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ABSTRACT 

In our study we have investigated hydromagnetic unsteady flow of a viscous 

incompressible fluid between two flat, parallel porous semi-infinite plates with constant 

suction in the presence of a transverse variable magnetic field. The flow variables such as 

velocity and thermodynamic properties at every point in the fluid vary with respect to 

time. The fluid is assumed to be flowing in the positive x direction between two parallel 

flat plates located at the y = ± L planes. We have particularly investigated the effects of 

Suction (V0), Hydrodynamic Reynolds number (Re), magnetic pressure number (Rh), 

Eckert number (Ec), Prandtl number (Pr), Variable magnetic field gradient (Fgrand) and 

magnetic field intensity (B) normal to the direction of flow on the dynamic behavior of the 

fluid when the lower plate is impulsively started in x direction at constant velocity U, 

while the upper plate remains stationary. We have employed the finite difference method 

to solve the coupled non-linear and dimensionless partial differential equations governing 

this problem. The iterations were performed using a computer program and the results 

have been presented graphically. Our findings show that both primary and secondary 

velocity profiles are largely influenced by change in V0, Re, Rh, By, and Fgrand. 

Temperature profiles are unaffected by magnetic field intensity (By) but influenced by 

suction, Prandtl number and Eckert number. 
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CHAPTER ONE 

1.0 INTRODUCTION 

Fluid flow can be considered to take place in presence of a magnetic field. In the 

absence of a magnetic field the fluid flow is studied under hydrodynamics. The fluids in 

this case include liquids and gases. The flow of a conducting fluid in a magnetic field is 

a branch of fluid flow studied under Magnetofluiddynamics and it combines the flow of 

both conducting liquids and gases. The fluids which are electrically conducting include 

liquid metals and ionized gases. The characteristics of the flow of an electrically 

conducting liquid in presence of a magnetic field are studied under 

Magnetohydrodynamics (MHD). The principle behind MHD theory and the effect of a 

transverse magnetic field applied to an electrically conducting fluid is that the 

interaction between the magnetic field and the induced electric current affects the 

characteristics of the fluid particle in the flow field. MHD tries to study the variation of 

these characteristics.   

1.1 Definition of terms 

1.1.1 Ideal and real fluids 

An ideal fluid is one that is incompressible and flows steadily, irrotationally and with no 

viscosity. According to the non-dissipative nature of ideal fluids, experimental results 

have shown that fluids such as air and water are not so ideal and that ideal fluids do not 
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actually exist. Real fluids are compressible and their flow exhibits viscous effect. This 

means that whenever there is a velocity gradient across the real fluid’s flow path, 

frictional forces arise between adjacent fluid particles due to the viscosity μ of the fluid. 

Ideal fluids obey the Newton’s law of viscosity i.e.  

                                                                                          (1.1) 

where τ is the coefficient of viscosity, u is the fluid velocity and y is the transition 

distance. This means that the shear stress τ in a fluid is proportional to the velocity 

gradient, which is the rate of change of velocity across the fluid flow path. For a 

Newtonian fluid, we can express     

                                                                                                                    (1.2)                                                                                 

The constant of proportionality µ is known as the coefficient of viscosity or simply 

viscosity. For some fluids sometimes known as exotic fluids, the value of µ changes 

with stress or velocity gradient. The viscosity of a pure Newtonian fluid depends only on 

temperature and pressure. When viscous fluids flow between stationary solid surfaces, 

the velocity of fluid particles in contact with the solid boundary is zero. At the solid wall 

boundary, a type of frictional force called skin friction exists. A boundary layer forms in 

the fluid flow region close to the solid wall. This is due to the no slip boundary 

condition. The thickness of the boundary layer will be dependent on the Reynolds 

number and the local flow properties.    
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1.1.2 Steady and unsteady flow 

Fluid flow can be classified as either steady or unsteady. The flow is said to be steady if 

the fluid flow variables such as velocity, applied magnetic field and temperature are 

independent of time. If on the other hand the flow variables are dependent on time the 

flow is said to be unsteady. 

1.1.3 Laminar and turbulent flow 

Laminar fluid flow is the motion of the fluid particles in a very orderly manner with all 

particles moving in straight lines parallel to the boundary walls. The particles do not 

encounter disturbance on their path. Turbulence in fluid flow occurs when a flowing 

fluid suddenly encounters a disturbance such as a solid obstruction or a force. As a result 

the fluid particles move in a disorderly manner with different velocities and energies. 

The shape of the velocity curve (the velocity profile across any given section of the flow 

channel) depends upon whether the flow is laminar or turbulent. For turbulent flow in a 

pipe a fairly flat velocity distribution exists across the section of the flow field, with the 

result that the entire fluid flows at a given single value. If the flow is laminar the shape is 

parabolic with the maximum velocity at the centre being about twice the average 

velocity in the pipe. 

  1.1.4 The continuum hypothesis  

As in ordinary hydrodynamics, the dynamics of the conducting fluid flowing in a trans 



 

 
4

verse magnetic field obeys theorems expressing the conservation of mass, momentum 

and energy. These theorems are; matter can neither be created nor destroyed, momentum 

of a moving body is always conserved and energy can never be destroyed but can be 

converted from one form to another. These theorems treat the fluid as a continuum. 

Although this assumption does not generally hold for plasmas, one can gain much 

insight into magnetohydrodynamics from the continuum approximation. For 

incompressible fluids, the mean distance between fluid particles remains fairly constant 

and is not affected by an increase in pressure.  

1.1.5 Magnetohydrodynamics 

Magnetohydrodynamics (MHD) is a branch of science which concerns the study of the 

flow of an electrically conducting fluid in the presence of a magnetic field. The fluids 

can be ionized gases generally called plasmas or liquid metals. Other terminologies used 

to refer to MHD are hydromagnetics or magnetofluiddynamics. The central point of 

MHD theory is that magnetic field can induce a current in a moving conductive fluid 

which ends up creating pondermotive forces on the fluid particles and also change the 

magnetic field itself. When a conducting fluid moves through the magnetic lines of force 

the positive and negative charges are each accelerated in such a way that their average 

motion gives rise to an electric current . In accordance with the dynamo 

rule, the voltage drop or electric field which causes this current is at right angles to the 

direction of fluid motion and the magnetic field lines; (Verma and Marthur 1968). 
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Figure 1.1. Dynamo rule 

In the case of a fluid conductor flowing in presence of a transverse magnetic field, the 

ordinary laws of hydrodynamics can easily be extended to cover the effect of magnetic 

and electric fields. This is done by adding magnetic force to the momentum conservation 

equation. To incorporate exhaustively the effects of magnetic and electric fields, the 

electric heating and work are added to the energy conservation equation. The Lorentz 

force is in a direction perpendicular to both J and B and is proportional to the magnitude 

of both J and B and is given by the cross product of J and B i.e. 

            (1.3)                                      

In MHD this force acts on the fluid particles. 

1.1.6 Model and Prototype. 

A model is an imitation of the actual object constructed in such a way so as to include 

all the technical characteristics of the actual object. For example, if a pump for corrosive 

liquids is being developed, several models of the actual pump are needed for accelerated 
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life tests with different chemicals. The results of these tests are compared and the desired 

pump characteristics are compiled and used to construct the actual pump. Such 

imitations used for testing are called models. In order to analyze the governing equations 

in MHD flow, a method of developing the flow model is adopted. The fact that the fluid 

motion in the model and prototype flow can be compared using non-dimensional 

parameters is an inevitable tool. The non-dimensional parameters are obtained by non-

dimensionalising the governing equations. We shall discuss these non-dimensional 

parameters and the governing equations in chapter two.  

1.2 Literature review 

The field of MHD fluid flow between parallel plates has attracted the interest of many 

scientists for a long time. Hartmann and Lazarus (1937) studied the influence of a trans-

verse uniform magnetic field on the flow of a conducting fluid between two stationary, 

insulated, and parallel infinite plates and discussed the results theoretically and 

experimentally. The observations made by the above scientists motivated other scholars 

to do research in this field. Stewartson (1951) studied and analyzed hydromagnetic flow 

of a viscous incompressible fluid past an impulsively started semi-infinite plate and 

Rossow (1958) extended the research on the flow of an electrically conducting fluid over 

a flat plate in the presence of a transverse magnetic field. Jain (1967) concentrated on 

the effect of wall porosity on the stability of hydromagnetic flow between parallel plates 

under transverse magnetic field and expressed the idea that the flow is largely influenced 

by porosity and the flow parameters. Sonju (1968) studied the role of the local 
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acceleration term in MHD momentum equation while Verma and Marthur (1968) 

researched on MHD laminar flow of an electrically conducting, viscous and 

incompressible fluid between two wavy walls. The governing equations are taken in the 

form of Fourier series investigated under the assumption that the coefficient of 

roughness and the hydrodynamic Reynolds number of the flow are small. Srivastava 

(1971) studied hydromagnetic couette flow of an electrically conducting viscous and 

incompressible fluid in presence of a transverse magnetic field when the plates are non-

magnetic and non-conducting with variable suction. Bhaskara and Bathaiah (1981) 

analyzed MHD flow of a viscous, incompressible and slightly conducting fluid between 

a parallel flat wall and a long wavy wall and evaluated the velocity distribution, the 

coefficient of skin friction and temperature distribution. Hassanien and Mansour (1990) 

presented the analysis of  a two dimensional unsteady flow of a viscous, incompressible  

and electrically conducting fluid through a porous medium bounded by two infinite 

parallel plates under the action of a transverse magnetic field with the lower plate fixed 

and the other oscillating in its own plane. They discussed the effects of varying magnetic 

parameter, frequency parameter and permeability of the porous medium. Das and 

Ahmed (1992) investigated the convective MHD flow past a uniformly moving infinite 

vertical plate with the magnetic field and the suction applied normal to the plate and 

Zamm (1996) researched on MHD free convection flow from a vertical semi-infinite flat 

plate with a step change in magnetic field. Attia (1998) studied transient MHD flow and 

heat transfer between two parallel plates with temperature dependent viscosity. 

Nthiarasu (2001) presented numerical work on natural convection in porous medium 
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fluid interface problems where he used the finite difference method to solve the 

generalized flow governing equations. Attia (2002) studied unsteady MHD flow and 

heat transfer of a dusty fluid between two parallel plates with variable physical 

properties. Knaepen et al., (2003) analyzed MHD turbulence at moderate magnetic 

Reynolds number and Singh (2003) presented numerical solution of hydromagnetic 

unsteady flow past an infinite porous plate. Rajeev and Jain (2004) examined the 

problem of MHD free convection flow in the presence of a temperature dependent heat 

source of a viscous incompressible fluid between a long vertical wavy wall and a 

parallel flat wall with constant heat flux and uniform transverse magnetic field. Chandra 

(2005) studied a steady hydromagnetic flow of an electrically conducting fluid between 

two parallel infinite plates and established that the flow profiles are influenced by the 

variation of the flow parameters. Mittal et al., (2005) analyzed buoyancy driven 

convection flow of liquid metals subjected to a transverse magnetic field and 

Smolentsev and Moreau (2006) investigated modeling quasi two dimensional turbulence 

in MHD duct flows in a trans-verse uniform magnetic field where viscous and Ohmic 

losses occur in the boundary layers at the flow-confining walls perpendicular to the 

magnetic field. Mittal and Kant (2006) made an analysis of natural convection in liquid 

metals subjected to an alternating magnetic field. Ramulu et al., (2007) investigated the 

effect of Hall current on MHD flow and heat transfer along a porous flat plate with mass 

transfer applying numerical methods to obtain the solutions. Ganesh (2007) studied 

MHD Stokes flow of a viscous fluid between two parallel porous plates in a channel in 

the presence of a transverse magnetic field when the fluid is being withdrawn through 
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both walls of the channel at the same rate and Jalil and Al-Tae’y (2007) considered 

MHD turbulent flow of a liquid metal filled in a square enclosure with natural 

convection.  

1.3 Problem statement 

 In the studies discussed above, none of the researchers has investigated the flow of a 

conducting fluid between two parallel porous plates when the lower plate is impulsively 

started at constant velocity and the upper plate stationary when a transverse variable 

magnetic field is applied in a direction perpendicular to the plates. The present research 

will be to investigate unsteady flow of an incompressible, viscous and electrically 

conducting fluid between two parallel semi-infinite porous plates when the lower plate is 

set impulsively in motion at constant velocity U while the upper plate remains stationary 

in the presence of a variable magnetic field and constant suction. The fluid under 

consideration is assumed to be fairly viscous. Semi- infinite implies that the flow field is 

unbounded in one direction; the Z direction. 

1.4 Objectives of the study 

I. To determine the velocity and temperature profiles of a conducting fluid flowing 

between two parallel, porous and semi infinite plates under the influence of a 

transversely applied inhomogeneous magnetic field when the lower plate is set 

impulsively in motion at constant velocity in the flow direction while the upper 

plate is stationary. 
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II. To analyze the effect of varying the flow parameters; viz Hydrodynamic 

Reynolds number, Suction, magnetic pressure number, magnetic field intensity, 

Eckert number and  prandtl number on the Velocity and temperature distributions 

for this flow. 

1.5 Justification 

Magnetohydrodynamics is a field with a wide range of practical applications particularly 

in Engineering. Scientific research in electricity and magnetism is on a world wide scale. 

In many practical engineering applications, we encounter conducting fluids flowing 

between moving boundaries. Our problem is a particular case of a fluid whose motion is 

caused by the relative motion of two parallel plates when the lower boundary is 

impulsively set at constant velocity in the flow direction while the upper plate is 

stationary. Apart from scientific curiosity about how porosity of the plates affects this 

type of flow, we intend to consider unsteady flow which has received little attention in 

previous related research. The application of MHD in engineering structures such as 

flow of liquid metals, cooling of nuclear reactors, electromagnetic casting, behavior of 

plasma in fusion reactors, cooling of moving parts in automobile engines, MHD electric 

current generators gives our study a practical framework. In the next chapter, we present 

the equations governing an unsteady flow of an incompressible and electrically 

conducting fluid between two parallel plates in the presence of a transverse magnetic 

field. 
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CHAPTER TWO 

2.0 GOVERNING EQUATIONS  

The assumptions and approximations made in this problem are stated. The governing 

equations are then subjected to the flow conditions of our problem and simplified. The 

flow problem is described and the equations non-dimensionalised followed by the 

discussion of the non-dimensional parameters. A method of solution using finite 

differences is then discussed and the equations expressed in terms of finite differences. 

2.1 Approximations and assumptions 

i. The fluid is incompressible, electrically conducting and fairly viscous. 

ii.  Thermal conductivity, electrical conductivity and coefficient of viscosity are 

constants. 

iii. There is no externally applied electric field and hence E=0. 

iv. Compared with the speed of light (c), the fluid velocity  is negligible, i.e. 

. 

v. The fluid does not undergo any chemical reaction. 

vi. The displacement current is negligible because the fluid is assumed to be fairly 

conducting and as such, the charge relaxation time is much shorter than the 

transit time of electromagnetic waves. 

vii. The flow is unsteady and there is constant suction at the plates. 
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viii. The Lorentz force J X B due to magnetic field dominates the force  due to 

the electric field. 

ix. The fluid satisfies the continuum hypothesis and the mean free path of the fluid 

elements is negligible as compared to the distance between the plates. 

x. The plates are non-conducting; the upper plate is stationary and the lower plate is 

set moving in x positive direction at constant velocity. 

xi. The permittivity, permeability, and conductivity are all assumed to be isotropic, 

i.e. D, J and E are in the same direction, and B is in the direction of H. 

xii. The structure of the porous plates is not flexible or compressible. 

2.2 The governing equations 

The principle of the theory of relativity are widely applied in the study of fluid flow by 

considering  that the fluid matter is conserved no matter the medium of particle or 

molecular interaction. The general equations governing fluid flow between two parallel 

porous plates under the influence of a transverse inhomogeneous magnetic field include 

the equation of conservation of mass otherwise called the equation of continuity which 

guarantees that the mass of the fluid is conserved. This law is based on the preposition 

that the mass of the fluid is conserved in the flow field and that the mean distance 

between fluid particles of an incompressible fluid remains fairly constant and that the 

fluid volume is not affected by an increase in pressure. Hence the continuum hypothesis 

is an application of the scientific theory of mass conservation and is expressed in the 

equation of conservation of mass. The momentum equation on the other hand balances 



 

 
13 

the resultant forces affecting the fluid with its consequential accelerations on the basis 

that the momentum of the fluid particle in motion must be conserved. The acceleration 

of the particle in this regard is mathematically considered to constitute the temporal and 

convective terms. Scientists have equally accepted that energy can neither be created nor 

destroyed but can be transformed from one form to another. There are at least six forms 

of energy namely mechanical, electrical, chemical, nuclear, and electromagnetic and 

heat or thermal energy. The energy in the fluid flow system is generally governed by the 

energy equation which is used to determine the temperature profiles of the electrically 

conducting fluid in relation to continuously changing kinetic and electro-magnetic 

energies. The main objective in MHD is to study velocity and magnetic field 

distributions and their interactions of whose product is an induced electric current which 

in turn interacts with the magnetic field via Maxwell’s electromagnetic laws. A further 

outcome of this interaction is a complex interference with the fluid flow profiles due to a 

force called Lorentz force expressed as J X B. Consequently, the fluid flow is governed 

by a system of highly nonlinear coupled partial differential equations representing the 

profiles of the local flow variables such as velocity and temperature. The typical 

equations which govern parallel flow in MHD are presented and discussed in the 

following sections. 

2.2.1 Equation of conservation of mass 

The conservation of mass is represented by the equation of continuity and is 

mathematically expressed as 
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 0

 q

t


                                                                                                          (2.1) 

This law is based on the prepositions that the mass of the fluid is conserved in the flow 

field and that the mean distance between fluid particles of an incompressible fluid 

remains fairly constant and that the fluid volume is not affected by an increase in 

pressure. This is the continuum hypothesis. Since we are considering an incompressible 

fluid the density  is assumed to be constant hence equation (2.1) takes the form           

                                                                                                                                    (2.2) 

2.2.2 The induction equation 

The main objective in MHD is to study velocity and magnetic field distributions and 

their interactions. The basic laws of electricity and magnetism can be summarized in 

differential form by four equations called the Maxwell’s electromagnetic equations (2.3, 

2.4, 2.5 & 2.6), (Shercriff, 1965). 

  Faraday’s law                                                   (2.3) 

 Ampere’s law                                                                            (2.4) 

 Coulomb’s law                                                                               (2.5) 

 Absence of free magnetic poles                                                         (2.6) 

The above equations except Faraday’s law were derived from steady state observations. 

Maxwell spurred on by Faraday’s observations that the static equations may not hold 
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unchanged for time dependent fields noted that the equation for Ampere’s law was 

faulty. He noted that the continuity equation could be converted into a vanishing 

divergence by using Coulomb’s law and hence replaced J in Amperes law by its 

generalization. While  is valid for steady state problems, the complete relation is 

given by the continuity equation for charge and current and can be expressed as 

            (2.7) 

This relation can further be written as 

           (2.8) 

or 

           (2.9) 

This adjustment is necessary considering the fact that most hydromagnetic flows are 

unsteady and the flowing fluid encounters rapidly fluctuating fields. Below are the set of 

the revised Maxwell’s electromagnetic equations. 

                                                                             (2.10) 

                    (2.11) 

                    (2.12) 

                    (2.13) 
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Consider an electric charge e moving in an electromagnetic field. It experiences an 

electric force E and a magnetic force . The resultant force on the charge e is the 

sum of the two forces and is given by the Lorentz’s equation which is expressed as 

                     (2.14) 

This force acts in a direction normal to both J and B and is proportional to their 

magnitude. Then we have the generalized Ohm’s law in which  is a material property 

known as the electrical conductivity; 

                                                (2.15)     

The displacement current term  is usually negligible at fluid’s local velocity  which 

is usually much less than the speed of light and the law reduces to   

                   (2.16) 

Taking the curl of equation (2.16) yields  

                                                                              (2.17) 

The displacement current is negligible with respect to J and  because we are 

interested in materials such as molten metal which is sufficiently conducting. 

Substituting equation (2.10) and (2.11) in (2.17) yields    
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                            (2.18) 

Expanding equation (2.18) using the vector triple product rule 

 yields  

                                        (2.19) 

If the divergence of B is zero, the magnetic field is uniform we can deduce that the first 

term in equation (2.19) vanishes and the equation simplifies to 

                                                                 (2.20) 

The above equation can be further simplified by substituting a constant  into the 

form 

                 (2.21) 

The constant η is called the electrical diffusivity of the fluid. By introducing another 

constant; the magnetic diffusivity    and simplifying equation (2.21) leads to the 

form 

                   (2.22) 
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Equation (2.22) is reffered to as the induction equation and it establishes that the local 

rate of change of H results from the net effect of convection  (the curl term) and 

diffusion, (the last term). By convection is meant the tendency of a travelling fluid 

element to have constant characteristics (e.g temperature) in the absence of diffusion.To 

explain diffusion, consinder a case where convection is supressed by taking vector  as 

zero in the induction equation. Then the evolution of a magnetic field in a stationary 

conductor is given by   

                    (2.23) 

 Equation (2.23) can be recognized as similar to the well known heat conduction 

equation 

                    (2.24) 

in which T is temperature and  is thermal diffusivity, the only difference being that B 

is a vector while T is a scalar. Equations (2.23) and (2.24) express the idea that the 

relevant quantity B or T cannot change its distribution in the medium instantaneously, 

but must diffuse at a limited rate. Expanding the convection term in equation (2.22) 

using vector triple product rule yields 

                                              (2.25) 
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The vector dot products are commutative i.e.   and  and equation 
(2.25) yields 

                                                                                (2.26) 

Equation (2.26) is referred to as the induction equation. 

2.2.3 Equation of conservation of momentum 

The law of conservation of momentum postulates that the sum of all the resultant forces 

is equal to the rate of change of momentum. The momentum of a body is defined as the 

product of its mass and velocity. Hence we can conclude from this postulate that on 

application of a force to an incompressible fluid mass, its velocity changes. The unit of 

momentum in Standard International units is one kilogram meter per second. When two 

bodies having different masses are acted upon by the same force for the same time, they 

attain different velocities but gain equal momentum. This important connection between 

force and momentum was recognized by Sir Isaac Newton and led to the formulation of 

the Newton’s second law of motion which states that the rate of change of momentum of 

a body is proportional to the applied force and takes place in the direction in which the 

force acts. In fluid flow, the rate of change of momentum of a fluid element is equal to 

the sum of the forces acting on the fluid element. For us to be able to consider all the 

forces taking effect in hydromagnetic flow, we first discuss electromagnetic force which 

acts on the fluid particles. The application of a magnetic field (B) to a conducting fluid 

in motion causes the formation of induced currents (J). The induced currents interact 

with the externally applied magnetic field resulting in the damping of the flow field by 
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the Lorentz force. An electric charge e moving in an electromagnetic field experiences 

an electric force E and a magnetic force  . The resultant force on the charge e is the 

sum of the two forces and is given by Lorentz’s equation which is expressed as                      

                    (2.27) 

 There is no externally applied electric field and hence E=0 and equation (2.27) reduces 

to 

                    (2.28) 

The momentum equation governing the flow of an electrically conducting fluid can thus 

be adjusted to include Lorentz force yielding   

                                                              (2.29) 

The first term on the LHS of equation (2.29) represents the temporal acceleration and the 

second term the convective acceleration. On the RHS, the first term is the pressure 

gradient force, the second term is the viscous force, and third term is the Lorentz force 

and lastly the body force. The last two terms are body forces. 

2.2.4 Equation of conservation of energy 

The energy conservation is expressed in the law of conservation of mater. There are at 

least six forms of energy namely mechanical, electrical, chemical, nuclear, and 

electromagnetic and heat or thermal energy. The mathematical formulation of the 
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equation of conservation of thermal energy is derived from the first law of 

thermodynamics. This law asserts that the amount of heat added to a system dQ is equal 

to the change in internal energy dE plus the work done dW and is expressed as 

                   (2.30) 

Considering the flow of an incompressible fluid with constant thermal conductivity K, 

thermal energy equation is expressed as 

                   (2.31) 

In the spirit of Boussinesq approximation, it is supposed that the fluid has a constant 

heat capacity per unit volume , implying that    is equal to the rate of heating 

per unit volume of a fluid particle. Thermal conductivity K of the fluid is the rate of flow 

of heat through the fluid per unit cross-sectional area per unit temperature gradient,   

is the internal heating due to viscous dissipation and    is the material derivative of the 

absolute temperature T of the fluid. In addition, Ohmic heating occurs due to the internal 

resistance of the fluid when a conducting fluid flows in presence of a transverse 

magnetic field. This leads to an extra term in the energy equation governing hydro-

magnetic flow. Granted Ohm’s law without Hall effect, 

                   (2.32) 
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Of E.j, the Ohmic heating term  contributes to an increase in internal energy of the 

fluid. The remainder part  pushes the fluid, either creating kinetic energy or 

helping to overcome other forces or the reverse if the term is negative. Considering the 

Ohmic heating, the energy equation takes the form 

                                                                                       (2.33) 

2.3 Description of the research problem 

This study focuses on the effects of a transverse variable magnetic field on the flow of 

an electrically conducting fluid. An electrically conducting incompressible fluid fills the 

space between the two non-conducting, non-magnetic, semi infinite parallel porous 

plates. The two parallel porous plates are located at positions y = - L and y = L 

respectively, hence their separation is 2L units. The x coordinate axis has been taken 

along the main flow direction. The system is initially at rest and the lower plate is 

impulsively set in motion in the positive x direction at constant velocity U while the 

upper plate remains stationary. We assume that the upper plate attains a temperature Tw 

while the lower plate is maintained at initial free stream temperature T∞. The flow is 

induced by the relative motion of the two solid walls taking into account that the flow of 

a viscous fluid no matter how little the viscosity must satisfy the no slip condition, i.e. 

the velocity of the fluid layer adjacent to a solid boundary is equal to the velocity of the 

solid boundary. For a solid boundary at rest, the fluid in contact with the body has 
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Figure 2.1. The flow configuration of the problem. 

velocity zero. In this condition the fluid velocity increases in a direction normal to the 

boundary. Since the plates are semi infinite, the flow field is unbounded in one direction 

i.e. the z direction. A variable transverse magnetic field B is applied in the x-direction. 

The transverse magnetic field induces a voltage drop of magnitude UxBy in the z 

direction leading to a current flow in the same direction. The amount of current depends 

on the voltage induced since the electrical conductivity   of the fluid is assumed 

constant. Electro-magnetic interaction yields Lorentz force which tends to oppose the 

fluid flow. The magnitude of the Lorentz force depends on the magnetic flux By and the 

magnetic flux gradient    since the fluid is assumed to have a constant magnetic 
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permeability . In this paper, the effect of transverse inhomogeneous magnetic field 

on the flow behavior will be investigated. The flow configuration describing this system 

is presented in figure 2.1. 

2.4 Flow conditions  

The porous plates are electrically non-conducting and the velocity of the fluid particles 

in contact with the respective plates is equal to that of the plates. This is due to the no 

slip condition where such particles stick tightly on to the solid plates and are assumed 

not to slide no matter how little the fluid viscosity is. The initial conditions for 

incompressible unsteady flows are that everywhere in the solution region, velocity and 

temperature must be given i.e. the velocity and temperature must be known as a function 

of position. The velocity, temperature and magnetic field initial and boundary conditions 

for this flow problem can be stated in summary as follows; 

 t<0,         u(x, y, 0) = 0,        w(x, y, 0) = 0,      T(x, y, 0) = T∞ 

 t≥0,         u(x, -L, t) = U,        w(x, -L, t) = 0,       T(x, -L, t) = T∞ 

 t≥0,         u(x, L, t) = 0,        w(x, L, t) = 0,     T(x, L, t) = Tw 

 t≥0,         u(X, y, t) = 0,        w(X, y, t) = 0,     T(X, y, t) = T∞ 

The flow field considered is arbitrarily within the range 0≤x≤X where X is the extent 

along the x axis and -L≤y≤L as the plates separation. The applied inhomogeneous 

magnetic field has the following boundary conditions: 
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 t≥0, By = 0 for x<0,          for 0≤x≤X 

The flow set up is such that the rate at which the magnetic field intensity By changes in 

the defined length 0<x<X is constant, implying that the magnetic field gradient 

 is constant. Vorticity or dragging effect is generated by the viscosity, 

and also by the interaction between the resultant electric field, ‘‘Curl By which as 

established in the next section yields ’’ and the applied magnetic field 

 to produce an electromagnetic force (J X B). The mathematical 

formulation and progressive analysis of this problem are presented in the proceeding 

subtopics. 

2.5 Mathematical formulation  

The deduction of the boundary layer equations was perhaps one of the most important 

advances in ordinary fluid dynamics and MHD. The principles of the boundary layer 

equations are applied in formulating the equations describing the research problem, ‘‘a 

two dimensional analysis of unsteady flow of a conducting fluid in presence of a 

variable transverse magnetic field’’. An extra term J X B is included in the momentum 

equation as mentioned earlier, and the joule heating has been disregarded. Since our 

interest is largely focused on the effect caused to the flow properties by this variable 

extra term, the treatment of the boundary layer equations is far more complex due to the 

time dependent variation of the flow variables. The instantaneous velocity and 
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temperature of a fluid particle is considered to be influenced by the inhomogeneous 

magnetic field via the instantaneous mean magnetic field strength and its fluctuating 

part, i.e.  . Therefore, the equation of continuity for a two-dimensional unsteady 

incompressible flow in Cartesian coordinates is given by 

                                                                                                                (2.34) 

The velocity gradient in the y direction far exceeds the tangential velocity gradient hence 

                                                                                                                         (2.35) 

Integrating this equation yields v=V, a constant representing the suction velocity. The 

momentum equation requires simplification of the magnetic force to determine the 

effective component. The variable transverse magnetic field induces a current given by 

                    (2.36)  

We take that  is in the direction of  and that  yielding 

                  (2.37) 

or 

               (2.38) 
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Hence, the induced current in component form can be expressed as   

Since the flow is unbounded in the Z direction, . This implies that   

where the component in the Z direction is given by 

                    (2.39) 

The Lorentz force obtained by the cross product      yields                                          

                               (2.40) 

Substituting Jz in equation (2.40) yields 

                   (2.41) 

The Lorentz force which acts on the fluid particles is in the negative X direction. We 

take that pressure P does not change in the direction of the flow then   and  

. Since the flow is two dimensional, the momentum equation in Cartesian 

coordinates is given by 

               (2.42) 

                 (2.43) 
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where u and w are the velocity components, ρ is the density and ν = μ/ρ is the kinematic 

viscosity of the fluid at a point. In our work, we have neglected the joule heat dissipation 

in the energy equation. The viscous dissipation function φ for a three dimensional flow 

is given by (Jalil 2007). 

          (2.44) 

In this problem, the flow is two dimensional and semi-infinite. As the ratio ‘‘typical 

length scale (L) is to Hartmann distance (δ)’’ becomes very large as compared to 

dimensionless unity, the rate of change of flow variables in the direction normal to the 

interface far exceeds that in any tangential direction so that we may neglect tangential 

derivatives; (Shercriff, 1965). Hence, we neglect derivatives with respect to x and z. 

Variation in the X direction is small as compared to that in Y direction since the greater 

variation is in the direction perpendicular to the boundary plate and fluid interface. 

Consequently, the viscous dissipation function reduces to 

                   (2.45) 

The energy equation in Cartesian coordinates simplifies to 

                         (2.46) 
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In conclusion, the continuity equation is implied by equations (2.34) and (2.35) and the 

electromagnetic effect is manifested through instantaneous variation of    and   . 

Referring to equation (2.41), the effect of isolated variation of these two terms 

corresponds to the effect of transverse variable magnetic field on the flow of the 

conducting fluid without loss of approximate generality. This treatment takes care of the 

induction equation as well as the Lorentz force term. Hence, we can summarize the 

governing equations for this research problem as  

               (2.47) 

                 (2.48) 

                         (2.49) 

2.6 Non-dimensional parameters  

The non-dimensional parameters allow for the flow field to be bounded. The following 

non-dimensional numbers have been used in this work.                              

2.6.1 Hydrodynamic Reynolds number (Re) 

This non-dimensional parameter is a ratio of inertial force to viscous force. It gives the 

relative significance of inertial force to viscous force in a fluid flow problem and is 

expressed as;                                
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                                                                                                            (2.50) 

where U and L are the characteristic velocity and length scales; that is typical measures 

of how fast the fluid is moving and the size of the system. One can have various values 

of L and U and of the density ( ) and investigate the sequence of changes that occurs to 

the flow pattern as Re is changed. We note that if the Reynolds number is the same for 

two geometrically similar situations, then the equations for the non-dimensional 

variables are the same. Hence they have the same solutions and the same flow patterns 

occur. If the Reynolds number is different, the equations are different and there is no 

reason to expect the same flow behavior. Therefore, the condition for dynamic similarity 

is equality of Reynolds number. Whereas it might seem that one would need to 

investigate separately the effect of varying each of the quantities L, U,  and , in fact 

one need investigate only the variations with Reynolds number. In reality, Reynolds 

number can never vanish, or equivalently inertial forces are never zero, but it has been 

shown that zero Reynolds Number approximation produces an accurate representation of 

the flow field in the vicinity of small particles. 

2.6.2 Magnetic pressure number Rh 

The magnetic pressure number is expressed as 

                                                                       (2.51) 
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It is the ratio of magnetic pressure to hydrodynamic pressure and gives the relative 

significance of the two pressures in MHD fluid flow. 

2.6.3 Prandtl number Pr 

The aerodynamic boundary layer was first defined by Ludwig (1952) in a paper he 

presented on August 12, 1904 at the third International Congress of Mathematicians in 

Heidelberg, Germany In recognition of his contribution in fluid flow research, the ratio 

of the velocity boundary layer thickness and the thermal boundary layer thickness is 

governed by a non dimensional parameter called the Prandtl number. If the Prandtl 

number is 1, the two boundary layers are the same thickness. If the Prandtl number is 

greater than 1, the thermal boundary layer is thinner than the velocity boundary layer. If 

the Prandtl number is less than 1, which is the case for air at standard conditions, the 

thermal boundary layer is thicker than the velocity boundary layer. This non dimensional 

parameter is a property of the fluid, not of particular flow. Hence, there is a restriction 

on the transfer of information from experiments with one fluid to those with another. Put 

in another way it is an approximation to the ratio of momentum diffusivity and thermal 

diffusivity and is expressed as 

                                                                     (2.52) 

Full similarity of forced convection of heat requires that there is equality of both the 

Reynolds number and Prandtl number. 
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2.6.4 The Eckert number EC  

This number is expressed as 

                                                                                                               (2.53) It 

is the ratio of kinetic energy of the flow to the thermal energy. 

2.6.5 Joule parameter R 

When a current flows through a conductor, an increase in temperature of the conductor 

occurs due to its electrical resistance. This phenomenon is called joule heating and is 

named after the scientist Prescott Joule having been the first scientist to establish Joules 

law which relates the amount of heat released from an electrical resistor to its resistance 

and the charge passed through it. This non-dimensional parameter is expressed as  

                                                                                                   (2.54) 

2.6.6 Magnetic Reynolds number Rm  

The relative strength of resistivity (the reciprocal of conductivity) is measured by a  

dimensionless number called the Magnetic Reynolds Number Rm which can be thought 

of as a typical ratio of the advective and the diffusive terms in the induction equation. 

This parameter is used to decide whether a plasma is diffusion or convection dominated   

and is expressed as; 
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                                                                                                        (2.55) 

The conductivity is ‘infinite’ when Rm is large. If Rm is small the magnetic field is not 

changed appreciably by the flow thus induced magnetic field can be taken to be zero. If 

it is large, magnetic effects may be expected to be prominent.    

2.7 Non-dimensional form of the governing equations  

A useful starting point is to emphasize that two similar flow patterns occur when the 

non-dimensional parameters are the same. Consequently, the governing equations are 

none dimensionalised with an objective of determining the important parameters 

necessary in analyzing the flow problem. The following non-dimensional quantities are 

hereby stated; 

        (2.56) 

The scale length L is half distance between the parallel plates, U is the constant velocity 

of the upper plate, B0 is the characteristic magnetic field intensity, V is the constant 

suction velocity ρ is the fluid density and   and   are non-dimensional 

quantities. The momentum equation can be non-dimensionalised as follows; 

                 (2.57) 

                 (2.58) 
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                (2.59) 

                                                                                                                                                  

                                                                                                                       (2.60)  

               (2.61)     

                      (2.62)       

 Substituting (2.59) to (2.62) into the respective equations (2.57) and (2.58) yields 

              (2.63) 

                (2.64) 

Equations (2.63) and (2.64) can be further simplified by substituting the Reynolds 

number (Re), suction parameter     and magnetic pressure number Rh yielding the 

final form of the equations governing the primary and secondary velocity profiles as:   

               (2.65) 

                (2.66) 

The energy equation is non-dimensionalised and expressed as follows. 
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              (2.67) 

               (2.68) 

                           (2.69) 

               (2.70) 

             (2.71)                                                                                                                            

               (2.72) 

Substituting (2.68) to (2.72) and   in equation (2.67) and dividing by    

yields 

                   (2.73) 

Substituting the suction parameter V0, Prandtl number (Pr) and the Eckert number (Ec) in 

equation (2.73) lead to the final form of the energy equation as 

             (2.74) 

The non-dimensional form of the equations governing this problem can be stated in 

summary as 
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             (2.75) 

                       (2.76) 

             (2.77) 

2.8 Non-dimensional boundary conditions  

In this problem, the fluid particles in contact with the solid boundaries are assumed to 

stick tightly and not to slide over the plates, i.e. the fluid satisfies the no-slip condition. 

This implies that their velocity in time t≥0 is equal to that of the plates. We take the 

halfway plates separation distance (L) as the characteristic length. The boundary 

conditions are non-dimensionalised as follows; 

                                                                                                           (2.78) 

Substituting the value of y at the upper and lower boundaries respectively in the above 

equation yields;  

                                                                                   (2.79) 

                                                                               (2.80) 

On the fluid boundaries, velocity, magnetic field and temperature must be known. The 

initial conditions for incompressible unsteady flows are that everywhere in the solution 
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region, velocity and temperature must be given i.e. the velocity and temperature must be 

known as a function of position. Similarly, taking U as the reference velocity, the non-

dimensional boundary conditions on velocity can be determined. 

                                                                                        (2.81) 

The upper plate is stationary and lower plate is impulsively set in motion at constant 

velocity U. Hence the non-dimensionalised fluid velocities on the solid boundaries at  

 and    in time t≥0 are 1 and 0 respectively, i.e.  

                                                                                  (2.82) 

                                                                                  (2.83) 

The temperature T of the fluid and the plates is assumed to be the same everywhere at 

t<0 and is equal to the free stream temperature T∞. The temperature of the fluid in con-

tact with the plates is assumed to be equal to that of the respective plate at all times. As a 

condition at , the fluid in contact with the plates attain respective boundary 

temperature , the fixed fluid temperature at the plates. The temperature of the lower 

plate is assumed to be maintained at ,  which implies that the fluid temperature 

at the lower plate is non-dimensionalised and expressed as 
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                                                                           (2.84) 

Similarly, the temperature at the upper boundary is non-dimensionalised and expressed 

as 

                                                                                                           (2.85) 

In the main flow direction, x*=X/L where X is an arbitrary extent of x beyond which the 

fluid exhibits free flow conditions and hence, 0≤x*≤ X/L. The numerical value of X/L is 

determined by the terminal iteration values from the computer program and will be 

discussed in the next chapter. The non-dimensional initial and boundary conditions on 

velocity and temperature and magnetic field for this problem can be summarized as 

shown in the table below. 

    

    

   

u*(X/L,y*,t*) = 0 w*(X/L,y*,t*) = 0 θ*(X/L,y*,t*) = 0 

 

Table 2.1. Initial and boundary conditions of the flow system 
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In our analysis, we have assumed that electromagnetic interaction is initially zero; the 

magnetic field intensity  is varied instantaneously from 2.0T to 4.0T, and the 

magnetic flux gradient  similarly from 0.03 to 0.05. The effect of isolated variation 

of these two terms corresponds to the effect of transverse variable magnetic field on the 

flow of the conducting fluid without loss of approximate generality. In the referred 

equation, the non-dimensionalised form of J X B has been simplified to  where 

Rh is the magnetic pressure number. This approach renders the induction equation solved 

a priori as well as the Lorentz force term, thus at t*≥0,      for 0≤ x*≤X/L 

and      elsewhere. In the following chapter, we present the mathematical 

concepts and the method of solution. 
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CHAPTER THREE 

3.0 MATHEMATICAL CONCEPTS AND METHODOLOGY 

Three mathematical concepts are useful in determining the success or otherwise of a 

numerical solution algorithm. These are convergence, consistence and stability of the 

method. Convergence is the property of a numerical method to produce a solution which 

approaches the exact solution as the grid spacing, control volume or element size is 

reduced to an infinitely small value. Stability is associated with damping of errors as the 

numerical method proceeds. If a technique is not stable even round off errors in the 

initial data can cause wild oscillations or divergence. We will use the forward finite 

difference approximation method to solve our flow’s governing equations, the choice of 

which is based on its convergence and stability property. 

3.1 The finite difference approximation 

In this study, the velocity and temperature at the end of each time step are indicated via 

notations uk+1, wk+1 and θk+1. They are computed from respective equations (58), (59) and 

(60) and their values determined iteratively. Time step variation is indicated via the 

index k+1 while the coordinate (i, j, k) indicate spatial points in the mesh system with 

respect to varying x, y and t respectively. To obtain an approximation of the exact partial 

derivatives appearing in our flow governing equations, we employ Taylor’s series 

expansion of the dependent variable about the grid point (i, j, k). When j is constant, the 
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Taylor’s series expansions of a function f (i, j) via forward and backward grid steps (i+1) 

and (i-1) respectively when j is constant are given by 

      (3.1) 

       (3.2) 

If we truncate the Taylor’s formulas in equation (3.1) and (3.2) after the first derivative 

term and combine them by subtraction and represent the higher order terms with the 

abbreviation ‘Hots’, the approximation for the first order partial derivative at the grid 

point (i, j) is  

      (3.3) 

Similarly, the Taylor’s approximation for the first order derivative with respect to 

varying y at the grid point (i, j) is 

                                                                 (3.4) 

If the Taylor’s formulas in equation (3.1) and (3.2) are further truncated after the second 

derivative term and added, the approximation for the second order partial derivatives at 

the grid point (i,j) are 

                              (3.5) 
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                   (3.6) 

The truncation errors are of second order i.e.  and  and hence, the central 

differencing formula is second order accurate.  Let the mesh point variable at time step k 

be denoted by f(i,j,k). The forward difference for the first order derivatives with respect 

to time t is given by  

       (3.7) 

3.2 Convergence of the finite difference method 

 In the analysis of our flow problem, we have used Δx≈0.05, Δy≈0.05 and Δt≈0.00625. 

Specific application of these space and time steps in the current paper will be discussed 

in the next chapter. The choices of Δx, Δy and Δt guarantees the convergence of the 

finite difference method. According to Leboucher (1999) the solution converges when 

Δx, Δy and Δt satisfy the following condition; 

          (3.8) 

3.3 Definition of the mesh  

Explicit relation between the partial derivatives and the functional values at the adjacent 

 nodal points are obtained using a uniform mesh system. The rectangular regions are 

subdivided into smaller and equal square elements whose lengths and widths are    by  
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  and the time variation along the vertical axis is represented by . The mesh system 

can thus be described as shown in figure 3.1 below.  

Figure 3.1. The Mesh system 

3.4 The finite difference form of the governing equation 

The momentum equation can be expressed in finite difference form via time step k+1 

yielding the primary velocity profile as 

                                    (3.9)    
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                                                                                                 (3.10) 
The secondary velocity profile is similarly expressed in finite difference form as  

                           (3.11)                                                                                                 

 

                                                                                                                                   (3.12) 

The pressure gradient terms   and    are considered to be constant (zero) 

since the flow is fully developed and Fgrand represents the magnetic flux gradient   . 

The energy equation in finite difference form is expressed as  

             (3.13)   
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                                                                                                                                   (3.14)  

The method of solution to these equations involves a step by step substitution of the 

appropriate nodal values (mesh point values) within a cell grid resolution of 40X40 into 

the discretised equations governing the flow. Hence, starting with the initial boundary 

conditions where all the nodal values are known, the solution at each time step has 

effectively been obtained using a computer program written in Visual C++. The 

challenges associated with non-linearity of the governing equations and the coupling 

between the transport equations have been tackled by adopting an iterative strategy. The 

results of iterations of the flow variables obtained have been presented graphically and 

discussed.  

3.5 Method of solution   

The solution to this problem is obtained via an iterative strategy where the variable in 

question is expressed in terms of its local mesh point values at the previous time step. 
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We have computed values of velocity and temperature via consecutive expressions of 

,   and , i.e.   

 
                                                                                                                                                 (3.15) 

                                                                                                 (3.16) 

 

                                                                                                                                   (3.17) 
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The computations are performed using small values of Δt, ie constant time steps of Δt= 

0.00625. The range of i and j follows from constant step sizes Δx≈0.05 and Δy≈0.05 

within a square mesh framework. Using the expressions x*=iΔx and y*=jΔy, the range 

of j in terms of discrete units is transformed to  which is equivalent to -1 

≤y* ≤ 1. This follows from the deduction that for . 

Similarly when . This range is arbitrary and its equivalent whole unit grid 

steps over the entire mesh system are 0 ≤ j ≤ 40. The unit grid steps along the direction 

of flow are similarly calculated and for a square mesh framework, 0 ≤ i ≤ 40. The fluid 

exhibits free stream profiles in the region defined by i>40. The fluid particles in contact 

with the lower plate at j=0 move at the same velocity with the plate due to the no slip 

condition while the velocity at the upper plate remains zero. The fluid exhibits free 

stream profiles in the region defined by i>40. This procedure ensures that the following 

conditions apply;  

 The flow variables converge after the 300 iterations, i.e. for k+1=300. An 

immediate result for this value of k follows when further iterations do not make 

any significant change of the flow variable being iterated. 

 The fluid exhibits free stream profiles in the region i>40 for all j and k, hence 

i=41=∞. 

 The locations of the parallel plates at y=±L are arbitrary 

 The iterations are carried out for different values of j=0,1,2,..40. To cater 

for inhomogeneous magnetic field, iterations are carried out for i=0,1,2,..40. 
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In short, the discretised conditions are shown in  table 3.1.  

Flow Conditions Primary velocity  Secondary 

velocity 

Temperature  

           

       

 

                

 

   

   

   

 

TABLE 3.1. Discretised boundary conditions 

To be able to cater for the inhomogeneous magnetic field, we have considered the 

variation of By and  . These two terms are as a result of the simplified Lorentz force 

J×B; ‘‘the cross product of the induced current when the displacement current is 

neglected in line with Ampere’s law (2.4) and the applied transverse inhomogeneous 

magnetic field’’. The results have been obtained for By=2.0-4.0 T, Fgrand=0.03-0.05 

T2m-1, Rh=1.0-3.0, θ=0-1.0, Pr=0.71-0.74, Ec=0.5-0.7, V0=0-0.5 and Re=2000-3000. 

In the next chapter, we discuss the results of the velocity and temperature profiles of the 

flow.  
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSIONS 

4.1 Discussion of results 

The computations and results for the primary velocity u and the secondary velocity w 

were made at constant values of Prandtl number and Eckert number. The temperature 

computations and results have been obtained at constant values of Reynolds number, 

magnetic flux gradient and magnetic pressure number. The graphs show the primary 

velocity profiles, secondary velocity profiles as well as the temperature profiles. The 

various profiles are distinguished using different dash type line style curves and letter 

codes.  

4.1.1 Primary Velocity Profiles  

Figure 4.1 provides the primary velocity profiles obtained with respect to y when the 

Prandtl number (Pr) and Eckert number (Ec) are fixed and the other parameters varied. 

From this figure, it is clear that; 

(i) Removal of suction i.e. V0=0.0 leads to an increase primary velocity profiles. 

Suction enhances vertical fluid particle transition which slows its horizontal 

velocity and vice versa. 

(ii)  An increase in Reynolds number leads to an increase primary velocity profiles. 

Since this parameter acts to dampen the viscous effects, inertial forces tend to 
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dominate over the viscous forces and the fluid tends to continue with its state of 

motion with negligible resistance of frictional forces. 

Pr = 0.71,   Ec = 0.05 

 

Figure 4.1. Primary Velocity Profiles 

(iii) An increase in magnetic field gradient (Fgrand) leads to a decrease in primary 

velocity profiles. The interaction between the magnetic field gradient and the 

induced current in the fluid generates Lorentz force which opposes the flow thus 
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slowing it down. The greater the flux gradient, the greater is this force implying 

greater opposition to the flow, yielding to reduced velocity profile.     

(iv)  An increase in magnetic field intensity (By) leads to a decrease in primary 

velocity profiles. The interaction between the magnetic field gradient and the 

induced current in the fluid generates Lorentz force which opposes the flow thus 

slowing it down. This is the effect of the inhomogeneous magnetic flux on the 

flow. 

(v)  An increase in magnetic pressure number (Rh) leads to a decrease in primary 

velocity profiles. This implies that an increase in magnetic pressure number 

yields an increase in magnetic pressure force. This force acts to oppose the flow 

and hence slowing it down. 

4.1.2 Secondary velocity profiles  

Figure 4.2 provides the secondary velocity profiles obtained with respect to y when the 

Prandtl number Pr and Eckert number Ec are fixed and the other parameters varied as 

shown in table 4.1. From this figure, it is clear that; 

 Removal of suction leads to an increase in the secondary velocity profiles. The 
Downward suction enhanced by gravitational pull has a counter effect of slowing 

down the upward transition of fluid particles. 

 An increase in Reynolds number leads to a decrease in secondary velocity 

profiles. Inertia forces dominate over viscous forces and hence the fluid particles 
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translate dominantly towards the main flow direction as compared to the vertical 

transition.  

  An increase in magnetic field intensity leads to a decrease in secondary velocity 

profiles. An increase in magnetic field intensity leads to magnetic flux change 

which yields an increase in Lorentz force and in turn reduces the rate of vertical 

transition. 

 An increase in magnetic field gradient leads to a decrease in secondary velocity 

profiles. There is an increase in magnetic field strength magnetic flux changes. 

This leads to an increase in Lorentz and consequently the rate of vertical 

transition. 

 

 

 

 

 

 

Table 4.1. Variation of the flow parameters  

 

Series V0 Re Fgrand By Rh 

a 0.5 2300 0.03 2.0 1.0 

b 0.0 2300 0.03 2.0 1.0 

c 0.5 2500 0.03 2.0 1.0 

d 0.5 2500 0.05 2.0 1.0 

e 0.5 2300 0.03 4.0 1.0 

f 0.5 2300 0.03 2.0 3.0 
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  Pr = 0.71,   Ec = 0.05 

 

Figure 4.2. Secondary Velocity Profiles 

 An increase in magnetic pressure number leads to a decrease in secondary 

velocity profiles. There is increased magnetic permeability which leads to 

increased magnetic pressure force. This force opposes the flow of fluid particles. 
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4.1.3 Temperature profiles 

Figure 4.3 provides the secondary velocity profiles obtained with respect to y when the 

Reynolds number, magnetic flux gradient and magnetic pressure number are fixed and 

the other parameters varied 

Re=2300, Fgrand=0.03, Rh =3.0 

 

Figure 4.3. Temperature Profiles. 
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 From figure 4.3, it is clear that; 

i. Removal of suction leads to an increase in the temperature profiles. Sucking flu-

id from the boundary layer removes the heat from the flow field otherwise heat is 

contained. 

ii. An increase in Prandtl Number leads to a decrease in temperature profiles. This 

is because the viscous forces dominate over thermal forces as Prandtl Number is 

raised. 

iii. Variation of magnetic field intensity does not affect the temperature profiles (a 

and e). The temperatures are influenced by a change in magnetic flux gradient 

but remain unchanged when the flux gradient is constant 

iv. An increase in Eckert Number (Ec) leads to an increase in temperature profiles. 

Hence the rate at which the fluid loses heat decreases as the Eckert Number is 

increased. This observation can be attributed to the viscous dissipation which 

increases with kinetic energy of the fluid particles 

A conclusion of the research done and the recommendations for further research are 

discussed in the next chapter. 
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CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

In this chapter, a conclusion based on the results obtained and the recommendations for 

further research are presented.  

5.1 Conclusion 

We have analyzed the effects of various parameters on MHD fluid flow past two parallel 

horizontal porous plates with the lower plate set impulsively in motion and the upper 

one fixed. The applied magnetic field is varied lengthwise in the direction of the flow 

hence resulting to a magnetic flux gradient. The applied inhomogeneous magnetic field 

yields an opposing force; the Lorentz force which is due to the interaction between the 

field and the induced current in the fluid. The equations governing the MHD flow are 

non-linear and hence we have employed a finite difference scheme in order to obtain the 

solutions. In this study, our flow problem involves fluids of Reynolds number in the 

range of 2300 to 3000, and thus is the case for unsteady problem. The velocity at the 

upper plate was fixed at zero and the lower plate was impulsively started at constant 

velocity in the direction main flow. The temperature at the lower plate is maintained 

constant and at the initial fluid temperature by cooling. We have observed that the 

velocity and temperature of the conducting fluid are significantly influenced by the 

variation of the respective flow parameters considered in this problem. In conclusion, we 

can deduce the following from our study; 
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a. Increase in magnetic field gradient causes a decrease in velocity profile in the 

direction of flow. 

b. An increase in magnetic field intensity causes a decrease in both the primary and 

secondary velocity profiles. 

c. The fluid is slowed down by an increase in magnetic pressure number. 

d. An increase in Prandtl number causes a decrease in temperature profiles. 

e. The fluid temperature gradient increases with increase in Eckert number.  

f. The removal of suction causes an increase in both the velocity and temperature 

profiles. 

5.2 Recommendations 

In this thesis, our study of MHD flow between two parallel plates was not exhaustive but 

can provide a basis for further research while considering the following areas; 

a) Fluid flow between two parallel plates moving in opposite directions at constant 

velocity. 

b) Fluid flow between two parallel plates moving in opposite direction to the 

direction of fluid motion. 

c) Fluid flow under the action of a variable magnetic field inclined at an angle to 

the flow direction. 

d) Fluid flow where one or both of the plates are rotating. 
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