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ABSTRACT

The main aim of this research is to determine the ranks, subdegrees, and the

suborbital graphs of the symmetric group Sn acting on unordered r-element sub-

sets of X = {1, 2, 3, ..., n}. These areas have not received much attention, in fact

most of the research has been focused on the action of Sn on unordered pairs. In

1970, Higman proved that Sn, n ≥ 4 acts as a rank 3 group on X(2), with subde-

grees 1, 2(n − 2),





n− 2

2




. In this study, it is shown that Sn acts transitively

and primitively on X(r)(r-element subsets of X). The ranks and suborbits of Sn

acting on X(4) and X(5) are determined, after which it is proved that the rank of

Sn acting on X
(r) is r + 1 if n ≥ 2r. The suborbits of Sn acting on X(r) are all

self paired is shown. It is also proved that the subdegrees of Sn acting on X
(r) are

1, r





n− r

r − 1




 ,





r

2










n− r

r − 2




 ,





r

3










n− r

r − 3




 , ...,





r

r − 1










n− r

1




 ,





n− r

r




,

after which the subdegrees are arranged in an ascending order. The suborbital

graphs corresponding to the suborbits of Sn are then constructed and their prop-

erties analysed . It is shown that when Sn acts on X
(r), its suborbital graphs are

undirected and have girth three if n ≥ 3r.
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CHAPTER 1

INTRODUCTION

Some key and basic concepts of permutation groups and graph theory are

defined in this chapter. Some known results and a review of literature on what

has been done so far in our field of study are also given.

1.1 Basic Concepts and Preliminary Results

1.1.1 Permutation Groups

Let X = {1, 2, ..., n}. A permutation of X is a one-to-one mapping of X

onto itself. The symmetric group of degree n is the group of all permutations

of X under the binary operation of composition of maps. It is denoted by Sn and

is of order n!.

1.1.2 Group Actions

Two subgroupsH andK of a group G are said to be conjugate ifH = gKg−1

for some g ∈ G.

Let X be a nonempty set and G be a group. We say that G acts on the left

of X if for each x ∈ X and g ∈ G there corresponds a unique element gx ∈ X
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such that, for all x ∈ X and g1, g2 ∈ G

(a) (g1g2)x = g1(g2)x

(b) 1.x = x, where 1 is the identity in G.

The action of G from the right can be written in a similar way.

Let G act on X. Then X is partitioned into disjoint equivalence classes (with

respect to an equivalence relation) called orbits or transitivity classes of the

action. For each x ∈ X, the orbit containing x is denoted by OrbG(x). Thus,

OrbG(x) = {gx|g ∈ G}

The action of a group G on the set X is said to be transitive if for each pair

of points x, y ∈ X, there exists g ∈ G such that gx = y; in other words, if the

action has only one orbit.

A permutation group G acting on a set X is k-homogeneous if it is transitive

on unordered k-subsets of X. Let G act on a set X and let x ∈ X.

The stabilizer of x in G, denoted by StabG(x) or Gx is given by

StabG(x) = {g ∈ G|gx = x}

Suppose that G acts transitively on X. For each subset Y of X and each

g ∈ G, let gY = {gy|y ∈ Y } ⊆ X. A subset Y of X is said to be a block for

the action if, for each g ∈ G, either gY = Y or gY ∩ Y = ∅. In particular, ∅, X

and all 1-element subsets of X are obviously blocks. These are called the trivial

blocks. If these are the only blocks, then we say that G acts primitively on X.

Otherwise, G acts imprimitively.

2



Let G be transitive on X and let Gx be the stabilizer of a point x ∈ X.

Suppose Δ0 = {x},Δ1,Δ2, ...,Δr−1 are the orbits of Gx on X, the rank of G is

then r. The sizes ni = |Δi|, (i = 1, 2, ..., r − 1), are known as the subdegrees of

G. The orbits of Gx are also called the suborbits of G.

Theorem 1.1.1 (Orbit-Stabilizer Theorem-Rose, 1978, p.72)

Let G be a group acting on a finite set X and x ∈ X. Then

|OrbG(x)| = |G : StabG(x)| (1.1)

Let G act on a set X. The set of elements of X fixed by g ∈ G is called the fixed

point set of g denoted by Fix(g). Thus

Fix(g) = {x ∈ X|gx = x}

If a finite group G acts on a set X with n elements, each g ∈ G corresponds

to a permutation σ of X, which can be written uniquely as a product of disjoint

cycles. If σ has α1 cycles of length 1, α2 cycles of of length 2,..., αn cycles of

length n, we say that σ and hence g has cycle type (α1, α2, ..., αn).

Theorem 1.1.2 (Krishnamurthy, 1985, p.68)

Two permutations in Sn are conjugate if and only if they have the same cycle

type; and if g ∈ G has cycle type (α1, α2, ..., αn), then the number of permutations
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in Sn conjugate to g is

n!

Πni=1αi!i
αi

(1.2)

Theorem 1.1.3 (Harary, 1969, p.98)

Let G be a finite group acting on a set X. The number of orbits of G is

1

|G|

∑

g∈G

|Fix(g)| (1.3)

This Theorem is referred to as Cauchy-Frobenius Lemma.

Let Δ be an orbit of Gx on X. Define Δ
∗ = {gx|g ∈ G, x ∈ gΔ}, then Δ∗ is

also an orbit of Gx and is called the Gx-orbit paired with Δ. If Δ
∗ = Δ, then Δ

is called a self-paired orbit of Gx.

Theorem 1.1.4 (Cameron, 1975 p.422)

If G is primitive, with subdegrees 1 = n0, n1, ..., nr−1 (in increasing order), then

n1ni−1 ≥ ni for i = 1, ..., r − 1.

1.1.3 Linear Groups

The Galois field with q elements, GF (q) is a finite field where q is a power

of a prime p.

Given a field K, the general linear group GL(n,K) is the group of n × n

invertible matrices with elements in K.

The projective general linear group PGL(n,K) is the group obtained

4



from the general linear group GL(n,K) on factoring by the scalar matrices con-

tained in that group.

Given a field K, the special linear group SL(n,K) is the group of n × n

matrices with elements in K and determinant 1.

The projective special linear group PSL(n,K) is the group obtained from

the special linear group SL(n,K) on factoring by the scalar matrices contained

in that group.

A group of Lie type G(K) is a (not necessarily finite) group of rational

points of a reductive linear algebraic group G with values in the field K.

The Steinberg group of a ring A is the universal central extension of the

commutator subgroup of the stable general linear group.

A subgroup B of a groupG is calledBorel if it is a maximal solvable connected

algebraic subgroup of G.

A subgroup P of a group G is called a parabolic subgroup if it properly

contains a Borel subgroup B of G.

1.1.4 Basic Concepts in Graph Theory

A (simple) graph is an ordered pair H = (V,E), where V is a finite, non-

empty set of objects called vertices, and E is a (possibly empty) set of 2-subsets

of V called edges. The set V is called the vertex set of H, and E is called the

edge set of G. If e = {u, v} ∈ E(H), we say that vertices u and v are adjacent

in H, and that e joins or connects u and v. The edge e is said to be incident

with u (and v), and vice versa. The following important facts arise from carefully
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considering what the definition of graph says.

• E is a set. Therefore two vertices are either adjacent, or not adjacent,

period. There can be at most one edge joining any two vertices.

• The elements of E are subsets of V of size 2. Therefore no vertex can be

adjacent to itself. Edges join pairs of distinct vertices.

There is no requirement that the edge set be non-empty. Therefore the minimum

number of edges a graph can have is zero. If the graph has n vertices, then the

maximum number of edges it can have equals the number of two element subsets

of V , which is






n

2





. A graph with n vertices has






n

2





 edges if every pair

of distinct vertices is an edge. Such a graph is called a complete graph on n

vertices. We represent graphs by pictures in the plane by associating a point with

each vertex and joining points corresponding to adjacent vertices by a (possibly

curved) line segment. How the vertices and edges are drawn is unimportant, the

same graph can have many pictures. What is important is what the vertices are

(i.e., V ), and which pairs of vertices are adjacent (i.e., E).

Two graphs are equal if they have the same vertex set and the same edge

set. But there are other ways in which two graphs could be regarded the same.

For example, one could regard two graphs as being the same if it is possible to

rename the vertices of one and obtain the other. If this happens we call the

graphs isomorphic. (Formally, two graphs J and H are isomorphic if there is a

1-1 correspondence f : V (J)→ V (H) such that {x, y} ∈ E(J)⇔ {f(x), f(y)} ∈

E(H).) The relation R on the set of all graphs defined by JRH if and only if J

6



and H are isomorphic (i.e., the vertices of J can be renamed so as to obtain H)

is an equivalence relation, and the equivalence classes are collections of graphs

which are the same in this sense.

The degree of a vertex x of a simple graph H is the number of edges that

contain x. We use deg(x) to denote the degree of the vertex x. IfH is a graph with

n vertices, then for any vertex x, 0 ≤ deg(x) ≤ n−1. For any graph H, the sum of

the degrees of the vertices equals twice the number of edges (i.e.,
∑
x∈V deg(x) =

2|E|). Notice that this says the sum of the vertex degrees is an even number. The

minimum degree of H denoted by δ(H), is the smallest number of edges incident

with a point of H while the maximum degree of H, denoted by Δ(H), is the

largest such number. If δ(H) = Δ(H) = r, G is called regular of degree r.

A walk in a simple graph H is a sequence v0v1...vk of vertices such that

consecutive vertices in the sequence are adjacent (i.e., (vi−1, vi) ∈ E for i =

1, 2, ..., k). The integer k is called the length of the walk. Thinking of the

picture of the graph, it is the number of edges that would be traversed of you

started at v0 and travelled to v1 along {v0, v1}, then to v2 along {v1, v2} and so on

until vn is reached. Observe that a walk is any sequence of consecutive adjacent

vertices. It may or may not end where it starts, and may contain the same vertex

many times. Also notice that the sequence consisting of a single vertex is a walk

(of length zero).

A path in a simple graph H is a walk in H that contains no repeated vertices.

Notice that every path is a walk, but the converse is false. Also, since every path

is a walk, it has a length (as before).
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A graph H is called connected if for all pairs of vertices u and v there is a

walk that starts at u and ends at vertex v; otherwise H is disconnected. A walk

in a graph H is called closed if its first and last vertex are the same. Since a

closed walk is a walk, it has a length as above. Also, notice that a closed walk

may or may not contain repeated vertices other than the first and last (which are

the same). A closed walk of length at least three in which all vertices are distinct

except the first and last is called a cycle. The length of the shortest cycle (if

any) in H is called the girth of H. Every cycle is a closed walk, but not every

closed walk is a cycle.

A tree is a connected graph that contains no cycles.

A leaf of a tree is a vertex of degree one.

1.1.5 Suborbital Graphs

Suppose G acts on X, then G acts on X × X by g(x, y) = (gx, gy), g ∈

G, x, y ∈ X. If O ⊆ X × X is a G-orbit, then for a fixed x ∈ X, Δ =

{y ∈ X|(x, y) ∈ O} is a Gx-orbit. Conversely, if Δ ⊆ X is a Gx-orbit, then

O = {(gx, gy)|g ∈ G, y ∈ Δ} is a G-orbit on X × X. We say Δ corresponds to

O. The G-orbits on X ×X are called suborbitals.

Let Oi ⊆ X × X, (i = 0, 1, 2, ..., r − 1) be a suborbital. Then we form a

graph Γi, by taking X as the points of Γi and including a directed line from x

to y (x, y ∈ X) if and only if (x, y) ∈ Oi. Thus each suborbital Oi determines

a suborbital graph Γi. Now O
∗
i = {(x, y)|(y, x) ∈ Oi} is also a G-orbit. Let Γ

∗
i

be the suborbital graph corresponding to the suborbital O∗i and let the suborbit

8



Δi (i = 0, 1, ..., r − 1) correspond to the suborbital Oi. Then Γi is undirected if

Δi is self-paired and Γi is directed if Δi is not self-paired.

Theorem 1.1.5 (Sims, 1967)

Let G be transitive on X. Then G is primitive if and only if each suborbital

graph Γi, i = 1, 2, ..., r is connected.

1.2 Literature Review

In relation to ranks, subdegrees, and suborbital graphs of the symmetric

group Sn acting on X
(r), not much research has been done. The following is a

summary of the research done, which is closely related to these areas so far.

In 1964, Wielandt wrote a little monograph on finite permutation groups and

graphs. In this monograph a condition for imprimitivity of a group is given in

terms of its subdegrees.

Higman (1964) introduced the rank of a group while working on finite per-

mutation groups of rank 3. In 1970, Higman gave a characterization of families

of rank 3 permutation groups by the subdegrees. He proved that the symmetric

group Sn on X = {1, 2, ..., n}, n ≥ 4 acts as a rank 3 group on the set of






n

2







2-element subsets of X, with subdegrees 1, 2(n− 2),






n− 2

2





.

The idea of suborbital graphs of a permutation group G acting on a set X

was introduced by Sims (1967).
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Cameron (1972) worked on suborbits of multiply transitive permutation groups.

In this paper, it was proved that if G is a primitive permutation group on X which

is not 2-transitive, and if the stabilizer Ga of a point a is 2-transitive on an orbit

F (a) with |F (a)| = v > 2; then Ga has an orbit A(a) with |A(a)| = w, where

w > v and w|v(v − 1) using combinatorial techniques. In 1975, Cameron stud-

ied suborbits in transitive permutation groups. In this paper, the combinatorial

relations among suborbits and algebraic relations among suborbits is given.

In 1983, Cameron dealt with the orbits of permutation groups on unordered

sets. Construction and characterisation of a 3-homogeneous but not 2-primitive

permutation group H of countable degree was done in this paper, and it was

shown that it has a transitive extension J which is 5-homogeneous but not 3-

primitive.

Ivanov et al. (1983) gave a method of computing the subdegrees of transitive

permutation groups using the table of marks. They gave the sporadic simple

group J1 as an example.

Tchuda (1986) computed the ranks and subdegrees of primitive permutation

representations of PSL(2, q). His results were summarized in a paper by Faradz̃ev

and Ivanov, which among others include for q = 27, the subdegrees are 1, ((27 −

1)7)9 and 2(27 − 1) for the subgroup S2(q−1). In the same paper, Faradz̃ev and

Ivanov showed that if G = PSL(2, q) acts on the cosets of its maximal subgroup

H, then the rank is at least |G||H|2 and if q > 100, the rank is greater than 5.

Kamuti (1992) devised a method for constructing some of the suborbital

10



graphs of PSL(2, q) and PGL(2, q) acting on the cosets of their maximal di-

hedral subgroups of orders q − 1 and 2(q − 1) respectively. This method gave an

alternative way of constructing the Coxeter graph which was first constructed by

Coxeter in 1986.

In 2006, Kamuti computed the ranks and subdegrees of primitive permutation

representations of PGL(2, q). It was shown in this paper that when PGL(2, q)

acts on the cosets of its maximal dihedral subgroup of order 2(q−1) then its rank

is 1
2
(q + 3) if q is odd and 1

2
(q + 2) if q is even.

Korableva (2000) determined the degrees, ranks, subdegrees, and double stabi-

lizers of the permutation representations of 2E6(q
2) on the cosets of the parabolic

maximal subgroups of nonminimal index. The results obtained for the represen-

tatives P2 were; the degree

n =
(q12 − 1)(q2 + 1)(q5 + 1)(q4 + 1))

(q + 1)

and the subdegree n1 = q(q
2 + 1)(q − 1).

The ranks of the permutation representations of the simple groups Bl(q), Cl(q),

and Dl(q) on the cosets of the parabolic maximal subgroups was determined by

Korableva in 2008 . He found out that the ranks rk(Dl) for 1 ≤ k ≤ l of the

permutation representations of the groups Dl(q) for l ≥ 3 with respect to the

11



parabolic maximal subgroups can be computed by recursion:

rk(Dl) = rk(Dl−1) + k + 1 for 3 ≤ k ≤ [l/2] + 1,

rk(Dl) = rk(Dl−1) + l − k + 2 for [l/2] + 1 < k < l,

r1(Dl) = r2(Dl) = [l/2] + 1, rl(Dl) = 3.

Akbas (2001) investigated the suborbital graphs for the modular group. He

proved the conjecture by Jones, Singerman and Wicks (1991) that a suborbital

graph for the modular group is a forest if and only if it contains no triangles.

In 2010, Besenk et al. investigated the conditions for a normalizer to be a for-

est. He showed that if N has the prime power decomposition as 2α. 3β . pγ33 ...p
γr
r ,

then the suborbital graphs of the normalizer would be a forest if β ≥ 4.

Guler et al. (2008) worked on the suborbital graphs of the congruence sub-

group Γ0(N). They showed that the action of Γ0(N) on Q̂ is not transitive and

(Γ0(p), Q̂) is an imprimitive permutation group.

In 1996, Akbas and Baskan worked on the suborbital graphs for the normal-

izer of Γ0(N). They showed that if Eu,n = Ev,n = {1} and if uv ≡ −1 mod n,

then the suborbital graph Δu,n is paired with Δv,n. They also showed that Δu,n

is self-paired if and only if there exists e|N such that N |ne and u2e = −1 mod n.

Keskin and Demirturk (2009) worked on the suborbital graphs for the normal-

izer of Γ0(N). They showed that if m is a square free positive integer and n > 1

with (u, n) = 1 and if the graph G(∞, u/n) for N(Γ0(m)) contains a triangle,

then for any prime divisor p of n greater than 3, we have p ≡ 1(mod3). They also
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showed that if G(∞, u/n) contains a rectangle, then n is an odd natural number

and n ≡ 1(mod4), and if G(∞, u/n) contains a hexagon, then for any odd prime

divisor p of n we have p ≡ 1(mod3).

1.3 Statement of the Problem

Calculation of the ranks and subdegrees, and constructing suborbital graphs of

Sn acting on r-element subsets from X. The problem of ranks and subdegrees of

Sn was solved by Higman for 2-element subsets. In this research we extend this

work by considering r-element subsets of X for r ≥ 3.

1.4 Research Objectives

The general objective of this study is to determine the ranks and subdegrees of

Sn acting on X
(r) and to construct the suborbital graphs of Sn corresponding to

the action.

The specific objectives are:

1. To determine the ranks of Sn acting on X
(r).

2. To determine the suborbits of Sn acting on X
(r).

3. To investigate the properties of the suborbits of Sn.

4. To determine the subdegrees of Sn acting on X
(r).

5. To arrange the subdegrees of Sn in increasing order of magnitude.

6. To construct the suborbital graphs of Sn acting on X
(r).
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7. To investigate the properties of the suborbital graphs of Sn.
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CHAPTER 2

RANKS AND SUBORBITS OF Sn ACTING ON X
(r)

2.1 Introduction

The degree, rank, subdegrees, and structure of the point stabilizer provide suffi-

ciently thorough information on a permutation representation. An attempt has

been made to calculate the ranks and subdegrees of all primitive permutation

representations of PSL(2, q) and PGL(2, q). Also, the rank of the symmetric

group Sn acting on unordered 2-element subsets of X = {1, 2, 3, ..., n} has been

calculated and found to be 3 if n ≥ 3. This chapter will be devoted to calculating

the ranks of the symmetric group Sn acting on unordered r-element subsets of X

(i.e X(r) ) and analysing the properties of this action.

2.2 Order of StabG{1, 2, 3, ..., r}

Let G = Sn and StabG{1, 2, 3, ..., r} be the stabilizer of {1, 2, ..., r}, then the

following result follows.
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Theorem 2.2.1

|StabG{1, 2, 3, ..., r}| = (n− r)!r! (2.1)

Proof

Clearly, the stabilizer of unordered r-element subset {1, 2, 3, ..., r} is isomorphic

to Sr × Sn−r whose order is r!(n− r)!. Thus

|StabG{1, 2, 3, ..., r}| = (n− r)!r! �

Some results which will be used extensively in this chapter are given next.

Lemma 2.2.2

Let g ∈ Sn be a permutation with cycle type (α1, α2, ..., αn). Then the number of

permutations in Sn fixing {1, 2, 3} ∈ X(3) and having the same cycle type as g is

given by

(n− 3)!
(α1 − 3)!1(α1−3)Πni=2αi!iαi

+
3(n− 3)!

(α1 − 1)!1(α1−1)(α2 − 1)!2α2−1Πni=3αi!iαi
+

2(n− 3)!
α1!1α1α2!2α2(α3 − 1)!3α3−1Πni=4αi!iαi

(2.2)

Proof

Consider a permutation g ∈ Sn that fixes {1, 2, 3} ∈ X(3). Then g fixes S =

{1, 2, 3} if either each member of S comes from a 1-cycle of g or if one element
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of S comes from a 1-cycle and the other two elements come from a 2-cycle in g

or if all the three elements of S come from a 3-cycle of g. We consider the three

cases as follows:

(a) When each of the members of S comes from a 1-cycle, we apply The-

orem 1.1.2 to a permutation of Sn−3 with cycle type

(α1 − 3, α2, α3, ..., αn) to get

(n− 3)!
(α1 − 3)!1(α1−3)Πni=2αi!iαi

permutations.

(b) If one of members of S comes from a 1-cycle, and the other two from a

2-cycle, the number of elements coming from the 1-cycle can be chosen

in three ways. We apply Theorem 1.1.2 to a permutation of Sn−3 with

cycle type (α1−1, α2−1, α3, ..., αn) and considering the three possible

ways to get

3(n− 3)!
(α1 − 1)!1(α1−1)(α2 − 1)!2α2−1Πni=3αi!iαi

permutations.

(c) Finally, if all the elements of S come from a 3-cycle, there are two

different permutations from a cycle of length three. Applying Theorem

1.1.2 to a permutation of Sn−3 with cycle type (α1, α2, α3 − 1, ..., αn)
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and considering the two cases, we get

2(n− 3)!
α1!1α1α2!2α2(α3 − 1)!3α3−1Πni=4αi!iαi

permutations. Summing up all the three cases (a), (b), and (c) gives

the required result. �

Lemma 2.2.3

Let g ∈ Sn be a permutation with a cycle type (α1, α2, ..., αn) Then the number

of permutations in Sn fixing {1, 2, 3, 4} ∈ X(4) and having the same cycle type as

g is given by

(n− 4)!
(α1 − 4)!Πni=2αi!iαi

+
6(n− 4)!

(α1 − 2)!(α2 − 1)!2α2−1Πni=3α1!iαi
+

8(n− 4)!
(α1 − 1)!α2!2α2(α3 − 1)!3α3−1Πni=4αi!iαi

+
3(n− 4)!

α1!(α2 − 2)!2α2−2Πni=3αi!iαi
+

6(n− 4)!
α1!α2!2α2α3!3α3(α4 − 1)!4α4−1Πni=5αi!iαi

(2.3)

Proof

The idea of proof of this Lemma is given. We consider the five cases in which g

fixes S = {a, b, c, d}. The first case is when all of the four elements of S come

from 1-cycles. Second case is when two of the members of S come from 1-cycles

while the other two come from a 2-cycle. Case number three is when one of

the members come from a 1-cycle while the other three come from a 3-cycle.
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Case number four is when the members of S come from two 2-cycles. Lastly we

consider the case where all the members come from a 4-cycle. The proof can be

completed by proceeding as in Lemma 2.2.2. �

Lemma 2.2.4

Let g ∈ Sn be a permutation with cycle type (α1, α2, ..., αn). Then the number

of permutations in Sn fixing {1, 2, 3, 4, 5}∈ X(5) and having the same cycle type

as g is given by

(n− 5)!
(α1 − 5)!1(α1−5)Πni=2αi!iαi

+
10(n− 5)!

(α1 − 3)!1(α1−3)(α2 − 1)!2(α2−1)Πni=3αi!iαi

+
20(n− 5)!

(α1 − 2)!1α1−2α2!2α2(α3 − 1)!3(α3−1)Πni=4αi!iαi
+

15(n− 5)!
(α1 − 1)!1(α1−1)(α2 − 2)!2(α2−2)Πni=3αi!iαi

+

30(n− 5)!
(α1 − 1)!1(α1−1)(α4 − 1)!4(α4−1)Π3i=2αiiαiΠ

n
i=5αi!i

αi
+

20(n− 5)!
α1!1α1(α2 − 1)!2(α2−1)(α3 − 1)!3(α3−1)Π5i=4αi!iαi

+
24(n− 5)!

(α5 − 1)!5(α5−1)Π4i=1αi!iαiΠ
n
i=6αi!i

αi
(2.4)

The proof for this Lemma is similar to that of Lemma 2.2.2 and Lemma 2.2.3.

Remark 2.2.5

Any of the summands in Lemmas 2.2.2, 2.2.3, and 2.2 yields a zero whenever

(αi − j) < 0. This is because (αi − j)! does not exist when (αi − j) < 0,
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consequently

1

(αi − j)!
= 0

The following result is deduced from Lemmas 2.2.2, 2.2.3, and 2.2.

Proposition 2.2.6

Let g ∈ Sn be a permutation with cycle type (α1, α2, ..., αn). Then the number

of permutations in Sn fixing {1, 2, 3,...,r}∈ X(r) and having the same cycle type

as g is given by

(n−r)!
(α1−r)!1α1−rΠni=2αi!i

αi
+

α1C1(n−r)!(r−2)!
(α1−1)!1α1−1(αr−1−1)!(r−1)

αr−1−1Πr−2i=2 αi!i
αiΠni=rαi!i

αi
+

α1C2(2−1)!(n−r)!(r−3)!

(α1−2)!1α1−2(αr−2−1)!(r−2)
αr−2−1Πr−3i=2 αi!i

αiΠni=r−1αi!i
αi
+

α1C3(3−1)!(n−r)!(r−4)!
(α1−3)!1α1−3(αr−3−1)!(r−3)

αr−3−1Πr−4i=2 αi!i
αiΠni=r−2αi!i

αi
+...+

α1Ck(k−1)!(n−r)!(r−k−1)!
(α1−k)!1α1−k(αr−k−1)!(r−k)

αr−k−1Πr−k−1i=2 αi!iαiΠni=r−k+1αi!i
αi
+

(2−1)!α2C2(n−r)!(r−3)!
α1!1α1 (α2−1)!(2)α2−1(αr−2−1)!(r−2)

αr−2−1Πr−3i=3 αi!i
αiΠni=r−1αi!i

αi
+...+

α2Ck(2k−1)!(n−r)!(r−2k−1)!
α1!iα1 (α2−k)!2α2−k(αr−2k−1)!(r−2k)

αr−2k−1Πr−2k−1i=3 αi!iαiΠni=r−2k+1αii
αi
+

...+ αkCq(pq−1)!(n−r)!(r−pq−1)!

(αk−q)!kαk−q(αr−pq−1)!(r−pq)
αr−pq−1Πk−1i=3 αii

αiΠr−pq−1i=k+1 αi!i
αiΠni=r−pq+1αi!i

αi

...+...+ (n−r)!(r−1)!
(αr−1)!rαr−1Π

r−1
i=1 αi!i

αiΠni=r+1αi!i
αi

Some examples on the order of StabG{1, 2, 3, ..., r} are now given.
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Example 2.2.7

Consider G = S8 acting on X
(3). Then

|StabG{1, 2, 3}| = 5!3!

= 720

Alternatively, the problem may solved by using Lemma 2.2.2 and coming up with

Table 2.1. The second and fourth columns give the number of permutations in

S8 fixing {1, 2, 3} and having the same cycle type, which are obtained by using

expression 2.2.

Permutation type No. fixing {1,2,3} Permutation type No. fixing {1,2,3}
I 1 (a b)(c d)(e f)(g h) 0
(a b) 13 (a b)(c d) 45
(a b c) 22 (a b)(c d e) 100
(a b c d) 30 (a b)(c d)(e f) 45
(a b c d e) 24 (a b)(c d)(e f g) 90
(a b c d e f) 0 (a b c d)(e f g h) 0

(a b)(c d)(e f g h) 0 (a b c)(d e f) 40
(a b c d e f g) 0 (a b c)(d e f g) 60
(a b c d e f g h) 0 (a b)(c d e f) 90
(a b)(c d e f g h) 0 (a b c)(d e f g h) 48
(a b)(c d e f g) 72 (a b c)(d e f)(g h) 40

Total 720

Table 2.1: Number of permutations fixing {1,2,3}

From Table 2.1, the order of StabG{1, 2, 3} is 720.

Example 2.2.8

Let G = S9 acting on X
(4). Then

|StabG{1, 2, 3, 4}| = 5!4!

= 2880 (2.5)
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Table 2.2 may also be used to find |StabG{1, 2, 3, 4}| where the second and

fourth columns are obtained by using Lemma 2.2.3

Permutation type No. fixing {1,2,3,4} Permutation type No. fixing {1,2,3,4}
I 1 (a b) 16

(a b c) 28 (a b c e) 36
(a b c d e) 24 (a b c d e f) 0
(a b c d e f g) 0 (a b c d e f g h) 0
(a b c d e f g h i) 0 (a b)(c d e f g h i) 0
(a b)(c d e f g h) 0 (a b)(c d e f g) 144
(a b)(c d e f) 240 (a b)(c d e) 220
(a b)(c d) 78 (a b)(c d)(e f)(g h) 120
(a b)(c d)(e f) 45 (a b)(c d e)(f g h) 60

(a b)(c d)(e f g h i) 300 (a b)(c d)(e f g h) 180
(a b)(c d)(e f g) 72 (a b)(c d e)(f g h i) 0
(a b)(c d)(e f)(g h i) 160 (a b c)(d e f)(g h i) 360
(a b c)(d e f) 192 (a b c)(d e f g) 0
(a b c)(d e f g h) 180 (a b c)(d e f g h i) 144
(a b c d)(e f g h) 120 (a b c d)(e f g h i) 160

Total 2880

Table 2.2: Number of permutations fixing {1,2,3,4}

The total sum entries in the second and fourth columns of Table 2.2 gives the

order of StabG{1, 2, 3, 4} as equal to 2880.

2.3 Transitivity of Sn

We next show that Sn acts transitively on X
(r).

Theorem 2.3.1

Sn acts transitively on X(r)

Proof

It suffices to show that

|OrbG{1, 2, 3, ..., r}| = |X
(r)| = nCr
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By using Orbit-Stabilizer Theorem (Theorem 1.1.1) and Theorem 2.2.1,

|OrbG{1, 2, 3, ..., r}| = |G : StabG{1, 2, 3, ..., r}|

=
|G|

|StabG{1, 2, 3, ..., r}|

=
n!

(n− r)!r!

= nCr � (2.6)

2.4 Number of Fixed Points

Derivation of some formulas for finding the number of fixed elements of X(r) by

a permutation g ∈ Sn is done in this section. The formulas are given in the

following results.

Lemma 2.4.1

Let the cycle type of g ∈ Sn be (α1, α2, ..., αn). Then |Fix(g)| in X(3) is given by

the formula

|Fix(g)| =





α1

3




+ α1α2 + α3 (2.7)

Proof

Let g ∈ Sn have cycle type (α1, α2, ..., αn) and let S ∈ X(3). S is fixed by g if

each member of S comes from a 1-cycle in g or one of members of S comes from

a 1-cycle in g and the other two from a 2-cycle in g or if all members of S come

from a 3-cycle in g. From the first case, the number of unordered triples fixed by

g is





α1

3




 , while in the second case the number of unordered triples fixed by g

is α1α2 and in the third case the number of unordered triples fixed by g is α3.

Adding up the results from the three cases gives the required result. �
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Lemma 2.4.2

Let the cycle type of g ∈ Sn be (α1, α2, ..., αn). Then |Fix(g)| in X(4) is given by

the formula

|Fix(g)| =





α1

4




+ α2





α1

2




+ α1α3 +





α2

2




+ α4 (2.8)

Proof

Let g ∈ Sn be a permutation with cycle type (α1, α2, ..., αn) and let S ∈ X(4).

S is fixed by g if each member of S comes from a 1-cycle in g; if two members

of S come from a 1-cycle in g and the other two members from a 2-cycle; if one

element of S comes from a 1-cycle in g and the other three from a 3-cycle; if four

elements of S come from two 2-cycles in g; if all the elements of S come from a

4-cycle in g. From each of the cases, the number of unordered quadruples fixed

by g is





α1

4




, α2





α1

2




, α1α3,





α2

2




, and α4 respectively. �

Lemma 2.4.3

Let the cycle type of g ∈ Sn be (α1, α2, ..., αn). Then |Fix(g)| in X(5) is given by

the formula

|Fix(g)| =





α1

5




+ α2





α1

3




+ α3





α1

2




+ α1α4 + α1





α2

2




+ α2α3 + α5 (2.9)

The proof of this Lemma is similar to that of Lemma 2.4.1 and 2.4.2.

The following result is deduced from Lemmas 2.4.1, 2.4.2, and 2.4.3.

24



Proposition 2.4.4

Let the cycle type of g ∈ Sn be (α1, α2, ..., αn). Then |Fix(g)| in X(r) is given

by

|Fix(g)| =
∑

(i)

∏

k





αk

ik




 , (2.10)

where the sum is over all partitions (i) = (i1, i2, ..., ir) of r.

2.5 Ranks and Suborbits of Sn

The results on the ranks of Sn acting on X
(r) are proved in this section.

Lemma 2.5.1

Let G = S8 acting on X
(4). The number of orbits of G{1,2,3,4} acting on X

(4) is 5

Proof

Lemma 2.2.3 and Lemma 2.4.2 are applied to get the values in columns two and

three in Table 2.3 respectively.
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Permutations in G{1,2,3,4} Number of permutations |Fix(g)|in X(4)

(1)(2)(3)(4)(5)(6)(7)(8) 1 70
(1)(2)(3)(4)(5)(6)(7 8) 12 30
(1)(2)(3)(4)(5 6)(7 8) 42 14
(1)(2)(3)(4)(5)(6 7 8) 16 10
(1)(2)(3)(4)(5 6 7 8) 12 2
(1)(2)(3 4)(5 6)(7 8) 36 6
(1)(2)(3 4)(5)(6 7 8) 96 6
(1)(2)(3 4)(5 6 7 8) 72 2
(1 2)(3 4)(5 6)(7 8) 9 6
(1 2)(3 4)(5)(6 7 8) 48 2
(1 2)(3 4)(5 6 7 8) 36 2
(1)(2 3 4)(5)(6 7 8) 64 4
(1)(2 3 4)(5 6 7 8) 96 2
(1 2 3 4)(5 6 7 8) 36 2

Total 576

Table 2.3: Permutations in G{1,2,3,4} and the number of fixed points

Applying Cauchy-Frobenius Lemma (Theorem 1.1.3), we get

Number of orbits of G{1,2,3,4} acting on X
(4) is given by:

1

|G{1,2,3,4}|

∑

g∈G{1,2,3,4}

|Fix(g)| =
1

576
[1× 70 + 12× 30 + 42× 14 + 16× 10 +

12× 2 + 36× 6 + 96× 6 + 72× 2 + 9× 6 +

48× 2 + 36× 2 + 64× 4 + 96× 2 + 36× 2]

=
1

576
[70 + 360 + 588 + 160 + 24 + 216 + 576

+144 + 54 + 96 + 72 + 256 + 192 + 72]

=
2880

576

= 5 � (2.11)

The five orbits of G{1,2,3,4} are:

(a) G{1,2,3,4}{1, 2, 3, 4} = Δ0, the trivial orbit,

(b) G{1,2,3,4}{1,5,6,7}={{1,5,6,7}, {1,5,6,8}, {1,5,7,8}, {1,6,7,8},
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{2,5,6,7}, {2,5,6,8}, {2,5,7,8}, {2,6,7,8}, {3,5,6,7}, {3,5,6,8},

{3,5,7,8}, {3,6,7,8}, {4,5,6,7}, {4,5,6,8}, {4,5,7,8}, {4,6,7,8}}=Δ1, the

orbit containing exactly one of 1, 2, 3, 4.

(c) G{1,2,3,4}{1,2,5,6}={{1,2,5,6}, {1,2,5,7}, {1,2,5,8}, {1,2,6,7},

{1,2,6,8}, {1,2,7,8}, {1,3,5,6}, {1,3,5,7}, {1,3,5,8}, {1,3,6,7},

{1,3,6,8}, {1,3,7,8}, {1,4,5,6}, {1,4,5,7}, {1,4,5,8}, {1,4,6,7},

{1,4,6,8}, {1,4,7,8}, {2,3,5,6}, {2,3,5,7}, {2,3,5,8}, {2,3,6,7},

{2,3,6,8}, {2,3,7,8}, {2,4,5,6}, {2,4,5,7}, {2,4,5,8}, {2,4,6,7},

{2,4,6,8}, {2,4,7,8}, {3,4,5,6}, {3,4,5,7}, {3,4,5,8}, {3,4,6,7},

{3,4,6,8}, {3,4,7,8}}=Δ2, the orbit containing exactly two of 1, 2, 3,

4.

(d) G{1,2,3,4}{1, 2, 3, 5} = {{1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 3, 7}, {1, 2, 3, 8},

{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 4, 7}, {1, 2, 4, 8}, {2, 3, 4, 5}, {2, 3, 4, 6},

{2, 3, 4, 7}, {2, 3, 4, 8}, {1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 4, 7}, {1, 3, 4, 8}} = Δ3,

the orbit containing exactly three of 1, 2, 3, 4.

(e) G{1,2,3,4}{1, 2, 3, 4} = {5, 6, 7, 8} = Δ4, the orbit containing none of 1,

2, 3, 4.

Lemma 2.5.2

Let G = S10 acting on X
(5). The number of orbits of G{1,2,3,4,5} acting on X

(5) is 6.
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Proof

Lemma 2.2 and Lemma 2.4.3 are applied to get the values in columns two and

three in Table 2.4 respectively.

Permutations in G{1,2,3,4,5} Number of permutations |Fix(g)|in X(5)

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10) 1 252
(1)(2)(3)(4)(5)(6)(7)(8)(9 10) 20 112
(1)(2)(3)(4)(5)(6)(7 8)(9 10) 130 52
(1)(2)(3)(4)(5)(6)(7)(8 9 10) 40 42
(1)(2)(3)(4)(5)(6)(7 8 9 10) 60 12
(1)(2)(3)(4)(5)(6 7)(8 9 10) 440 22
(1)(2)(3)(4)(5)(6 7 8 9 10) 48 2
(1)(2)(3)(4 5)(6)(7 8)(9 10) 300 24
(1)(2)(3)(4 5)(6)(7 8 9 10) 600 8
(1)(2)(3)(4 5)(6 7)(8 9 10) 1000 10
(1)(2)(3)(4 5)(6 7 8 9 10) 480 2
(1)(2 3)(4 5)(6)(7 8)(9 10) 225 12
(1)(2 3)(4 5)(6)(7 8 9 10) 900 4
(1)(2 3)(4 5)(6 7)(8 9 10) 600 6
(1)(2 3)(4 5)(6 7 8 9 10) 720 2
(1)(2)(3 4 5)(6)(7)(8 9 10) 400 12
(1)(2)(3 4 5)(6)(7 8 9 10) 1200 6
(1)(2)(3 4 5)(6 7)(8 9 10) 800 4
(1)(2)(3 4 5)(6 7 8 9 10) 960 2
(1)(2 3 4 5)(6)(7 8 9 10) 900 4
(1)(2 3 4 5)(6 7)(8 9 10) 1200 2
(1)(2 3 4 5)(6 7 8 9 10) 1440 2
(1 2)(3 4 5)(6 7)(8 9 10) 400 4
(1 2)(3 4 5)(6 7 8 9 10) 960 2
(1 2 3 4 5)(6 7 8 9 10) 576 2

Total 14400

Table 2.4: Permutations in G{1,2,3,4,5} and the number of fixed points
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Applying Theorem 1.1.3, the number of orbits of G{1,2,3,4,5} acting on X
(5) is given

by:

1

|G{1,2,3,4,5}|

∑

g∈G{1,2,3,4,5}

|Fix(g)| =
1

14400
[1× 252 + 20× 112 + 130× 52 + 40× 42

+60× 12 + 440× 22 + 48× 2 + 300× 24 +

600× 8 + 1000× 10 + 480× 2 + 900× 4

+225× 12 + 600× 6 + 720× 2 + 400× 12 +

1200× 6 + 800× 4 + 960× 2 + 900× 4 +

1200× 2 + 1440× 2 + 400× 4 + 960× 2 + 576× 2]

=
1

14400
[252 + 2240 + 6760 + 1680 + 720 + 9680 + 96

+7200 + 4800 + 10000 + 960 + 3600 + 2700 + 3600

+1440 + 4800 + 7200 + 3200 + 1920 + 3600 + 2400

+2880 + 1600 + 1920 + 1152]

=
86400

14400

= 6 � (2.12)

The six orbits of G{1,2,3,4,5} are:

(a) G{1,2,3,4,5}{1, 2, 3, 4, 5} = Δ0, the trivial orbit,

(b) G{1,2,3,4,5}{1, 6, 7, 8, 9} = {{1, 6, 7, 8, 9}, {1, 6, 7, 8, 10}, {1, 6, 7, 9, 10},

{1, 6, 8, 9, 10}, {1, 7, 8, 9, 10}, {2, 6, 7, 8, 9}, {2, 6, 7, 8, 10}, {2, 6, 7, 9, 10},

{2, 6, 8, 9, 10}, {2, 7, 8, 9, 10}, {3, 6, 7, 8, 9}, {3, 6, 7, 8, 10}, {3, 6, 7, 9, 10},

{3, 6, 8, 9, 10}, {3, 7, 8, 9, 10}, {4, 6, 7, 8, 9}, {4, 6, 7, 8, 10}, {4, 6, 7, 9, 10},

{4, 6, 8, 9, 10}, {4, 7, 8, 9, 10}, {5, 6, 7, 8, 9}, {5, 6, 7, 8, 10}, {5, 6, 7, 9, 10},

{5, 6, 8, 9, 10}, {5, 7, 8, 9, 10}} = Δ1, the orbit containing exactly one

of 1, 2, 3, 4, 5.

(c) G{1,2,3,4,5}{1,2,6,7,8}={{1,2,6,7,8}, {1,2,6,7,9}, {1,2,6,7,10},
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{1,2,6,8,9}, {1,2,6,8,10}, {1,2,6,9,10}, {1,2,7,8,9}, {1,2,7,8,10},

{1,2,7,9,10}, {1,2,8,9,10}, {1,3,6,7,8}, {1,3,6,7,9}, {1,3,6,7,10},

{1,3,6,8,9}, {1,3,6,8,10}, {1,3,6,9,10}, {1,3,7,8,9}, {1,3,7,8,10},

{1,3,7,9,10}, {1,3,8,9,10}, {1,4,6,7,8}, {1,4,6,7,9}, {1,4,6,7,10},

{1,4,6,8,9}, {1,4,6,8,10}, {1,4,6,9,10}, {1,4,7,8,9}, {1,4,7,8,10},

{1,4,7,9,10}, {1,4,8,9,10}, {1,5,6,7,8}, {1,5,6,7,9}, {1,5,6,7,10},

{1,5,6,8,9}, {1,5,6,8,10}, {1,5,6,9,10}, {1,5,7,8,9}, {1,5,7,8,10},

{1,5,7,9,10}, {1,5,8,9,10}, {2,3,6,7,8}, {2,3,6,7,9}, {2,3,6,7,10},

{2,3,6,8,9}, {2,3,6,8,10}, {2,3,6,9,10}, {2,3,7,8,9}, {2,3,7,8,10},

{2,3,7,9,10}, {2,3,8,9,10}, {2,4,6,7,8}, {2,4,6,7,9}, {2,4,6,7,10},

{2,4,6,8,9}, {2,4,6,8,10}, {2,4,6,9,10}, {2,4,7,8,9}, {2,4,7,8,10},

{2,4,7,9,10}, {2,4,8,9,10}, {2,5,6,7,8}, {2,5,6,7,9}, {2,5,6,7,10},

{2,5,6,8,9}, {2,5,6,8,10}, {2,5,6,9,10}, {2,5,7,8,9}, {2,5,7,8,10},

{2,5,7,9,10}, {2,5,8,9,10}, {3,4,6,7,8}, {3,4,6,7,9}, {3,4,6,7,10},

{3,4,6,8,9}, {3,4,6,8,10}, {3,4,6,9,10}, {3,4,7,8,9}, {3,4,7,8,10},

{3,4,7,9,10}, {3,4,8,9,10}, {3,5,6,7,8}, {3,5,6,7,9}, {3,5,6,7,10},

{3,5,6,8,9}, {3,5,6,8,10}, {3,5,6,9,10}, {3,5,7,8,9}, {3,5,7,8,10},

{3,5,7,9,10}, {3,5,8,9,10}, {4,5,6,7,8}, {4,5,6,7,9}, {4,5,6,7,10},

{4,5,6,8,9}, {4,5,6,8,10}, {4,5,6,9,10}, {4,5,7,8,9}, {4,5,7,8,10},

{4,5,7,9,10}, {4,5,8,9,10} }=Δ2, the orbit containing exactly two of 1,

2, 3, 4, 5.

(d) G{1,2,3,4,5}{1,2,3,6,7}={{1,2,3,6,7}, {1,2,3,6,8}, {1,2,3,6,9},

{1,2,3,6,10}, {1,2,3,7,8}, {1,2,3,7,9}, {1,2,3,7,10}, {1,2,3,8,9}, {1,2,3,8,10},

{1,2,3,9,10}, {1,2,4,6,7}, {1,2,4,6,8}, {1,2,4,6,9}, {1,2,4,6,10}, {1,2,4,7,8},

{1,2,4,7,9}, {1,2,4,7,10}, {1,2,4,8,9}, {1,2,4,8,10}, {1,2,4,9,10}, {1,2,5,6,7},

{1,2,5,6,8}, {1,2,5,6,9}, {1,2,5,6,10},{1,2,5,7,8}, {1,2,5,7,9}, {1,2,5,7,10},

{1,2,5,8,9}, {1,2,5,8,10}, {1,2,5,9,10}, {1,3,4,6,7}, {1,3,4,6,8}, {1,3,4,6,9},
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{1,3,4,6,10}, {1,3,4,7,8}, {1,3,4,7,9}, {1,3,4,7,10}, {1,3,4,8,9}, {1,3,4,8,10},

{1,3,4,9,10}, {1,3,5,6,7}, {1,3,5,6,8}, {1,3,5,6,9}, {1,3,5,6,10}, {1,3,5,7,8},

{1,3,5,7,9}, {1,3,5,7,10}, {1,3,5,8,9}, {1,3,5,8,10}, {1,3,5,9,10}, {1,4,5,6,7},

{1,4,5,6,8}, {1,4,5,6,9}, {1,4,5,6,10}, {1,4,5,7,8}, {1,4,5,7,9}, {1,4,5,7,10},

{1,4,5,8,9}, {1,4,5,8,10}, {1,4,5,9,10}, {2,3,4,6,7}, {2,3,4,6,8}, {2,3,4,6,9},

{2,3,4,6,10}, {2,3,4,7,8}, {2,3,4,7,9}, {2,3,4,7,10}, {2,3,4,8,9}, {2,3,4,8,10},

{2,3,4,9,10}, {2,3,5,6,7}, {2,3,5,6,8}, {2,3,5,6,9}, {2,3,5,6,10}, {2,3,5,7,8},

{2,3,5,7,9}, {2,3,5,7,10}, {2,3,5,8,9}, {2,3,5,8,10}, {2,3,5,9,10}, {2,4,5,6,7},

{2,4,5,6,8}, {2,4,5,6,9}, {2,4,5,6,10}, {2,4,5,7,8}, {2,4,5,7,9}, {2,4,5,7,10},

{2,4,5,8,9}, {2,4,5,8,10}, {2,4,5,9,10}, {3,4,5,6,7}, {3,4,5,6,8}, {3,4,5,6,9},

{3,4,5,6,10}, {3,4,5,7,8}, {3,4,5,7,9}, {3,4,5,7,10}, {3,4,5,8,9}, {3,4,5,8,10},

{3,4,5,9,10}}=Δ3, the orbit containing exactly three of 1, 2, 3, 4, 5.

(e) G{1,2,3,4,5}{1,2,3,4,6}={{1,2,3,4,6}, {1,2,3,4,7}, {1,2,3,4,8},

{1,2,3,4,9}, {1,2,3,4,10}, {1,2,3,5,6}, {1,2,3,5,7}, {1,2,3,5,8},

{1,2,3,5,9}, {1,2,3,5,10}, {1,2,4,5,6}, {1,2,4,5,7}, {1,2,4,5,8},

{1,2,4,5,9}, {1,2,4,5,10}, {1,3,4,5,6}, {1,3,4,5,7}, {1,3,4,5,8},

{1,3,4,5,9}, {1,3,4,5,10}, {2,3,4,5,6}, {2,3,4,5,7}, {2,3,4,5,8},

{2,3,4,5,9}, {2,3,4,5,10}}=Δ4, the orbit containing exactly four of 1,

2, 3, 4, 5.

(f) G{1,2,3,4,5}{6, 7, 8, 9, 10} = {6, 7, 8, 9, 10} = Δ5, the orbit containing

none of 1, 2, 3, 4, 5.

From Lemmas 2.5.1 and 2.5.2, we deduce the following result:

Theorem 2.5.3

If n≥2r, the rank of G = Sn acting on X(r) is r + 1.

Proof

To start with, G{1,2,3,...,r} has r + 1 orbits. The r + 1 suborbits are:
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OrbG{1,2,3,...,r}{1, 2, 3, ..., r} = Δ0, the trivial orbit.

OrbG{1,2,3,...,r}{1, r + 1, r + 2, ..., 2r − 1} = Δ1, the orbit containing exactly one of

1, 2, 3,..., r.

OrbG{1,2,3,...,r}{1, 2, r + 1, ..., 2r − 2} = Δ2, the orbit containing exactly two of 1,

2, 3,..., r.

OrbG{1,2,3,...,r}{1, 2, 3, r + 1, ..., 2r − 3} = Δ3, the orbit containing exactly three of

1, 2, 3,..., r.

.........................................................................................................................

OrbG{1,2,3,...,r}{1, 2, ..., r − 1, r + 1} =Δr−1, the orbit containing exactly r − 1 of

either 1, 2, 3,..., r.

OrbG{1,2,3,...,r}{r + 1, r + 2, ..., 2r} = Δr, the orbit containing none of 1, 2, 3,..., r.

Finally, we prove that this is possible only if n≥2r. Suppose n − r = 0, then

G{1,2,3,...,r} has only one orbit, the trivial one; and if n− r = 1, G{1,2,3,...,r} has two

orbits, namely, the trivial orbit and the one containing exactly r−1 of 1, 2, 3, ...,

and r. If n− r = 2, G{1,2,3,...,r} has three orbits, namely, the trivial orbit, the one

containing exactly r− 1 of 1, 2, 3, ..., and r, and the one containing exactly r− 2

of 1, 2, 3, ..., and r. Continuing with this argument, we find that if n− r = r−1,

then G{1,2,3,...,r} has r orbits i.e the trivial one, the one containing exactly r− 1 of

1, 2, 3,...,and r, the orbit containing exactly r− 2 of 1, 2, 3, ...,r and so on up to

the orbit containing exactly one of 1, 2, 3, ..., r. In a similar manner, if n− r≥r,

G{1,2,3,...,r} will have an additional orbit, the one containing none of 1, 2, 3, ...,

and r. This makes it have r+1 orbits in total. We can rewrite n− r≥r as n≥2r.

�

Example 2.5.4

Let G = S6 acting on X
(3). Then rank of G = 4. The four suborbits of G are:

(a) G{1,2,3}{1,2,3}={{1,2,3}}=Δ0, the trivial orbit.
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(b) G{1,2,3}{1,4,5}={{1,4,5},{1,4,6},{1,5,6},{2,4,5},{2,4,6},

{2,5,6},{3,4,5},{3,4,6},{3,5,6}}=Δ1, the orbit containing exactly one

of 1, 2, and 3.

(c) G{1,2,3}{1,2,4}={{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},

{1,3,6},{2,3,4},{2,3,5},{2,3,6}}=Δ2, the orbit containing exactly two

of 1, 2, and 3.

(d) G{1,2,3}{4, 5, 6} = {{4, 5, 6}} = Δ3, the orbit containing none of 1, 2,

and 3.

Example 2.5.5

Let G = S9 acting on X
(4). Then rank of G = 5. The five suborbits of G are:

(a) G{1,2,3,4}{1, 2, 3, 4} = Δ0, the trivial orbit.

(b) G{1,2,3,4}{1,5,6,7}={{1,5,6,7}, {1,5,6,8}, {1,5,6,9}, {1,5,7,8}, {1,5,7,9},

{1,5,8,9}, {1,6,7,8}, {1,6,7,9}, {1,6,8,9}, {1,7,8,9}, {2,5,6,7}, {2,5,6,8},

{2,5,6,9}, {2,5,7,8}, {2,5,7,9},{2,5,8,9}, {2,6,7,8}, {2,6,7,9}, {2,6,8,9},

{2,7,8,9},{3,5,6,7}, {3,5,6,8}, {3,5,6,9}, {3,5,7,8}, {3,5,7,9},{3,5,8,9},

{3,6,7,8}, {3,6,7,9}, {3,6,8,9}, {3,7,8,9}, {4,5,6,7}, {4,5,6,8}, {4,5,6,9},

{4,5,7,8}, {4,5,7,9},{4,5,8,9}, {4,6,7,8}, {4,6,7,9}, {4,6,8,9}, {4,7,8,9}}=Δ1,

the orbit containing exactly one of 1, 2, 3, and 4.

(c) G{1,2,3,4}{1, 2, 5, 6}={{1,2,5,6}, {1,2,5,7}, {1,2,5,8}, {1,2,5,9},{1,2,6,7},

{1,2,6,8}, {1,2,6,9}, {1,2,7,8}, {1,2,7,9}, {1,2,8,9}, {1,3,5,6}, {1,3,5,7},

{1,3,5,8}, {1,3,5,9},{1,3,6,7}, {1,3,6,8}, {1,3,6,9}, {1,3,7,8}, {1,3,7,9},

{1,3,8,9}, {1,4,5,6}, {1,4,5,7}, {1,4,5,8}, {1,4,5,9},{1,4,6,7}, {1,4,6,8},

{1,4,6,9}, {1,4,7,8}, {1,4,7,9}, {1,4,8,9}, {2,3,5,6}, {2,3,5,7}, {2,3,5,8},

{2,3,5,9},{2,3,6,7}, {2,3,6,8}, {2,3,6,9}, {2,3,7,8}, {2,3,7,9}, {2,3,8,9},

{2,4,5,6}, {2,4,5,7}, {2,4,5,8}, {2,4,5,9},{2,4,6,7}, {2,4,6,8}, {2,4,6,9},

{2,4,7,8}, {2,4,7,9}, {2,4,8,9}, {3,4,5,6}, {3,4,5,7}, {3,4,5,8}, {3,4,5,9},
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{3,4,6,7}, {3,4,6,8}, {3,4,6,9}, {3,4,7,8}, {3,4,7,9}, {3,4,8,9}} = Δ2,

the orbit containing exactly two of 1, 2, 3, and 4.

(d) G{1,2,3,4}{1, 2, 3, 5}={{1,2,3,5}, {1,2,3,6}, {1,2,3,7}, {1,2,3,8},{1,2,3,9},

{1,2,4,5}, {1,2,4,6}, {1,2,4,7}, {1,2,4,8},{1,2,4,9}, {1,3,4,5}, {1,3,4,6},

{1,3,4,7}, {1,3,4,8},{1,3,4,9}, {2,3,4,5}, {2,3,4,6}, {2,3,4,7}, {2,3,4,8},

{2,3,4,9}}= Δ3, the orbit containing exactly three of 1, 2, 3, and 4.

(e) G{1,2,3,4}{5, 6, 7, 8}={{5,6,7,8}, {5,6,7,9},{5,6,8,9}, {5,7,8,9}, {6,7,8,9}}

= Δ4, the orbit containing none of 1, 2, 3, and 4.

2.6 Self Paired Suborbits of Sn

In the next Theorem we show that all the suborbits of Sn are self paired.

Theorem 2.6.1

The suborbits Δ0,Δ1,Δ2, ...,Δr−1,Δr of Sn acting on X
(r) are self paired.

Proof

The proof for Δ0 is trivial. Consider an arbitrary member of Δ1 say

{1, r+1, ..., 2r− 1}. By the definition of a self paired suborbit (see section 1.1.2)

if g{1, r + 1, ..., 2r − 1} = {1, 2, ..., r}, then we can take g to be (1)(r + 1 2)(r +

2 3)...(2r − 1 r) and g{1, 2, ..., r} = {1, r + 1, r + 3, ..., 2r − 1} ∈ Δ1. This shows

that Δ1 is self paired.

Similarly consider an arbitrary member of Δ2 say {1, 2, r + 1, ..., 2r − 2}. If

g{1, 2, r+1, ..., 2r−2} = {1, 2, ..., r}, then we can take g to be (1)(2)(r+1 3)...(2r−

2 r) and g{1, 2, ..., r} = {1, 2, r + 1, ..., 2r − 2} ∈ Δ2, showing that Δ2 is also self

paired. Using similar arguments, we can show that Δ3,Δ4, ...,Δr−1 are self paired.

Finally, consider an arbitrary member of Δr say {r + 1, r + 2, ..., 2r}. If g{r +

1, r + 2, ..., 2r} = {1, 2, ..., r}, then we can take g to be (r + 1 1)(r + 2 2)...(2r r)

and g{1, 2, ..., r} = {r + 1, r + 2..., 2r} ∈ Δr, showing that Δr is a self paired. �
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Example 2.6.2

Let G = S7 acting on X
(3), then Δ1,Δ2 and Δ3 are self paired. This is because

{1,4,5} ∈ Δ1, and we can take g = (1)(4 2)(5 3). Consequently gx = {1, 4, 5} ∈

Δ1. Similarly {1,2,4}∈ Δ2, g = (1)(2)(4 3) and gx = {1, 2, 4} ∈ Δ2. Lastly

{4,5,6}∈ Δ3, g = (4 1)(5 2)(6 3) and gx = {4, 5, 6} ∈ Δ3.
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CHAPTER 3

SUBDEGREES OF Sn ACTING ON X
(r)

3.1 Introduction

The rank and the subdegrees of a group G are closely related in that while the

rank is the number of the suborbits of G, the subdegrees are the sizes of these

suborbits of G.

3.2 Subdegrees of Sn

The subdegrees of Sn are given by the following result.

Theorem 3.2.1

The subdegrees of Sn acting on X
(r) are:

1, r
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r

2










n− r
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 ,





r
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n− r

r − 3




 , ...,





r

r − 1










n− r

1




 ,





n− r

r






Proof

The r+1 suborbits of G obtained in Theorem 2.5.3 are considered. The length of

Δ0 = 1. Consider the suborbit Δ1, which contains exactly one of 1, 2, 3, .., and r.

One of 1, 2, 3,..., and r may be chosen in r ways while the remaining r − 1
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elements may be chosen from n− r elements of X in
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ways. This makes

the total number of selections to be r





n− r

r − 1




 ways. For the suborbit Δ2, the

two elements may be chosen in
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2




 ways while the remaining r−2 elements may

be chosen in
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 ways, making a total of





r

2










n− r

r − 2




 ways. Continuing

with the same argument, in the suborbit Δr−1, the r− 1 elements may be chosen

in





r

r − 1




 and the remaining 1 element in





n− r

1




 ways making a total of





n− r

1










r

r − 1




 ways. Finally, for Δr which does not contain any of elements

from {1, 2, 3,..., r}, the r elements from X can be chosen in





n− r

r




 ways. �

Example 3.2.2

If G = S7 acting on X
(3), the subdegrees of G are: 1, 3
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3

2




 ,





4

3




, that

is 1, 18, 12, 4. The four suborbits of G are:

(a) Δ0 = {1,2,3}

(b) Δ1 = {{1,4,5}, {1,4,6}, {1,4,7}, {1,5,6}, {1,5,7}, {1,5,7}, {2,4,5},

{2,4,6}, {2,4,7}, {2,5,6}, {2,5,7}, {2,6,7}, {3,4,5}, {3,4,6}, {3,4,7},

{3,5,6}, {3,5,7},{3,6,7}}

(c) Δ2 = {{1,2,4}, {1,2,5}, {1,2,6}, {1,2,7}, {1,3,4}, {1,3,5}, {1,3,6,

{1,3,7}, {2,3,4}, {2,3,5}, {2,3,6}, {2,3,7}}

(d) Δ3 = {{4,5,6}, {4,5,7}, {4,6,7}, {5,6,7}}
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|Δ0| = 1, |Δ1| = 18, |Δ2| = 12, and|Δ3| = 4. So that the subdegrees are 1, 4, 12,

and 18 as expected.

Example 3.2.3

Let G = S10 acting on X
(5). The subdegrees of G are: 1, 5
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, that is 1, 25, 100, 100, 25, 1.

Example 3.2.4

Let G = S15 acting on X
(6). The subdegrees of G are: 1, 6
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, that is 1,756, 1890, 1680, 540, 54, 84.

3.3 Arrangements of Subdegrees

For practical purposes subdegrees are arranged in order of increasing magnitude.

We achieve this using the following results.

Theorem 3.3.1




r

r − i




 >






r

r − i− 1




 , provided (r − i) ≤ 1

2
r.

Proof

We use the principle of mathematical induction to prove this theorem.

For i = 1,





r

r − 1




 =





r

1




 = r!

(r−1)! = r,
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while





r

r − 2




 =





r

2




 = r!

(r−2)!2! =
1
2
r(r − 1)

Since i = 1, (r − 1) ≤ 1
2
r implies that r ≤ 2, or r = {1, 2} since r is a positive

integer. And for this set of values of r, r > 1
2
r(r − 1). So the theorem is true for

i = 1.

If we assume true for i = k, then
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r − k




 >






r

r − k − 1




 which implies that

r!

(r − k)!k!
>

r!

(r − k − 1)!(k + 1)!
(3.1)

For i = k + 1,






r

r − k − 1




 =





r

k + 1






=
r!

(r − k − 1)!(k + 1)!

=
r!(r − k)

(r − k)!(k + 1)k!

=
r − k
k + 1

×
r!

(r − k)!k!
(3.2)






r

r − k − 2




 =





r

k + 2






=
r!

(r − k − 2)!(k + 2)!

=
r!(r − k − 1)

(r − k − 1)!(k + 2)(k + 1)!

=
r − k − 1
k + 2

×
r!

(r − k − 1)!(k + 1)!
(3.3)
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r − k
k + 1

−
r − (k + 1)
k + 2

=
(k + 2)(r − k)− (k + 1)(r − (k + 1))

(k + 1)(k + 2)

=
kr + 2r − k2 − 2k − kr − r + (k + 1)2

(k + 1)(k + 2)

=
r − k2 + k2 + 2k + 1
(k + 1)(k + 2)

=
r + 2k + 1

(k + 1)(k + 2)
> 0 (3.4)

From 3.4 it follows that,

r − k
k + 1

>
r − k − 1
k + 2

(3.5)

From inequality 3.1,

r!

(r − k)!k!
>

r!

(r − k − 1)!(k + 1)!

and since

r − k
k + 1

>
r − k − 1
k + 2

it therefore follows that






r

r − k − 1




 >






r

r − k − 2






which shows that the Theorem is true for i = k + 1 whenever true for i = k, and

so true for all i ≥ 1. �

Theorem 3.3.2




r

r − i




 <






r

r − i− 1




 whenever (r − i) ≥ 1

2
r.
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Proof for this theorem is similar to that of Theorem 3.3.1

According to Theorem 3.2.1 the subdegrees of Sn acting on X
(r) are given by

1, r





n− r

r − 1




 ,





r

2










n− r

r − 2




 ,





r

3










n− r

r − 3




 , ...,





r

r − 1










n− r

1




 ,





n− r

r




 (3.6)

Since





n

r




 =





n

n− r




 ,

if we omit 1 from this sequence, may rewrite expression 3.6 as





n− r

r




 ,





r

r − 1










n− r

r − 1




 ,





r

r − 2










n− r

r − 2




 ,





r

r − 3










n− r

r − 3




 , ...,





r

3










n− r

3




 ,





r

2










n− r

2




 ,





r

1










n− r

1




 (3.7)

Using expression 3.7 and Theorems 3.3.1 and 3.3.2 we may arrange the subdegrees

in any desired order. As a matter of fact, the terms of expression 3.7 are in an

increasing order up to a certain term (which is at the median position of the

terms of expression 3.7 when r is an odd number and at r+2
2
position of expression

3.7 when r is an even number) after which the terms start decreasing. This is

because if we re-write expression 3.7 as in Table 3.1 where the product is done

on the terms in the same column in the table, we see that each row in the table
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(
n− r
r

) (
n− r
r − 1

) (
n− r
r − 2

) (
n− r
r − 3

)

...

(
n− r
3

) (
n− r
2

) (
n− r
1

)

(
r
r − 1

) (
r
r − 2

) (
r
r − 3

)

...

(
r
3

) (
r
2

) (
r
1

)

Table 3.1: Products of expression 3.7

represents a certain row of a Pascal’s triangle and so the product of the terms

will be in increasing order up to some term and then the terms starts decreasing.

Some direct computations shows that the largest term in the sequence is at the

median position when r is an odd number and at r+2
2
position when r is an even

number. The Pascal’s triangle is shown in Figure 3.1.

Figure 3.1: Pascal’s Triangle

Theorem 3.3.3

If r is an odd number and if 1
2
(n− r) ≤ i < 1

2
(r+ 1), i ∈ N, the arrangements of

expression 3.7 in an increasing order is
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n− r

r




 <





r

1










n− r

1




 <





r

r − 1










n− r

r − 1




 <





r

2










n− r

2




 <





r

r − 2










n− r

r − 2




 <





r

3










n− r

3




 <





r

r − 3










n− r

r − 3




 < ...

<





r

r+1
2










n− r

r − r+1
2




 (3.8)

Proof

The proof is accomplished by showing that the second term of the sequence is

less than the third and by showing that the third term is less than the fourth but

in a general manner.





r

i










n− r

i




 <





r

r − i










n− r

r − i






Since 



r

r − i




 =





r

i






and 



n− r

r − i




 >





n− r

i




when i ≥

1

2
(n− r)

Also 



r

i










n− r

i




 >






r

r − (i− 1)










n− r

r − (i− 1)
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To show this, note that






r

r − (i− 1)




 =





r

i− 1






and 



r

i




 >





r

i− 1




 for i ≤

1

2
r

Also





n− r

i




 >





n− r

r − (i− 1)




 if i < r − (i− 1) and i ≥

1

2
(n− r)

Combining these inequalities,





n− r

i




 >





n− r

r − (i− 1)




 if

1

2
(n− r) ≤ i <

1

2
(r + 1)

and so 



r

i










n− r

i




 >






r

r − (i− 1)










n− r

r − (i− 1)






whenever 1
2
(n− r) ≤ i < 1

2
(r + 1).

The proof is completed by showing that





r

r+1
2










n− r

r − r+1
2






is the largest term. If the terms of expression 3.7 were a sequence of r terms, the

median position of this sequence of subdegrees is given by 1
2
(r+ 1) if r is an odd

number. By Figure 3.1 the coefficient at the median position is the largest one.

�
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Theorem 3.3.4

If r is an even number, and if 1
2
(n−r) ≤ i < 1

2
(r+1), i ∈ N, the arrangements

of expression 3.7 in an increasing order is given by





n− r

r




 <





r

1










n− r

1




 <





r

r − 1










n− r

r − 1




 <





r

2










n− r

2




 <





r

r − 2










n− r

r − 2




 <





r

3










n− r

3




 <





r

r − 3










n− r

r − 3




 < ...

<





r

r+2
2










n− r

r − r+2
2




 (3.9)

The proof for this Theorem is similar to that for Theorem 3.3.3.

We may rewrite the terms of expression 3.8 as





n− r

r




 <





r

r − 1











n− r

n− (r + 1)




 <





r

r − 1










n− r

r − 1




 <





r

r − 2











n− r

n− (r + 2)




 <





r

r − 2










n− r

r − 2




 <





r

r − 3











n− r

n− (r + 3)




 <





r

r − 3










n− r

r − 3




 < ...

<






r

r − r+1
2










n− r

r − r+1
2




 (3.10)
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while those of expression 3.9 may be rewritten as





n− r

r




 <





r

r − 1











n− r

n− (r + 1)




 <





r

r − 1










n− r

r − 1




 <





r

r − 2











n− r

n− (r + 2)




 <





r

r − 2










n− r

r − 2




 <





r

r − 3











n− r

n− (r + 3)




 <





r

r − 3










n− r

r − 3




 < ...

<






r

r − r+2
2










n− r

r − r+2
2




 (3.11)

Example 3.3.5

Let G = S19 acting on X
(9). By expression 3.10. The arrangements on the

subdegrees of S19 in increasing order is given by





10

9




 <





9

8










10

9




 <





9

8










10

8




 <





9

7










10

8




 <





9

7










10

7






<





9

6










10

7




 <





9

6










10

6




 <





9

5










10

5






that is 10 < 90 < 405 < 1620 < 4320 < 10080 < 17640 < 26460 < 31752
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Example 3.3.6

Let G = S17 acting on X
(8). By expression 3.11. The arrangements on the

subdegrees of S17 in increasing order is given by





9

8




 <





8

7










9

8




 <





8

7










9

7




 <





8

6










9

7




 <





8

6










9

6






<





8

5










9

6




 <





8

5










9

5




 <





8

4










9

5






That is 9 < 72 < 288 < 1008 < 2352 < 4704 < 7056 < 8820

Remark 3.3.7

(a) Theorem 3.3.3 and Theorem 3.3.4 work when 2r ≤ n ≤ 2r + 2. Also

when n ≥ 2r + 3, expressions 3.8 and 3.9 are preserved except that





r

1










n− r

1




 <





n− r

r






and 



r

r − i










n− r

r − i




 <





r

i










n− r

i






(b) When n = 2r, then the strict inequalities in Theorem 3.3.3 and 3.3.4

are replaced with the less than or equal to inequalities. In this case all

the terms apart from the smallest and the largest one can be grouped

into equal pairs in the sequence. Also, the terms contain the squares

of a row of Pascal’s triangle. This is because since n = 2r implies

n−r = r, so that the products





r

i










n− r

i




 and





r

r − i










n− r

r − i
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can be written as





r

i










r

i




 and





r

r − i










r

r − i




 respectively. The

fact that





r

i




 =





r

r − i




 explains why we have equal pairs in this

case.

Table 3.2 serves to clarify Remark 3.3.7. In this table we analyse the arrangements

of subdegrees of Sn as n− 2r increases from 0 to 2 and when n− 2r ≥ 3.

S20 on X
(10) S17 on X

(8) S18 on X
(8) S17 on X

(7) S18 on X
(7)

n−rCr 1 9 45 120 330

rC1 ×n−r Cr−1 100 288 960 147 3234

rC2 ×n−r Cr−2 2025 2352 5880 5292 9702

rC3 ×n−r Cr−3 14400 7056 14112 7350 11550

rC4 ×n−r Cr−4 44100 8820 14700 4200 5775

rC5 ×n−r Cr−5 63504 4704 6720 945 1155

rC6 ×n−r Cr−6 44100 1008 1260 70 77

rC7 ×n−r Cr−7 14400 72 80

rC8 ×n−r Cr−8 2025

rC9 ×n−r Cr−9 100

Table 3.2: Some Subdegrees of Sn

3.4 Primitivity of Sn

The primitivity Sn acting on X
(r) is determined in this section. This is given by

the following result.
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Theorem 3.4.1

If 2 ≤ r < 1
2
n, then the action of Sn on X

(r) is primitive.

Proof (By contradiction)

From Theorem 1.1.4, suppose G is imprimitive with subdegrees given in Theorems

3.3.3 and 3.3.4, then





n− r

r










r

i










n− r

i




 ≥





r

r − i










n− r

r − i




 (3.12)

This is because 



r

i




 =





r

r − i






and whenever 



n− r

i




 <





n− r

r − i




 ,





n− r

r










n− r

i




 ≥





n− r

r − i






Also,





n− r

r










r

r − i










n− r

r − i




 ≥





r

i+ 1










n− r

i+ 1




 (3.13)

This is because





r

r − i




 ≥





r

i+ 1




 and





n− r

r − i




 ≥





n− r

i+ 1
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for some choice of r and i and whenever





r

r − i




 ≤





r

i+ 1




 and or





n− r

r − i




 ≤





n− r

i+ 1






then 3.13 is true. 



n− r

r






is the ’n1’ of Theorem 3.3.3 and Theorem 3.3.4 while





r

i










n− r

i




 ,





r

r − i










n− r

r − i






and 



r

r − i










n− r

r − i




 ,





r

i+ 1










n− r

i+ 1






are consecutive terms in Theorems 3.3.3 and 3.3.4. By Theorem 1.1.4, inequality

3.12 and inequality 3.13 leads to a contradiction, and so, Sn acts primitively on

X(r). �
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CHAPTER 4

SUBORBITAL GRAPHS OF Sn

4.1 Introduction

In this chapter the suborbital graphs of Sn acting on X
(r) will be constructed.

To each suborbit of Sn say Δi, there will be a corresponding suborbital graph Γi.

The properties of these graphs shall then be analysed.

4.2 Suborbital Graphs of Sn Acting on X
(r) and Their Properties

The construction of the suborbital graphs corresponding to the suborbits of Sn

given in Theorem 2.5.3 is given as follows:

The suborbital O1 corresponding to the suborbit Δ1 is

O1 = {[g{1, 2, 3, ..., r}, g{1, r + 1, r + 2, ..., 2r − 1}]}, where g ∈ Sn. Therefore, in

Γ1, the suborbital graph corresponding to O1, there is an edge from vertex A to

B if and only if |A ∩B| = 1.

The suborbital O2 corresponding to the suborbit Δ2 is

O2 = {[g{1, 2, 3, ..., r}, g{1, 2, r + 1, ..., 2r − 2}]}, g ∈ Sn. Therefore, in Γ2, the

suborbital graph corresponding to O2, there is an edge from vertex A to B if and

only if |A ∩B| = 2.

The suborbital O3 corresponding to the suborbit Δ3 is

O3 = {[g{1, 2, 3, ..., r}, g{1, 2, 3, r + 1, ..., 2r − 3}]}, g ∈ Sn. Therefore, in Γ3, the

suborbital graph corresponding to O3, there is an edge from vertex A to B if and
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only if |A ∩B| = 3.

.........................................................................................................................

The suborbital Or−1 corresponding to the suborbit Δr−1 is

Or−1 = {[g{1, 2, 3, ..., r}, g{1, 2, 3, ..., r − 1, r + 1}]}, g ∈ Sn. Therefore, in Γr−1,

the suborbital graph corresponding to Or−1, there is an edge from vertex A to B

if and only if |A ∩B| = r − 1.

The suborbital Or corresponding to the suborbit Δr is

Or = {[g{1, 2, 3, ..., r}, g{r + 1, r + 2, ..., 2r}]}, g ∈ Sn. Therefore, in Γr, the

suborbital graph corresponding to Or, there is an edge from vertex A to B if and

only if |A ∩B| = 0

Theorem 4.2.1

(a) Γ1,Γ2,Γ3, ...,Γr are undirected.

(b) If n ≥ 3r, Γ1,Γ2,Γ3, ...,Γr have girth 3.

(c) Γ1,Γ2,Γ3, ...,Γr are connected if n >
1
2
r.

Proof

(a) Using Theorem 2.6.1, Δi, i = 1, 2, 3, ..., r are self-paired, implying that

Γ1,Γ2,Γ3, ...,Γr are undirected.

(b) Let X = {1, 2, 3, ..., n} and suppose that n ≥ 3r. Then there exists

three unordered r-element subsets of X, say A,B, and C such that,

|A∩B| = |A∩C| = |B ∩C| = 1; |A∩B| = |A∩C| = |B ∩C| = 2; ...

|A∩B| = |A∩C| = |B ∩C| = r− 1; |A∩B| = |A∩C| = |B ∩C| = 0.

Thus in each case A,B, and C are adjacent vertices in Γ1,Γ2, ...,Γr

respectively. Therefore if n ≥ 3r, Γ1,Γ2,Γ3, ...,Γr have girth 3.

(c) By Theorem 3.4.1, G acts primitively on X(r). So, by Theorem 1.1.5,

Γ1,Γ2,Γ3, ...,Γr are connected. �
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Remark 4.2.2

Theorem 4.2.1 (b) means that if n < 3r, then some Γi, i = 1, 2, ..., r may be of

girth 3 but not all of them. This theorem gives a sufficient condition for all of Γi

to have girth 3.

Example 4.2.3

Let G = S5 acting on X
(2). We shall base our discussions on Δ1, and Δ2. The

suborbital O1 corresponding to the suborbit Δ1 is

O1 = {[g{1, 2}, g{1, 3}]|g ∈ G}. The suborbital graph Γ1 corresponding to the

suborbital O1 has 2-element subsets A and B from X adjacent if and only if

|A ∩B| = 1.

Secondly, the suborbital O2 corresponding to the suborbit Δ2 is

O2 = {[g{1, 2}, g{3, 4}]|g ∈ G}. The suborbital graph Γ2 corresponding to O2

has 2-element subsets A and B from X adjacent if and only if |A ∩B| = 0.
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Using Theorem 4.2.1, Γ1 and Γ2 are undirected. We construct Γ1 as in Figure

4.1.

{1,2}

{1,3}

{1,4}

{1,5}

{4,5}{3,4}

{3,5}

{2,3}

{2,5}

{2,4}

Figure 4.1: Γ1, the suborbital graph of S5 acting on X
(2)corresponding to Δ1

From Figure 4.1, Γ1 is connected, regular of degree 6 and has girth 3.
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We also construct Γ2 as in Figure 4.2

{1, 2}

{3, 5}

{4, 5}

{2, 3}

{2, 4}

{1, 3} {2, 5}

{1, 4}

{1, 5}

{3, 4}

Figure 4.2: Γ2, the suborbital graph of S5 acting on X
(2)corresponding to Δ2

From Figure 4.2, Γ2 is regular of degree 3. It is connected and has girth 5.

Example 4.2.4

Let G = S6 acting on X
(3). The suborbital O1 corresponding to the suborbit Δ1

is O1 = {[g{1, 2, 3}, g{1, 4, 5}]|g ∈ G}. The suborbital graph Γ1 corresponding to

the suborbital O1 has 3-element subsets A and B from X adjacent if and only if

|A ∩B| = 1.

Secondly, the suborbital O2 corresponding to the suborbit Δ2 is

O2 = {[g{1, 2, 3}, g{1, 2, 4}]|g ∈ G}. The suborbital graph Γ2 corresponding to

O2 has 3-element subsets A and B from X adjacent if and only if |A ∩B| = 2.

Lastly, the suborbital O3 corresponding to the suborbit Δ3 is

O3 = {[g{1, 2, 3}, g{4, 5, 6}]|g ∈ G}. The suborbital graph Γ3 corresponding to

O3 has 3-element subsets A and B from X adjacent if and only if |A ∩B| = 0.

By Theorem 1.1.5, Γ1 and Γ2 are connected. Also, by Theorem 4.2.1, Γ1,Γ2 and

Γ3 are undirected. Γ1 and Γ2 are of girth 3 while Γ3 has no cycles. Γ1 is regular

of degree |Δ1| = 9, Γ2 is also regular of degree 9 and Γ3 is regular of degree 1 .
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Example 4.2.5

Let G = S8 acting on X
(4). The suborbital O1 corresponding to the suborbit Δ1

is O1 = {[g{1, 2, 3, 4}, g{1, 5, 6, 7}]|g ∈ G}, the suborbital graph Γ1 corresponding

to the suborbital O1 has 4-element subsets A and B from X adjacent if and only

if |A ∩B| = 1.

Secondly, the suborbital O2 corresponding to the suborbit Δ2 is

O2 = {[g{1, 2, 3, 4}, g{1, 2, 5, 6}]|g ∈ G}. The suborbital graph Γ2 corresponding

to O2 has 4-element subsets A and B from X adjacent if and only if |A∩B| = 2.

Thirdly,, the suborbital O3 corresponding to the suborbit Δ3 is

O3 = {[g{1, 2, 3, 4}, g{1, 2, 3, 5}]|g ∈ G}. The suborbital graph Γ3 corresponding

to O3 has 4-element subsets A and B from X adjacent if and only if |A∩B| = 3.

Lastly, the suborbital O4 corresponding to the suborbit Δ4 is

O4 = {[g{1, 2, 3, 4}, g{5, 6, 7, 8}]|g ∈ G}. The suborbital graph Γ4 corresponding

to O4 has 4-element subsets A and B from X adjacent if and only if |A∩B| = 0.

By Theorem 1.1.5, Γ1,Γ2, and Γ3 are connected. Also, by Theorem 4.2.1, Γ1,Γ2,Γ3

and Γ4 are undirected.

Γ1,Γ2 and Γ3 are of girth 3 since for X = {1, 2, 3, 4, 5, 6, 7, 8}, there exists three 4-

elements subsets of X say A,B, and C such that |A∩B| = 1 or 2 or 3, |A∩C| = 1

or 2 or 3 and |B ∩ C| = 1 or 2 or 3. This implies that A,B, and C are vertices

of Γ1,Γ2 and Γ3 with cycles of length 3.

Γ4 has no cycles and so has girth 0. Γ1,Γ2,Γ3 and Γ4 are regular of degree 16,

36, 16 and 1 respectively.

Example 4.2.6

Let G = S15 acting on X
(5). The suborbital O1 corresponding to the subor-

bit Δ1 is O1 = {[g{1, 2, 3, 4, 5}, g{1, 6, 7, 8, 9}]|g ∈ G}, the suborbital graph

Γ1 corresponding to the suborbital O1 has 5-element subsets A and B from
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X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} adjacent if and only if |A∩B| = 1.

Secondly, the suborbital O2 corresponding to the suborbit Δ2 is

O2 = {[g{1, 2, 3, 4, 5}, g{1, 2, 6, 7, 8}]|g ∈ G}. The suborbital graph Γ2 corre-

sponding to O2 has 5-element subsets A and B from X adjacent if and only if

|A ∩B| = 2.

Thirdly, the suborbital O3 corresponding to the suborbit Δ3 is

O3 = {[g{1, 2, 3, 4, 5}, g{1, 2, 3, 6, 7}]|g ∈ G}. The suborbital graph Γ3 corre-

sponding to O3 has 5-element subsets A and B from X adjacent if and only if

|A ∩B| = 3.

Also, the suborbital O4 corresponding to the suborbit Δ4 is

O4 = {[g{1, 2, 3, 4, 5}, g{1, 2, 3, 4, 6}]|g ∈ G}. The suborbital graph Γ4 corre-

sponding to O4 has 5-element subsets A and B from X adjacent if and only if

|A ∩B| = 4.

Lastly, the suborbital O5 corresponding to the suborbit Δ5 is

O5 = {[g{1, 2, 3, 4, 5}, g{6, 7, 8, 9, 10}]|g ∈ G}. The suborbital graph Γ5 corre-

sponding to O5 has 5-element subsets A and B from X adjacent if and only if

|A ∩B| = 0.

By Theorems 1.1.5 and 3.4.1, Γ1,Γ2,Γ3,Γ4 and Γ5 are connected. Also, by The-

orem 4.2.1, Γ1,Γ2,Γ3,Γ4 and Γ5 are undirected and have girth 3. Γ1,Γ2,Γ3,Γ4

and Γ5 are regular of degree 1050, 1200, 450, 50, and 252 respectively.
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CHAPTER 5

CONCLUSIONS AND AREAS FOR FURTHER RESEARCH

5.1 Introduction

Some conclusions of this study and suggestions of areas for further research are

given in this chapter. A few applications of this study are also given.

5.2 Conclusions

In this study, some properties of the action of Sn on unordered r-element subsets

of X, were discussed.

In chapter two it was shown that the order of the stabilizer of {1, 2, ..., r} is (n−

r)!r!. It was proved that Sn acts transitively on X
(r). In addition, a proposition

that gives a general formula for calculating the number of permutations of a given

cycle type fixing an element of X(r) was given. A general formula that calculates

|Fix(g)| in X(r) was derived. We also showed that the rank of Sn acting on X(r)

is r + 1 if n ≥ 2r, and proved that all the suborbits of Sn acting on X(r) are self

paired.

58



In chapter three it was proved that the subdegrees of Sn acting on X
(r) are

1, r
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In addition, the criteria for arranging the subdegrees in ascending order and the

proof of Sn acts primitively on X
(r) were given.

In chapter four the suborbital graphs of Sn acting on X
(r) were constructed.

It was shown that the suborbital graphs are undirected, and that Γ1,Γ2, ...,Γr

are of girth three if n ≥ 3r. In addition, it was proved that Γ1,Γ2, ...,Γr are

connected if n > 2r.

5.3 Suggestions of Areas for Further Research

The following are some topics, which we hope will be tackled in future:

1. The proof of Proposition 2.4.4.

2. Proof of Proposition 2.2.6.

5.4 Applications

The following are some applications of this study.
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5.4.1 Group Actions and Suborbital Graphs

Some properties of the suborbital graphs of a group G may be deduced by study-

ing the properties of the group actions. For example one can tell whether the

suborbital graphs are directed or undirected by determining whether the subor-

bits of G are self paired or not.

On the other hand we can deduce some properties of a group action of G by

studying the suborbital graphs of G. For example one can tell whether G acts

primitively or imprimitively by determining whether the suborbital graphs of G

are connected or not.

5.4.2 Probability and Statistics

Consider the space X of the unordered pairs {i, j} from X of cardinality






n

2





.

The symmetric group Sn acts on these pairs by π{i, j} = {π(i), π(j)}. The

permutation representation generated by this action can be described as an






n

2







dimensional vector space spanned by basis vectors e{i,j}. This space splits into

three irreducibles: A one-dimensional trivial representation is spanned by v̄ =

∑
e{i,j}, an n− 1 dimensional space is spanned by vi =

∑
j e{i,j} − cv̄, 1 ≤ i ≤ n,

with c chosen so vi is orthogonal to v̄. The complement of these two spaces

is also an irreducible representation. We define the permutation representation

associated to the action of Sn on tabloids as a vector space with basis e{t}. It is

denoted Mλ. Let G be a finite group acting on a set X. Extend the action to
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the product space Xk coordinatewise. The number of fixed points of the element

s ∈ G is F (s) = |{x : sx = x}|. For any positive integer k:

1

|G|

∑

s

F (s)k = |orbits of G acting on Xk| (5.1)

Here a few consequences of equation 5.1 according to Diaconis (1988):

1. With k = 1, this is the Cauchy-Frobenius lemma.

2. When G acts on itself we get back the decomposition of the regular repre-

sentation.

3. There is a connection with probability problems. If G is considered as a

probability space under the uniform distribution U , then F (s) is a ”random

variable” corresponding to ”pick an element of G at random and count how

many fixed points it has.” When G = Sn and X = {1, 2, ..., n}, F (s) is the

number of fixed points of s. We know that this has an approximate Poisson

distribution with mean 1. 5.1 gives a ”formula” for all the moments of F (s).
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APPENDICES

Appendix A

A Scilab program that calculates the number of permuta-

tions of Sn, n ≤ 10, that fixes X(r), 3 ≤ r ≤ 5, and having the
same cycle type

A.1 Introduction

In this program, the inputs are n, r, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, where c1,

c2, ..., c10 is the cycle type of a permutation g ∈ Sn. The program is developed

using expressions 2.2, 2.3 and 2.4. The program is invoked by per1 = fix(n, r, c1,

c2, c3, c4, c5, c6, c7, c8, c9, c10) where per1 is the output while the others are

inputs. The program is typed in the Scilab Editor. We generate tables 2.1, 2.2,

2.3, and 2.4 by use of this program.

A.2 Scilab Program

function [per] = fix(n, r, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)

A1 = [factorial(c2) factorial(c3) factorial(c4) factorial(c5) factorial(c6) factorial(c7)

factorial(c8) factorial(c9) factorial(c10);2(c2)3(c3)4(c4)5(c5)6(c6)7(c7)8(c8)9(c9)10(c10)];

A2 = [factorial(c3) factorial(c4) factorial(c5) factorial(c6) factorial(c7) factorial(c8)

factorial(c9) factorial(c10);3(c3)4(c4)5(c5)6(c6)7(c7)8(c8)9(c9)10(c10)];

A3 = [factorial(c4) factorial(c5) factorial(c6) factorial(c7) factorial(c8) factorial(c9)

factorial(c10);4(c4)5(c5)6(c6)7(c7)8(c8)9(c9)10(c10)];
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A4 = [factorial(c5) factorial(c6) factorial(c7) factorial(c8) factorial(c9) factorial(c10);

5(c5)6(c6)7(c7)8(c8)9(c9)10(c10)];

A5 = [factorial(c6) factorial(c7) factorial(c8) factorial(c9) factorial(c10);

6(c6)7(c7)8(c8)9(c9)10(c10)];

if (c1 - 3)<0 then a1 = 0; else a1 = factorial(n-3)/(factorial(c1-3)*prod(A1)); end

if (c1 - 1)<0 then a2 = 0; elseif (c2 - 1)<0 then a2 = 0

else a2 = 3*factorial(n-3)/(factorial(c1-1)*factorial(c2-1)*2(c2−1)*prod(A2)); end

if (c3 - 1)<0 then a3 = 0; else

a3 = 2*factorial(n-3)/(factorial(c1)*factorial(c2)*factorial(c3-1)*2(c2)∗3(c3−1)*prod(A3));

end

if (c1 - 4)<0 then b1 = 0;

else b1 = factorial(n-4)/(factorial(c1-4)*prod(A1)); end

if (c1 - 2)<0 then b2 = 0; elseif (c2 - 1)<0 then b2 = 0

else b2 = 6*factorial(n-4)/(factorial(c1-2)*factorial(c2-1)*2(c2−1)*prod(A2)); end

if (c3 - 1)<0 then b3 = 0; elseif (c1 - 1)<0 then b3 = 0 else

b3 = 8*factorial(n-4)/(factorial(c1-1)*factorial(c2)*factorial(c3-1)*2(c2)∗3(c3−1)*prod(A3));

end

if (c2 - 2)<0 then b4 = 0;

else b4 = 3*factorial(n-4)/(factorial(c1)*factorial(c2-2)*2(c2−2)*prod(A2)); end

if (c4 - 1)<0 then b5 = 0;

else b5 = 6*factorial(n-4)/(factorial(c1)*factorial(c2)*factorial(c3)*factorial(c4-

1)*2(c2) ∗ 3(c3) ∗ 4(c4−1)*prod(A4)); end

if (c1 - 5)<0 then d1 = 0;
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else d1 = factorial(n-5)/(factorial(c1-5)*prod(A1)); end

if (c1 - 3)<0 then d2 = 0; elseif (c2 - 1)<0 then d2 = 0 else

d2 = 10*factorial(n-5)/(factorial(c1-3)*factorial(c2-1)*2(c2−1)*prod(A2)); end

if (c3 - 1)<0 then d3 = 0; elseif (c1 - 2)<0 then d3 = 0 else

d3 = 20*factorial(n-5)/(factorial(c1-2)*factorial(c2)*factorial(c3-1)*2(c2)∗3(c3−1)*prod(A3));

end

if (c2 - 2)<0 then d4 = 0; elseif (c1 - 1)<0 then d4 = 0 else

d4 = 15*factorial(n-5)/(factorial(c1-1)*factorial(c2-2)*2(c2−2)*prod(A2)); end

if (c4 - 1)<0 then d5 = 0; elseif (c1 - 1)<0 then d5 = 0 else

d5 = 30*factorial(n-5)/(factorial(c1-1)*factorial(c2)*factorial(c3)*factorial(c4-1)*2(c2)∗

3(c3) ∗ 4(c4−1)*prod(A4)); end

if (c3 - 1)<0 then d6 = 0; elseif (c2 - 1)<0 then d6 = 0 else

d6 = 20*factorial(n-5)/(factorial(c1)*factorial(c2-1)*factorial(c3-1)*2(c2−1)∗3(c3−1)*prod(A3));

end

if (c5 - 1)<0 then d7 = 0;

else d7 = 24*factorial(n-5)/(factorial(c1)*factorial(c2)*factorial(c3)*factorial(c4)

factorial(c5-1)*2(c2) ∗ 3(c3) ∗ 4(c4) ∗ 5(c5−1)*prod(A5)); end

if n<2*r then per = error; elseif n>10 then per = error

elseif r == 3 then per = a1+a2+a3 elseif r == 4 then per = b1+b2+b3+b4+b5

elseif r == 5 then per = d1+d2+d3+d4+d5+d6+d7 else per = 0; end endfunction
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Appendix B

A Scilab program that calculates |Fix(g)| in X(r), 3 ≤ r ≤ 5

B.1 Introduction

In this program, the inputs are r, c1, c2, c3, c4, c5, where c1, c2, ..., c5 is the

cycle type of a permutation g ∈ Sn. The program is developed using expressions

2.7, 2.8 and 2.9. The program is invoked by f1 = fix(r, c1, c2, c3, c4, c5) where

f1 is the output while the others are inputs. We generate tables 2.3 and 2.4 using

this program.

B.2 Scilab Program

function [f] = fix(r, c1, c2, c3, c4, c5) if(c1 - 3)<0 then a = 0;

else a = factorial(c1)/(factorial(c1 - 3)*factorial(3)); end

b = c1*c2; c = c3;

if (c1 - 4)<0 then d = 0;

else d = factorial(c1)/(factorial(c1 - 4)*factorial(4)); end

if (c1 - 2)<0 then e = 0;

else e = c2*factorial(c1)/(factorial(c1 - 2)*factorial(2));end

if (c2 - 2)<0 then g = 0;

else g = factorial(c2)/(factorial(c2 - 2)*factorial(2));end

h = c1*c3; i=c4;

if (c1 - 5)<0 then j = 0;

else j = factorial(c1)/(factorial(c1 - 5)*factorial(5));
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end if (c1 - 3)<0 then k = 0;

else k = c2*factorial(c1)/(factorial(c1 - 3)*factorial(3)); end

if (c1 - 2)<0 then l = 0;

else l = c3*factorial(c1)/(factorial(c1 - 2)*factorial(2)); end

if (c2 - 2)<0 then m = 0;

else m = c1*factorial(c2)/(factorial(c2 - 2)*factorial(2));

end n = c5; o = c1*c4;

p = c2*c3;

if r == 3 then f = a+b+c; elseif r == 4 then f = d+e+g+h+i elseif r == 5

then f = j+k+l+m+n+o+p else f = 0; end

endfunction
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Appendix C

A Scilab program that calculates subdegrees of Sn for n ≤ 21

C.1 Introduction

In this program, the inputs are n and r. The program is developed using ex-

pressions 3.1. The program is invoked by subds1=comb(n,r) where subds1 is the

output while the others are inputs.

C.2 Scilab Program

function [subds] = comb(n,r)

a=1; if (r-1)<0 then b = 0; elseif (n-2*r+1)<0 then b = 0; else

b = factorial(r)/(factorial(r-1)*factorial(1))*(factorial(n-r)/(factorial(n-2*r+1)*factorial(r-

1))); end

if (r-2)<=0 then c = 0; elseif (n-2*r+2)<0 then c = 0; else

c = factorial(r)/(factorial(r-2)*factorial(2))*(factorial(n-r)/(factorial(n-2*r+2)*factorial(r-

2))); end

if (r-3)<=0 then d = 0; elseif (n-2*r+3)<0 then d = 0; else

d = factorial(r)/(factorial(r-3)*factorial(3))*(factorial(n-r)/(factorial(n-2*r+3)*factorial(r-

3))); end

if (r-4)<=0 then e = 0; elseif (n-2*r+4)<0 then e = 0; else

e = factorial(r)/(factorial(r-4)*factorial(4))*(factorial(n-r)/(factorial(n-2*r+4)*factorial(r-

4))); end

if (n-2*r)<0 then f=0; else
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f=factorial(n-r)/(factorial(n-2*r)*factorial(r)); end

if (r-5)<=0 then g = 0; elseif (n-2*r+5)<0 then g = 0; else

g = factorial(r)/(factorial(r-5)*factorial(5))*(factorial(n-r)/(factorial(n-2*r+5)*factorial(r-

5))); end

if (r-6)<=0 then h = 0; elseif (n-2*r+6)<0 then h = 0; else

h = factorial(r)/(factorial(r-6)*factorial(6))*(factorial(n-r)/(factorial(n-2*r+6)*factorial(r-

6))); end

if (r-7)<= 0 then i = 0; elseif (n-2*r+7)<0 then i = 0; else

i = factorial(r)/(factorial(r-7)*factorial(7))*(factorial(n-r)/(factorial(n-2*r+7)*factorial(r-

7))); end

if (r-8)<= 0 then j = 0; elseif (n-2*r+8)<0 then i = 0; else

j = factorial(r)/(factorial(r-8)*factorial(8))*(factorial(n-r)/(factorial(n-2*r+8)*factorial(r-

8))); end

if (r-9)<=0 then k = 0; elseif (n-2*r+9)<0 then k = 0; else

k = factorial(r)/(factorial(r-9)*factorial(9))*(factorial(n-r)/(factorial(n-2*r+9)*factorial(r-

9))); end

subds={a,f,b,c,d,e,g,h,i,j,k};

endfunction
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