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ABSTRACT

An electrically conducting fluid flowing between two parallel plates has been con-

sidered in this study. The fluid flow is unsteady and a magnetic field is applied

perpendicular to the plates. Various configurations have been considered for the

plates with either one plate moving or both plates moving in opposite directions

relative to each other. The whole system is then rotated in a direction normal

to the plates with a constant angular velocity Ω. Temperature and concentration

gradients have been considered across the plates. The Hall current effect has also

been put into consideration when studying the fluid flow. The effects of changing

various parameters on the velocity, temperature and concentration profiles has

been discussed. These parameters include the rotation parameter Er, the Schmidt

number Sc, the Hall parameter m, the suction parameter S, the Eckert number

Ec, the pressure gradient dP
dx
and time t. The results that are obtained are then

presented on graphs and the observations are discussed. Later the effect of chang-

ing these parameters on the skin friction, the rate of heat transfer and the rate of

mass transfer are studied. The results that are obtained are presented in tables

and then discussed.

The effect of changing the parameters mentioned above is observed either to in-

crease, to decrease or to have no effect on the velocity profiles, the temperature

profiles, the concentration profiles, the skin friction and the rates of heat and mass

transfer.



1

Chapter 1

introduction

Fluid dynamics is an area of study that deals with the flow of fluids. The fluids

in consideration include gases, liquids and ionized gases also called plasma. Elec-

tromagnetism on the other hand studies the interaction between the electric and

magnetic fields. Magnetofluiddynamics (MFD) is an area of study that combines

the two areas of fluid dynamics and electromagnetism. Magnetohydrodynamics

(MHD) is a narrower area of study than MFD because MHD combines the two

areas of study of flow of liquids called hydrodynamics and study of electromag-

netism. In that case, MHD excludes the area of study of gases in motion called

gas dynamics and also the study of plasmas.

1.1 Definition of terms

1.1.1 Newtonian and non-newtonian fluids

A fluid is the state of matter that cannot resist a small shear force or stress

without being deformed. A fluid can be a liquid, a gas, or ionized gases called

plasma. Further, if the stresses associated with fluid motion depend linearly on the

instantaneous value of the rate of deformation, the fluid in consideration is termed

as a newtonian fluid. Examples of newtonian fluids include water, sugar solutions,

glycerine, light hydrocarbon oils, air and other gases. The fluids whose viscosity

changes with the applied shear force are called non-newtonian fluids. Consequently

these non newtonian fluids may not have a well defined viscosity. Examples of

non-newtonian fluids include mud, milk, blood, bitumen, concentrated solution of

sugar and water, suspensions of rice starch and corn starch and non drip paints.
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1.1.2 Forces acting on the fluid

The forces acting on a fluid element are classified as either body forces which are

forces acting at a distance on a fluid particle or surface forces which are forces due

to direct contact of a particle with other fluid particles or solid walls. Some of the

body forces considered in MFD include the electric force and the magnetic force

in addition to other forces like viscous, pressure, gravity and inertia forces studied

in fluid dynamics. This is defined in section 1.1 on the preceding page.

1.1.3 Heat transfer

Heat transfer involves the study of energy transfer taking place between material

bodies as a result of temperature difference. The different modes of heat transfer

include conduction, convection and radiation.

(a) Conduction heat transfer: This is the energy transfer from the more

energetic to the less energetic particles of a substance as a result of

interactions between the particles.

(b) Radiation heat transfer: This is the energy emitted by matter due to

changes in electron configuration of the constituent atoms or molecules.

It is transported by electromagnetic waves (or alternatively photons).

(c) Convection heat transfer: If the heat transport process is affected by

the flow of a fluid such that two different portions of a fluid mix then

the mode of heat transfer is termed as convection. This mode of heat

transfer can further be classified as free, forced or mixed convection. In

free or natural convection, fluid motion is as a result of density gradients

created by temperature or concentration gradients existing in the fluid

mass. Forced convection fluid motion takes place due to external forces

such as those from a pump or fan acting on the fluid. A special case

called mixed convection arises when both free and forced convection

fluid motions exist simultaneously.
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1.1.4 Viscous fluid and skin friction

Viscosity is a measure of internal friction of a fluid or the resistance to deformation.

This occurs due to molecules from a region of high bulk velocity colliding with

molecules moving with lower bulk velocity and vice versa. Skin friction is a drag

force due to viscous resistance tangential to the surface on which the fluid is

flowing.

1.1.5 Boundary layers

Heat transfer can occur between a fluid in motion and a bounding surface when

the two are at different temperatures. This interaction leads to the development

of thin fluid layers adjacent to the surface of a body or a solid wall in which

strong viscous effects exist. These layers are called boundary layers. Outside the

boundary layer is a free stream, which is a flow region that is not affected by the

obstruction, heating effect or mass transport introduced at the solid wall. The

laminar boundary layer is a flow region where molecules move from one lamina

to another carrying with them a momentum corresponding to the velocity of the

flow. Depending on the nature of the fluid flow in consideration, we can study

either one or a combination of the boundary layers discussed below.

(a) Velocity boundary layer: Fluid particles in contact with a stationary

surface assume zero tangential velocity. Similarly, fluid particles in

contact with a moving surface will move at the velocity of the surface.

In fluid dynamics this phenomenon is called the no slip condition. When

a fluid flows, there occurs a net momentum transport from regions of

high velocity to regions of low velocity thus creating a viscous shear

stress in the direction of the flow. The significance of the velocity

boundary layer is to determine the surface (or skin) friction of the

fluid.

(b) Thermal boundary layer: The thermal boundary layer develops due to

the presence of temperature gradients between the surface and the free
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stream region. The thermal boundary layer is important in determining

the rate of convection heat transfer.

(c) Concentration boundary layer: A concentration boundary layer devel-

ops in a fluid region where concentration gradients exist between the

surface and the free stream. The significance of this boundary layer is

in determining the rate of convection mass transfer.

1.1.6 Mass transfer

In mass transfer by convection, fluid motion on the larger scale combines with

mass diffusion on a molecular scale to promote the transport of a species for

which a concentration gradient exists. When the solid boundary allows fluid to

pass through it, then we are considering a porous medium. A porous medium is

said to be homogenous if the ratio of the pore area to the total area of the solid

boundary is a constant. Otherwise the medium is termed as non homogeneous.

1.1.7 Steady and unsteady fluid flow

When the flow variables such as density, velocity and pressure as well as the

thermodynamic properties vary with respect to time, the flow in consideration is

termed as unsteady flow. Otherwise if these variables are independent of time

then the fluid flow is referred to as a steady fluid flow.

1.1.8 Compressible and incompressible fluids

A fluid is said to be compressible if its density changes appreciably (typically by

a few percent) within the domain of interest. Typically, this will occur when the

fluid velocity exceeds Mach 0.3. Hence, low velocity fluid flows behave as incom-

pressible. An incompressible fluid is one whose density is constant everywhere.

In many practical cases of fluid flow, the variation of density of the fluid may be

neglected. This is particularly important when the fluid flow is due to buoyant

forces and in such cases, the fluid is considered to be incompressible.
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1.1.9 Laminar and turbulent fluid flow

Laminar fluid flow is an organized flow field that can be described with streamlines

where the fluid flows in layers which do not mix. In order for laminar flow to be

permissible, the viscous stresses must dominate over the fluid inertia stresses. A

flow field that cannot be described with streamlines in the absolute sense is termed

as turbulent. However, time-averaged streamlines can be defined to describe the

average behavior of the flow. In turbulent flow, the inertia stresses dominate over

the viscous stresses, leading to small-scale chaotic behavior in the fluid motion.

1.1.10 Rotational and irrotational fluid flow

An irrotational fluid flow is one whose streamlines never loop back on themselves.

Typically, only inviscid fluids can be irrotational. A rotational fluid flow can

contain streamlines that loop back on themselves. Hence, fluid particles following

such streamlines will travel along closed paths. Bounded (and hence nonuniform)

viscous fluids exhibit rotational flow, typically within their boundary layers. Since

all real fluids are viscous to some extent, all real fluids exhibit a level of rotational

flow somewhere in their domain. Regions of rotational flow correspond to the

regions of viscous losses in a fluid.

1.1.11 Magnetofluiddynamics (MFD)

Faraday’s law of electromagnetic induction reveals that when a conductor is moved

across a magnetic field, an electromotive force is produced in the conductor. Also,

when a current carrying conductor is moved in a magnetic field it experiences a

force that tends to move it at right angles to the electric field. Lenz’s law gives the

direction of the induced current as that direction that opposes the change in the

magnetic field that causes it. When an electrically conducting fluid moves past a

magnetic field, there arises an interaction between the flow field and the magnetic

field. The magnetic field exerts a force on the fluid due to induced currents and

the induced currents affect the original magnetic field. If these electromagnetic
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forces generated in this way are of the same order of magnitude as the hydro-

dynamic forces then these electromagnetic forces have to be taken into account

when considering the flow field. MFD fluid flows involve the flow of electrically

conducting fluids in the presence of a magnetic field. MFD therefore is a field of

study involving both electromagnetic theory and fluid dynamics.

1.2 Review of related literature

The study of MHD fluid flow between parallel plates has been carried out for

a long period of time. Hartmann & Lazarus (1937) studied the influence of a

transverse uniform magnetic field on the flow of a conducting fluid between two

infinite parallel, stationary, and insulated plates. Since then, many researchers

have been involved in the study of fluid flows between parallel plates. Ghosh &

Bhattacharjee (2000) considered the effects of Hall current on a steady MHD fully

developed flow in a rotating environment within a parallel plate channel in the

presence of an inclined magnetic field. Ghosh (2002) considered a MHD couette

flow in a rotating environment with non conducting walls in the presence of an

arbitrary magnetic field. He considered how an interplay between the hydromag-

netic force and coriolis force with an inclusion of Hall current affects the MHD

flow behaviour. Denno & Fouad (1972) considered a nonuniform magnetic field

on MHD channel flow between two parallel plates of infinite extent with the aim

of reducing the amount of heat transfer from the fluid to the channel walls. Attia

(2002) studied the unsteady flow and heat transfer of a dusty conducting fluid

between two parallel plates with variable viscosity and electric conductivity. The

fluid is driven by a constant pressure gradient and an external uniform magnetic

field is applied perpendicular to the plates. The effect of the variation in the vis-

cosity and electric conductivity of the fluid and the uniform magnetic field on the

velocity and temperature fields for both the fluid and dust particles is discussed.

Soundalgekar & Haldavnekar (1973) analyzed a fully-developed MHD free convec-

tive flow between two vertical, electrically conducting plates. They studied the

effects of the external circuit, heat sources and modified boundary conditions on
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the temperature at the non-perfect thermally conducting plates. They observed

that the flow is stable at small values of M, the Hartmann number, whereas at

large values of M, an increase in the thermal conductance ratio or line heat source

leads to an instability of the flow. However, they found that instability of the

flow may be avoided by selecting the plates of high electrical conductivity. Seth

& Jana (1980) investigated the unsteady hydromagnetic flow of a viscous incom-

pressible fluid in the presence of a uniform transverse magnetic field in a rotating

parallel plate channel with oscillating pressure gradient. An exact solution of the

governing equations for the fully developed flow is obtained in closed form. They

studied the effects of Hartmann number, the reciprocal of the Ekman number, and

the frequency of oscillation on the flow field. They observed that for large values

of the reciprocal of the Ekman number and frequency of oscillation there arises

thin double-decker boundary layers near the plates of the channel and thin bound-

ary layers for large Hartmann number. Bodosa & Borkakati (2003) analyzed the

problem of an unsteady two-dimensional flow of a viscous incompressible and elec-

trically conducting fluid between two parallel plates in the presence of a uniform

transverse magnetic field when in case-I the plates are at different temperatures

and in case-II the upper plate is considered to move with constant velocity whereas

the lower plate is adiabatic. In most cases the Hall and ion-slip terms were ignored

in applying Ohm’s law, as they have no marked effect for small and moderate val-

ues of the magnetic field. However, the current trend for the application of MHD

is towards a strong magnetic field, so that the influence of the electromagnetic

force is noticeable (Cramer & Pai, 1973). Under these conditions, the Hall current

and ion slip current are important and they have a marked effect on the magni-

tude and direction of the current density and consequently on the magnetic force

term. Tani (1962) studied the Hall effect on the steady motion of electrically con-

ducting and viscous fluids in channels. Soundalgekar et al. (1979); Soundalgekar

& Uplekar (1986) studied the effect of the Hall currents on the steady MHD cou-

ette flow with heat transfer. The temperatures of the two plates were assumed

either to be constant (Soundalgekar & Uplekar, 1986) or to vary linearly along
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the plates in the direction of the flow (Soundalgekar et al., 1979). Later, Attia

(1998) extended the problem to the unsteady state with heat transfer, taking the

Hall effect into consideration while neglecting ion-slip current. Nagy & Demendy

(1995) investigated the influence of Hall currents and rotation on a generalized

Hartmann flow and heat transfer. They considered a channel that is rotating with

a constant angular velocity around an axis perpendicular to the walls in a uniform

transverse magnetic field. The walls may have the same thickness, electrical and

thermal conductivity as well as Hall parameter or different ones. The flow may

be driven either by a pressure gradient or by motion of one of the walls. Exact

solutions are derived for the velocity, magnetic field, viscous stress, current den-

sity, temperature distribution, yield components, electric current components and

mean temperature as well as Nusselt numbers. Rao & Krishna (1982) analyzed

the influence of Hall currents on the free and forced convective flow of a viscous

rotating fluid between two horizontal plates. They discussed the effects of Hall

currents on the velocity, the temperature and shear stress. Bharali & Borkakati

(1982) studied the effect of Hall currents on MHD flow of an incompressible vis-

cous electrically conducting fluid between two non-conducting porous plates in

the presence of a strong uniform magnetic field. The flow is generated by a small

uniform suction at the plates. Solutions are obtained for suction Reynolds number

Re << 1, considering two cases for the imposed magnetic field, viz. (i) when the

magnetic field is perpendicular to the plates, and (ii) when the magnetic field is

parallel to the plates and perpendicular to the primary flow direction. The ef-

fect of the Hall currents on the flow as well as on the heat transfer is studied.

They observed that in the absence of Hall currents, the change of the direction

of the applied magnetic field does not affect the primary flow. Jana & Datta

(1980) studied the combined effect of rotation and Hall current on the MHD cou-

ette flow. The heat transfer characteristic have also been discussed on taking the

viscous and Joule dissipation into account. They observed that the primary and

the secondary velocity components increase with increase in Hall parameter but

the primary velocity decreases with increase in rotation parameter. Also, the rate
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of heat transfer at the stationary plate is independent of both the Hall param-

eter and the rotation parameter. The rate of heat transfer at the moving plate

increases with increase in Hall parameter, while it decreases with increase in ro-

tation parameter. The values of the critical Eckert number at which the direction

of the heat flow changes increases with increase in Hall parameter. Hassanien &

Mansour (1990) made an analysis of a two-dimensional unsteady flow of a viscous,

incompressible electrically-conducting fluid through a porous medium bounded by

two infinite parallel plates under the action of a transverse magnetic field. The

lower plate is fixed while the other one is oscillating in its own plane. Expressions

for the transient velocity, the amplitude, the phase angle, and the skin-friction

are derived. The effects of the magnetic parameters, permeability of the porous

medium, and the frequency parameter are discussed. Krishna et al. (2002) made

an initial value investigation of the hydromagnetic convection flow of a viscous

electrically conducting fluid through a porous medium in a rotating parallel plate

channel using boundary layer type equations. The exact solution of the governing

equations is evaluated and the structure of the different boundary layers formed

has been discussed. The ultimate quasi steady state velocity and temperature

fields are numerically computed for various values of the governing parameters.

Also the shear stress on the plates and the Nusselt numbers have been computed.

Sarojamma & Krishna (1981) studied the combined free and forced convection

in a rotating, viscous, incompressible fluid confined between two parallel porous

plates. Assuming that the temperature varies linearly along the plates and the

pressure gradient maintained uniform over the planes parallel to the plates, the ve-

locity, temperature and the stresses are calculated analytically. Their behaviours

for different values of the parameters viz., the Hartmann number, the Grashoff

number and the suction parameter, are discussed graphically giving out the in-

terplay between the various forces. Recently (Attia, 2005) studied the transient

flow and heat transfer of an incompressible, viscous, electrically conducting fluid

between two infinite non-conducting horizontal porous plates with the considera-

tion of both Hall current and ion-slip current. The upper plate is moving with a
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constant velocity while the lower plate is kept stationary. The fluid is acted upon

by a constant pressure gradient, a uniform suction and injection and a uniform

magnetic field perpendicular to the plates. The induced magnetic field is neglected

by assuming a very small magnetic Reynold’s number (Sutton & Sherman, 1965),

therefore, the uniform magnetic field is considered as the total magnetic field act-

ing on the fluid. The two plates are maintained at two different but constant

temperatures. The governing equations are solved numerically taking the Joule

and the viscous dissipations into consideration in the energy equations. The effect

of the magnetic field, Hall current, ion-slip, and suction and injection on both the

velocity and temperature distributions is studied. Umavathi & Malashetty (2005)

studied the laminar fully developed combined free and forced magnetoconvection

in a vertical channel with symmetric and asymmetric boundary heating in the

presence of viscous and Joulean dissipations.

1.3 Problem statement

In the studies given above, none of the researchers has focussed on the combined

effects of rotation, heat transfer, mass transfer, porous media and Hall current

in a MFD flow field. We endeavour to study a MFD fluid flow while considering

the effects of rotation, Hall current, heat and mass transfer between two parallel

porous, non conducting infinite plates.

1.4 Research objectives

This study aims at the following:

• Determining the velocity, temperature and concentration distributions for an

electrically conducting fluid flow between two parallel plates in a rotating

system.

• Investigating the effects of various fluid flow parameters on the velocity,

temperature and concentration profiles for this fluid flow.
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• Investigating the effects of some fluid flow parameters on the skin friction and

the rates of heat and mass transfer. These parameters include the pressure

gradient, hall parameter m, eckert number Ec, schmidt number Sc, suction

parameter S , rotation parameter Er and time t.

1.5 Justification

The MFD flow between two parallel plates, has a solution that has many applica-

tions in MHD power generators, MHD pumps, accelerators, aerodynamic heating,

electrostatic precipitation, polymer technology, petroleum industry, purification

of crude oil and fluid droplets and sprays. Mixed convection in vertical paral-

lel plates finds applications in cooling of electronic devices and solar collectors.

MHD flow through ducts has applications in design of MHD generators, cross

field accelerators, shock tubes, pumps and flow meters. Other applications in

engineering include designing of heat exchangers, electromagnetic pumps, space

vehicle propulsion and braking and MHD electrical power generation. Fluid flows

involving rotation are encountered in natural phenomena and find applications in

the oceans and earth’s atmosphere such as in meteorology and air pollution. It is

in the light of this that we feel that this study will be of much interest.

The general equations governing a fluid flow which include the mass conser-

vation equation, the momentum equation, the energy conservation equation and

the Maxwell’s equations are given in the next chapter. Later a fluid flow between

two parallel straight plates is considered. The proposed method of solution to the

equations that arise is also given.
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Chapter 2

governing equations and methodology

In this chapter, the equations governing the flow of an electrically conducting fluid

in the presence of a magnetic field are given. We first state some approximations

to be made when studying the flow of the electrically conducting fluid in the

presence of a strong magnetic field. Thereafter, the basic conservation equations

in hydrodynamics as well as electromagnetic theory are stated. The equations

governing the flow of an electrically conducting fluid between two parallel plates

in the presence of a magnetic field are also given. A mesh used to approximate the

equations that govern the fluid flow to difference equations is given in this chapter.

The methods that are later used to solve the resulting systems of equations are

also given later in the chapter.

2.1 Approximations and assumptions

Some assumptions and approximations made to the fluid and to the fluid flow are

given as follows.

• Laws of classical mechanics apply. The flow is limited to slow speed (q<<c)

hence exclusion of relativistic effects.

• The length scale of the flow is taken to be large compared with the molecular

mean free-path hence the fluid is taken as a continuum.

• The flow is incompressible where pressure variations don’t produce any sig-

nificant change in density.

• The fluid is Newtonian such that the fluids viscosity is assumed a constant.

• Fluid flow is unsteady.

• Fluid flow is laminar.
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• There are no chemical reactions taking place in the fluid.

• There is no external electric field i.e. E = 0.

2.1.1 Conservation equations

This study considers the flow of an electrically conducting fluid. On this basis, we

give the general conservation equations in both hydrodynamics as well as electro-

magnetism. In the continuum approach of deriving the equations governing the

motion of a fluid, the individual molecules are ignored and it is assumed that the

fluid consists of continuous matter. This continuous matter which in this case is

the fluid in consideration must satisfy the basic laws of mass conservation, momen-

tum conservation, and conservation of energy. In the case where mass transfer is

included, the equation of conservation of concentration has also to be considered.

Fluid dynamics is concerned with the behaviour, subject to known laws, of a fluid

of specified properties in a specified configuration. Maxwell’s equations give the

fundamentals of electricity and magnetism.

2.1.2 Continuity equation

The mass conservation equation also called the continuity equation is derived from

the law of conservation of mass. Considering a section of the fluid flow region, the

mass entering the section equals the mass leaving this section such that there is

no mass being created or destroyed. For an unsteady fluid flow, the vector form

of the continuity equation is derived in many fluid mechanics text books such as

(Curie, 1974)
∂ρ

∂t
+
∂

∂xi
(ρui) = 0 (2.1)

where i = 1, 2, 3 along the x, y and z directions respectively. Since we are

considering a fluid flow that is incompressible, the density of the fluid is assumed

to be constant and in this case the continuity equation takes the form

∂ui

∂xi
= 0 (2.2)
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2.1.3 Momentum conservation equation

Conservation of momentum states that within some problem domain, the mo-

mentum remains constant. Momentum is neither created nor destroyed but only

changed through the action of forces as described by Newton’s laws of motion.

Newton’s second law of motion states that the rate of change of momentum of a

body is equal to the net sum of resultant forces acting on the body. In this case,

the body in consideration is the fluid. For a fluid in motion, some forces act within

the fluid itself while other forces act on the fluid from external sources. Forces

acting at a distance on a fluid particle are called body forces while surface forces

refer to the forces due to direct contact of a fluid with other fluid particles or solid

walls. The forces acting on the fluid have to be specified for a particular flow con-

figuration being considered. The basic dynamical equation expressing Newton’s

second law of motion for a fluid of constant density is the Navier-Stokes equation

given in tensor form as in (Curie, 1974).

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk
=
∂σi,j

∂xi
+ ρfj (2.3)

The forces considered are the force
∂σi,j
∂xi

due to surface shear stresses and the

force ρfj due to body forces acting on the fluid. The terms ρ
∂uj
∂t
and ρuk

∂uj
∂xk

give the local acceleration and the convective acceleration respectively. The local

acceleration represents the change in velocity with time at any point in space while

the convective acceleration represents the change in velocity due to the fact that a

given fluid element changes its position with time and therefore assumes different

values of velocity as it flows. The most common type of body force which acts on

a fluid is due to gravity. However, if we also include the electromagnetic forces

then the total body force is F = Fe +Fg where the electromagnetic force is given

as in (Holman, 1992).

Fe = ρeE+ J×B (2.4)

Since the force due to the applied electric field is negligible compared with the
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force due to the magnetic field, then the total electromagnetic force is given as

Fe = J×B (2.5)

Taking the gravitational force per unit volume , the momentum conservation equa-

tion takes the form

ρ
∂uj

∂t
+ ρuk

∂uj

∂xk
=
∂σij

∂xi
− ρgj + (J × B)j (2.6)

2.1.4 Equation of conservation of energy

The law of energy conservation is another fundamental law in Science which states

that the energy in a given domain remains constant; it is neither created nor

destroyed but can be converted from one form to another. In thermodynamics,

energy and work of a system are related in the first law of thermodynamics which

states that the change in the internal energy e is equal to the difference of the heat

ΔQ transferred into a system and the work ΔW done by the system. i.e.

Δe = ΔQ−ΔW (2.7)

This equation is derived in most standard fluid mechanics textbooks as

ρ
De

Dt
= −∇Q+Q′ − P∇ ∙ q+ μφ (2.8)

In three dimensions, the viscous dissipation function is expressed in Cartesian

co-ordinates as follows

φ = 2

[(
∂u

∂x

)2
+

(
∂v

∂y

)2
+

(
∂w

∂z

)2]

+

(
∂u

∂y
+
∂v

∂x

)2
+

(
∂v

∂z
+
∂w

∂y

)2
+

(
∂w

∂x
+
∂u

∂z

)2

(2.9)

The thermodynamic definition of the enthalpy

h = E +

(
1

ρ

)

P (2.10)

is given in differential form as

dh = dE +

(
1

ρ

)

dP + Pd

(
1

ρ

)

(2.11)
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Using Maxwell’s thermodynamic relation

dE = TdS − Pd

(
1

ρ

)

(2.12)

in equation (2.11), we have

dh = TdS +
1

ρ
dP (2.13)

Taking the entropy to be a function of pressure and temperature, i.e. S = S (P,T),

we have

dS =

(
∂S

∂T

)

p

dT +

(
∂S

∂P

)

T

dP (2.14)

and using the generalised thermodynamic relations
(
∂S
∂P

)
T
= −β

ρ

(
∂S
∂T

)
P
= Cp
T

(2.15)

the equation (2.14) reduces to

dS =
Cp

T
dT −

β

ρ
dP (2.16)

Substituting equation (2.16) in equation (2.13) we have

dh = CpdT +
1

ρ
(1− βT ) dP (2.17)

Using Fourier’s law of heat conduction we have

Q = −K∇T (2.18)

On substituting equation (2.18) in equation (2.8) the energy equation can be

written as

ρCp
DT

Dt
= K∇2T +Q′ + βT

Dp

Dt
+ μφ (2.19)

The dissipation function Q′ for the hydromagnetic flow in consideration can be

taken to be a result of electromagnetic interactions. The electrical dissipation

which is the heat energy produced by the work done by electrical current is equal

to J.E . This dissipative heat due to electric currents is
j2

σ
, which is the Joule

heating. Considering constant physical properties, equation (2.19) thus becomes

ρCp
DT

Dt
= K∇2T + μ

(
∂ui

∂xj
+
∂uj

∂xi

)2
+
1

σ
j2 (2.20)
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2.1.5 Concentration equation

The concentration equation is also called the diffusion equation and is based on

the principle of mass conservation for each component or constituent in a fluid

mixture. In the absence of chemical reactions, the rate at which the mass of some

species enters a control volume minus the rate at which the species mass leaves

the control volume is equal to the rate at which the species mass is stored in

the control volume. The species could be some substance mixed in, dissolved in,

or otherwise carried by the fluid. This occurs in air pollution where there are

pollutants and in chemical engineering processes which involve mixing of different

substances among other areas. The distribution of the concentration C (mass of

the substance per unit volume) is determined by its advection by moving fluid

particles and by its diffusion between fluid particles. In this case we have the

concentration equation given as

DC

Dt
= Kc∇

2C (2.21)

where Kc is the diffusion coefficient depending on both the fluid and on the dif-

fusing substance.

2.1.6 Maxwell’s equations

These are the basic equations in electricity and magnetism and they give relations

between the interacting electric and magnetic fields. These are given in many

books on electromagnetic theory such as (Moreau, 1990). In the absence of mag-

netic or polarized media these equations are stated in differential form in the laws

below.

Gauss law for electricity

This law states that the net flux of electric field lines out of a closed surface S

is proportional to the net charge enclosed within the surface.

∇ ∙ E =
ρe

ε0
= 4πkρ (2.22)

Gauss’ law for magnetism
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This law states that all magnetic fields B have field lines that are continuous.

∇ ∙B = 0 (2.23)

Faraday’s law of induction

This law states that changing magnetic fields produce an electric field. Here

the e.m.f induced in a circuit is equal to the rate of change with time of the total

magnetic flux through the circuit no matter how the flux changes.

∇× E = −
∂B

∂t
(2.24)

Ampere’s law

∇×B =
4πk

c2
J+

1

c2
∂E

∂t
(2.25)

Here, k is Coulomb’s constant given as k = 1
4πε0

and c2 = 1
μ0ε0
, where E is

the electric field (N/C), B is the magnetic field (T), ρe is the charge density, ε0

is the electric permittivity of free space (F/m), μ0 the magnetic permeability of

free space (N/A2), J the current density and c is the speed of light (m/s). The

differential form of Maxwell’s equations with magnetic and/or polarized media are

given in any standard text book in electromagnetism as stated below.

Gauss’ law for electricity

∇ ∙D = ρe

D = ε0E+ ρ
D = ε0E
D = εE





(2.26)

The electric displacementD is given in equations (2.26) respectively for the general

case, free space and isotropic linear dielectric.

Gauss’ law for magnetism

∇ ∙B = 0 (2.27)

Faraday’s law of induction

∇× E = −
∂B

∂t
(2.28)

Ampere’s law

∇×H = J+
∂D

∂t
(2.29)
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Here ∂D
∂t
is the displacement current which is included when currents change with

time and current can pile up electric charges. In a good conductor, there is a high

rate of charge removal and the term can be dropped to give

∇×H = J (2.30)

where
B = μ0(H+M)
B = μ0H
B = μeH





(2.31)

The magnetic field B given in equations (2.31) represent the general case, free

space and isotropic linear magnetic medium respectively.

2.1.7 Lorentz’s force law

This law defines the total force resulting from both the electric and magnetic fields.

When a small test charge Q is placed in an electric field E, it experiences a force

Fe given as

F e = QE (2.32)

The presence of a magnetic field makes the test charge experience a magnetic force

Fm. This force Fm acts at right angles to the velocity vector v of the test charge

as well as the magnetic flux density B, and in this case we have

Fm = Qv ×B (2.33)

The total electromagnetic force which is the Lorentz force on the test charge Q is

then given as

F = Fe + Fm = QE+Qv ×B (2.34)

where QE is the electric force and Qv × B is the magnetic force. The magnetic

field strength H= B0
μe

2.1.8 Charge conservation

The principle of electric charge conservation is a fundamental law that states that

charge is conserved and thus cannot be created nor destroyed. This fundamen-



20

tal idea of charge conservation is contained in Maxwell’s equations. Taking the

divergence of the differential form of Amperes law, we have

∇ ∙ (∇×B) =
∇ ∙ J
ε0c2

+
1

c2
∂

∂t
(∇ ∙ E) = 0 (2.35)

Using Gauss law ∇ ∙ E = ρ
ε0
in equation (2.35) we have

∇ ∙ J = −
∂ρ

∂t
(2.36)

This implies that the current through any enclosed surface is equal to the time

rate of change of charge density within the surface. For steady currents, the charge

density does not vary with time and we have

∇ ∙ J = 0 (2.37)

2.1.9 Equation of electric current density

The electric current density for a substance having conductivity σ is given as

J = σE′ (2.38)

In this case E′ is the electric field experienced by a fluid element in its rest frame.

However if a fluid is moving with velocity q with respect to an applied magnetic

field B an electric field arises due to this motion and is described by the Lorentz

transformation

E′ = E+ q×B (2.39)

Here E is the electric field in the laboratory frame and higher order relativistic

conditions have been neglected since q2 << c2. Substituting equation (2.39) in

equation (2.38) we have

J = σ(E+ q×B) (2.40)

Equation (2.40) is referred to by Dendy (1990) as the generalized Ohm’s law.
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2.2 MHD fluid flow between parallel plates with constant
suction and injection

2.2.1 Introduction

An electrically conducting fluid flowing between two parallel porous plates is con-

sidered in this section. The equations governing an electrically conducting fluid

flow in the presence of magnetic field are presented in dimensional form. Later in

the chapter, by the use of scaling variables and non-dimensional parameters the

governing equations are presented in non-dimensional form. The approximations

stated at the beginning of this chapter also apply here. However, we have the

following additional approximations.

• The porous plates have constant suction and injection.

• The electric force ρeE due to the electric field is negligible compared with

the force due to the magnetic field.

• The flow induced magnetic field is negligible which is justified for very small

magnetic Reynold’s number (Shercriff, 1965).

• The fluid has constant electrical conductivity and constant thermal conduc-

tivity.

• The fluid is considered to be electrically neutral with no surplus electric

charge distribution. This is because the space charge transport is negligible

compared with J for a good conductor.

• The Boussinesq approximation is considered such that:

– All transport properties except density are treated as constants.

– The variation of density is negligible except when it directly causes

buoyancy forces.

– Density varies linearly with temperature and concentration and the

deviation from a reference value is small.
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We consider an unsteady, laminar, viscous fully developed fluid flowing between

two long horizontal porous parallel plates and later consider flow between two

vertical porous plates.

2.2.2 Fluid flow between two horizontal parallel plates

Let the two electrically non conducting horizontal plates be located at the planes

y = ±h with the planes extending infinitely on x ∈ (−∞,∞) and z ∈ (−∞,∞).

The fluid flows between the two plates under the influence of a constant pressure

gradient in the x direction, and a uniform suction from above and injection from

below with constant velocity v0 which are all applied at time t = 0. The system

is subjected to a uniform magnetic field B0 which is perpendicular to the main

flow. It is assumed that the induced magnetic field is negligible which is justified

for very small magnetic Reynold’s number. Therefore the uniform magnetic field

B0 is considered as the total magnetic field acting on the fluid. The Cartesian co

ordinate system is chosen with the transverse coordinate Y which is the direction

of the magnetic field i.e. B0 = 〈0, B0, 0〉 and the coordinate in the direction of

the fluid flow is X which is also parallel to the plates as shown in figure 2.1 below.

Figure 2.1. Fluid flow between two parallel horizontal plates
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(a) Mathematical formulation

From the geometry of the problem, all quantities except the pressure gradient

dP
dx
, which is assumed constant, do not depend on the coordinates X and Z. The

velocity vector of the fluid is q = q(y,t). Considering Ohm’s law in the form

J = σ(q×B) we have
J = σ[(ui+ v0j)× B0j]
= σB0uk

(2.41)

J×B = σB0uk× B0j
= −σB20ui

(2.42)

Since B0 = μeH0 then J×B = −σμ2eH
2
0ui

or in component form

(J×B)x = −σμ
2
eH
2
0u (2.43)

Since q = q (y,t) the viscous term μ∇2q takes the form μ∂
2u
∂y2
. And substituting

these in the momentum equation (2.6) and considering the electromagnetic force

terms in equation (2.43), we have

ρ

(
∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗

)

= −
dP ∗

dx∗
+ μ
∂2u∗

∂y∗2
− σμ2eH

2
ou
∗ (2.44)

By taking into account the effect of viscous dissipation the energy equation

(2.20) takes the form

ρCp

(
∂T ∗

∂t∗
+ v∗0
∂T ∗

∂y∗

)

= K
∂2T ∗

∂y∗2
+ μ

(
∂u∗

∂y∗

)2
(2.45)

The equation (2.21) of concentration conservation can be written as

∂C∗

∂t∗
+ v∗0
∂C∗

∂y∗
= D
∂2C∗

∂y∗2
(2.46)

(b) General scaling variables

In this study the non-dimensionalisation process is based on the following sets of

general scaling variables and the non-dimensional parameters.

t =
t∗U20
υ
, x =

x∗U0

υ
, y =

y∗U0

υ
, z =

z∗U0

υ
,

u =
u∗

U0
, v =

v∗

U0
, P =

P ∗

ρU20

θ =
T ∗ − T ∗1
T ∗2 − T

∗
1

, C =
C∗ − C∗1
C∗2 − C

∗
1

(2.47)
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The star (∗) superscript has been used to denote the dimensional variables.

(c) Non-dimensional parameters

The parameters considered in this chapter include parameters in both hydrody-

namics as well as other parameters due to the interaction with the electromagnetic

field.

Pressure Parameter Rp

Rp =
Po

ρU2o

For incompressible flow the pressure number is usually of order unity.

Mach Number

This is given as the ratio of the flow velocity to the velocity of sound i.e.

U

a0

Reynold’s Number Re

This is the ratio of viscous to inertia forces

Re =
ρU0h

μ
=
U0h

υ

Prandtl Number Pr

Pr =
υρCp

K
=
μCp

K

This represents the ratio of the momentum diffusion to thermal diffusivity K. Pr

thus provide a measure of relative effectiveness of momentum and energy transport

by diffusion in the velocity and thermal boundary layers respectively.

Grashof Number Gr

Gr =
υgβ [T ∗2 − T

∗
1 ]

U30

This defines a measure of the ratio of buoyancy to viscous forces in the velocity

boundary layer.

Ekcert Number Ec

Ec =
U20

Cp (T ∗2 − T
∗
1 )

This is a measure of Kinetic energy of the flow relative to the enthalpy differences

across the boundary layer.
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Magnetic Parameter M1

M1 =

√
σμ2eH

2
0υ

ρU20

This is the ratio of the magnetic force to the inertia force.

Schmidt Number Sc

Sc =
υ

D

This provides a measure of the relative effectiveness of the momentum and mass

transport by diffusion in the velocity and concentration boundary layers respec-

tively. For convection mass transfer in laminar flows, it determines the relative

velocity and concentration boundary layer thickness.

Suction Parameter

S =
v∗0
U0

This is a ratio of the suction velocity to the velocity of the plate.

(d) The non-dimensionalisation process

The process of non-dimensionalisation allows us to apply results obtained for

a surface experiencing a set of conditions to a geometrically similar surface which

may be experiencing entirely different conditions. These conditions may vary, for

example with the nature of the fluid, the fluid velocity and/or with the size of

the surface. If the non dimensional parameters are the same for two geometrically

similar situations, then the equations of the non dimensional variables are the

same. Hence, they have the same solutions and the same flow patterns. We

use the scaling variables and non-dimensional parameters quoted above to non-

dimensionalize the equations governing the fluid flow under consideration. The

terms in the momentum conservation equation (2.44) can be non-dimensionalized
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as follows:

∂u∗

∂t∗
=
U0

υ/U 20

∂u

∂t
=
U30
υ

∂u

∂t

∂u∗

∂y∗
=
U0

υ/U0

∂u

∂y
=
U20
υ

∂u

∂y

v∗0
∂u∗

∂y∗
= S
U30
υ

∂u

∂y

∂2u∗

∂y∗2
=
∂

∂y∗

(
U20
υ

∂u

∂y

)

=
U30
υ2
∂2u

∂y2

υ
∂2u∗

∂y∗2
=
U30
υ

∂2u

∂y2

dP ∗

dx∗
=
d (ρPU 20 )

d
(
υx
U0

) =
ρU20
υ
U0

dP

dx
=
ρU30
υ

dP

dx

1

ρ

dP ∗

dx∗
=
U30
υ

dP

dx

σμ2eH
2
0u
∗

ρ
=
σμ2eH

2
0U0u

ρ

Dividing each of the terms given above by
U30
υ
, the momentum equation (2.44)

becomes
∂u

∂t
+ S
∂u

∂y
= −
dP

dx
+ μ
∂2u

∂y2
−
σμ2eH

2
0υu

ρU20
(2.48)

On introducing the non-dimensional parameter M2, equation (2.48) take the form

∂u

∂t
+ S
∂u

∂y
= −
dP

dx
+ μ
∂2u

∂y2
−M2u (2.49)

Considering each of the terms in the equation of energy (2.45), we have the trans-

formations
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∂T ∗

∂t∗
=
(T ∗2 − T

∗
1 )

υ/U 20

∂θ

∂t
=
U20 (T

∗
2 − T

∗
1 )

υ

∂θ

∂t

∂T ∗

∂y∗
=
(T ∗2 − T

∗
1 )

υ/U0

∂θ

∂y
=
U0 (T

∗
2 − T

∗
1 )

υ

∂θ

∂y

v∗0
∂T ∗

∂y∗
=
U20 (T

∗
2 − T

∗
1 )

υ
S
∂θ

∂y

∂2T ∗

∂y∗2
=
U0 (T

∗
2 − T

∗
1 )

υ

∂

∂y∗

(
∂θ

∂y

)

=
U20
υ2
(T ∗2 − T

∗
1 )
∂2θ

∂y2

∂u∗

∂y∗
=
U20
υ

∂u

∂y

(
∂u∗

∂y∗

)2
=
U40
υ2

(
∂u

∂y

)2

If each of the terms given above is multiplied by υ

U20(T ∗2−T ∗1 )
we will have the energy

equation in the form

∂θ

∂t
+ S
∂θ

∂y
=
K

υρCP

∂2θ

∂y2
+

μU20
υρCP (T ∗2 − T

∗
1 )

(
∂u

∂y

)2
(2.50)

Using non-dimensional parameters Pr, Ec and S, equation (2.50) becomes

∂θ

∂t
+ S
∂θ

∂y
=
1

Pr

∂2θ

∂y2
+ Ec

(
∂u

∂y

)2
(2.51)

The components of the concentration equation (2.46) can be transformed as shown

below

∂C∗

∂t∗
=
(C∗2 − C

∗
1 )

υ/U 20

∂C

∂t
=
U20 (C

∗
2 − C

∗
1 )

υ

∂C

∂t

v∗0
∂C∗

∂y∗
=
(C∗2 − C

∗
1 )

υ/U 20
S
∂C

∂y
=
U20 (C

∗
2 − C

∗
1)

υ
S
∂C

∂y

∂2C∗

∂y∗2
=
U0 (C

∗
2 − C

∗
1 )

υ

∂

∂y∗

(
∂C

∂y

)

=
U20 (C

∗
2 − C

∗
1 )

υ2
∂2C

∂y2
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Multiplying each term by υ

U20(C∗2−C∗1)
, the concentration equation takes the form

∂C

∂t
+ S
∂C

∂y
=
D

υ

∂2C

∂y2
(2.52)

and using the non-dimensional parameter Sc ,equation (2.52) becomes

∂C

∂t
+ S
∂C

∂y
=
1

Sc

∂2C

∂y2
(2.53)

Equations (2.49), (2.51) and (2.53) respectively give the final set of conservation

of momentum, energy and concentration equations in non-dimensional form.

2.2.3 Fluid flow between two vertical parallel plates

Consider an unsteady, laminar electrically conducting and fully developed viscous

fluid flowing between two parallel vertical plates as shown in figure 2.2. The

Figure 2.2. Fluid flow between two vertical parallel plates

Cartesian coordinate system is chosen such that the flow direction is parallel to

the vertical y axis. A constant magnetic field of strength B0 is applied across the

plates in the x direction. The walls are chosen relative to the origin of the axes

such that the plates are on the planes x = −L and x = L. These plates are taken

to be electrically non-conducting. The fluid flows in the positive y direction with

a velocity U. Since the flow is fully developed, then

∂u

∂x
+
∂v

∂y
= 0 (2.54)
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Considering a uniform injection of a second material from the left and uniform

suction to the right with velocity u0 we have from
∂u
∂x
= 0 so that

u = u0 (2.55)

Taking Ohm’s law in the form J = σ(q×B) where q = u0i +v(x, t)j and B = B0i

we have
(J×B) = [σ(u0i+ vj)× B0i]× B0i

= −σB20vj

= −σμ2eH
2
0vj

We consider a slow speed fluid flow such that the buoyancy force resulting from

temperature and concentration differences in the flow field are comparable with

the inertia and viscous forces. In the presence of heat transfer, let the density

vary with temperature and also vary with concentration difference in the presence

of mass transfer. Using the Boussinesq approximation, let the thermodynamic

state of a fluid depend on the pressure, temperature and concentration and if we

consider small density variations at constant pressure we have

ρ ∼= ρ∞ +

(
∂ρ

∂T ∗

)

P

(T ∗ − T ∗1 ) +

(
∂ρ

∂C∗

)

P

(C∗ − C∗1) (2.56)

T ∗1 and C
∗
1 are the reference temperature and concentration respectively.

Using

β = −
1

ρ

(
∂ρ

∂T ∗

)

P

and

βc =
−1
ρ

(
∂ρ

∂C∗

)

P

(2.57)

in equation (2.56) we have

ρ∞ − ρ = ρβ
(
T ∗−T ∗1

)
+ ρβc (C

∗ − C∗1) (2.58)

To determine the pressure gradient term the momentum equation is evaluated at

the edge of the boundary layer where ρ → ρ∞. A pressure gradient will exist in
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the y∗ direction due to the change in elevation and we have the pressure gradient

due to fluid of density ρ∞ given as

∂P

∂y∗
= −ρ∞g (2.59)

The body force term in the momentum conservation equation along the y∗ direc-

tion i.e.−∇P ∗ − ρg

gives

−
∂p

∂y∗
− ρg (2.60)

Substituting equations (2.59) in equation (2.60) and using equation (2.58) we have

−ρg −
∂p

∂y∗
= −ρg + ρ∞g = ρg

[
β
(
T ∗−T ∗1

)
+ βc (C

∗ − C∗1)
]

(2.61)

The momentum, energy and concentration conservation equations respectively

take the dimensional forms

ρ

(
∂v∗

∂t∗
+ u∗0

∂v∗

∂x∗

)

= μ
∂2v∗

∂x∗2
+ ρg [β (T ∗ − T ∗1 ) + βc (C

∗ − C∗1 )]− σμ
2
eH
2
ov
∗ (2.62)

ρCp

(
∂T ∗

∂t∗
+ u∗0

∂T ∗

∂x∗

)

= K
∂2T ∗

∂x∗2
+ μ

(
∂u∗

∂x∗

)2
(2.63)

∂C∗

∂t∗
+ u∗0

∂C∗

∂x∗
= D
∂2C∗

∂x∗2
(2.64)

These equations governing the fluid flow can be represented in non dimensional

form
∂v

∂t
+ S
∂v

∂x
=
∂2v

∂x2
+Grθ +GcC −M2v (2.65)

∂θ

∂t
+ S
∂θ

∂x
=
1

Pr

∂2θ

∂x2
+ Ec

(
∂u

∂x

)2
(2.66)

∂C

∂t
+ S
∂C

∂x
=
1

Sc

∂2C

∂x2
(2.67)
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2.3 Methodology

The proposed method of solving the system of non linear equations which arise

from the flow model is the numerical approximation method of finite differences.

To compute the skin friction, the rate of heat transfer and the rate of mass transfer

we apply the method of least squares. These methods are discussed in the sections

that follow. To be able to describe these numerical approximation methods we

first define a flow mesh.

2.3.1 Definition of mesh

We want to use a uniform mesh to represent a function of two variables f(y, t)

where y is the distance and t is the time. Consider a yt-plane which is divided

into uniform rectangular cells of width Δy and height Δt as shown in figure 2.3.

Consider a reference point (i, j) where i and j represent y and t respectively. Using

the notation i±1 for y±Δy and j±1 for t±Δt we can define the adjacent points

to y and t, the points that are i and j units from the reference point will have

coordinates (iΔy, jΔt).

Figure 2.3. Mesh representing flow
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2.3.2 The finite difference method

The finite difference approximation amounts to replacing derivatives with finite

differences. Considering a function f = f(y) which is continuous around y = b

with a = b−Δy and c = b +Δy . The first derivative f ′(y) of the function f(y)

at the point b is approximated by finite differences in one of three ways called the

central, backward and forward difference formulae as given below respectively as

df
dy
≈ δf
Δy =

f(c)−f(a)
2Δy

df
dy
≈ ∇f
Δy =

f(b)−f(a)
Δy

df
dy
≈ Δf
Δy =

f(c)−f(b)
Δy

As the value of Δy becomes smaller the differences become better estimates.

When the function depends on more than one variable, the finite differences can

as well be used to approximate the partial derivatives. In particular for a function

of two variables f(y, t) we have the first central, backward and forward differences

at the point (b, t) given respectively as

∂f
∂y
≈ δf
Δy =

f(b+Δy,t)−f(b−Δy,t)
2Δy

∂f
∂t
≈ δf
Δt =

f(b,t+Δt)−f(b,t−Δt)
2Δt

∂f
∂y
≈ ∇f
Δy =

f(b,t)−f(b−Δy,t)
Δy

∂f
∂t
≈ ∇f
Δt =

f(b,t)−f(b,t−Δt)
Δt

∂f
∂y
≈ Δf
Δy =

f(b+Δy,t)−f(b,t)
Δy

∂f
∂t
≈ Δf
Δt =

f(b,t+Δt)−f(b,t)
Δt

In our solution, we will use the forward differences. Higher order finite differ-

ences are similarly given such that the second order forward differences in y and

t are respectively of the form

∂2f

∂y2
≈
Δ2f

(Δy)2
=
f(b+Δy, t)− 2f(b, t) + f(b−Δy, t)

(Δy)2

and

∂2f

∂t2
≈
Δ2f

(Δt)2
=
f(b, t+Δt)− 2f(b, t) + f(b, t−Δt)

(Δt)2
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2.3.3 The least squares approximation method

We use the Least Squares approximating method to calculate values of the rate

of mass transfer, the skin friction and the rate of heat transfer at each of the

boundaries. The least squares approximation method is a convenient procedure for

determining best approximations. The procedure is to seek a polynomial that is as

close as possible to a function that could be used to represent the given flow model.

The Least Squares method aims at determining the approximating function such

that we minimize the error between the finite difference approximation values and

the actual functional values of the variables. This approximating function is then

used to compute the values of the rate of mass transfer, the skin friction and the

rate of heat transfer at each of the plates.The rate of mass transfer at the plate is

given by (Incropera & Dewitt, 1985).

Sh = −
∂C

∂y

∣
∣
∣
∣
y=l

(2.68)

The skin friction is the average rate of shear stress at the plates due to velocity

and it is given in the x and z axes respectively as (Incropera & Dewitt, 1985).

τx = −
∂u

∂y

∣
∣
∣
∣
y=l

(2.69)

and

τz = −
∂v

∂y

∣
∣
∣
∣
y=l

(2.70)

The rate of heat transfer on the other hand is given by (Incropera & Dewitt,

1985).

Nu = −
∂θ

∂y

∣
∣
∣
∣
y=l

(2.71)

The second order Least Squares correlation will be used to calculate the values

of the rate of mass transfer Sh, the skin friction in the direction of the primary

velocity, the skin friction in the direction of the secondary velocity and the rate of

heat transfer Nu at each of the boundaries. For this study we consider a quadratic

bivariate polynomial which is a function of distance (y) and time (t). The second
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degree bivariate polynomials approximating the primary velocity u, secondary

velocity w, temperature θ , and concentration C in the variables y and t are given

by

u(́y,t) = a1 + b1y + c1t+ d1y
2 + e1t

2 + f1yt

v(́y,t) =a2 + b2y + c2t+ d2y
2 + e2t

2 + f2yt

θ′(y, t) = a3 + b3y + c3t+ d3y
2 + e3t

2 + f3yt

C(́y,t) =a4 + b4y + c4t+ d4y
2 + e4t

2 + f4yt

The Least Squares method aims at determining the constants ai, bi, ci, ...fi

where i = 1, 2, 3, 4 such that we minimize the error between the finite difference

approximation values and the actual functional values of the variables. We thus

seek to minimize

I(ai, bi, ci,..., f i) =
N∑

j=0

[X (yj , tj)−X
′ (yj, tj)]

2
(2.72)

In this equation, X(yj, tj) andX (́yj, tj) are respectively the exact and approximate

values of the primary and secondary velocities, temperature and concentration.

The condition of minimizing the equation (2.72) is satisfied if the normal equations

given below are satisfied.

∂I

∂ai
=
∂I

∂bi
= ... =

∂I

∂fi
= 0 (2.73)

i = 1,2,3,4. The four systems of equations that result from the normal equations

(2.73) for each i, are each solved for the constants ai, bi, ..., fi over the first five

points.

In the next chapter, we study the combined effects of heat transfer, mass transfer,

porous media and Hall current in a MHD flow field between parallel porous plates

in the presence of a strong magnetic field.
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Chapter 3

Mhd fluid flow between parallel porous

plates with effect of hall current

In chapter two, we considered the general case in applying Ohm’s law on the fluid

flow problem. The approximation where the Hall current is ignored is acceptable

in cases where the applied magnetic field is small or is of moderate value. When

a strong magnetic field is considered however, the effect of the electromagnetic

force is significant and has to be considered in the analysis of the fluid flow. The

Hall current in this case has a marked effect on the magnitude and direction of

the current density which will consequently affect the electromagnetic force term

(Cramer & Pai, 1973).

In this chapter, we consider the unsteady MHD fluid flow between two parallel

plates with heat transfer while putting into consideration the effect of the Hall

current. Two cases are considered, first with the fluid flow between horizontal

parallel plates and later a fluid flow between two vertical parallel plates.

3.1 Fluid flow between two horizontal parallel plates with
one plate moving

Consider an incompressible, viscous, heat and electrically conducting fluid flowing

between two infinite non conducting porous horizontal plates. The fluid flow is

unsteady and a magnetic field is applied perpendicular to the plates. The upper

plate is moving with a constant velocity U0 while the lower plate is stationary. The

induced magnetic field is neglected by assuming a very small magnetic Reynold’s

number. For this reason, the uniform magnetic field B0 is considered as the total

magnetic field acting on the fluid. We are going to put into consideration the

effect of the Hall current on the fluid flow studied in this current chapter. The

effects of suction and injection are also considered.
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3.1.1 Mathematical formulation

Let the two non conducting horizontal plates be located on the planes y = ±h with

the plates being of infinite length in the x and z directions i.e.−∞< x < ∞ and

−∞< z < ∞. Further, consider the fluid to be flowing between the two plates

under the influence of a constant pressure gradient dP
dx
in the x direction, and a

uniform injection from below and suction from above with a constant velocity v0.

The pressure gradient is applied at time t = 0. The upper plate that is initially

at rest is set into motion at time t = 0. A uniform magnetic field B0 acts on the

whole system in the positive y direction as shown in figure 2.1 on page 22.

For the fluid flow in consideration, all quantities depend on the space coordinate

y and time t except the pressure gradient dP
dx
which is assumed constant. For an

incompressible fluid the density of the fluid is assumed to be constant and in this

case the continuity equation takes the form ∂v
∂y
= 0 which on integration gives

v= constant. This constant is equal to the suction velocity v0. In particular, the

velocity of the fluid is given as q(y, t) = u(y, t)i + v0j + w(y, t)k. The applied

magnetic field acts along the y axis and is given by B0 = 〈0, B0, 0〉.When the

strength of the magnetic field is large, Ohm’s law must be modified to include

the Hall currents. If the ion slip and thermoelectric effects are neglected, we have

Ohm’s law given as (Cowling, 1957).

J+
ωeτe

H0
(J×H) = σ(E+ μeq×H+

1

eηe
5 Pe) (3.1)

Considering a short circuit problem, the applied electric field E = 0 and for par-

tially ionized gases the electron pressure gradient may be neglected. If E = 0 and

neglecting the pressure gradient, equation (3.1) takes the form

Jxi+ Jyj + Jzk +
ωeτe

H0

∣
∣
∣
∣
∣
∣

i j k
Jx Jy Jz
0 H0 0

∣
∣
∣
∣
∣
∣
= σμe

∣
∣
∣
∣
∣
∣

i j k
u v0 w
0 H0 0

∣
∣
∣
∣
∣
∣




Jx
Jy
Jz



+
ωeτe

H0




−H0Jz
0
H0Jx



 = σμe




−wH0
0
uH0
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Jx − ωeτeJz = −σμeH0w (3.2)

Jz + ωeτeJx = σμeH0u (3.3)

Here, the magnetic field intensity H0 relates to the magnetic induction B0 by the

relation B0 = μeH0. The Hall parameter m = ωeτe and the equations (3.2) and

(3.3) can be represented as

Jx −mJz = −σμeH0w (3.4)

Jz +mJx = σμeH0u (3.5)

or in matrix form (
1 −m
m 1

)(
Jx
Jz

)

=

(
−σμeH0w
σμeH0u

)

Solution of the equations (3.4) and (3.5) give the components of the electric current

density along the x and z axes respectively as

Jx =

∣
∣
∣
∣
−σμeH0w −m
σμeH0u 1

∣
∣
∣
∣

1 +m2
=
σμeH0

1 +m2
(mu− w) (3.6)

Jz =

∣
∣
∣
∣
1 −σμeH0w
m σμeH0u

∣
∣
∣
∣

1 +m2
=
σμeH0

1 +m2
(u+mw) (3.7)

The electromagnetic force term is evaluated as

J ×B =

∣
∣
∣
∣
∣
∣

i j k
Jx 0 Jz
0 B0 0

∣
∣
∣
∣
∣
∣

and the components of the electromagnetic force are given in equations (3.8)

and (3.9) below.

(J×B)x = −B0Jz =
−σμ2eH

2
0

1 +m2
(u+mw) (3.8)

(J×B)z = B0Jx =
σμ2eH

2
0

1 +m2
(mu− w) (3.9)
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Considering the velocity in the form q(y, t) = u(y, t)i + v0j + w(y, t)k the

viscous term μ∇2q in the momentum conservation equation takes the form

μ∇2q∗ = μ

(
∂2

∂x∗2
+
∂2

∂y∗2
+
∂2

∂z∗2

)

(u∗(y∗, t∗)i+ v∗0j+ w
∗(y∗, t∗)k)

= μ

(

i
∂2u∗

∂y∗2
+ k
∂2w∗

∂y∗2

)

(3.10)

The (∗) superscript has been used in equation (3.10) to represent the dimensional

quantities. This is the notation that is used from this point onwards. Considering

the viscous force term in equation (3.10) together with the electromagnetic force

terms including the effect of Hall current in equations (3.8) and (3.9), we have the

conservation of momentum equation written in component form as

ρ

(
∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗

)

= −
dP

dx
+ μ
∂2u∗

∂y∗2
−
σμ2eH

2
0

1 +m2
(u∗ +mw∗)

and

ρ

(
∂w∗

∂t∗
+ v∗0
∂w∗

∂y∗

)

= μ
∂2w∗

∂y∗2
+
σμ2eH

2
0

1 +m2
(mu∗ − w∗)

or
∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗
= −
1

ρ

dP

dx
+ υ
∂2u∗

∂y∗2
−
σμ2eH

2
0

ρ(1 +m2)
(u∗ +mw∗) (3.11)

∂w∗

∂t∗
+ v∗0
∂w∗

∂y∗
= υ
∂2w∗

∂y∗2
+
σμ2eH

2
0

ρ(1 +m2)
(mu∗ − w∗) (3.12)

From equation (2.9) of chapter two, the viscous dissipation term is written as

μφ∗ = 2μ

[
(
∂u∗

∂x∗

)2
+
(
∂v∗

∂y∗

)2
+
(
∂w∗

∂z∗

)2
]

+
(
∂u∗

∂y∗
+ ∂v∗

∂x∗

)2
+
(
∂v∗

∂z∗
+ ∂w

∗

∂y∗

)2
+
(
∂w∗

∂x∗
+ ∂u∗

∂z∗

)2

But the velocity for the flow in consideration is given as

q(y∗, t∗) = u∗(y∗, t∗) i+ v∗0j + w
∗(y∗, t∗)k,

and therefore

μφ = 2(0) + μ

(
∂u∗(y∗, t∗)

∂y∗
+ 0

)2
+ μ

(

0 +
∂w∗(y∗, t∗)

∂y∗

)2
+ (0)2

μφ = μ

{(
∂u∗

∂y∗

)2
+

(
∂w∗

∂y∗

)2}

(3.13)

The Joule dissipation term is given as J
∗2

σ
. The electric current density from

equations (3.6) and (3.7) is given as

J∗ = J∗xi+ J
∗
zk
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J∗ =
σμeH0

1 +m2
(mu∗ − w∗)i+

σμeH0

1 +m2
(u∗ +mw∗)k (3.14)

Therefore J∗2 = J∗ ∙ J∗ is evaluated as

J∗ ∙ J∗ =
σ2μ2eH

2
0

(1 +m2)2
[
(mu∗ − w∗)2 + (u∗ +mw∗)2

]

=
σ2μ2eH

2
0

(1 +m2)2
[
m2(u∗2 + w∗2) + u∗2 + w∗2

]

=
σ2μ2eH

2
0

1 +m2
(u∗2 + w∗2)

Therefore

J∗2 =
σ2μ2eH

2
0

1 +m2
(u∗2 + w∗2) (3.15)

and
J∗2

σ
=
σμ2eH

2
0

1 +m2
(u∗2 + w∗2) (3.16)

When the viscous effect and the Joule dissipation are considered, the energy con-

servation equation can be expressed as

ρCp

(
∂T ∗

∂t∗
+ v∗0
∂T ∗

∂y∗

)

= K
∂2T ∗

∂y∗2
+ μ

{(
∂u∗

∂y∗

)2
+

(
∂w∗

∂y∗

)2}

+
σμ2eH

2
0

1 +m2
(u∗2 + w∗2) (3.17)

The concentration conservation equation is not affected by the Hall current and

is given as
∂C∗

∂t∗
+ v∗0
∂C∗

∂y∗
= D
∂2C∗

∂y∗2
(3.18)

For the fluid flow in consideration, let the two plates be initially isothermal at

temperature T ∗1 . The temperature of the upper plate is then raised to T
∗
2 and

thereafter the lower and upper plates are maintained at two different but constant

temperatures T∗1 and T
∗
2 respectively. Let the concentration at the plates be C

∗
1

initially. The concentration at the upper plate is then increased to C∗2 and the

concentrations at the boundaries are kept constant thereafter. From the definition
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of the fluid flow problem under consideration, the initial and boundary conditions

are respectively given as

u∗(−h∗, 0) = w∗(−h∗, 0) = 0
u∗(h∗, 0) = w∗(h∗, 0) = 0
T ∗(−h∗, 0) = T ∗(h∗, 0) = T ∗1
C∗(−h∗, 0) = C∗(h∗, 0) = C∗1





t∗ = 0 (3.19)

u∗(−h∗, t∗) = 0
w∗(−h∗, t∗) = 0
u∗(h∗, t∗) = U0
w∗(h∗, t∗) = 0
T ∗(−h∗, t∗) = T ∗1
T ∗(h∗, t∗) = T ∗2
C∗(−h∗, t∗) = C∗1
C∗(h∗, t∗) = C∗2






t∗ > 0 (3.20)

3.1.2 Non-dimensionalization

The equations governing the fluid flow are given by equations (3.11), (3.12), (3.17)

and (3.18). If we consider the complex velocity vector in the form q∗ = u∗ + iw∗,

then the electromagnetic force terms in equations (3.8) and (3.9), per unit mass

can be combined as follows.

σμ2eH
2
0

ρ(1 +m2)
{−(u∗ +mw∗) + i(mu∗ − w∗)} =

σμ2eH
2
0

ρ(1 +m2)
[m(−w∗ + iu∗)− u∗ − iw∗]

=
σμ2eH

2
0

ρ(1 +m2)
(imq∗ − q∗) (3.21)

J∗ ×B∗

ρ
=
σμ2eH

2
0

ρ(1 +m2)
q∗(im− 1) (3.22)

From chapter two we had the momentum equation in the form

ρ

(
∂q∗

∂t∗
+ v∗0
∂q∗

∂y∗

)

= −
dP ∗

dx∗
i+ μ

∂2q∗

∂y∗2
− σμ2eH

2
oq
∗

But here the electromagnetic term is given by equation (3.22) and the momen-

tum equation is written as

ρ

(
∂q∗

∂t∗
+ v∗0
∂q∗

∂y∗

)

= −
dP ∗

dx∗
i+ μ

∂2q∗

∂y∗2
−
σμ2eH

2
0

ρ(1 +m2)
q∗ (im− 1)
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Dividing each term by
U30
υ
in the momentum equation we have

ρ×
υ

U30

(
∂q∗

∂t∗
+ v∗0
∂q∗

∂y∗

)

= −
dP ∗

dx∗
i×
υ

U30
+
μυ

U30

∂2q∗

∂y∗2
−
υ

U30
×
σμ2eH

2
0

ρ(1 +m2)
q∗ (im− 1)

(3.23)

Using the scaling variables in equation (2.47) of chapter two and the non dimen-

sional parameter M 2 = σμ2eH
2
0υ

ρU20
given in chapter two, the non dimensional form

of the last term in equation (3.23) becomes

υ

U30
×
σμ2eH

2
0

ρ(1 +m2)
q∗(im− 1) =

υ

U30
×
σμ2eH

2
0

ρ(1 +m2)
U0q(im− 1)

=
υ

U30
×
σμ2eH

2
0U0

ρ
q
im− 1
1 +m2

=
im− 1
1 +m2

M2q (3.24)

Using the scaling variables in equation (2.47) of chapter two in the other terms

of equation (3.23) the non dimensional form of the momentum conservation equa-

tion takes the form

∂q

∂t
+ S
∂q

∂y
= −
dP

dx
i+
∂2q

∂y2
+M2

im− 1
1 +m2

q (3.25)

The equation (3.25) is written below in component form in the x and z axes

directions.
∂u

∂t
+ S
∂u

∂y
= −
dP

dx
+
∂2u

∂y2
−
M2

1 +m2
(u+mw) (3.26)

∂w

∂t
+ S
∂w

∂y
=
∂2w

∂y2
+
M2

1 +m2
(mu− w) (3.27)

The viscous dissipation term is given as

μ

((
∂u∗

∂y∗

)2
+

(
∂w∗

∂y∗

)2)

=
μU40
υ2

((
∂u

∂y

)2
+

(
∂w

∂y

)2)

=
μU40
υ2

(
∂q

∂y
∙
∂q̄

∂y

)

(3.28)
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The Joule dissipation term of equation (3.16) can be written in non dimensional

form as

σμ2eH
2
0

1 +m2
(u∗2 + w∗2) =

σμ2eH
2
0

1 +m2
U20 (u

2 + w2)

=
σμ2eH

2
0U
2
0

1 +m2
qq̄ (3.29)

Including the viscous dissipation term given in equation (3.28) and the Joule

dissipation term given in equation (3.29) in the energy conservation equation (2.45)

stated in chapter two, the energy conservation equation takes the form

ρCp

(
∂T ∗

∂t∗
+ v∗0
∂T ∗

∂y∗

)

= K
∂2T ∗

∂y∗2
+
μU40
υ2

(
∂q

∂y
∙
∂q̄

∂y

)

+
σμ2eH

2
0U
2
0

1 +m2
qq̄ (3.30)

Multiplying the terms of equation (3.30) by υ
U20 (T

∗
2−T

∗
1 )
we have the viscous and

Joule dissipation terms given as

μU20
υ(T ∗2 − T

∗
1 )

(
∂q∗

∂y∗
∙
∂q̄∗

∂y∗

)

= ρCpEc
∂q

∂y
∙
∂q̄

∂y

and
σμ2eH

2
0U
2
0υ

(1 +m2)U20 (T
∗
2 − T

∗
1 )
qq̄ =

ρCpM
2Ec

1 +m2
qq̄ (3.32)

If this is done for all the terms of equation (3.30) and using the scaling variables

and the non dimensional numbers of chapter two the energy conservation equation

in non dimensional form can be written as

∂θ

∂t
+ S
∂θ

∂y
=
1

Pr

∂2θ

∂y2
+ Ec

∂q

∂y
∙
∂q̄

∂y
+
EcM 2

1 +m2
qq̄ (3.33)

The mass conservation equation is of the form

∂C

∂t
+ S
∂C

∂y
=
1

Sc

∂2C

∂y2
(3.34)

Using the scaling variables in equation (2.47) of chapter two, the non dimensional

form of the initial conditions (3.19) can be written as follows

Since u∗(y∗, t∗) = 0 and w∗(y∗, t∗) = 0 then u = u∗

Uo
⇒ u = 0

Uo
or u = 0

and w = w∗

Uo
⇒ w = 0

Uo
or w = 0

From q = u + iw we have q = 0
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From the initial conditions T ∗(y∗, t∗) = T ∗1 and C
∗(y∗, t∗) = C∗1

and the non dimensional numbers θ =
T ∗−T ∗1
T ∗2−T

∗
1
and C =

C∗−C∗1
C∗2−C

∗
1

we have θ =
T ∗1−T

∗
1

T ∗2−T
∗
1
or θ = 0

and C =
C∗1−C

∗
1

C∗2−C
∗
1
or C = 0

The initial conditions then take the form

q(−h, 0) = q(h, 0) = 0
θ(−h, 0) = θ(h, 0) = 0
C(−h, 0) = C(h, 0) = 0





t = 0 (3.35)

The boundary conditions can be similarly derived to give

q(−h, t) = 0
q(h, t) = 1
θ(−h, t) = 0
θ(h, t) = 1
C(−h, t) = 0
C(h, t) = 1






t > 0 (3.36)

3.1.3 Solution

We seek a solution of the system of equations (3.25), (3.33) and (3.34) together

with the initial conditions (3.35) and the boundary conditions (3.36). The system

of equations is non linear and we apply the numerical approximation method of

finite differences in the solution as described in section 2.3.2 on page 32. We use the

forward differences as approximations to the derivatives. The finite difference form

of the momentum conservation equations (3.26)and (3.27), the energy conservation

equation (3.33) and the concentration equation (3.34) which govern the fluid flow

is given as

u (i, j + 1)− u(i, j)
Δt

= −
dP

dx
+
u(i− 1, j)− 2u(i, j) + u(i+ 1, j)

(Δy)2

− S

{
u(i+ 1, j)− u(i, j)

Δy

}

−
M2

1 +m2
[u(i, j) +mw(i, j)] (3.37)
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w (i, j + 1)− w(i, j)
Δt

=
w(i− 1, j)− 2w(i, j) + w(i+ 1, j)

(Δy)2

− S

{
w(i+ 1, j)− w(i, j)

Δy

}

+
M2

1 +m2
[mu(i, j)− w(i, j)] (3.38)

θ (i, j + 1)− θ(i, j)
Δt

=
1

Pr

[
θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)

(Δy)2

]

+ Ec

[(
u(i+ 1, j)− u(i, j)

Δy

)2
+

(
w(i+ 1, j)− w(i, j)

Δy

)2]

+
EcM2

1 +m2
[
u(i, j)2 + w(i, j)2

]
− S

{
θ(i+ 1, j)− θ(i, j)

Δy

}

(3.39)

C(i, j + 1)− C(i, j)
Δt

=
1

Sc

[
C(i− 1, j)− 2C(i, j) + C(i+ 1, j)

(Δy)2

]

− S

[
C(i+ 1, j)− C(i, j)

Δy

]

(3.40)

The finite difference form of the initial conditions (3.35),and the boundary condi-

tions (3.36) is given below.

q(0, 0) = q(40, 0) = 0
θ(0, 0) = θ(40, 0) = 0
C(0, 0) = C(40, 0) = 0





j = 0 (3.41)

q(0, j) = 0
q(40, j) = 1
θ(0, j) = 0
θ(40, j) = 1
C(0, j) = 0
C(40, j) = 1






j > 0 (3.42)

In this case i and j represent y and t respectively. Rearranging each of these

equations enables us to compute consecutive terms of the velocities u and w, the

temperature θ and the concentration C using the initial values and boundary
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conditions given in equations (3.41) and (3.42). Rearrangement of the equations

(3.37) to (3.40) gives

u(i, j + 1) = −Δt
dP

dx
+
Δt

(Δy)2
[u(i− 1, j)− 2u(i, j) + u(i+ 1, j)]

−
SΔt

Δy
[u(i+ 1, j)− u(i, j)]−

[
ΔtM2

1 +m2
− 1

]

u(i, j)

− Δt

[
mM2

1 +m2

]

w(i, j)

(3.43)

w(i, j + 1) =
Δt

(Δy)2
[w(i− 1, j)− 2w(i, j) + w(i+ 1, j)]

−
SΔt

Δy
[w(i+ 1, j)− w(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

w(i, j) + Δt

[
mM2

1 +m2

]

u(i, j) (3.44)

θ(i, j + 1) =
Δt

Pr (Δy)2
[θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)]− S

Δt

Δy
θ(i+ 1, j)

+ Ec
Δt

(Δy)2
[
{u(i+ 1, j)− u(i, j}2 + {w(i+ 1, j)− w(i, j}2

]

+ Ec
M2Δt

1 +m2
[
u(i, j)2 + w(i, j)2

]
+

[

S
Δt

Δy
+ 1

]

θ(i, j) (3.45)

C(i, j + 1) =
Δt

Sc (Δy)2
[C(i− 1, j)− 2C(i, j) + C(i+ 1, j)]−

SΔt

Δy
C(i+ 1, j)

+

{
SΔt

Δy
+ 1

}

C(i, j) (3.46)

3.1.4 Observations and discussions

Computations for the primary velocity u, the secondary velocity w, the tempera-

ture θ and the concentration C were made for Pr = 0.71 corresponding to air and

M2 = 6.0 representing a strong magnetic field. The parameters that were varied

included the pressure gradient dP
dx
, the Hall parameter m, the suction parameter
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S, the Schmidt number Sc and the Ekcert number Ec. The reference values rep-

resented in figures 3.1 on page 48 to figure 3.4 on page 51 by the curve labelled

“test” are dP
dx
= 5.0, m = 1.0, S = -0.5, Sc = 0.4 and Ec = 0.2. These values of the

parameters were varied one at a time and input into a C++ computer program.

Computations were done using equations (3.43) to (3.46), the initial conditions

(3.41) and the boundary conditions (3.42) and curves plotted for each case. These

results were then represented in the figures labelled figure 3.1 on page 48 to fig-

ure 3.4 on page 51.

(a) Primary velocity profiles

We discuss how each of the parameters affects the primary velocity profiles (u)

of the fluid flow as represented by the graphs in figure 3.1 on page 48.

Pressure gradient

When the pressure gradient is positive it leads to an increase in the primary

velocity profiles in the negative direction as observed for the curves in figure 3.1.

When the pressure gradient is negative then this pressure gradient leads to an in-

crease in the primary velocity profiles in the positive direction as observed in one of

the curves
(
dP
dx
= −5.0

)
of figure 3.1. It is observed that except for dP

dx
< 0, the

primary velocity increases in the opposite direction at the stationary boundary.

Away from the boundaries, the velocity is maintained at a constant level. As the

moving boundary is approached, the velocity then reduces up to a point when u

= 0 (stationary point) and then it increases suddenly until it reaches the velocity

of the moving plate. This can be supported by the fact that the pressure gradient

force term Fx
m
= −1

ρ
dP
dx
along the x axis is proportional to the acceleration dvx

dt
.

When dP
dx
is positive, then the pressure force term acts in the opposite direction

to the direction of the fluid flow. On the other hand, when dP
dx
is negative, then

the pressure force term acts in the same direction as that of the fluid flow hence

aiding the fluid flow.

Suction
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When there is no suction (S = 0), the magnitude of the fluid velocity increases

near both the stationary and moving plates. This means that the effect of intro-

ducing suction retards the fluid flow due to the convection of the fluid across the

plates.

Hall parameter

As the value of the Hall parameter m increases (m = 2.0), figure 3.1 on the

following page shows that the free stream velocity is achieved further away from

the plates and the free stream region is narrower. The magnitude of the primary

velocity profiles increases near both plates. This can be attributed to the effect

of an increase in the cyclotron frequency and thus the rotation of the electrons

and/or an increase in the collision times of the electrons with an increase in the

value of the Hall parameter. The Hall parameter is directly proportional to the

cyclotron frequency and the electron collision times and an increase in the value

of the Hall parameter would be due to an increase in either or both of these. This

agrees with the observations made by Attia in (Attia, 2006).

(b) Secondary velocity profiles

We discuss how each of the parameters affects the secondary velocity profiles

(w) of the fluid flow as seen in figure 3.2 on the next page. We observe a general

trend of the magnitude of the velocity increasing near the lower plate to a max-

imum and then maintaining a constant value before either increasing in the case

of dP
dx
< 0 or decreasing for dP

dx
> 0 .

Pressure gradient

A positive pressure gradient leads to an increase in the secondary velocity

profiles in the negative direction while a negative pressure gradient leads to an

increase in the primary velocity profiles in the positive direction the secondary ve-

locity near the lower stationary plate as observed in figure 3.2. Near the stationary

lower plate, the magnitude of the velocity increases to a maximum before stagnat-

ing at a constant level. The increase is positive for a negative pressure gradient

and negative for a positive pressure gradient. As you approach the moving plate

for dP
dx
< 0(= −5.0), the velocity increases further to a maximum before reducing



48

Figure 3.1. Primary velocity profiles for horizontal plates with one plate moving

Figure 3.2. Secondary velocity profiles for horizontal plates with one plate mov-
ing
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to zero at the moving plate. On the other hand, as you approach the moving plate

for dP
dx
> 0(= 5.0) the speed reduces to zero then increases to a maximum before

again reducing to zero at the moving plate.

Suction

Absence of suction (S = 0) leads to an increase in the velocity profiles near

the stationary plate. As the moving plate is approached, the velocity reduces at a

faster rate. Stagnation velocity is reached further away from the moving plate and

then the velocity increase is more up to a maximum adjacent to the moving plate

before reducing to zero at the plate. This means that the effect of introducing

suction retards the fluid flow which can be attributed to the convection of the fluid

across the plates.

Hall parameter

An increase in the Hall parameter (m = 2.0) leads to a decrease in the secondary

velocity near the stationary plate. The region for a constant velocity for a larger

value of the Hall parameter is narrower. As the moving plate is approached, the

velocity then increases at a faster rate to a lesser maximum before reducing to

zero at the plate.

(c) Temperature profiles

A change in each of the parameters has no significant effect near the stationary

plate but the effects are observed as you get closer to the moving plate. Considering

figure 3.3 on page 51, we discuss the effect of each of the parameters below.

Pressure gradient

When the imposed pressure gradient is negative, there is a decrease of temper-

ature near the moving plate.

Hall parameter

An increase in the Hall parameter (m = 2.0) leads to a slight decrease in the

temperature profiles. This can be attributed to the effect of an increase in the

Hall parameter causing a decrease in the Joule dissipation which is proportional

to 1
1+m2
.

Suction
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Absence of suction (S = 0) leads to the temperature increasing near the moving

plate. This is because the introduction of suction contributes to convection which

pumps the fluid towards the upper plate, a result that agrees with Attia in (Attia,

2006).

Eckert number

A reduction in the value of the Eckert number (Ec = 0.02) leads to a decrease in

the temperature near the moving plate. This is because an increase in the Eckert

number leads to a decrease in the thermal energy and consequently a decrease in

the temperature profiles.

(d) Concentration profiles

From figure 3.4 on the next page it is observed that there is little effect produced

by the change in the parameters near the stationary plate but the effects are

observed as you approach the moving plate.

Schmidt number

An increase in the value of the Schmidt number (Sc = 0.7) causes a decrease

in the concentration closer to the moving plate. The mass diffusion parameter Sc

is inversely proportional to the concentration and therefore its increase results in

a decrease in the concentration profiles.

Suction

Removal of suction (S = 0) leads to the concentration profiles increasing near

the moving plate. This can be attributed to removal of the convection of the fluid

across the plates.

3.2 Fluid flow between two vertical parallel plates with
one plate moving

The fluid flow discussed in this section is unsteady, laminar and fully developed.

The fluid is incompressible, viscous, heat and electrically conducting and flows

between two infinite non conducting porous vertical plates. The theory discussed

in chapter two is extended here whereby the effect of the Hall current is put into

consideration when analyzing the fluid flow.
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Figure 3.3. Temperature profiles for horizontal plates with one plate moving

Figure 3.4. Concentration profiles for horizontal plates with one plate moving
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3.2.1 Mathematical formulation

Consider an unsteady, laminar, hydromagnetic fully developed fluid flowing be-

tween two parallel vertical plates. The physical configuration is similar to that

described in figure 2.2 on page 28. The parallel vertical walls are located on the

planes x∗ = −L and x∗ = L and extend infinitely in the y∗ and z∗ axes. A constant

magnetic field of strength B∗0 is applied across the parallel plates in the positive

x∗ axis direction. A second material is injected uniformly from the left and there

is uniform suction from the right with velocity u0 applied at time t
∗ = 0. The

equation of continuity is given as ∂u
∗

∂x∗
= 0 which on integration gives u= constant

with this constant being the constant suction velocity.

u∗ = u∗0 (3.47)

Existence of the Hall term gives rise to a z∗ component of the velocity and in this

case the velocity vector of the fluid is given by

q∗(x∗, t∗) = u∗0i+ v
∗(x∗, t∗)j + w∗(x∗, t∗)k (3.48)

Just as was discussed in the previous section 3.1.1, Ohm’s law with Hall current

effect included is given in equation (3.1). For the case in consideration, we have

from equation (3.1),




J∗x
J∗y
J∗z



+ m
H0

∣
∣
∣
∣
∣
∣

i j k
J∗x J

∗
y J

∗
z

H0 0 0

∣
∣
∣
∣
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∣
= σμe

∣
∣
∣
∣
∣
∣

i j k
u∗0 v

∗ w∗

H0 0 0

∣
∣
∣
∣
∣
∣




J∗x
J∗y
J∗z



+ m
H0




0
H0J

∗
z

−H0J∗y



 = σμeH0




0
w∗

−v∗





In component form we have

J∗x = 0
J∗y +mJ

∗
z = σμeH0w

∗

J∗z −mJ
∗
y = −σμeH0v

∗





(3.49)

On solving the system of equations (3.49) simultaneously we have the components
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of the electric current density along the y∗ and z∗ axes given respectively as

J∗y =

∣
∣
∣
∣
σμeH0w

∗ m
−σμeH0v∗ 1

∣
∣
∣
∣

∣
∣
∣
∣
1 m
−m 1

∣
∣
∣
∣

=
σμeH0

1 +m2
(w∗ +mv∗)

J∗z =

∣
∣
∣
∣
1 σμeH0w

∗

−m −σμeH0v∗

∣
∣
∣
∣

1 +m2
=
σμeH0

1 +m2
(mw∗ − v∗)

i.e.
J∗y =

σμeH0
1+m2

(mv∗ + w∗)

J∗z =
σμeH0
1+m2

(mw∗ − v∗)
(3.50)

The electromagnetic force term per unit mass is given by

J∗ ×B∗

ρ
=
1

ρ

∣
∣
∣
∣
∣
∣

i j k
0 J∗y J

∗
z

B0 0 0

∣
∣
∣
∣
∣
∣
=
B0

ρ




0
J∗z
−J∗y



 (3.51)

The component form of equation (3.51) is

(
J∗ ×B∗

ρ

)

y

=
σμ2eH

2
0

ρ(1 +m2)
(mw∗ − v∗) (3.52)

(
J∗ ×B∗

ρ

)

z

= −
σμ2eH

2
0

ρ(1 +m2)
(mv∗ + w∗) (3.53)

A pressure gradient will exist in the y∗ direction as a result of the change in

elevation. By considering the Boussinesq approximation, and taking the density

to depend on temperature and concentration, the body force term takes the form

of equation (2.62) in chapter two. The equation of conservation of momentum with

the electromagnetic force terms in equations (3.52) and (3.53) therefore takes the

form

∂v∗

∂t∗
+ u∗0

∂v∗

∂x∗
= υ
∂2v∗

∂x∗2
+ g [β (T ∗ − T ∗1 ) + βc (C

∗ − C∗1 )] +
σμ2eH

2
0

ρ(1 +m2)
(mw∗ − v∗)

(3.54)

and
∂w∗

∂t∗
+ u∗0

∂w∗

∂x∗
= υ
∂2w∗

∂x∗2
−
σμ2eH

2
0

ρ(1 +m2)
(mv∗ + w∗) (3.55)
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The viscous term in the momentum conservation equation has been taken in the

form

μ∇2q∗ = μ

(
∂2

∂x∗2
+
∂2

∂y∗2
+
∂2

∂z∗2

)

(u∗0i+ v
∗(x∗, t∗)j+ w∗(x∗, t∗)k)

= μ

(

j
∂2v∗

∂x∗2
+ k
∂2w∗

∂x∗2

)

(3.56)

We consider the viscous dissipation term as

μ

((
∂v∗

∂x∗

)2
+

(
∂w∗

∂x∗

)2)

(3.57)

The Joule dissipation term is taken as J
∗2

σ
. The electric current density from equa-

tions (3.50) is given as

J∗ = J∗y j+ J
∗
zk =

σμeH0

1 +m2
(mv∗ + w∗)j+

σμeH0

1 +m2
(mw∗ − v∗)k (3.58)

J∗2 = J∗ ∙ J∗ =
σ2μ2eH

2
0

(1 +m2)2
[
(mv∗ + w∗)2 + (mw∗ − v∗)2

]

J∗2 =
σ2μ2eH

2
0

1 +m2
(v∗2 + w∗2) (3.59)

The Joule dissipation term is then given as

J∗2

σ
=
σμ2eH

2
0

1 +m2
(v∗2 + w∗2) (3.60)

When the viscous term from equation (3.57) and Joule dissipation term from

equation (3.60) are considered, the energy conservation is given by the equation

∂T ∗

∂t∗
+u∗0
∂T ∗

∂x∗
=
K

ρCp

∂2T ∗

∂x∗2
+
υ

Cp

((
∂v∗

∂x∗

)2
+

(
∂w∗

∂x∗

)2)

+
σμ2eH

2
0

ρCp (1 +m2)
(v∗2+w∗2)

(3.61)

The equation of concentration conservation is given as

∂C∗

∂t∗
+ u∗0

∂C∗

∂x∗
= D
∂2C∗

∂x∗2
(3.62)

The two plates are initially stationary but at time t∗ = 0 the plate at x∗ = L∗ is

set into motion with a velocity U0 along its plane. The two plates are considered
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to be initially isothermal at a temperature T ∗1 . At the time t = 0, the temperature

of the plate at the boundary x∗ = L∗ is raised to T ∗2 and then kept constant

thereafter with T ∗2 > T
∗
1 . The concentration of the fluid at the plates is initially

taken as C∗1 . However, at time t = 0, the concentration at the boundary x
∗ = L∗

is increased to C∗2 . Thereafter, the concentrations are maintained at C
∗
1 and C

∗
2

at the boundaries x∗ = −L∗ and x∗ = L∗ respectively. Considering the no slip

condition, the initial conditions for this fluid flow configuration are given as

v∗(−L∗, 0) = w∗(−L∗, 0) = 0
v∗(L∗, 0) = w∗(L∗, 0) = 0
T ∗(−L∗, 0) = T ∗(L∗, 0) = T ∗1
C∗(−L∗, 0) = C∗(L∗, 0) = C∗1





t∗ = 0 (3.63)

The boundary conditions as described above for this fluid flow in consideration

are given as
v∗(−L∗, t∗) = 0
w∗(−L∗, t∗) = 0
v∗(L∗, t∗) = U0
w∗(L∗, t∗) = 0
T ∗(−L∗, t∗) = T ∗1
T ∗(L∗, t∗) = T ∗2
C∗(−L∗, t∗) = C∗1
C∗(L∗, t∗) = C∗2






t∗ > 0 (3.64)

3.2.2 Non-dimensionalization

To get a more general solution to the system of equations, we non dimension-

alise the equations governing the fluid flow given by the equations of momentum

conservation (3.54) and (3.55), equation of conservation of energy (3.61) and equa-

tion of concentration conservation (3.62). In this section we consider the complex

velocity vector in the form q∗ = v∗ + iw∗. Considering the scaling variables in

equation (2.47) of chapter two, the non dimensional parameters of chapter two

and letting v = v∗

U0
and w = w∗

U0
we can proceed with the non dimensionalization

process. The body force term of the momentum conservation equation (3.54) is

non- dimensionalised to become

g [β (T ∗ − T ∗1 ) + βc (C
∗ − C∗1 )]÷

U30
υ
= Grθ +GcC (3.65)
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where Gc is the modified Grashof number given as

Gc =
υgβc (C

∗
2 − C

∗
1)

U30

The electromagnetic force terms in equations (3.52) and (3.53) become

σμ2eH
2
0

ρ(1 +m2)
(mw∗ − v∗)÷

U30
υ
=

σμ2eH
2
0υ

ρ(1 +m2)U20
[mw − v]

=
M2

(1 +m2)
[mw − v] (3.66)

−
σμ2eH

2
0

ρ(1 +m2)
(mv∗ + w∗)÷

U30
υ
= −

σμ2eH
2
0υ

ρ(1 +m2)U20
[mv + w]

= −
M2

(1 +m2)
[mv + w] (3.67)

The non dimensional form of the momentum conservation equations in this case

along the y and z axes are given respectively as

∂v

∂t
+ S
∂v

∂x
=
∂2v

∂x2
+Grθ +GcC +

M2

(1 +m2)
[mw − v] (3.68)

and

∂w

∂t
+ S
∂w

∂x
=
∂2w

∂x2
−

M2

(1 +m2)
[mv + w] (3.69)

In the energy conservation equation, the viscous dissipation term is non dimen-

sionalized as follows

μ

ρCp

((
∂v∗

∂x∗

)2
+

(
∂w∗

∂x∗

)2)

×
υ

U20 (T
∗
2 − T

∗
1 )
=

U20
Cp(T ∗2 − T

∗
1 )

((
∂v

∂x

)2
+

(
∂w

∂x

)2)

= Ec

((
∂v

∂x

)2
+

(
∂w

∂x

)2)

(3.70)

The Joule dissipation term is given as

σμ2eH
2
0

ρCp (1 +m2)
(v∗2 + w∗2)×

υ

U20 (T
∗
2 − T

∗
1 )
=

σμ2eH
2
0U
2
0υ

ρCpU
2
0 (T

∗
2 − T

∗
1 ) (1 +m

2)
(v2 + w2)

=
M2Ec

1 +m2
(
v2 + w2

)
(3.71)

The energy equation (3.61) can therefore be written in non dimensional form as

∂θ

∂t
+ S
∂θ

∂x
=
1

Pr

∂2θ

∂x2
+ EC

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]

+
M2Ec

1 +m2
(v2 + w2) (3.72)
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The mass conservation equation in non dimensional form is

∂C

∂t
+ S
∂C

∂x
=
1

Sc

∂2C

∂x2
(3.73)

The non dimensional form of the initial and boundary conditions (3.63) and (3.64)

are respectively given as

v(−L, 0) = w(−L, 0) = 0
v(L, 0) = w(L, 0) = 0
θ(−L, 0) = θ(L, 0) = 0
C(−L, 0) = C(L, 0) = 0





t = 0 (3.74)

v(−L, t) = 0
w(−L, t) = 0
v(L, t) = 1
w(L, t) = 0
θ(−L, t) = 0
θ(L, t) = 1
C(−L, t) = 0
C(L, t) = 1






t > 0 (3.75)

3.2.3 Solution

The solution of the velocities, temperature and concentration is sought from the

system of equations (3.68), (3.69), (3.72) and (3.73) together with the initial con-

ditions (3.74) and the boundary conditions (3.75). Since the system of equations

is non linear, we apply the numerical approximation method of finite differences

to get the solution to this system of equations. Replacing the derivatives in these

equations by finite differences and letting i and j represent x and t respectively at

the mesh points we have x±Δx = i± 1, t±Δt = j ± 1 and the finite difference

equations take the form given below.

v (i, j + 1)− v(i, j)
Δt

=
v(i− 1, j)− 2v(i, j) + v(i+ 1, j)

(Δx)2

+ Grθ(i, j) +GcC(i, j) +
M2

1 +m2
[mw(i, j)− v(i, j)]

− S

{
v(i+ 1, j)− v(i, j)

Δx

}

(3.76)
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w (i, j + 1)− w(i, j)
Δt

=
w(i− 1, j)− 2w(i, j) + w(i+ 1, j)

(Δx)2

− S

{
w(i+ 1, j)− w(i, j)

Δx

}

−
M2

1 +m2
[mv(i, j) + w(i, j)] (3.77)

θ (i, j + 1)− θ(i, j)
Δt

=
1

Pr

[
θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)

(Δx)2

]

− S

{
θ(i+ 1, j)− θ(i, j)

Δx

}

+ Ec

[(
v(i+ 1, j)− v(i, j)

Δx

)2
+

(
w(i+ 1, j)− w(i, j)

Δx

)2]

+
EcM2

1 +m2
[
v2(i, j) + w2(i, j)

]
(3.78)

C(i, j + 1)− C(i, j)
Δt

=
1

Sc

[
C(i− 1, j)− 2C(i, j) + C(i+ 1, j)

(Δx)2

]

− S

[
C(i+ 1, j)− C(i, j)

Δx

]

(3.79)

The finite difference form of the initial conditions (3.74),and the boundary condi-

tions (3.75) is given below.

q(−40, 0) = q(40, 0) = 0
θ(−40, 0) = θ(40, 0) = 0
C(−40, 0) = C(40, 0) = 0





j = 0 (3.80)

q(−40, j) = 0
q(40, j) = 1
θ(−40, j) = 0
θ(40, j) = 1
C(−40, j) = 0
C(40, j) = 1






j > 0 (3.81)

Rearranging the terms of equations (3.76) to (3.79) we can compute consecutive

values of the velocities v and w, the temperature θ and the concentration C as
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shown in equations (3.82) to (3.85).

v(i, j + 1) =
Δt

(Δx)2
[v(i− 1, j)− 2v(i, j) + v(i+ 1, j)]

−
SΔt

Δx
[v(i+ 1, j)− v(i, j)] + Δt [Grθ(i, j) +GcC(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

v(i, j) + Δt

[
mM2

1 +m2

]

w(i, j) (3.82)

w(i, j + 1) =
Δt

(Δx)2
[w(i− 1, j)− 2w(i, j) + w(i+ 1, j)]

−
SΔt

Δx
[w(i+ 1, j)− w(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

w(i, j)−Δt

[
mM2

1 +m2

]

v(i, j) (3.83)

θ(i, j + 1) =
Δt

Pr (Δx)2
[θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)]

− S
Δt

Δx
θ(i+ 1, j) +

[

S
Δt

Δx
+ 1

]

θ(i, j)

+ Ec
Δt

(Δx)2
[
{v(i+ 1, j)− v(i, j}2 + {w(i+ 1, j)− w(i, j}2

]

+ Ec
M2Δt

1 +m2
[
v2(i, j) + w2(i, j)

]
(3.84)

C(i, j + 1) =
Δt

Sc (Δx)2
[C(i− 1, j)− 2C(i, j) + C(i+ 1, j)]

−
SΔt

Δx
C(i+ 1, j) +

{
SΔt

Δx
+ 1

}

C(i, j) (3.85)

3.2.4 Observations and discussions

Computations for the velocities u and w, temperature θ and concentration C were

made for Pr = 0.71, Gr = -0.5 (corresponding to heating), Gr =0.5 (corresponding

to cooling), Gc =1.5 and M2 = 6.0. The parameters that were varied included

the time t, Hall parameter m, suction parameter S, Schmidt number Sc and the

Ekcert number Ec. The reference values represented in figures 3.5 on page 62

to figure 3.12 on page 68 by the curve labeled “test ” are t = 3, m = 1.0, S =
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-0.25, Sc = 0.4 and Ec = 0.1. These values of the parameters were varied one at

a time and input into a C++ computer program. Computations were done using

the simultaneous equations (3.82) to (3.85), the initial conditions (3.80) and the

boundary conditions (3.81) and curves plotted for each case. These results for

the case of heating at the plate (Gr = -0.5) were then represented in the figures

labelled figure 3.5 to figure 3.8 and the results for the case of cooling at the plate

(Gr = 0.5) are represented in the figures labelled figure 3.9 on page 66 to figure 3.12

on page 68. The horizontal axis for the figures 3.5 to figure 3.12 represents the

distance from the left plate.

(a) Primary velocity profiles with heating

The effects of various parameters on the primary velocity of the fluid flow were

considered as discussed below with reference to figure 3.5 on page 62.

Suction

When there is no suction (S = 0), there is a decrease in the fluid velocity

profiles.

Schmidt number

An increase in the value of the Schmidt number (Sc = 0.7), leads to a slight

decrease in the fluid velocity profiles. This is because the mass diffusion parameter

is directly proportional to the shear stresses and therefore its increase would result

in retarding fluid motion.

Eckert number

As the value of the Eckert number Ec increases (Ec = 0.2), the primary velocity

decreases slightly.

Hall parameter

As the value of the Hall parameter m increases (m = 2.0), the primary velocity

increases slightly. This can be attributed to the effect of an increase in the cy-

clotron frequency and thus the rotation of the electrons and/or an increase in the

collision times of the electrons with an increase in the value of the Hall parameter.

An increase in the Hall parameter leads to a decrease in the effective conductivity

σ
1+m2

which reduces the magnetic dumping force on the velocity and consequently
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the velocity increases.

Time

A decrease in the time t leads to a decrease in the primary velocity profiles.

This is because the time is directly proportional to the primary velocity.

(b) Secondary velocity profiles with heating

Generally, the secondary velocity increases as the moving plate is approached

and then soon after reduces to zero at the moving plate.

Suction

Removal of suction leads to a decrease in the secondary velocity profiles.

Eckert number

An increase in the Eckert number leads to a decrease in the secondary velocity

profiles.

Schmidt number

An increase in the Schmidt number leads to a decrease in the secondary velocity

profiles. This is because the mass diffusion parameter is directly proportional to

the shear stresses and therefore its increase would result in retarding fluid velocity.

Hall parameter

An increase in the Hall parameter leads to a decrease in the secondary velocity

profiles.
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Figure 3.5. Primary velocity profiles for vertical plates with one plate moving.
Gr =-0.5

Figure 3.6. Secondary velocity profiles for vertical plates with one plate moving.
Gr = -0.5
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Time

A decrease in the time leads to a decrease in the secondary velocity profiles.

This is because the time is directly proportional to the secondary velocity.

(c) Temperature profiles with heating

The various parameters affected the temperature profiles of the fluid flow as

discussed below.

Eckert number An increase in the Eckert number leads to an increase in the

temperature profiles. The rate of increase is however slower as the moving plate is

approached. This is due to the fact that an increase in the Eckert number means

a decrease in the thermal energy and consequently a decrease in the temperature

of the fluid which leads to a decrease in the temperature profiles.

Suction parameter Removal of suction leads to a decrease in the temperature

profiles since this removes the influence of convection.

Hall parameter An increase in the Hall parameter leads to a very slight decrease

in the temperature profiles. This is due to a decrease in the Joule dissipation.

Time A decrease in the time leads to a decrease in the temperature profiles. This

is because the time is directly proportional to the temperature.

(d) Concentration profiles with heating

Schmidt number

An increase in the Schmidt number (Sc = 0.7), lead to a decrease in the con-

centration profiles. The mass diffusion parameter Sc is inversely proportional to

the concentration and therefore its increase results in a decrease in the concentra-

tion profiles.

Suction

Removal of suction (S = 0) leads to a decrease in the concentration profiles.

Time A decrease in the time leads to a decrease in the concentration profiles.

This is because the time is directly proportional to the concentration.

(e) Primary velocity profiles with cooling

The effects of various parameters on the primary velocity of the fluid flow were

considered as discussed below with reference to figure 3.9 on page 66.
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Figure 3.7. Temperature profiles for vertical plates with one plate moving. Gr
= -0.5

Figure 3.8. Concentration profiles for vertical plates with one plate moving.
Gr= -0.5
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Eckert number An increase in the Eckert number leads to a slight decrease in

the primary velocity profiles.

Suction parameter Removal of suction leads to a decrease in the primary ve-

locity profiles.

Schmidt number An increase in the Schmidt number leads to a decrease in the

primary velocity profiles. This is because the mass diffusion parameter is directly

proportional to the shear stresses and therefore its increase would result in retard-

ing fluid motion.

Hall parameter An increase in the Hall parameter leads to an increase in the

primary velocity profiles. This is due to a decrease in the effective conductivity

σ
1+m2

which reduces the magnetic dumping force on the velocity and consequently

the velocity increases.

Time A decrease in the time leads to a decrease in the primary velocity profiles.

This is because the time is directly proportional to the primary velocity.

(f) Secondary velocity profiles with cooling

The secondary velocity increases as the moving plate is approached and then

soon after reduces to zero at the moving plate. Considering figure 3.10 on the

next page we make the following observations.

Eckert number An increase in the Eckert number leads to an increase in the

secondary velocity profiles. This is due to the fact that an increase in the Eckert

number means an increase in the kinetic energy and consequently an increase in

the fluid velocities which leads to an increase in the velocity profiles.

Suction parameter Removal of suction leads to a decrease in the secondary

velocity profiles.

Schmidt number An increase in the Schmidt number leads to a decrease in

the secondary velocity profiles. This is because the mass diffusion parameter is

directly proportional to the shear stresses and therefore its increase would result

in retarding fluid velocity.

Hall parameter An increase in the Hall parameter leads to a decrease in the

secondary velocity profiles.
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Figure 3.9. Primary velocity profiles for vertical plates with one plate moving.
Gr =0.5

Figure 3.10. Secondary velocity profiles for vertical plates with one plate moving.
Gr =0.5
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Time A decrease in the time leads to a decrease in the secondary velocity profiles.

This is because the time is directly proportional to the secondary velocity.

(g) Temperature profiles with cooling

The various parameters affected the temperature profiles of the fluid flow as

discussed below with reference to figure 3.11 on the following page.

Eckert number An increase in the Eckert number leads to an increase in the

temperature profiles. The rate of increase is however slower as the moving plate

is approached.

Suction parameter Removal of suction leads to a decrease in the temperature

profiles.

Schmidt number An increase in the Schmidt number leads to an increase in the

temperature profiles.

Hall parameter An increase in the Hall parameter leads to a slight decrease

in the temperature profiles. This is because an increase in the Hall parameter

causes a decrease in the Joule dissipation which in turn leads to a decrease in the

temperature profiles.

Time A decrease in the time leads to a decrease in the temperature profiles.

This is because the time is directly proportional to the temperature.

(h) Concentration profiles with cooling

The effect of changing the various parameters on the concentration profiles are

discussed below with reference to figure 3.12 on the next page.

Suction parameter Removal of suction leads to a decrease in the concentration

profiles.

Schmidt number An increase in the Schmidt number leads to a decrease in the

concentration profiles. The mass diffusion parameter Sc is inversely proportional

to the concentration and therefore its increase results in a decrease in the concen-

tration profiles.

Time A decrease in the time leads to a decrease in the concentration profiles.

This is because the time is directly proportional to the concentration.
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Figure 3.11. Temperature profiles for vertical plates with one plate moving. Gr
= 0.5

Figure 3.12. Concentration profiles for vertical plates with one plate moving.
Gr = 0.5
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Chapter 4

mhd fluid flow between two moving parallel

porous plates with effect of Hall current

In this chapter, we consider the unsteady MHD fluid flow between two parallel

plates with heat transfer while putting into consideration the effect of the Hall

current. We further consider the two plates to be moving unlike the case of chapter

three where only one plate was moving. There are three cases that are considered.

One is the case where the fluid flows between horizontal parallel plates, then a

case is considered when the system is rotating and the third case has the fluid

flowing between two vertical parallel plates.

4.1 Fluid flow between two parallel horizontal plates with
both plates moving

Consider an incompressible, viscous, heat conducting and electrically conducting

fluid flowing between two infinite non conducting porous horizontal plates. The

fluid flow is unsteady and a magnetic field is applied perpendicular to the plates.

The upper plate is moving with a constant velocity U0 while the lower plate is

moving with a velocity −U0. The induced magnetic field is neglected by assuming

a very small magnetic Reynold’s number. For this reason, the uniform magnetic

field B0 is considered as the total magnetic field acting on the fluid. The effect of

the Hall current and the effects of suction and injection are put into consideration

while studying the fluid flow in this current chapter.

4.1.1 Mathematical formulation

A description of the fluid and the fluid flow being studied is given and then a

Mathematical formulation of the fluid flow problem given. Let the two horizontal

plates that are electrically non conducting be located on the planes y = ±h. The
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plates are of infinite length in the x and z directions i.e. −∞< x < ∞ and

−∞< z <∞. We consider the fluid to be flowing between the two plates under

the influence of a constant pressure gradient dP
dx
in the x direction, and a uniform

injection from below and suction from above with a constant velocity v0. The

pressure gradient is applied at time t = 0. The upper plate is initially at rest but

is set into motion at time t = 0. A uniform magnetic field B0 acts on the whole

system in the positive y direction as shown in figure 4.1 below.

Figure 4.1. Fluid flow between two moving horizontal plates with Hall effect

For the fluid flow being considered, all quantities depend on the space coordi-

nate y and time t except the pressure gradient dP
dx
which is assumed constant. The

velocity of the fluid is given as q(y, t) = u(y, t)i + v0j + w(y, t)k and the applied

magnetic field acts along the y axis and is given by B0 = 〈0, B0, 0〉. When the

strength of the magnetic field is large, Ohm’s law is modified to include the Hall

currents. The horizontal plates are considered to be moving in opposite directions

relative to each other. In general the fluid flow configuration in this chapter has

much similarity with that of chapter three save for the fact that in this chapter,

both plates are considered to be moving.
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4.1.2 Governing equations in dimensional and non dimensional form

The conservation of momentum equations are written in component form as the

equations (3.11) and (3.12) of chapter three. This is because the geometry of both

systems of chapter three and this current chapter is the same. The energy conser-

vation equation with consideration of the viscous and the Joule dissipation can be

expressed as equation (3.17) of chapter three and the concentration conservation

equation is given as equation (3.18) of chapter three. The dimensional form of

these equations is therefore given below by equations (4.1) to equation (4.4).

∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗
= −
1

ρ

dP

dx
+ υ
∂2u∗

∂y∗2
−
σμ2eH

2
0

ρ(1 +m2)
(u∗ +mw∗) (4.1)

∂w∗

∂t∗
+ v∗0
∂w∗

∂y∗
= υ
∂2w∗

∂y∗2
+
σμ2eH

2
0

ρ(1 +m2)
(mu∗ − w∗) (4.2)

ρCp

(
∂T ∗

∂t∗
+ v∗0
∂T ∗

∂y∗

)

= K
∂2T ∗

∂y∗2
+ μ

((
∂u∗

∂y∗

)2
+

(
∂w∗

∂y∗

)2)

+
σμ2eH

2
0

1 +m2
(u∗2 + w∗2) (4.3)

∂C∗

∂t∗
+ v∗0
∂C∗

∂y∗
= D
∂2C∗

∂y∗2
(4.4)

The first two equations give the momentum conservation equations along the x

and z axes respectively. Equation (4.3) is the energy conservation equation while

equation (4.4) is the concentration equation. For the fluid flow in consideration,

let the two plates be initially isothermal at temperature T∗1. The temperature of

the upper plate is then raised to T∗2 and thereafter the lower and upper plates

are maintained at two different but constant temperatures T∗1 and T
∗
2 respectively

where T∗1<T
∗
2. The plates are initially at rest but at time t = 0 the upper plate

is set into motion with a velocity U0 and the lower plate is also set into motion

with the same velocity but in the opposite direction. Let the concentration at both

plates be C∗1 initially. The concentration at the upper plate is then increased to C
∗
2

at time t = 0 and the concentrations at each of the boundaries are kept constant

thereafter. From the definition of the fluid flow problem under consideration, the
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initial and boundary conditions are respectively given below as

u∗(−h∗, 0) = w∗(−h, 0) = 0
u∗(h∗, 0) = w∗(h, 0) = 0
T ∗(−h, 0) = T ∗(h, 0) = T ∗1
C∗(−h, 0) = C∗(h, 0) = C∗1





t∗ = 0 (4.5)

u∗(−h∗, t∗) = −U0
w∗(−h∗, t∗) = 0
u∗(h∗, t∗) = U0
w∗(h∗, t∗) = 0
T ∗(−h∗, t∗) = T ∗1
T ∗(h∗, t∗) = T ∗2
C∗(−h∗, t∗) = C∗1
C∗(h∗, t∗) = C∗2






t∗ > 0 (4.6)

The non dimensional form of the momentum conservation equations, the energy

equation and the mass conservation equation is given from equations (3.26), (3.27),

(3.33) and (3.34) of chapter three as equations (4.7) to equation (4.10) below.

∂u

∂t
+ S
∂u

∂y
= −
dP

dx
+
∂2u

∂y2
−
M2

1 +m2
(u+mw) (4.7)

∂w

∂t
+ S
∂w

∂y
=
∂2w

∂y2
+
M2

1 +m2
(mu− w) (4.8)

∂θ

∂t
+ S
∂θ

∂y
=
1

Pr

∂2θ

∂y2
+ Ec

∂q

∂y
∙
∂q̄

∂y
+
EcM 2

1 +m2
qq̄ (4.9)

∂C

∂t
+ S
∂C

∂y
=
1

Sc

∂2C

∂y2
(4.10)

The non dimensional forms of the initial conditions (4.5) are given as (4.11)and

the boundary conditions in the equation (4.6) are given in non dimensional form

as (4.12)
q(−L, 0) = q(L, 0) = 0
θ(−L, 0) = θ(L, 0) = 0
C(−L, 0) = C(L, 0) = 0





t = 0 (4.11)

q(−L, t) = −1
q(L, t) = 1
θ(−L, t) = 0
θ(L, t) = 1
C(−L, t) = 0
C(L, t) = 1






t > 0 (4.12)
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4.1.3 Solution

We seek the solution of the system of equations (4.7),(4.8),(4.9) and (4.10) together

with the initial conditions (4.11) and the boundary conditions (4.12). The sys-

tem of equations is non linear and we apply the numerical approximation method

of finite differences in the solution. Using forward differences, the finite differ-

ence form of equations governing the fluid flow under consideration i.e. equations

(4.7),(4.8),(4.9) and (4.10) have the form

u (i, j + 1)− u(i, j)
Δt

= −
dP

dx
+
u(i− 1, j)− 2u(i, j) + u(i+ 1, j)

(Δy)2

− S

{
u(i+ 1, j)− u(i, j)

Δy

}

−
M2

1 +m2
[u(i, j) +mw(i, j)] (4.13)

w (i, j + 1)− w(i, j)
Δt

=
w(i− 1, j)− 2w(i, j) + w(i+ 1, j)

(Δy)2

− S

{
w(i+ 1, j)− w(i, j)

Δy

}

+
M2

1 +m2
[mu(i, j)− w(i, j)] (4.14)

θ (i, j + 1)− θ(i, j)
Δt

=
1

Pr

[
θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)

(Δy)2

]

− S

{
θ(i+ 1, j)− θ(i, j)

Δy

}

+ Ec

[(
u(i+ 1, j)− u(i, j)

Δy

)2
+

(
w(i+ 1, j)− w(i, j)

Δy

)2]

+
EcM2

1 +m2
[
u(i, j)2 + w(i, j)2

]
(4.15)

C(i, j + 1)− C(i, j)
Δt

=
1

Sc

[
C(i− 1, j)− 2C(i, j) + C(i+ 1, j)

(Δy)2

]

− S

[
C(i+ 1, j)− C(i, j)

Δy

]

(4.16)
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The finite difference form of the initial conditions (4.11) and the boundary condi-

tions (4.12) is given below.

q(−40, 0) = q(40, 0) = 0
θ(−40, 0) = θ(40, 0) = 0
C(−40, 0) = C(40, 0) = 0





j = 0 (4.17)

q(−40, j) = −1
q(40, j) = 1
θ(−40, j) = 0
θ(40, j) = 1
C(−40, j) = 0
C(40, j) = 1






j > 0 (4.18)

In this case i and j represent the space coordinate y and the time coordinate t

respectively. Rearranging each of these equations enables us to compute consec-

utive terms of the primary velocity u, the secondary velocity w, the temperature

θ and the concentration C using the initial values and boundary conditions given

in equations (4.17) and (4.18). Rearrangement of the equations (4.13) to (4.16)

gives equations (4.19) to (4.22) below. The solutions to these equations together

with the initial conditions (4.11) and boundary conditions (4.12) are computed

using an appropriate computer program. A C++ computer program is written

and used for the solution. The method is stable, convergent and consistent.

u(i, j + 1) = −Δt
dP

dx
+
Δt

(Δy)2
[u(i− 1, j)− 2u(i, j) + u(i+ 1, j)]

−
SΔt

Δy
[u(i+ 1, j)− u(i, j)]−

[
ΔtM2

1 +m2
− 1

]

u(i, j)

− Δt

[
mM2

1 +m2

]

w(i, j) (4.19)

w(i, j + 1) =
Δt

(Δy)2
[w(i− 1, j)− 2w(i, j) + w(i+ 1, j)]

−
SΔt

Δy
[w(i+ 1, j)− w(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

w(i, j) + Δt

[
mM2

1 +m2

]

u(i, j) (4.20)
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θ(i, j + 1) =
Δt

Pr (Δy)2
[θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)]− S

Δt

Δy
θ(i+ 1, j)

+ Ec
Δt

(Δy)2
[
{u(i+ 1, j)− u(i, j}2 + {w(i+ 1, j)− w(i, j}2

]

+

[

S
Δt

Δy
+ 1

]

θ(i, j) + Ec
M2Δt

1 +m2
[
u(i, j)2 + w(i, j)2

]
(4.21)

C(i, j + 1) =
Δt

Sc (Δy)2
[C(i− 1, j)− 2C(i, j) + C(i+ 1, j)]−

SΔt

Δy
C(i+ 1, j)

+

{
SΔt

Δy
+ 1

}

C(i, j) (4.22)

4.1.4 Calculation of the rate of mass transfer, skin friction and the

rate of heat transfer

To calculate the skin friction, the rate of heat transfer and the rate of mass transfer

we consider a quadratic bivariate polynomial which is a function of distance (y)

and time (t). The second degree bivariate polynomials approximating the primary

velocity u, secondary velocity w, temperature θ , and concentration C in the

variables y and t are given below

u(́y, t) = a1 + b1y + c1t+ d1y
2 + e1t

2 + f1yt

v(́y,t) =a2 + b2y + c2t+ d2y
2 + e2t

2 + f2yt

θ′(y, t) = a3 + b3y + c3t+ d3y
2 + e3t

2 + f3yt

C(́y,t) =a4 + b4y + c4t+ d4y
2 + e4t

2 + f4yt

We are going to use the least squares approximation method discussed in sec-

tion 2.3.3 on page 33. The skin friction on the lower plate in the direction of the

x axis is obtained as

τx = −
∂u

∂y

∣
∣
∣
∣
y=−l

= −(b1 + 2d1y + f1t)|y=−l

= −(b1−2d1l + f1t) (4.23)

while the skin friction on the upper boundary in the same direction is given by

τx = −
∂u

∂y

∣
∣
∣
∣
y=l

= −(b1 + 2d1y + f1t)|y=l

= −(b1+2d1l + f1t) (4.24)
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Similarly, the skin friction on the lower plate in the direction of the z axis is

obtained as

τz = −
∂w

∂y

∣
∣
∣
∣
y=−l

= −(b2 + 2d2y + f2t)|y=−l

= −(b2−2d2l + f2t) (4.25)

while the skin friction on the upper boundary in the same direction is given by

τz = −
∂w

∂y

∣
∣
∣
∣
y=l

= −(b2 + 2d2y + f2t)|y=l

= −(b2+2d2l + f2t) (4.26)

The rate of heat transfer on the lower plate is obtained as

Nu = −
∂θ

∂y

∣
∣
∣
∣
y=−l

= −(b3 + 2d3y + f3t)|y=−l

= −(b3−2d3l + f3t) (4.27)

while the rate of heat transfer on the upper boundary in the same direction is

given by

Nu = −
∂θ

∂y

∣
∣
∣
∣
y=l

= −(b3 + 2d3y + f3t)|y=l

= −(b3+2d3l + f3t) (4.28)

The rate of mass transfer is given by

Sh = −
∂C

∂y

∣
∣
∣
∣
y=−l

= −(b4 + 2d4y + f4t)|y=−l

= −(b4−2d4l + f4t) (4.29)

while the rate of mass transfer on the upper boundary in the same direction is

given by

Sh = −
∂C

∂y

∣
∣
∣
∣
y=l

= −(b4 + 2d4y + f4t)|y=l

= −(b4+2d4l + f4t) (4.30)

The equations (4.23) to (4.30) are used to obtain values of the skin friction,

the rate of heat transfer as well as the rate of mass transfer on the flow field for

various values of the rotation parameter Er , Schmidt number Sc, Hall parameter

m, Suction parameter S, Eckert number Ec, Pressure gradient dP
dx
and time t.
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4.1.5 Observations and discussions

Computations for the primary velocity u, secondary velocity w, temperature θ

and concentration C were made for various parameters with Pr = 0.71 and M2 =

6.0. The parameters that were varied included the pressure gradient dP
dx
, the Hall

parameter m, the suction parameter S, the Schmidt number Sc and the Ekcert

number Ec. The reference values represented in figures 4.2 on page 79 to 4.9 on

page 85 by the curve labeled “test” are dP
dx
= 5.0 , m = 1.0, S = - 0.5, Sc = 0.4 and

Ec = 0.2. These values of the parameters were varied one at a time and input into

a computer program. Computations were done using equations (4.19) to (4.22),

the initial conditions (4.11) and the boundary conditions (4.12) and curves were

plotted for each case. These results were then represented in the figures labelled

figure 4.2 on page 79 to figure 4.9 on page 85.

The values of velocities, temperature, and concentration obtained in section 4.1.3

are used for different values of the rotation parameter Er, Schmidt number Sc,

Hall parameter m, Suction parameter S, Eckert number Ec, Pressure gradient dP
dx

and time t are used to obtain the values of the skin friction and the rates of heat

and mass transfer. The Tables represent the variation in the rates of heat and

mass transfer as well as the skin friction on the laminar thermal, concentration and

velocity boundary layers respectively. The reference values used for the parameters

are Er = 0.05 for the rotation parameter, Sc = 0.4 for the Schmidt number, m

= 1.0 for the Hall parameter, S = -0.5 for the Suction parameter, Ec = 0.2 for

the Eckert number, dP
dx
= 5.0, for the pressure gradient and t = 0.25 for the time.

Each of the parameters is varied and the results are presented in tables 4.1 on

page 86 to table 4.4 on page 86. The observations made from these tables are

then discussed after discussing the concentration profiles.

a) Primary velocity profiles

We discuss how each of the parameters affects the primary velocity profiles of

the fluid flow as represented by the graphs in figure 4.2 on page 79. For clarity,

the profiles near the lower plate are shown in figure 4.3 on page 79 and the profiles
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near the upper plate are shown in figure 4.4 on page 81.

Pressure gradient

From figures 4.2 on the following page, figure 4.3 on the next page and figure 4.4

on page 81 it is observed that very close to the lower boundary, both a positive

and negative pressure gradient lead to a reduced fluid flow velocity until a free

stream velocity is reached. However, a negative pressure gradient aids the fluid

flow for a small region before the free stream velocity is achieved. It is observed

that close to the lower plate, the primary velocity decreases but then soon after the

velocity is maintained at a constant level except for the negative pressure gradient

as discussed above. As the upper boundary is approached, the velocity in the

case of positive pressure gradient reduces up to a point when u = 0 (stationary

point) and then it increases suddenly until it reaches the velocity of the upper

plate. For a negative pressure gradient, the velocity increases further from the

free stream velocity to that of the upper plate as this plate is approached. The

pressure gradient force term is proportional to the acceleration but act in opposite

directions and therefore a positive pressure gradient retards the acceleration and

consequently the velocity while a negative pressure gradient aids the flow.

Suction

When there is no suction (S = 0), the fluid velocity is observed to reach a

higher velocity in the negative direction. The velocity starts reducing from the

free stream velocity up to stagnation point and then increases up to the velocity of

the upper plate at a faster rate as observed in figure 4.4 on page 81. The velocity

profiles are thus reduced near the upper plate.

Hall parameter

As the value of the Hall parameter m increases, figure 4.2 on the following

page shows that the reduction in the velocity is less and the free stream velocity

is higher in the negative direction. From figure 4.4 on page 81 it is observed that

as the upper plate is approached after stagnation velocity is reached, the primary

velocity is more for increased value of the Hall parameter. An increase in the Hall

parameter leads to a decrease in the effective conductivity σ
1+m2

which reduces the
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Figure 4.2. Primary velocity profiles for horizontal plates with both plates
moving

Figure 4.3. Primary velocity profiles near the lower plate for horizontal plates
with both plates moving
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magnetic dumping force on the velocity and consequently the velocity increases.

b) Secondary velocity profiles

We discuss how each of the parameters affects the secondary velocity profiles

of the fluid flow. The reference graphs are found in figure 4.5 on the following

page . It is observed that there is a flow in the negative direction near the lower

plate for all cases. With the exception of the case of negative pressure gradient,

the velocity is sustained in the reversed direction for the larger part of the flow

region. The velocity then reduces, reaches a stagnation point and then increases

in the positive direction up to a maximum and then reduces to zero at the upper

plate.

Pressure gradient

Close to the lower plate, both a negative and positive pressure gradient lead

to the fluid flowing in the negative direction. For a positive pressure gradient,

a maximum is attained and then the velocity reduces to a constant velocity in

the negative direction. The velocity then reduces further as the upper plate is

approached, reaches a stagnation point and then increases to a maximum in the

positive direction and then reduces to zero at the upper plate. For a negative pres-

sure gradient, the velocity increases in the negative direction near the lower plate

but soon after reduces to zero then increases to a lesser maximum in the positive

direction. This is maintained for some time but as the upper plate is approached

the velocity increases further to a higher maximum and then reduces to zero at

the plate. The pressure gradient force term is proportional to the acceleration but

act in opposite directions and therefore a positive pressure gradient retards the

acceleration and consequently the velocity while a negative pressure gradient aids

the flow.

Suction

Absence of suction leads to a similar behavior as in the case for a positive

pressure gradient. However the maximum attained in the absence of suction is

lower than the case when suction is considered to exist. This can be attributed to

the effect of convection of the fluid in the presence of suction.
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Figure 4.4. Primary velocity profiles near the upper plate for horizontal plates
with both plates moving

Figure 4.5. Secondary velocity profiles for horizontal plates with both plates
moving
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Hall parameter

An increase in the magnitude of the Hall parameter leads to a similar behavior

as the case for a positive pressure gradient. However the maximum attained with

an increase in the Hall parameter is lower than the case when a smaller value of

the Hall parameter is considered.

c) Temperature profiles

A change in each of the parameters leads to a slight increase of the temperature

profiles near the lower plate. This temperature then reduces to zero and then

increases to the temperature of the upper plate as the upper plate is approached.

Significant effects are observed as you get closer to the upper plate. Considering

figure 4.6 on the next page, we discuss each of the parameters. To clearly see the

profiles near the lower and upper plates consider respectively the figures 4.7 on

the following page and figure 4.8 on page 85.

Pressure gradient

When the imposed pressure gradient is negative, the temperature increases

slightly near the lower plate then reduces to zero as seen in figure 4.7 on the

following page. The change is however not significant near the upper plate.

Hall parameter

An increase in the Hall parameter m leads to a lesser increase in the temper-

ature profiles near the lower plate. There is a slight decrease in the temperature

profiles near the upper plate. This is because an increase in the Hall parameter

leads to a decrease in the Joule dissipation.

Suction

Absence of suction leads to the temperature increasing at a lesser extent near

the lower plate. The rate of increase is more near the upper plate as observed

from figure 4.8 on page 85. The temperature profiles are however reduced near

the upper plate. This is due to the effect of convection.

Eckert number

A reduction in the value of the Eckert number Ec leads to a decrease in the

temperature profiles near the plates. This is due to a decrease in the thermal
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Figure 4.6. Temperature profiles for horizontal plates with both plates moving

Figure 4.7. Temperature profiles near the lower plate for horizontal plates with
both plates moving
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energy and consequently a decrease in the temperature and hence the temperature

profiles.

d) Concentration profiles

From figure 4.9 on the following page, it is observed that there is little effect

produced by the change in the parameters near the lower plate but the effects are

observed as you approach the upper plate.

Schmidt number

An increase in the value of the Schmidt number Sc causes the concentration

to start increasing closer to the plate moving in the positive axis direction and

at a faster rate. That is the concentration profiles reduce as the upper plate is

approached. This is due to the fact that the mass diffusion parameter is inversely

proportional to the the concentration and therefore its increase leads to a decrease

in the concentration.

Suction

Removal of suction leads to concentration increase taking place closer to the

plate moving in the positive axis direction and at a faster rate. The concentration

profiles therefore reduce as the upper plate is approached.

Skin friction τx along the plates

The skin friction τx along the lower plate is positive while that along the upper

plate is negative. We discuss the effect of changing each of the parameters on the

skin friction τx with reference to the table 4.1 on page 86.

Hall parameter m An increase in the value of the Hall parameter m,m = 2.0

leads to a decrease in the magnitude of the skin friction τx along both the lower

and upper plates.

Suction parameter S Removal of suction S = 0 leads to a decrease in the mag-

nitude of the skin friction τx along both the lower and upper plates.

Pressure gradient A negative pressure gradient dP
dx
, dP
dx
= −5.0 leads to an in-

crease in the magnitude of the skin friction τx along both the lower and upper

plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the magnitude



85

Figure 4.8. Temperature profiles near the upper plate for horizontal plates with
both plates moving

Figure 4.9. Concentration profiles for horizontal plates with both plates moving
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lower plate upper plate

m S Ec dP
dx

t τx τx
Test 1 -0.5 0.2 5 0.25 261.2864556 -270.809491
2 2 -0.5 0.2 5 0.25 260.2735501 -269.7876455
3 2 0 0.2 5 0.25 258.5755013 -268.0806142
5 2 -0.5 0.02 -5 0.25 432.2208342 -443.8891401
6 2 -0.5 0.02 5 0.45 474.1248342 -483.6478696

Table 4.1. Skin friction along the plates for a fluid flow between two horizontal
parallel plates

lower plate upper plate

m S Ec dP
dx

t τy τy
Test 1 -0.5 0.2 5 0.25 -3.362880657 0.5201359
2 2 -0.5 0.2 5 0.25 -3.637773285 0.798245045
3 2 0 0.2 5 0.25 -3.735169007 0.90310105
5 2 -0.5 0.02 -5 0.25 0.593629361 -3.562427826
6 1 -0.5 0.2 5 0.45 -4.916087279 2.073342522

Table 4.2. Skin friction perpendicular to two horizontal parallel plates

lower plate upper plate

m S Ec dP
dx

t Nu Nu
Test 1 -0.5 0.2 5 0.25 -5.642414138 2.806847198
2 2 -0.5 0.2 5 0.25 -5.368377224 2.52638825
3 2 0 0.2 5 0.25 -5.220497589 2.372087782
4 2 -0.5 0.02 5 0.25 -4.722799803 1.872184865
5 2 -0.5 0.02 -5 0.25 -4.879299423 2.032978756
6 1 -0.5 0.2 5 0.45 -9.022118672 6.186551732

Table 4.3. Rates of heat transfer for a fluid flow between two parallel horizontal
plates

lower plate upper plate

Sc dP
dx

t Sh Sh
Test 0.4 5.0 0.25 -4.65178801 1.800214658
1 0.7 5.0 0.25 -4.651773002 1.800199624
6 0.4 5.0 0.45 -7.232589078 4.381015725

Table 4.4. Rates of mass transfer for a fluid flow between two parallel horizontal
plates
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of the skin friction τx along both the lower and upper plates.

Skin friction τz normal to the plates

The skin friction at the lower plate is negative while that at the upper plate is

positive except for the negative pressure gradient. We discuss the effect of chang-

ing each of the parameters on the skin friction τz with reference to the table 4.2

on the preceding page.

Hall parameter m An increase in the value of the Hall parameter m,m = 2.0

leads to an increase in the magnitude of the skin friction τz at both the lower and

upper plates.

Suction parameter S Removal of suction S, S = 0 leads to an increase in the

magnitude of the skin friction τz at both the lower and upper plates.

Pressure gradient A negative pressure gradient leads to a reversal in the direc-

tion of the skin friction τz at both the lower and upper plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the magnitude

of the skin friction τz at both the lower and upper plates.

Rate of heat transfer Nu

The rate of heat transfer Nu is negative at the lower plate and positive at the

upper plate. We discuss the effect of each of the parameters on the rate of heat

transfer Nu with reference to the table 4.3 on the previous page.

Hall parameter m An increase in the value of the Hall parameter m,m = 2.0

leads to a decrease in the magnitude of the rate of heat transfer Nu at both the

lower and upper plates.

Suction parameter S Removal of suction S, S = 0 leads to a decrease in the

magnitude of the rate of heat transfer Nu at both the lower and upper plates.

Eckert number Ec A decrease in value of the Eckert number Ec,Ec = 0.02

leads to a decrease in the magnitude of the rate of heat transfer Nu at both the

lower and upper plates.

Pressure gradient A negative pressure gradient leads to an increase in the mag-

nitude of the rate of heat transfer Nu at both the lower and upper plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the the magni-
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tude of rate of heat transfer Nu at both the lower and upper plates.

Rate of mass transfer Sh

We use table 4.4 on page 86 to discuss the effect of changing each of the parame-

ters on the rate of mass transfer.

Schmidt number Sc An increase in the Schmidt number Sc, Sc = 0.7 leads to a

slight decrease in the magnitude of the rate of mass transfer Sh at both the lower

and upper plates as observed from table 4.4 on page 86.

Time An increase in the time t, t = 0.45 leads to an increase in the rate of mass

transfer Sh at both the lower and upper plates.

4.2 Fluid flow between two vertical parallel plates with
both plates moving

The fluid flow that is considered in this section is unsteady, laminar and fully

developed. The fluid is further taken to be incompressible, viscous, heat and elec-

trically conducting and flows between two infinite non conducting porous vertical

plates that are both moving in opposite directions relative to each other.

4.2.1 Mathematical formulation

Consider an unsteady, laminar, hydromagnetic fully developed fluid flowing be-

tween two parallel vertical moving plates. The physical configuration is described

in figure 4.10 on the following page. The parallel vertical plates are located on

the planes x∗ = −L and x∗ = L and they extend infinitely in the y∗ and z∗ axes.

A constant magnetic field of strength B∗0 is applied across the parallel plates in

the positive x∗ axis direction. A second material is injected uniformly from the

left and there is uniform suction from the right with velocity u∗0 applied at time

t∗ = 0. The equation of continuity for this incompressible fluid is given as ∂u
∗

∂x∗
= 0

which is integrated to give

u∗ = u∗0 (4.31)
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Figure 4.10. Fluid flow between moving vertical parallel plates with Hall effect

Existence of the Hall term gives rise to a z∗ component of the velocity and in this

case the velocity vector of the fluid is given by

q∗(x∗, t∗) = u∗0i+ v
∗(x∗, t∗)j + w∗(x∗, t∗)k (4.32)

Considering a pressure gradient which exists in the y∗ direction as a result of the

change in elevation and also considering the Boussinesq approximation, and taking

the density to depend on temperature and concentration, the body force term takes

the form of equation 2.61 on page 30. The component form of the equation of

conservation of momentum along the y∗ and z∗ axes with the electromagnetic force

terms takes the form

∂v∗

∂t∗
+ u∗0

∂v∗

∂x∗
= υ

∂2v∗

∂x∗2
+ g [β (T ∗ − T ∗1 ) + βc (C

∗ − C∗1)]

+
σμ2eH0

ρ(1 +m2)
(mw∗ − v∗) (4.33)

∂w∗

∂t∗
+ u∗0

∂w∗

∂x∗
= υ
∂2w∗

∂x∗2
−
σμ2eH0

ρ(1 +m2)
(mv∗ + w∗) (4.34)
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When the viscous term and Joule dissipation term are considered, the energy

conservation is given by the equation

∂T ∗

∂t∗
+ u∗0

∂T ∗

∂x∗
=

K

ρCp

∂2T ∗

∂x∗2
+
υ

Cp

((
∂v∗

∂x∗

)2
+

(
∂w∗

∂x∗

)2)

+
σμ2eH

2
0

ρCp (1 +m2)
(v∗2 + w∗2) (4.35)

The equation of concentration conservation is given as

∂C∗

∂t∗
+ u∗0

∂C∗

∂x∗
= D
∂2C∗

∂x∗2
(4.36)

The two plates are initially stationary but at time t∗ = 0 the plate at the boundary

x∗ = L∗ is set into motion with a velocity U0 along its plane while the plate at

x∗ = −L∗ is set into motion with the same velocity but in the opposite direction

to the plate at x∗ = L∗. The two plates are considered to be initially isothermal

at a temperature T∗1. At the time t = 0, the temperature of the plate at the

boundary x∗ = L∗ is raised to T∗2 and then kept constant thereafter. The con-

centration of the fluid at the plates is initially taken as C∗1. However, at time t

= 0, the concentration at the boundary x∗ = L∗ is increased to C∗2. Thereafter,

the concentrations are maintained at C∗1 and C
∗
2 at the boundaries x

∗ = −L∗ and

x∗ = L∗ respectively. Considering the no slip condition, the initial conditions for

this fluid flow configuration are given as

v∗(−L∗, 0) = v∗(L∗, 0) = 0
w∗(−L∗, 0) = w∗(L∗, 0) = 0
T ∗(−L∗, 0) = T ∗(L∗, 0) = T ∗1
C∗(−L∗, 0) = C∗(L∗, 0) = C∗1





t∗ = 0 (4.37)

The boundary conditions as described above for the fluid flow in consideration are

given as
v∗(−L∗, t∗) = −U0
w∗(−L∗, t∗) = 0
v∗(L∗, t∗) = U0
w∗(L∗, t∗) = 0
T ∗(−L∗, t∗) = T ∗1
T ∗(L∗, t∗) = T ∗2
C∗(−L∗, t∗) = C∗1
C∗(L∗, t∗) = C∗2






t∗ > 0 (4.38)
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The non dimensional forms of the equations governing the fluid flow in consider-

ation are
∂v

∂t
+ S
∂v

∂x
=
∂2v

∂x2
+Grθ +GcC +

M2

(1 +m2)
[mw − v] (4.39)

and
∂w

∂t
+ S
∂w

∂x
=
∂2w

∂x2
−

M2

(1 +m2)
[mv + w] (4.40)

The energy conservation equation is given as

∂θ

∂t
+ S
∂θ

∂x
=
1

Pr

∂2θ

∂x2
+ Ec

[(
∂v

∂x

)2
+

(
∂w

∂x

)2]

+
M2Ec

1 +m2
(v2 + w2) (4.41)

The mass conservation equation in non dimensional form is

∂C

∂t
+ S
∂C

∂x
=
1

Sc

∂2C

∂x2
(4.42)

The non dimensional form of the initial and boundary conditions (4.37) and (4.38)

are respectively given as

v(−L, 0) = v(L, 0) = 0
w(−L, 0) = w(L, 0) = 0
θ(−L, 0) = θ(L, 0) = 0
C(−L, 0) = C(L, 0) = 0





t = 0 (4.43)

v(−L, t) = −1
w(−L, t) = 0
v(L, t) = 1
w(L, t) = 0
θ(−L, t) = 0
θ(L, t) = 1
C(−L, t) = 0
C(L, t) = 1






t > 0 (4.44)

4.2.2 Solution

The solution for the velocities, temperature and concentration, is sought from the

system of equations (4.39), (4.40), (4.41) and (4.42) together with the initial con-

ditions (4.43) and the boundary conditions (4.44). Since the system of equations

is non linear, we apply the numerical approximation method of finite differences
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to get the solution to this system of equations. Replacing the derivatives in these

equations by finite differences and letting i and j represent x and t respectively at

the mesh points we have x±Δx = i±1, t±Δt = j±1. And the finite difference

equations take the form given below.

v (i, j + 1)− v(i, j)
Δt

=
v(i− 1, j)− 2v(i, j) + v(i+ 1, j)

(Δx)2

− S

{
v(i+ 1, j)− v(i, j)

Δx

}

+ Grθ(i, j) +GcC(i, j) +
M2

1 +m2
[mw(i, j)− v(i, j)]

(4.45)

w (i, j + 1)− w(i, j)
Δt

=
w(i− 1, j)− 2w(i, j) + w(i+ 1, j)

(Δx)2

− S

{
w(i+ 1, j)− w(i, j)

Δx

}

−
M2

1 +m2
[mv(i, j) + w(i, j)] (4.46)

θ (i, j + 1)− θ(i, j)
Δt

=
1

Pr

[
θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)

(Δx)2

]

− S

{
θ(i+ 1, j)− θ(i, j)

Δx

}

+ Ec

[(
v(i+ 1, j)− v(i, j)

Δx

)2
+

(
w(i+ 1, j)− w(i, j)

Δx

)2]

+
EcM2

1 +m2
[
v2(i, j) + w2(i, j)

]
(4.47)

C(i, j + 1)− C(i, j)
Δt

=
1

Sc

[
C(i− 1, j)− 2C(i, j) + C(i+ 1, j)

(Δx)2

]

− S

[
C(i+ 1, j)− C(i, j)

Δx

]

(4.48)
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The finite difference form of the initial conditions (4.43), and of the boundary

conditions (4.44), is given below.

v(−40, 0) = w(−40, 0) = 0
v(40, 0) = w(40, 0) = 0
θ(−40, 0) = θ(40, 0) = 0
C(−40, 0) = C(40, 0) = 0





j = 0 (4.49)

q(−40, j) = −1
q(40, j) = 1
θ(−40, j) = 0
θ(40, j) = 1
C(−40, j) = 0
C(40, j) = 1






j > 0 (4.50)

Rearranging the terms of equations (4.45) to (4.48) we can compute consecutive

values of the primary velocity v, secondary velocity w, the temperature and the

concentration C as shown in equations (4.51) to (4.54) given below.

v(i, j + 1) =
Δt

(Δx)2
[v(i− 1, j)− 2v(i, j) + v(i+ 1, j)]

−
SΔt

Δx
[v(i+ 1, j)− v(i, j)] + Δt

[
mM2

1 +m2

]

w(i, j)

+ Δt [Grθ(i, j) +GcC(i, j)]−

[
ΔtM2

1 +m2
− 1

]

v(i, j)

(4.51)

w(i, j + 1) =
Δt

(Δx)2
[w(i− 1, j)− 2w(i, j) + w(i+ 1, j)]

−
SΔt

Δx
[w(i+ 1, j)− w(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

w(i, j)−Δt

[
mM2

1 +m2

]

v(i, j)

(4.52)

θ(i, j + 1) =
Δt

Pr (Δx)2
[θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)]− S

Δt

Δx
θ(i+ 1, j)

+ Ec
Δt

(Δx)2
[
{v(i+ 1, j)− v(i, j)}2 + {w(i+ 1, j)− w(i, j)}2

]

+

[

S
Δt

Δx
+ 1

]

θ(i, j) + Ec
M2Δt

1 +m2
[
v2(i, j) + w2(i, j)

]
(4.53)
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C(i, j + 1) =
Δt

Sc (Δx)2
[C(i− 1, j)− 2C(i, j) + C(i+ 1, j)]

−
SΔt

Δx
C(i+ 1, j) +

{
SΔt

Δx
+ 1

}

C(i, j) (4.54)

4.2.3 Observations

Computations for the primary velocity u, secondary velocity w, temperature θ and

concentration C were made for Pr = 0.71, Gr = -0.5 corresponding to heating,

Gc =1.5 and M2 = 6.0 The parameters that were varied included the time t, Hall

parameter m, suction parameter S, Schmidt number Sc and the Ekcert number

Ec. The reference values represented in figures 4.11 on page 96 to figure 4.15 on

page 108 by the curve labelled “test”are t = 1, m = 1.0, S = 0.5, Sc = 0.4 and Ec

= 0.2 These values of the parameters were varied one at a time and input into a

computer program. Computations were done using equations (4.51) to (4.54), the

initial conditions (4.49)and the boundary conditions (4.50) and curves plotted for

each case. These results were then represented in the figures labelled figure 4.11

on page 96 to figure 4.15 on page 108.

(a)Primary velocity profiles

It is observed that the velocity reduces from that of the left plate to zero,

then it is maintained for most of the part of the flow region. As the right plate

is approached, the velocity increases up to the velocity of the plate at the right

plate. The effects of various parameters on the primary velocity of the fluid flow

were considered as discussed below from figure 4.11 on page 96.

Schmidt number

An increase in the value of the Schmidt number Sc, has no effect on the primary

velocity near the left plate but it leads to a decrease of the fluid velocity near the

right plate. This is because the mass diffusion parameter Sc is directly proportional

to the shear stresses and therefore an increase in Sc would result in retarding the

fluid motion and hence the velocity.

Hall parameter

As the value of the Hall parameter m increases, primary velocity increases
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slightly near the right plate. The velocity increases close to the left plate but then

soon after it starts decreasing.

Ekcert number

An increase in the value of the Ekcert number Ec leads to a decrease in the

primary velocity profiles near the left plate. However as the right plate is ap-

proached, the velocity decreases but close to the plate the velocity increases.

Suction

When there is no suction, there is a decrease of the fluid velocity near the right

plate but an increase in the velocity near the left plate.

Time

An increase in the time t leads to an increase of the fluid velocity next to

both right and left plates. This is because the time is directly proportional to the

velocity.

(b) Secondary velocity profiles

Generally, the secondary velocity is positive near the left plate but is reversed

near the right plate. The velocity increases from zero at the left plate attains a

maximum and then reduces to zero. As the right plate is approached, the velocity

increases in the reverse direction attains a maximum then reduces back to zero at

the plate.

Schmidt number

An increase in the value of the Schmidt number Sc, has no effect on the sec-

ondary velocity near the left plate but it leads to a decrease of the fluid velocity

near the right plate.

Hall parameter

An increase in the value of the Hall parameter m leads to a reduction in the

secondary velocity near both plates.

Suction

Absence of suction leads to a decrease in the secondary velocity near each of

the plates.
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Figure 4.11. Primary velocity profiles for vertical plates with both plates moving

Figure 4.12. Secondary velocity profiles for vertical plates with both plates
moving
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Ekcert number

An increase in the value of the Ekcert number Ec leads to a decrease in the

secondary velocity profiles near each of the plates.

Time

An increase in the time t leads to an increase of the secondary fluid velocity

next to both right and left plates. This is because the time is directly proportional

to the velocity.

(c) Temperature profiles

The effect of the various parameters on the temperature profiles is such that

the temperature increases slightly near the left plate, then reduces to zero which

is maintained in most of the flow region. As the right plate is approached, the

temperature begins to increase up to the velocity of the plate at the right plate.

Hall parameter

There is no significant effect of an increase in the Hall parameter m on the

temperature profiles near the right plate. However, there is a decrease in the

profiles near the left plate.

Suction

Absence of suction leads to a decrease in the temperature profiles near the

right plate and an increase in the profiles near the left plate.

Time

An increase in the time t leads to an increase of the fluid temperature next to

both right and left plates. This is because the time is directly proportional to the

temperature.

Eckert number

An increase in the Eckert number Ec leads to an increase in the temperature

profiles near each of the plates.

(d) Concentration profiles

Generally, the concentration of the fluid increases from zero at the left plate

to the concentration of the plate at the right plate. Much of the effect is therefore

experienced near the right plate.
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Figure 4.13. Temperature profiles for vertical plates with both plates moving

Figure 4.14. Temperature profiles near the left plate for vertical plates with
both plates moving
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Schmidt number

An increase in the Schmidt number Sc, leads to a faster rate of increase of the

concentration profiles from the cooler left plate towards the heated right plate.

Equivalently it can be stated that the concentration profiles decrease with an

increase in the value of the Schmidt number.

Suction

Absence of suction leads to a decrease in the concentration profiles near the

right plate.

Eckert number

An increase in the Eckert number Ec leads to an increase in the concentration

profiles near the right plate.

Time

An increase in the time t leads to an increase of the fluid concentration near the

right plate. This is because the time is directly proportional to the concentration.

4.3 MHD rotating system for a fluid flow between two
moving parallel porous plates with effect of Hall cur-
rent

MHD couette flow in a rotating system permeated by an inclined magnetic field

finds wide applications of designing high temperature cooling systems of nuclear

reactors, turbine blades and MHD power generators (Ghosh, 2002). In this section,

an unsteady MHD fluid is considered to be flowing between two parallel porous

plates with heat transfer while putting into consideration the effects of the Hall

current. We further consider the two plates to be moving and the whole system is

rotated with constant angular velocity. We consider the case where the fluid flows

between two horizontal parallel plates.

Consider an incompressible, viscous, heat conducting and electrically conduct-

ing fluid flowing between two infinite non conducting porous horizontal plates.

The fluid flow is unsteady and a magnetic field is applied perpendicular to the

plates. The upper plate is moving with a constant velocity U0 while the lower
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plate is moving with a velocity of the same magnitude but in the reverse direc-

tion. The induced magnetic field is neglected by assuming a very small magnetic

Reynold’s number. For this reason, the uniform magnetic field B0 is considered

as the total magnetic field acting on the fluid. The effects of the Hall current,

suction and injection are put into consideration while studying the fluid flow in

this current chapter. The whole system is then rotated with a constant angular

velocity Ω.

4.3.1 Mathematical formulation

Let the two electrically non conducting horizontal plates be located on the planes

y = ±h. The plates are of infinite length in the x and z directions i.e. −∞< x <∞

and −∞< z < ∞. We consider the fluid to be flowing between the two plates

under the influence of a constant pressure gradient dP
dx
in the x direction, and a

uniform injection from below and suction from above with a constant velocity v0.

The pressure gradient is applied at time t = 0. The upper and lower plates are

initially at rest but are set into motion at time t = 0. A uniform magnetic field

B0 acts on the whole system in the positive y direction as shown in figure 4.1

on page 70. However for this section the whole system is rotated with a con-

stant angular velocity Ω about the y axis. For the fluid flow being considered,

all quantities depend on the space coordinate y and time t except the pressure

gradient dP
dx
which is assumed constant. The velocity of the fluid is given as

q(y, t) = u(y, t)i + v0j + w(y, t)k and the applied magnetic field acts along the y

axis and is given by B0 = 〈0, B0, 0〉. When the strength of the magnetic field is

large, Ohm’s law is modified to include the Hall currents. The horizontal plates

are considered to be moving in opposite directions relative to each other with a

velocity U0 of equal magnitude.
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4.3.2 Governing equations in dimensional and non dimensional form

When the effect of rotation is considered, the coriolis force has to be included in

the momentum equation. Considering a rotating frame of reference with a uniform

angular velocity Ω along the y axis, the coriolis force will be given by 2Ωn × q .

Here n is a unit vector along the y axis. The equations of motion considered in

equation 4.1 and equation 4.2 on page 71 are then modified to become

∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗
+ 2Ωw∗ = −

1

ρ

dP

dx
+ υ
∂2u∗

∂y∗2
−
σμ2eH

2
0

ρ(1 +m2)
(u∗ +mw∗) (4.55)

∂w∗

∂t∗
+ v∗0
∂w∗

∂y∗
− 2Ωu∗ = υ

∂2w∗

∂y∗2
+
σμ2eH

2
0

ρ(1 +m2)
(mu∗ − w∗) (4.56)

Dividing each of the terms in equation (4.55) and equation (4.56) by
U30
υ
we have

υ

U30
×

(
∂u∗

∂t∗
+ v∗0
∂u∗

∂y∗
+ 2Ωw∗

)

= −
dP ∗

dx∗
×
υ

ρU30
+
μυ

U30
×
∂2u∗

∂y∗2

−
υ

U30
×
σμ2eH

2
0

ρ(1 +m2)
(u∗ +mw∗)

υ

U30
×

(
∂w∗

∂t∗
+ v∗0
∂w∗

∂y∗
− 2Ωu∗

)

=
υ

U30
× υ
∂2w∗

∂y∗2
+
υ

U30
×
σμ2eH

2
0

ρ(1 +m2)
(mu∗ − w∗)

Consider the rotation parameter Er = Ωυ
U2o
. On non dimensionalization of the

terms in equation (4.55) and equation (4.56) we have the momentum equations

given as
∂u

∂t
+ S
∂u

∂y
+ 2wEr = −

dP

dx
+
∂2u

∂y2
−
M2

1 +m2
(u+mw) (4.57)

∂w

∂t
+ S
∂w

∂y
− 2uEr =

∂2w

∂y2
+
M2

1 +m2
(mu− w) (4.58)

The energy conservation equation and the concentration equation are given

respectively as equation 4.59 and equation 4.60 which are similar to the equations

4.3 and 4.4 on page 71 considered in chapter four.

ρCp

(
∂T ∗

∂t∗
+ v∗0
∂T ∗

∂y∗

)

= K
∂2T ∗

∂y∗2
+ μ

((
∂u∗

∂y∗

)2
+

(
∂w∗

∂y∗

)2)

+
σμ2eH

2
0

1 +m2
(u∗2 + w∗2) (4.59)
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∂C∗

∂t∗
+ v∗0
∂C∗

∂y∗
= D
∂2C∗

∂y∗2
(4.60)

For the fluid flow in consideration, let the two plates be initially isothermal

at temperature T∗1. The temperature of the upper plate is then raised to T
∗
2 and

thereafter the lower and upper plates are maintained at two different but constant

temperatures T∗1 and T
∗
2 respectively. The plates are initially at rest but at time

t = 0 the upper plate is set into motion with a velocity U0 and the lower plate

is also set into motion with the same velocity but in the opposite direction. Let

the concentration at both plates be C∗1 initially. The concentration at the upper

plate is then increased to C∗2 at time t = 0 and the concentrations at each of

the boundaries are kept constant thereafter. From the definition of the fluid flow

problem under consideration, the initial and boundary conditions are respectively

given below as

u∗(−h∗, t∗) = w∗(−h∗, t∗) = 0
u∗(h∗, t∗) = w∗(h∗, t∗) = 0
T ∗(−h∗, t∗) = T ∗(h∗, t∗) = T ∗1
C∗(−h∗, t∗) = C∗(h∗, t∗) = C∗1





t∗ = 0 (4.61)

u∗(−h∗, t∗) = −U0
w∗(−h∗, t∗) = 0
u∗(h∗, t∗) = U0
w∗(h∗, t∗) = 0
T ∗(−h∗, t∗) = T ∗1
T ∗(h∗, t∗) = T ∗2
C∗(−h∗, t∗) = C∗1
C∗(h∗, t∗) = C∗2






t∗ > 0 (4.62)

The non dimensional form of the momentum conservation equations, the energy

equation and the mass conservation equation is given from equations (4.57), (4.58),

(4.59) and (4.60) above as equations (4.63) to equation (4.66) below.

∂u

∂t
+ S
∂u

∂y
+ 2wEr = −

dP

dx
+
∂2u

∂y2
−
M2

1 +m2
(u+mw) (4.63)

∂w

∂t
+ S
∂w

∂y
− 2uEr =

∂2w

∂y2
+
M2

1 +m2
(mu− w) (4.64)

∂θ

∂t
+ S
∂θ

∂y
=
1

Pr

∂2θ

∂y2
+ Ec

∂q

∂y
∙
∂q̄

∂y
+
EcM 2

1 +m2
qq̄ (4.65)
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∂C

∂t
+ S
∂C

∂y
=
1

Sc

∂2C

∂y2
(4.66)

The non dimensional forms of the initial conditions (4.61) are given as equations

(4.67) and the boundary conditions in the equation (4.62) are given in non dimen-

sional form as equations (4.68).

q(−L, 0) = q(L, 0) = 0
θ(−L, 0) = θ(L, 0) = 0
C(−L, 0) = C(L, 0) = 0





t = 0 (4.67)

q(−L, t) = −1
q(L, t) = 1
θ(−L, t) = 0
θ(L, t) = 1
C(−L, t) = 0
C(L, t) = 1






t > 0 (4.68)

4.3.3 Solution

We seek solution of the system of equations (4.63),(4.64),(4.65) and (4.66) together

with the initial conditions (4.67) and the boundary conditions (4.68). The sys-

tem of equations is non linear and we apply the numerical approximation method

of finite differences in the solution. Using forward differences, the finite differ-

ence form of equations governing the fluid flow under consideration i.e. equations

(4.63),(4.64),(4.65) and (4.66) have the form

u (i, j + 1)− u(i, j)
Δt

= −
dP

dx
+
u(i− 1, j)− 2u(i, j) + u(i+ 1, j)

(Δy)2

− S

{
u(i+ 1, j)− u(i, j)

Δy

}

− 2Erw(i, j)−
M2

1 +m2
[u(i, j) +mw(i, j)]

(4.69)

w (i, j + 1)− w(i, j)
Δt

=
w(i− 1, j)− 2w(i, j) + w(i+ 1, j)

(Δy)2

− S

{
w(i+ 1, j)− w(i, j)

Δy

}

+ 2Eru(i, j)
M2

1 +m2
[mu(i, j)− w(i, j)] (4.70)
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θ (i, j + 1)− θ(i, j)
Δt

=
1

Pr

[
θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)

(Δy)2

]

− S

{
θ(i+ 1, j)− θ(i, j)

Δy

}

+ Ec

[(
u(i+ 1, j)− u(i, j)

Δy

)2
+

(
w(i+ 1, j)− w(i, j)

Δy

)2]

+
EcM2

1 +m2
[
u(i, j)2 + w(i, j)2

]
(4.71)

C(i, j + 1)− C(i, j)
Δt

=
1

Sc

[
C(i− 1, j)− 2C(i, j) + C(i+ 1, j)

(Δy)2

]

− S

[
C(i+ 1, j)− C(i, j)

Δy

]

(4.72)

The finite difference form of the initial conditions (4.67) and the boundary condi-

tions (4.68) is given below.

q(−40, 0) = q(40, 0) = 0
θ(−40, 0) = θ(40, 0) = 0
C(−40, 0) = C(40, 0) = 0





j = 0 (4.73)

q(−40, j) = −1
q(40, j) = 1
θ(−40, j) = 0
θ(40, j) = 1
C(−40, j) = 0
C(40, j) = 1






j > 0 (4.74)

In this case i and j represent the space coordinate y and the time coordinate t

respectively. Rearranging each of these equations enables us to compute consecu-

tive terms of the primary velocity u, the secondary velocity w, the temperature θ

and the concentration C using the initial values and boundary conditions given in

equations (4.73) and (4.74). Rearrangement of the equations (4.69) to (4.72) gives

equations (4.75) to (4.78) below. The solutions to these equations together with

the initial conditions (4.67) and boundary conditions (4.68) are computed using
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an appropriate computer program.

u(i, j + 1) = −Δt
dP

dx
+
Δt

(Δy)2
[u(i− 1, j)− 2u(i, j) + u(i+ 1, j)]

− 2ErΔtw(i, j)−
SΔt

Δy
[u(i+ 1, j)− u(i, j)]

−

[
ΔtM2

1 +m2
− 1

]

u(i, j)−Δt

[
mM2

1 +m2

]

w(i, j) (4.75)

w(i, j + 1) =
Δt

(Δy)2
[w(i− 1, j)− 2w(i, j) + w(i+ 1, j)]

−
SΔt

Δy
[w(i+ 1, j)− w(i, j)] + Δt

[
mM2

1 +m2

]

u(i, j)

+ 2ErΔtw(i, j)−

[
ΔtM2

1 +m2
− 1

]

w(i, j) (4.76)

θ(i, j + 1) =
Δt

Pr (Δy)2
[θ(i− 1, j)− 2θ(i, j) + θ(i+ 1, j)]− S

Δt

Δy
θ(i+ 1, j)

+ Ec
Δt

(Δy)2
[
{u(i+ 1, j)− u(i, j}2 + {w(i+ 1, j)− w(i, j}2

]

+ Ec
M2Δt

1 +m2
[
u(i, j)2 + w(i, j)2

]
+

[

S
Δt

Δy
+ 1

]

θ(i, j) (4.77)

C(i, j + 1) =
Δt

Sc (Δy)2
[C(i− 1, j)− 2C(i, j) + C(i+ 1, j)]

−
SΔt

Δy
C(i+ 1, j)

+

{
SΔt

Δy
+ 1

}

C(i, j) (4.78)

4.3.4 Calculation of the rate of mass transfer, skin friction and the

rate of heat transfer

The equations derived in section 4.1.4 on page 75 are used to obtain values of the

skin friction, the rate of heat transfer as well as the rate of mass transfer on the

flow field for the rotation parameter Er , Schmidt number Sc, Hall parameter m,

Suction parameter S, Eckert number Ec, Pressure gradient dP
dx
and time t. The

equations used are therefore stated below as equations (4.79) to (4.86).
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The skin friction on the lower and upper plates in the direction of the x axis is

obtained respectively from equations 4.79 and 4.80 given below.

τx = −(b1−2d1l + f1t) (4.79)

τx = −(b1+2d1l + f1t) (4.80)

Similarly, the skin friction on the lower and upper plates in the direction of the z

axis is obtained from equations 4.81 and 4.82 given below.

τz = −(b2−2d2l + f2t) (4.81)

τz = −(b2+2d2l + f2t) (4.82)

The rate of heat transfer on the lower and upper plates is obtained from equations

4.83 and 4.84 below.

Nu = −(b3−2d3l + f3t) (4.83)

Nu = −(b3+2d3l + f3t) (4.84)

The rate of mass transfer on the lower and upper plates is calculated respectively

from equations 4.85 and 4.86 below.

Sh = −(b4−2d4l + f4t) (4.85)

Sh = −(b4+2d4l + f4t) (4.86)

4.3.5 Observations and discussions

Computations for the primary velocity u, secondary velocity w, temperature θ and

concentration C were made for various parameters with Pr = 0.71 and M2 = 6.0.

The parameters that were varied included the pressure gradient dP
dx
, time t, Hall

parameter m, suction parameter S, Schmidt number Sc, rotation parameter Er
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and the Ekcert number Ec. The reference values represented in figures 4.16 to

4.23 by the curve labeled “test”are dP
dx
= 5.0, m = 1.0, S = 0.5, Sc = 0.4, Er

= 0.05 and Ec = 0.2. These values of the parameters were varied one at a time

and input into a computer program. Computations were done using equations

(4.75) to (4.78), the initial conditions (4.67) and the boundary conditions (4.68)

and curves were plotted for each case. These results were then represented in the

figures labelled figure 4.16 to figure 4.23.

The values of velocities, temperature, and concentration obtained in section 4.3.3

are used for different values of the rotation parameter Er, Schmidt number Sc,

Hall parameter m, Suction parameter S, Eckert number Ec, Pressure gradient dP
dx

and time t are used to obtain the values of the skin friction and the rates of heat

and mass transfer. The Tables represent the variation in the rates of heat and

mass transfer as well as the skin friction on the laminar thermal, concentration and

velocity boundary layers respectively. The reference values used for the parameters

are Er=0.05 for the rotation parameter , Sc=0.4 for the Schmidt number , m=1.0

for the Hall parameter, S= -0.5 for the Suction parameter, Ec=0.2 for the Eckert

number, dP
dx
= 5.0, for the pressure gradient and t=0.25 for the time. Each of

the parameters is varied and the results are presented in tables 4.5 on page 114 to

table 4.8 on page 117. The observations made from these tables are then discussed

after the concentration profiles.

a) Primary velocity profiles

We discuss how each of the parameters affects the primary velocity profiles of

the fluid flow as represented by the graphs in figure 4.16 on the next page. For

clarity, the profiles near the lower plate are shown in figure 4.17 on page 109 while

the profiles near the upper plate are shown in figure 4.18 on page 109.

Pressure gradient

From figures 4.16, 4.17 and 4.18 it is observed that very close to the lower

plate, both a positive and negative pressure gradient leads to a reduced fluid flow

velocity until a free stream velocity is reached. However, a negative pressure

gradient aids the fluid flow for a small region before the free stream velocity is
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Figure 4.15. Concentration profiles for vertical plates with both plates moving

Figure 4.16. Primary velocity profiles in a rotating system for horizontal plates
with both plates moving
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Figure 4.17. Primary velocity profiles near the lower plate in a rotating system
for horizontal plates with both plates moving

Figure 4.18. Primary velocity profiles near the upper plate in a rotating system
for horizontal plates with both plates moving
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achieved. This means that the inertia force dominates the fluid flow close to

the lower plate. For a negative pressure gradient, the velocity increases further

from the free stream velocity to the velocity of the upper plate. It is observed that

close to the lower boundary, the primary velocity decreases but then soon after the

velocity is maintained at a constant level except for the negative pressure gradient

as discussed above. As the upper boundary is approached, the velocity in the case

of positive pressure gradient reduces up to a point when u = 0 (stationary point)

and then it increases suddenly until it reaches the velocity of the plate.

Suction

When there is no suction, the fluid velocity reduces in a lesser degree in the

negative direction. The velocity starts reducing from the free stream velocity up

to stagnation point and then increases up to the velocity of the upper plate at a

faster rate as observed in figure 4.18 on the preceding page. The velocity profiles

are thus reduced near the upper plate.

Hall parameter

As the value of the Hall parameter m increases, figure 4.16 on page 108 shows

that the reduction in the velocity is less and the free stream velocity is higher in the

negative direction. From figure 4.18 on the preceding page it is observed that as the

upper plate is approached after stagnation velocity is reached, the primary velocity

is more for increased value of the Hall parameter. This is because the effective

conductivity decreases with increase in the Hall parameter which then reduces the

magnetic dumping force on the velocity causing the velocity to increase.

Rotation parameter

As the value of the rotation parameter Er increases, figure 4.16 on page 108

shows that the reduction in the velocity is more. From figure 4.18 on the preceding

page it is observed that as the upper plate is approached after stagnation velocity is

reached, the primary velocity is less for increased value of the rotation parameter.

b) Secondary velocity profiles

We discuss how each of the parameters affects the secondary velocity profiles of

the fluid flow as observed in figure 4.19 on page 114. It is observed that there is a
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flow in the negative direction near the lower plate for all cases. With the exception

of the case of negative pressure gradient, the velocity is sustained in the reversed

direction for the larger part of the flow region. The velocity then reduces, reaches

a stagnation point and then increases in the positive direction up to a maximum

and then reduces to zero at the upper plate.

Pressure gradient

Close to the lower plate, both a negative and positive pressure gradient leads

to the fluid flowing in the negative direction. For a positive pressure gradient,

a maximum is attained and then the velocity reduces to a constant velocity in

the negative direction. The velocity then reduces further as the upper plate is

approached, reaches a stagnation point and then increases to a maximum in the

positive direction and then reduces to zero at the upper plate. For a negative

pressure gradient, the velocity increases in the negative direction near the lower

plate but soon after reduces to zero then increases to a lesser maximum in the

positive direction. This is maintained for some time but as the upper plate is

approached the velocity increases further to a higher maximum and then reduces

to zero at the plate.

Suction

Absence of suction leads to a similar behavior as the case for a positive pressure

gradient. However the maximum attained in the absence of suction is lower than

the case when suction is considered to exist.

Hall parameter

An increase in the magnitude of the Hall parameter leads to a similar behavior

as the case for a positive pressure gradient. However the maximum attained with

an increase in the Hall parameter is lower than the case when a smaller value of

the Hall parameter is considered.

Rotation parameter

An increase in the magnitude of the rotation parameter leads to a similar

behavior as the case for a positive pressure gradient. The maximum attained with

an increase in the rotation parameter is higher than the case when a smaller value



112

of the rotation parameter is considered.

c) Temperature profiles

A change in each of the parameters leads to a slight increase of the temperature

profiles near the lower plate. This temperature then reduces to zero and then

increases to the temperature of the upper plate as the upper plate is approached.

Significant effects are observed as you get closer to the upper plate. Considering

figure 4.20, we discuss each of the parameters. To clearly see the profiles near

the lower and upper plates consider respectively the figure 4.21 on page 115 and

figure 4.22 on page 116.

Pressure gradient

When the imposed pressure gradient is negative, the temperature increases

slightly near the lower plate then reduces to zero as seen in figure 4.21 on page 115.

The change is however not significant near the upper plate.

Hall parameter

An increase in the Hall parameter m leads to a lesser increase in the temper-

ature profiles near the lower plate. There is a slight decrease in the temperature

profiles near the upper plate. This is because an increase in the Hall parameter

leads to a decrease in the Joule dissipation.

Suction

Absence of suction leads to the temperature increasing at a lesser extent near

the lower plate. The rate of increase is more near the upper plate as observed

from figure 4.22 on page 116. The temperature profiles are however reduced near

the upper plate.

Rotation parameter

A reduction in the value of the rotation parameter Er leads to reduced tem-

perature profiles near both the lower and upper plates.

d) Concentration profiles

From figure 4.23, it is observed that there is little effect produced by the change

in the parameters near the lower plate but the effects are observed as you approach

the upper plate.
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Schmidt number

An increase in the value of the Schmidt number Sc causes the concentration

to start increasing closer to the upper plate. The concentration profiles are thus

reduced near the upper plate. This is because Sc is inversely proportional to the

concentration and therefore an increase in Sc leads to a decrease in the concentra-

tion profiles.

Suction

Removal of suction leads to the concentration profiles being reduced near the

upper plate.

e) Skin friction τx along the plates

The skin friction τx along the lower plate is positive while that along the upper

plate is negative. We discuss the effect of changing each of the parameters on the

skin friction τx with reference to the table 4.5 on the following page.
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Figure 4.19. Secondary velocity profiles in a rotating system for horizontal plates
with both plates moving

lower plate upper plate

m S Ec dP
dx

Er t τx τx
Test 1 -0.5 0.2 5 0.05 0.25 261.3016759 -270.8250345
2 2 -0.5 0.2 5 0.05 0.25 260.2973563 -269.8118537
3 2 0 0.2 5 0.05 0.25 258.5962882 -268.1016467
5 2 -0.5 0.02 -5 0.05 0.25 432.2197712 -443.8879626
6 2 -0.5 0.02 5 0.5 0.25 260.531824 -270.0495939
7 1 -0.5 0.2 5 0.05 0.45 474.15236 -483.6557186

Table 4.5. Skin friction along the plates for a fluid flow between two horizontal
parallel plates in a rotating system
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Figure 4.20. Temperature profiles in a rotating system for horizontal plates with
both plates moving

Figure 4.21. Temperature profiles near the lower plate in a rotating system for
horizontal plates with both plates moving
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Figure 4.22. Temperature profiles near the upper plate in a rotating system for
horizontal plates with both plates moving

Figure 4.23. Concentration profiles in a rotating system for horizontal plates
with both plates moving
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lower plate upper plate

m S Ec dP
dx

Er t τz τz
Test 1 -0.5 0.2 5 0.05 0.25 -3.321048761 0.478593263
2 2 -0.5 0.2 5 0.05 0.25 -3.597517995 0.75806557
3 2 0 0.2 5 0.05 0.25 -3.697778864 0.866512421
5 2 -0.5 0.02 -5 0.05 0.25 0.807476216 -3.781148791
6 2 -0.5 0.02 5 0.5 0.25 -3.22895711 0.394285985
7 1 -0.5 0.2 5 0.05 0.45 -4.84090557 1.998450072

Table 4.6. Skin friction perpendicular to two horizontal parallel plates for a
rotating system

lower plate upper plate

m S Ec dP
dx

Er t Nu Nu
Test 1 -0.5 0.2 5 0.05 0.25 -5.642631146 2.807074714
2 2 -0.5 0.2 5 0.05 0.25 -5.368511965 2.526530436
3 2 0 0.2 5 0.05 0.25 -5.220682905 2.37228143
4 2 -0.5 0.02 5 0.05 0.25 -4.722813231 1.872199038
5 2 -0.5 0.02 -5 0.05 0.25 -4.879271701 2.03295179
6 2 -0.5 0.02 5 0.5 0.25 -4.723015038 1.872410216
7 1 -0.5 0.2 5 0.05 0.45 -9.022513491 6.186957058

Table 4.7. Rates of heat transfer for a fluid flow between two parallel horizontal
plates in a rotating system

lower plate upper plate
Sc t Sh Sh

Test 0.4 0.25 -4.651773008 1.800199631
1 0.7 0.25 -4.651773001 1.800199623
7 0.4 0.45 -7.232562064 4.380988686

Table 4.8. Rates of mass transfer for a fluid flow between two parallel horizontal
plates in a rotating system
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Hall parameter m An increase in the value of the hall parameter m,m = 2.0

leads to a decrease in the magnitude of the skin friction τx along both the lower

and upper plates.

Suction parameter S Removal of suction S = 0 leads to a decrease in the mag-

nitude of the skin friction τx along both the lower and upper plates.

Pressure gradient A negative pressure gradient dP
dx
, dP
dx
= −5.0 leads to an in-

crease in the magnitude of the skin friction τx along both the lower and upper

plates.

Rotation parameter Er An increase in the rotation parameter Er = 0.5 leads

to an increase in the magnitude of the skin friction τx along both the lower and

upper plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the magnitude

of the skin friction τx along both the lower and upper plates.

f) Skin friction τz normal to the plates

The skin friction at the lower plate is negative while that at the upper plate is

positive except for the negative pressure gradient. We discuss the effect of chang-

ing each of the parameters on the skin friction τz with reference to the table 4.6

on the previous page.

Hall parameter m An increase in the value of the hall parameter m,m = 2.0

leads to an increase in the magnitude of the skin friction τz at both the lower and

upper plates.

Suction parameter S Removal of suction S, S = 0 leads to an increase in the

magnitude of the skin friction τz at both the lower and upper plates.

Pressure gradient A negative pressure gradient leads to a reversal in the direc-

tion of the skin friction τz at both the lower and upper plates.

Rotation parameter Er An increase in the rotation parameter Er = 0.5 leads

to a decrease in the magnitude of the skin friction τz at both the lower and upper

plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the magnitude

of the skin friction τz at both the lower and upper plates.
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g) Rate of heat transfer Nu

The rate of heat transfer Nu is negative at the lower plate and positive at the

upper plate. We discuss the effect of each of the parameters on the rate of heat

transfer Nu with reference to the table 4.7 on page 117.

Hall parameter m An increase in the value of the hall parameter m,m = 2.0

leads to a decrease in the magnitude of the rate of heat transfer Nu at both the

lower and upper plates.

Suction parameter S Removal of suction S, S = 0 leads to a decrease in the

magnitude of the rate of heat transfer Nu at both the lower and upper plates.

Eckert number Ec A decrease in value of the Eckert number Ec,Ec = 0.02

leads to a decrease in the magnitude of the rate of heat transfer Nu at both the

lower and upper plates.

Pressure gradient A negative pressure gradient leads to an increase in the mag-

nitude of the rate of heat transfer Nu at both the lower and upper plates.

Rotation parameter Er An increase in the rotation parameter Er,Er = 0.5

leads to an increase in the magnitude of the rate of heat transfer Nu at both the

lower and upper plates.

Time t An increase in the time t, t = 0.45 leads to an increase in the magnitude

of the rate of heat transfer Nu at both the lower and upper plates.

h) Rate of mass transfer Sh

The rate of mass transfer Sh is affected by only two parameters namely the

Schmidt number Sc and time t. We use table 4.8 to discuss the effect of changing

each of the parameters on the rate of mass transfer.

Schmidt number Sc An increase in the Schmidt number Sc, Sc = 0.7 leads to a

slight decrease in the magnitude of the rate of mass transfer Sh at both the lower

and upper plates as observed from table 4.8 on page 117.

Time An increase in the time t, t = 0.45 leads to an increase in the magnitude of

the rate of mass transfer Sh at both the lower and upper plates.

The conclusion made about the study that has been carried out is given in the



120

next chapter. The recommendations to areas of further research are also given in

this chapter.
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Chapter 5

conclusion and recommendations

In this chapter, a conclusion is given with reference to the results obtained in

chapters three and four. Recommendations to further areas of research as well as

some published work are also given in this chapter.

5.1 Conclusion

The study that we have carried out considered the combined effects of suction,

injection and magnetic field while putting into account the Hall current effect in

a MHD fluid flow between two parallel straight plates. The system is further con-

sidered to be rotating. One objective of this study was to investigate the effect of

various fluid flow parameters on the velocity, temperature and concentration pro-

files. Another objective was to study how these parameters affect the skin friction,

the rate of heat transfer and the rate of mass transfer at the plates. The param-

eters that were considered included the Hall parameter m, the Schimdt number

Sc, the suction parameter S, the Eckert number Ec, the pressure gradient dP
dx
, the

rotation parameter Er and the time t. We gradually came up with the fluid flow

model by beginning with a simple model of the fluid flow and then building on

it. In chapter two a general fluid flow between two parallel plates with constant

suction and injection was considered. The cases of a fluid flow between horizon-

tal plates and later a fluid flow between vertical plates was analysed. Chapter

three involved the study of an electrically conducting fluid between two parallel

plates with one plate moving and the other plate being stationary. The effects of

constant suction and injection and Hall current were also considered. Later on in

chapter four, we considered a related model but this time with both plates moving

in opposite directions. There were three cases considered in this chapter. The first

case was that of a hydromagnetic fluid flow between two horizontal parallel plates
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with suction, injection and Hall current effects. Then a case of MHD fluid flow

between two vertical parallel plates with the effects of suction, injection and Hall

current. Finally a MHD fluid flow between two horizontal parallel plates with

suction, injection and Hall current effects was considered with the whole system

rotating with a constant angular velocity. In the two cases involving a fluid flow

between two parallel horizontal plates, we considered the effects of the parameters

mentioned above on the skin friction, the rate of heat transfer and the rate of mass

transfer.

From chapter three it was observed that the primary and secondary velocity pro-

files near the stationary plate were affected by varying the parameters for the case

of horizontal plates but not for the vertical plates. On the other hand the fluid

flow near the moving plate experience the effect of varying the various parameters

for both the horizontal and vertical plate systems. It was observed from chapter

four that the primary and secondary velocity profiles, the temperature profiles and

concentration profiles where both plates were moving were affected for the cases of

horizontal plates as well as for the vertical plates. We conclude by discussing the

effect of each of these parameters on the velocity, temperature and concentration

profiles, the skin friction and the rates of heat and mass transfer.

Increase in the Hall parameter m

This leads to an increase in the primary velocity profiles and a decrease in the

secondary velocity profiles near both plates for the moving horizontal plates with

or without rotation which is similar to the case for horizontal and vertical plates

where one plate was moving. There is initially an increase in the primary velocity

near the plate moving with negative velocity for vertical plates but soon after

the velocities start decreasing. The increase in the primary velocity profiles for

vertical plates is slight near the plate moving with positive velocity. This is due

to an increase in the cyclotron frequency and/or electron collision times. Further

an increase in the Hall parameter leads to a decrease in the effective conductivity

which reduces the magnetic dumping force on the velocity leading to an increase

in the velocity.
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There is a decrease in the temperature profiles near the horizontal and verti-

cal moving plate when one plate is moving. Similarly there is a decrease in the

temperature profiles near both plates for horizontal moving plates with or without

rotation. The temperature also decreases near the plate moving in the negative

direction for moving vertical plates. There is a decrease in the skin friction τx

along each plate for the moving horizontal plates with or without rotation and an

increase in the skin friction τz in the perpendicular direction for both cases when

the system is rotating and when it is not rotating. The rate of heat transfer Nu

decreases near all the plates for the moving horizontal plates both with and with-

out rotation. This represents a reduction in the rate of convective heat transfer

near the plates.

Removal of suction

Removal of suction leads to an increase in both the primary and secondary veloc-

ity profiles near both plates for the horizontal plates with one plate moving but a

decrease in the velocity profiles for the vertical plates. There is a decrease in both

the primary and secondary velocity profiles for horizontal moving plates without

rotation. When the horizontal plate system is rotated, the primary and secondary

velocities decrease except the primary velocities near the lower plate that increase.

The primary and secondary velocity profiles decrease near the plates for vertical

plates except the primary velocity profiles near the plate moving with negative

velocity which increase. The temperature profiles near both plates decrease for

horizontal moving plates with or without rotation. The temperature profiles for

the moving vertical plates increase near the plate moving with negative velocity

but decrease near the plate moving with positive velocity. The temperature pro-

files increase near the moving plate for the horizontal plates but decrease near the

moving plate for vertical plates when one of the plates was moving. There is a

decrease in the concentration profiles near the upper plates for horizontal moving

plates with or without rotation and also near the plate moving with positive ve-

locity for vertical moving plates. This is the same observation near the moving

plate for vertical plates when one plate is moving but there is an increase in the
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concentration profiles for the horizontal plates when one plate is moving. There

is decrease in the skin friction τx along each plate for the horizontal plates with or

without rotation, an increase in the skin friction τz in the perpendicular direction

for the case when the system is or is not rotating. The rate of heat transfer Nu

decreases near all the plates for horizontal plates both with and without rotation.

This represents a reduction in the rate of convective heat transfer near the plates.

Negative pressure gradient This leads to an increase in the primary and sec-

ondary velocities near both plates for the horizontal plates when one plate is

moving. There is a decrease in the primary and secondary velocities near the

lower plate for the moving horizontal plates and an increase in these velocities

near the upper plate. There is an increase in the secondary velocity profiles and

primary velocity profiles near the upper plate for horizontal moving plates in a

rotating system. The primary velocity profiles near the lower plate for a rotating

system are however different in that they initially decrease then they increase.

The secondary velocity profiles near the lower plate decreases.

The temperature profiles decrease near the moving plate for horizontal plates

when one plate is moving. The temperature profiles near both plates for horizon-

tal plates decrease either with a rotating system or without rotation. There is an

increase in the skin friction τx along each plate for the horizontal plates with or

without rotation. The value of the skin friction τz in the perpendicular direction

for both cases when the system is rotating and when it is not rotating reverses

with a negative pressure gradient. The rate of heat transfer Nu increases near all

the plates for horizontal plates both with and without rotation. This represents

an increase in the rate of convective heat transfer near the plates.

Eckert number Ec A decrease in the Eckert number Ec leads to a decrease in

the temperature profiles near both plates for moving horizontal plates with or

without rotation. This is the same observation for the profiles near the moving

plate for both horizontal and vertical plates when one plate is moving. An increase

in Ec leads to an increase in the temperature profiles for moving vertical plates

which is the same effect for the moving horizontal plates with or without rotation.
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For the moving vertical plates, an increase in Ec leads to a decrease in the pri-

mary and secondary velocity profiles except near the plate moving with positive

velocity where the velocity which was decreasing starts increasing. There is also

an increase in the concentration profiles near this plate. A decrease in the Eckert

number leads to an increase in the primary and secondary profiles near the moving

plate for vertical plates when one plate is moving. The rate of heat transfer Nu

decreases near all the plates for horizontal plates both with and without rotation

for decreasing value of Ec. This represents a reduction in the rate of convective

heat transfer near the plates.

Increase in the Schmidt number Sc

An increase in the Schmidt number leads to a decrease in the concentration profiles

near the moving plates for both horizontal and vertical plates. For the moving

horizontal plates either with or without rotation, this leads to a decrease in the

concentration profiles near the upper plate. There is a decrease in the primary

velocity profiles as well as the concentration profiles for the flow between verti-

cal plates near the plate moving with positive velocity. There is decrease in the

secondary velocity profiles near both plates for the vertical plates. The Schmidt

number is directly proportional to the shear stresses which causes the decrease in

the velocity profiles. Further the Schmidt number is inversely proportional to the

concentration which explains the decrease in the concentration profiles. The rate

of mass transfer Sh decreases slightly near all the plates for horizontal plates both

with and without rotation. This represents a reduction in the rate of convective

mass transfer near the plates possibly due to the decreased concentration.

Increase in the rotation parameter Er For a rotating system of a fluid flow

between two moving horizontal plates we observe that an increase in Er leads to

a decrease in the primary velocity profiles near both plates, an increase in the

secondary velocity profiles near both plates and an increase in the temperature

profiles near the upper plate. There is an increase in the skin friction τx along

each plate for the horizontal plates with rotation, a decrease in the skin friction

τz in the perpendicular direction for the case when the system is rotating and an
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increase in the rate of heat transfer Nu near both plates for horizontal plates with

rotation. The increased skin friction represent an increase in the shear stress by

the fluid on the plates. The increased rate of heat transfer represents an increase

in the rate of convective heat transfer near the plates.

Increase in the time t This leads to an increase in the primary and secondary

velocity profiles, the temperature profiles and the concentration profiles near the

plates for all cases that are considered. This can be supported by the fact that

the time is directly proportional to each of these quantities.

5.2 Recommendations

In this study we considered the flow of an electrically conducting fluid between

parallel plates in the presence of a strong magnetic field whereby the system was

rotating. The flow was considered to be fully developed and therefore laminar.

The present work can provide a basis for further research while including the

following considerations:

• Applied magnetic field inclined at an angle

• Variable magnetic field

• Fluid flow between semi finite plates

• Variable suction/ injection

• Variable fluid viscosity

• Fluid flow in the turbulent boundary layer

5.3 Research papers

• Kinyanjui M., Kirima E.M., Kwanza J.K., and Abonyo J.O. Investigations

of the skin friction and the rates of heat and mass transfer for a MHD fluid

flow in a rotating system. Submitted to JAGST for publication.
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• Abonyo, J.O., Kinyanjui, M.N, and Mwenda, E.(2008) Investigating the

effects of Hall and Ion slip currents on convective flow in rotating fluid with

wall temperature oscillations. JAGST 10, 103-122.

• Abonyo, J.O., Kinyanjui, M.N, and Mwenda, E. Finite difference Analysis

of MHD stokes problem for a heat generating fluid with Hall current pub-

lished in the proceeding of the International conference of Engineering and

Mathematics, ENMA 2006 held in Bilbao, Spain, July 10-11, 2006.
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