
Application of Copula Theory in Modelling

Risks by Incorporating Dependence Structure

(A Case Study of the Kenyan General Insurance Business)

Joseph Kyalo Mung’atu

A thesis submitted in fulfilment for the Degree of Doctor

of Philosophy in Applied Statistics in the Jomo Kenyatta

University of Agriculture and Technology

2011



DECLARATION

This thesis is my original work and has not been presented for a degree in any other

University.

Signature: · · · · · · · · · · · · · · · · · · · · · · · · · · · Date: · · · · · · · · · · · · · · · · · ·

Joseph Kyalo Mung’atu

This thesis has been submitted for examination with our approval as University Su-

pervisors.

Signature: · · · · · · · · · · · · · · · · · · · · · · · · · · · Date: · · · · · · · · · · · · · · · · · ·

Dr. Samuel Mwalili

JKUAT, Kenya

Signature: · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Date: · · · · · · · · · · · · · · · · · ·

Prof. Patrick G. O. Weke

UoN, Kenya

i



DEDICATION

To my two daughters Immaculate and Sharon

ii



ACKNOWLEDGEMENT

First and foremost I thank the Almighty God for giving good health and providence

during my research epoch. I also would like to express my sincere appreciation to my

supervisors: Dr. S.M. Mwalili (JKUAT) and Prof. P. G. O. Weke of the University

of Nairobi for their guidance, advice, patience, moral and professional support during

the entire learning period. Besides their tight schedules, they still had time with me

over the duration. I do appreciation to Jomo Kenyatta University of Agriculture and

Technology (JKUAT) for entirely funding this undertaking. This financial support

came at a much deserved time. Additionally, I thank all the members of JKUAT,

Nairobi Campus where I served as I undertook my research. To Prof. C. Kanali

and Prof. E. Magiri, I will forever remember your encouragement and the way you

nurtured me to be a better scholar.

In a special way, I’m exceedingly grateful to all the members of the Statistics and

Actuarial Science (STACS) department, JKUAT, for the guidance I received at all

the presentations, towards my progress, organised through the department. The

support of the Chairman, Prof. P. Mwita, cannot go unnoticed as he helped me look

at Copulas from a more pragmatic stand-point. I am thankful to Prof. R. Odhiambo,

a senior member of the department, who yearned to see the successful completion

of my work. I also felt so encouraged by H. M. Humphreys’ words as he kept a

keen track of my progress besides attending all the seminars relating to this work.

And to my Ph.D colleagues at the department: V. Andika, J. Chelule, J. Akinyi, C.

iii



iv

Mugo, J. Kiingati, and J. M. Wekesa; I cherish your support recalling the way we

used to discuss the developments in our respective areas. Lastly, much gratitude to

Gladys, Justa and Julia who helped me forward many of my documents, through the

department, including the progress reports to the Board of Post Graduate Studies

(BPS). To this end it is GOD!



Contents

DECLARATION i

DEDICATION ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS ix

LIST OF TABLES x

LIST OF FIGURES xii

LIST OF APPENDICES xvi

ABBREVIATIONS xvii

ABSTRACT xviii

1 INTRODUCTION 1

1.1 Introduction to Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Measures of Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Linear correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Rank correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Tail dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 The Copula Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Mathematical introduction to copulas . . . . . . . . . . . . . . . . . . 11

v



CONTENTS vi

1.4 Motivation for Copula Models . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6 Objectives of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.2 Specific objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.7 Significance of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 LITERATURE REVIEW 22

2.1 Applications to Finance . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Applications of Copulas to Insurance . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Sklar’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Copula densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.3 Conditional distributions . . . . . . . . . . . . . . . . . . . . . . . . . . 37
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ABSTRACT

Insurance companies maintain different lines of business as a mode of diversification

which in itself aids in reducing risks of encountering ruin. The dependence structure

of these lines of business cannot be ignored especially in rate making as it reduces

diversification benefits. However, in practice you would find that risks are more

heterogeneous than homogeneous a problem that can be solved by breaking down

the risks into a number of homogeneous categories. The lines of business are con-

sidered,here, to contain sub-classes which are homogeneous. The lines will depict a

hierarchical structure from the sub-classes to the main lines of business up to the

portfolio level and their dependence structure is studied here by the hierarchical cop-

ulas. In risk classification, similar risks should be assigned to the same class with

respect to each variable. The dependencies are examined by fitting copulas, esti-

mating the dependence parameters and lastly using distance matrices to cluster the

risks together. The distance to use in the classification is determined by the problem

at hand. The empirical study derives its data from the general insurance business

in Kenya where the risks are classified by the Copula based approach. This work

proposed the use of the upper tail dependence, measured by the tail index, derived

from the dependence parameter in determining the retention limits for a re-insurance

arrangement. Though the dependence is not the only factor to consider for such re-

insurance treaties the forwarding proportions should be some where proportional to

1/(1− Tail index). This will ensure that the highly dependent risks in the upper tail

will forward higher proportions to the re-insurer and vice versa.

xviii



Chapter 1

INTRODUCTION

1.1 Introduction to Copulas

First we look at what a copula is and why it has been gaining popularity among the

risk managers, in actuarial and statistical work in the recent past. The term copula

was first used in the work of Sklar (1959) and is derived from the Latin word copu-

lare, meaning to connect or to join. The main purpose of copulas is to describe the

interrelation of several random variables. Copulas, therefore, are tools for modelling

dependence of several random variables.

A copula is a function that joins or couples a multivariate distribution function

onto univariate marginal distribution functions and so a copula is a multivariate

distribution function. Our concern in this thesis is how random variables relate to

each other. Since it is possible to determine the behaviour of a univariate marginal

distribution function, by use of multivariate distribution we are able to determine how

the marginal distributions behave together or to fully understand their dependence

in a deeper way. Copulas are becoming more popular tools in actuarial problems

in measuring dependence than the commonly known linear correlation due to the

limitations of the linear correlation as outlined in sub-section1.2.1.

1
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1.2 Measures of Dependence

Measures of dependence summarize a complicated dependence structure in a single

number in the bivariate case. There are three important concepts in measuring

dependence. These include: the linear correlation (the classical one), rank correlation

and the coefficients of tail dependence. The last two measures are general enough

to give sensible measures for any dependence structure since correlation is only a

suitable measure in a special class of distributions, that is, the elliptical distributions.

They provide, perhaps, the best alternatives to the linear correlation coefficient as a

measure of dependence for non-elliptical distributions, for which the linear correlation

coefficient is inappropriate and often misleading. Copulas capture the properties of

the joint distribution which are invariant, that is, they remain unchanged under

strictly increasing transformations of the random variables. Linear correlation will

also be considered as a measure of dependence and also state when it becomes a

handy measure of dependence.

1.2.1 Linear correlation

The Pearson product-moment correlation coefficient (r) or correlation coefficient in

this sequel is a measure of the degree of linear relationship between two variables,

usually labeled X and Y . While in regression the emphasis is on predicting one

variable from the other, in correlation the emphasis is on the degree of a linear rela-
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tionship between two variables (risks). In regression the interest is directional, one

variable is predicted and the other is the predictor while in correlation the interest

is non-directional, the relationship is the critical aspect.

Let X and Y be some two risk variables for which we want to model their relationship

or dependence, in all likelihood, we will therefore use linear correlation. However, this

will fail due to the fact that correlation is not an all-purpose dependency measure

in risk management. We now examine correlation and show where it is suitable

and also highlight its drawbacks in comparison with copulas. The terms dependency

and correlation are used interchangeably but correlation is an imperfect measure of

dependency. If X and Y are the risk variables, then the linear correlation coefficient

for (X, Y ) is

ρ(X, Y ) =
cov(X, Y )

√

var(X)
√

var(Y )
and − 1 ≤ ρ(X, Y ) ≤ 1

where var(X) and var(Y ) are the variances of X and Y respectively and cov(X, Y )

is their covariance. Correlation is a reasonable measure of dependency when the ran-

dom variables are distributed as bivariate normal and thus a correlation of +1 tells

us that the two variables are positively dependent (rises or falls together), -1 tells us

that they are negatively dependent (one rises and the other falls) and a correlation

of zero indicates that the two variables are independent.
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As a dependency measure, correlation is reasonable in elliptical distributions which

include Student-t and normal distributions. The elliptical distributions are widely

used because their functions can be determined from knowledge of variances and cor-

relations alone. We should note that in Student-t distribution, uncorrelated compo-

nents do not imply independence and this provides an example where zero correlation

of risks does not imply independence of risks. It is only in the case of the multivariate

normal where uncorrelatedness always can be interpreted as independence. Further,

correlation has its limitations in a normal or elliptical world in that it cannot model

asymmetries. In financial and insurance applications there is stronger dependence

between big losses than between big gains.

We hereby list some of the problems of correlation as a dependency measure. First

and foremost, correlation is not defined unless the variances are finite. It is, therefore,

not an appropriate dependence measure for very heavy-tailed risks where variances

appear infinite. Correlation is not invariant under transformations of the risks. For

example, correlation between X and Y is not the same as between log(X) and log(Y ).

Hence, transformations of the data can affect the correlation estimates.

Correlation is simply an omnibus index of dependency; it cannot tell us everything

we would like to know about the dependence structure of risks. Perfect positively

dependent risks do not necessary have a correlation of 1 and vice versa. The val-
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ues between -1 and 1 are not always attainable. All possible values of correlation

depend on the marginal distribution of the risks. We will now get the alternative

to correlation as a measure of dependency by use of copula. This is due to the fact

that modern risk management calls for an understanding of dependence going beyond

simple linear correlation.

1.2.2 Rank correlation

It is a common practice in nonparametric statistics to concentrate on the ranks of

given data rather than on the data itself. Kendall’s tau and Spearman’s rho are key

correlation coefficients derived from ranks of a data set. Considering ranks leads to

scale invariant estimates, which in turn is very pleasant when working with copulas.

Therefore rank correlations give a possible way of fitting copulas to data.

Definition 1.2.1 (Concordance) Let (xi, yi) and (xj , yj) be two observations from

a vector (X, Y ) of continuous random variables. We say that they are concordant

if xi < xj and yi < yj, or xi > xj and yi > yj that is, (xi − xj) (yi − yj) > 0.

Similarly, they are discordant if xi < xj and yi > yj, or xi > xj and yi < yj , that

is,(xi − xj) (yi − yj) < 0 . That is, if X and Y are two random variables, then they

are said to be concordant if large (small) values of X tend to be associated with large

(small) values of Y .



6

1.2.2.1 Kendall’s tau

Kendall’s tau is a measure of association and is defined in terms of concordance.

Definition 1.2.2 (Kendall’s tau) Let {(x1, y1) , ..., (xn, yn)} denote a random sample

of n observations from a random vector (X, Y ) of continuous random variables. There

are





n

2



 distinct pairs (xi, yi) and (xj , yj) of observations in the sample, and each

pair is either concordant or discordant. Let c denote the number of concordant pairs

and d the number of discordant pairs. Then, the Kendall’s tau for the sample is

defined as,

t =
c− d

c+ d
=

c− d




n

2





The population version of Kendall’s tau for a vector (X, Y ) of continuous random

variables with joint distribution function H is defined as follows. Let (Xi, Yi) and

(Xj, Yj) be independent and identically distributed random vectors, each with joint

distribution function H . The population version of Kendall’s tau is defined as the

probability of concordance minus the probability of discordance.

τ = τX,Y = P [(Xi −Xj)(Yi − Yj) > 0]− P [(Xi −Xj) (Yi − Yj) < 0]
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1.2.2.2 Spearman’s rho

As in the case for Kendall’s tau, the population version of the measure of association

known as Spearman’s rho is also based on discordance and concordance.

Definition 1.2.3 (Spearman’s rho) Let (Xi, Yi) , (Xj, Yj) and (Xk, Yk) be indepen-

dent random vectors with a common joint distribution function H, whose margins

are F , G. Then, the population version is defined as the difference between probabil-

ities of concordance and discordance of the vectors (Xi, Yi) and (Xj, Yk) thus,

ρ = ρX,Y = 3 {P [(Xi −Xj) (Yi − Yk) > 0]− P [(Xi −Xj) (Yi − Yk) < 0]}

Kendall’s tau and Spearman’s rho are both symmetric dependence measures tak-

ing values in the interval [-1,1]. They give the value zero for independent random

variables although a correlation of zero does not necessarily imply independence.

1.2.3 Tail dependence

We distinguish between upper and lower tail dependence. Upper tail dependence

means intuitively, that with large values of X1 also large values of X2 are expected.

More precisely, the probability that X1 exceeds a given threshold q, given that X2

has exceeded the same level q for q → 1 is considered. If this probability is smaller

than order q, then the random variables have no tail dependence, for example in the
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independent case. Otherwise they have tail dependence.

Definition 1.2.4 (Tail dependence) For random variables X1 and X2 with cumula-

tive distribution functions Fi, i = 1, 2 we define the coefficient of upper tail dependence

by:

λu
.
= lim

qր1
P
(

X2 > F−1
2 (q)

∣

∣X1 > F−1
1 (q)

)

,

provided that the limit exists and λu ∈ [0, 1] . The coefficient of lower tail dependence

is defined analogously by

λl
.
= lim

qց0
P
(

X2 ≤ F−1
2 (q)

∣

∣X1 ≤ F−1
1 (q)

)

.

If λu > 0 , we say that X1 and X2 have upper tail dependence, while for λu = 0 we

say that they are asymptotically independent in the upper tail and analogously for

λl .

For continuous cumulative distribution functions, quite simple expressions are ob-

tained for the coefficients using Bayes’ rule, namely

λl = lim
qց0

P
(

X2 ≤ F−1
2 (q), X1 ≤ F−1

1 (q)
)

P
(

X1 ≤ F−1
1 (q)

)

= lim
qց0

C (q, q)

q
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and similarly,

λu = 2 + lim
qց0

C (1− q, 1− q)− 1

q

1.3 The Copula Function

The operational definition of a copula is a multivariate distribution function defined

on the unit cube [0, 1]n, with uniformly distributed marginals.

Definition 1.3.1 (Uniform Distribution) A random variable X has a uniform dis-

tribution and it is referred to as a continuous uniform random variable if and only if

its probability density is given

U(x : a, b) =















1
b−a

for a ≤ x ≤ b

0 otherwise

Unlike correlation, copulas have a nice property of being invariant under strictly

increasing transformations of random variables. Moreover, instead of summarizing

dependence structure with a single number like correlation, we can use a model for

the dependence structure that reflects more detailed knowledge of the risk manage-

ment problem we are handling. Copula as a multivariate distribution function helps

us to fit multivariate risk factor data, and then find the marginal models for individ-

ual risk factors and copula models for their dependence structure. We have a wide

range of copula families from which to select a suitable model, see section 2.3. This
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enables us to choose a particular copula family depending on the random variables

of the multivariate data we are trying to model. If the marginal distributions are

known, a copula can be used to suggest a suitable form for the joint distribution. This

means we can create multivariate distribution functions by joining arbitrary marginal

distributions together and we can extract copulas from well-known multivariate dis-

tribution functions. Multivariate distribution functions have more information than

the individual marginal distributions and this generally helps us to avoid the draw-

backs of correlation as a measure of dependency. Copula helps to model asymmetries.

In financial applications there is a stronger dependence between big losses than be-

tween big gains. The choice of appropriate model is paramount. Copula represents a

way of trying to extract the dependence structure from the joint distribution function

and to separate dependence and marginal behaviour.

We first concentrate on general multivariate distributions and then study the special

properties of the copula subset. For a function H , we denote by DomH and RanH

the domain and range of H respectively. Additionally, a function f will be called

increasing whenever x ≤ y implies that f(x) ≤ f(y). We may also refer to this as f

is nondecreasing. A statement about points of a set S ⊂ ℜn , where S is typically

the real line or the unit cube [0, 1]n, is said to hold almost everywhere if the set of

points of S, where the statement fails to hold, has Lebesgue measure equal zero.
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1.3.1 Mathematical introduction to copulas

Definition 1.3.2 Let S1, S2, ..., Sn be nonempty subsets of ℜ, where ℜ denotes the

extended real line [−∞,∞]. Let H be a real function of n variables such that

DomH = S1 × S2 × ... × Sn and for a ≤ b (ak ≤ bk for all k) let B = [a, b]

(= [a1, b1]× ...× [an, bn]) be an n-box whose vertices are in DomH. Then the H-

volume of B is given by

VH (B) =
∑

sgn(c)H(c),

where the sum is taken over all vertices c of B, and sgn(c) is given by

sgn(c) =















1, if ck = ak for an even number of k′s,

−1, if ck = ak for an odd number of k′s.

Equivalently, the H-volume of an n-box B = [a, b] is the nth order difference of H

on B

VH (B) = ∆b
aH (t) = ∆bn

an ...∆
b1
a1
H (t) ,

where the n first order differences are defined as

∆bk
ak
H(t) = H (t1, ..., tk−1, bk, tk+1, ..., tn)−H (t1, ..., tk−1, ak, tk+1, ..., tn) .
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Definition 1.3.3 A real function H of n variables is n-increasing if VH(B) ≥ 0 for

all n-boxes B whose vertices lie in DomH.

Suppose that the domain of a real function H of n variables is given by DomH =

S1× . . .×Sn where each Sk has the smallest element ak . We say that H is grounded

if H(t) = 0 for all t in DomH such that tk = ak for at least one k . If each

Sk is nonempty and has a greatest element bk, then H has margins, and the one-

dimensional margins of H are the functions Hk with DomHk = Sk and with Hk(x) =

H (b1, ..., bk−1, x, bk+1, ..., bn) for all x in Sk.

Lemma 1.3.4 Let S1 and S2 be nonempty subsets of ℜ̄, and let H be a grounded 2-

increasing function with domain S1×S2. Then H is nondecreasing in each argument.

Proof : Let a1, a2 denote the least elements in S1 and S2 respectively and b1, b2 are

their respective greatest elements. We say that a function H from S1 × S2 into ℜ is

grounded if H(x, a2) = 0 = H(a1, y) for all (x, y) in S1 × S2. Then the function t 7→

H (t, b2)−H (t, a2) is nondecreasing on S1 and the function t 7→ H (b1, t)−H (a1, t)

is nondecreasing on S2. We then say that the function H from S1 × S2 into ℜ has

margins, and the margins of H are the functions F and G given by: DomF = S1,

and F (x) = H(x, b2) for all x in S1; DomG = S2, and G(y) = H(b1, y) for all y in

S2.

Lemma 1.3.5 Let S1 and S2 be nonempty subsets of ℜ̄, and let H be a grounded
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2-increasing function with domain S1 × S2. Let (x1, y1) and (x2, y2) be any points in

S1 × S2, then

|H (x2, y2)−H (x1, y1)| ≤ |F (x2)− F (x1)|+ |G (y2)−G (y1)| .

Proof : From the triangle inequality, we have

|H (x2, y2)−H (x1, y1)| ≤ |H (x2, y2)−H (x1, y2)|+ |H (x1, y2)−H (x1, y1)| .

We assume that x1 ≤ x2. Because H is grounded, 2-increasing, and has mar-

gins, Lemma 1.3.4 yields 0 ≤ H (x2, y2) − H (x1, y2) ≤ F (x2) − F (x1). An anal-

ogous inequality holds when x2 ≤ x1, hence it follows that for any x1, x2 in S1,

|H (x2, y2)−H (x1, y2)|+|F (x2)− F (x1)| . Similarly for any y1, y2, in S2, |H (x1, y2)−H (x1, y1)|+

|G (y2)−G (y1)| , hence the proof is complete.

Definition 1.3.6 An n-dimensional distribution function is a function H with do-

main ℜn
such that H is grounded, n-increasing and H (∞,∞, ...,∞) = 1.

It follows from Lemma 1.3.4 that the margins of an 2-dimensional distribution func-

tion are distribution functions, which we denote by F1 and F2.
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Definition 1.3.7 (Copula function) A two-dimensional copula function (or a 2-

copula) is defined as a binary function C : [0, 1]2 → [0, 1] , which satisfies the following

three properties:

1. C(u, 0) = C(0, u) = 0 for any u ∈ [0, 1].

2. C(u, 1) = C(1, u) = u for any u ∈ [0, 1].

3. For all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1

C([u1, v1]× [u2, v2]) = C(u2, v2)− C(u1,v2)− C(u2, v1) + C(u1, v1) ≥ 0.

Due to the properties 1-3, when the arguments u and v are univariate distribution

functions F1 and F2, the copula function C(F1;F2) is a legitimate bivariate distri-

bution function with marginals F1 and F2. Conversely, any bivariate distribution

function H(x; y) with continuous marginals F1 and F2 admits a unique representa-

tion as a copula function:

C(u, v) = H
(

F−1
1 (u), F−1

2 (v)
)

In general, an n-dimensional Copula is any function C : [0, 1]n → [0, 1] such that:

1. C is grounded and n-increasing

2. C has margins Ck, k = 1, 2, ..., n, which satisfy Ck(u) = u for all u in [0, 1].

It is also important to note that for any n-copula, n ≥ 3 , each k-dimensional margin
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of C is a k-copula. Equivalently, an n-copula C, is any function C : [0, 1]n → [0, 1]

with the following properties:

1. For every u in [0, 1]n, C (u) = 0 if at least one coordinate of u is 0, and

C (u) = uk if all coordinates of u equal to 1 except uk.

2. For every a and b in [0, 1]n such that ai ≤ bi for all i, VC ([a, b]) ≥ 0.

3. Since copulas are joint distribution functions on [0, 1]n, a copula C induces a

probability measure on [0, 1]n through

VC ([0, u1]× . . .× [0, un]) = C (u1, . . . , un)

and a standard extension to arbitrary (not necessarily n-boxes) Borel subsets

of [0, 1]n. Therefore, there is a unique probability measure on the Borel subset

of [0, 1]n which coincides with VC on the set of n-boxes of [0, 1]n .

From Lemma 1.3.5 we have the following theorem.

Theorem 1.3.8 Let C be an n-copula. Then for every u and v in [0, 1]n,

|C (v)− C (u)| ≤
n
∑

k=1

|vk − uk|

Hence C is uniformly continuous on [0, 1]n. , see Nelsen (2006)
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1.4 Motivation for Copula Models

Copulas are useful in the fields of finance and insurance, which are inseparable as

discussed in Hipp (2007) . We now take a brief look at why we move into the copula

models:

1. To start with, normal dependence is not appropriate: normally distributed

random variables have a dependence completely specified by the correlation co-

efficient. This does not capture tail dependence, and it changes under nonlinear

transforms. Copulas, therefore, allow for the inclusion of features such as fat

tails and skewness for nonelliptically distributed risks.

2. Dependence matters: For asset liability management (life insurance) and dy-

namic financial analysis (non-life insurance) all occurring risks are considered

and modelled. For the overall risk of a company also the dependence of these

risks matters.

3. Tails matter: If two risks are X and Y , then these risks contribute much to the

overall risk of the company if they are large at the same time, for instance, in

the following sense:

P {X > u and Y > u} > 0.5P {X > u}
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4. The need for simple concepts: we need models of low complexity which can

easily be calibrated to the data. Better a model that captures dependence,

sufficiently well, than one which underestimates the dependence.

5. Lack of knowledge on dependence: Dependence between risks is caused by

factors with simultaneous influence on these risks. However, the factors and

the way they influence the risks are unknown in most situations. So a simple

and more abstract modelling of dependence is needed.

6. Separation of size from dependence: risks X and Y can be large because they

are heavy tailed; so they are both large with high probability, even though they

are independent. To identify the influence of dependence on the overall risk one

needs a dependence concept which is independent of the marginal distribution

of the risks.

7. Dynamic Financial Analysis (DFA) and Asset-liability Management (ALM)

approaches need concepts for simulation: an appropriate model for dependence

will be used to simulate the cash flow of an insurer and to see the consequences

of investment, reinsurance and new business. So the dependence model should

be of a form which enables easy simulation.
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1.5 Statement of the problem

Risk modelling is a vital undertaking for any company in the insurance business. Fail-

ure to sufficiently capture the underlying patterns of the probable risks (key among

them emanating from the reported claims, and especially the very large claims) can

have very serious implications, the worst being insolvency. When claims are reported

from a single line of business to an insurance company, this form a simple univariate

data set whose analysis is straight forward. However, the situation becomes more

complicated when at one point in time; the company receives more than one claim

and from different lines which sees a build up of a multivariate data. Additionally,

when the number of assets in a portfolio is huge, it is almost unlikely to accurately

estimate the joint probability distribution. The common approach to this challenge

is to assume that the return on asset observes the multinormal distribution and carry

on the simulation based on such assumption.

1.6 Objectives of the Study

1.6.1 General objective

Make use of copula models and statistical distances and to provide alternative pro-

cedures to risk modelling.
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1.6.2 Specific objectives

1. Model the dependence between risks by the use of Copulas under complex

structures.

2. Analyse the underlying claims distributions in a portfolio.

3. Model the claims in the upper tails of the distribution.

4. Since statistical distances have been used for testing similarities/dissimilarities

and hence in the classification of points (or data vectors) into different sets, we

will apply them to create some classification criterion for the claim severities.

5. After describing the underlying claims distribution of the company in ques-

tion, the study utilize dependence measures to come up with a principle of

determining an appropriate retention level in re-insurance arrangements.

1.7 Significance of the study

This study simplifies the complexities of modelling multivariate claims severities by

making use of copulas and statistical distances. The work is also aimed at providing

the insurance industry with yet another method at their disposal for their risk mod-

elling and appraising. Potential investors will be able to understand the dependence

between risks and hence arrive at a more diversified portfolio before their initial out-

lay. In addition to the further knowledge that will be created, the research will be a
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stepping ground for future research.

1.8 Scope and Limitations

The study aimed at formulating methods of modelling of claims severities that have

a multivariate structure; which will encompass describing their distributions, esti-

mating their dependencies, and Clustering the risks by the use of distances. In the

case of risk transfer, via re-insurance arrangements, the existing criterion with be

improved by the use of copulas. The limitation was that of the insurance companies

were not willing to share out their data with other parties. This was tackled by using

the Insurance Regulatory Authority database. Reading materials were also a major

limitation.

1.9 Thesis Overview

This thesis is outlined as follows: In this closing chapter, we introduce the work

by giving a background information in measures of dependence. We also state the

problem, objectives, significance of the study, as well as the scope and limitation.

In Chapter 2 we review the literature on the application of copulas in both finance

and insurance. The Sklar’s theorem, which is at the core of copula theory, is pre-

sented here together with families of copulas. Modelling the dependence between M

lines of business with sub-classes is considered in Chapter 3 where the Hierarchical
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Archimedean Copulas (HAC) are utilized as the main tool. We simulate data in

Chapter 4 that follows four loss distributions and has an hierarchical structure. This

data are applied on the theory developed in Chapter 3 as well as on the chapter

that follow. Chapter 5 now deals in classification of risks. A clustering criterion is

developed that is based on distances. Empirical data on insurance claims amounts

experience in Kenya is the subject of Chapter 6. The methods developed based on

artificial data in Chapter 5 are now applied on empirical data. Finally, we have the

conclusions and recommendation in Chapter 7 that ends with an highlight of areas

of further research.



Chapter 2

LITERATURE REVIEW

Copulas have found a widespread application in finance and actuarial science, par-

ticularly in the insurance industry. In this section we examine some of the previous

studies that found the copula theory handy in the two areas: finance and insurance;

as the insurance companies will use the copula theory to determine the intrinsic inter-

dependencies between risks and also use the same theory to manage their finances

given the risks’ dependence structure.

2.1 Applications to Finance

In finance, Liu (2006) presents an application of copula methodology in modelling

joint distributions with fat tails. Four widely established copulas were estimated and

compared with the multivariate normal model. They are the Gaussian copula, the

t-copula, the Gumbel copula and the mixture of Gumbel copula. The effect of the

copula on the Value-at-Risk (VaR) is also studies. In addition, this study examines

models with different portfolio allocations. Liu (2006) found that Copula is partic-

ularly useful in approximating the tails of portfolio returns. Next, when we move

toward the centre of the joint distribution, this advantage is reduced. In addition, it

also emerged that no uniformly best model is available when we consider portfolio

allocations. This provided complementary results for other joint distribution mod-

elling comparisons conducted in recent works and called for more specific comparison

criterion.

22
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The study observed that copula provides an alternative to the multivariate normal

specification of the dependence between variables, and has gained increasing atten-

tion in asset pricing, portfolio allocation and risk management.

In risk management, more specifically option pricing, Goorbergh, Genest, and Werker

(2005) examined the behaviour of bivariate option prices in the presence of associ-

ation between the underlying assets. Parametric families of copulas offering various

alternatives to the Gaussian dependence structure were used to model this associa-

tion, which is explicitly assumed to vary over time as a function of the volatilities of

the assets. These dynamic copula models were applied to better-of-two-markets and

worse-of-two-markets options on the Standard and Poor’s 500 and Nasdaq indexes.

Their results demonstrated that option prices implied by dynamic copula models can

differ substantially from prices implied by models that fix the dependence between

the underlyings, particularly in times of high volatilities. In the study, the Gaus-

sian copula also produced option prices that differed significantly from those induced

by non-Gaussian copulas, irrespective of initial volatility levels. Within the class of

alternatives considered, option prices were robust with respect to the choice of copula.

Romano (2002) described some possible uses of copula functions in risk management
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applications and proved how some kind of copula functions are easy to implement in

Monte Carlo simulation models to estimate risk measures. A practical application

with a portfolio of ten Italian equities was performed and proved that the common

hypothesis of multinormal distribution for asset returns (or risk factor returns) un-

derestimates the VaR and the Expected Shortfall of a market portfolio. A Monte

Carlo simulation, modelling asset returns using fat tail marginal distributions and a

copula function with tail dependence was also performed and obtained a more accu-

rate estimate for the two risk measures. The study also proved that a methodology

using a multivariate Gaussian distribution of the latent variables does not capture

the risk of many joint counterparty defaults. On the contrary, events of this kind are

effectively captured using the Student-t copula to describe the dependence structure

of the latent variables. Therefore, the Student-t copula can be very useful to model

the extreme risk that worries risk managers and supervisors.

2.2 Applications of Copulas to Insurance

Besides copulas application in finance as a risk management tool, the following are

just but a few applications in insurance, which is the focus of this study. Frees and

Valdez (1997) introduced actuaries to the concept of copulas, as a tool for under-

standing relationships among multivariate outcomes. The work explored some of the

practical applications, including estimation of joint life mortality and multiple decre-

ment models. Statistical inference procedures are illustrated for those who wish to
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use copulas for statistical inference, by using insurance company data on losses and

expenses. Using these data, Frees and Valdez (1997) showed how to fit copulas and

described their usefulness by pricing a reinsurance contract and estimating expenses

for pre-specified losses.

Copulas have also found their use in weather-based insurance. Filler, Odening,

Okhrin, and Xu (2009) observed that systemic weather risk was a major obstacle for

the formation of private (non-subsidized) crop insurance. Consequently, this study

explored the possibility of spatial diversification of insurance by estimating the joint

occurrence of unfavourable weather conditions in different locations. For this pur-

pose, copula methods were employed that allow an adequate description of stochastic

dependencies between multivariate random variables. The estimation procedure was

applied to weather data in Germany. The results indicated that indemnity payments

based on temperature as well as on cumulative rainfall exhibited strong stochastic

dependence even at a national scale. Thus the possibility to reduce risk exposure by

increasing the trading area of the insurance is limited. Irrespective of their economic

implications the results pinpointed the necessity of a proper statistical modelling of

the dependence structure of multivariate random variables. The usual approach of

measuring stochastic dependence with linear correlation coefficients turned out to be

questionable in the context of weather insurance as it may overestimate diversifica-

tion effects considerably.
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Gatzert, Schmeiser, and Schuckmann (2007) were motivated by the fact that in fi-

nancial firms and insurance groups, enterprise risk management (ERM) is becoming

increasingly important in controlling and managing the different independent legal

entities in the group. Gatzert et al. (2007) assessed and related risk concentrations

and joint default probabilities of legal entities in a corporation composed of three

entities, a bank, a life insurance company, and a non-life insurance company. The

procedure provided valuable insight regarding the group’s risk situation, which is

highly relevant for enterprise risk management purposes.

An insurance group (a conglomerate) typically consists of several legally indepen-

dent entities, each with limited liability. However, diversification concepts assume

that these entities are fully liable and all together meet all outstanding liabilities of

each. Even if diversification is of no importance from a policyholder perspective,

it is useful in determining risk concentration in an insurance group because greater

diversification generally implies less risk. To determine default probabilities, Gatzert

et al. (2007) focused on the case of limited liability without transfer of losses between

the different legal entities within the group. Joint default probabilities only depend

on individual default probabilities and the coupling dependence structure. Hence,

the study dwelt on the effect of different dependence structures using the concept of

copulas.
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For the numerical analysis, Gatzert et al. (2007) considered an insurance group com-

prised of three legal entities and compared results from the Gauss, Gumbel, and

Clayton copulas for normal and non-normal marginal distributions. Economic cap-

ital was adjusted for each situation to satisfy a fixed individual default probability.

In contrast to the risk concentration factor, joint default probabilities only depend

on individual default probabilities and on the dependence structure, but not on dis-

tributional assumptions. They further found that the risk concentration factor and

the joint default probability of all three entities increase with increasing dependence

between the entities, while the probability of a single default decreases. Overall, the

sum of default probabilities of one, two, or three entities decreases with increasing

dependence. Furthermore, one entity’s large risk contribution, in terms of volatil-

ity, led to a much higher risk concentration factor for the group as a whole. The

findings further demonstrated that even if different dependence structures imply the

same risk concentration factor for the group, joint default probabilities for different

sets of subsidiaries can vary tremendously. In particular, the lower tail dependent

Clayton copula led to the lowest probability of default for all three entities, while

the upper tail dependent Gumbel copula exhibited the highest default probability.

The analysis showed that a simultaneous consideration of risk concentration factor

and default probabilities can be of substantial value, especially for the management

of the corporate group with respect to enterprise risk management.
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Copulas have also been applied in credibility theory which is a form of insurance

pricing. The theory of credibility has been called a ”basis” of the field of actuarial

science. Frees and Wang (2004) develops a direct link between credibility and loss

distributions through the notion of a copula. The work develops credibility using

a longitudinal data framework. In a longitudinal data framework, one might en-

counter data from a cross-section of risk classes (towns) with a history of insurance

claims available for each risk class. For the marginal claims distributions, Frees and

Wang (2004) use generalized linear models, an extension of linear regression that

also encompasses Weibull and Gamma regressions. Copulas are used to model the

dependencies over time; and this study was the first to propose the use of a t-copula

in the context of generalized linear models. The t-copula is the copula associated

with the multivariate t-distribution; like univariate t-distributions, it seems especially

suitable for empirical work. Moreover, they show that the t-copula gives rise to eas-

ily computable predictive distributions that we use to generate credibility predictors.

Like Bayesian methods, the copula credibility prediction methods allow us to pro-

vide an entire distribution of predicted claims, not just a point prediction. Frees and

Wang (2004) present illustrative example of Massachusetts automobile claims, and

compare their new credibility estimates with those currently existing in the literature.

In this study, claims from a Gamma family were used and provided the necessary
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theoretical underpinnings for the exponential family of distributions that also in-

cludes the normal and Weibull distributions. Although any parametric family of

copulas fits within the framework described in Frees and Wang (2004), the work ex-

plores the advantages of the t-copula. They find that this is a desirable dependence

structure, at least for the bodily injury liability automobile claims data investigated.

Using their data, they compared the copula-based credibility predictors and found

that they performed well compared to traditional credibility estimators. They even

demonstrated the well-known shrinkage characteristic that actuaries find appealing

for traditional estimators. This may not be a general characteristic of copula-based

credibility predictors.

The contribution of copulas in the incurred but not reported (IBNR) claims due to

an insurance company was examined by Pettere and Kollo (2006) who studied the

claims of a Latvian Insurance company. The two variables investigated in this work

were claim size and time from the moment when claim occurred to the moment when

the payment has been reported. They found approximations to the distributions of

both variables as well as the bivariate distribution modelled using the Archimedean

copulas. The IBNR claim reserves were calculated using the bivariate Clayton copula

model. Pettere and Kollo (2006) found that for the claim size, lognormal distribution

was the best model but Wald distribution can also be used. Moreover, the develop-

ment factor can be described by the lognormal distribution too. It also emerged that



30

when approximating the bivariate distribution of the claim size and the development

factor with Archimedean copulas, the Clayton copula gave the best model and so,

the bivariate Clayton copula were used in simulations estimating the IBNR reserves.

Applicability of the method of estimation IBNR reserves was checked on data from

past of the company. The real empirical values for necessary reserves were in good

accordance with the predicted estimate using Clayton copula. Owing to the increase

in popularity of copulas to measure dependent risks, generating multivariate copu-

las has become a very crucial exercise. Wu, Valdez, and Sherris (2006) noted that

multivariate exchangeable Archimedean copulas are one of the most popular classes

of copulas that are used in actuarial science and finance for modelling risk depen-

dencies and for using them to quantify the magnitude of tail dependence. Current

methods for generating multivariate Archimedean copulas can again become a very

difficult task as the number of dimension increases. Wu et al. (2006) presented an

algorithm for generating multivariate exchangeable Archimedean copulas based on

a multivariate extension of a bivariate result after observing that the resulting an-

alytical procedures suggested in the existing literature did not offer much guidance

for practical implementation. Genest and Rivest (1993) proposed a procedure for

generating bivariate Archimedean copulas and again later described in Nelsen (2006)

and Embrechts, McNeil, and Straumann (2002). Wu et al. (2006) were able to extend

the bivariate result into the multivariate case and hence developing an interesting al-

gorithm to generate exchangeable Archimedean copulas using a proof that is simply
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based on fundamental Jacobian techniques for deriving distributions of transformed

random variables. They were, again, able to derive the distribution function of an

n-dimensional Archimedean copula, a result already known in Genest and Rivest

(2001) but their approach of proving this result was based on a different perspec-

tive. In order to demonstrate the usefulness and the reasonableness of the results,

they considered illustrative examples of generating from the Gumbel-Hougaard and

the Frank family of Archimedean copulas. It was found that the simulation results

appeared to be reasonable as expected. In terms of practicality, they also provided

illustration of evaluating the extra capital required for the addition of a new line

of business. Their illustrations show that both the dependency risk and the choice

of the correlation coefficient will have significant impact on the amount of capital

required for an insurance company running multiple lines of business.

Frees and Valdez (2008) demonstrated actuarial applications that can be performed

when modern statistical methods are applied to detailed, micro-level automobile in-

surance records. They tested their model using 1993-2001 data consisting of policy,

claims and payment files from a major Singapore insurance company. The model

allowed them to study the accident frequency, loss type and severity jointly and to

incorporate individual characteristics such as age, gender and driving history that

explain heterogeneity among policyholders. Based on this hierarchical model, one

can analyze the risk profile of either a single policy (micro-level) or a portfolio of
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business (macro-level). In their work Frees and Valdez (2008) investigate three types

of actuarial applications. First, the calculation of the predictive mean of losses for

individual risk rating as this allows the actuary to differentiate prices based on policy-

holder characteristics. The second application was that of the predictive distribution

of a portfolio of business. They demonstrated the calculation of various risk measures,

including value at risk and conditional tail expectation that are useful in determining

economic capital for insurance companies.

For a sensitivity analysis, they incorporated the copulas in two ways: first, assumed

that the specified copula was consistently used for the estimation and prediction por-

tions and second they assumed that the (correct but more complex) t-copula was

used for estimation with the specified copula used for prediction. The idea behind

the second assumption was that a statistical analysis unit of a company may perform

a more rigorous analysis using a t-copula and another unit within a company may

wish to use this output for quicker calculations about their financial impact. The

study by Frees and Valdez (2008) found that the copula effect was large and increased

with the percentile. The upper percentiles are the most important to the actuary for

many financial implications.

A large difference existed between assuming independence among coverages and using

a t-copula to quantify the dependence. They also found that when re-estimating the



33

full model under alternative copulas, the marginal parameters changed to produce

significant differences in the risk measures. The results for the independence cop-

ula were somewhat counterintuitive. For most portfolios, with positive correlations

among claims, one typically needs to go out further in the tail to achieve a desired

percentile, suggesting that the VaR should be larger for the t-copula than the in-

dependence copula.It is also important to note that Frees and Valdez (2008) found

that the VaR is not affected by the choice of copula. In contrast, for the CTEs, the

normal and t-copula give higher values than the independence copula. This result

was due to the higher losses in the tail under the normal and t-copula models. The

third application was the examination of the effects of several reinsurance treaties,

that is, to show the predictive loss distributions for both the insurer and reinsurer

under quota share and excess-of-loss reinsurance agreements.

Motivated by the fact that most of the Economic Capital assessment models en-

counter difficulties when trying to incorporate the dependence of claim costs between

different Lines of Business (LOBs), Faivre (2003) suggested the use of copula theory

as a solution to this problem. When a copula is applied to marginal distributions

that are subject to some minor technical requirements, but do not necessarily be-

long to the same distribution family it results in a proper multivariate distribution.

The study used this property to model the overall distribution of claim costs of a

four-LOB company. By using different copulas Faivre (2003) was able to show that



34

the dependence structure has a substantial impact on the Economic Capital of that

firm and in particular the research paid attention to situations in which attritional

losses from different LOBs compensate for each other to produce stable total results,

while at the same time extreme losses tends to occur simultaneously across different

LOBs. Faivre (2003) observed that this type of dependence could not be modelled by

the multivariate normal distribution, which is at the root of many current Economic

Capital assessment models. With the help of the copula model Faivre (2003) showed

that the assumption that claim costs are independent from one LOB to another,

when they are not, could result in an underestimation of the required Economic

Capital for high percentiles. In particular, among all the scenarios that could lead to

a capital underestimation the study pointed out that by using a Student-t copula, we

can model a situation where attritional losses produce technical results that tend to

compensate each other, while extreme losses tend to occur during the same accident

year across different LOBs. It was also observed that even if the Gumbel copula

may not reflect a realistic situation, it can produce stress scenarios useful to test the

solvency of a company.

2.2.1 Sklar’s Theorem

The following theorem is known as Sklar’s Theorem (Sklar, 1958) which is perhaps

the most important result regarding copulas, and is used in essentially all applications

of copulas.
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Theorem 2.2.1 (Sklar’s Theorem) Let H be an n-dimensional distribution function

with margins F1, . . . , Fn . Then there exists an n-copula C such that for all x in ℜn
,

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)).

If F1, . . . , Fn are all continuous, then C is unique; otherwise C is uniquely determined

on RanF1 × . . .×RanFn . Conversely, if C is an n-copula and F1, . . . , Fn are distri-

bution functions, then the function H defined above is an n-dimensional distribution

function with margins F1, . . . , Fn .

From the Sklar’s Theorem we see that for continuous multivariate distribution func-

tions, the univariate margins and the multivariate dependence structure can be sep-

arated, and the dependence structure can be represented by a copula.

Corollary 2.2.2 Let H be an n-dimensional distribution function with continuous

margins F1, . . . , Fn and copula C. Then for any u in [0, 1]n,

C(u1, ..., un) = H(F−1
1 (u1), ..., F

−1
n (un)). (2.2.1)

, see Nelsen (2006)



36

2.2.2 Copula densities

As per the definition, a copula is a cumulative distribution function. It is quite typical

for these monotonically increasing functions, that even though being theoretically

very powerful their graphs are hard to interpret. Owing to this, typically plots of

densities are used to illustrate distributions, rather than plots of the cumulative

distribution function. Certainly, not in all cases copulas do have densities as will

be pointed out later. However, if the copula is sufficiently differentiable the copula

density can be computed:

c (u ) =
∂nC (u1, ..., un)

∂u1...∂un

Contrary to this, it may be the case that besides an absolutely continuous component

(represented by the density) the copula also has a singular component. If the copula

is given in Corollary 2.2.2 we obtain the copula density in terms of the joint den-

sity together with marginal cumulative distribution functions and marginal densities.

Note that it is necessary that the cumulative distribution function is differentiable.

Denoting the joint density by f and the marginal densities by fi, i = 1, 2, ..., n, it

follows, by the chain rule, that

c (u) =
f
(

F−1
1 (u1) , ..., F

−1
n (un)

)

f1
(

F−1
1 (u1)

)

...fn (F−1
n (un))
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2.2.3 Conditional distributions

Dependency is an important concept inferring outcomes from a random variable

based on the knowledge of a related factor. Let us consider two uniform random

variables U1 and U2 with known copula C and U1 is observed. The goal is to deduce

the conditional distribution which can then be used for predicting or estimating U2.

Assuming sufficient regularity, we obtain for the conditional cumulative distribution

function

P (U2 ≤ u2 |U1 = u1 ) = lim
δ→0

P (U2 ≤ u2, U1 ∈ (u1 − δ, u1 + δ])

P (U1 ∈ (u1 − δ, u1 + δ])

= lim
δ→0

C (u1 + δ, u2)− C (u1 − δ, u2)

2δ

=
∂

∂u1
C (u1, u2)

Hence, the conditional cumulative distribution function may be derived directly from

the copula itself. The conditional density function is obtained by deriving once more

with respect to u2 . In most cases, the best estimator of U2 will be the conditional

expectation which of course is directly obtained from the conditional density function.
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2.2.4 Fŕechet-Hoeffding copula boundaries

Hoeffding and Fréchet independently showed that a copula always lies in between

certain bounds. The reason for this is the existence of some extreme cases of depen-

dency, Nelsen (2006). Minimum copula: This is the lower bound for all copulas. In

the bivariate case only, it represents perfect negative dependence between variates:

W (u, v) = max (0, u+ v − 1)

For n-variate copulas, the lower bound is given by

W (u1, u2, ..., un) = max

{

1− n +
n
∑

i=1

ui, 0

}

.

Maximum copula: This is the upper bound for all copulas. It represents perfect

positive dependence between variates:

M (u, v) = min (u, v)

For n-variate copulas, the upper bound is given by

C (u1, u2, ..., un) = min
j∈{1,...,n}

uj = M (u1, u2, ..., un)
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For all 2-copulas C(u, v),

W (u, v) ≤ C (u, v) ≤ M (u, v)

while in the multivariate case, the corresponding inequality is

W (u1, u2, ..., un) ≤ C (u1, ..., un) ≤ M (u1, ..., un) .

The random variables X and Y are comonotonic if they have the Fréchet-Heoffding

upper copula, M(x, y) = Min(x, y). Comonotonic is an example of concordance

whereX and Y are perfectly positive dependent. Further, they are counter-monotonic

if they have the Fréchet-Heoffding lower copula,W (x, y) = max(x+y−1, 0). Counter-

monotonic is an example of discordance where X and Y are perfectly negative de-

pendent.

From Figure 2.1 the surface given by the bottom and back side of the pyramid (the

lower bound) is the counter-monotonic copula C(u, v) = max{u+ v − 1, 0}, while

the front side is the upper bound, C(u, v) = min(u, v).

2.2.5 Important copulas

From the entire set of copulas, three are of special nature: C−, C⊥ and C+ , which

are respectively the copulas of Countermonotony, Independence, and Comonotony.

As noted earlier, countermonotony is the extreme negative dependence, independence
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1

1

0
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v u

C(u,v)

Figure 2.1: The Fréchet-Hoeffding bounds showing that every copula has to lie inside of

the shown pyramid

is the absence of dependence, and comonotony is the extreme positive dependence

structure. The independence copula is shown in Figure 2.2. Mathematically:

C−(u1, u2, ..., un) = max

{

1− n+
n
∑

i=1

ui, 0

}

C⊥(u1, u2, ..., un) =
n
∏

i=1

ui

C+(u1, u2, ..., un) = min
j∈t{1,...,n}

uj

where u1, u2, ..., un ∈ [0; 1] .

C⊥ and C+ are copulas whatever the dimension n, but C− is only a copula in the
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Independence Copula
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Figure 2.2: Scatter plot for the independence copula

bivariate case. However C− is for any dimension n (n greater than two) the point-

wise best possible bound, that is for any u in DomC− there exists a copula C such

that C(u) = C−(u).

Definition 2.2.3 A copula C1 is said to be smaller than a copula C2 if

∀ (u1, u2, ..., un) ∈ [0, 1]n , C1 (u1, u2, ..., un) ≤ C2 (u1, u2, ..., un)

written C1 ≺ C2 where ≺ is called the concordance ordering, and is related to the

first order stochastic dominance over cumulative distribution functions.

It is important to note that the ordering C− ≺ C ≺ C+ holds for any copula C and

from Definition 2.2.3, a copula is said to be a positive dependence structure if C⊥ ≺

C ≺ C+ and a copula is a negative dependence structure if C− ≺ C ≺ C⊥ . Since ≺
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is a partial ordering and that there exist copulas that are neither positive nor negative

dependence structures, Definition 2.2.3 provides us with a first classification among

copulas, though it remains theoretical. That is the reason we introduce measures of

the dependence induced by the copula.

2.3 Families of Copula

Copulas have been distinguished in the Elliptical and Archimedean families until

Alfonsi and Brigo (2005) who introduced new families of copulas based on periodic

functions.

2.3.1 Elliptical copulas

Elliptical copulas are the copulas with elliptical distributions. They have an elliptical

form and therefore symmetry in the tails. Important copulas in this family are the

Gaussian and the Student’s t-copula. One way of obtaining families of copula is by

inversion from known bivariate distribution families. For an elliptical copula, the

distribution is equation 2.2.1. Evaluation of equation 2.2.1 needs implementation of

the joint CDF of the elliptical distribution and univariate quantile functions for each

margin. Differentiating equation 2.2.1 gives the density of an elliptical copula

c (u1, ..., un) =
f
[

F−1
1 (u1) , ..., F

−1
n (un)

]

n
∏

i=1

fi
[

F−1
i (ui)

]
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where f is the joint PDF of the elliptical distribution, and f1, . . . , fn are marginal

density functions.

2.3.1.1 The Gaussian copula

For 2-dimensional case, the Gaussian copula may be represented as:

CGa(u, v; ρ) = Φ2
Σ

(

Φ−1(u),Φ−1(v)
)

=

Φ−1(u)
∫

−∞

Φ−1(v)
∫

−∞

1

2π
√

1− ρ2
exp

{

−x2 − 2ρxy + y2

2(1− ρ2)

}

dxdy

where Φ(x) is the standard normal distribution function and Φ2
Σ(x, y) is the bivariate

normal distribution with zero mean and correlation ρ between the marginals, that is,

Σ is a 2 x 2 matrix with 1 on the diagonal and ρ otherwise.

For normal distribution independence is equivalent to zero correlation. Hence for

ρ = 0, the Gaussian copula equals the independence copula. On the other side,

if ρ = 1 we obtain the comonotonicity copula, while for ρ = −1 the counter-

monotonicity copula is obtained. The intuition of positive or negative dependence

recurs in the form of positive/negative linear dependence. Thus the Gaussian copula

interpolates between these three fundamental dependency structures via one simple

parameter, the correlation ρ . A copula with this feature is said to be comprehensive.
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We also note that the covariance matrix Σ, used here, is not arbitrary. It is a

correlation matrix, which is obtained from an arbitrary covariance matrix by scaling

each component to variance 1, which does not change the resultant copula as it is scale

invariant.The copula of the n-variate normal distribution with covariance matrix Σ

is

CGa
ρ (u) = Φn

ρ

(

Φ−1 (u1) , ...,Φ
−1 (un)

)

,

where Φn
ρ denotes the joint distribution function of the n-variate standard normal

distribution function with covariance matrix Σ, and Φ−1 denotes the inverse of the

distribution function of the univariate standard normal distribution. This can ex-

plicitly be written as:

c (u1, ..., un |Σ) = |Σ|−
1
2 exp

{

1

2
cT
(

In − Σ−1
)

c

}

where c = (q1, ..., qn)
T with qi = Φ−1 (ui) for i = 1, ..., n and Φ is the CDF of N (0, 1).

Gaussian copulas do not have upper tail dependence. Since elliptical distributions

are radially symmetric, the coefficient of upper and lower tail dependence are equal.

Hence Gaussian copulas do not have lower tail dependence either. This can be shown

as follows:

Let (X, Y )T have the bivariate standard normal distribution function with linear
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correlation coefficient ρ = 1. That is (X, Y )T ∼ C(Φ (x) ,Φ (y)), where C is a

member of the Gaussian family given above with ρ12 = ρ . Since copulas in this

family are exchangeable,

λU = 2 lim
uր1

P {V > u |U = u} ,

and because Φ is a distribution function with infinite right endpoint,

lim
uր1

P {V > u |U = u} = lim
x→∞

P
{

Φ−1 (V ) > x
∣

∣Φ−1 (U) = x
}

= lim
x→∞

P {X > x |Y = x} .

Using the fact that Y |X = x ∼ N (ρx, 1− ρ2) we obtain

λU = 2 lim
x→∞

Φ̄
(

(x− ρx)
/

√

1− ρ2
)

= 2 lim
x→∞

Φ̄
(

x
√

1− ρ
/

√

1 + ρ
)

,

from which it follows that λU = 0 for ρ12 < 1. Hence the Gaussian copula C with

ρ < 1 does not have upper tail dependence.

2.3.1.2 The t - copula

If X has the stochastic representation

X = dµ+

√
ν

S
Z, (2.3.1)

where µ ∈ ℜn, S ∼ χ2
ν and Z ∼ Nn (0,Σ) are independent, then X has an n-variate
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tν-distribution with mean µ (for ν > 1) and covariance matrix ν
ν−2

Σ (for ν > 2). If

ν ≤ 2 then Cov(X) is not defined. In this case we just interpret Σ as being the shape

parameter of the distribution of X. The copula of X given by equation 2.3.1 can be

written as

Ct
ν,ρ (u) = tnν,ρ

(

t−1
ν (u1) , ..., t

−1
ν (un)

)

,

where ρij = Σij

/√

ΣiiΣjj for i, j ∈ {1, . . . , n} and where tnν,ρ denotes the distribution

function of
√
νY
/√

S where S ∼ χ2
ν and Y ∼ Nn (0, ρ) are independent. Here tν

denotes the (equal) margins of tnν,ρ, that is, the distribution function of
√
νY1

/√
S.

In the bivariate case the copula expression can be represented as:

Ct(u, υ; ρ, ν) = t2ρ,ν
(

t−1
ν (u), t−1

ν (υ)
)

=

t−1
ν (u)
∫

−∞

t−1
ν (υ)
∫

−∞

1

2π
√

1− ρ212

1
{

1 + x2−ρ12xy+y2

ν(1−ρ212)

}1+ν/2
dxdy

where tν(x) is t-distribution with ν degrees of freedom and t2ρ,ν(x, y) is bivariate t-

distribution with correlation ρ. Note that ρ12 is simply the usual linear correlation

coefficient of the corresponding bivariate tν-distribution if ν > 2. If (X1, X2)
T has

a standard bivariate t-distribution with ν degrees of freedom and linear correlation

matrix ρ, then X2 |X1 = x is t-distributed with ν + 1 degrees of freedom and

E (X2 |X1 = x) = ρ12x, V ar (X2 |X1 = x) =

(

ν + x2

ν + 1

)

(

1− ρ212
)

.
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This result can be used to show that the t-copula has upper tail dependence (and

because of radial symmetry) equal lower tail dependence:

λU = 2 lim
x→∞

P (X2 > x |X1 = x)

= 2 lim
x→∞

t̄ν+1





(

ν + 1

ν + x2

)
1/2 x− ρ12x
√

1− ρ2l





= 2 lim
x→∞

t̄ν+1





(

ν + 1

ν/x2 + 1

)
1/2

√
1− ρ12√
1 + ρ12





= 2t̄ν+1

(√
ν + 1

√

1− ρ12

/

√

1 + ρ12

)

The coefficient of upper tail dependence is increasing in ρ12 and decreasing in ν,

as one would expect. Furthermore, the coefficient of upper (lower) tail dependence

tends to zero as the number of degrees of freedom tends to infinity for ρ12 > 1.

2.3.1.3 The Cauchy copula

The Cauchy copula is actually a special case of the Student-t copula where the degrees

of freedom is ν = 1. The copula generated by a multivariate Cauchy distribution

with linear correlation matrix Σ is given by

C (u1, ..., un) = T1

(

t−1
1 (u1) , ..., t

−1
1 (un)

)
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where T1 then is the joint distribution function of a standard Cauchy random vector

expressed as

T1 (x1, ..., xn) =
Γ
(

n+1
2

)

Γ
(

1
2

)

π
n/2
√

|Σ|

∫ xn

−∞

∫ xn−1

−∞

...

∫ x1

−∞

(

1 + zTΣ−1z
)−

(n+1)
2 dz1...dzn

and t−1
1 (.) is the inverse of a standard Cauchy distribution with

t1 (z) =

∫ z

−∞

1

π
·
(

1

1 + ω

)z

dω.

Due to its relationship with the Student-t copulas, the Cauchy copulas also have

non-zero tail dependence.

2.3.2 Elliptical copulas graphics

The following graphicals were plotted from simulated data in order to aid in the

visualisation of the elliptical copulas.

Notice the dependence at the tails of each distribution. The t-distribution has a

more flexible structure since increasing the degrees of freedom, the scatter plot will

approach the normal copula as displayed Figure 2.4.
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Normal Copula
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Figure 2.3: Scatter plots of 5000 random numbers from a normal copula and a t-copula.

Both have a dependence parameter of 0.5 with the t-distribution having 3 df.
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Figure 2.4: Scatter plots of 5000 random numbers from a normal copula and a t-copula.

Both have a dependence parameter of 0.5 with the t-distribution having 15 df.
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Figure 2.5: Perspective plots for the Normal and t-copulas for the densities of random

variables both of which have a dependence parameter of 0.5 and the t-distribution has 3df.
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Figure 2.6: CDFs for the Normal and t-copulas in figure 2.5 above.
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Figure 2.7: Contour plots for the data in figure 2.5 above.
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dependence of 0.5.
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Figure 2.9: Contour plot and the CDF for the data in figure 2.8 above.

2.3.3 Archimedean copulas

Archimedean copulas are widely applied, because they are not difficult to construct.

In comparison to Elliptical copulas, Archimedean copulas have only one dependency

parameter (instead of a dependency matrix) and have many different forms. Un-

like elliptical copulas (for instance, Gaussian), most of the Archimedean copulas

have closed-form solutions and are not derived from the multivariate distribution

functions using Sklar’s Theorem. In this sub-section we bring together important

definitions and properties of Archimedean copulas, that turn out to be necessary for

our approach.

Definition 2.3.1 Let ϕ : [0, 1] → [0,∞] be a continuous, strictly decreasing and

convex function such that ϕ (1) = 0 and ϕ (0) = ∞. The function ϕ has an inverse

ϕ−1 : [0,∞] → [0, 1] with the same properties like ϕ, except that ϕ−1 (0) = 1 and

ϕ−1 (∞) = 0.
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Definition 2.3.2 The function C : [0, 1]n → [0, 1] defined by

C (u1, . . . , un) = ϕ−1 (ϕ (u1) + . . .+ ϕ (un)) (2.3.2)

is called n-dimensional Archimedean copula if and only if ϕ−1 is completely monotonic

on [0,∞) , that is

(−1)k
∂k

∂uk
ϕ−1 (u) ≥ 0 for k ∈ ℵ

The function ϕ is called the generator of the copula. We assume that the generator

ϕ has only one parameter, denoted as θ.

If ϕ (0) = ∞ we say that ϕ is a strict generator, and the copula is said to be a strict

Archimedean copula. Since the most useful copulas are strict we will assume that

this condition is satisfied in what follows. Archimedean copulas arise naturally in

the context of Laplace transforms.

Let φ = ϕ−1. Thus, φ (s) is the Laplace transform

φ (s) =

∞
∫

0

e−swdM (w)

of some univariate cumulative distribution function M of a positive random variable

(that is, M(0) = 0), then the function 2.3.2 is ensured to be a proper distribution

function. In other words, the necessary condition for function 2.3.2 to be a cumulative



53

distribution function is the complete monotonicity of the inverse generator ϕ−1. Let

us introduce the class of functions

Ln =
{

φ : [0,∞) → [0, 1]
∣

∣

∣
φ (0) = 1, φ (∞) = 0, (−1)j φ(j) ≥ 0, j = 1, ..., n

}

n ∈ ℵ, L∞ being the class of Laplace transforms of strictly positive random variables.

With this notation, the necessary and sufficient conditions for function 2.3.2 to be a

copula is ϕ−1 ∈ L∞ and that, if function 2.3.2 is a copula for all n ∈ ℵ , then ϕ−1

must be completely monotone and hence a Laplace transform of a strictly positive

random variable.

Archimedean copulas given by function 2.3.2 have some algebraic properties which

are very useful for their generalisation and are found in Theorem 2.3.3.

Theorem 2.3.3 Let C be an Archimedean copula with generator ϕ. Then

1. C is symmetric, that is, C (u1, u2) = C (u2, u1)∀u1, u2 ∈ [0, 1] ;

2. C is associative, that is, C (C (u1, u2) , u3) = C (u1, C (u2, u3))∀u1, u2, u3 ∈

[0, 1] ;

3. If c > 0 is any constant then cϕ is also a generator of C.

It is, however, important to note that a Copula C is exchangeable if it is associative.

Archimedean copulas are permutation-symmetric in the n arguments, thus they are
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distribution functions of n exchangeable uniform random variates. For this reason,

these copulas suffer from a very limited dependence structure since all k-dimensional

marginal distributions are identical (k < n). One particularly simple form of a

n-dimensional copula is

H (x1, x2, ..., xn) = ϕ−1

(

n
∑

i=1

ϕ (Fi (xi))

)

where ϕ is known as a generator function. Such copulas are known as Archimedean.

Any generator function is a valid copula provided that it satisfies the properties

below:

ϕ(1) = 0; lim
x→0

ϕ(x) = ∞; ϕ
′

(x) < 0; ϕ
′′

(x) > 0.

Product copula: Also called the independent copula, is copula with no dependence

between variates and defined:

ϕ(x) = − ln(x)

Where the generator function is indexed by a parameter, a whole family of copulas

may be Archimedean. Its density function is unity everywhere.

If X and Y are independent random variables, then the product of their individual

margins F and G equal to their joint distribution function H . That is,

H (x, y) = F (x)G (y) for all x, y ∈ ℜ
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.

Then, the independence copula of the independent random variables is denoted as,

C =
∏

and we can write
∏

(u, v) = uv. For n independent random variables,

C (u1, u2, ..., un) =
∏

(u1, u2, ..., un) =
∏n

i=1 ui.

The general relationship between Kendall’s tau, τ , and the generator of an Archimedean

copula ϕθ (x) for a bivariate data set can be written as:

τ = 1 + 4

1
∫

0

ϕθ (t)

ϕθ (t)
dt

For instance, the relationship between Kendall’s tau, τ , and the Clayton copula

parameter θ for a bivariate data set is given by:

θ̂ =
2τ

1− τ

The definition does not extend to a multivariate data set of n variables because there

will be multiple values of tau, one for each pairing. However, one can calculate tau

for each pair and use the average, that is:

θ̂ =
2τ̄

1− τ̄
, τ̄ =

n
∑

i=1

n,i 6=j
∑

j=1

τij

n(n− 1)
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Figure 2.10: Fully nested copula with a dimension of n = 4

The three often used Archimedean copulas include: Gumbel, Clayton and Frank.

Multivariate copulas, on the other hand, allow for non-exchangeability. Since any

multivariate generalisation should contain function 2.3.2 as a special case, clearly the

necessary conditions for function 2.3.2 have to be satisfied. A simple generalisation

of the multivariate Archimedean copula can be found in Embrechts, Lindskog, and

McNeil (2003) and Whelan (2004). The copula for the n-dimensional case requires

n− 1 generators ϕ1, ..., ϕn−1 ,

C (u1, ..., un) = ϕ−1
n−1(ϕn−1 ◦ ϕ−1

n−2[...(ϕ2 ◦ ϕ−1
1 [ϕ1 (u1) + ϕ1 (u2) + ϕ2 (u3))

+ ...+ϕn−2 (un−2)] + ϕn−1 (un)) (2.3.3)

This is referred to as fully nested, since a higher dimensional copula is obtained

by adding one dimension step by step. The resulting dependence structure is more

general than in function 2.3.2, it is one of partial exchangeability.

There are n(n−1)/2 distinct bivariate margins and (only) n−1 several copulas with
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corresponding parameters. The expression given by expression 2.3.3 will be a proper

n-copula if, in addition to the property of complete monotonicity for the inverse

generators, other conditions concerning the composite functions ω = ϕi+1 ◦ ϕ−1
i are

satisfied. Define

L∗
n =

{

ω : [0,∞) → [0,∞)
∣

∣

∣
ω (0) = 0, ω (∞) = ∞, (−1)j−1 ω(j) ≥ 0, j = 1, ..., n

}

with n ∈ ℵ. The functions in L∗
∞ are compositions of the form ϕi+1 ◦ ϕ−1

i with

ϕ−1
i+1, ϕ

−1
i ∈ L1.

The second generalisation method of multivariate Archimedean copulas is more flexi-

ble than the fully nested one. It is a mixture of exchangeable and fully nested copulas

and is referred to as partially nested. The lowest dimension in which a copula from

this class exists is n = 4, and the copula is

C (u1, ..., u4) = ϕ−1
(

ϕ ◦ ϕ−1
12 [ϕ12 (u1) + ϕ12 (u2)] + ϕ ◦ ϕ−1

34 [ϕ34 (u3) + ϕ34 (u4)]
)

(2.3.4)

with three generators ϕ, ϕ12 and ϕ34 . This copula is thus generated by three different

generating functions. The random vector (U1, ..., U4) with distribution function 2.3.4

is only partially exchangeable. The random variates U1 and U2 are exchangeable, and

so are U3 and U4, but the remaining pairs are not. However, the joint distribution
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of (U1, U3) is equal to the joint distribution of (U2, U3), (U1, U4) and (U2, U4). Higher

dimension nesting can be found in Whelan (2004).

2.3.3.1 The Clayton copula

The Clayton copula is an asymmetric Archimedean copula, Nelsen (2006), exhibiting

greater dependence in the negative tail than in the positive. This copula is given by:

Cθ (u, v) = max

(

[

u−θ + v−θ − 1
]−1/θ

, 0

)

and its generator is:

ϕθ (x) =
1

θ

(

x−θ − 1
)

where, θ ∈ [−1,∞) \ {0}. The relationship between Kendall’s tau, τ , and the Clayton

copula parameter θ is given by:

θ̂ =
2τ

1− τ

For θ = 0 in the Clayton copula, the random variables are statistically independent.

The generator function approach can be extended to create multivariate copulas, by

simply including more additive terms.

2.3.3.2 The Gumbel copula

The Gumbel copula (also referred to as the Gumbel-Hougard copula) is an asymmet-

ric Archimedean copula, Nelsen (2006), exhibiting greater dependence in the positive
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tail than in the negative. This copula is given by:

Cθ(u, v) = exp

{

−
[

(− ln u)θ + (− ln v)θ
]1/θ
}

and its generator is:

ϕθ(x) = (− ln x)θ

where, θ ∈ [1,∞). The relationship between Kendall’s tau, τ , and the Gumbel copula

parameter θ is given by:

θ̂ =
1

1− τ

2.3.3.3 The Frank copula

The Frank copula is a symmetric Archimedean copula, Nelsen (2006), given by:

Cθ (u, v) = −1

θ
ln

{

1 +

(

e−θu − 1
) (

e−θv − 1
)

e−θ − 1

}

and its generator is:

ϕθ(x) = − ln

{

exp(−θx)− 1

exp(−θ)− 1

}

where, θ ∈ (−∞,∞) \ {0}. The relationship between Kendall’s tau, τ , and the Frank

copula parameter θ is given by:

[D1 (θ)− 1]

θ
=

1− τ

4
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where, D1 (θ) =
1
θ

θ
∫

0

t
et−1

dt, is a Debye function of the first kind. A Debye function is

defined as:

Dn (x) =
n

xn

x
∫

0

tn

et − 1
dt

where n , a non-negative integer, is the order of the Debye function.

2.3.4 Graphics for the Archimedean copulas
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Figure 2.11: Scatter plots of 5000 random variables for the Clayton, Frank and the Gumbel

copulas.

Scenarios were simulated with standard normal marginals and a Kendall’s tau of 0.5.

Notice the differences in the dependence structure in the Figure 2.11. The Clayton

has lower tail dependence, Frank that resembles a ’sausage’ has no tail dependence

while the Gumbel captures the upper tail dependence. Similar observation, but from

different perspectives, can be seen in Figure 2.12 and Figure 2.13.
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Figure 2.12: Contour plots for the data found in figure 2.11 to enables us visualise the

dependence structure on two-dimension.
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Figure 2.13: Perspective plots of our data in figure 2.11. Notice the strengths of each of

the three Archimedean copulas.
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Figure 2.14: The CDFs of our data in figure 2.11 above.
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2.3.5 Periodic copula

Alfonsi and Brigo (2005) introduced new families of copulas based on periodic func-

tions. They noticed that if c̃ is a 1-periodic non-negative function that integrates to

1 over [0, 1] that is,
1
∫

0

c̃(u)du = 1

and φ is a double primitive of c̃ , then both

C̃− (u1, u2) =

u1
∫

0

u2
∫

0

c̃ (x1 + x2) dx1dx2 = φ (u1 + u2)− φ (u1)− φ (u2)

C̃+ (u1, u2) =

u1
∫

0

u2
∫

0

c̃ (x1 − x2) dx1dx2 = φ (u1) + φ (−u2)− φ (u1 − u2)

are copula functions, with the second one not necessarily exchangeable. This may be

a tool to introduce asymmetric dependence, which is absent in most known copula

functions.

2.3.6 Empirical copulas

When analysing data with an unknown underlying distribution, one can transform

the empirical data distribution into an empirical copula, Nelsen (2006), by warping

such that the marginal distributions become uniform. Mathematically the empirical

copula frequency function is calculated by
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Cn

(

i

n
,
j

n

)

=
Number of pairs (x, y) such that x ≤ x(i) and y ≤ y(j)

n

where 1 ≤ i ≤ n, 1 ≤ j ≤ n

where x(i) represents the ith order statistic of x. Less formally, simply replace the

data along each dimension with the data ranks divided by n.

Classification of risks generally forms the basis of rate making in practically all

branches of insurance. Once a risk is insured, it is reasonable that the standards for

classifying that risk can and should be different from those of marketing or underwrit-

ing. Furthermore, once the classifications are established, there are also guidelines

to follow in establishing the prices, or classification differentials, for the system. We

focus on the appropriate rules regarding selection of classification variables and the

definition of classes at the very start of the classification rating process. Given the

preceding, the variables comprising a classification system should be chosen so that

the following guidelines or conditions in addition, of course, to any legal requirements

regarding fair discrimination, are generally adhered to according to Walters (1981)

who writes on risk classification standards, viz:

1. Similar risks should be assigned to the same class with respect to each variable.

Conversely, dissimilar risks should be assigned to different classes, so that there
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are no clearly identifiable subsets with a significantly different loss potential or

expected loss in the same class.

2. The common characteristics used to identify insureds as similar should reason-

ably relate to the potential for, or hazard of, loss.

3. The classes should be exhaustive and mutually exclusive; that is, each insured

should belong to at least one, but only one class with respect to each rating

variable.

4. There should be clear and objective phraseology in the definition of classes,

with no ambiguity as to what class an individual insured belongs.

5. An insured should not be easily able to misrepresent or manipulate his classi-

fication.

6. The cost of administering a rating variable should be reasonable in relation to

the benefits received.

7. The class rating factors should be susceptible to measurement by actual expe-

rience data.

The first guideline is what is meant by homogeneous classes. Classes that are homo-

geneous will take fewer risks to obtain reasonable estimates of expected costs, and

will minimize the ability of the competition to skim off better than average risks,
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thus changing the ultimate costs. Secondly or ”the reasonable relationship” guide-

line serves to maintain homogeneous classes by avoiding spurious measures which

likely have potentially identifiable subsets. Of course, if a strong statistical correla-

tion persists over time, with no emergence of practical subdivisions then the degree

of perceived reasonableness may be enhanced over time as well.

The third, fourth, and fifth guidelines deal with classes being well-defined, and help

to ensure that each risk is actually placed in the right classification and to avoid un-

equal application of the classification system. The ”exhaustive” quality allows more

risks to be accepted and, once accepted, gives a complete method of rating them.

”Exclusivity” precludes two different rates for the exact same risk. ”No ambiguity”

also prevents unequal treatment of the same risk, while protection from misrepresen-

tation by insureds will keep the statistical data consistent as well as enhancing the

equal treatment of insureds. The last two guidelines touch on efficiency and effec-

tiveness of the classification process.

However, there are some examples of classifications which do not meet the guidelines

above and they may include the following

1. The use of occupation as a rating variable for auto liability insurance may result

in a problem with regard to meeting the ambiguity guideline, both in splitting

the population into exhaustive categories, as well as not having all cells likely
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being reasonably related to the hazard of loss.

2. Similarly, national origin, if not already proscribed by law, would have problems

meeting the mutually exclusive and exhaustive guidelines.

3. Using unverifiable criteria or too subjective wording, such as with psychological

profiles, would also present major problems. The use of characteristics which

are easily circumvented by some insureds and not others can favour the pricing

of some to the detriment of others.

In addition, a class plan would not be homogeneous if it failed to reflect premium dif-

ferences for identifiable and rateably different subsets within broader classifications.

The degree of failure would depend upon the cost of determining the necessary in-

formation. From the insured’s standpoint, the pricing impact of not subdividing

depends upon the size of the subsets and the resulting differences in price for each

of the subclasses. It may be that only a small amount of premium can be saved

by refinement, if one of the subclasses is very large and also the lowest priced, such

as rating by past accident record in auto insurance where accident-free or claim-free

drivers usually save at most five percent over the cost of not having such a program.

After attaining the classes that an industry intends to hold, a portfolio of diverse risks

is achieved. Diversification of risks is a risk management technique that mixes a wide

variety of risks within a portfolio. The rationale behind this technique contends that

a portfolio of different kinds of risks will, on average, yield higher returns and pose a
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lower risk than any individual investment found within the portfolio. Diversification

strives to smooth out unsystematic risk events in a portfolio so that the positive

performance of some investments will neutralize the negative performance of others.

Therefore, the benefits of diversification will hold only if the risks in the portfolio are

not perfectly correlated.

This technique endeavours to maximize return by venturing in different areas that

would each react differently to the same event. Most risk managers agree that,

although it does not guarantee against loss, diversification is the most important

component of meeting high financial goals while minimizing risk. We now propose a

criterion to restructure a company’s classes of risks using their dependence structure.

Burgi, Dacorogna, and Iles (2008) noted that modern portfolio theory is based on

correlation as a measure of dependence but the criterion below is based on the copula

theory which is superior to the correlation as a measure of the intrinsic relatedness

of different risks. Dependence between risks reduces the benefits of diversification.

Often dependence increases when diversification is most needed like in case of stress

and it is thus non-linear.

Similarity and dissimilarity: Distances are used to measure similarity and dissimi-

larity. Similarity is a quantity that reflects the strength of relationship between two

objects. This quantity is usually having range of either -1 to +1 or normalized into

0 to 1. If the similarity between feature i and feature j is denoted by Sij , we can

measure this quantity in several ways depending on the scale of measurement, or
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data type, that we have.

Dissimilarity is a measure of disorder between two objects. It may also be viewed

as a measure of the discrepancy between two objects based on several features. Let

the normalized dissimilarity between object i and object j be denoted by δij . The

relationship between dissimilarity and similarity is given by

Sij = 1− δij

for similarity bounded by 0 and 1. When similarity is one, that is, exactly similar,

the dissimilarity is zero and when the similarity is zero, that is, very different, the dis-

similarity is one. If the value of similarity has range of -1 to +1, and the dissimilarity

is measured with range of 0 and 1, then

Sij = 1− 2δij

When dissimilarity is one, that is, very different, the similarity is minus one and

when the dissimilarity is zero, that is, very similar, the similarity is one. In many

cases, measuring dissimilarity, that is, distance, is easier than measuring similarity.

Once we can measure the dissimilarity, we may easily normalize it and convert it to

similarity measure.
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There are many types of distance and similarity. Each similarity or dissimilarity

has its own characteristics. For instance, we have distances for Binary variables,

Nominal/Categorical Variables, Ordinal Variables, and Quantitative Variables. The

most commonly used of binary dissimilarity (distance) are Simple Matching distance,

Jaccard’s distance and the Hamming distance. For the categorical variables, if the

number of category is only two, then we can use distance for binary variables such

as simple matching, Jaccard’s or Hamming distance. If the number of category is

more than two, we need to transform these categories into a set of dummy variables

that has binary value. To compute dissimilarity or distance between two Ordinal

Variables, that is, ranked or two orded or two rating vectors, the most common meth-

ods are: Normalized Rank Transformation, Spearman Distance, Footrule Distance,

Kendall Distance, Cayley Distance, Hamming Distance, Ulam Distance, Chebyshev

or Maximum Distance and the Minkowski Distance. Distance for ordinal variables

is a measure of spatial disorder between two rank or ordering vectors. Since our

dependence parameters are quantitative variables, we shall have a close look at some

of the common used distances for the quantitative variables below.Let us have a brief

look at some of the distances that are mainly used.
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2.4 Distances

Distance is a numerical description of how far apart objects are. In everyday discus-

sion, distance may refer to a physical length, a period of time, or estimation based on

other criteria, for instance, two counties over. In mathematics and statistics, distance

must meet more rigorous criteria. In most cases there is symmetry and ”distance

from X to Y ” is interchangeable with ”distance between Y and X”. A distance or

metric function is a function which defines a distance between elements of a set. A

set with a metric is called a metric space.

Definition 2.4.1 (Distance function) A metric on a set X is a function, called

the distance function or simply distance, d : X × X → ℜ (where ℜ is the set of

real numbers). For all x, y, z ∈ X, this function is required to satisfy the following

conditions:

1. d(x, y) ≥ 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (identity of indiscernibles. Note that condition

1 and 2 together produce positive definiteness)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) ≤ d(x, y) + d(y, z) (subadditivity / triangle inequality).
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These conditions express intuitive notions about the concept of distance. For exam-

ple, from 1 the distance between distinct points is always positive or zero. Property

2 implies that distance is zero if and only if it is measured to itself and the distance

from x to y is the same as the distance from y to x, that is, distance is symmetric.

The triangle inequality means that the distance traversed directly between x and z,

is not larger than the distance to traverse in going first from x to y, and then from y

to z. Property 1 (d(x, y) ≥ 0) follows from properties 2 and 4 and does not have to

be required separately.

2.4.1 The Mahalanobis distance

This distance measure was introduced by P. C. Mahalanobis in 1936. It is based

on correlations between variables by which different patterns can be identified and

analysed. It is a useful way of determining similarity of an unknown sample set to

a known one. It differs from Euclidean distance in that it takes into account the

correlations of the data set and is scale-invariant, i.e. not dependent on the scale of

measurements.

Formally, the Mahalanobis distance from a group of values with mean µ = (µ1, µ2, µ3..., µp)
T

and covariance matrix Σ for a multivariate vector x = (x1, x2, x3, ..., xp)
T is defined

as
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DM(x) =
√

(x− µ)TΣ−1(x− µ)

Mahalanobis distance can also be defined as dissimilarity measure between two ran-

dom vectors ~x and ~y of the same distribution with the covariance matrix P :

d(~x, ~y) =
√

(~x− ~y)TP−1(~x− ~y)

If the covariance matrix is the identity matrix, then the Mahalanobis distance reduces

to the Euclidean distance. If the covariance matrix is diagonal, then the resulting

distance measure is called the normalized Euclidean distance:

d(~x, ~y) =

√

√

√

√

p
∑

i=1

(xi − yi)2

σ2
i

where σi is the standard deviation of the xi over the sample set.

2.4.2 Euclidean distance

The Euclidean distance or Euclidean metric is the ”ordinary” distance between two

points that one would measure with a ruler, which can be proven by repeated appli-

cation of the Pythagorean Theorem. In most cases when people talk about distance,

they will refer to Euclidean distance. The most well-known distance is the Euclidean
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distance which is defined as:

d(x,y) = ‖x,y‖ =
√

(x− y)T (x− y) =

√

∑

i

(xi − yi)2

(with ‖x‖ being the norm of x, and xi and yi being the i-th element of x and y).

Expressed as a squared distance (in an Euclidean world, it is always more practical

to work with squared quantities because of the Pythagorean theorem), it is computed

as:

d2(x,y) = (x− y)T (x− y)

2.4.3 Manhattan distance

The Manhattan distance function computes the distance that would be travelled to

get from one data point to the other if a grid-like path is followed, that is, the distance

between two points measured along axes at right angles. The Manhattan distance

between two items is the sum of the differences of their corresponding components.

It is also known by various names as City Block Distance, boxcar distance, absolute

value distance, rectilinear distance, Minkowski’s L1 distance, or taxi cab metric and

it is given by:

di =

n
∑

i

|xi − yi|

where n is the number of variables, and xi and yi are the values of the i-th variable, at

points X and Y respectively. Other distances include: the Canberra Distance, Bray
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Curtis Distance and Angular Separation which represents cosine angle between two

vectors. We also have the Correlation coefficient, for the quantitative variables, which

is standardized angular separation by centering the coordinates to its mean value.

Correlation coefficient measures similarity rather than distance or dissimilarity.

2.5 Clustering

Clustering is a technique to group objects based on distance or similarity. It is there-

fore the assignment, grouping or segmenting of a set of observations, individuals,

cases, or data rows into subsets, called clusters, so that observations in the same

cluster are similar in some sense. The cardinal objective of clustering is the notion of

degree of similarity (or dissimilarity) between the individual objects being clustered.

The types of clustering algorithm include, first the Hierarchical algorithms that find

successive clusters using previously established clusters. They are usually either ag-

glomerative, the ”bottom-up”, or divisive the ”top-down”. Agglomerative algorithms

begin with each element as a separate cluster and merge them into successively larger

clusters. Divisive algorithms begin with the whole set and proceed to divide it into

successively smaller clusters. The second lines of algorithms are the Partitional algo-

rithms which typically determine all clusters at once, but can also be used as divisive

algorithms in the hierarchical clustering. The Density-based clustering algorithms are

devised to discover arbitrary-shaped clusters. In this approach, a cluster is regarded
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as a region in which the density of data objects exceeds a threshold. Finally, the

Subspace clustering methods look for clusters that can only be seen in a particular

projection, subspace or manifold, of the data.

In this work we utilize the agglomerative approach under the Hierarchical clustering.

The algorithm of agglomerative approach to compute hierarchical clustering is as

follows:

1. Convert object features to distance matrix, in our case we have the matrix of

the rank correlation coefficients and the tail dependence.

2. Set each object as a cluster, thus for the sixteen objects, we will have sixteen

clusters in the beginning.

3. Iterate until number of cluster is one, that is, by merging the two closest clusters

and continuously updating the distance matrix.

2.5.1 Linkages between objects

Given a distance matrix, linkages between objects can be computed through a crite-

rion to compute distance between groups. The most common and basic criteria are:

Single Linkage (minimum distance criterion), Complete Linkage (maximum distance

criterion), Average Group (average distance criterion), Centroid distance criterion

and the Ward (which is to minimize variance of the merge cluster).
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2.5.2 Cophenetic correlation coefficient

After the formation of the clusters, the question now is how good is the clustering?

There is an index called Cross Correlation Coefficient or Cophenetic Correlation Co-

efficient that shows the goodness-of-fit of our clustering similar to the Correlation

Coefficient of regression. To compute the Cophenetic Correlation Coefficient of hier-

archical clustering, we need a distance matrix and a Cophenetic matrix. To obtain

Cophenetic matrix, we need to fill the distance matrix with the minimum merg-

ing distance that we obtain in the previous cluster objects. Cophenetic Correlation

Coefficient is simply correlation coefficient between distance matrix and Cophenetic

matrix.

The dependence structure of different lines of business cannot be ignored especially in

Economic Capital assessment and overly too in Enterprise Risk Management (ERM).

It is in this light that Faivre (2003) used Copulas to model the overall distribution of

claim costs of a four-Lines of Business company. The work utilized different copulas

to show that the dependence structure has a substantial impact on the Economic

Capital of that firm. This study extends the work by Faivre (2003) and makes fur-

ther realistic assumptions. The study by Wu, Valdez, and Sherris (2007) that used

Value-at-Risk and the Conditional Tail Expectation (CTE) is extended here to take

the proposed risk framework.
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Suppose that there exists an ideal situation where all risks are the same. This would

imply that the portfolio is completely homogeneous. However, in real world you

would find that risks are more heterogeneous than homogeneous a problem that

can be solved by breaking down the risks into a number of homogeneous categories,

Straub (1997). We can now think of the lines of business to contain sub-classes which

are homogeneous. The lines will depict a hierarchical structure from the sub-classes

to the main lines of business and their dependence structure will be studied by the

hierarchical copulas. The following chapter dedicates its scope to measuring the

dependence in data that has an hierarchical structure.



Chapter 3

MODELLING THE DEPENDENCE BETWEEN M-LINES

OF BUSINESS WITH SUBCLASSES

3.1 Introduction

Traditionally, insurance companies maintain different lines of business, in their opera-

tions, as a mode of diversification which in itself aids in reducing risks of encountering

ruin. These could be the portfolio profiles for the companies. For instance, there are

companies operating various lines in the general insurance, others in life insurance

while some have composite arrangements. In this chapter, we consider a case of a

company with M-lines of business and each of this line contains some sub-classes.

Therefore,the portfolio will have an hierarchical structure, that is, from the sub-

classes to the main lines of business and finally to the portfolio level.

3.2 Modelling the aggregate loss

For the portfolio of business classes, let Ni denote the number of claims during a fixed

time period for policies in class i and Xi1, Xi2, ... denote the amounts of successive

claims in that business class. The aggregate loss of each class in the portfolio during

the period can be expressed as

Si =

Ni
∑

j=1

Xij (3.2.1)

where Ni is a random variable. This is a compound risk model with the distribu-

78
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tion function of Si in equation 3.2.1 denoted by FSi
. In the compound risk model,

we assume that Xi, Xi1, Xi2, ... are independent identically distributed with common

severity distribution function (sdf), denoted as FXi
The sequence Xi, Xi1, Xi2, ... are

also independent of the number of claims Ni.

The expected value of Si can be obtained by using the conditional distribution of

Si, given Ni. First, we use the condition Ni = ni to substitute outcome ni for the

random variable Ni. We then use the independence of Xij and Ni to get rid of the

condition Ni = ni . This gives the following computation: Let µik = E
[

Xk
i

]

Now,

E [Si] = E [E [Si |Ni ]]

=
∞
∑

ni=0

E [Xi1 + ...+XiNi
|Ni = ni ] Pr [Ni = ni]

=
∞
∑

ni=0

E [Xi1 + ...+Xini
] Pr [Ni = ni]

=
∞
∑

ni=0

niµi1 Pr [Ni = ni] = µi1E [Ni]

(3.2.2)

The variance can be determined with the formula of the conditional variance, see

Bowers, Gerber, Jones, and Nesbitt (1997),
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V ar [Si] = E [V ar [Si |Ni ]] + V ar [E [Si |Ni ]]

= E [NiV ar [Xi]] + V ar [Niµi1]

= E [Ni]V ar [Xi] + µ2
i1V ar [Ni]

(3.2.3)

The moment generating function for the compound distribution can be obtained as

follows:

MSi
(t) = E

[

E
[

etSi |Ni

]]

=
∞
∑

ni=0

E
[

et(Xi1+...+XiNi) |Ni = ni

]

Pr [Ni = ni]

=
∞
∑

ni=0

E
[

et(Xi1+...+Xini)
]

Pr [Ni = ni]

=
∞
∑

ni=0

{MXi
(t)}ni Pr [Ni = ni]

= E
[

(

elogMXi
(t)
)Ni
]

= MNi
(logMXi

(t))

(3.2.4)
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The aggregate loss for the portfolio can now be obtained from:

S = S1 + S2 + ... + SN

=
N
∑

i=1

Si

where N denotes the total number of claims and Si is the claims amount emanating

from the i-th business class, and S is taken to be zero if N = 0.
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3.3 Hierarchical Copula

The Archimedean copulas are a good choice for modelling bivariate distributions.

However, for high dimensional case, they tend to be too restrictive as they im-

ply exactly the same dependence structure between all pairs of variables. To make

Archimedean copulas less restrictive in describing dependence structures of n-dimensional

distributions, we can resort to a hierarchical structure, Kang (2007).

Consider, for a simple case, a company with only two LOB with each having two

homogenous sub-classes. This gives rise to four sub-classes in the company. We can

divide the four sub-classes into two pairs: the first pair consisting of one LOB and

then the second includes the other LOB. Ideally, we can find a proper bivariate copula

to model each pair of LOB respectively and then nest these two copulas into another

bivariate copula to form a joint distribution of the four sub-classes, see Figure 3.1 for

illustration.

Let C1 (u1, u2) and C2 (u3, u4) be the two copulas governing the two pairs of LOB

and then the final joint distribution can be given as

F (x1, x2, x3, x4) = C3 (C1 (u1, u2) , C2 (u3, u4)) (3.3.1)
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where ui = Fi (xi) and its density form is

f (x1, x2, x3, x4) = c3 (C1 (u1, u2) , C2 (u3, u4)) c1 (u1, u2) c2 (u3, u4)

4
∏

i=1

fi (xi) (3.3.2)

However, equation 3.3.1 does not always hold for any copulas and for certain choices

of C1 and C2, C3 will not satisfy the definition of copulas, Nelsen (2006). Nevertheless,

Archimedean copulas have certain properties that facilitate constructing hierarchical

copulas as shown in equation 3.3.1.

3.4 Hierarchical Archimedean Copulas (HAC)

The idea of hierarchical Archimedean Copulas has been mentioned in the litera-

ture some of which include Embrechts et al. (2003), Whelan (2004) and later in

Savu and Trede (2006) which is to build a hierarchy of Archimedean copulas. The

model relies on a notational framework based on nested multivariate and gener-

alised Archimedean copulas. At each level we aggregate Archimedean copulas from

the previous level, finally ending at the top level with a hierarchical Archimedean

copula, being the joint distribution function of n standard uniformly distributed

random variables U1, U2, ..., Un. The joint distribution function is evaluated at u =

(u1, u2, ..., un) ∈ [0, 1]n . Let there be L hierarchy levels indexed by l. At each level

l = 1, ..., L we have ml distinct objects with index j = 1, ..., ml . The u1, u2, ..., un

are located at the lowest level, l = 0. At level l = 1 the u1, u2, ..., un are grouped into
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m1 ordinary multivariate Archimedean copulas C1,j, j = 1, ..., m1, of the form

C1,j (u1,j) = ϕ−1
1,j





∑

u1,j

ϕ1,j (u1,j)





ϕ2,j denotes the generator of copula C2,j and C2,j represents the set of all copulas

from level l = 1 entering copula C2,j for j = 1, ..., m2. We can proceed in this manner

until attaining level L with the hierarchical Archimedean copula CL,1 as single object.

The following notation will be useful in representing the hierarchical Archimedean

copula Cl,j at level l = 1, ..., L. We let Cl,j have either the argument ul,j denoting the

set of all u1, u2, ..., un entering (directly or indirectly) the copula Cl,j , or the argument

Cl,j denoting the set of all copulas from level l − 1 entering Cl,j at level l = 2, ..., L.

Therefore, C2,j (C2,j) and C2,j (u2,j) are just two ways of writing the same thing.

The conditions to ensure that the resulting structure is in fact a hierarchy include:

The number of copulas must decrease at each level, that is ml < ml−1 ∀ l = 2, ..., L.

The top level contains a single object (CL,1), hence mL = 1 . Let nl,j denote the

dimension of copula Cl,j, which we define as the cardinality of ul,j (rather than the

cardinality of Cl,j). It must hold
∑ml

j=1 nl,j = n ∀ l = 1, ..., L, that is, at each level

the dimensions of the copulas need to add up to the dimension n of the hierarchical

copula. At the top level L we must arrive at dimension nL,1 = n.
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For the hierarchical Archimedean copula CL,1 to be a proper cumulative distribution

function the following conditions have to be satisfied. To start with, all inverse gen-

erator functions ϕ−1
l,j should be completely monotone. And secondly, the composite

functions ϕl+1,i ◦ ϕ−1
l,j ∈ L∗

∞ ∀ l = 1, ..., L and j = 1, ..., ml, i = 1, ..., ml+1 such that

Cl,j ∈ Cl+1,i.

In the case of fully nested copulas, the degree of dependence, as expressed by the

copula parameter θ, has to be greatest for the most deeply nested copulas in or-

der to satisfy the conditions for a proper n-dimensional distribution. This condition

has been shown for the Gumbel and the Cook-Johnson copula families in Embrechts

et al. (2003). Hence, for the fully nested n-copula in equation 2.3.3 the condition

θ1 ≥ θ2 ≥ . . . ≥ θn−1 has to be satisfied. Transferring this result to our setting,

the parameters have to satisfy the following condition to ensure that the resulting

hierarchical copula is a proper n-dimensional copula: θl+1,i < θl,j∀l = 1, ..., L and

j = 1, ..., ml , i = 1, ..., ml+1 such that Cl,j ∈ Cl+1,i where θl,j is the parameter be-

longing to the generator ϕl,j. This condition means that there is a higher degree of

dependence for variates linked at a lower level than between those linked only at a

higher level; the dependence diminishes with increasing level.

To illustrate let us consider our example of two LOB each having two sub-classes
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Figure 3.1: Partially nested copula of dimension n = 4

giving rise to four random variates. For simplicity, the four random variates are

uniformly distributed, though this may not hold for more complex cases. Our hi-

erarchical copula is the joint distribution function of four standard uniform random

variates U1, ..., U4 spanning two levels. At the lower level we couple two pairs of

random variables U1, U2 and U3, U4 with distinct copulas C1,1 and C1,2 generated by

ϕ1,1 and ϕ1,2 respectively. These two copula functions will then be coupled at the

upper level using a third generator ϕ2,1, as shown in Figure 3.1.

The resulting hierarchical Archimedean copula has the following analytical form

C2,1 (u) = C2,1 (u1, u2, u3, u4)

= C2,1 (C1,1 (u1, u2) , C1,2 (u3, u4))

= ϕ−1
2,1

(

ϕ2,1 ◦ ϕ−1
1,1 [ϕ1,1 (u1) + ϕ1,1 (u2)] + ϕ2,1 ◦ ϕ−1

1,2 [ϕ1,2 (u3) + ϕ1,2 (u4)]
)

(3.4.1)
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We find here that there are two composite functions ϕ2,1 ◦ ϕ−1
1,1 and ϕ2,1 ◦ ϕ−1

1,2 that

enter the model. If ϕ1,1, ϕ1,2 and ϕ2,1 are completely monotone and both composite

functions ϕ2,1 ◦ ϕ−1
1,1 and ϕ2,1 ◦ ϕ−1

1,2 are elements of L∗
∞, then C2,1(u) is a hierarchical

Archimedean copula. These conditions are fulfilled if θ2,1 < θ1,1 and θ2,1 < θ1,2.

3.4.1 Deriving the density

For multivariate Archimedean copulas of the form in equation 2.3.2 the copula density

can be expressed in terms of the generator functions, as

c (u1, ..., un) = ϕ−1(n) (ϕ (u1) + ... + ϕ (un))
n
∏

i=1

ϕ′ (ui)

where ϕ−1(n) denotes the n-th derivative of the inverse generator function. Unfortu-

nately, for hierarchical copulas such a simple expression for the density is not available

any more. Due to the more complex structure of hierarchical copulas, we pursue a

recursive approach. We differentiate the n-dimensional top level copula CL,1 with

respect to its arguments uL,1, using the chain rule. It is at this point that the two
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different notations of the copula arguments prove useful. Note that at the top level

CL,1 (uL,1) = CL,1 (CL,1)

= CL,1

(

CL−1,1, ..., CL−1,mL−1

)

= CL,1

(

CL−1,1 (CL−1,1) , ..., CL−1,mL−1

(

CL−1,mL−1

))

= CL,1

(

CL−1,1 (uL−1,1) , ..., CL−1,mL−1

(

uL−1,mL−1

))

(3.4.2)

In order to derive the density

cL,1 (u) =
∂nCL,1

∂u1...∂un
(3.4.3)

of the hierarchical copula we apply the chain rule,

∂nCL,1

∂u1 . . . ∂un
=

∑ ∂n−iCL,1

∂Ck1
L−1,1 . . . ∂C

kmL−1

L−1,mL−1

×
mL−1
∏

r=1

∑

µ={υ1,...,υr}

∂|υ1|CL−1,r

∂υ1
. . .

∂|υr |CL−1,r

∂υr
(3.4.4)

where the outer sum extends over all sets of integers k1, ..., kmL−1
∈ ℵ ∪ {0} such

that maxj kj ≤ nL−1,j and
∑mL−1

j=1 kj = n− i, ∀i = 0, 1, ..., , n−mL−1. These terms

are the outer derivatives of the copula with respect to the elements of CL,1, that is,

the mL−1 copulas from level L − 1. The second part of the formula are the inner

derivatives, corresponding to the derivatives of the copulas at level L − 1 with re-



89

spect to their arguments uL−1,j . The summation in the inner derivative is over all

kr ∈ {0, 1, ..., nL−1,r} distinct subsets {υ1, ..., υr} from uL−1,r . To obtain the inner

derivative we have to aggregate all mL−1 copulas at level L − 1 over all possible

combinations of extracting kr elements from an nL−1,r-dimensional object (the argu-

ments uL−1,r of copula CL−1,r). The number of possible combinations for extracting

kr elements from an nL−1,r-dimensional object is

nL−1,r−1
∏

s=0









nL−1,r −
nL−1,r−1
∑

s=0

qs

qs+1









(#qs)!

where qs represents derivatives of different orders such that the total number of q’s

equals kr , that is, (#qs) = kr for all s, with q = 0 and
∑nL−1,r

s=0 qs = nL−1,r for

qs ∈ {0, 1, ..., nL−1,r}. We compute the inner derivative by multiplying the sums over

all ML−1 copulas from level L− 1. The algorithm is recursive: the inner derivatives

of CL,1 involve the partial derivatives of CL−1,1, ..., CL−1,mL−1
, which in turn can

be computed using equation 3.4.4 for the next lower level. The recursion ends at

the lowest level CL,r when only partial derivatives (of different orders) of ordinary

Archimedean copulas are required.
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3.4.2 Simulation

Random numbers generation from Archimedean copulas is trivial even in higher

dimensions. However, the method of simulation does not carry over to hierarchical

Archimedean copulas. We now have to go back to first principles and generate

random numbers from hierarchical Archimedean copulas by the conditional inversion

method.

Consider a (not necessarily Archimedean) copula C = C (u1, ..., un). The task is to

generate n-tuples u1, ..., un of observations of U (0, 1) distributed random variables

U1, ..., Un whose joint distribution function is the copula C, that is, U1, ..., Un ∼ C.

To this end one has to invert the conditional distribution. Let Ck (u1, u2, ..., uk) =

C (u1, u2, ..., uk, 1, ..., 1) , k = 1, .., n denote the k-dimensional margin of C, with

C1 (u1) = u1 and Cn (u1, u2, ..., un) = C (u1, ..., un). The conditional distribution

of Uk given the values of U1, ..., Uk−1 is given by

Ck (uk |u1, u2, ..., uk−1 ) = P (Uk ≤ uk |U1 = u1, ..., Uk−1 = uk−1 )

=
∂k−1Ck (u1, u2, ..., uk)

∂u1...∂uk−1

/

∂k−1Ck (u1, u2, ..., uk−1)

∂u1...∂uk−1

for k = 2, ..., n.

The simulation algorithm may be given as:
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1. Generate n independent uniform random variates υ1, ..., υn.

2. Set u1 = υ1

3. For k = 2, ..., n evaluate the inverse of the conditional distribution function,

that is, the conditional quantile function, at υk to generate uk = C−1
k (υk |u1, u2, ..., uk−1 ).

The inverse can be derived either analytically or numerically.

The result of this simulation algorithm is a vector of random numbers (u1, u2, ..., un)

with joint distribution function C. A simple Enterprise Risk Management model

entails setting up various risk sub-models and creating a dependency relationship

between these risks. After this is accomplished all one needs to do is to simulate

for a given number of trials (say 5,000) and aggregate the dependent risk values.

From these aggregated results one can then either determine VaR or conditional tail

expectation (CTE) at a specific percentile.

3.4.3 Estimating hierarchical copulas

Hierarchical Archimedean copulas are estimated by maximum likelihood if the mar-

gins are known (up to a vector of parameters), and canonical maximum likelihood

method if the margins are estimated nonparametrically by their empirical distribution

function, Savu and Trede (2006). For the canonical maximum likelihood method, the

density cL,1 (u) of the hierarchical copula depends on the unknown parameter vector

θ with elements θl,j for l = 1, ..., L and j = 1, ..., ml. The number of elements of θ
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corresponds to the number of generators used to construct the hierarchical copula.

Let (U11, ..., Un1) , ...., (U1T , ..., UnT ) be a random sample of size T from the n-dimensional

random vector (U1, ..., Un).The (canonical) loglikelihood function is

lnL (θ; uit, i = 1, ..., n, t = 1, ..., T ) =
∑T

t=1
ln cL,1 (u1t, ..., unt; θ)

and the canonical maximum likelihood estimator of θ is

θ̂ = argmax lnL (θ)

Since the density of hierarchical Archimedean copulas is quite complex, a closed form

expression for the maximum likelihood estimators cannot be given. It is, therefore,

necessary to apply numerical optimisation algorithms.

3.4.4 Mixed copulas

We build up a mixture of copulas where each copula bears a certain weight and fea-

tures the dependence structure between one particular pair of variables. In particular,

with 4 random variables, we need six copulas to characterize all the dependence re-

lations. In each copula, we assume that only one pair of variables has a dependence

structure and the other variables are all independent with each other and with the

dependent pair. For instance, we first model the dependence between x1 and x2

by a copula C1(u1; u2) and then construct a copula with four variables by multiply-
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ing C1(u1; u2) with u3 and u4: C1(u1; u2)u3u4 is a copula by Theorem 3.5.3 in Nelsen

(2006) and in this copula x3 and x4 are independent with each other and independent

with x1 and x2: Similarly, we can construct the other five copulas as C2(u3; u4)u1u2;

C3(u1; u4)u2u3; C4(u1; u3)u2u4; C5(u2; u4)u1u3 and C6(u2; u3)u1u4. Consequently, the

mixture of copulas CM can be given as

CM (u1, u2, u4; π, ρ) = π1C1 (u1, u2; ρ1)u3u4 + π2C2 (u3, u4; ρ2)u1u2 + π3C3 (u1, u4; ρ3)

+π4C4 (u1, u3; ρ4)u2u4 + π5C5 (u2, u4; ρ5)u1u3

+ (1− π1 − π2 − π3 − π4 − π5)C6 (u2, u3; ρ6) u1u4

where π = [π1, π2, π3, π4, π5, π6]
′ with

∑6
i=1 πi = 1 accounts for the weights for each

copula and ρ = [ρ1, ρ2, ρ3, ρ4, ρ5, ρ6]
′ is the vector of parameters in each copula. Ac-

cordingly, the density form CM is given by

cM (u1, u2, u4; π, ρ) = π1c1 (u1, u2; ρ1) + π2c2 (u3, u4; ρ2) + π3c3 (u1, u4; ρ3)

+π4c4 (u1, u3; ρ4) + π5c5 (u2, u4; ρ5)

+ (1− π1 − π2 − π3 − π4 − π5) c6 (u2, u3; ρ6)

where ci is the density form of Ci for i = 1, ..., 6 . The approach above was first

discussed in Tasfack (2006) where as one component of his model, he uses a mixture

of copulas to model the joint distribution of 4 international assets. In his model, each
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copula component of the mixture copula simultaneously characterizes the dependence

structure of two pairs of variables.



Chapter 4

SIMULATION STUDY

4.1 Introduction

We considered application in General Insurance and in particular the short - term

policies. Short term policies are those that run for a short and fixed duration of time,

with one year being a typical duration. General Insurance is chosen due to complexi-

ties of other forms of insurance. Data were simulated following loss distributions that

are popular in credibility rate making in the insurance sector. The loss distributions

are peculiar due to their unique characteristics that include:

1. Their range is all the non-negative real numbers due to the fact that the pos-

sibility of a negative claim has no practical meaning.

2. They are positively skewed since the very large claims are atypical and they

have a lesser chance than the ordinary one.

3. The very long upper tail is another general characteristic in order to accommo-

date the chance of the extremely large claims.

4.2 Simulation of the Loss Distributions

Four lines of business were simulated in R Development Core Team (2009) with

each line having four sub-classes which gives a profile of sixteen risks. The first

line was from the log-normal distribution. A log-normal distribution is a probability

distribution of a random variable whose logarithm is normally distributed. If X is

95
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a random variable with a normal distribution, then Y = exp(X) has a log-normal

distribution; likewise, if Y is log-normally distributed, then X = log(Y ) is normally

distributed. The log-normal distribution has density:

fX (x;µ, σ) =
1

xσ
√
2π

e−
(lnx−µ)2

2σ2 , x > 0

where µ and σ are the mean and standard deviation of the logarithm. It consists of

x1, x2, x3 and x4 risks. The parameters were: meanlog = 1.9 and sdlog = exp(−1),

meanlog = 2.4 and sdlog = exp(−0.6), meanlog = 2.4 and sdlog = exp(−0.8), and

meanlog = 1.9 and sdlog = exp(−0.6) respectively the data being expressed in KES

100,000.

The second line had x5, x6, x7 and x8 risks which were from the Burr distribution.

The Burr distribution with parameters shape1= α, shape2 = γ and scale = θ has

the density:

f (x) =
αγ (x/θ)γ

x [1 + (x/θ)γ]
α+1

for x > 0, α > 0, γ > 0 and θ > 0. The two shape parameters, rate and scale param-

eters were: 3, 1.5, rate = 5 , scale = 2.5, for x5 , 1.5, 3, rate = 5 , scale = 2.5 being

for x6 while 1.5, 2, rate = 5 , scale = 2.5, and 2, 1.5, rate = 10 , scale = 5 were for

x7 and x8 respectively. The data were again in KES 100,000 as in the case of the
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first line of business.

Next, we had the third line whose data where from the single parameter Pareto

distribution otherwise known as the European Pareto, Faivre (2003), consisting of

x9, x10, x11 and x12 risks. The Single-parameter Pareto distribution with parameter

shape = α has density:

f (x) =
αθα

xα+1

for x > θ, α > 0 and θ > 0. Although there appears to be two parameters, only

shape is a true parameter. The following were the parameters 3.2, 2.6, 2.1 and 1.8 all

starting from KES 100,000. Lastly, the fourth line followed the inverse Weibull dis-

tributions with the risks being x13, x14, x15 and x16. The inverse Weibull distribution

with parameters shape = τ and scale = θ has density:

f (x) =
τ (θ/x)τ e−(θ/x)τ

x

for x > 0, τ > 0 and θ > 0. The parameters were: 1.8, rate = 5, scale = 2.5; 1.5,

rate = 5, scale = 2.5; 2.1, rate = 10, scale = 5; and 1.2, rate = 10, scale = 5 respec-

tively. Once more the data were in KES 100,000 as in the case of the previous lines

of business.
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4.3 Data Exploration

The simulated data were explored in order to ascertain that they were fit for the

problem at hand. This was done by plotting the densities of each line of business

and the plots are as shown in Figures 4.1 and 4.2.
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Figure 4.1: Densities for the first and second LOBs
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Figure 4.2: Densities for the third and fourth LOBs

From the densities in Figures 4.1 and 4.2, we can see that they abide by the unique

characteristics of loss distributions outlined above.
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Figure 4.3: The hierarchical structure of the simulated scenario

4.4 Results and Discussion

The Gumbel Copulas were fitted to explore the dependence between the various LOB

at the lower level (l = 1) in Figure 4.3 with the generators ϕl,j (x) = (− ln x)θl,j , j =

1, 2, 3, 4. It (Gumbel) was chosen owing to its strength in capturing the upper tail

dependence (see section 2.3.3) and our loss distributions so obtained are active in

the upper tails. The other Archimedean copulas (that is, Frank and Clayton) would

under estimate the dependence in the upper tail since they have no upper tail de-

pendence. The fitted dependence parameters were θ1,1 = 2.076, θ1,2 = 8.829, θ1,3 =

16.512, and θ1,4 = 9.778 .

The copulas modelled the dependence structure as well as isolating the marginals as

shown in Figures 4.4, 4.5, 4.6 and 4.7.
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Figure 4.4: The marginal distributions for the classes in the first LOB
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Figure 4.5: The marginal distributions for the classes in the second LOB
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Figure 4.6: The marginal distributions for the classes in the third LOB
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Figure 4.7: The marginal distributions for the classes in the fourth LOB
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Note, from the figures, that the PDFs are not symmetric, which is a characteristic of

the Gumbel Copula since it is only defined in the right tail. This makes the Gumbel

Copula the most appropriate copula to define the dependencies at this level. The

properties of the data emanating from level one, in Figure 4.3, were examined and the

Frank copula was found to be the more preferred to model the dependence structure.

These data now enter into the model in level two (l = 2). The generators were

ϕl,j(x) = − ln

{

exp(−θl,jx)− 1

exp(−θl,j)− 1

}

and the fitted dependence parameters were θ2,1 = 1.500 and θ2,2 = 2.037. The

marginals also support the use of the Frank copula which has no tail dependence

as shown in Figure 4.8. In the third level, which was our upper level, the Frank

copula was again used and the parameter being θ3,1 = 0.328.
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Figure 4.8: The marginal distributions at level l = 2
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Figure 4.9: Scatterplots of two bivariate marginal distribution

The results from this chapter are summarised in Table 4.1.

Table 4.1: The fitted dependence parameter θ for the different levels in the hierarchy

j = 1 j = 2 j = 3 j = 4
l = 1 2.076 8.829 16.512 9.778
l = 2 1.500 2.037
l = 3 0.328

Since θ2,1, θ2,2 < θ1,1, θ1,2, θ1,3, θ1,4, and θ3,1 < θ2,1, θ2,2 the conditions, for a proper

hierarchical copula, ϕl+1,i ◦ ϕ−1
l,j ∈ L∗

∞∀ l = 1, ..., L and j = 1, ..., ml, i = 1, ..., ml+1

such that Cl,j ∈ Cl+1,i are satisfied. Let Ui, i = 1, ..., 16 be the marginals at the

lower level, then the dependence between U1 and U2 is stronger than that between

U1 and U5 as shown by Figure 4.9. The pairs in the same line have dependence similar

to U1 and U2 while those in different lines have dependence similar to U1 and U5 .



Chapter 5

COPULA BASED CLASSIFICATION OF RISKS

5.1 The proposed criterion for grouping business lines using

the dependence structures

This section presents the proposed algorithm for grouping business classes into various

lines. For the different business classes follow the algorithm below to cluster them

into their respective lines (or departments):

1. Fit the Copula function (section 1.3) for each pair of business classes

2. Estimate the dependence parameter (as found in sub-section 3.4.3)

3. Calculate the measures of dependence, the rank correlation (Spearman’s rho or

the Kendall’s tau) and the tail dependence, using the relationships in section

1.4.

4. Compare closeness of these measures to each other by calculating appropriate

distances culminating in a distance matrix (see section 2.4).

5. Cluster the business classes into the various homogeneous lines or departments

using the minimum distance approach (see section 2.5).

This will result in the highly related classes being in one line while the less dependent

classes will be in different lines. The lines of business will form a portfolio and hence

increase the diversification benefits.
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5.2 Application of the clustering algorithm on simulated data

The data simulated in Chapter 4 are used here to cluster the various business classes

into LOB as they would ’naturally’ cluster together. We compare the Euclidiean

distance to the Manhattan distance on their performance towards clustering of the

lines of business since our data are quantitative. The Mantel statistic is used here

to measure the strength of the relationship between the cophenetic matrix and the

distance matrix.

Euclidean distances were used as the criterion to cluster the business classes with

respect to the spearman’s rho, Kendall’s tau and the Tail index so as to compare

their performance against the Manhattan distances. Comparing the clustering based

on the Euclidean distances and the Manhattan distances, the Cophenetic correlation

coefficient (Mantel statistic) comes in handy in choosing between the best distance

to use. The Manhattan distance performed better than the Euclidean distances (see

Table 5.1) and so our clustering was based on the Manhattan distances.

From the dependence parameter, theta, matrix (see Table 5.2), it may not be straight

forward to examine the dependence between two variables since theta can be in the

range (−∞,∞) like in the case of the Frank copula. It is therefore important to re-

scale this dependence into a definite scale such as that for Kendall’s tau or Spearman’s

rho [−1, 1]. This is the motivation behind Table 5.3 on the Kendall’s tau calculated
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from the fitted dependence parameter and Table 5.4, for the Spearman’s rho, from

Table 5.2. For the purpose of clustering the various LOB, with respect to their

dependence, one needs a criterion of telling how close every two lines are. Here we

calculate the distances between each pair giving rise to the distance matrices in Table

5.6, Table 5.7 and Table 5.8.

The cluster dendrograms in Figure 5.1, Figure 5.2 and Figure 5.3 utilised the Eu-

clidean distances.

If the objective is that of establishing four LOB, then the departments (or lines) will

be as shown in Figure 5.1. It is also worth noting that any particular dependence mea-

sure will yield similar results as Figure 5.2 and Figure 5.3 depict about the Euclidean

distances. Comparing clusters for the four lines, in the case of Euclidean and the Man-

hattan distances; the four clusters are (X6, X15, X2, X11, X4, X12, X10, X3, X1 and X9),

(X16, X7, X13 and X14), (X5) and (X8) for the Euclidean distance while from the

Manhattan distances we have (X10, X3, X1 and X9), (X2, X11, X15, X4, X12, X6 and X13),

(X16, X7 and X14) and (X5 and X8). It can be seen that when the Mantel statistic

is low, the clustering criterion may miss out on some dependence information.
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Table 5.1: Comparison between the performance of the Euclidean and the Manhattan

distances

Distance
Manhattan Euclidean

Measure Mantel statistic Significance Mantel statistic Significance
Kendall’s tau 0.8479 <0.01 0.7209 <0.01

Spearman’s Rho 0.8479 <0.01 0.7209 <0.01
Tail index 0.8477 <0.01 0.7272 <0.01

From Table 5.1 despite both the Manhattan and Euclidean distances having signifi-

cance correlation to their corresponding cophenetic matrices, the Manhattan distance

has a stronger association as compared to the Euclidean distance. We therefore con-

sider the clusters in the dendrograms emanating from the Manhattan distances in

Figure 5.4, Figure 5.5 and Figure 5.6.
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It can be concluded that the choice of distances for clustering is very crucial as they

can vary depending on the problem at hand. This problem can be surmounted by

using the Cophenetic correlation coefficient (the Mantel statistic). The strength of

the relationship, from the Mantel statistic, dictates the strength of the clustering

criterion.
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Chapter 6

EMPIRICAL STUDY OF CLAIMS DATA

6.1 Introduction

This chapter is dedicated to empirical investigations on the theoretical results es-

tablished in Chapter 5. The data were on aggregate losses per company in a year.

We will, first, explore the data that were collected from thirty-five insurance compa-

nies which are members of the Insurance Regulatory Authority (IRA) of Kenya and

participating in some class of general insurance for the period 2006 to 2009. They

include:

AIG (K) First Assuarance Madison
Amaco Gateway Mayair
APA Geminia Mercantile
Blue Shield General Accident Occidental
British American Heritage AII Pacis
Cannon ICEA Phoenix
CFC Life Intra Africa Real
Concord Jubilee Tausi
Cooperative Kenindia The Monarch
Corporate Kenya Orient Trident
Directline Kenyan Alliance UAP Provincial
Fidelity Shield Lion of Kenya

Other companies like Invesco and The Standard insurance companies were excluded

as they were under statutory management. A general business insurer, in Kenya, can

be registered to transact any or all the twelve classes of general insurance business

namely:
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Aviation Liability Personal accident
Engineering Marine Theft
Fire-domestic Motor-private Workmens compensation
Fire-industrial Motor-commercial Miscellaneous

6.2 Exploration of the Empirical Data

Exploring the data gave rise to the densities in Figure 6.1 which assume similar

distributions’ characteristic as those for the loss distributions simulated previously in

chapter five. They, therefore, capture the same distribution shapes. The individual

densities were isolated, for the various business classes and are found in Figure 6.2.
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6.2.1 Fitting the Copula function for each pair of business classes

As explained in Chapter five, we first fit the copula function to our data so as to

estimate the dependence parameter θ. The Gumbel copulas were fitted to each pairs

of business classes and θ is tabulated in Table 6.1.

The fitted dependence parameter, θ, matrix may not give all the insight to examine

the dependence between two variables since theta can be in the range (−∞,∞) like

in the case of the Frank copula. The re-scaling of this dependence parameter into a

definite scale such as that for Kendall’s tau or Spearman’s rho [−1, 1] is given in the

next sub-section.
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M & T 5.574 6.171 6.293 6.654 6.580
M P 6.961 7.212 8.219 8.033 7.643 7.085
M C 8.068 8.280 8.764 8.945 8.438 8.112 10.102
P A 6.153 6.815 7.124 7.079 6.832 6.668 8.210 8.814
Theft 6.451 6.957 7.053 7.322 6.911 6.712 7.936 8.536 6.913
W C 6.243 6.976 7.265 7.338 7.170 6.727 8.296 9.260 7.408 7.187
Misc 5.496 6.398 6.566 6.410 6.664 5.917 7.474 7.864 6.669 6.568 6.681
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6.2.2 Calculating dependence the measures

The measures of dependence, Kendall’s τ , Spearman’s ρ and the Tail dependence

are now calculated from their relationship with θ and are tabulated in Tables 6.2,

Table 6.3 and Table 6.4 respectively. These are bounded at +1 and so the closer the

quantity is to one, the more dependence there is between the two lines in question.

In order to cluster the various LOB, with respect to their dependence, we need a

criterion of telling how close any two lines are. This is done by calculating the

distances between the dependence parameters.

6.2.3 Calculating distance matrices

Euclidean and the Manhattan distances for every pair of insurance classes were calcu-

lated for the measures of dependence in readiness of clustering process and are found

in Tables 6.5, 6.6, 6.7, 6.8, 6.9 and 6.10. These distance matrices will now be used

to cluster the LOB but not before comparing their performances in the clustering

exercise.
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Av Eng F D F I Liab M & T M P M C P A Theft W C
Eng 0.828
F D 0.834 0.851
F I 0.838 0.855 0.854
Liab 0.827 0.846 0.847 0.859
M & T 0.821 0.838 0.841 0.850 0.848
M P 0.856 0.861 0.878 0.876 0.869 0.859
M C 0.876 0.879 0.886 0.888 0.881 0.877 0.901
P A 0.837 0.853 0.860 0.859 0.854 0.850 0.878 0.887
Theft 0.845 0.856 0.858 0.863 0.855 0.851 0.874 0.883 0.855
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Av Eng F D F I Liab M & T M P M C P A Theft W C
Eng 0.958
F D 0.960 0.968
F I 0.963 0.970 0.969
Liab 0.957 0.966 0.966 0.971
M & T 0.954 0.962 0.964 0.968 0.967
M P 0.970 0.972 0.978 0.978 0.975 0.971
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Av Eng F D F I Liab M & T M P M C P A Theft W C
Eng 0.873
F D 0.878 0.891
F I 0.881 0.894 0.894
Liab 0.872 0.888 0.888 0.897
M & T 0.868 0.881 0.884 0.890 0.889
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.249
F D 0.244 0.212
F I 0.241 0.207 0.207
Liab 0.253 0.218 0.217 0.200
M & T 0.256 0.230 0.228 0.217 0.217
Misc 0.260 0.222 0.218 0.225 0.214 0.239
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.492
F D 0.531 0.351
F I 0.554 0.371 0.337
Liab 0.524 0.348 0.356 0.346
M & T 0.455 0.380 0.423 0.434 0.385
Misc 0.472 0.377 0.408 0.440 0.377 0.376
M C 0.751 0.596 0.532 0.497 0.563 0.653 0.656
M P 0.666 0.507 0.423 0.398 0.463 0.564 0.544 0.322
P A 0.553 0.375 0.316 0.316 0.344 0.432 0.426 0.502 0.394
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.064
F D 0.063 0.046
F I 0.062 0.044 0.044
Liab 0.067 0.048 0.048 0.042
M & T 0.067 0.054 0.054 0.049 0.048
Misc 0.069 0.051 0.049 0.053 0.047 0.058
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.151
F D 0.166 0.085
F I 0.175 0.093 0.081
Liab 0.164 0.085 0.087 0.085
M & T 0.136 0.099 0.116 0.120 0.101
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.183
F D 0.178 0.156
F I 0.178 0.151 0.151
Liab 0.187 0.159 0.160 0.146
M & T 0.189 0.169 0.167 0.159 0.159
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Av Eng F D F I Liab M & T Misc M C M P P A Theft
Eng 0.368
F D 0.382 0.267
F I 0.415 0.273 0.257
Liab 0.392 0.256 0.277 0.255
M & T 0.339 0.281 0.303 0.322 0.284
Misc 0.346 0.293 0.333 0.342 0.293 0.283
M C 0.564 0.444 0.411 0.368 0.419 0.488 0.505
M P 0.500 0.377 0.328 0.293 0.343 0.421 0.421 0.236
P A 0.414 0.276 0.246 0.231 0.253 0.320 0.331 0.372 0.291
Theft 0.404 0.272 0.266 0.225 0.255 0.320 0.337 0.376 0.295 0.237
W C 0.437 0.296 0.264 0.227 0.268 0.344 0.357 0.338 0.263 0.222 0.235
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Comparisons between the performance of the Manhattan and Euclidean distances,

as a criterion to aid in clustering of risk classes is shown in Table 6.11, and the

Euclidean distance performed better than the Manhattan due to the fact that it has

greater values of the Mantel statistic.

Table 6.11: Comparison between the performance of the Euclidean and the Manhattan

distances on the classes of general insurance

Distance
Manhattan Euclidean

Measure Mantel statistic Significance Mantel statistic Significance
Kendall’s tau 0.658 <0.01 0.9029 <0.01

Spearman’s Rho 0.7041 <0.01 0.785 <0.01
Tail index 0.6511 <0.01 0.9067 <0.01

6.2.4 Clustering the insurance business classes

Dendrograms are the tools we use for the clustering exercise as found in Figures

6.3, through 6.8. Considering the Kendall’s tau, Figure 6.3 used the Manhattan

distance while Figure 6.4 employs the Euclidean distance. The Spearman’s rho we

have Figure 6.5 and Figure 6.6 while the Tail index is used in Figures 6.7 and 6.8.

The relationships from any of the two distances are consistently similar for the three

measures of dependence. The top panel of each of these figures contains the ’crude’

classification while the bottom one represents a case of five LOB. It is important to

note that if we want fewer LOB, we only need to follow the dendrogram to a new

level.



138

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Aviation

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Aviation

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e
6
.3
:

T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
M
a
n
h
a
tta

n
d
ista

n
ce
s
fo
r
th
e

K
e
n
d
a
ll’s

τ



139

Aviation

Marine.and.Transit

Miscellaneous

Fire.Domestic

Personal.Accident

Workmans.Compensation

Motor.Commercial

Motor.Private

Engineering

Liability

Fire.Industrial

Theft

0.14 0.18 0.22 0.26

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Aviation

Marine.and.Transit

Miscellaneous

Fire.Domestic

Personal.Accident

Workmans.Compensation

Motor.Commercial

Motor.Private

Engineering

Liability

Fire.Industrial

Theft

0.14 0.18 0.22 0.26

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e

6
.4
:

T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
E
u
c
lid

ea
n

d
ista

n
ce
s
fo
r
th
e

K
e
n
d
a
ll’s

τ



140

Motor.Commercial

Motor.Private

Aviation

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.05 0.10 0.15 0.20 0.25

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Motor.Commercial

Motor.Private

Aviation

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.05 0.10 0.15 0.20 0.25

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e
6
.5
:

T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
M
a
n
h
a
tta

n
d
ista

n
ce
s
fo
r
th
e

S
pea

rm
a
n
’s

ρ



141

Aviation

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Miscellaneous

Marine.and.Transit

Engineering

Liability

Fire.Industrial

Theft

0.02 0.04 0.06 0.08

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Aviation

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Miscellaneous

Marine.and.Transit

Engineering

Liability

Fire.Industrial

Theft

0.02 0.04 0.06 0.08

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e

6
.6
:

T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
E
u
c
lid

ea
n

d
ista

n
ce
s
fo
r
th
e

S
pea

rm
a
n
’s

ρ



142

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Aviation

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.2 0.3 0.4 0.5 0.6

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Motor.Commercial

Motor.Private

Fire.Domestic

Personal.Accident

Workmans.Compensation

Fire.Industrial

Theft

Aviation

Engineering

Liability

Marine.and.Transit

Miscellaneous

0.2 0.3 0.4 0.5 0.6

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e
6
.7
:

T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
M
a
n
h
a
tta

n
d
ista

n
ce
s
fo
r
th
e

T
a
il
d
e
pe
n
d
e
n
ce



143

Aviation

Miscellaneous

Marine.and.Transit

Fire.Domestic

Personal.Accident

Workmans.Compensation

Motor.Commercial

Motor.Private

Engineering

Liability

Fire.Industrial

Theft

0.10 0.14 0.18

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

Aviation

Miscellaneous

Marine.and.Transit

Fire.Domestic

Personal.Accident

Workmans.Compensation

Motor.Commercial

Motor.Private

Engineering

Liability

Fire.Industrial

Theft

0.10 0.14 0.18

C
lu

s
te

r D
e

n
d

ro
g

ra
m

h
c
lu

s
t (*, "w

a
rd

")
d

is
tm

a
trix

Height

F
ig
u
r
e
6
.8
:
T
h
e
g
e
n
e
ra
l
in
su
ra
n
ce

c
la
sse

s
c
lu
ste

red
b
y
th
e
E
u
c
lid

ea
n
d
ista

n
ce
s
fo
r
th
e
T
a
il

d
e
pe
n
d
e
n
ce



144

Discussion

The calculated Spearman’s ρ quantities are consistently closer together than for com-

parable Kendall’s τ . For instance, consider the Euclidean distance between the Avi-

ation and the Engineering lines. The distance for the tau is 0.249 while that of the

rho is 0.064. They are consistent as they produce the same clustering structure as

evident from Figures 6.4 and 6.6. This is also true when you consider the Manhattan

distances whereby for τ we have 0.492 and a ρ of 0.151 for the Aviation Vs Engineer-

ing. The cluster structures are the same as well.

This work proposed the use of the upper tail dependence derived from the depen-

dence parameter in determining the retention limits for a re-insurance arrangement.

Though the dependence is not the only factor to consider for such re-insurance treaties

the forwarding proportions should be some where proportional to 1/(1− Tail index).

This will ensure that for highly dependent risks in the upper tail will forward higher

proportions to the re-insurer and vice versa. The behaviour of this proposed quantity

is found in Figure 6.9.

Five major classes stand out each with peculiar characteristics. The first cluster in-

volves the rare but with a high probability of a huge claim amount lines: Engineering,

Liability, Fire industrial and Theft. The second cluster contain lines with moderate
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Figure 6.9: The proposed re-insurance proportions in relation to the tail index

claim amounts as compared to the previous cluster but rather slightly more frequent:

Fire domestic, Personal accident, Workman’s compensation, Motor commercial and

Motor private. In the next cluster we have the less popular lines under the umbrella

of the Miscellaneous class. Marine and Transit which is completely erratic clusters

alone while the Aviation line whose main business is exported to foreign countries

forming the last cluster. Finally, it can be remarked that the choice of distance to

apply is crucial and that with the dendrograms one can choose the number of efficient

divisions quite easily.



Chapter 7

CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

It can be concluded that the dependence structure of various lines of business can-

not be ignored especially in rate making and other computations in the insurance

industry. Copulas allow for the inclusion of features such as fat tails and skewness

for nonelliptically distributed risks. Copulas model the dependence structure as well

as isolating the marginal distributions’ characteristics. The choice of distance, for

use in the clustering of risks, is crucial and depends on the problem at hand. This

means that different distances will perform differently for the same task. The Man-

tel statistic is the best choice to measure the strength of the relationship between

the cophenetic matrix and the distance matrix and consequently aiding in choos-

ing the appropriate distance to use. Cophenetic distance matrix contains pairwise

distances among all entities. This is because the Mantel test evaluates correlation

between distance (or similarity or correlation or dissimilarity) matrices. Therefore

if the correlation between the cophenetic matrix and the distance matrix is high

and significant, then the relationships obtained are not by mere chance. It can be

seen that when the Mantel statistic is low, the clustering criterion is weaker and one

may miss out on some important dependence information. The strength of the rela-

tionship, from the Mantel statistic, dictates the strength of the clustering criterion.

Sufficient data exploration will reduce the uncertainty of choosing between the copula

146
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functions to fit. The Gumbel is the best choice in the family of the Archimedean

copulas, owing to its strength in capturing the upper tail dependence, for loss data

distributions have ’active’ upper tails since the other Archimedean copulas (that is,

Frank and Clayton) would under estimate the dependence in the upper tail as they

have no upper tail dependence. The business classes in one line are expected to have

strong dependence than those in different lines if a proper market research precedes

their establishment in order to enjoy diversification benefits. The calculated Spear-

man’s rho from the dependence parameter are consistently closer together than for

comparable Kendau’s tau. We proposed the use of the upper tail dependence derived

from the dependence parameter in determining the retention limits for a re-insurance

arrangement. Though the dependence is not the only factor to consider for such re-

insurance treaties the forwarding proportions should be somewhere proportional to

1/(1− Tail index). This ensures that for highly dependent risks in the upper tail will

forward higher proportions to the re-insurer and vice versa.

Considering the data for the Kenyan insurance sector, five major classes stand out

each with unique characteristics. The first cluster involves the rare but with a high

probability of a huge claim amount lines: Engineering, Liability, Fire industrial and

Theft. The second cluster contain lines with moderate claim amounts as compared to

the first cluster but rather slightly more frequent: Fire domestic, Personal accident,

Workman’s compensation, Motor commercial and Motor private. In the third cluster
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we have the less popular lines under the umbrella of the Miscellaneous class. Marine

and Transit which is completely erratic clusters alone while the Aviation line whose

main business is exported to foreign countries forming a cluster alone.

7.2 Recommendations

We recommend to investors seeking to establish general insurance business to ,first,

consider the dependence structure so as to arrive at a diversified portfolio in order

to benefit from diversification benefits. The business classes that form their own

individual clusters like the Aviation, Miscellaneous, Marine and Transit should be

given special attention when a company engages in them as they present peculiar

characteristics within themselves. We do also recommend that the insurance regu-

lator uses the methods outlined in this thesis in order to compute the dependencies

between insurance classes for advisory purposes. This is due to the fact that there

may be no single insurance company that operates all the insurance classes for it

to have sufficient data. Finally, the proposed algorithm is long and tedious (see the

Appendices) but this can be made easier by having dedicated computer software.

7.3 Further Research

There is need to come up with a further criterion, possibly which derives some indi-

cators, that can help us answer the questions concerning: how to determine the need
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for split, at what point can you split a risk and when do you stop splitting risks.
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APPENDICES

We now present selected R programs used for simulations and real data analyses in

this thesis.

A.1 Simulation of loss distributions’ codes

The Loss Distributions

library(copula)

library(actuar)

set.seed(1)

n=1000

#logNormal distribution

x1 = (rlnorm(n, meanlog=1.9, sdlog=exp(-1)))*100000

x2 = (rlnorm(n, meanlog=2.4, sdlog=exp(-0.6)))*100000

x3 = (rlnorm(n, meanlog=2.4, sdlog=exp(-.8)))*100000

x4 = (rlnorm(n, meanlog=1.9, sdlog=exp(-0.6)))*100000

#the Burr distribution

x5=(rburr(n, 3, 1.5, rate =5 , scale = 2.5))*100000

x6=(rburr(n, 1.5, 3, rate =5 , scale = 2.5))*100000

x7=(rburr(n, 1.5, 2, rate =5 , scale = 2.5))*100000

x8=(rburr(n, 2, 1.5, rate =10 , scale = 5))*100000

#single parameter Pareto or the European Pareto

x9=rpareto1(n, 3.2, 100000)

x10=rpareto1(n, 2.6, 100000)

x11=rpareto1(n, 2.1, 100000)

x12=rpareto1(n, 1.8, 100000)

#inverse of the Weibull distribution

x13=(rinvweibull(n, 1.8, rate =5, scale = 2.5))*100000

x14=(rinvweibull(n, 1.5, rate =5, scale = 2.5))*100000

x15=(rinvweibull(n, 2.1, rate =10, scale = 5))*100000

x16=(rinvweibull(n, 1.5, rate =10, scale = 5))*100000

Exploring the distributions

library(MASS)

kx1=density(x1)
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q_range<-range(0,x1,x2,x3,x4)

plot(kx1,col="black",lwd=2.5, xlab="Loss",

main="Log-Normal distribution densities",

xlim= q_range)

kx2=density(x2)

lines(kx2,col="black",lwd=2.5, type="l", lty=2)

kx3=density(x3)

lines(kx3,col="black",lwd=2.5, type="l", pch=23, lty=3)

kx4=density(x4)

lines(kx4,col="black",lwd=2.5, type="l", pch=24, lty=4)

legend(6500000, 1.0e-06,c("X1", "X2","X3", "X4" ),

lwd=2.5, cex=1, lty=1:4, title="LoB")

kx5=density(x5)

q1_range<-range (0,x5,x6,x7,x8)

plot(kx5,col="black",lwd=2.5, xlab="Loss",

main="Burr distribution densities", xlim= q1_range)

kx6=density(x6)

lines(kx6,col="black",lwd=2.5, type="l", lty=2)

kx7=density(x7)

lines(kx7,col="black",lwd=2.5, type="l", lty=3)

kx8=density(x8)

lines(kx8,col="black",lwd=2.5, type="l", lty=4)

legend(4500000, 3e-06, legend=c("X5", "X6","X7", "X8" ),

lwd=2.5, cex=1, lty=1:4,

title="LoB")

kx9=density(x9)

q2_range<-range (0,x9,x10,x11,x12)

plot(kx9,col="black",lwd=2.5, xlab="Loss",

main="Single parameter Pareto distribution

densities", xlim= q2_range)

kx10=density(x10)

lines(kx10,col="black",lwd=2.5, type="l", lty=2)

kx11=density(x11)

lines(kx11,col="black",lwd=2.5, type="l", lty=3)

kx12=density(x12)

lines(kx12,col="black",lwd=2.5, type="l", lty=4)

legend(3200000, 1.0e-05, legend=c("X9", "X10","X11", "X12" ),
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lwd=2.5, cex=1, lty=1:4, title="LoB")

kx13=density(x13)

q3_range<-range (0,x13,x14,x15,x16)

plot(kx13,col="black",lwd=2.5, xlab="Loss",

main="Inverse Weibull distribution

densities", xlim=c(0,4.5e+7))

kx14=density(x14)

lines(kx14,col="black",lwd=2.5, type="l", lty=2)

kx15=density(x15)

lines(kx15,col="black",lwd=2.5, type="l", lty=3)

kx16=density(x16)

lines(kx16,col="black",lwd=2.5, type="l", lty=4)

legend(3.3e+7, 1.0e-06, legend=c("X13", "X14","X15", "X16" ),

lwd=2.5, cex=1, lty=1:4, title="LoB")
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A.2 Copula Models fitting
> library(copula)

> library(actuar)

#first line of business

> gmb<-gumbelCopula(3, dim = 4)

> myCDF<- mvdc(gmb, c("exp","exp","exp","exp"),

list(list(rate=300),

list(rate=300),list(rate=300),list(rate=300)))

> x <- matrix(1/c(x1,x2,x3,x4),byrow=T,ncol=4)

> Fitted4<-fitMvdc(x, myCDF, c(3,3,3,3,3),method="SANN")

> par(mfrow = c(2, 2))

> K <- density(1/x[,1])

> #x[,1] gets risk 1 results

> plot(K, main="Marginal 1",xlab="Loss",lwd=4)

> K <- density(1/x[,2])

> #x[,2] gets risk 2 results

> plot(K, main="Marginal 2",xlab="Loss",lwd=4)

> K <- density(1/x[,3])

> #x[,3] gets risk 3 results

> plot(K, main="Marginal 3",xlab="Loss",lwd=4)

> K <- density(1/x[,4])

> #x[,1] gets risk 4 results

> plot(K, main="Marginal 4",xlab="Loss",lwd=4)

#second line of business

> gmb<-gumbelCopula(3, dim = 4)

> myCDF<- mvdc(gmb, c("exp","exp","exp","exp"),

list(list(rate=300),

list(rate=300),list(rate=300),list(rate=300)))

> x <- matrix(1/c(x5,x6,x7,x8),byrow=T,ncol=4)

> Fitted5<-fitMvdc(x, myCDF, c(3,20,20,20,20),

method="SANN")

> par(mfrow = c(2, 2))

> K <- density(1/x[,1])

> #x[,1] gets risk 1 results



APPENDICES 157

> plot(K, main="Marginal 1",xlab="Loss",lwd=4)

> K <- density(1/x[,2])

> #x[,2] gets risk 2 results

> plot(K, main="Marginal 2",xlab="Loss",lwd=4)

> K <- density(1/x[,3])

> #x[,3] gets risk 3 results

plot(K, main="Marginal 3",xlab="Loss",lwd=4)

> K <- density(1/x[,4])

> #x[,1] gets risk 4 results

> plot(K, main="Marginal 4",xlab="Loss",lwd=4)

#third class of business

> gmb<-gumbelCopula(3, dim = 4)

> myCDF<- mvdc(gmb, c("exp","exp","exp","exp"),

list(list(rate=300),

list(rate=300),list(rate=300),list(rate=300)))

> x <- matrix(1/c(x9,x10,x11,x12),byrow=T,ncol=4)

> Fitted6<-fitMvdc(x, myCDF, c(3,20,20,20,20),

method="SANN")

#fourth class of business

gmb<-gumbelCopula(3, dim = 4)

> myCDF<- mvdc(gmb, c("exp","exp","exp","exp"),

list(list(rate=300),

list(rate=300),list(rate=300),list(rate=300)))

> x <- matrix(1/c(x13,x14,x15,x16),byrow=T,ncol=4)

> Fitted7<-fitMvdc(x, myCDF, c(3,20,20,20,20),

method="SANN")

> K <- density(1/x[,1])

> #x[,1] gets risk 1 results

> plot(K, main="Marginal 1")

> K <- density(1/x[,2])

> #x[,1] gets risk 1 results

> plot(K, main="Marginal 2")

> K <- density(1/x[,3])

> #x[,1] gets risk 1 results

> plot(K, main="Marginal 3")

> K <- density(1/x[,4])
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> #x[,1] gets risk 1 results

> plot(K, main="Marginal 4")

#The second tire

fra<-frankCopula(2, dim = 4)

> myCDF<- mvdc(fra, c("norm","norm","norm","norm"),

list(list(mean=.5,sd=2),

list(mean=.5,sd=2),list(mean=.5,sd=2),

list(mean=.5,sd=2)))

> x <- cbind(x21,x22)

> Fitted11<-fitMvdc(x, myCDF, c(2,1,1,1,1,1,1,1,1),

method="SANN")

> E=rexp(10000000,3)

> E1=density(E)

> plot(E1, main="Marginal 1",col="red",

xlab="Variable X21",lty="dashed")

> K <- density(x[,1])

> #x[,1] gets risk 1 results

> lines(K, main="Marginal 1",lwd=4,col="black")

> N=rnorm(10000000,.49,.28)

> N1=density(N)

> lines(N1,lwd=2,col="blue",lty="dashed")

> #lines(K, main="Marginal 2",lwd=4,col="blue",lwd=2)

> legend(1.5, 1.15, legend=c("Exponential",

"Normal","Normal marginal"),

lwd=2.2, col=c("red","blue", "black"))

fra<-frankCopula(2, dim = 4)

> myCDF<- mvdc(fra, c("norm","norm","norm","norm"),

list(list(mean=.5,sd=2),

list(mean=.5,sd=2),list(mean=.5,sd=2),

list(mean=.5,sd=2)))

> x <- cbind(x23,x24)

> Fitted12<-fitMvdc(x, myCDF, c(2,1,1,1,1,1,1,1,1),

method="SANN")

fra<-frankCopula(2, dim = 4)

> myCDF<- mvdc(fra, c("norm","norm","norm","norm"),
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list(list(mean=.5,sd=2),

list(mean=.5,sd=2),list(mean=.5,sd=2),

list(mean=.5,sd=2)))

> x <- cbind(x31,x32)

> Fitted13<-fitMvdc(x, myCDF, c(2,1,1,1,1,1,1,1,1),

method="SANN")
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A.3 Copula Graphics codes

Simulating and plotting the Copulas

library(copula)

myCop.norm <- ellipCopula(family = "normal", dim = 3,

dispstr = "ex",param = 0.5)

myCop.t <- ellipCopula(family = "t", dim = 3,

dispstr = "toep",param = c(0.8, 0.5), df = 8)

#simulation and ploting

par(mfrow = c(1, 2), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

u <- rcopula(myCop.norm, 5000)

scatterplot3d(u, xlab="x", ylab="y", zlab="z",

main="Normal Copula")

v <- rcopula(myCop.t, 5000)

scatterplot3d(v,xlab="x", ylab="y", zlab="z",

main="t Copula")

myCop.norm1 <- ellipCopula(family = "normal",

dim = 2, dispstr ="ex",param = 0.5)

myCop.t1 <- ellipCopula(family = "t", dim = 2,

dispstr = "toep",param =c(0.5), df = 8)

par(mfrow = c(1, 2), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

persp(myCop.norm1, dcopula, xlab = "x",

ylab = "y", zlab = "Density",

main = "Normal Copula",theta = 30, phi = 35,

expand = 0.7, col = "lightblue",

ltheta = 10, shade = 0.5, ticktype = "detailed")

persp(myCop.t1, dcopula, xlab = "x", ylab = "y",

zlab = "Density",main = "t Copula",

theta = 30, phi = 35, expand = 0.7, col = "lightblue",

ltheta = 10, shade = 0.5,

ticktype = "detailed")

myCop.norm1 <- ellipCopula(family = "normal", dim = 2,

dispstr = "ex",param = 0.5)

myCop.t1 <- ellipCopula(family = "t", dim = 2,
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dispstr = "toep",param = c(0.5), df = 8)

par(mfrow = c(1, 2), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

persp(myCop.norm1, pcopula, xlab = "x", ylab = "y",

zlab = "cdf",main = "Normal

Copula",theta = 30, phi = 35, expand = 0.7,

col = "lightblue",ltheta = 10,

shade = 0.5, ticktype = "detailed")

persp(myCop.t1, pcopula, xlab = "x", ylab = "y",

zlab = "cdf",main = "t Copula",

theta = 30, phi = 35, expand = 0.7, col =

"lightblue",ltheta = 10,

shade = 0.5, ticktype = "detailed")

par(mfrow = c(1, 2), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

contour(myCop.norm1, dcopula, xlab = "x",

ylab = "y",main = "Normal Copula",

sub = NULL, col = "black")

contour(myCop.t1, dcopula, xlab = "x",

ylab = "y",main = "t Copula",

sub = NULL, col = "black")

#Archimedean copulas

myMvd1 <- mvdc(copula = archmCopula

(family = "clayton", param = 2),margins =

c("norm", "norm"), paramMargins = list(list

(mean = 0,sd = 1), list(mean = 0, sd = 1)))

myMvd2 <- mvdc(copula = archmCopula(family =

"frank", param = 5.736),

margins = c("norm",

"norm"), paramMargins = list(list(mean = 0,sd = 1),

list(mean = 0, sd = 1)))

myMvd3 <- mvdc(copula = archmCopula(family = "gumbel",

param = 2),margins = c("norm",

"norm"), paramMargins = list(list(mean = 0,sd = 1),

list(mean = 0, sd = 1)))
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par(mfrow = c(1, 3), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

contour(myMvd1, dmvdc, xlim = c(-3, 3),

ylim = c(-3, 3), main="Clayton")

contour(myMvd2, dmvdc, xlim = c(-3, 3),

ylim = c(-3, 3),main="Frank")

contour(myMvd3, dmvdc, xlim = c(-3, 3),

ylim = c(-3, 3),main="Gumbel")

clayton.cop <- claytonCopula(sqrt(3), dim = 3)

frank.cop <- frankCopula(sqrt(3), dim = 3)

gumbel.cop <- archmCopula("gumbel", sqrt(3),dim = 3)

par(mfrow = c(1, 3), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

scatterplot3d(rcopula(clayton.cop, 5000),

main="Clayton", xlab="x", ylab="y", zlab="z")

scatterplot3d(rcopula(frank.cop, 5000),

main="Frank", xlab="x", ylab="y", zlab="z")

scatterplot3d(rcopula(gumbel.cop, 5000),

main="Gumbel", xlab="x", ylab="y", zlab="z")

clayton.cop1 <- claytonCopula(sqrt(3), dim = 2)

frank.cop1 <- frankCopula(sqrt(3), dim = 2)

gumbel.cop1 <- archmCopula("gumbel", sqrt(3),dim = 2)

par(mfrow = c(1, 3), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

persp(clayton.cop1, dcopula, xlab = "x", ylab = "y",

zlab = "Density",main = "Clayton",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",

ltheta = 120, shade = 0.75,

ticktype = "detailed")

persp(frank.cop1, dcopula, xlab = "x", ylab = "y",

zlab = "Density",main = "Frank",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",

ltheta = 120, shade = 0.75,

ticktype = "detailed")

persp(gumbel.cop1, dcopula, xlab = "x", ylab = "y",

zlab = "Density",main = "Gumbel",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",
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ltheta = 120, shade = 0.75,

ticktype = "detailed")

par(mfrow = c(1, 3), mar = c(2, 2, 1, 1),

oma = c(1, 1, 0, 0),mgp = c(2, 1, 0))

persp(clayton.cop1, pcopula, xlab = "x", ylab = "y",

zlab = "CDF",main = "Clayton",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",

ltheta = 120, shade = 0.75,

ticktype = "detailed")

persp(frank.cop1, pcopula, xlab = "x", ylab = "y",

zlab = "CDF",main = "Frank",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",

ltheta = 120, shade = 0.75,

ticktype = "detailed")

persp(gumbel.cop1, pcopula, xlab = "x", ylab = "y",

zlab = "CDF",main = "Gumbel",

theta = 30, phi = 30, expand = 0.78, col = "lightblue",

ltheta = 120, shade = 0.75,

ticktype = "detailed")
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A.4 Calculating measures of dependence from the dependence

parameter
library(copula)

gumbel11.cop <- archmCopula("gumbel", 24.59428,dim = 2)

kendallsTau(gumbel11.cop)

spearmansRho(gumbel11.cop)

tailIndex(gumbel11.cop)

gumbel12.cop <- archmCopula("gumbel", 20.45,dim = 2)

kendallsTau(gumbel12.cop)

spearmansRho(gumbel12.cop)

tailIndex(gumbel12.cop)

gumbel13.cop <- archmCopula("gumbel", 23.43973,dim = 2)

kendallsTau(gumbel13.cop)

spearmansRho(gumbel13.cop)

tailIndex(gumbel13.cop)

gumbel14.cop <- archmCopula("gumbel", 19.80858,dim = 2)

kendallsTau(gumbel14.cop)

spearmansRho(gumbel14.cop)

tailIndex(gumbel14.cop)

gumbel15.cop <- archmCopula("gumbel", 11.3086,dim = 2)

kendallsTau(gumbel15.cop)

spearmansRho(gumbel15.cop)

tailIndex(gumbel15.cop)

gumbel16.cop <- archmCopula("gumbel", 17.95782,dim = 2)

kendallsTau(gumbel16.cop)

spearmansRho(gumbel16.cop)

tailIndex(gumbel16.cop)

gumbel17.cop <- archmCopula("gumbel", 14.35448,dim = 2)

kendallsTau(gumbel17.cop)

spearmansRho(gumbel17.cop)

tailIndex(gumbel17.cop)

gumbel18.cop <- archmCopula("gumbel", 11.8632,dim = 2)

kendallsTau(gumbel18.cop)

spearmansRho(gumbel18.cop)

tailIndex(gumbel18.cop)

gumbel19.cop <- archmCopula("gumbel", 25.86368,dim = 2)
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kendallsTau(gumbel19.cop)

spearmansRho(gumbel19.cop)

tailIndex(gumbel19.cop)

gumbel110.cop <- archmCopula("gumbel", 22.24507,dim = 2)

kendallsTau(gumbel110.cop)

spearmansRho(gumbel110.cop)

tailIndex(gumbel110.cop)

gumbel111.cop <- archmCopula("gumbel", 21.4728,dim = 2)

kendallsTau(gumbel111.cop)

spearmansRho(gumbel111.cop)

tailIndex(gumbel111.cop)

gumbel112.cop <- archmCopula("gumbel", 19.98291,dim = 2)

kendallsTau(gumbel112.cop)

spearmansRho(gumbel112.cop)

tailIndex(gumbel112.cop)

gumbel113.cop <- archmCopula("gumbel", 17.46607,dim = 2)

kendallsTau(gumbel113.cop)

spearmansRho(gumbel113.cop)

tailIndex(gumbel113.cop)

gumbel114.cop <- archmCopula("gumbel", 14.86397,dim = 2)

kendallsTau(gumbel114.cop)

spearmansRho(gumbel114.cop)

tailIndex(gumbel114.cop)

gumbel115.cop <- archmCopula("gumbel", 19.41276,dim = 2)

kendallsTau(gumbel115.cop)

spearmansRho(gumbel115.cop)

tailIndex(gumbel115.cop)

gumbel116.cop <- archmCopula("gumbel", 12.79195,dim = 2)

kendallsTau(gumbel116.cop)

spearmansRho(gumbel116.cop)

tailIndex(gumbel116.cop)

gumbel22.cop <- archmCopula("gumbel", 18.35061,dim = 2)

kendallsTau(gumbel22.cop)

spearmansRho(gumbel22.cop)

tailIndex(gumbel22.cop)

gumbel23.cop <- archmCopula("gumbel", 19.83296,dim = 2)

kendallsTau(gumbel23.cop)
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spearmansRho(gumbel23.cop)

tailIndex(gumbel23.cop)

gumbel24.cop <- archmCopula("gumbel", 16.89746,dim = 2)

kendallsTau(gumbel24.cop)

spearmansRho(gumbel24.cop)

tailIndex(gumbel24.cop)

gumbel25.cop <- archmCopula("gumbel", 10.59436,dim = 2)

kendallsTau(gumbel25.cop)

spearmansRho(gumbel25.cop)

tailIndex(gumbel25.cop)

gumbel26.cop <- archmCopula("gumbel", 16.37294,dim = 2)

kendallsTau(gumbel26.cop)

spearmansRho(gumbel26.cop)

tailIndex(gumbel26.cop)

gumbel27.cop <- archmCopula("gumbel", 13.1148,dim = 2)

kendallsTau(gumbel27.cop)

spearmansRho(gumbel27.cop)

tailIndex(gumbel27.cop)

gumbel28.cop <- archmCopula("gumbel", 11.28093,dim = 2)

kendallsTau(gumbel28.cop)

spearmansRho(gumbel28.cop)

tailIndex(gumbel28.cop)

gumbel29.cop <- archmCopula("gumbel", 21.92459,dim = 2)

kendallsTau(gumbel29.cop)

spearmansRho(gumbel29.cop)

tailIndex(gumbel29.cop)

gumbel210.cop <- archmCopula("gumbel", 19.89369,dim = 2)

kendallsTau(gumbel210.cop)

spearmansRho(gumbel210.cop)

tailIndex(gumbel210.cop)

gumbel211.cop <- archmCopula("gumbel", 19.17953,dim = 2)

kendallsTau(gumbel211.cop)

spearmansRho(gumbel211.cop)

tailIndex(gumbel211.cop)

gumbel212.cop <- archmCopula("gumbel", 17.70546,dim = 2)

kendallsTau(gumbel212.cop)

spearmansRho(gumbel212.cop)
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tailIndex(gumbel212.cop)

gumbel213.cop <- archmCopula("gumbel", 15.04316,dim = 2)

kendallsTau(gumbel213.cop)

spearmansRho(gumbel213.cop)

tailIndex(gumbel213.cop)

gumbel214.cop <- archmCopula("gumbel", 13.12138,dim = 2)

kendallsTau(gumbel214.cop)

spearmansRho(gumbel214.cop)

tailIndex(gumbel214.cop)

gumbel215.cop <- archmCopula("gumbel", 17.28395,dim = 2)

kendallsTau(gumbel215.cop)

spearmansRho(gumbel215.cop)

tailIndex(gumbel215.cop)

gumbel216.cop <- archmCopula("gumbel", 12.10579,dim = 2)

kendallsTau(gumbel216.cop)

spearmansRho(gumbel216.cop)

tailIndex(gumbel216.cop)

gumbel33.cop <- archmCopula("gumbel", 21.02007,dim = 2)

kendallsTau(gumbel33.cop)

spearmansRho(gumbel33.cop)

tailIndex(gumbel33.cop)

gumbel34.cop <- archmCopula("gumbel", 18.39264,dim = 2)

kendallsTau(gumbel34.cop)

spearmansRho(gumbel34.cop)

tailIndex(gumbel34.cop)

gumbel35.cop <- archmCopula("gumbel", 10.37714,dim = 2)

kendallsTau(gumbel35.cop)

spearmansRho(gumbel35.cop)

tailIndex(gumbel35.cop)

gumbel36.cop <- archmCopula("gumbel", 16.88054,dim = 2)

kendallsTau(gumbel36.cop)

spearmansRho(gumbel36.cop)

tailIndex(gumbel36.cop)

gumbel37.cop <- archmCopula("gumbel", 13.76924,dim = 2)

kendallsTau(gumbel37.cop)

spearmansRho(gumbel37.cop)

tailIndex(gumbel37.cop)
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gumbel38.cop <- archmCopula("gumbel", 11.45215,dim = 2)

kendallsTau(gumbel38.cop)

spearmansRho(gumbel38.cop)

tailIndex(gumbel38.cop)

gumbel39.cop <- archmCopula("gumbel", 23.88196,dim = 2)

kendallsTau(gumbel39.cop)

spearmansRho(gumbel39.cop)

tailIndex(gumbel39.cop)

gumbel310.cop <- archmCopula("gumbel", 22.06464,dim = 2)

kendallsTau(gumbel310.cop)

spearmansRho(gumbel310.cop)

tailIndex(gumbel310.cop)

gumbel311.cop <- archmCopula("gumbel", 19.6937,dim = 2)

kendallsTau(gumbel311.cop)

spearmansRho(gumbel311.cop)

tailIndex(gumbel311.cop)

gumbel312.cop <- archmCopula("gumbel", 18.49001,dim = 2)

kendallsTau(gumbel312.cop)

spearmansRho(gumbel312.cop)

tailIndex(gumbel12.cop)

gumbel313.cop <- archmCopula("gumbel", 16.08886,dim = 2)

kendallsTau(gumbel313.cop)

spearmansRho(gumbel313.cop)

tailIndex(gumbel313.cop)

gumbel314.cop <- archmCopula("gumbel", 13.58637,dim = 2)

kendallsTau(gumbel314.cop)

spearmansRho(gumbel314.cop)

tailIndex(gumbel314.cop)

gumbel315.cop <- archmCopula("gumbel", 19.40581,dim = 2)

kendallsTau(gumbel315.cop)

spearmansRho(gumbel315.cop)

tailIndex(gumbel315.cop)

gumbel316.cop <- archmCopula("gumbel", 12.88396,dim = 2)

kendallsTau(gumbel316.cop)

spearmansRho(gumbel316.cop)

tailIndex(gumbel316.cop)

gumbel44.cop <- archmCopula("gumbel", 17.23922,dim = 2)
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kendallsTau(gumbel44.cop)

spearmansRho(gumbel44.cop)

tailIndex(gumbel44.cop)

gumbel45.cop <- archmCopula("gumbel", 10.09766,dim = 2)

kendallsTau(gumbel45.cop)

spearmansRho(gumbel45.cop)

tailIndex(gumbel45.cop)

gumbel46.cop <- archmCopula("gumbel", 16.08946,dim = 2)

kendallsTau(gumbel46.cop)

spearmansRho(gumbel46.cop)

tailIndex(gumbel46.cop)

gumbel47.cop <- archmCopula("gumbel", 12.43129,dim = 2)

kendallsTau(gumbel47.cop)

spearmansRho(gumbel47.cop)

tailIndex(gumbel47.cop)

gumbel48.cop <- archmCopula("gumbel", 10.7525,dim = 2)

kendallsTau(gumbel48.cop)

spearmansRho(gumbel48.cop)

tailIndex(gumbel48.cop)

gumbel49.cop <- archmCopula("gumbel", 20.72022,dim = 2)

kendallsTau(gumbel49.cop)

spearmansRho(gumbel49.cop)

tailIndex(gumbel49.cop)

gumbel410.cop <- archmCopula("gumbel", 18.59881,dim = 2)

kendallsTau(gumbel410.cop)

spearmansRho(gumbel410.cop)

tailIndex(gumbe410.cop)

gumbel411.cop <- archmCopula("gumbel", 17.82808,dim = 2)

kendallsTau(gumbel411.cop)

spearmansRho(gumbel411.cop)

tailIndex(gumbel411.cop)

gumbel412.cop <- archmCopula("gumbel", 16.75534,dim = 2)

kendallsTau(gumbel412.cop)

spearmansRho(gumbel412.cop)

tailIndex(gumbel412.cop)

gumbel413.cop <- archmCopula("gumbel", 14.84369,dim = 2)

kendallsTau(gumbel413.cop)
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spearmansRho(gumbel413.cop)

tailIndex(gumbel413.cop)

gumbel414.cop <- archmCopula("gumbel", 12.29216,dim = 2)

kendallsTau(gumbel414.cop)

spearmansRho(gumbel414.cop)

tailIndex(gumbel414.cop)

gumbel415.cop <- archmCopula("gumbel", 16.45009,dim = 2)

kendallsTau(gumbel415.cop)

spearmansRho(gumbel415.cop)

tailIndex(gumbel415.cop)

gumbel416.cop <- archmCopula("gumbel", 11.97745,dim = 2)

kendallsTau(gumbel416.cop)

spearmansRho(gumbel416.cop)

tailIndex(gumbel416.cop)

gumbel55.cop <- archmCopula("gumbel", 7.521216,dim = 2)

kendallsTau(gumbel55.cop)

spearmansRho(gumbel55.cop)

tailIndex(gumbel55.cop)

gumbel56.cop <- archmCopula("gumbel", 9.691672,dim = 2)

kendallsTau(gumbel56.cop)

spearmansRho(gumbel56.cop)

tailIndex(gumbel56.cop)

gumbel57.cop <- archmCopula("gumbel", 8.54854,dim = 2)

kendallsTau(gumbel57.cop)

spearmansRho(gumbel57.cop)

tailIndex(gumbel57.cop)

gumbel58.cop <- archmCopula("gumbel", 7.830925,dim = 2)

kendallsTau(gumbel58.cop)

spearmansRho(gumbel58.cop)

tailIndex(gumbel58.cop)

gumbel59.cop <- archmCopula("gumbel", 10.86895,dim = 2)

kendallsTau(gumbel59.cop)

spearmansRho(gumbel59.cop)

tailIndex(gumbel59.cop)

gumbel510.cop <- archmCopula("gumbel", 19.29592,dim = 2)

kendallsTau(gumbel510.cop)

spearmansRho(gumbel510.cop)
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tailIndex(gumbel510.cop)

gumbel511.cop <- archmCopula("gumbel",10.44113,dim = 2)

kendallsTau(gumbel511.cop)

spearmansRho(gumbel511.cop)

tailIndex(gumbel511.cop)

gumbel512.cop <- archmCopula("gumbel", 10.0494,dim = 2)

kendallsTau(gumbel512.cop)

spearmansRho(gumbel512.cop)

tailIndex(gumbel512.cop)

gumbel513.cop <- archmCopula("gumbel", 9.290266,dim = 2)

kendallsTau(gumbel513.cop)

spearmansRho(gumbel513.cop)

tailIndex(gumbel513.cop)

gumbel514.cop <- archmCopula("gumbel", 8.627145,dim = 2)

kendallsTau(gumbel514.cop)

spearmansRho(gumbel514.cop)

tailIndex(gumbel514.cop)

gumbel515.cop <- archmCopula("gumbel", 10.4105,dim = 2)

kendallsTau(gumbel515.cop)

spearmansRho(gumbel515.cop)

tailIndex(gumbel515.cop)

gumbel516.cop <- archmCopula("gumbel", 8.303656,dim = 2)

kendallsTau(gumbel516.cop)

spearmansRho(gumbel516.cop)

tailIndex(gumbel516.cop)

gumbel66.cop <- archmCopula("gumbel", 14.61707,dim = 2)

kendallsTau(gumbel66.cop)

spearmansRho(gumbel66.cop)

tailIndex(gumbel66.cop)

gumbel67.cop <- archmCopula("gumbel", 11.74468,dim = 2)

kendallsTau(gumbel67.cop)

spearmansRho(gumbel67.cop)

tailIndex(gumbel67.cop)

gumbel68.cop <- archmCopula("gumbel", 10.00142,dim = 2)

kendallsTau(gumbel68.cop)

spearmansRho(gumbel68.cop)

tailIndex(gumbel68.cop)
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gumbel69.cop <- archmCopula("gumbel", 19.57513,dim = 2)

kendallsTau(gumbel69.cop)

spearmansRho(gumbel69.cop)

tailIndex(gumbel69.cop)

gumbel610.cop <- archmCopula("gumbel", 16.92689,dim = 2)

kendallsTau(gumbel610.cop)

spearmansRho(gumbel610.cop)

tailIndex(gumbel610.cop)

gumbel611.cop <- archmCopula("gumbel", 16.55551,dim = 2)

kendallsTau(gumbel611.cop)

spearmansRho(gumbel611.cop)

tailIndex(gumbel611.cop)

gumbel612.cop <- archmCopula("gumbel", 15.40211,dim = 2)

kendallsTau(gumbel612.cop)

spearmansRho(gumbel612.cop)

tailIndex(gumbel612.cop)

gumbel613.cop <- archmCopula("gumbel", 13.42136,dim = 2)

kendallsTau(gumbel613.cop)

spearmansRho(gumbel613.cop)

tailIndex(gumbel613.cop)

gumbel614.cop <- archmCopula("gumbel", 12.11641,dim = 2)

kendallsTau(gumbel614.cop)

spearmansRho(gumbel614.cop)

tailIndex(gumbel614.cop)

gumbel615.cop <- archmCopula("gumbel", 16.07287,dim = 2)

kendallsTau(gumbel615.cop)

spearmansRho(gumbel615.cop)

tailIndex(gumbel615.cop)

gumbel616.cop <- archmCopula("gumbel", 11.34403,dim = 2)

kendallsTau(gumbel616.cop)

spearmansRho(gumbel616.cop)

tailIndex(gumbel616.cop)

gumbel77.cop <- archmCopula("gumbel", 10.15075,dim = 2)

kendallsTau(gumbel77.cop)

spearmansRho(gumbel77.cop)

tailIndex(gumbel77.cop)

gumbel78.cop <- archmCopula("gumbel", 9.026152,dim = 2)
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kendallsTau(gumbel78.cop)

spearmansRho(gumbel78.cop)

tailIndex(gumbel78.cop)

gumbel79.cop <- archmCopula("gumbel", 14.50697,dim = 2)

kendallsTau(gumbel79.cop)

spearmansRho(gumbel79.cop)

tailIndex(gumbel79.cop)

gumbel710.cop <- archmCopula("gumbel", 13.80126,dim = 2)

kendallsTau(gumbel710.cop)

spearmansRho(gumbel710.cop)

tailIndex(gumbel710.cop)

gumbel711.cop <- archmCopula("gumbel", 12.86187,dim = 2)

kendallsTau(gumbel711.cop)

spearmansRho(gumbel711.cop)

tailIndex(gumbel711.cop)

gumbel712.cop <- archmCopula("gumbel", 12.30449,dim = 2)

kendallsTau(gumbel712.cop)

spearmansRho(gumbel712.cop)

tailIndex(gumbel712.cop)

gumbel713.cop <- archmCopula("gumbel", 11.21817,dim = 2)

kendallsTau(gumbel713.cop)

spearmansRho(gumbel713.cop)

tailIndex(gumbel713.cop)

gumbel714.cop <- archmCopula("gumbel", 10.33549,dim = 2)

kendallsTau(gumbel714.cop)

spearmansRho(gumbel714.cop)

tailIndex(gumbel714.cop)

gumbel715.cop <- archmCopula("gumbel", 12.56657,dim = 2)

kendallsTau(gumbel715.cop)

spearmansRho(gumbel715.cop)

tailIndex(gumbel715.cop)

gumbel716.cop <- archmCopula("gumbel", 9.608888,dim = 2)

kendallsTau(gumbel716.cop)

spearmansRho(gumbel716.cop)

tailIndex(gumbel716.cop)

gumbel88.cop <- archmCopula("gumbel", 8.380593,dim = 2)

kendallsTau(gumbel88.cop)



APPENDICES 174

spearmansRho(gumbel88.cop)

tailIndex(gumbel88.cop)

gumbel89.cop <- archmCopula("gumbel", 11.7845,dim = 2)

kendallsTau(gumbel89.cop)

spearmansRho(gumbel89.cop)

tailIndex(gumbel89.cop)

gumbel810.cop <- archmCopula("gumbel", 11.28214,dim = 2)

kendallsTau(gumbel810.cop)

spearmansRho(gumbel810.cop)

tailIndex(gumbel810.cop)

gumbel811.cop <- archmCopula("gumbel",10.7309,dim = 2)

kendallsTau(gumbel811.cop)

spearmansRho(gumbel811.cop)

tailIndex(gumbel811.cop)

gumbel812.cop <- archmCopula("gumbel", 10.94955,dim = 2)

kendallsTau(gumbel812.cop)

spearmansRho(gumbel812.cop)

tailIndex(gumbel812.cop)

gumbel813.cop <- archmCopula("gumbel", 9.773103,dim = 2)

kendallsTau(gumbel813.cop)

spearmansRho(gumbel813.cop)

tailIndex(gumbel813.cop)

gumbel814.cop <- archmCopula("gumbel", 8.775602,dim = 2)

kendallsTau(gumbel814.cop)

spearmansRho(gumbel814.cop)

tailIndex(gumbel814.cop)

gumbel815.cop <- archmCopula("gumbel", 10.95028,dim = 2)

kendallsTau(gumbel815.cop)

spearmansRho(gumbel815.cop)

tailIndex(gumbel815.cop)

gumbel816.cop <- archmCopula("gumbel", 8.63004,dim = 2)

kendallsTau(gumbel816.cop)

spearmansRho(gumbel816.cop)

tailIndex(gumbel816.cop)

gumbel99.cop <- archmCopula("gumbel", 27.39562,dim = 2)

kendallsTau(gumbel99.cop)

spearmansRho(gumbel99.cop)
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tailIndex(gumbel99.cop)

gumbel910.cop <- archmCopula("gumbel", 25.0694,dim = 2)

kendallsTau(gumbel910.cop)

spearmansRho(gumbel910.cop)

tailIndex(gumbel910.cop)

gumbel911.cop <- archmCopula("gumbel", 22.16318,dim = 2)

kendallsTau(gumbel911.cop)

spearmansRho(gumbel911.cop)

tailIndex(gumbel911.cop)

gumbel912.cop <- archmCopula("gumbel", 20.70767,dim = 2)

kendallsTau(gumbel912.cop)

spearmansRho(gumbel912.cop)

tailIndex(gumbel912.cop)

gumbel913.cop <- archmCopula("gumbel",16.97585,dim = 2)

kendallsTau(gumbel913.cop)

spearmansRho(gumbel913.cop)

tailIndex(gumbel913.cop)

gumbel914.cop <- archmCopula("gumbel", 14.59269,dim = 2)

kendallsTau(gumbel914.cop)

spearmansRho(gumbel914.cop)

tailIndex(gumbel914.cop)

gumbel915.cop <- archmCopula("gumbel", 21.83363,dim = 2)

kendallsTau(gumbel915.cop)

spearmansRho(gumbel915.cop)

tailIndex(gumbel915.cop)

gumbel916.cop <- archmCopula("gumbel", 12.93417,dim = 2)

kendallsTau(gumbel916.cop)

spearmansRho(gumbel916.cop)

tailIndex(gumbel916.cop)

gumbel1010.cop <- archmCopula("gumbel", 21.67569,dim = 2)

kendallsTau(gumbel1010.cop)

spearmansRho(gumbel1010.cop)

tailIndex(gumbel1010.cop)

gumbel1011.cop <- archmCopula("gumbel", 20.20132,dim = 2)

kendallsTau(gumbel1011.cop)

spearmansRho(gumbel1011.cop)

tailIndex(gumbel1011.cop)



APPENDICES 176

gumbel1012.cop <- archmCopula("gumbel", 19.9295,dim = 2)

kendallsTau(gumbel1012.cop)

spearmansRho(gumbel1012.cop)

tailIndex(gumbel1012.cop)

gumbel1013.cop <- archmCopula("gumbel", 15.84157,dim = 2)

kendallsTau(gumbel1013.cop)

spearmansRho(gumbel1013.cop)

tailIndex(gumbel1013.cop)

gumbel1014.cop <- archmCopula("gumbel", 14.06791,dim = 2)

kendallsTau(gumbel1014.cop)

spearmansRho(gumbel1014.cop)

tailIndex(gumbel1014.cop)

gumbel1015.cop <- archmCopula("gumbel", 19.45971,dim = 2)

kendallsTau(gumbel1015.cop)

spearmansRho(gumbel1015.cop)

tailIndex(gumbel1015.cop)

gumbel1016.cop <- archmCopula("gumbel", 12.58622,dim = 2)

kendallsTau(gumbel1016.cop)

spearmansRho(gumbel1016.cop)

tailIndex(gumbel1016.cop)

gumbel1111.cop <- archmCopula("gumbel", 18.77081,dim = 2)

kendallsTau(gumbel1111.cop)

spearmansRho(gumbel1111.cop)

tailIndex(gumbel1111.cop)

gumbel1112.cop <- archmCopula("gumbel", 17.60055,dim = 2)

kendallsTau(gumbel1112.cop)

spearmansRho(gumbel1112.cop)

tailIndex(gumbel1112.cop)

gumbel1113.cop <- archmCopula("gumbel", 14.93381,dim = 2)

kendallsTau(gumbel1113.cop)

spearmansRho(gumbel1113.cop)

tailIndex(gumbel1113.cop)

gumbel1114.cop <- archmCopula("gumbel", 13.79122,dim = 2)

kendallsTau(gumbel1114.cop)

spearmansRho(gumbel1114.cop)

tailIndex(gumbel1114.cop)

gumbel1115.cop <- archmCopula("gumbel", 18.14978,dim = 2)
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kendallsTau(gumbel1115.cop)

spearmansRho(gumbel1115.cop)

tailIndex(gumbel1115.cop)

gumbel1116.cop <- archmCopula("gumbel", 11.85016,dim = 2)

kendallsTau(gumbel1116.cop)

spearmansRho(gumbel1116.cop)

tailIndex(gumbel1116.cop)

gumbel1212.cop <- archmCopula("gumbel", 17.49925,dim = 2)

kendallsTau(gumbel1212.cop)

spearmansRho(gumbel1212.cop)

tailIndex(gumbel1212.cop)

gumbel1213.cop <- archmCopula("gumbel", 14.87095,dim = 2)

kendallsTau(gumbel1213.cop)

spearmansRho(gumbel1213.cop)

tailIndex(gumbel1213.cop)

gumbel1214.cop <- archmCopula("gumbel", 12.80826,dim = 2)

kendallsTau(gumbel1214.cop)

spearmansRho(gumbel1214.cop)

tailIndex(gumbel1214.cop)

gumbel1215.cop <- archmCopula("gumbel", 16.68777,dim = 2)

kendallsTau(gumbel1215.cop)

spearmansRho(gumbel1215.cop)

tailIndex(gumbel1215.cop)

gumbel1216.cop <- archmCopula("gumbel", 11.64434,dim = 2)

kendallsTau(gumbel1216.cop)

spearmansRho(gumbel1216.cop)

tailIndex(gumbel1216.cop)

gumbel1313.cop <- archmCopula("gumbel", 12.54261,dim = 2)

kendallsTau(gumbel1313.cop)

spearmansRho(gumbel1313.cop)

tailIndex(gumbel1313.cop)

gumbel1314.cop <- archmCopula("gumbel", 11.68133,dim = 2)

kendallsTau(gumbel1314.cop)

spearmansRho(gumbel1314.cop)

tailIndex(gumbel1314.cop)

gumbel1315.cop <- archmCopula("gumbel", 14.37334,dim = 2)

kendallsTau(gumbel1315.cop)
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spearmansRho(gumbel1315.cop)

tailIndex(gumbel1315.cop)

gumbel1316.cop <- archmCopula("gumbel", 10.31197,dim = 2)

kendallsTau(gumbel1316.cop)

spearmansRho(gumbel1316.cop)

tailIndex(gumbel1316.cop)

gumbel1414.cop <- archmCopula("gumbel", 10.44898,dim = 2)

kendallsTau(gumbel1414.cop)

spearmansRho(gumbel1414.cop)

tailIndex(gumbel1414.cop)

gumbel1415.cop <- archmCopula("gumbel", 12.87818,dim = 2)

kendallsTau(gumbel1415.cop)

spearmansRho(gumbel1415.cop)

tailIndex(gumbel1415.cop)

gumbel1416.cop <- archmCopula("gumbel", 9.94889,dim = 2)

kendallsTau(gumbel1416.cop)

spearmansRho(gumbel1416.cop)

tailIndex(gumbel1416.cop)

gumbel1515.cop <- archmCopula("gumbel", 17.60056,dim = 2)

kendallsTau(gumbel1515.cop)

spearmansRho(gumbel1515.cop)

tailIndex(gumbel1515.cop)

gumbel1516.cop <- archmCopula("gumbel", 11.60311,dim = 2)

kendallsTau(gumbel1516.cop)

spearmansRho(gumbel1516.cop)

tailIndex(gumbel1516.cop)

gumbel1616.cop <- archmCopula("gumbel", 9.09929,dim = 2)

kendallsTau(gumbel1616.cop)

spearmansRho(gumbel1616.cop)

tailIndex(gumbel1616.cop)
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A.5 Clustering

Distance matrices

> Community.1 <- makecommunitydataset(kencom,row=’LOB’,

column=’LOB1’,value=’kend’)

#Euclidean

> Distmatrix.1 <- vegdist(Community.1,method=’euclidean’)

#Manhattan

> Distmatrix.1 <- vegdist(Community.1,method=’manhattan’)

Dendrogram

>dist.eval(Community.1,’euclidean’)

> Cluster.1 <- hclust(distmatrix, method=’ward’)

> copheneticdist <- cophenetic(Cluster.1)

> mantel(distmatrix,copheneticdist,permutations=100)


