small the magnetic field 

is not changed appreciably by the flow thus induced magnetic field can be taken to be 

zero 

The boundary conditions (4.10) in non-dimensional form reduces to 
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                                          (4.21 a, b, c) 

 

4.3 METHOD OF SOLUTION 

To solve equation (3.7), (3.8), (3.9) and (3.11) together with the boundary conditions 

(4.21) the finite difference method is applied. The mesh system considered here is 

shown in chapter 3 (figure 3.1). 

 

Substituting the finite difference form of the partial derivatives (i.e. from equation (3.7) 

in equation (4.16) and (4.19) respectively) we obtain the following system 
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And  
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                                     (4.23) 

In equations (4.22) and (4.23) the index 'i refers to z and 'j  to time. The mesh system 

in this case is divided by taking 1.0z   and 00125.0t .From equation (4.20 a) the 

initial conditions at 0z takes the finite form 

        00,'0,',10,0,10,0  iiqq  , For all except 0'i               (4.24) 

In finite difference form, the boundary condition (4.21b) takes the form 

    1',0,1',0  jjq   For all 'j                     (4.25) 

 

Though the boundary condition (4.21c) applies at z , we take 1.4z  as 

corresponding to 41z , since both the values of q and   tend to zero as 4z . 

Therefore in this section we set     0',41',41  jjq  for all 'j . From (4.22) we note 

that the velocity at the end of time step   40...,,.........2,1',1','  ijiq  is computed in 

terms of velocities and temperatures at points on earlier time step. Similarly,  1',' ji  

is computed from equation (4.23). The procedure is repeated till 400'j i.e. up to time 

5.0t .During the computation, to test the convergence and stability of the finite 

difference scheme, computations were done with smaller values of t , viz 

001.0,0009.0t and 0002.0 . In this analysis it is noted that increasing the number of 
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mesh points by using smaller values of t  does not have a significant effect in the 

result, thus the finite difference scheme used is stable and convergent. 

 

In order to get the physical understanding of this problem and for the purpose of 

discussing the results, the numerical calculations have been carried out as explained 

above for both velocity and temperature. In these calculations the Prandtl number is 

taken to be equal to 710   which corresponds to air and magnetic parameter 0.52
1 M  

which signifies strong magnetic field. The calculations were carried out for both 

 5.00 Gr  in the presence of cooling of the plate by free convection currents) and 

 5.00 Gr  in the presence of heating of the plate by free-convection currents). Now 

the results obtained for the unsteady flow for various parameters are shown in Figures 

5.1 to 5.6. In the next section, the numerical method employed in computing the skin 

friction and the rate of heat transfer at the plate is presented. 

 

4.4 CALCULATION OF THE SKIN FRICTION AND RATE OF HEAT 

     TRANSFER 

After obtaining the velocity and temperature distributions of the flow as explained in the 

previous section we now compute the skin friction given by (Holman (1989)) and 

Soundalgekar et al (1985)) 

0




zz

q
                        (4.26) 
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where
2

*

ou


  . On the other hand the heat flux q at the wall is given by 

0
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

zz
q


                        (4.27) 

 

In order to solve equations (4.26) and (4.27) we apply a second-order least squares 

correlation used over the gradients of the first ten points, Georgion et al (1986). Using 

this method to solve equation (4.26), we first fit the first ten values for q obtained in the 

previous section to the model 

  zttztztzq o 12
2

22
2

1121,                     (4.28) 

Where 221211,21 ,,,,  ando  are constants to be determined such that the aggregate 

error between the approximate value  tzq ,'  and  tzq ,  when squared is minimum, Jain 

et al (1987) i.e. 

      

Minimum

zttzqtzqI o



  
20.1

10.0

5.0

25.0

12221121 ,',
                  (4.29) 

The least squares estimators for the constants 12,22,11,2,1,  ando  which will 

minimize equation (4.29) is given by (Montgomery 1991) 
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Where x is a  66   matrix whose columns are the coefficients of the constants  

12221121 ,,,,,  ando  in the model (4.28) which are constant 

,,,,,1 22 tztz and zt  values obtained from the ten values of q  chosen 

respectively. Similarly  'x  denotes the transpose of x  and   1
'


xx denotes the inverse 

matrix of xx' . The constant obtained are substituted in equation (4.28) and  is 

obtained as  
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                  (4.31) 

Similarly   is fitted to 
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                   (4.32) 

 

In our case we used the regression line fitting package to obtain the values of 

22112112221121 , o  and 12 , and the values obtained are substituted in 

(4.31) and (4.32) to obtain the values of both   and q .These values for various 

parameters for both   5.00 Gr  and  5.00 Gr  are represented in tables 2 to 

4. 
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CHAPTER FIVE 

5.0 RESULTS AND DISCUSSION  

We now discuss the behaviour of velocity (both primary u and secondary v), the 

temperature distribution, the skin friction (average shear stress uo due to primary 

velocity as well as the shear stress vo due to secondary velocity), for different 

parameters involved in the flow problem solved in this thesis. 

 

In order to get physical insight into the problem under study, the velocity field, 

temperature field, skin-friction and rate of heat transfer are discussed by assigning 

numerical values to the parameters encountered into the corresponding equations. The 

values of Eckert number 02.0Ec to 5.0Ec  are used. The value of Prandtl number is 

chosen as 71.0Pr that corresponds to air. Grashof number for heat transfer is chosen 

as 5.0Gr to 0.5. The values 0Gr  correspond to correspond to cooling of the plate 

while the values 0Gr correspond to heating of the plate. The values of the magnetic 

parameter 1M  to 1.5 and Rotation parameter ( Er 0.05 to 0.5) are chosen arbitrarily. 

 

A program was written and run for various values of velocities and temperatures for the 

finite difference equations (3.11), (4.22) and (4.23) using different values of Ec, Er, m, t 

and M. the velocities were classified as Primary velocity (u) and Secondary velocity (v) 

along the x and y axes respectively. The analysis of the data obtained for Pr=0.71 

corresponding to air was done and the resultant results are represented graphically on 
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Figures 5.1 to 5.6 and on Tables 2 to 5. The graphs represent the general trends of the 

velocities and temperature along the axis of rotation of the flow field. On the other hand, 

the variation in rate of heat transfer and skin friction on the thermal and velocity 

boundary layers are depicted using tables 2 to 5. A consideration of two cases of heat 

changes is done. These two cases are cooling at the plate and heating at the plate with 

constant heat being supplied to or withdrawn from the plate. Using Table 1 as a 

reference for both free convectional cooling and heating at the plate the results obtained 

are presented in Figures 5.1 to 5.6. 

 

Case 1: Cooling at the plate  

In this case, the Grashof number Gr>0. Hence the plate is at higher temperature than the 

surrounding and so Gr=0.5. 

 

(a) Primary velocity (u) profiles 

From Figure 5.1; 

(i) An increase in the rotation parameter Er, magnetic parameter M2 and Eckert number 

Ec leads to a decrease in the velocity profiles. This is because the presence of the 

transverse magnetic field creates a resistive force similar to the drag force that acts in 

the opposite direction of the fluid; thus causing the velocity of the fluid to decrease. An 

increase in the Magnetic parameter leads to a decrease in the primary velocity and an 

increase in the secondary velocity profiles. Due the Lorentz force, there is a resistive 

force along the x-axis and this reduces the primary velocity but the secondary velocity 
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profile increases since it is in the direction of the induced force. An increase in Eckert 

number means an increase in kinetic energy of the fluid particles and for this reason 

both primary and secondary velocity profiles.  

 

(ii) An increase in the Hall parameter m leads to an increase in the velocity profiles. 

This can be attributed to the fact that when the Hall parameter is increased the induced 

current along x-axis increases and this translates to an increase in the primary velocity. 

 

(b) Secondary Velocity profiles  

From Figure 5.2 it is noted that; 

(i) An increase in the rotation parameter and magnetic parameter M2 leads to increase in 

the velocity profiles. This is attributed to the fact that the wall moves in opposite 

direction to that of the free stream, it tends to retard the flow. Similarly, the convectional 

currents due to rotation cause the fluid to retard in motion. Increasing the rotation means 

increasing the rate at which the ions are rotating thereby overcoming the resistive force 

created by the magnetic field consequently increasing the velocity of the fluid. 

 

(ii) An increase in the Hall parameter and Eckert number leads to a decrease in the 

velocity profile. The Hall parameter increases with the magnetic field strength. 

Physically, the trajectories of electrons are curved by the Lorentz force. When the Hall 

parameter is low, the motion between the two (trajectories of electrons) encounters with 

heavy particles (neutral or ion) is almost linear. But if the Hall parameter it is high, the 



 103 

electron movements are highly curved. This can be attributed to Hall parameter 

decreases the resistive force imposed by the magnetic field due to its effect in reducing 

the effective conductivity (
21 m

 ). 

 

(c) Temperature profiles 

From Figure 5.3; 

(i) An increase in the magnetic parameter M2 and an increase in the Eckert number Ec 

lead an increase in the temperature profile. Increasing the Eckert number causes the 

fluid to become warmer and therefore increase its temperature.  This is attributed to the 

viscous dissipation.  

(ii) An increase in the Hall parameter m leads to a decrease in temperature profiles. This 

is because increase in Hall parameter means an increase of ion collisions which 

translates to more thermal generation hence increasing the rate at which heat is being 

lost. As a consequence there is a decrease in temperature. However, as the distance from 

the plate increases these profiles remain constant. 

(iii) An increase in the rotation parameter Er results in no significant change in 

temperature. Rotation has been achieved by a transfer of angular momentum. Once this 

is drastically reduced, the rate at which the particles move and collide is too small such 

that the change is insignificant. Thus thermal generation is too small an indication of 

insignificant change in temperature. 
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(d) Rate of heat transfer  

From Table 2; 

i. An increase in the rotation parameter Er, Eckert number Ec and magnetic 

parameter M2leads to an increase in the rate of heat transfer. This is due to the 

assumption that the Joule dissipation is neglected since viscous dissipation 

effects are neglected. Due the presence of the Lorentz force and the gravitational 

force rotating at very low speeds, a friction factor is realized that results in 

thermal dispersion thereby increasing the rate of heat transfer. 

ii. An increase in the Hall parameter m leads to a decrease in the rate heat transfer. 

This reduction is due to the increase in the momentum, thermal and magnetic 

boundary layer thickness which in turn are caused by the deceleration of the 

magnetic field.    

 

(e) Skin Friction  x along the x axis and  y along the y-axis 

From Table 3 

i. An increase in the rotation parameter Er leads to an increase in  x but a 

decrease in  y . This reduction is due to the increase in the momentum, thermal 

and magnetic boundary layer thickness which in turn are caused by the 

deceleration of the magnetic field.   
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ii. An increase in the Hall parameter m leads to a decrease in both  x and  y . The 

magnetic field gives rise to a resistive force and slows down the movement of 

the fluid. 

iii. An increase in the Eckert number Ec leads to an increase in  x but a decrease 

in  y . Increasing Ec can lead to a situation that the viscous dissipation becomes 

a significant hence increasing the temperature. This increment causes an increase 

in the Skin friction along the x-axis and a decrease in Skin friction along the y-

axis. 

iv. An increase in magnetic parameter M2 leads to a decrease in both  x and  y . 

This reduction is due to the increase in the momentum, thermal and magnetic 

boundary layer thickness which in turn are caused by the deceleration of the 

fluid by the application of the magnetic field. Since the wall moves in opposite 

direction to that of the free stream, it tends to retard the flow field.  y . Further 

the application of the externally variable magnetic field reduces the velocity 

vectors and since velocity is inversely proportional to frictional force then this 

means that  x increases and  y decreases. 

 

Case 2: Heating at the Plate (Gr<0) 

In this case the Grashof number Gr<0. In this case the plate is at a lower temperature 

than the surrounding and Gr=-0.5. 
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(a) Primary Velocity (u) Profiles 

From Figure 5.4, 

i. An increase in the Hall parameter m leads to an increase in the velocity profiles. 

Increasing Hall parameter decreases the resistive force imposed by the magnetic 

field due to its effect in reducing the effective conductivity
21 m

 . 

ii. An increase in the rotation parameter Er, Eckert number Ec and magnetic 

parameter M2 leads to a decrease in the velocity profiles. Since the wall moves in 

opposite direction to that of the free stream, it tends to retard the flow. Similarly, 

the convectional currents due to rotation cause the fluid to retard in motion. An 

increase in Ec increases convectional currents which cause a slight decrease in 

the primary velocity. 

 

(b) Secondary Velocity (v) Profiles 

From Figure 5.5, we note that; 

i. An increase in the rotation parameter Er and magnetic parameter M2 lead to an 

increase in the velocity profiles. 

ii. An increase in the Hall parameter m and an increase in the Eckert number Ec 

leads to a decrease in the velocity profiles. Inclusion of Hall parameter decreases 

the resistive force imposed by the magnetic field due to its effect in reducing the 

effect conductivity. 
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(c) Temperature Profiles 

From Figure 5.6, 

i. An increase in the magnetic parameter M and an increase in Eckert number Ec 

lead to an increase in the temperature profiles. The increase in the fluid 

temperature induces more flow in the boundary layer causing the velocity of the 

fluid there to increase. The magnetic field produces a huge increment in the 

magnitude of the temperature. This can be explained physically as follow: it is 

well known that a magnetic field imparts some rigidity to the conducting fluid. 

Thus, with increase in the magnetic field, greater effort will be necessary to 

maintain the rotation of the plate and this implies an increase in temperature with 

an increase of the parameter M. Increasing Ec can lead to a situation that the 

viscous dissipation becomes a significant hence increasing the temperature. 

ii. An increase in the Hall parameter m leads to a decrease in the temperature 

profiles. As the distance from the plate increases, these profiles increase. 

Increasing the magnetic field decreases the velocity and the micro rotation, while 

increasing the Hall parameter increases the velocity and the magnitude of micro 

rotation thereby decreasing the temperature. 

iii. An increase in the rotation parameter Er has no effect on the change of 

temperature profiles. The rotation causes the circulation of induced currents at 

the surface of the fluid. i.e. the increase of the temperature affects the current 

distribution which is a fixed ratio. Rotation leads up to additional transport; this 

contribution is a consequence of the decrease of the ion rotation. Viscous 
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dissipation would immediately lead to an increase of ion-temperature. The ratio 

of ion momentum to thermal transport is the same hence there is no change in 

temperature. 

(d) Rate of Heat Transfer  

From Table 4, we note that 

i. An increase in the rotation parameter Er, Eckert number Ec and magnetic 

parameter M2 leads to an increase in the rate of heat transfer. Rotation has been 

achieved by a transfer of angular momentum. Once this is drastically reduced, 

the rate at which the particles move and collide is too small thus the rate of heat 

transfer increases. Increase in Eckert number leads to increase in kinetic energy 

and as a consequence, the rates of heat transfer increases. The application of the 

externally variable magnetic field reduces the velocity vectors and leads to an 

increase in the rate of heat transfer in a free convectional heating. 

ii. An increase in the Hall parameter m leads to a decrease in the rate of heat 

transfer. The magnetic field gives rise to a resistive force and slows down the 

movement of the fluid. This reduces the rate at which heat is being transferred. 

 

(e) Skin Friction along x-axis and along the y-axis 

From Table 5, we note that 

i. An increase in the rotation parameter Er leads to an increase in  x and a 

decrease in  y . Due the presence of the Lorentz force and the gravitational force 
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rotating at very low speeds, a friction factor is realized and hence an increase in 

 x  and a decrease in  y . 

ii. An increase in the Eckert number Ec leads to an increase in both  x  and  y . 

The increase of Eckert number Ec means reduction of the particles which were 

causing collisions and this increases skin friction along both x-axis and y-axis. 

iii. An increase in the Hall parameter m leads to a decrease in both  x  and  y . The 

skin friction in the y-direction is negative since it is in the opposite direction to 

that of gravitational force. 

iv. An increase in magnetic parameter M2 leads to a decrease in  x and an increase 

in  y . Hall currents due to the magnetic field give rise to a cross flow making 

the flow to possess a resistive force that increases in the x- axis and decreases in 

the y-axis. It is observed that the primary effect of the magnetic field is to 

decelerate the flow. 
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 Table 1: Variation of m, H, M2, Ec and Ec for both free convectional cooling 

 (Gr=0.5) and heating (Gr=-0.5) at the Plate. 

 

RESULTS m H M2 Ec Er 

TEST 1.0 2 24 0.02 0.05 

1 2.0 2 24 0.02 0.05 

2 1.0 4 96 0.02 0.05 

3 1.0 2 24 0.50 0.05 

4 1.0 2 24 0.02 0.50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 5.1: Primary Velocity profiles (Free Convectional cooling at the plate) 
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       Figure 5.2: Secondary Velocity profiles (Free Convectional cooling at the plate) 

 

 

 

 

 

 

  

 

 

 

 

 

 

SECONDARY VELOCITY

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

DISTANCE

V
E

L
O

C
IT

Y

TEST

1

2

3

4



 112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Figure 5.3: Temperature profiles (Free Convectional cooling at the plate) 
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          Figure 5.4: Primary Velocity profiles (Free Convectional heating at the plate) 
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       Figure 5.5: Secondary Velocity profiles (Free Convectional heating at the plate) 
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 Figure 5.6: Temperature profiles (Free Convectional heating at the plate) 
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Table 2: Rate of heat transfer with cooling at the plate for Pr=0.71 

m M2 Ec Er Nu 

1.0 24 0.02 0.05 1.263899959 

2.0 24 0.02 0.05 1.263461355 

1.0 96 0.02 0.05 1.265935278 

1.0 24 0.5 0.05 1.275017313 

1.0 24 0.02 0.5 1.263900993 

 

 

 

Table 3: Skin friction x  and y  with cooling at the plate for Pr=0.71 

m M2 Ec Er x  y  

1.0 24 0.02 0.05 3.14224995 -0.139999317 

2.0 24 0.02 0.05 3.096609455 -0.169103684 

1.0 96 0.02 0.05 3.013413321 0.00174227625 

1.0 24 0.5 0.05 3.155085951 -0.140024952 

1.0 24 0.02 0.5 3.14696724 -0.151650365 
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Table 4: Rate of heat transfer with heating at the plate for Pr=0.71 

m M2 Ec Er Nu 

1.0 24 0.02 0.05 1.263899959 

2.0 24 0.02 0.05 1.263572678 

1.0 96 0.02 0.05 1.266032283 

1.0 24 0.5 0.05 1.275138535 

1.0 24 0.02 0.5 1.263900825 

 

 

Table 5: Skin friction x  and y  with heating at the plate for Pr=0.71 

m M2 Ec Er x  y  

1.0 24 0.02 0.05 3.151748888 -0.13965205 

2.0 24 0.02 0.05 3.093358238 -0.168728416 

1.0 96 0.02 0.05 3.010100625 0.00203710375 

1.0 24 0.5 0.05 3.151910738 -0.139646217 

1.0 24 0.02 0.5 3.143599675 -0.151287697 
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CHAPTER SIX 

6.0 CONCLUSIONS AND RECOMMENDATIONS 

6.1 Introduction 

An analysis of the effects of various parameters on hydromagnetic flows of a rotating 

fluid past an impulsively started infinite plate has been carried out. In the case under 

consideration, the applied magnetic field is assumed to be of variable strength along the 

z axis; hence in this study the laminar boundary layer is considered. The results are 

therefore true in a layer of greater thickness than that of similar problems in ordinary 

fluid mechanics. This is owing to the fact the uniform variable magnetic field on the 

flow of an electrically conducting fluid generally yields greater stability and delay the 

appearance of turbulence (i.e. increase in the laminar boundary layer thickness). 

 

In this study the results for both Gr>0 and Gr<0 has been obtained, for which from the 

definition of Gr (i.e. 2.88) it is noted that when the temperature of the plate is greater 

than that of the fluid in the free stream region Gr>0 which implies that heat will be 

transferred from the plate to the fluid, a phenomena referred to as cooling of the plate by 

free convection currents, otherwise heat will be transferred from the fluid to the plate i.e. 

heating of the plate by free convectional currents. The value of the magnetic parameter 

2
1M  in our analysis is chosen as equal to 5, which signifies strong magnetic field and as 

a result it was noted that the Hall currents affected the flow significantly. Once this 

parameter is neglected, inaccurate results will be obtained. The induced magnetic field is 
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too small owing to the fact that the flow problem being analyzed is unbounded and 

involves liquids of low magnetic Reynolds number; hence the induced magnetic field 

can be neglected. 

 

In the analysis of the flow problem, it has been noted that, in free convection, the flow 

region consists of two regions namely, the boundary layer region in which both the 

velocity and temperature gradients exits thus the flow field is affected by the parameters 

described in our study and the other region is the free stream region in which there exist 

no velocity or temperature gradient. It follows that the velocity and temperature in these 

region are fixed. The results therefore are for the behaviour of both the velocity and 

temperature profiles in the boundary layer where the flow is fully developed, thus the 

inertia terms are neglected in the flow problem. 

 

The  results  that were  obtained  and presented in chapter five leads to  important  

conclusions  that are made  in this  chapter.  These are presented according to the 

various parameters including rotation parameter, Hall parameter, Grashof number, 

Eckert number, magnetic parameter and the time parameter. Some or all of these 

parameters affect the primary velocity, secondary velocity and temperature. 

Consequently their effect alters the rate of heat transfer and skin friction along the x and 

y axes. We thus proceed to consider these   parameters for Pr=0.71 which corresponds to 

air.  
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6.2 (a) Rotation Parameter Er 

An increase in Er leads to an increase in the temperature profiles for both free 

convection cooling of the plate and free convection heating of the plate. An increase in 

Er further leads to an increase in the rate of heat transfer. 

An increase in Er leads to a decrease in the primary velocity profiles for both free 

convection cooling and heating of the plate and hence an increase in the skin friction 

along the x-axis. This however, leads to an increase in the secondary velocity profiles 

for both free convection cooling and heating and consequently an increase in the skin 

friction along the y-axis. 

 

6.2 (b) Hall Parameter m 

Increasing m leads to a decrease in the temperature profiles for both free convection 

heating and cooling of the plate, which increase with an increase in the distance from the 

plate. An increase in m leads to a decrease in the rate of heat transfer. 

An increase in m leads to an increase in the primary velocity profiles for both free 

convection cooling and heating at the plate but there is a decrease in the secondary 

velocity profiles for both heating and cooling of the plate. This means that the Hall 

parameter is very useful as a means to measure either the carrier density or the magnetic 

field. 
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6.2 (c) Eckert number Ec 

Increase in Ec leads to an increase in temperature profiles for both free convection 

cooling and heating. Further there is a decrease in the rate of heat transfer. 

An increase in Ec leads to an increase in the primary and secondary velocity profiles for 

cooling of the plate but a decrease in the primary and secondary velocity profiles for 

free convectional heating of the plate. Increasing Ec leads to a decrease in for cooling 

and an increase in for heating. Increasing Ec leads to an increase in the rate of heat 

transfer for both free convectional heating and cooling of the plate. 

 

6.2 (d) Magnetic parameter M 

An increase in M leads to an increase in the temperature profiles for both cooling and 

heating of the plate as well as the secondary velocity profiles for both cooling and 

heating of the plate while the primary velocity profiles decreases for both the free 

convection cooling and heating of the plate. There is an increase in the rate of heat 

transfer in increasing M. 

 

In conclusion, the finite difference method has led to the study of a wide range of free 

convection problems in which both the plate and the fluid are in a state of motion. 
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6.3 Recommendations 

Our study of the effects of various parameters on the skin friction and rate of heat 

transfer at the laminar boundary layer has included part of a wide area of study 

involving MHD fluid flows. The study of the effect of variable magnetic field is very 

important especially in duct flow problems in which the Hartman number is of order 

greater than unity. From this study, there are areas that arise for further analysis and 

development. These may be theoretical or experimental and specific areas of study 

include: 

a) Flow involving variable magnetic field applied at an angle, variable 

suction/injection, variable viscosity and thermal conductivity. 

b) An extension of this study to turbulent hydromagnetic flow. 

c) Flow of a fluid in a semi-infinite region. 

d) Flow of fluid which is compressible. 

e) Study of hydromagnetic flows that are bounded. 

f) Solve hydromagnetic flow problem in three dimensions. 

g) Incorporating viscous and Ohmic dissipations. 

h) An extension of the difference method to problems involving mass transfer. 

i) Analysis of the overall computation error in the results obtained. 

The intention is to carry out further studies on some of the open problems mentioned 

above. 
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