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ABSTRACT 

Convective heat transfer in a homogeneous fluid flow Reynolds number of order less 

than 2000 over an immersed axi-symmetrical body with curved surfaces has been 

investigated. The fluid flow in consideration was unsteady and of constant density .This 

study analysed the extent to which convective heat transfer has on drag and lift on 

bodies submerged in fluid. The different temperature profiles which were as a result of 

temperature gradients, caused the convective heat transfer. These different temperature 

profiles were brought about by frictional forces on and within the surface of the body 

when fluid flowed over it. Velocity variations were also determined and were used to 

evaluate these temperature profiles. To obtain these profiles, various flow parameters 

were varied in the equations governing the fluid flow. These equations were non-linear 

and there exists no analytical method of solving them, hence a suitable numerical 

method in this case finite difference method was used.  Results of the velocity 

variations and temperature variations were obtained followed by graphical 

representation of the results. It was however noted that increase in the Reynolds 

number leads to an increase in the heat dissipation. The heat dissipation increases with 

increase in surface curvature. These results have major application in designing devices 

requiring high manoeuvrability and less resistance to the motion e.g. aerofoil, spray 

atomizers and cooling fans. 
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CHAPTER ONE 

1.0 INTRODUCTION 

Convective heat transfer theory is of utmost importance in analysis of thermodynamics 

of fluid. It involves the free or natural transfer of heat within the fluid. Depending on 

the conditions under which the fluid flow is occurring, different fluids have different 

rates of transfer of dissipated heat. This dissipation of heat is brought about by viscosity 

of the fluid, density gradients and the nature of the surface of the body in the fluid flow 

region. In this study, under consideration was a fluid whose Reynolds number was of 

order less than 2000. This fluid was flowing over an axi-symmetrical body with curved 

surfaces. Studies have been done on fluid flows on curved surfaces with axi-

symmetrical orientation which include fluid flow over cylindrical bodies, fluid flow 

over spheres whereby forces acting on these bodies were investigated. For this study 

main analysis was done in the boundary layer region in order to investigate how the 

nature of the surface affected convective heat transfer. 

1.1 FLUID 

Fluid is a type of matter which under given thermodynamic conditions and in 

absence of external forces takes the shape of the container. In fluids, the rate of 

deformation (if the distance between the neighbouring particles changes) is of 

importance than the deformation, whereby fluid undergoes deformation 

continuously. 

A fluid is considered incompressible if the density is assumed to be invariant 

otherwise it is compressible if its density is a variable.  
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In this research, a Newtonian fluid (a fluid which there is a linear relationship 

between the shear stress and the velocity gradient,   
  

  
) was considered. 

A fluid flow is steady if its velocity and the thermodynamic properties at each point 

in the flow region remains a constant and is independent of time, otherwise unsteady 

if the flow variables are dependent on time. 

Fluid motion may be constrained by geometrical boundaries to be predominantly 

parallel to the sides. When flow variables (pressure, velocity, density and 

temperature) at all successive cross sections are identical at any instant, the flow is 

termed uniform otherwise it is non-uniform. 

Fluid flow may be termed as laminar or turbulent. The term laminar is used to refer 

to a fluid flow in which fluid particles downstream of the leading edge moves in an 

orderly manner in laminas or layers parallel to the solid boundary as opposed to 

turbulent whereby fluid velocity components have random turbulent fluctuations 

imposed upon their mean values. A fluid flow is said to be laminar or turbulent by 

the velocity and channel configuration or size. Turbulent fluid motion is an irregular 

condition of flow in which various quantities like velocity and pressure show random 

variation with time and space. Turbulent flow is also characterised by eddies that 

causes mixing of layers of the fluid until the layers are no longer distinguishable. 

This mixing and collision of fluid particles produces heat and the greater the 

turbulence the larger the amount of heat transfer, as these increased collisions leads 

to increased dissipation of heat. 
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A fluid can also be ideal or real, whereby if it is assumed that there exists no 

frictional effect between the fluid layers and the boundary walls then it is regarded as 

ideal, otherwise real. 

1.2 HEAT TRANSFER 

Heat transfer involves energy in transit as a result of temperature gradient in the 

media or medium. This temperature gradient may arise from various causes such as 

viscous effects, release of latent heat as fluid vapour condenses and absorption of 

thermal radiation or radioactivity. This heat transfer takes place mainly in three 

modes; conduction, convection and radiation. In this study only convective heat 

transfer over an axi symmetrical body with curved surfaces was of concern. 

1.3 CONVECTION 

Convection refers to the heat transfer that occurs on a surface and a moving fluid due 

to temperature gradients between the two. Convective heat transfer is due to the 

superposition of the energy transport by random molecular motion (diffusion) and by 

advection (the bulk or macroscopic fluid motion). The contribution due to bulk fluid 

motion originates from the fact that boundary layer grows as the flow progresses. 

Convection laws rely on the fundamental principles of both heat transfer and fluid 

flow which include law of conservation of mass, law of conservation of momentum 

and law of conservation of energy. 

Convective heat transfer depends on viscosity, thermal conductivity, specific heat 

and the density of the fluid. Viscosity influences the velocity profile of the fluid 

flow. 
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Convective heat transfer may be categorized as either free/natural convection or 

forced convection whereby in forced convection, flow is caused by some external 

force such as a fan, a pump or atmospheric winds while in free convection or natural 

convection the flow is induced by buoyancy forces resulting from density gradients 

as a result of temperature gradients in the fluid. On heating, the density change in the 

boundary layer will cause the fluid to rise and be replaced by cooler part of the fluid 

that also will heat and rise. This continues and is a phenomenon called free or natural 

convection. In free convection the driving force for the fluid motion is the gravity 

field acting on the density difference. These density gradients are due to temperature 

and concentration gradients existing in the fluid while the body force is due to the 

gravitational field. When the body forces act on the fluid there results a buoyancy 

force that induces free convectional currents. Both forced and natural types of heat 

convection may occur together a phenomenon termed as mixed convection. 

1.4 VISCOSITY 

This is the resistance set up due to shear stresses within the fluid particles and the 

shear stresses between the fluid particles and the solid surface for a fluid flowing 

around a solid body. As fluid exerts a shear stress on the boundary, the boundary 

exerts an equal and opposite force on the fluid called shear resistance (frictional 

drag). Drag coefficient, Cd always depends on the Reynolds number (Re) and the 

shape of the body. The work done against the viscous effects usually causes fluid 

flow, consequently the energy spent in doing so is converted to heat. At low values 

of Reynolds number, the fluid is highly viscous causing deformation drag, the fluid 

is deformed in a wide zone around the body which brings about pressure force and 

frictional force. At large values of Reynolds number, the fluid is less viscous for 
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example in water and air, the viscous effect is limited to the boundary layer 

thickness. In this case deformation drag is exclusively friction drag. The shear force 

exerted on the surface of the body due to the formation of boundary layer results into 

friction drag. 

1.5 BOUNDARY LAYER 

Boundary layers are thin fluid particles layers adjacent to the surface of a body or 

solid wall in which viscous forces exist. The fluid particles in contact with the solid 

body surface attain the velocity of the body. The region outside this layer is called 

free stream region where the flow is unaffected by viscous forces. Boundary layer 

thickness theory is of importance in analysing flow problems involving convective 

transport. 

1.5.1 VELOCITY BOUNDARY LAYER 

When fluid particles of a real fluid are in contact with a flat surface, their velocities 

are retarded gradually. These particles then act to retard the motion of the adjoining 

fluid layer which in turn acts to retard the motion of the particles in the next layer. 

The process continues until the effect becomes negligible. The velocity boundary 

layer thickness is defined as the distance away from the plate’s surface where the 

velocity reaches 0.99 that of the free-stream velocity. 

1.5.2 THERMAL BOUNDARY LAYER 

Thermal boundary layer develops if the temperature of the fluid at the surface of the 

plate and the free stream temperature differ. Fluid particles that come into contact 

with the plate attain the same temperature as the temperature of the plate’s surface. 
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In turn these particles exchange heat energy with those in the adjacent fluid layers, 

and the temperature gradients develops in the fluid. The region in the fluid in which 

these temperature gradients exist is the thermal boundary layer. 

1.5.3 CONCENTRATION BOUNDARY LAYER 

When concentration of some species at the surface differs from that of the free 

stream, a concentration boundary layer will develop; the region of the fluid in which 

the concentration gradients exist is the concentration boundary layer. Species transfer 

by convection between the surface and the free stream is governed by the condition 

of the boundary. 

1.6 LIFT AND DRAG 

The sum of all the forces on a body that acts perpendicularly to the direction of flow 

is referred to as lift. This force occurs when fluid moves over a stationary solid body. 

On the other hand, drag is the force parallel and in opposition to the direction of 

motion of an object moving in the fluid. Drag takes two forms; form drag or pressure 

drag which is dependent on the shape of the object moving in the fluid and the other 

form is skin friction which is dependent on the viscous friction between a surface of 

a moving solid body and a fluid. 

1.7 DIMENSIONAL ANALYSIS 

 Dimensional analysis is a method which describes a natural phenomenon by a 

dimensionally correct equation among certain variables which affects the phenomenon. 

Dimensional analysis is a method used to obtain equation(s) that relates all physical 

factors of a problem to another. Through this, equations are reduced to non-dimensional 
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form by using dimensionless groups such as Reynolds number, Eckert’s number, 

Peclet’s number, Prandtl’s number, Grashoff’s number, Nusselt’s number e.t.c. It is 

built on the principle of dimensional homogeneity which states that an equation 

expressing a physical relationship between quantities must be dimensionally 

homogeneous. Dimensional analysis gives results which only become quantitative from 

experimental analysis. 

This method has applications in nearly all fields of engineering in particular in fluid 

mechanics and heat transfer. It is an important tool for analyzing fluid flow problems 

and very useful in presenting experimental results in a concise form. Through this 

method dimensions of relevant variables of an appropriate prototype are used in the 

manufacturing of the actual object. 

1.8 REVIEW OF LITERATURE 

The theory of convective heat transfer strongly emerged in 20
th

 century. By its nature, 

convective energy transfer is closely related to fluid particles motion and therefore is a 

fundamental part of fluid mechanics study. Advancement in research in fluid 

mechanics (particularly hydrodynamics of non-Newtonian, electric current-conducting 

and magnetic media, supersonic and hypersonic gas dynamics, dynamics of plasma, 

fine molecular and heterogeneous flows, the hydro and gas dynamics effects during the 

theory of heat and transformation) have greatly affected the theory of heat and mass 

transfer in moving media e.g. air, water and oil. 

The relationship between the intensities of turbulent momentum and heat transfer 

process is one of the subtle problems of heat transfer theory. The determination of the 

Prandtl number, Pr is paramount. The value of Prandtl number is of order unity beyond 
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the viscous sub layer, but greater than one in the immediate vicinity of a solid body (at 

the depth of the viscous sub layer). At Pr>100, the turbulent thermal boundary layer is 

submerged in the viscous sub layer of the turbulent hydrodynamic boundary layer. 

On the formation of the boundary layer in a steady flow (independent of time), Allen 

(1981) gave evidence to the effect that the location of the transition from laminar to 

turbulent conditions in the boundary layer might be more closely dependent on the 

local skin friction coefficient than the Reynolds number. 

A German aero dynamist Ludwig Prandtl (1904),established that a flow of large 

Reynolds number means that it has a low viscosity (frictional forces associated with 

flow), if the viscosity of the fluid is low then the effects of friction will be confined to a 

very thin layer known as the boundary layer near the solid body while the region 

outside the boundary layer can be considered frictionless or ideal i.e. in this region the 

fluid is assumed to be in viscid or non-viscous .Also for this flow of high Reynolds 

number the region near the boundary, viscous forces will dominate over the inertia 

forces and the effects of the viscosity will be very important in this region, as a result 

shear forces will be very high due to the extremely high velocity gradients at and near 

the boundary layer. 

Barenblatt et al (2002),in their study on the model of the turbulent boundary layer with 

non- zero pressure gradient observed that the turbulent boundary layer at large 

Reynolds number consist of two separate layers upon which the structure of the vortex 

fields is different, although both exhibit similar characteristics. 

 In the first layer, vertical structure is common to all developed bounded shear flows 

and the mean flows .The influence of viscosity is transmitted to the main body of flow 



- 9 - 
 

via streaks separating the viscous sub layer. The second layer occupies the remaining 

part of the intermediate region of the boundary layer. 

The upper boundary of the boundary layer is covered with statistical regularity by large 

scale “humps” and the upper layer is influenced by the external flow via the pressure 

drag of these humps as well as by the shear stress. In their earlier works it is shown that 

the mean velocity profile is affected by the intermittency of the turbulence and as the 

humps affects intermittency, the two seeking regions are visible. 

On the basis of these considerations, the effective Re, which determines the flow 

structure in the first layer (and is affected in turn by the viscous sub layer), was 

identified as one set of such parameters. The other parameters that influence the flow in 

the upper layer include pressure gradient, 
  

  
; dynamic (friction) viscosity ,  ; velocity 

,u; fluid’s kinematic viscosity,   and density, . 

In the recent past, many researchers have been interested in solving the boundary layer 

equations. Smith et al (1963) in one of their papers presented a method for solving the 

complete incompressible laminar boundary layer equations; both for two dimensional 

and axi symmetrical laminar flow, essentially full generality and with speed. 

In their subsequent papers (1970, 1972), they discussed application potential flow and 

the boundary layer theory in the hydrodynamics, they also provided a solution 

technique of the laminar boundary layers by means of the differential difference 

method 

Wehrle et al (1986) presented an analytical shears for the determination of the 

separation point in the laminar boundary layer. Unlike conventional approaches the 
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scheme does not require the full-field solution of the governing partial difference 

equation, but rather the solution of a first order set of boundary layer equations defined 

in the neighbourhood of the leading edge. 

Continuing interest in flows and heat transfer over flat plate, concave , convex surfaces 

stems from their possible effects in the turbine blades of jet engines, vehicle 

aerodynamics ,aircraft wings, submarines, spaceship, cooling plants power plants e.t.c. 

flow phenomenon are mainly subjected to pressure gradients ( favourable or adverse), 

surface curvature and a wide range of Reynolds number. 

There have been many previous investigation of flow and heat transfer on flat plate 

boundary layers with pressure gradients. Fukagata et al (2002) were concerned with 

transition to turbulent flow and the Reynolds stress distribution. While those of Umur 

and Karagoz (1999) investigated flow and heat transfer characteristics in laminar flows 

were investigated with pressure gradients, stream wise distance Reynolds number and 

wall curvature. Measurements were carried out in a low speed wind tunnel with a 

dimensionless stream wise pressure gradient parameter of between −4 and 1.0. Results 

were compared with analytical solutions and numerical predictions and a new empirical 

equation as a function of kx. It was found that Stanton numbers augmentation with 

Reynolds number became more pronounced than concave curvature. Favourable 

pressure gradients caused heat transfer to increase and adverse pressure gradients to 

decrease. The results showed that the distribution of Stanton numbers with acceleration 

has similar trends with analytical solutions and numerical predictions. The proposed 

equation showed much better agreement with the measured Stanton numbers, in case of 

both adverse and favourable pressure gradients. Filippova and Hanel (1998) developed 

a curved boundary treatment using Taylor’s series expansion in both space and time for 
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single particle distribution near the wall. This boundary condition satisfies the no-slip 

condition to the second order in a space step and preserves the geometrical integrity of 

the wall boundary. 

Mei et al (1999) and Bouzidi et al (2001) proposed some other boundary treatment 

methods. In all those methods, the boundary conditions were treated separately for 

some specific steps when some variations occurs in the specified steps while dealing 

with curved boundaries, an abrupt change in the single particle mass distribution was 

caused. In the turbo machinery applications; a variations in the rate of heat transfer due 

to a small flow disturbance can lead to an increase in the thermal stress and decrease 

the effective working life span of such a component. On a highly curved wall, the 

change in heat transfer rate is mainly due to an increase or decrease of the turbulent 

mixing by effect of streamline curvature. It has been indicated in Von Karman’s 

stability argument (1934) that the convex wall has a stabilizing effect on the fluid 

particles, while concave wall has a de-stabilizing effect with reference to a flat plate. 

The measurement and prediction of the rate of heat transfer for a two dimensional 

boundary layer on a concave surface have been presented by Mayle et al (1979). It was 

established that the heat transfer on the convex surface was less than a flat surface 

having the same free stream, Reynolds number and turbulence. Concave surface heat 

transfer was augmented when compared to the flat surface. 

P. Bradshaw et al (2006) extended the study on the use of the algebraic analogy to 

curved shear layers and the effects of the curvature on the apparent mixing length if the 

shear layers thickness exceeds 
 

   
 of the radius of curvature where they concluded that 

large effects occurred in compressible fluid flows. B.K. Gupta et al (2003) investigated 
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heat transfer on a surface with longitudinal curvature in laminar flow where they 

investigated the effects of variation of different parameters which included Prandtl 

number, Nusselt number and Eckert number. They concluded that for any Prandtl 

number, as the curvature changes from concave to convex, the Nusselt number 

decreases if the Eckert number is small and it increases if the Eckert number is close to 

unity. A.B. Khoshevis et al (2007) investigated the effects of the concave curvature on 

turbulent flows using numerical solutions of boundary layer equations on concave 

surfaces. It was evident that turbulent intensities and turbulent shear stresses are 

increased on concave walls compared to flat plates under same conditions and they 

concluded that for the boundary layer on concave surfaces, the destabilizing effects 

lead to increased turbulent momentum exchange between the fluid particles similar to 

the way concave curvature causes flows to be destabilized.  

One area of practical interest to researchers is on the degradation of aerofoils .Aerofoils 

form a crucial part of aviation and air conditioning systems. 

George O.O et al (2009) in their study on the convection heat transfer in a fluid flow 

over a curved surface established that as fluid flows over an immersed curved surface, 

some work is done against viscous effects and energy spent is converted into heat and 

also vortices formed in the boundary layer due to high velocity gradient is swept 

outwards from the boundary layer. Mugambi K.E et al (2008) in their research 

investigated the forces produced by fluid motion on a submerged finite curved plate. 

They established the relationship between geometrical shape of the curvature and the 

variation of drag force of specific velocities of the viscous fluid. 
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Thus investigation of the effect of using an axi symmetrical body with curved surfaces 

was done first by getting the velocity profiles and their temperature profiles resulting 

from temperature variations and velocity variations and eventually heat was dissipated 

which was transferred by convection. 

1.9 STATEMENT OF THE RESEARCH PROBLEM 

As fluid of large Reynolds number flowed over an axi-symmetrical body with curved 

surfaces as shown in the Figure 1, some work was done on the curved surfaces, against 

viscous forces and energy spent was converted into heat, also whirlwinds and 

whirlpools were formed in the boundary layer as a result of high velocity gradient 

outwards from the boundary layer.  

The energy converted into heat within the boundary layer was transferred from this 

boundary layer through convection into the rest of the region of flow. A lot has been 

done in regard to heat transfer but less has been done in regard to the effect of axi-

symmetrical body on the heat generated. In this research convective heat transfer 

formed the basis of this research which in turn affected lift and drag. 

Y-axis 

Direction of fluid flow 

X-axis 

 

Figure 1: Eppler’s aerofoil design, Eppler et al (1979). 
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1.10 OBJECTIVES OF THE STUDY 

The objectives of this study were to determine:- 

1. The velocity distribution of the fluid flow past an immersed axi-symmetrical 

body with curved surface. 

2. Temperature variation within the thermal boundary layer of the fluid past the 

immersed axi-symmetrical body with curved surfaces due to velocity variations. 

3. The effect of heat generated within the boundary of an immersed axi-

symmetrical body with curved surfaces on drag and lift. 

1.11 JUSTIFICATION 

In our day to day lives we encounter cost of maintenance brought about by degradation 

of equipment and machines whose parts come in contact with a fluid, this has become a 

major concern. Heat produced due to viscosity on the body surfaces has led to the 

degradation of equipment and machines which has led to high cost of maintenance 

being incurred. 

Rise in temperature decreases the viscosity of the fluid and vice versa, thus the need to 

design bodies that could withstand such variations.  

Heat injection or heat withdrawal on immersed curved surfaces enhance velocity 

variations in the fluid flow thereby improving the manoeuvrability of such bodies in the 

fluid as in the case of submarines in water, wings of flying planes in the air, weather 

space ships in the air, fan blades in the air conditioning systems, fan blades in the 

cooling units of appliances e.g. computer. 
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1.12 HYPOTHESIS 

The null hypothesis of this study was that the presence of curved surfaces would not 

affect the velocity and temperature. 

1.13 THESIS OUTLINE 

Chapter one of this thesis contains the introduction and definitions of the fundamental 

terms as used in the thesis whereby their meaning were expounded further. Also the 

justification, review of related literature, hypothesis and objectives are contained in this 

chapter. 

Chapter two contains the equations governing the flow and their analysis to suit this 

particular problem. This analysis includes non-dimensionalising them and re-writing 

them together with the non-dimensional numbers and writing them in finite difference 

form for solution using the Crank Nicolson approximation. 

Chapter three contains the solution of these differential equations by the use of Visual 

basic as the programming language. The results obtained from this program by varying 

various flow parameters are represented graphically followed by an in-depth discussion 

of the results. 

Chapter four is the last chapter, and basically contains the conclusion arising from the 

analysed results followed by recommendations for future research areas in line with 

this work. At the end of this chapter references cited in this research are listed in 

alphabetical order using the MLA formatting. 
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CHAPTER TWO 

2.0 INTRODUCTION 

In this chapter, equations governing the flow of an incompressible, Newtonian fluid 

over an axi symmetrical body with curved surfaces were discussed taking into 

consideration assumptions and approximations made. The fundamental equations to be 

considered include mass conservation equation, momentum conservation equation and 

equation of energy. Also description of the flow and dimensional analysis of equations 

that govern this fluid flow problem obtained was done in this chapter. 

2.1 ASSUMPTIONS AND APPROXIMATIONS 

The following assumptions were made for this research problem:- 

1. The fluid was Newtonian. 

2. The fluid was incompressible (  is assumed a constant). 

3. The fluid had constant thermal conductivity (ability to conduct heat). 

4. The fluid flow velocities were small compared to that of light i.e. ( 
  

  
    ). 

5. The flow was assumed to be laminar and no slip condition was satisfied. 

6. The fluid flow was unsteady (the fluid flow was time dependent). 

Boundary layer approximations 

1.    ; The reference length L (m) was large compared to the boundary layer 

thickness. 

2.    ; The velocity component, u along surface was much larger than the 

velocity component, v normal to the surface. 

3. Radius of curvature, Kr>0. 
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2.2 EQUATIONS GOVERNING THE FLUID FLOW 

The equations governing the fluid flows of any kind are based on general laws of 

conservation of mass, momentum and energy only they are modified to perfectly suit a 

particular fluid flow. 

2.2.1 Equation of continuity 

The equation of continuity is a mathematical statement in any process where the rate at 

which mass enters a system is equal to the rate at which mass leaves the system. This 

equation combines the law of mass conservation and that of the transport theorem. This 

equation arises from the fundamental prepositions that matter is neither created nor 

destroyed and that the flow is continuous. The general expression representing mass 

conservation was given by; 

  

  
                                                        

where            are the fluid’s density and the fluid’s velocity respectively. 

In Cartesian co-ordinate form this equation (2.1) was expressed as; 

  

  
   

  

  
 
  

  
 
  

  
                                        

Now for a incompressible 2-Dimensional fluid flow, w=0 and 
  

  
   hence (2.2) 

reduced to; 
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Equation (2.3) was the equation of continuity for single species fluid in the velocity 

boundary layer under consideration in two dimensions. 

2.2.2 Equation of conservation of momentum 

The equation of conservation of momentum is derived from the Newton’s second law 

of motion, which states that the time rate change of momentum of a body matter is 

equal to the net external forces applied to the body. This external force is divided into 

two types of forces i.e. surface forces (e.g. forces due to static pressure and viscous 

stresses) and body forces (e.g. gravitational force, centrifugal force, magnetic force or 

electric fields). The surface forces are due to the interaction between the body and the 

matter in the immediate contact with it and act on the bounding surfaces. There 

intensities are expressed in terms of stress and defined as force per unit area. The body 

forces are defined as the forces which act on a body from a distance and are usually 

expressed as forces per unit mass. For this particular research problem it was of utmost 

importance to resolve the forces acting on the curved surfaces. In this case the curved 

surfaces were both convex and concave surfaces. 

The viscous stresses at any point in the velocity boundary layer were resolved in two 

components;- normal stress which was always perpendicular to the surface and shear 

stress which was always tangential to the surface in consideration. 
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                               Normal stress,                                    Resultant stress 

 

                                                                                                      Shear stress,      

 

Fig 2: Resolution of surface force acting on an area element into shear and normal 

stresses. 

The double notation of both the shear and the normal stresses was used to identify the 

components where the first index denoted the direction of the normal to the plane and 

the second index denoted the direction of the stress component itself. For a two-

dimensional flow Fig.2 was resolved as; 

                                                                          Y-axis 

                                                                                 

                                                                                                                                               X-axis 

                                                                                                                  

Fig 3: Resolution of forces 

The momentum equation along x-axis became; 

 
  

  
    

  

  
  

  

  
   

  

  
  
    
  
 
    
  

                                       

The momentum equation along the y-axis became; 
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The viscous stresses and shear stresses in two dimensions were defined by; 

      
  

  
 
 

 
  
  

  
 
  

  
                                                                                         

      
  

  
 
 

 
  
  

  
 
  

  
                                                                                         

          
  

  
 
  

  
                                                                                                   

Substituting equations (2.5a-c) into equations (2.4) and (2.5) we obtained momentum 

equation along the x-axis and y-axis as; 

Along the x-axis; 

 
  

  
    

  

  
  

  

  
 

  
  

  
 
 

  
    

  

  
 
 

 
 
  

  
 
  

  
    

 

  
   

  

  
 
  

  
  

                                                                                                       

Along the y-axis; 
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since;   
  

  
 
  

  
    equations (2.6a) and (2.6b) reduced to 

 
  

  
    

  

  
  

  

  
 

  
  

  
   

   

   
   

   

   
 
   

    
                                           

 
  

  
    

  

  
  

  

  
 

  
  

  
   

   

   
   

   

    
 
   

   
                                     

From the boundary layer approximations made earlier, the distance under consideration 

was very small, boundary layer thickness   to the extent that the velocity component in 

the direction along the surface was much larger than that normal to the surface. Hence the 

gradients normal to the surface were larger than those along the surface i.e. 
  

  
 

  

  
 
  

  
 
  

  
 and also 

  

  
   . From this approximations (2.7a) and (2.7b) reduced to 

  

  
  

 

 

  

  
  

   

   
                                                                                                               

and 

   
  

  
                                                                                                                               

respectively. 

Now from the Bernoulli’s equation; 
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The curved surfaces provided both adverse and favourable pressure gradient (i.e. this is 

where the pressure decreases in the direction of the flow the physical effect is to 

accelerate the flow, the boundary layer remains attached to the surface and tends to 

reduce in thickness and this is termed as favourable pressure gradient) whose tangential 

component of the velocity of the outer flow reveals a power law dependence on the 

stream wise x measured along the curved surface boundary as; 

                                                                                                                                                

where c was a positive velocity coefficient and m was an integer obtained from the angle 

of inclination. This integer m was given as 







2
m   where 

 

 
 was the angle in 

radians of the inclination at a given point from the horizontal plane. Let   denote the 

angle. 

Then  
 

 
 , hence m=





2
 

Differentiating partially equation (2.9) with respect to x, we obtained 

  

  
   

  

  
                                                                                                                                

 

which implied 
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But from the power law dependence 

 
  

  
                                                                                                                            

hence equation (2.8a) became 

  

  
     

   

   
                                                                                 

The body under consideration had both the convex surface and the concave surfaces; 

there curvature effect on the fluid flow had to be taken into consideration. The concave 

part of the body brought about an unstable effect which was determined by 
  

  

  

  
  The 

curved surface as a curvature was defined by a quadratic equation of the form 

                                                                                                                              

where  0<a<1 was set to ensure surfaces’ radius of curvature was large enough and the 

end points were set at a specific co-ordinates values when solving for a particular case of 

which length of the plate curvature were determined analytically. 

The concave wall exerted a destabilizing influence on the momentum exchange. Prandtl 

proposed to account for curvature effect by multiplying the length of the concave curved 

surface by a factor f which was a function of dimensionless curvature parameters, that is 

    
 

 

   

 
  

  
 
                                                                                                                    

He also deduced that the boundary layer equation on the curved surface was written as 
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where kr and h1 are curvature parameters which were defined as 

       
 

    
                                                                                                             

                                                                                                                          

where r(x) was the radius of the curved surface. 

Equation (2.8b) was rewritten as 

 

 

  

  
                                                                                                                                                                      

A comparison was done between equations (2.17) and (2.20) which yielded  

   
 

  
                                                                                                                                

The body forces under consideration Fx and Fy were purely due to the gravitational pull 

which was assumed to be a constant in both cases, hence an important assumption that 

                                                                                                                                     

From equations (2.21) and (2.22) it was resolved that 

   
 

  
                                                                                                                               

Equation (2.23) was replaced in the equation of conservation of momentum along the x-

axis equation (2.14), a result which gave us a generalized equation of conservation of 

momentum for fluid flow over an axi-symmetrical body with curved surfaces, the 

equation became 
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But   =     , hence the term  
   

 

  
 in equation (2.24) was written in Taylor series as 

   
        

      
          

                                                                (2.25) 

And therefore equation (2.24) yielded 

  

  
     

   

   
    

          
                                                                              

Since the flow was along the x-axis      and for very small values of    equation 

(2.26) yielded 

  

  
     

   

   
     

                                                                                                

2.2.3 Equation of conservation of energy 

If the flow is not isothermal, it is necessary to analyse the energy equation which draws a 

balance between heat and mechanical energy and provides a differential equation on the 

temperature distribution of the fluid flow over an axi-symmetrical body with curved 

surfaces. The equation of energy was derived from the 1
st
 law of the thermodynamics 

which stated that the amount of heat added to the a system, dQ was equal to the sum of 

the change in the internal energy, dE of the system and the external work done dW by the 

system. Mathematically the law was expressed as 

                                                                                                                  

where dW = PdV = P  
 

 
  for a unit mass. 



- 26 - 
 

Equation (2.28) reduced to 

         
 

 
                                                                                                       

The 1
st
 law of thermodynamics for a fluid flow with constant thermal conductivity K, 

zero internal generation and negligible compressibility effect the equation reduced to; 

   
  

  
                                                                                                            

where    was the internal heating due to the viscous dissipation while for an 

incompressible two-dimensional fluid flow the viscous dissipation function was 

     
  

  
 
 

  
  

  
 
 

   
  

  
 
  

  
 
 

                                                                       

By considering unsteady incompressible flow in a control volume, the standard thermal 

energy equation for the thermal boundary layer was given by 

 
  

  
   

  

  
   

  

  

 
 

  
  
  

  
  

 

  
  
  

  
    

  

  
  

  

  
                            

where h was the enthalpy,    was the rate of heat generation. 

Now the enthalpy h was given by 

      
 

 
                                                                                                                         

then the first order derivative of enthalpy became 
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But,                 
 

 
  and for a unit mass and a single species 

fluid,      , therefore                  

          
 

 
                                                                                                                         

In view of (2.34), the equation (2.34) became 

       
 

 
      

 

 
     

 

 
                                                                                     

Hence 

       
 

 
                                                                                                                         

Assuming that  
  

  
      

  

  
  were negligible and          the equation (2.32) 

reduced to 

   
  

  
      

  

  
  

  

  
   

   

   
   

  

  
 
 

                                                      

Now for fluid flow over a body with curved surfaces the convective heat transfer due to 

the viscosity in the thermal boundary layer was modelled to the equation of conservation 

of energy. In this case the body in consideration had both convex and concave surfaces. 

The convex surface had previously been done by Omboro G.O. et al (2009) it remained 

the concave surface which had a destabilizing effect on the velocity of the fluid flowing 

over it, hence the heat transfer area was the length of the curved surface and increase in 

the heat transfer area intensified the natural convective heat transfer. Also increase in the 
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flow cross sectional area increased the adverse pressure gradient that opposed the 

buoyancy induced acceleration. 

The convection equation was expressed as 

                                                                                                                            

where            was the temperature difference between the surface and the bulk 

fluid and A was the area of the surface. 

In this case the area of the surface was the length of the curved surface and for this 

concave surface which had a destabilizing effect, the effect of the curved surface was 

taken into account by multiplying area, A by a dimensionless factor given by equation 

(2.16) which resulted to 

                                                                                                                                

where    was the heat transferred per unit time. 

And on replacing f, equation (2.40) reduced to 

       
 

 

   

 
  

  
 
                                                                                               

From Newton’s law of cooling the local heat flux was given by 

   
 
                                                                                                                         

where h was the local convection coefficient. 
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Since the flow conditions varied from one point to another on the curved surface both    
 
 

and h also varied along the curved surface. 

At any distance x from the leading edge of the curved surface local heat flux    
 
 was 

obtained by applying the Fourier’s Law to the fluid at y=0 as 

   
 
   

  

  
                                                                                                                            

The local convection heat transfer was then expressed as 

  
  

  

  

       
                                                                                                                         

In the thermal boundary layer the rate of heat conduction along the y-direction was larger 

than that along the x-axis      
  

  
 

  

  
  

Then the equation of 1
st
 law of thermodynamics (2.33) reduced to 

   
  

  
      

  

  
  

  

  
   

   

   
   

  

  
 
 

                                                     

From the above approximations equation (2.45) reduced to 

   
  

  
  

   

   
   

  

  
 
 

                                                                                              

But the value of q  was replaced with equation (2.41) in order to take of the curvature 

effects and hence on substituting equation (2.41) in equation (2.46) yielded 
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Equation (2.47) gave the equation of energy for convective heat transfer over an axi-

symmetrical body with curved surfaces. 

2.3 DESCRIPTION OF THE FLOW 

A two dimensional unsteady flow of a fluid of Reynolds number less than 2000 over an 

axi-symmetrical body with curved surfaces was studied. The body in consideration had 

both convex and concave surfaces hence two non-zero pressure gradients existed due to 

these surfaces. The concave surface was mainly characterized by unstable effect it had on 

fluid flow while the convex surfaces had a stable effect, hence for this particular body it 

was prudent to take into account these two effects because they were paramount to the 

determination of velocity profiles and the temperature profiles. The curved surfaces also 

had significant effect on the turbulence, where the streamlines in the boundary layer had 

convex curvature the turbulence were stabilized while the ones with the concave 

curvature the turbulence were destabilized. The centrifugal force exerted a force normal 

to the fluid flow direction and was balanced by the pressure gradient. If the fluid was 

displaced by a disturbance it encountered a pressure gradient larger than that it was 

accustomed to at the curved surface, hence the fluid was brought back to the surface. The 

fluid flow over this body was separated into two regimes:- 

a) Convex surface. 

The flow on this surface was characterized by 
  

  
   and 

  

  
   which implied that the 

fluid velocity decreased with downstream direction and an adverse pressure gradient was 

said to exist which was a positive value. In this case the boundary layer increases rapidly 

and this together with the action of the shear force brought the boundary layer to rest. 
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      b) Concave surface 

The flow on this surface was characterized by 
  

  
   and 

  

  
   which implied that the 

fluid velocity increased with downstream direction and a favourable pressure gradient 

was said to exist which was a negative value and this reduced the boundary layer 

thickness since increased velocity meant there was less retardation of fluid particles 

adjacent to the surface of the body. 

When the fluid flowed over the body, three types of forces acted on it namely; pressure 

force, viscous forces, drag and lift as shown in the diagrams below. 

 

a) Resultant forces (drag and lift). 

            U                                      Lift 

            Drag 

 

Figure 4: Lift and drag forces. 

 

b) Viscous force. 

U

 

Figure 5: Distribution of viscous forces over the curved surfaces. 
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c) Pressure force. 

 

Figure 6: Pressure force distribution on the body with curved surfaces. 

 

2.4 NON-DIMENSIONALISING THE EQUATIONS GOVERNING THE FLOW 

Non dimensionalisation of the equations governing a particular fluid flow falls under a 

broad area of study known as dimensional analysis. Dimensional analysis is a method 

which describes a natural phenomenon by a dimensionally correct equation with certain 

variables which affect the phenomenon. 

For this particular problem we let L, V, P and T to be the characteristic 

length,velocity,pressure and temperature respectively. To non-dimensionalise the 

equations governing the flow we used the transformations: 

                                             
    
     

 

   
  

 
       

   

 
 

2.4.1 EQUATION OF CONTINUITY 

For this particular fluid flow the equation of continuity was given by 
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On non-dimensionalising, the equation of continuity became 

      

      
 
      

      
                                                                                 

or 

 

 
 
   

   
 
   

   
                                                                                          

or 

 
   

   
 
   

   
                                                                                             

2.4.2 EQUATION OF CONSERVATION OF MOMENTUM 

The equation of conservation of momentum for this flow problem was given as; 

  

  
  

  

  
  

  

  
     

   

   
    

                                                    

Since 
  

  
           the equation (2.52) reduced to 

  

  
     

   

   
    

                                                                                     

On non-dimensionalising the equation became 

      

  
   

 
 
       

        

       
     

                                                         

Hence this equation became 
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Dividing this equation throughout by
  

 
, we obtained 

   

   
 
  

  
  
  

 

  

    

    
     

                                                                      

This gave the equation of momentum in non-dimensional form. 

 

2.4.3 EQUATION OF CONSERVATION OF ENERGY 

The equation of conservation of energy was given by 

  

  
  

  

  
  

  

  
 

 

   

   

   
 

 

   
 
  

  
 
 

 
  

   
          

   

  
  

  
 
             

From the boundary approximations the above equation reduced to; 

  

  
 

 

   

   

   
 

 

   
 
  

  
 
 

 
  

   
          

   

  
  

  
 
                              

From the non-dimensional form of T, we had 

   
    
     

 

On making T the subject it yielded 

               

On non-dimensionalising the above equation of energy, we obtained 

               

  
   

 
 

      
 

   

                

       
 

 

   
 
      

      
 

 

  

  

   
          

   
  

  
      

      
 
                                                                                           

This equation became 
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Dividing above equation throughout by  
        

 
  we obtained 

   

   
 

 

     

    

    
 

  

           
 
   

   
 
 

 
   

    
   

   
  

  
   

   
 
                              

Multiplying the term
  

           
 
   

   
 
 

 by V in the numerator and the denominator, we 

obtained 

   

   
 

 

     

    

    
 

    

             
 
   

   
 
 

 
   

    
   

   
  

  
   

   
 
                        

Equation (2.59.4) represented the equation of conservation of energy in non-

dimensional form. 

 

2.5 NON-DIMENSIONAL NUMBERS 

2.5.1 The Prandtl number, Pr 

This number was named after Ludwig Prandtl a German aerodynamist who was closely 

associated with the conception of boundary layer theory. It is the parameter which 

relates the relative thickness of the hydrodynamic and thermal boundary layers. The 

Prandtl number provided the link between the velocity field and the temperature field. 

It is expressed as 

Pr 
 

 
 

  

  Cp
 

   

 
                                            (2.54) 

This is the ratio of the momentum diffusivity to the thermal diffusivity.  
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2.5.2 Reynolds number, Re 

This number was named after a scientist Osborne Reynolds it is defined as the ratio of 

the inertia forces to the viscous forces. It is given by 

Re=
   

 
 

  

 
= 
              

              
                                        (2.55)            

2.5.3 Peclet number, Pe 

This number was named after a French physicist Jean Claude Peclet, it is defined to be 

the ratio of advection of a physical quantity by the flow rate of diffusion of the same 

quantity driven by an appropriate gradient. In context of transport of heat, the Peclet 

number is equivalent to the product of the Reynolds number and the Prandtl number. 

This independent heat transfer parameter is defined by 

Pe = RePr=
  LCp

k
 

VL

 
                                                (2.56) 

2.5.4 Eckert number, Ec 

This is the measure of the kinetic energy of the flow to the boundary layer enthalpy 

difference across thermal boundary layer, given by; 

Ec = 
V
 

Cp T  TS 
                                                                              (2.57) 

It plays an important role in high speed flows for which dissipation is significant. 
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2.6 EQUATIONS GORVERNING THE FLUID FLOW WITH 

DIMENSIONLESS NUMBERS 

2.6.1 Equation of continuity 

 
   

   
 
   

   
                                                                                                   

2.6.2 Equation of conservation of momentum 

   

   
 
  

    
  

 

  

    

    
     

                                                                  

But, Re=
   

 
 

  

 
 

hence the above equation reduced to; 

   

   
 
  

    
  

 

  

    

    
     

                                                                      

 

2.6.3 Equation of conservation of energy 

   

   
 

 

     

    

    
 

    

             
 
   

   
 
 

 
   

    
   

   
  

  
   

   
 
                

But ,Pe = RePr=
  LCp

k
 

VL

 
,Re=

   

 
 

  

 
,Ec =

V
 

Cp T  TS 
&Pr 

 

 
 

  

  Cp
 
Cp 

 
 

Hence the equation of conservation of energy reduced to 
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2.7 THE BOUNDARY CONDITIONS 

The boundary conditions for the fluid flow over an axi-symmetrical body with curved 

surfaces, taking into consideration the no-slip condition and negligibility of the effects 

of viscous forces in the free stream region, were stated below: 

2.7.1 Equation of momentum 

The equation of conservation of momentum 

   

   
 
  

    
  

 

  

    

    
     

   

was solved subject to the following boundary and initial conditions 

         

          

         

On non-dimensionalising the boundary and initial conditions 

    
   

 
      

    
   

 
       

             

 

On simplifying the above boundary and initial conditions we obtained 
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2.7.2 Equation of conservation of energy 

The equation of conservation of energy 

   

   
 

 

  

    

    
 
  

  
 
   

   
 
 

 
   

  
   

   
  

  
   

   
 
  

was solved subject to following boundary and initial conditions 

          

          

         

On non-dimensionalising the boundary and initial conditions; 

             
   

 
    

     
     

 

             
   

 
    

     
     

 

                
      

On simplifying the above conditions 
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2.8 METHOD OF SOLUTION 

The proposed method of solving the system of the non-linear equations obtained for 

this particular flow problem was the numerical approximation method of finite 

differences. In a finite difference grid to calculate the values at the mesh points, each 

nodal point was identified by a double index (   ) that defined its location with respect 

to t and y as indicated in the figure below. For this particular problem we chose the step 

value       and           . These step values were so chosen so as to bring 

about convergence, stability and consistency in the values to be obtained. 

y 

   M 

   

 

 

 

0                                              

             0          1             2                   4         5                                  N 

Figure 7: Computational finite difference mesh. 

Each corner of the cell forms the mesh or grid point. Considering the y-t plane in the 

figure 8, it was subdivided into uniform rectangular cells of height of       and 

width of            . Considering a reference point       where   and   represent t 

and y respectively. Using the notation       for        and       for        we 

defined the adjacent points to y and t, the points that are   and   units from the reference 
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point had the co-ordinates         . In finite difference approximation we replaced the 

derivatives with the finite differences. If          and         , their first 

derivatives with respect to   were written in finite difference form as 

   
            

  
          

   
            

  
          

Their first order derivatives with respect to y were written in finite difference form as 

   
           

  
          

               
           

  
          

The second order derivatives with respect to y by forward differencing were; 

    
                   

   
          

    
                   

   
          

The derivatives in the equations governing the flow were replaced by these numerical 

difference approximations. Values of velocity and temperature were solved iteratively. 

The equations governing the fluid flow in finite difference form were written as; 
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These equations were solved subject to the boundary and initial conditions stated 

earlier. Visual Basic programming language was used to solve these two equations. In 

the next chapter, the graphical representation of the results obtained and the analysis 

was done.  
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CHAPTER THREE 

3.0 INTRODUCTION 

In this chapter the equations governing the flow problem in finite difference were 

reorganized, discretized and computed iteratively. The velocity profiles obtained 

together with the temperature profiles within the boundary layer are also graphically 

represented. 

3.1 EQUATIONS GOVERNING THE FLUID FLOW IN FINITE DIFFERENCE 

FORM 

The governing equations describing the unsteady, incompressible fluid flow over an 

axi-symmetrical body with curved surfaces, in finite difference form taking and using 

the Crank Nicolson method of approximation were given subject to their boundary and 

initial conditions as: 

 

      
  

     
  

    

  
   
  

  

  
 
        
          

   
     

 
      

        
 

      
           

   

   
  

       
 

 

 

subject to 

 

           

           

           

and 
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   y  
 

 
    

  
 
        
        

        
      

 

   
 

 

 
     

  

 
           

 

    
        
        

        
      

 

   
 
     

  

       
  

 subject to; 

           

           

           

 

Values of velocity obtained in the momentum equation were used to compute for 

temperature values in the energy equation, this was done iteratively and different values 

were obtained when various flow parameters were varied.
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3.2 DATA REPRESENTATION 

The following data representation was obtained after solving the equations governing 

the fluid flow. 

 

Figure 8: Velocity profiles for-Ec=1  Pe=2  V=0.5  A=1  L=0.1 Pt=1 
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Figure 9: Temperature profiles for-Ec=1  Pe=2  V=0.5  A=1  L=0.1 Pt=1 
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Figure 10: Velocity profiles for- Re=5 Kr=0.5 Pt=1 L=0.1 A=1 V=0.5 
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Figure 11: Temperature profiles for- Re=5 Kr=0.5 Pt=1 L=0.1 A=1 V=0.5 
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3.3 Discussion 

From figure 8 we noted that: 

(i) When Reynolds number was increased from 5 to 10, we noted that from curve-ii, 

the free stream velocity of the fluid particles reduced from 2.50423866 m/s to 

0.937234433 m/s.  

This was because when Re was increased, inertia forces increased and these forces 

opposed the body from accelerating hence the reduced velocities.  

(ii) When the radius of curvature, Kr was increased from 0.5 to 1, we noted that from 

curve-iii, the free stream velocity of the fluid particles increased from 

2.50423866m/s to 3.904712m/s. 

 This was because increase in curvature increased the velocity gradient. When  the 

curvature of a particular body was increased the velocity gradient also increasesd 

and when the curvature was reduced the velocity gradient reduced. 

From figure 9, we noted that: 

(i) When Re was increased from 5 to 10, we noted that from curve-ii, the heat 

dissipated in the boundary layer reduced from 0.579673 K to 0.0559 K. 

This was because when this value of Re was small, it meant that the viscous forces 

dominated over the inertia forces, these large viscous forces resulted to increased 

friction between the surface of the body and fluid which brought about increased 

dissipation of heat within the boundary layer. When Re was large, viscous forces 
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were minimal and hence the friction between the surface and the fluid was minimal 

hence resulted to minimal dissipation of heat within the boundary layer. 

(ii) When Kr was increased from 0.5 to 1, we noted that from curve-iii, the heat 

dissipated in the boundary layer increased from 0.579673 K to 1.109492 K. 

This was because increasing the curvature resulted in increased velocity gradient, 

the increased velocity gradient led to increased shear stresses. These shear stresses 

brought about friction between the fluid and the surface and in turn this friction 

force led to dissipation of heat within the boundary layer region. This was deduced 

from the formula 

     
  

  
, which implied that, when the velocity gradient was increased, it led to 

increased shear stress which in turn increased dissipation of heat. 

From figure 10, we noted that: 

(i) When Ec was increased from 1 to 10, we noted that from curve-iii, the free stream 

velocity increased from 2.504238662 m/s to 2.504238663 m/s. 

This was because when Ec was large; it implied that the kinetic energy dominated 

the boundary layer enthalpy which meant that the particles or molecules of the fluid 

had high velocities. When the Ec number was small, it implied that the kinetic 

energy was small and hence the particles had low velocities, hence when Ec was 

increased, the velocity also increased. 

(ii) When Pe was increased from the 2 to 20, we noted that from curve-ii, the free 

stream velocity increased from 2.504200941 m/s to 2.504201 m/s. 
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This was because for large Pe, it meant that rate advection of the fluid dominated the 

flow rate of diffusion of the same quantity driven by an appropriate gradient, which 

implied that the fluid particles had large velocities. 

From figure 11, we noted that: 

(i) When Ec was increased from 1 to 10, we noted that from curve-ii, the heat 

dissipated increased from 0.576463 K to 5.757413 K. 

This was because for large Ec, it implied that the kinetic energy was large and hence 

the velocities were higher hence when this particles attained high velocities, the 

vibrations also increased and this led to increased collision of the particles. These 

increased collisions of particles brought about dissipation of heat in the boundary 

layer region. 

(ii) When Pe was increased from 2 to 20, we noted that from curve-iii, the heat 

dissipated in the boundary layer increased from 0.576463 K to 0.995561 K. 

This was because large Pe led to increased velocities these increased velocities of 

the fluid particles led to increased collision which in turn led to increased dissipation 

of heat. 

 

The final part of the discussion was the effect of the convective heat transfer on the 

drag and lift of the body. 
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The formula for the drag was given by       
  
 

 
  where A was the area of the body; 

CD was the coefficient of drag,   was the free stream velocity and   was the density of 

the fluid. 

The formula for the lift was given by       
  
 

 
 where A was the area of the body; 

CL was the coefficient of lift,    was the free stream velocity and   was the density of 

the fluid. 

Particular bodies have specific drag and lift coefficients. For symmetrical bodies the 

drag coefficient is 0.04 and the lift coefficient is 0.2. The convective heat transfer 

affected the fluid flowing around the body by varying the velocity of this fluid and 

hence affected the lift and drag. For this research problem analysis on how Reynolds 

number affected the lift and drag of a particular body was our main interest. As we 

have seen earlier the Reynolds number is the ratio between the inertia forces and the 

viscous forces. When the Re was small it implied that the viscous forces are dominated 

and hence temperature dissipation in the boundary layer was evident due to increased 

friction, hence increased drag. As for the lift small Re led to the dissipation in the 

boundary layer, this resulted in reduced density of the fluid hence reduced lift. When 

Re was increased the inertia forces dominated over the viscous forces hence this led to 

reduced velocity in the boundary layer as this forces tended to oppose the body from 

accelerating, this in turn led to decreased lift. These two analyses on the lift and drag 

occurred in microscopic increment and decrement. 
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CHAPTER FOUR 

4.0 INTRODUCTION 

In this chapter conclusions of the research carried out were outlined and thereafter 

recommendations for future research work were also made. 

4.1 CONCLUSION 

Analysis of convective heat transfer over an axi-symmetrical body with curved surfaces 

has been done and in this chapter, conclusions of the results obtained by varying 

various parameters that is Reynolds number, Eckert number, Peclet number and the 

curvature of the surface being investigated were given .The variations of these 

parameters affected the velocity and the temperature in the boundary layer which was 

our area of analysis. These variations in turn affected the drag and lift of the body. 

It was observed that when Reynolds number, Re was varied, this is the ratio of the 

inertia forces to the viscous forces say when Re was increased, the boundary layer 

thickness decreased and inertia force increased. When Re was decreased, the boundary 

layer thickness increased and inertia force decreased. This matched the theoretical 

explanation since for increased Re, the viscous forces reduce and the boundary layer 

thickness reduces and this in turn reduces the dissipation of heat within the boundary 

layer. Hence when Re was increased, the boundary layer thickness reduced and the 

temperature also reduced and when Re was reduced, the boundary layer thickness 

increased and the temperature also increased. Hence for a fluid flow over an axi-

symmetrical surface with curved surfaces Reynolds number, Re was inversely 

proportional to the boundary layer thickness and both the velocity and the temperature. 
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When curvature of the surface was varied, this led to change in the velocity and also the 

temperature. When the curvature of the surface was increased, this led to increased 

velocity and increased temperature. When the curvature of the surface was decreased, 

this led to decreased velocity and temperature. Hence for a fluid flowing over an axi-

symmetrical body with curved surfaces, the curvature was directly proportional to the 

temperature and the velocity. 

When Eckert number was varied this also led to variation in both the temperature and 

the velocity. When Eckert number was increased, this led to increased velocity and also 

increased temperature. When Eckert number was decreased, this led to decreased 

velocity and also decreased velocity. Hence for a fluid flow over an axi-symmetrical 

surface with curved surfaces, Eckert number was directly proportional to both the 

velocity and the temperature. 

When Peclet number, Pe was varied this also led to variation in both the temperature 

and the velocity. When Pe number was increased, this led to increased velocity and also 

increased temperature. When Pe number was decreased, this led to decreased velocity 

and also decreased temperature. Hence for a fluid flow over an axi-symmetrical surface 

with curved surfaces, Pe number is directly proportional to both the velocity and the 

temperature. 

Reynolds number Re, affects both lift and drag in that when Re was increased, it led to 

decreased drag and when Re was decreased, it led to increased drag hence inverse 

proportionality. When Re is increased, this leads to increased lift and when Re is 

decreased, it led to decreased lift hence direct proportionality. 
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4.2 RECOMMENDATIONS 

In this thesis results obtained for the analysis of the convective heat transfer of a fluid 

flow over an axi-symmetrical body with curved surfaces were meaningful to the 

analysis within the boundary layer; however there remains a lot to be done from this 

research in order to be able to move closer to the realisation of real life situation and 

results. In order to achieve this, based on this research the following recommendations 

will be helpful to assist in further deeper exploration of this topic area; 

1. Use of finite element method for solving the problem in order to get more 

accurate results. 

2. Compressible fluid flow over axi-symmetrical body with curved surfaces. 

3. For fluid flow of Reynolds number of order greater than 2000 over an axi-

symmetrical body with curved surfaces. 

4. Flow of an electrically conducting fluid over an axi- symmetrical body with 

curved surfaces in presence of a magnetic field. 

5. Turbulent flow of the same orientation. 
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Appendix I: COMPUTER CODE 

The following computer program code in Visual Basic was used to solve the equations 

governing the fluid flow subject to the initial and boundary conditions. The results were 

obtained by varying various flow parameters notably Reynolds number Re, Eckert 

number Ec and the surface curvature Kr. 

Private Sub Command1_Click() 

Dim U(0 To 43, 0 To 43) As Double, T(0 To 43, 0 To 43) As Double 

Dim ITMAX As Double, Re As Integer, Pt As Integer, Kr As Single, L As Single, Pe As Single, Ec As 

Single, A As Single 

Dim delY As Double, delT As Double, I As Integer, J As Integer, N As Integer 

Dim ITCOUNT As Integer 

Dim FILENUM As Byte 

N = 41:   M = 40 'Grid 

delY = 0.2: Re = 20: Pt = 1: Kr = 1: L = 0.1: A = 1: Ec = 1: Pe = 2: V = 0.5 

delT = 0.00125 

'********************************************************** 

ITMAX = 43 

FILENUM = FreeFile() 

Open "C:\Users\duncan\Desktop\MBICHI\researchprogram\profilesTU.txt" For Append As FILENUM 

Rem Initial condition 

For I = 0 To N 

For J = 0 To M 

For K = 0 To ITMAX 

U(0, J) = 0: T(0, J) = 0: 

Next 

Next 

Rem  Boundary conditions 

For I = 1 To N 

For J = 1 To ITMAX 

T(41, J) = 1: T(41, 0) = 0# 
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U(41, J) = 1: U(41, 0) = 0# 

Next 

Next 

'Solving for velocities 

For I = 1 To ITMAX - 1 

  For J = 1 To M - 1 

       'calculate u 

    U(I + 1, J) = (U(I, J) + delT * ((Pt * L) / (V * V)) * Pt + (delT / (2 * delY * delY * Re)) * (U(I + 1, J + 

1) + U(I + 1, J - 1) + U(I, J + 1) - 2 * U(I, J) + U(I, J - 1)) + delT * Kr * U(I, J) * U(I, J)) / (1 + dett / (Re 

* delY * delY)) 

         'calculate v 

'Solving for temperatures C 

 T(I + 1, J) = (T(I, J) + (delT / (2 * delY * delY * Pe)) * (T(I + 1, J + 1) + T(I + 1, J - 1) + T(I, J + 1) - 2 * 

T(I, J) + T(I, J - 1)) + (delT * Ec / (4 * delY * delY * Re)) * (U(I + 1, J + 1) - U(I + 1, J) + U(I, J + 1) - 
U(I, J)) ^ 2 + (delT * A * L * L) / (Pe) - (delT * delY * A * L * L * L * Kr * U(I, J)) / (2 * Pe * (U(I + 1, 

J + 1) - U(I + 1, J) + U(I, J + 1) - U(I, J)))) / (1 + delT / (Pe * delY * delY)) 

Next 

Next 

Print #FILENUM, I 

For J = 0 To M 

    Print #FILENUM, U(I, J); T(I, J) 

        'If I = N Then Print #FILENUM, vbCrLf; 

Next 

'************************unsteady values 

Close #FILENUM 

MsgBox "AM THROUGH SOLVING!!!" 

End Sub 

Private Sub Command2_Click() 

On Error GoTokan 

Kill "C:\Users\duncan\Desktop\MBICHI\researchprogram\profilesTU.xlsx" 

kan: 

Exit Sub 

End Sub 


