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ABSTRACT

Estimation of finite population total using model calibration and model assistance

on semiparametric and nonparametric models and in the presence of auxilliary

information is considered. In particular, a class of estimators based on penalized

splines are proposed for one stage and two stage sampling. Firstly, estimation

of finite population total using internal calibration, model calibration and model

assistance on nonparametric models based on kernel methods have been consid-

ered by several authors. We have considered such model calibration and model

assistance estimation based on penalized splines and extended the estimation to

two stage sampling. Secondly, estimation of finite population total using inter-

nal calibration and model assistance on semiparametric models based on kernel

methods have also been considered by several authors. In this thesis, we have

extended this to consinder model calibration, based the estimation on penalized

splines and extended the estimation to two stage sampling consindering two sce-

narios. In the first scenario, the auxilliary information is only available at the

cluster level and in the second scenario, the auxilliary information is available

both at the element level and at the cluster level. We have shown that the pro-

posed estimators are robust in the face of misspecified models, are asymptotic

design unbiased, have reduced model bias, are consistent and asymptotic normal.

We have shown that estimators based on penalized splines perform better than

corresponding kernel based estimators while model calibrated estimators perform

better than internally calibrated estimators. We also recommend some areas for

further research.

xiv



CHAPTER ONE

1.0 INTRODUCTION

1.1 Background Information

Use of auxiliary information in estimation of missing values and descriptive

parameters of a survey variable in a finite population has become fairly common.

Census data, administrative registers and previous surveys provide a wide and

growing range of variables eligible to be employed to increase the precision of

estimation procedures. A simple way to incorporate known population totals of

auxiliary variables is through ratio and regression estimation. More general situ-

ations are handled by means of generalized regression estimation (Sarndal,1980)

and calibration estimation (Deville and Sarndal, 1992). These methods have been

proposed within a model assisted approach to inference for the finite population.

The processes of estimation of population total and mean starts first with the

point estimation of the missing values based on auxiliary variable. Then tecniques

like calibration and model assistance are employed on the values to estimate

population parameters and or any other required analysis of the data are carried

out. There are various methods of handling missing data. Roughly, they can

be classified into four groups; complete case analysis, imputation based methods,

weighting methods and fully model based procedures.

In complete case analysis, if some variables are not observed for some of the units,

these units are omitted from the analysis. The complete cases are then analyzed

as they are. This method can lead to serious biases and inefficiency. (Little and

Rubin, 1987).

The concept of multiple imputations refers to replacing each missing value with

more than one imputed value. The goal is to combine the simplicity of imputation
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strategies with unbiasedness.(Rubin and Schenker,1986, Little and Rubin,1987).

A problem with simple imputation procedure is that this may yield inconsistent

point estimates if the data is not missing at random, that is, if the missingness

depend on either the unobserved or observed value. Another problem is that the

variability of the estimators is underestimated since imputed values are treated

as observed values, (Tanner and Wong, 1987).

The fully model based procedures rely on modeling the missing data using estima-

tion methods such as maximum likelihood. They are based on model assumptions

which are in most cases untestable, hence sensitivity analysis should be part of

the analysis,(Scharfstein et al,2003). Use of semiparametric and nonparametric

techniques help relax upon assumptions made.

The weighting methods approach is based on the complete cases where they are

weighted with the inverse of the inclusion probability, (Flanders and Greenland,

1991, Zhao and Lipsitz, 1992). Cases with low inclusion probability gain more

influence in the analysis thus representing the probable missing values in the

neighborhood. In most cases, the inclusion probability is unknown. It can be

estimated using nonparametric techniques like kernel based density estimation,

(Carpenter and Kenward, 2005).

The reasoning towards use of nonparametric and semiparametric modeling tech-

niques for the missing values include the following. First, an initial nonparametric

estimate may well suggest a suitable parametric model such as linear regression.

That is, it may give the data more of a chance to speak for themselves in choos-

ing the model to be fitted (Silverman, 1985). Secondly, known facts suggest a

tentative model which in turn suggest a particular examination and analysis of

data or the need to acquire further data or suggest a modified model resulting in

an iterative procedure (Box, 1980, Hastie and Tibshirani, 1987, Simonoff, 1996).

It is very important to note that parametric models would be very efficient if

the model is correcly specified. However, if the assumed model is mis-specified,

2



inferences can lead to misleading interpretations of data.

Considered is a super population regression model which is denoted by ξ given as

(1.1)yi = µ(xi) + ε

where µ(xi) is a smooth function. Given n pair of observations

(xi, yi), . . . (xn, yn) from a population of size N, of interest is the estimator µ̂(x) of

µ(x) = Eξ(y/x). A nonparametric method like local polynomial or splines could

be used for this estimation.

In some circumstances, the auxilliiary information is such that it contains a com-

ponent whose parametric structure is known and a component that need to enter

the estimation nonparametrically. Consider a case where auxiliary information

consists of a single univariate term x that is to enter estimation nonparamtrically

and a vector Z composed of an arbitrary number of linear terms . Consider super

population regression model, ξ given by

(1.2)Eξ(yi) = g(xi, Zi)

= µ(xi) + Ziβ

where Zi is a vector of the categorical or continuous auxiliary variables and µ(xi)

is a nonparametric component. The interest is to find an estimator ĝ(xi, Zi) of

g(xi, Zi). This is semiparametric estimation. Breidt et al (2007) uses a sample

estimate of the form
(1.3)ĝi = µ̂(xi) + Ziβ̂

Once missing data has been modelled, it is now possible to use it to estimate

population total using several techniques. One such technique is calibration.

Suppose U = {1, 2, . . . , N}is the set of labels for the finite population. Let

(yi, xi)be the respective values of the study variable y and the vector of auxiliary

variables x attached to ith unit. The question is how to estimate population total

Yt =
∑N
i=1 yi effectively using the known population totals Xt =

∑N
i=1 xi at the

estimation stage. If we let s = {1, 2, . . . , n} be the set of sampled units under

3



a general sampling design p, and let πi = p(i ∈ s) be the first order inclusion

probabilities, then the conventional calibration estimator for total Yt is defined by

Ŷ =
∑
i∈swiyi where w′is are design weights such that for a given metric, are as

close as possible in an average sense to the di = 1
πi

and are obtained by minimizing

a given distance measure between the w′is and d′is subject to constraints

(1.4)
∑
i ∈s

wixi =
N∑
i=1

xi

= Xt

This type of calibration is called internal calibration. Consider models for the

super population ξ, such that Eξ(yi) = µ(xi) , where µ(xi) is a known function of

xi. The model calibration estimator for population total Yt is Ỹ =
∑
i∈swiyi with

weights sought to minimize a given distance measure subject to new constraints

∑
i∈s

wi = N,

∑
i∈s

wiµ̂i =
N∑
i=1

µ̂i (1.5)

where µ̂i = µ̂(xi). In this context, calibration is performed with respect to the

population mean of the fitted values µ̂i (model calibration).

Another technique is model assistance. It is important to improve the precision

of estimators while still relying on the sampling design as the primary probability

generating mechanism. Model assistance is intended to provide good efficiency

if the model is correctly specified, but maintain desirable properties like design

consistency if the model is mis-specified.
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1.2 Statement of the problem

Of interest is the estimation of population total in the face of some unobserved

values but in the presence of auxilliary information. A choice is to be made on the

approach of modelling these missing values. As noted earlier, Parametric models

have been used and though very efficient when the model is correctly specified,

but fail terribly when the model is mis-specified. But in most survey problems,

the parametric structure of the population is unknown hence the need to find a

more robust approach of modelling the missing values. Nonparametric methods

may be used but again a choice among the various nonparametric methods such as

local polynomial and spline methods has to be made. The auxilliary information

may however contain some part which needs to enter the model parametrically,

for example some categorical data, and another part to enter the model nonpara-

metrically in which case semiparametric modelling need to be used.

Internal calibration, model calibration and model assistance have been applied to

kernel based nonparametric methods in one stage and two stage sampling. For

two stage sampling, approach has been to use these techniques at the estimation of

population total while using design estimation for cluster totals ignoring presence

of auxilliary information at element level. It would be important to employ model

calibration and model assistance to penalzed splines, extend to two stage sampling

and study the performace as compared to when kernel methods are used. For

two stage sampling, application of the above techniques even at the estimation of

cluster totals to take advantage of auxilliary information within clusters should

be considered.

Again,internal calibration and model assistance have been used on semiparametric

models based on kernel methods in one stage sampling. Model calibration has not

been employed on semiparametric models. It would be neccesary to apply model

calibration and model assistance on semiparametric models based on penalized
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splines, extend to two stage sampling and again study the performance compared

to when kernel methods are used. Consideration of the auxilliary information

available at element level is also important.

A comparison between model calibrated and internally calibrated estimators is

necessary to find out which one uses the auxilliary information more efficiently

and in which circumstances. This is important in order to protect against blind

calibration.

1.3 Objectives of the study

1. Derive an estimator of finite population total using model calibration and

assistance on nonparametric models and using penalized splines

2. Derive an estimator of finite population total using model calibration and

assistance on semiparametric models and using penalized splines

3. Compare the performance of kernel methods and penalized splines when

employed to model calibration on semiparametric and nonparametric mod-

els

4. Derive a model calibrated and assisted estimator for two stage sampling

5. Carry out sensitivity analysis on the semiparametric estimation

1.4 Significance of the study

Most oftnely, the population structure of the variable of interest is not known.

By using nonparametric methods, we ensure that we have a reliable estimator
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even if we do not know the population structure of the variables. We derive an

estimator that incoporates model calibration so that once weights have been built

for a variable depedent on a given set of auxiliary variables, the weights can be

used for any other variable that is depedent on the same set of auxiliary variables.

The control totals for the auxiliary information are normaly available. We derive

an estimator such that if the weights derived are applied to a sample of the

auxiliary information, we reproduce the control totals. This is reassuring to the

user.By using a design procedure as the primary sample generating mechanism,

we ensure that the estimator is robust and does not fail.

In some cases, the population structure for some of the auxiliary variables is

known. For example, some may be categorical variables which would imply they

are better used in a parametric model. We derive a semiparametric estimator

that incoporates nonparametric part for the variables whose structure is unkown

and a parametric component.

The derived estimators are general and any nonparametric method may be used.

The study includes a comparison of the commonly used kernel methods and pe-

nalized splines. This is significant to the user to enable him choose the best.

Penalized splines make it easy to incorporate multiple covariates as well as com-

bination of categorical variables. Also makes computation of estimators for data

sets with regions of sparse data easier.

We now describe how the thesis is organized.

1.5 Outline of The Thesis

The rest of the thesis is organized as follows. In section(2.1) we review calibration

and model assistance techniques in one stage sampling in relation to our first

objective. In section(2.2) we review the nonparametric techniques that we have

considered in this study and whose performance we compare in line with objective

7



two. Section (2.3) is a review of two stage sampling in view of objective three. In

section(3.1) we derive estimators for one stage sampling and whose asymptotic

properties we derive in section (3.2) while in section (3.3), we derive estimators

under two stage sampling and their asymptotic properties in section (3.4). Section

(4.1) is a study of the empirical properties under one stage sampling and in section

(4.2) a study of the empirical properties under two stage sampling is carried out.
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CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 Calibration and Model Assistance in

Estimation of Population Total

We now describe some techniques used to estimate population total where some

values of interest have not been observed but imputed. These techniques include

internal calibration, model calibration and model assistance.

2.1.1 Internal Calibration

The notion of calibration was introduced by Deville and Sarndal (1992) in the con-

text of using auxiliary information from survey data. Suppose U = {1, 2, . . . , N}is

the set of labels for the finite population. Let (yi, xi)be the respective values of

the study variable y and the auxiliary variable x attached to ith unit. Of interest

is the estimation of population total Yt =
∑N
i=1 yi effectively using the known pop-

ulation totals Xt =
∑N
i=1 xi at the estimation stage. If we let s = {1, 2, . . . , n} be

the set of sampled units under a general sampling design p, and let πi = p(i ∈ s)

be the first order inclusion probabilities, then the conventional calibration esti-

mator for total Yt is defined by Ŷ =
∑
i∈swiyi where w′is are design weights such

that for a given metric, are as close as possible in an average sense to the di = 1
πi

and are obtained by minimizing a given distance measure between the w′is and

d′is subject to constraint(1.4)

The most commonly used distance measure is the chi-squared distance

(2.1)Φs =
∑
i∈s

(wi − di)2

qidi

9



where q′is are known positive constants uncorrelated with the d′is. (Deville and

Sarndal,1992). Minimizing this chi-squared distance subject to equation (1.4),

they obtained the Langrange equation

(2.2)L =
∑
i∈s

(wi − di)2

qidi
− 2λ

(
N∑
i=1

wixi −
N∑
i=1

xi)

)

where λ is the langrange constant to be determined. Differentiating L with respect

to wi ,equating to zero and solving for wi then

(2.3)wi = di +

{
diqixi∑n
i=1 diqix

2
i

}{
N∑
i=1

xi −
n∑
i=1

dixi

}

Particular choices for qi yield different forms of the estimator in
∑
i∈swiyi. Sub-

stituting this weight wi in
∑
i∈swiyi, they derived the generalized regression esti-

mator of the population total given by

(2.4)Y TC =
n∑
i=1

diyi +

{∑n
i=1 diqixiyi∑n
i=1 diqix

2
i

}{
N∑
i=1

xi −
n∑
i=1

dixi

}

see Deville and Sarndal (1992).

This can be written as

(2.5)Y TC = Ŷ + (Xt − X̂)′B̂

where the regressions coefficient B̂ =
{∑n

i=1
diqixiyi∑n

i=1
diqix2i

}
while X̂ and Ŷ are Horvitz-

Thompson estimators of Xt and Yt respectively. The approximate variance de-

rived by Deville and Sarndal (1992) is

(2.6)v(Y TC) =
1

2

∑
i 6=j

∑
∈U

(πiπj − πij) (diεi − djεj)2

where εi = yi − B̂xi. They derived an estimator for the variance as

(2.7)v̂(Y TC) =
1

2

∑
i 6=j

∑
∈s

πiπj − πij
πij (wiεi − wjεj)2

10



The population estimator (2.5) is quite general and includes some well known

estimators as particular cases. If qi = 1
xi

then the estimator (2.5) reduces to the

ratio estimator studied by Cochran (1997)

(2.8)Y TC = Ŷ
(
Xt

X̂

)

If qi = 1 , then estimator (2.5) reduces to general regression estimator

(2.9)Y TC = Ŷ +
(
Xt − X̂

)

The definition of YTC is equivalent to a generalized regression estimator, which

is derived as a model assisted estimator assuming a linear regression model with

variance structure provided by the diagonal matrix with elements 1
qi

(Deville and

sarndal, 1992, section 1). Hence YTC implicitly relies on a linear relationship

between the auxiliary variables and the survey variable.

Although alternative distance measures have also been considered, (Deville and

Sarndal ,1992), all resulting estimators are asymptotically equivalent to the one

obtained from minimizing the chi-squared distance measure(2.1).

Wu and Sitter (2001) added the constraint
∑
i∈swi = N on the weights and

developed a new estimator of the population total by minimizing (2.1) subject

to the constraints
∑
i∈swi = N ,

∑
i∈swixi = Xt. They introduced the Lagrange

equation

(2.10)L =
∑
i∈s

(wi − di)2

qidi
− 2λ

(
N∑
i=1

wixi −
N∑
i=1

xi

)
− 2V

(∑
i∈s

wi −N
)

whereλ and V are the langrange constants to be determined. Differentiating

(2.10) with respect to wi, equating the derivative to zero and solving for wi they

obtained
(2.11)wi = (λxi + V )qidi + di

and when substituted in
∑
i∈swiyi yields the estimator given below.
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Y TC =
n∑
i=1

diyi

+

(
N −

n∑
i=1

di

)
∑n
i=1 diqiyi∑n
i=1 diqi

−

∑n
i=1 diqi

[
xi −

∑n

i=1
diqixi∑n

i=1
diqi

] [
yi

∑n

i=1
diqiyi∑n

i=1
diqi

]
∑n
i=1 diqi

[
xi −

∑n

i=1
diqixi∑n

i=1
diqi

]2


+

(
X −

n∑
i=1

diXi

) ∑n
i=1 diqi

[
xi −

∑n

i=1
diqixi∑n

i=1
diqi

] [
yi −

∑n

i=1
diqiyi∑n

i=1
diqi

]
∑n
i=1 diqi

[
xi −

∑n

i=1
diqixi∑n

i=1
diqi

]2

This can be written as

(2.12)̂Y TC = Ŷ +

(
N −

∑
i∈s

di

)
Â+

(
X − X̂

)
B̂TC

where B̂TC =
∑

i∈s diqi(xi−x̆)(yi−y̆)∑
i∈s diqi(xi−x̆)2

and Â = y̆ − B̂TCx̆ with x̆ =
∑

i∈s diqixi∑
i∈s diqi

and

y̆ =
∑

i∈s diqiyi∑
i∈s diqi

The term (N −∑i∈s di) Â was found to be negligible due to the costraint
∑
i∈swi =

N and the fact that di is very close to wi which in turn means
∑
i∈s di →

∑
i∈swi =

N . The term was therefore dropped to obtain

(2.13)̂Y TC = Ŷ +
(
X − X̂

)
B̂TC

It is noted that there are two basic components in the construction of calibration

estimators namely; a distance measure and a set of calibration equations. The

choice of a distance measure is less critical in terms of efficiency since the resulting

estimators are all asymptotically equivalent to the one obtained by using a chi-

squared distance with a certain choice of q′is.

Calibration equation (1.4) is routinely used by many survey organizations and is

referred to as benchmark constraint. Benchmark constraints are often imposed

in practice for two reasons; the surveyor may believe that the weights which give

perfect estimates for the auxiliary information should give a good estimate for

the study variable and the auxiliary information may only be available at the

aggregate level i.e. only the auxiliary total Xt is known.
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2.1.2 Model Calibration

Statisticians in fields such as demography sometimes insist on benchmarking over

lots of variables to match the known totals from a census at the risk of worsening

the efficiency of the estimators. On the other hand, if complete auxiliary infor-

mation x1, . . . , xN is known which is usually the case in most survey problems, a

very compelling question to ask would be; What is the best calibration equation

to be used in the construction of the calibration estimator?

By noting that it is the relationship between y and x hopefully captured by

the working model that determines how well the auxiliary information should

be used, Wu and sitter (2001) proposed more complex models and generalized

the calibration procedure by means of model calibration. In particular, they

consider generalized linear models and nonlinear parametric regression models for

the super population model ξ, such that Eξ(yi) = µ(xi) , where µ(xi) is a known

function of xi. They proposed model calibration estimator for population total Yt

to be Ỹ =
∑
i∈swiyi with weights sought to minimize the distance measure (2.1)

subject to the then new constraints(1.5) where µ̂i = µ̂(xi) was parametrically

obtained.

In this context, calibration is performed with respect to the population mean of

the fitted values µ̂i (model calibration). They obtained the estimator

(2.14)Yws = Ŷ +

{
N∑
i=1

µ̂i −
N∑
i=1

diµ̂i

}
B̂WS

Where µ̂i = µ̂(xi , B̂WS =
∑

i∈s diqi(µ̂i−µ̆)(yi−y̆)∑
i∈s diqi(µ̂i−µ̆)2

, y̆ =
∑

i∈s diqiyi∑
i∈s diqi

and

µ̆ =
∑

i∈s diqiµ̂i∑
i∈s diqi

.

The variance was derived as

(2.15)var(Yws) =
n∑
i=1

n∑
i=1

(
yi − µ̂iB̂WS

πi

)(
yj − µ̂jB̂WS

πj

)(
πij − πiπj

πij

)

If X was a random vector with k components, the benchmark constraint (1.4)

would consist of k equations, while constraint (1.5) would have only one equa-
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tion involving the single data reduction variable µ(X). The single calibration

equation (1.5) is indeed more general than the constraints resulting from (1.4)

because of the unspecified function µ(.) . Wu and Sitter(2001) show that for any

k dimensional vector X = (x1, . . . , xk), if we use µ(X) = θ0 + θ1x1 + . . .+ θkxk ,

where θ = (θ0, . . . , θk) are estimated by ordinary least squares, then the calibra-

tion estimator of the population total obtained by using the single constant (1.5)

is identical to the one using equation (1.4). The Conventional calibration based

on (1.4) is therefore just a special member of the many in the class of calibration

estimators.

Model calibration makes this estimator retain efficiency even when the fitted

values of y are biased. However, use of parametric model for ξ would require

a priori knowledge of specific parametric structure of the population. Without

this knowledge, we may end up with a mis-specified model. If there are many

variables of interest each of which has x as a covariate, then we would have to

establish a parametric relation between x and each of the variables.

Montanari and Ranalli (2003) proposed to use nonparametric method to obtain

µ(.). In particular, they use neural networks and local polynomial. Otieno, Mwita

and Kihara (2007) extended this to two stage sampling using kernel functions to

fit the mean functions. We note that any nonparametric method such as kernel

methods can be used to recover the fitted values for the non sampled units.

Such estimators are however challenging to employ in cases of multiple covariates

and when data is sparse. Another challenge is how to incorporate categorical

covariates. It is therefore necessary to consider other methods to recover the

fitted values such as splines.
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2.1.3 Estimation by Model Assistance on Nonparametric

and Semiparametric Models

The concept of nonparametric models within a model assisted framework was first

introduced by Briedt and Opsomer in 2000 in estimating population parameters

like population total and mean. The estimator was based on local polynomial

smoothing. For a population of size N and where an auxiliary variable x is fully

observed, given a sample s of size n for which values for y are fully observed, they

proposed the following estimator for population total of the variable y.

(2.16)Ŷgen =
∑
i∈s

(
yi − µ̂(xi)

πi

)
+

N∑
j=1

µ̂(xj)

Where j = 1, 2, . . . , N and i = 1, 2, . . . , n. µ̂(xi) were obtained using local poly-

nomial, a kernel nonparametric method. πi is the inclusion probability into the

sample. µ̂(xi) is a smooth function of a single variable x. The first term in (2.16)

is an adjustment for bias while the second is an estimator of population total.

The estimator could also be wrtten as

(2.17)Ŷgen =
∑
i∈s

yi
πi

+

 N∑
j=1

µ̂(xj)−
∑
i∈s

µ̂(xi)

πi


The first term in (2.17) is a design estimator while the second is model compo-

nent. Therefore, when the sample comprises of the whole population, the model

component reduces to zero since πi = 1 and s = N . We therefore have the ac-

tual population total. Among other desirable properties, this estimator has been

found to be calibrated with respect to auxiliary variables (internal calibration),

though not calibrated with respect to the fitted values µ̂(xi) . However, this esti-

mator experiences a twin problem of how to determine the optimal bandwidth h

and how to determine the optimal degrees (q) of the local polynomial. A higher

degree polynomial yields a smoother µ̂(.) but worsens the boundary variance.

These challenges are fairly discussed in Simonoff(1996) and we avoid repeating
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the discussion here. The ad hock rule is to choose a bandwidth equal to a quater

of the data range. Otieno,Mwita and Kihara(2007) showed the rule to be quite

reliable. We use this rule in this study. Another challenge with the estimator

is that if the fitted values of y are biased, then this estimator loses efficiency.

Moreover, accounting for more than one auxiliary variable could be a problem in

practice.

When some variable is to enter the estimator of a missing value parametrically, as

noted earlier, then the estimator (1.3) has been used. Recall (1.2) has a sample

based estimator (1.3).

Let s ⊂ U be the sample of size n drawn from a population U according to sam-

pling deign p(s) with one way and two way inclusion probabilities πi =
∑
i∈s p(s)

and πij =
∑
i,j∈s p(s) respectively. If the gi = g(xi, zi) were available, Sarndal et

al (1992) notes that it would be possible to construct a difference estimator for

the population total as

(2.18)ydif =
∑
U

gi +
∑
s

yi − gi
πi

Which is design unbiased and has design variance

(2.19)varp(ydif ) =
∑∑

U

(πij − πiπj)
yi − gi
πi

yj − gj
πj

This design variance is small if the deviation between yi and gi are small. This

estimator is not feasible, since it requires knowledge of all the xi , zi and yi for

the population to calculate. Instead, Breidt et al(2007) constructs the following

feasible estimator by replacing the gi with the sample based estimators (1.3)

(2.20)yreg =
∑
U

ĝi +
∑
s

yi − ĝi
πi

Defining Ŷ =
∑
s
yi
πi

and similarly for Ẑ , an equivalent expression for yreg is given

by

(2.21)yreg = Ŷ + (
∑
U

zi − ẑ)β̂ +
∑
U

µ̂(x)i −
∑
s

µ̂(xi)

πi

This shows that the semi parametric estimator can be interpreted as a tradi-

tional linear regression survey estimator using the parametric model component
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zβ, with an additional correction term for the nonparametric component of the

model. This estimator shares some desirable properties with the fully paramet-

ric regression estimators. It is found to be location and scale invariant, and it

is internally calibrated for both the parametric and the nonparametric compo-

nents, in the sense that x̂reg =
∑
U xi and ẑreg =

∑
U zi. Breidt et al,(2007),

showed the estimator (2.20) is design consistent with the rate
√
n, in the sense

that yreg =
∑
U yi +Op(

1√
n
)

The central limit theorem for yreg exists whenever it exists for the expansion

estimator Ŷ

If
Ŷ
N
−
∑

U
yi

N√
V̂ Ŷ
N

d→ N(0, 1) with V̂ (ŷ) = 1
N2

∑∑
s
πij−πiπj

πij

yi
πi

yj
πj

for a given sampling

design, then, Breidt et al (2007) shows that we also have

yreg −
∑
U yi√

V̂ (yreg)

d→ N(0, 1)

with

(2.22)V̂ (yreg) =
∑∑

s

πij − πiπj
πij

yi − ĝi
πi

yj − ĝi
πj

As noted earlier, this estimator yreg is internally calibrated based on the bench-

mark constraint (1.4). It would be interesting therefore to also include model

calibration for such an estimator. That is, to base our calibration on the fitted

values gi. Model calibration will make this estimator retain efficiency even when

the fitted values of y are biased. We propose to introduce this in the next chapter

of this study.

In the next section, we describe the nonparametric techniques that we consider

in this thesis in fulfilment of objective three.
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2.2 Nonparametric Modeling Techniques

2.2.1 Nadaraya Watson Kernel smoothing

Consider a super population regression model ξ given as

(2.23)yi = µ(xi) + ε

Where µ(xi) is a smooth function.

Consider n pair of observations(xi, yi), . . . (xn, yn) from a population of size N.

We are interested in µ(x) = Eξ(y/x) which is considered smooth. Consider

estimates of the form µ̂(x) =
∑n
i=1 ω(x, xi)yi where ω(x, xi) is a collection of

weights. Consider the weights

ω(x, xi) =
K(xi−x

h
)∑n

i=1 K(xi−x
h

)

where K is a kernel function and h the bandwidth, (Simonoff, 1996). This results

in the following estimator for a target xj in the population.

(2.24)µ̂(xj) =
n∑
i=1

ω(xj, xi)yi

where j = 1, 2 . . . N. and i = 1, 2 . . . .n. This form was proposed by Nadaraya

(1964) and Watson (1964).

2.2.2 Local polynomial

A second approach is local polynomial regression. The objective is to minimize

(2.25)
n∑

j =1

{yj − β0 − β1(xj − xi)...βq(xj − xi)q} 2K(xj − xi)

with respect to β = (β0β1 . . . βp). β0 estimates µ(xi) whileβ1 . . . βp estimates

higher order derivatives of µ(xi) while q is the degree of the polynomial,
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(Simonoff, 1996). The corresponding estimator can be obtain from a local poly-

nomial smoother
(2.26)STlpsi = εT1 (XT

siWsiXsi)
−1XT

siWsi

as
(2.27)µ̂(xi) = STlpsiYs

Where

ε1 = (1, 0, . . . , 0)T , Ys = (y1, y2, . . . , yn)T ,Wsi = K((x1−xi)/h), . . . , K((xn−xi)/h)

and

Xsi =



1 (x1 − xi) . . . (x1 − xi)q

.

.

.

1 (xn − xi) . . . (xn − xi)q


When q = 0, it can be shown that we have the Nadaraya Watson kernel smoother,

(Breidt and Opsomer, 2000).

2.2.3 Splines

We now describe splines in more detail since it is our area of interest.

The term spline originally referred to a tool used by draftsmen to draw curves.

According to Luke Keele,(2008), splines are piecewise regression functions we con-

strain to join at points called knots. In their simplest form, splines are regression

models with a set of dummy variables on the right hand side of the model that

are used to force the regression line to change direction at some point along the

range of auxilliary variable x. For some simplest regression splines, the piece-

wise functions are linear; a constraint that is later relaxed. In essence, separate
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regression lines are fitted within the regions between the knots, and the knots

tie together the piecewise regression fits. Again, splines are a local model with

local fits between the knots that allow us to estimate the functional form from

the data, (Luke Keele, 2008)

Like local polynomial regression, the analyst must make several modeling deci-

sions with splines. With splines, one must choose the degree of polynomial for

the piecewise regression functions, the number of knots and the location of knots,

(Breidt et al, 2005). It has been found that while the fit is invariant to some

of the modeling choices, the analyst must focus on how smooth the fit should

be. For some types of splines, the number of knots will control the amount of

smoothing, while for other types of splines, a smoothing parameter controls the

smoothing.(Breidt et al, 2005).

There are several different types of splines. For example, there are regression

splines, cubic splines, B-splines, penalized-splines, natural splines, thin-plate

splines, and smoothing splines to name but a few, (De Boor,2001). Moreover,

there are often combinations such as natural cubic B-splines. The wide variety

of splines partially stem from the progress in research on splines. Often a new

type of spline either supplants an older type of spline or adds a refinement to

existing methods. (Luke Keele, 2008, Rupert et al 2003). Penalized splines are

more complex than regression splines, but they work on the same principle.

The logic behind a regression spline for example is to estimate two separate re-

gression lines that will be joined at the kink in the data. The first regression line

will approximate the negative dependency between two variables and the second

regression line will approximate the upturn in the functional form. To estimate

the spline model, we need to specify the point where the two lines will be joined.

Additional piecewise fits would require additional knots. For a single knot k1 we

can write the following regression spline model.
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(2.28)y = β0 + β1x+ β2(x− k1)+ + ε

Where (x − k1)+ = x − k1 if x > k1 and 0 if x ≤ k1. Below is the model

matrix, X, constructed after applying a two basis functions to the x variable.

X =



1 (k1 − x1) 0

.

.

1 (k1 − xk1−1) 0

1 0 0

1 0 (xk1+1 − k1)

.

.

1 0 (xn − k1)


Once the model matrix has been formed, estimating a spline fit between x and

y is simple. We use the new model matrix to construct the hat matrix H =

(X
′
X)−1X

′
. Application of the hat matrix to the data vector for the outcome

produces a set of predictions that form the nonparametric spline estimate of the

relationship between x and y. Therefore the spline estimate is β̂ = Hy,

Luke Keele,(2008) finds that the simple regression splines described above to es-

timate nonlinear dependence between x and y are not suitable for most applied

smoothing problems. It’s overly restrictive to only estimate piecewise functions

that are linear between the knots. To estimate more curvilinear functional forms,

the solution is to combine piecewise regression functions with polynomial regres-

sion by representing each piecewise regression function as a piecewise polynomial

regression function. Piecewise polynomials offer two advantages; First, piece-

wise polynomials allow for nonlinearity between the knots. Second, piecewise

polynomial regression functions ensure that the first derivatives are defined at

knots which guarantees that the spline estimate will not have sharp corners.
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For the spline model in the last section, we could estimate piecewise polynomial

fits by adding x2 to the basis and squaring the results from the basis functions.

These alterations form a quadratic spline basis with single knot at k1.See Luke

Keele,(2008).

Typically, cubic spline bases are used instead of quadratic bases to allow for more

flexibility in fitting peaks and valleys in the data. (Breidt et al 2005). A spline

model with a cubic basis and two knots k1 and k2 is formed from the following

linear regression model.

y = β0 + β1x+ β2x
2 + β3x

3 + β4(x− k1)3
+ + β5(x− k2)3

+ + ε

The spline estimate is again the predictions from the hat matrix applied to the

outcome variable. To form the hat matrix, we must first construct a model

matrix that contains the correct bases. For this example, the model will contain

the following data vectors

x1 = x, x2 = x2, x3 = x3, x4 = (x− k1)3
+, x5 = (x− k2)3

+

where x represents the original predictor variable.

The model matrix will consist of a 1 and the above five variables. We use the

model matrix to form a hat matrix that is applied to the outcome variable, and the

predictions from this model serve as the spline estimate of the possibly nonlinear

relationship between x and y. The number of parameters used to construct the

spline estimate is controlled by the number of knots. If there are k knots, with

a cubic basis, the function will require k + 4 regression coefficients (including

the intercept). The cubic basis allows for flexible fits to nonlinearity between the

knots and eliminates any sharp corners in the resulting estimate. The later is true

since the first derivative exists for (x−k1)3
+ and it follows that the first derivative

will also exist for any linear combination of terms of the model data vectors,
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(Rupert et al, 2003). In any spline model the analyst must select the number of

knots and decide where they should be placed along the range of x. Stone (1986)

found that where the knots are placed matters less than how many knots are

used. Standard practice is to place knots at evenly placed intervals in the data

to ensure that there is enough data within each region of x to get a smooth fit.

Knots are mostly placed at either quartiles or quintiles in the data. If the data

has an obvious feature, it may be useful to place the knots in a less automatic

fashion(Luke Keele,(2008). In our study, we have placed the knots at quintiles

rather than at quartiles so that we have a higher number of knots which is better

because number of knots chosen affects the amount of smoothing applied to the

data by controlling the number of piecewise fits. A spline with two knots will be

linear and globally smooth since there is only one piecewise function. Increasing

the number of knots increases the number of piecewise functions fit to the data

allowing for greater flexibility. If one selects a large enough number of knots, the

spline model will interpolate between the data points, since more knots shrink the

amount of data used for each piecewise function. The number of knots effectively

acts as a span parameter for splines. If one uses a small number of knots, the

spline estimate will be overly smooth with little variability but may be biased.

Using a high number of knots implies little bias but increases variability in the

fit and may result in over fitting, (Rupert et al, 2003, Breidt et al, 2005) but this

can be solved by penalizing the splines.

If we want a flexible estimate of the statistical relationship between two variables,

both splines and local polynomial regression can provide such an estimate with

few assumptions about the functional form. It is easy to have a surfeit of local

parameters which produces overly nonlinear nonparametric estimates that overly

fit data. Penalized splines are a nonparametric regression technique that relies

on principles of statistical theory to minimize the possibility of over fitting.
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2.2.3.1 Penalized splines

It is possible to over fit both parametric and nonparametric regression models.

Over fit statistical models have too many parameters relative to the amount of

data and cause random variation in the data to appear as a systematic effects.

A solution of over fitting is penalized estimation, (Eilers and Marx, 1996). Here,

for each parameter used in the model, a penalty is added to the model. For the

P-spline estimator for the function µ(x), from the regression estimate

(2.29)µ̂(x, β) = β0 + β1x+ . . .+ βqx
q +

k∑
κ=1

βq+κ(x− kκ)q+

We bind
∑k
κ=1 β

2
q+κ by some constant, while leaving the polynomial coefficients

β0, . . . , βq unconstrained. Breidt et al(2005) obtained an estimate for β by mini-

mizing

(2.30)
∑
i ∈U

(yi − µ(xi, β))2 + α
k∑

κ =1

β2
κ+q

for some fixed constant α ≥ 0 that determines the smoothness of the obtained

fit.

They obtained a sample design consistent estimator for β as

β̂ = (XT
s WsXs + Aα)−1XT

s WsYs

where Xs is a sub matrix of a matrix X which inturn consist of rows XT
i =

{1, xi, . . . , xqi , (xi − k1)q+, . . . , (xi − kκ)q+}for i ∈ U , Aα = diag{0, . . . , 0, α, . . . , α}

with q + 1 zeros on the diagonal followed by k penalty constants α.

The corresponding nonparametric sample fit is

(2.31)µ(xi; β̂) = XT
i β̂

Consider matrices F and R with rows (1, xi, . . . , x
q
i ) and ((xi−k1)q+, . . . , (xi−kκ)q+)

respectively. Jiang(1996), constructed a design based
√
n-consistent estimator for

α as

(2.32)α̂s =
tr((ATV A)−1ATRRTA)

tr((ATV A)−1ATA)
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where V = var(Y ) and A is a matrix such that ATF = 0

When some of the auxilliary information contain a parametric component like

categorical data, nonparametric modelling may not be sufficient. In our study,

we introduce semiparametric modelling technique which suits such a scenario.

2.3 Estimation of Population Total Under Two

Stage Sampling

The application of internal calibration and model assistance on nonparametric

models in the estimatetion of population total under two stage sampling was

introduced by Breidt et al in 2005. They Consider a population U partitioned into

M clusters each of size Ni so that the population of clusters is C = 1, . . . , i, . . . ,M .

For all clusters i ∈ s ,an auxiliary vector xi is available considered to be a scalar.

At stage one, a probability sample s of clusters is drawn from C according to a

fixed design p1(.), where p1(s) is the probability of drawing the sample s from C.

They let m be the size of s. The cluster inclusion probabilities are πi = p(i ∈ s)

and πij = p(i, j ∈ s). p1 refers to first stage design. From every sampled cluster

i ∈ s , a probability sample si of elements is drawn according to a fixed size

design pi(.) with inclusion probabilities πk/i = p(k ∈ si/i ∈ s) and πkl/i = p(k, l ∈

si/i ∈ s). They let ni be the size of si and assumed invariance and independence

of the second stage design and let ti, i = 1, 2, . . . ,M be the ith cluser total.

They Let t̂s =
[
t̂i
]
i∈s

be the m vector of t̂′is obtained in the sample of clusters,

where t̂i =
∑
k∈si

yik
πk

is the Horvitz-Thompson design estimate of ith cluster total.

In their approach to using the auxilliry information and using local polynomial,

Breidt et al (2005) assumed as a working model that the finite population scatter

(xi, ti)i∈C is a realization from a superpopulation model ξ in which

(2.33)ti = µ(xi) + εi
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They obtained the nonparametric local polynomial estimator of µ(xi) as

(2.34)ˆµ(xi) = STlpsit̂s

and a local polynomial regression estimator for population total as

(2.35)ˆYgen2 =
∑
i∈s

t̂i
πi

+

(∑
i∈C

µ̂(xi)−
∑
i∈s

µ̂(xi)

πi

)

We consider modelling ˆµ(xi) by way of penalized splines and perform model

calibration on ˆµ(xi). We consider the case when auxilliary information is available

at cluter level alone like did Breidt et al in 2005 and the case when auxilliary

information is available at both cluster and element level.

2.4 Sensitivity Analysis

Sensitivity analysis have been used when fitting missing values using fully model

based procedures that rely on estimation methods such as maximum likelihood.

This is because they are based on model assumptions which are in most cases

untestable,(Schafstein et al ,2003,). We carry out a Sentivity analysis to test the

robustness of model calibrated estimators as compared to internally calibrated

ones based on semiparametric modelling. This is a new area we have ventured

into.
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CHAPTER THREE

3.0 PROPOSED MODEL CALIBRATED AND

ASSISTED ESTIMATOR

3.1 Estimators for One Stage Sampling Based

on Penalized Splines

Consider a population U of size N for which several values for a random variable y

are missing. Suppose a multidimensional covariate consisting of a single variable

x that is to enter the estimation nonparametrically and a categorical vector Z are

fully observed. Let s be a sample of size n from the population and for which all

the variables are fully observed. Consider the matrix Xc with rows

(3.1)XT
ci = {1, xi, . . . , xqi , (xi − k1)q+, . . . , (xi − kk)q+}

for i ∈ U , and let Xcs be the sub matrix of Xc consisting of those rows for

which j ∈ s . let Y be the vector of response values yi for i ∈ U and Aα =

(0, . . . , 0, α, . . . , α), with q+ 1 zeros on the diagonal followed by the penalty con-

stant α repeated k times . Consider also the diagonal matrix of inverse inclusion

probabilities W = j ∈ U( 1
πj

) and its sample sub matrix Ws = j ∈ s( 1
πj

).

Define a superpopulation model

(3.2)Yi = µi + Ziβ

and let the semiparametric estimator for Eξ(yi) be

(3.3)ĝi = µ̂i + Ziβ̂

The design weighted penalized spline smoother vector at xi similar to the local

polynomial smoother (2.26) due to Breidt and Opsomer,(2000) is

(3.4)STspsi = Xci

(
XT
csWsXcs + Aα

)−1
XT
csWs
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This is such that when applied to the sample Ys it yields the nonparametric fit

at xi. That is µ̂i = STspsiYs.

The sample smoother matrix is a matrix with rows STspsi.

(3.5)Ssps =
[
STspsi, i ∈ s

]
Accordingly, we therefore have the following estimators resulting from equations

(3.3), (3.4) and (3.5) for fixed α and under regularity conditions in section(3.2.1)

(3.6)β̂ =
(
ZT
s SspsZs

)−1
ZT
s SspsYs

so that an estimator for Ziβ becomes Ziβ̂. Now, from (3.2), an estimator µ̂i for

the smooth function µi is obtained by smoothing the residue
(
Ys − ZT

s β̂
)

so that

we get
(3.7)µ̂i = STspsi

(
Ys − ZT

s β̂
)

where µ̂i and xi are defined for every i ∈ U . We can now rewrite the resulting

semiparametric fit ĝi as

(3.8)ĝi = STspsi
(
Ys − ZT

s β̂
)

+ Zi
(
ZT
s SspsZs

)−1
ZT
s SspsYs

We now propose a semiparametric model assisted model calibrated estimator of

population total to be
(3.9)ŷsm =

∑
i∈s

wiyi

with wi obtained by minimizing the chi square distance measure (2.1) subject to

the constraints
∑
i∈swi = N and

∑
i∈swiĝi =

∑
i∈U ĝi. We introduce the lagrange

procedure in the minimization of equation(2.1) to obtain an equation of the form

(3.10)l =
∑
i∈s

(wi − di)2

qidi
− 2λ(

∑
i∈s

wiĝi −
∑
i∈U

ĝi)− 2v(
∑
i∈s

wi −N)

Where λ is the lagrange’s multiplier and v is the penalty constant. Differentiating

(3.10) with respect to wi and equating to zero we get

(3.11)
∂l

∂wi
=

2(wi − di)
qidi

− 2λĝi − 2v

= 0
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which gives
(3.12)wi = (λĝi + v)qidi + di

solving for λ and v we have

wi = di + (N −
∑
i∈s

di)


diqi∑
i∈s diqi

−


qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)(
1−

∑
i∈s diqi∑
i∈s diqi

)
∑
i∈s qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)2




+

{∑
i∈U

ĝi −
∑
i∈s

diĝi

}
qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)(
1−

∑
i∈s diqi∑
i∈s diqi

)
∑
i∈s qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)2


(3.13)

Substitutig wi in (3.9) we have

(3.14)ŷsm =
∑
i∈s

diyi + (N −
∑
i∈s

di)

{∑
i∈s diqiyi∑
i∈s diqi

− β̂m
}

+

{∑
i∈U

ĝi −
∑
i∈s

diĝi

}
β̂m

where β̂m =


∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)(
yi−
∑

i∈s diqiyi∑
i∈s diqi

)
∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)2


Theorem 1: The term (N −∑i∈s di)

{∑
i∈s diqiyi∑
i∈s diqi

− β̂m
}

is neglible. The proof is

provided in appendix 1.

It therefore suffices to write our estimator as

(3.15)ŷsm =
∑
i∈s

yi
πi

+

{∑
i∈U

ĝi −
∑
i∈s

ĝi
πi

}
β̂m

where ĝi = Ziβ̂ + µ̂(xi) and di = (πi)
−1 with β̂ and µ̂ computed as defined in

(3.6) and (3.7) respectively.

We propose an estimator of finite population mean as

(3.16)ŷsm =
1

N

∑
i∈s

yi
πi

+
1

N

{∑
i∈U

ĝi −
∑
i∈s

ĝi
πi

}
β̂m

If local polynomial is used to fit the missing values, then the semiparametric

estimator for Eξ(yi) is given as

(3.17)ĝi = STlpsi
(
Ys − ZT

s β̂
)

+ Zi
(
ZT
s SlpsZs

)−1
ZT
s SlpsYs
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where
(3.18)Slps =

[
STlpsi, i ∈ s

]
A Nadaraya Watson fit is obtained as in (3.17) but with the degree q in STlpsi

being zero.

When no part of the auxilliary information require to enter the estimation para-

metrically, then nonparametric estimation would be sufficient. We define the

nonparametric sample fit forEξ(yi) based on penalized splines as

(3.19)µ̂i = STspsiYs

while if based on local polynomial we have

(3.20)µ̂i = STlpsiYs

We minimize the chi square distance measure (2.1) subject to the constraints∑
i∈swi = N and

∑
i∈swiµ̂i =

∑
i∈U µ̂i and solve for wi to obtain

(3.21)wi = (λµ̂i + v)qidi + di

Solving for v and λ then substituting wi into the noparametric equivalent of (3.9)

we obtain

(3.22)ŷnp =
∑
i∈s

yi
πi

+

{∑
i∈U

µ̂i −
∑
i∈s

µ̂i
πi

}
β̂m

in which case β̂m =


∑

i∈s qidi

(
µ̂i−

∑
i∈s diqiµ̂i∑
i∈s diqi

)(
yi−
∑

i∈s diqiyi∑
i∈s diqi

)
∑

i∈s qidi

(
µ̂i−

∑
i∈s diqiµ̂i∑
i∈s diqi

)2


A corresponding estimator for population mean is therefore

(3.23)ŷnp =
1

N

∑
i∈s

yi
πi

+
1

N

{∑
i∈U

µ̂i −
∑
i∈s

µ̂i
πi

}
β̂m

3.2 Theoretical Properties Under One Stage

Sampling

In this section, we show that

ŷsm =
∑n
i=1

yi
πi

+
{∑N

i=1 ĝi −
∑n
i=1

ĝi
πi

}
β̂m
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where ĝi = ĝ(xi, Zi) + εi,is design unbiased, consistent and asymptotic normally

distributed under the assumptions listed below. These properties are confirmed in

the empirical analysis and hold even when the model is mis-spcefied. Assumptions

2-5 are similar to those of Breidt et al(2005) while assumption 6 is from Wu and

Sitter(2001).

3.2.1 Assumptions

1. We assume that there is a sequence of finite populations indexed by ρ each of

size Nρ but which for ease of representation we write N and each estimated

by ŷsmρ but which we again simply write as ŷsm.

2. As ρ→∞, n→∞, N →∞, the number of knots k →∞ while bandwidth

h→ 0.

3. For each ρ, the xi, for i = 1, 2, ...., N are indepedent and identically dis-

tributed F (x) =
∫ x
−∞ f(t)dt where f(.) is a density with compact support

[ax, bx] and f(x) > 0 for all x ∈ [ax, bx] . The Zi have bounded suport.

4. For each ρ the xi and Zi are considered fixed with respect to the model ξ

while the errors εi are indepedent and have mean zero, variance var(xi, Zi)

and compact support, uniformly for each ρ.

5. Every element in a population has an inclusion probability πi > 0 and any

two distinct elements have a joint inclusion probability πij > 0

6. The sampling design is regular so that the inclusion probabilities are inde-

pendent of response measurements and satisfies the conditions maxi∈s
n
Nπi

=

0(1), where πi is the inclusion probability, and
∑
i∈s

gi
πj
−∑N

i=1 gi = 0p(Nn
− 1

2 ).
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Assumption 1 ensures there is a sequence of estimates which are necessary in

establishing consistency. Assumption 2 ensures that as the population size grows,

the amount of data within a neighbourihood defined by a knot in case of splines

or bandwidth in case of kernel smoothing is reasonable and does not become

exeptionaly large. Assumption 3 ensures that the {xi} are a random sample from

a continuous distribution. Assumption 4 is necessary to make the results in later

sections to look like traditional(non-asymptotic) finite population results while

assumption 5 ensures every element has a probability, not zero, of being included

in the sample. First condition in assumption 6 says that no basic design weight

is dispropotionaly large while the second condition is equivalent to assuming that

Horvitz thompson estimator for
∑N
i=1 gi is asymptotically normally distributed.

3.2.2 Asymptotic Design Unbiasedness

Let Ep be design expectation and Eξ model based expectation. We need to show

that {Ep(ŷsm)} = Yt. Under assumptios 1-6, and the fact that with respect

to design expectation, ĝi and β̂m are treated as a constants and the fact that

EP (Ii) = πi.

Now,

{Ep(ŷsm)} = Ep

{∑
i∈s

yi
πi

+

{∑
i∈U

ĝi −
∑
i∈s

ĝi
πi

}
β̂m

}

= Ep

{∑
i∈U

yiIi
πi

+

{∑
i∈U

ĝi −
∑
i∈U

ĝiIi
πi

}
β̂m

}

=
∑
i∈U

EpyiIi
πi

+
∑
i∈U

Epĝiβ̂m −
∑
i∈U

Ep(ĝiβ̂mIi)

πi

=
∑
i∈U

EpyiIi
πi

+
∑
i∈U

Epĝiβ̂m −
∑
i∈U

(ĝiβ̂mEpIi)

πi

=
∑
i∈U

ȳ

1
+
∑
i∈U

ĝiβ̂m −
∑
i∈U

ĝiβ̂m
1

(3.24)
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Thus we have,
∑
i∈U ȳ = Nȳ = Yt

3.2.3 Model Bias Reduction

We show that ŷsm =
∑n
i=1

yi
πi

+
{∑N

i=1 ĝi −
∑n
i=1

ĝi
πi

}
β̂m

has reduced model bias. Now, β̂m is an estimate of the change in Yt when gi

is increased by a unit. The rationale of this estimator is that if
∑
i∈s

ĝi
πi

is be-

low average, we should expect the estimate of the population total Yt to be

below average by an amount
{∑

i∈U ĝi −
∑
i∈s

ĝi
πi

}
β̂m due to regression of yi on ĝi.

Cochran(1997). The estimate ĝi need not be free from bias. If ĝi − yi = D, so

that the estimate is perfect except for a constant bias D, then with β̂m = 1 the

regression estimate becomes

(3.25)
∑
i ∈s

yi
πi

+

{∑
i∈U

ĝi −
∑
i∈s

ĝi
πi

}
=
∑
i∈U

ĝi +

{∑
i∈s

yi
πi
−
∑
i∈s

ĝi
πi

}

The first term to the right is population total estimate and the second term to the

right is an adjustment for bias. This regression estimate is consistent in the sense

that when the sample comprises the whole population, then
∑
i∈U ĝi =

∑
i∈s

ĝj
πj

and

the regression estimate reduces to
∑
i∈s

yi
πi

. See Firth and Bennett (2006).Thus,

establishing a CLT for generalized difference estimator is essentially the same as

establishing a CLT for Horvitz-Thompson estimator.

3.2.4 Design Consistency

Under assumptions 1-6, the chebycheve’s inequality, pr[|xn − θ|> ε] ≤ EP
|xn−θ|2
ε2

and a sequence of the estimates ŷsmρ but which we simply write as ŷsm for ease

of representation. We have that pr[|ŷsm − Yt|> ε] ≤ EP
|ŷsm−Yt|2

ε2

but since ŷsm is unbiased for Yt, then the mean squared error can consistently be

estimated by var(ŷsm), so that pr[|ŷsm − Yt|> ε] ≤ var{ŷsm}
ε2
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and limρ→∞ pr[|Epŷsm − Yt|> ε] ≤ limρ→∞
var{ŷsm}

ε2
. We see that,

lim
ρ→∞

var {ŷsm}
ε2

= lim
ρ→∞

Ep
n∑
i=1

n∑
j=1

(
yi − giβ̂m

πi
)(
yj − gjβ̂m

πj
)(
πij − πiπj

πij
)

1

ε2

= lim
ρ→∞

Ep
N∑
i=1

N∑
j=1

(
yi − giβ̂m

πi
)(
yj − gjβ̂m

πj
)(
πij − πiπj

πij
)
IiIj
ε2

= 0

(3.26)

Since Ep(πij) = πiπj, Ep(πiπj) = πiπj, Ep(πi) = πi and Ep(IiIj) = πij ≤ πiπj

See Kott P.S.(2003). We must therefore also have that,

limρ→∞ pr[|Epŷsm − Yt|> ε]→ 0, that is , ŷsm
p→ Yt

3.2.5 Asymptotic Normality

Theorem 2: Let gi be the population fit assumed known for every population

element, then

(3.27)y∗sm =
n∑
i=1

yi
πi

+

{
N∑
i=1

gi −
n∑
i=1

gi
πi

}
β∗m

where

β∗m =

∑N

j=1
1
πi
qi(gi−ḡ)(yi−Ȳ )∑N

i=1
1
πi
qi(gi−ḡ)2

, ḡ = N−1∑N
i=1 gi and ȳ = N−1∑N

i=1 yi

is an asymptotic normal estimator for population total in the sense that (y∗sm−Yt)
var1/2(y∗sm)

d→

N(0, 1) as ρ→∞

proof : Consider the Horvitz - Thompson estimator

(3.28)yht =
n∑
i=1

yi
πi

with variance
(3.29)V (yht) =

∑
i,j∈U

(πij − πiπj)
yi
πi

yj
πj

This estimator is known to be normaly distributed. If population fits

µi = eTi
(
XT
UiWUiXUi

)−1
XT
UiWUiŶs are known, under assumptions 1-6, and by

theorem 3 of Breidt and Opsomer(2000) and theorem 3.2 of Thompson(1997),
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the resulting difference estimator

(3.30)Ŷ ∗diff =
∑
i∈s

yi
πi

+

(∑
i∈U

µi −
∑
i∈s

µi
πi

)

is found to be asymptotic normal in the sense that
Ŷ ∗diff−Yt

var1/2(Ŷ ∗
diff

)

d→ N(0, 1) as

ρ→∞. The estiamtor’s variance

(3.31)V (Ŷ ∗diff ) =
∑
i,j∈U

(πij − πiπj)
yi − µi
πi

yj − µj
πj

is less than that of Horvitz-Thomson estimator due to yi − µi and yj − µj. They

find that establishing a CLT for Ŷ ∗diff is the same as establishing a CLT for the

Horvitz-Thompson estimator. The estimator y∗sm is similar to Ŷ ∗diff with the

difference being the regression coefficient and the fact that penalized spline is

used for the fits. Its variance,

(3.32)V (Ŷ ∗sm) =
∑
i,j∈U

(πij − πiπj)
yi − giβ∗m

πi

yj − gjβ∗m
πj

is still less than that of Horvitz-Thomson estimator. By theorem 3 of Breidt and

Opsomer(2000) and theorem 3.2 of Thompson(1997), y∗sm is aymptotic normal.

Establishing a CLT for y∗sm is the same as establishing a CLT for Ŷ ∗diff which is

in turn the same as establishing a CLT for the Horvitz-Thompson estimator.

Theorem 3: Let y∗sm be as defined in theorem 2. Then,

(y∗sm−Yt)
var1/2(y∗sm)

d→ N(0, 1) as ρ→∞ implies that (ŷsm−Yt)
var1/2(ŷsm)

d→ N(0, 1)

where

(3.33)var(ŷsm) =
n∑
i=1

n∑
j=1

(
yi − ĝiβ̂m

πi

)(
yj − ĝjβ̂m

πj

)(
πij − πiπj

πij

)

proof : We need to show that (ŷsm − Yt) converges to (y∗sm − Yt) in distribution.

This would imply that ŷsm inherits limiting distributional properties of ˆ̄ysm. This,

coupled with theorem 2 would proof the above.

Now,

(ŷsm − Yt) =
∑N
i=1

yiIi
πi

+
∑N
i=1 ĝiβ̂m −

∑N
i=1

ĝiIiβ̂m
πi
− ∑N

i=1 yi and (y∗sm − Yt) =
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∑N
i=1

yiIi
πi

+
∑N
i=1 giβ

∗
m −

∑N
i=1

giIiβ
∗
m

πi
−∑N

i=1 yi

Clearly,

(3.34)ŷsm − y∗sm =
N∑
i=1

(
ĝiβ̂m − giβ∗m

)(
1− Ii

πi

)

Taking limits of the expectation,we have

(3.35)lim
ρ→∞

EP {ŷsm − y∗sm} = lim
ρ→∞

EP

{
N∑
i=1

(
ĝiβ̂m − giβ∗m

)(
1− Ii

πi

)}

It can be seen that the design expectation of ŷsm − y∗sm approaches zero since

design expectation of Ii is πi. Thus the limit is zero. This is convergence in mean

which implies convergence in probability and convergence in distribution.

The right hand term in (3.34) can be written as

(3.36)
(
β̂m − β∗m

) N∑
i =1

ĝi

(
1− Ii

πi

)
+ β∗m

N∑
i =1

(ĝi − gi)
(

1− Ii
πi

)

Now, ĝi−gi = Op(1) from lemma 4 in Breidt and Opsomer(2000), β̂m−β∗m = Op(1)

from an argument similar to that of lemma 4 in Montanari and Ranalli(2003).∑N
i=1 ĝi

(
1− Ii

πi

)
= Op(Nn

−1/2) and
∑N
i=1 (ĝi − gi)

(
1− Ii

πi

)
= Op(Nn

−1/2) from

the proof of theorem 2 in Breidt and Opsomer(2000). Therefore the term in

equation(3.36) is of order Op(Nn
−1/2).

The estimators ŷnp and ŷsm only differ in the way the missing values were ob-

tained. In ŷnp, a nonparametric method is used while for ŷsm a semiparametric

method is used. Generally, their structure is similar. The theoretical properties

for ŷnp are obtained in quite a similar manner as for ŷsm

3.3 Extensions To Two Stage Sampling

We consider a case where auxilliary information is available only at the cluster

level and when it is availbale at both element and cluster levels.
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3.3.1 Auxilliary Information at Cluster Level Only

Consider a population U partitioned into M clusters each of size Ni so that the

population of clusters is C = {1, . . . , i, . . . ,M}. For all clusters i ∈ C , an

auxiliary variable x is observed and a categorical vector Z is also available. At

stage one, a probability sample s of clusters is drawn from C according to a fixed

design p1(.), where p1(s) is the probability of drawing the sample s from C. let m

be the size of s. The cluster inclusion probabilities πi = p(i ∈ s) and πij = p(i, j ∈

s) are assumed to be strictly positive. p1 refers to first stage design. From every

sampled cluster i ∈ s , a probability sample si of elements is drawn according

to a fixed size design p2(.) with inclusion probabilities πk/i = p(k ∈ si/i ∈ s)

and πkl/i = p(k, l ∈ si/i ∈ s) which are strictly positive. We let ni be the size

of si and assume invariance and independence of the second stage design. Let

ti = g(xi, Zi) + εi, i = 1, 2, . . . ,M be the ith cluser total, where g(xi, Zi) is a

smooth function of x and Z.

Let t̂s =
[
t̂i
]
i∈s

be the m dimension vector of t̂′is obtained in the sample of clusters,

where t̂i =
∑
k∈si

yik
πk

is the Horvitz-Thompson design estimate of ith cluster total.

Define the spline model matrix Xc to contain bases that are functions of t̂i and

define the sub matrix Ws = j ∈ s
{

1
πj

}
Let ξ1 denote a super population of clusters model and ξ11 denote a super popu-

lation of cluster elements model. Define the semiparametric population estimator

for Eξ1(ti) as

(3.37)ĝi = ĝ(xi, Zi)

= µ̂i + Ziβ̂

If the fits are based on penalized splines, we then have the estimators

(3.38)β̂ =
(
ZT
s SspsZs

)−1
ZT
s Sspst̂s

and
(3.39)µ̂i = STspsi

(
t̂s − ZT

s β̂
)
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so that
(3.40)ĝi = STspsi

(
t̂s − ZT

s β̂
)

+ Zi
(
ZT
s SspsZs

)−1
ZT
s Sspst̂s

If the fits are based on local polynomial, we then have the estimators

(3.41)β̂ =
(
ZT
s SlpsZs

)−1
ZT
s Slpst̂s

and
(3.42)µ̂i = STlpsi

(
t̂s − ZT

s β̂
)

so that
(3.43)ĝi = STlpsi

(
t̂s − ZT

s β̂
)

+ Zi
(
ZT
s SlpsZs

)−1
ZT
s Slpst̂s

A Nadaraya Watson fit is obtained as in (3.43) but with the polynomial degree

in STlpsi being zero.

We propose a semiparametric model assisted model calibrated estimator of pop-

ulation total to be
(3.44)ŷsm2 =

∑
i∈s

wit̂i

with wi obtained by minimizing the chi square distance measure (2.1) subject

to the constraints
∑
i∈swi = M and

∑
i∈swiĝi =

∑
i∈C ĝi. di = π−1

i . q′is are

known positive constants uncorrelated with the d′is. We introduce the lagrange

procedure in the minimization of equation (2.1) to obtain an equation of the form

(3.45)l =
∑
i∈s

(wi − di)2

qidi
− 2λ(

∑
i∈s

wiĝi −
∑
i∈C

ĝi)− 2v(
∑
i∈s

wi −M)

Where λ is the lagrange’s multiplier and v is the penalty constant.

Differentiating equation (3.45) with respect to wi and equating to zero we get

(3.46)
∂l

∂wi
=

2(wi − di)
qidi

− 2λĝi − 2v

= 0

which gives
(3.47)wi = (λĝi + v)qidi + di
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Solving for λ and v we have

wi = di + (M −
∑
i∈s

di)


diqi∑
i∈s diqi

−


qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)(
1−

∑
i∈s diqi∑
i∈s diqi

)
∑
i∈s qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)2




+

{∑
i∈C

ĝi −
∑
i∈s

diĝi

}
qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)(
1−

∑
i∈s diqi∑
i∈s diqi

)
∑
i∈s qidi

(
ĝi −

∑
i∈s diqiĝi∑
i∈s diqi

)2


(3.48)

Substituting wi in (3.44) we have that

(3.49)ŷsm2 =
∑
i∈s

dit̂i + (M −
∑
i∈s

di)

{∑
i∈s diqit̂i∑
i∈s diqi

− β̂m2

}
+

{∑
i∈C

ĝi −
∑
i∈s

diĝi

}
β̂m2

where β̂m2 =


∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)(
t̂i−
∑

i∈s diqit̂i∑
i∈s diqi

)
∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)2


Like in one stage sampling, the term (M −∑i∈s di)

{∑
i∈s diqi t̂i∑
i∈s diqi

− β̂m
}

is neglible.

The proof cleary follow from the proof of theorem 1. We therefore rewrite the

estimator as

(3.50)ŷsm2 =
∑
i∈s

t̂i
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}
β̂m2

where ĝi = Ziβ̂ + µ̂(xi) and di = (πi)
−1. with β̂ and µ̂ computed as defined in

equations (3.38 ) and (3.39) respectively.

We now derive the variance of this estimator. Suppose the sample comprises the

whole population of clusters, then ŷsm2 =
∑m
i=1

t̂i
πi

which is the Horvitz-Thompson

(HT) design based estimator. The variance of HT estimator under two stage

sampling design can be written as the sum of two components

varp(ŷsm2) = V1 (E11 [ŷsm2]) + E1 (v11 [ŷsm2])

=
∑
i∈C

∑
j∈C

(πij − πiπj)
ti
πi

tj
πj

+
∑
i∈C

Vi
πi

(3.51)

where Vi = V11(t̂i) =
∑m
k

∑m
l

(
πkl/i − πk/iπl/i

)
yik
πk/i

yil
πl/i

, is the variance component

at element level. (See Breidt and Opsomer, (2000) and Otieno et al(2007))
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When ŷsm2 has the model component
{∑M

i=1 ĝi −
∑m
i=1

ĝi
πi

}
β̂m2, its design variance

becomes

(3.52)
∑
i ∈C

∑
j ∈C

(πij − πiπj)
ti − ĝiβ̂m2

πi

tj − ĝjβ̂m2

πj
+
∑
i ∈C

Vi
πi

Only the variance at the cluster level is affected by the model. Vi is non random

due to invariance.

For two stage sampling, a corresponding estimator of finite population mean is

therefore derived from the estimator of the total to give

(3.53)ŷsm2 =
1

N

∑
i∈s

t̂i
πi

+
1

N

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}
β̂m2

Dropping the regression coefficient(which resulted from model calibration) β̂m2

from ŷsm2 we have the corresponding internally calibrated estimator

(3.54)ŷreg2 =
∑
i∈s

t̂i
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}

Now, when no part of the auxiliary information is to enter the estimation process

parametrically, a nonparametric estimator would again be sufficient. Define the

penalized splines nonparametric sample fit for Eξ1(ti) as

(3.55)µ̂ti = STspsit̂s

and a local polynomial nonparametric sample fit as

(3.56)µ̂ti = STlpsit̂s

minimizing the chi square distance measure(2.1) subject to the constraints
∑
i∈swi =

M and
∑
i∈swiµ̂ti =

∑
i∈C µ̂ti and solving for wi, v and λ then subsistuting to the

nonparametric equivalent of (3.44)we then have that

(3.57)ŷnp2 =
∑
i∈s

t̂i
πi

+

{∑
i∈C

µ̂ti −
∑
i∈s

µ̂ti
πi

}
β̂m2

in which case

(3.58)β̂m2 =


∑
i∈s qidi

(
µ̂ti −

∑
i∈s diqiµ̂ti∑
i∈s diqi

)(
t̂i −

∑
i∈s diqi t̂i∑
i∈s diqi

)
∑
i∈s qidi

(
µ̂ti −

∑
i∈s diqiµ̂ti∑
i∈s diqi

)2
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Following the same approach in deriving variance as in the case of ŷsm2, we have

variance of ŷnp2 as

(3.59)
∑
i ∈C

∑
j ∈C

(πij − πiπj)
ti − µ̂tiβ̂m2

πi

tj − µ̂tjβ̂m2

πj
+
∑
i ∈C

Vi
πi

where Vi = V11(t̂i) =
∑m
k

∑m
l

(
πkl/i − πk/iπl/i

)
yk
πk/i

yl
πl/i

The cosrresponding nonparametric estimator of the population mean is therefore

(3.60)ŷnp2 =
1

N

∑
i∈s

t̂i
πi

+
1

N

{∑
i∈C

µ̂ti −
∑
i∈s

µ̂ti
πi

}
β̂m2

while a corresponding internally calibrated esimator for population total is

(3.61)ŷgen2 =
∑
i∈s

t̂i
πi

+

{∑
i∈C

µ̂ti −
∑
i∈s

µ̂ti
πi

}

3.3.2 Auxilliary Information at Both Element and Cluster

Level

Now, consider the case where there is also auxilliary information known at element

level such that for each element in the ith cluster, a variable xi that is to be used

in noparametric estimation and a categorical vector Zi are available. Suppose

not all elements in a given cluster are available and have to be imputed. We use

model calibration in the estimation of the cluster total to obtain.

(3.62)t̂ism =
∑
k∈si

dk/iyik +


Ni∑
k=1

ĝik −
∑
k∈si

dk/iĝik

 β̂mc

where β̂mc =


∑

k∈si
qikdk/i

(
ĝik−

∑
k∈si

dk/iqikĝik∑
k∈si

dk/iqik

)(
yik−

∑
k∈si

dk/iqikyik∑
k∈si

dk/iqik

)
∑

k∈si
qikdk/i

(
ĝik−

∑
k∈si

dk/iqikĝik∑
k∈si

dk/iqik

)2


and ĝik = Zikβ̂ + µ̂(xik) = Eξ11(yik) with β̂ derived as before but using values

from the cluster.

Accordingly, we have the estimator for population total as

(3.63)ŷssm2 =
∑
i∈s

t̂ism
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}
β̂m2
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where in β̂m2 =


∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)(
t̂ism−

∑
i∈s diqit̂ism∑
i∈s diqi

)
∑

i∈s qidi

(
ĝi−
∑

i∈s diqiĝi∑
i∈s diqi

)2


A corresponging internally calibrated estimator will therefore be

(3.64)ŷregreg2 =
∑
i∈s

t̂reg
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}

where now

(3.65)t̂reg =
∑
k∈si

dk/iyik +


Ni∑
k=1

ĝik −
∑
k∈si

dk/iĝik


Again, if the sample comprises the whole population of clusters, then ŷssm2 =∑m
i=1

t̂ism
πi

which is the Horvitz-Thompson (HT) design based estimator. We then

have that

varp(ŷssm2) = V1 (E11 [ŷssm2]) + E1 (v11 [ŷssm2]) (3.66)

=
∑
i∈C

∑
j∈C

(πij − πiπj)
tism
πi

tjsm
πj

+
∑
i∈C

Vi
πi

(3.67)

where the variance component at element level

Vi = V11(t̂ism) =
∑m
k

∑m
l

(
πkl/i − πk/iπl/i

)
yik−ĝikβ̂mc

πk/i

yil−ĝilβ̂mc
πl/i

due to the model

component
{∑Ni

k=1 ĝik −
∑
k∈si dk/iĝik

}
β̂mc. When ŷssm2 has the model component{∑M

i=1 ĝi −
∑m
i=1

ĝi
πi

}
β̂m2, its design variance becomes

(3.68)
∑
i ∈C

∑
j ∈C

(πij − πiπj)
tism − ĝiβ̂m2

πi

tjsm − ĝjβ̂m2

πj
+
∑
i ∈C

Vi
πi

When the sample of clusters comprise the whole poipulation of clusters and the

element samples comprise all the elements in a cluster then ŷsm2 = ŷssm2. It is

therefore enough to find the asymptotic properties of ŷsm2 which would clearly

apply to ŷssm2.

We obtain a nonparametric estimator by letting µ̂tik = Eξ11(yik) so that

(3.69)t̂inp =
∑
k∈si

dk/iyik +


Ni∑
k=1

µ̂tik −
∑
k∈si

dk/iµ̂tik

 β̂mc
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where β̂mc =


∑

k∈si
qikdk/i

(
µ̂tik−

∑
k∈si

dk/iqikµ̂tik∑
k∈si

dk/iqik

)(
yik−

∑
k∈si

dk/iqikyik∑
k∈si

dk/iqik

)
∑

k∈si
qikdk/i

(
µ̂tik−

∑
k∈si

dk/iqikµ̂tik∑
k∈si

dk/iqik

)2


So that we have the estimator for population total as

(3.70)ŷnnp2 =
∑
i∈s

t̂inp
πi

+

{∑
i∈C

µ̂ti −
∑
i∈s

µ̂ti
πi

}
β̂m2

Where now β̂m2 =


∑

i∈s qidi

(
µ̂ti−

∑
i∈s diqiµ̂ti∑
i∈s diqi

)(
t̂inp−

∑
i∈s diqit̂inp∑
i∈s diqi

)
∑

i∈s qidi

(
µ̂ti−

∑
i∈s diqiµ̂ti∑
i∈s diqi

)2


A corresponging internally calibrated estimator is therefore

(3.71)ŷgengen2 =
∑
i∈s

t̂gen
πi

+

{∑
i∈C

µ̂ti −
∑
i∈s

µ̂ti
πi

}

where now

(3.72)t̂gen =
∑
k∈si

dk/iyik +


Ni∑
k=1

µ̂tik −
∑
k∈si

dk/iµ̂tik



3.4 Theoretical Properties Under Two Stage

Sampling

In this section, we show that ŷsm2 =
∑m
i=1

t̂i
πi

+
{∑M

i=1 ĝi −
∑m
i=1

ĝi
πi

}
β̂m2 where

ĝi = Ziβ̂ + µ̂(xi) + εi is design unbiased, consistent and asymptotic normaly

distributed. These properties hold under the following mild assumptions. These

assumptions are similar to those in (3.2.1) with little modification to fit two stage

sampling. They therefore have similar relevance to the proofs.

3.4.1 Assumptions

1. We assume that there is a sequence of finite populations indexed by ρ each

of size Nρ but which we simply write N for ease of representation.
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2. As ρ → ∞, N, n,M,m,Ni, ni → ∞, the number of knots k → ∞ while

bandwidth h→ 0.

3. For each ρ, the xi, for i = 1, 2, ....,M are indepedent and identically dis-

tributed F (x) =
∫ x
−∞ f(t)dt where f(.) is a density with compact support

[ax, bx] and f(x) > 0 for all x ∈ [ax, bx] . The Zi have bounded suport.

4. For each ρ the xi and Zi are considered fixed with respect to the model ξ1

while the errors εi1 are indepedent and have mean zero, variance var(xi, Zi)

and compact support, uniformly for each ρ.

5. For each ρ the xik and Zik are considered fixed with respect to the model ξ11

while the errors εi11 are indepedent and have mean zero, variance var(xik, Zik)

and compact support, uniformly for each ρ.

6. The sampling design is regular so that the inclusion probabilities are inde-

pendent of response measurements and satisfies the following conditions

a) maxi∈s
m
Mπi

= 0(1), and maxk∈si
ni

Niπk/i
= 0(1)

b)
∑
i∈s

gi
πj
−∑M

i=1 gi = 0p(Mm−
1
2 ) and

∑
k∈si

gik
πk/i
−∑Ni

k=1 gik = 0p(Nin
− 1

2
i ).

3.4.2 Asymptotic Design Unbiasedness

Let Ep1 be design expectation and Eξ1 model based expectation. We need to show

that {Ep1(ŷsm2)} = Yt. We note that t̂i is a Horvitz Thompson design estimator

which is unbiased fot ti . The proof follow from assumptions 1-6, the fact that

EP1(Ii) = πi and that with respect to design expectation ĝi and β̂m2 are treated

as constants.

Now,

{Ep1(ŷsm2)} = Ep1

{∑
i∈s

t̂i
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}
β̂m2

}
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= Ep1

{∑
i∈C

t̂iIi
πi

+

{∑
i∈C

ĝi −
∑
i∈C

ĝiIi
πi

}
β̂m2

}

=

{∑
i∈C

Ep1 t̂iIi
πi

+

{∑
i∈C

Ep1 ĝiβ̂m2 −
∑
i∈C

Ep1(ĝiIiβ̂m2)

πi

}}

=

{∑
i∈C

ti
1

+

{∑
i∈C

ĝiβ̂m2 −
∑
i∈C

ĝiβ̂m2

1

}}
(3.73)

Thus we have,
∑
i∈C ti = Yt.

3.4.3 Model Bias Reduction

We show that ŷsm2 =
∑m
i=1

t̂i
πi

+
{∑M

i=1 ĝi −
∑m
i=1

ĝi
πi

}
β̂m2 has reduced model bias.

β̂m2 is an estimate of the change in Yt when gi is increased by a unit. If
∑
i∈s

ĝi
πi

is

below average, we should expect the population total Yt to be below average by

an amount
{∑

i∈C ĝi −
∑
i∈s

ĝi
πi

}
β̂m2 due to regression of t̂i on ĝi. Cochran(1997).

Again, the estimate ĝi need not be free from bias. If ĝi − t̂i = D, so that the

estimate is perfect except for a constant bias D, then with β̂m = 1 the regression

estimate becomes

(3.74)
∑
i ∈s

t̂i
πi

+

{∑
i∈C

ĝi −
∑
i∈s

ĝi
πi

}
=
∑
i∈C

ĝi +

{∑
i∈s

t̂i
πi
−
∑
i∈s

ĝi
πi

}

This regression estimate is consistent in the sense that when the sample comprises

the whole population, then
∑
i∈C ĝi =

∑
i∈s

ĝi
πi

and the regression estimate reduces

to
∑
i∈s

t̂i
πi

. See Firth and Bennett (2006). Again, establishing a CLT for ŷsm2,

which is a generalized diference estimator is essentially the same as establishing

a CLT for Horvitz-Thompson estimator.

3.4.4 Design Consistency

Under asumptions 1-6, the chebycheve’s inequality and a sequence of the esti-

mates ŷsm2ρ but which we simply write ŷsm2, We have that pr[|ŷsm2 − Yt|> ε] ≤
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EP1

|ŷsm2−Yt|2
ε2

but since ŷsm2 is unbiased for Yt, then the mean squared error is consistently

estimated by var(ŷsm2), so that pr[|ŷsm2 − Yt|> ε] ≤ var{ŷsm2}
ε2

and

lim
ρ→∞

pr[|Ep1 ŷsm2 − Yt|> ε] ≤ lim
ρ→∞

var {ŷsm2}
ε2

We see that,

lim
ρ→∞

var {ŷsm2}
ε2

= lim
ρ→∞

Ep1

m∑
i=1

m∑
j=1

(
ti − ĝiβ̂m2

πi
)(
tj − ĝjβ̂m2

πj
)(
πij − πiπj

πij
)

1

ε2

+ lim
ρ→∞

Ep1

M∑
i=1

{
m∑
k

m∑
l

(
πkl/i − πk/iπl/i

) yk
πk/i

yl
πl/i

}
1

ε2πi

= lim
ρ→∞

Ep1

M∑
i=1

M∑
j=1

(
ti − ĝiβ̂m2

πi
)(
tj − ĝjβ̂m2

πj
)(
πij − πiπj

πij
)
IiIj
ε2

+ lim
ρ→∞

Ep1

M∑
k

M∑
l

{(
πkl/i − πk/iπl/i

) yk
πk/i

yl
πl/i

}
IiIj
ε2πi

= 0(3.75)

Since Ep1(πij) = πiπj, Ep1(πiπj) = πiπj, Ep1(πi) = πi and Ep1(IiIj) = πij ≤ πiπj

Which reduces the brackets of probabilities to zero. We must therefore also have

that

lim
ρ→∞

pr[|Ep1 ŷsm2 − Yt|> ε]→ 0

That is ,

ŷsm2
p→ Yt
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3.4.5 Asymptotic Normality

Theorem 4: Let gi be the population fit assumed known for every population

element and

(3.76)y∗sm2 =
m∑
i=1

t̂i
πi

+

{
M∑
i=1

gi −
m∑
i=1

gi
πi

}
β∗m2

where

β∗m2 =

∑M

j=1
1
πi
qi(gi−ḡ)(t̂i−t̄)∑M

i=1
1
πi
qi(gi−ḡ)2

and ḡ =
∑M
i=1 gi

Then, y∗sm2 is asymptotic normal in the sense that
(y∗sm2−Yt)
var1/2(y∗sm2)

d→ N(0, 1) as ρ→∞

Proof : The proof follow from the proof of theorem 2, but in this case the sampling

units are the clusters.

Theorem 5: Let y∗sm2 be as defined in theorem 4.

Then,
(y∗sm2−Yt)
var1/2(y∗sm2)

d→ N(0, 1) as ρ→∞ implies that (ŷsm2−Yt)
var1/2(ŷsm2)

d→ N(0, 1)

Where,

(3.77)var(ŷsm2) =
m∑
i=1

m∑
j=1

(
t̂i − ĝiβ̂m2

πi

)(
t̂j − ĝjβ̂m2

πj

)(
πij − πiπj

πij

)

proof : We need to show that (ŷsm2−Yt) converges to (y∗sm2−Yt) in distribution.

This would imply that ŷsm2 inherits limiting distributional properties of y∗sm2.

This, coupled by theorem 4 would proof the above.

Now,

(ŷsm2 − Yt) =
∑M
i=1

t̂iIi
πi

+
∑M
i=1 ĝiβ̂m2 −

∑M
i=1

ĝiIiβ̂m2

πi
−∑M

i=1 t̂i

And (y∗sm2 − Yt) =
∑M
i=1

t̂iIi
πi

+
∑M
i=1 giβ

∗
m2 −

∑M
i=1

giIiβ
∗
m2

πi
−∑M

i=1 t̂i.

Clearly,

(3.78)ŷsm2 − y∗sm2 =
M∑
i=1

(
ĝiβ̂m2 − giβ∗m2

)(
1− Ii

πi

)

Taking limits of the expectation,we have

(3.79)lim
ρ→∞

EP1 {ŷsm2 − y∗sm2} = lim
ρ→∞

EP1

{
M∑
i=1

(
ĝiβ̂m2 − giβ∗m2

)(
1− Ii

πi

)}

It can be seen that the design expectation of ŷsm2 − y∗sm2 approaches zero since

design expectation of Ii is πi. This is convergence in mean which implies conver-

gence in probability and convergence in distribution.
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The right hand term in (3.78) can be written as

(3.80)
(
β̂m2 − β∗m2

) M∑
i =1

ĝi

(
1− Ii

πi

)
+ β∗m2

M∑
i =1

(ĝi − gi)
(

1− Ii
πi

)

Now, ĝi − gi = Op(1) from lemma 4 in Breidt and Opsomer(2000), β̂m2 −

β∗m2 = Op(1) from an argument similar to that of lemma 4 in Montanari and

Ranalli(2003).
∑M
i=1 ĝi

(
1− Ii

πi

)
= Op(Mm−1/2) and

∑M
i=1 (ĝi − gi)

(
1− Ii

πi

)
=

Op(Mm−1/2) from the proof of theorem 2 in Breidt and Opsomer(2000). There-

fore the term in equation(3.80) is of order Op(Mm−1/2).

The estimators ŷssm2 , ŷnp2 and ŷnnp2 have the same structure as ŷsm2, with

the only difference being how the fitted values are obtained. Its therefore clear

that they posses the theoretical properties; design unbiasedness, consistency and

asymptotic normality with the proofs obtained in quite a similar manner as for

ŷsm2.
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CHAPTER FOUR

4.0 EMPIRICAL ANALYSIS

4.1 Empirical Analysis Under One Stage

Sampling

For the analysis, using R program we simulated a population of independent

and identically distributed variable x using uniform (0.1). For nonparametric

estimation, the dependent population values y were generated from the following

mean functions which are similar to but not exactly the same as those used by

Breidt and Opsomer(2000). This is so that we could compare the performance of

the model calibrated estimator that we have proposed and the internaly calibrated

estimator they proposed. This comparison is done by generating our own data

and employing the estimators to see which yields better results. We note that

it would be erroneous to simply pick their results and compare with our results

even when the mean functions below are the same.This is because the generated

data depends on the random numbers generated at each of the replication. Still,

simulation software actually generate pseudo random numbers and not random

numbers. These pseudo random numbers are generated using a congruential

generator coded in a software and which differs from sofware to software. Simply

picking results from two authors and directly comparing them assumes the same

software(and hence the same random number generator) and same set of pseudo

random numbers at every simulation replication are used by the authors. This

is not feasible.In fact it is possible with many softwares for a data analyst to

create his or her own generator to suit his or her analysis. It is for these reasons

that we could not compare our results directly with theirs but instead use their

estimators with our own data.
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1. linear 2 + 5x

2. quadratic (2 + 5x)2

3. bump (2 + 5x) + exp(−200(2 + 5x)2)

4. exponential exp(−8x)

5. cycle1 2 + sin(2πx)

6. cycle2 2 + sin(8πx)

For semiparametric estimation, the dependent population values y were generated

from the following mean functions which are similar to those used by Breidt and

Opsomer(2000) but we have added a categorical matrix Z.

1. linear Zβ′ + 2 + 5x

2. quadratic Zβ′ + (2 + 5x)2

3. bump Zβ′ + (2 + 5x) + exp(−200(2 + 5x)2)

4. exponential Zβ′ + exp(−8x)

5. cycle1 Zβ′ + 2 + sin(2πx)

6. cycle2 Zβ′ + 2 + sin(8πx)

Z is the matrix (Z1, Z2, Z3),where Z1 is a matrix of 2s with dimension N, the

population size. Z2 is a matrix of alternating 3s,4s and 5s with dimension N,

while Z3 is a matrix of alternating 6s,7s and 8s with dimension N. β = (1, 2, 3) is

the vector of coefficients.
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We consider the following estimators in the analysis.

1. Horvitz Thompson, ŷht with inclusion probability πi = n
N

2. Model Calibrated Model Assisted Estimator ŷsm(3.15) proposed, for which

we considered three cases; ŷsm based on penalized splines which from now on

will be denoted by ŷsmsp and in which ĝi is as defined in (3.8), ŷsm based on

local polynomial which we denote by ŷsmlp in which ĝi is as defined in (3.17)

and ŷsm based on Nadaraya Watson kernel smoothing which we denote by

ŷsmnw in which ĝi is as defined in (3.17) but with polynomial degree zero.

3. Internally Calibrated Model Assisted Estimator ŷreg,(2.20), for which we

consider the three cases; ŷreg based on penalized splines which we denote

by ŷregsp in which ĝi is as defined in (3.8), ŷreg based on local polynomial

which we denote by ŷreglp in which ĝi is as defined in (3.17)and ŷreg based

on Nadaraya Watson kernel smoothing which we denote by ŷregnw in which

ĝi is as defined in (3.17) but with polynomial degree zero.

The first is a design based estimator while the others are semiparametric estima-

tors which are model assisted. For the Nadaraya Watson kernel smoothing we

consider equal probability sampling. For model calibrated estimators, the weight

qi is set to 1 for ease of computations. We used the standard epernecknikov kernel

K(u) = 3/4(1− u2), u ≤ 1 for the kernel based estimators. A bandwidth of 0.25

was used for the kernel based estimators. This was based on the ad hoc rule of

1/4th of the data rage. For the penalised spline estimators, the knots were placed

at equidistance. That is, 0.2, 0.4, 0.6, 0.8, thus dividing the data rage into five

equal segments.
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The populations were of size N=300. Samples of size n=30 were generated by

simple random sampling. The sample size is ten percent of the population. For

each population of x and mean function, 100 replicate samples were generated

and the estimates calculated. The population was kept fixed during these 100

replicates in order to evaluate the design averanged performance of the estimators.

This enabled estimation of design bias, design variance and design mean squared

error. Trials involving 500 and 1000 replicate samples yielded same results as for

100 replicates.

The performance of any estimator say yest in ŷht, ŷsmsp, ŷsmlp, ŷsmnw, ŷregsp, ŷreglp,

ŷregnw was evaluated using its relative bias RB and relative efficiency RE defined

by

(4.1)RB =

∑R
r=1 (yest − Yt)
R ∗ Yt

where R is the replicate number of samples and relative efficiency

(4.2)RE =
MSE(yest)

MSE(yht)

where yest was calculated from the Rth simulated sample.

The ŷht estimator was used as the baseline comparison. Large values of relative

efficiencies,(RE > 1 or Inverse RE < 1 ) represent higher efficiency for the design

estimator ŷht over the estimator yest that its being compared with.

We also carried out a Sensitivity Analysis by looking at the effects that ignoring

a variable in the categorical matrix would have on the estimators.

For nonparametric estimation, we compared the performance of the Horvitz-

Thompson estimator with the model calibrated model assisted estimator ŷnp,(3.22),

for which we consider the three cases; ŷnp based on penalized splines which we

denote as ŷnpsp in which µ̂i is as defined in (3.19), ŷnp based on local polynomial

which we denote by ŷnplp in which µ̂i is as defined in (3.20) and ŷnp based on

Nadaraya Watson kernel which we denote by ŷnpnw in which µ̂i is as defined in

(3.20) but with polynomial degree zero. We also compared the performance of
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the Horvitz-Thompson estimator with the internally calibrated model assisted es-

timator ŷgen,(2.16), for which we consider the three cases; ŷgen based on penalized

splines which we denote as ŷgensp in which µ̂i is as defined in (3.19), ŷgen based on

local polynomial which we denote by ŷgenlp in which µ̂i is as defined in (3.20)and

ŷgen based on Nadaraya Watson kernel which we denote by ŷgennw in which µ̂i is

as defined in (3.20) but with degree zero.

4.1.1 Normality Test

Before we could compare the performance of our proposed model calibrated es-

timators with the design and internally calibrated estimtors, we carried out a

Shapiro-Wilk test for normality and obtained the p-values in table (4.1). A p-

value greater than the set α significance level means normality is established.

At α = 0.05, we can see that the proposed estimators are normal. A sample of

normal graphs are provided in appendix 2.

Table 4.1: Shapiro-Wilk p-values(one stage)
ŷsmsp ŷsmlp ŷsmnw ŷnpsp ŷnplp ŷnpnw

Linear 0.763 0.799 0.731 0.439 0.499 0.428
Quadratic 0.872 0.826 0.694 0.158 0.165 0.157

Bump 0.781 0.679 0.505 0.601 0.631 0.589
Exponential 0.523 0.511 0.511 0.692 0.692 0.692

Cycle 1 0.471 0.456 0.461 0.863 0.863 0.863
Cycle 2 0.637 0.637 0.643 0.613 0.613 0.613

4.1.2 Consistency Test

We carried out a consistency test by varying the the sample size nρ,population

size Nρ for each population ρ = 1, 2, 3 and obtaining the diference between the

estimate and actual total Yt. The estimated total is taken to be the average
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from the R replicates. The results in the table (4.2) show the estmators are

consistent in the sense that the diferences decrease consistently with an increase

in population and sample sizes.
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Table 4.2: Absolute Diferences for One Stage Sampling
n1 = 30, N1 = 300 n2 = 450, N2 = 900 n3 = 1350, N3 = 1800

Mean Function ŷsmsp − Yt ŷsmsp − Yt ŷsmsp − Yt
Linear 5.75 5.74 5.27

Quadratic 18.94 18.66 18.67
Bump 12.24 5.33 3.57

Exponential 10.57 9.15 5.98
Cycle 1 4.58 5.06 4.11
Cycle 2 7.24 5.63 5.41

Mean Function ŷsmlp − Yt ŷsmlp − Yt ŷsmlp − Yt
Linear 5.76 5.54 5.31

Quadratic 33.13 29.82 26.84
Bump 7.61 7.67 5.85

Exponential 10.52 10.01 8.51
Cycle 1 14.87 13.46 10.41
Cycle 2 25.64 16.87 16.43

Mean Function ŷsmnw − Yt ŷsmnw − Yt ŷsmnw − Yt
Linear 13.63 12.99 12.17

Quadratic 40.26 41.72 34.04
Bump 17.81 15.55 13.505

Exponential 30.23 27.51 23.95
Cycle 1 30.67 30.56 26.39
Cycle 2 36.73 35.37 25.66

Mean Function ŷnpsp − Yt ŷnpsp − Yt ŷnpsp − Yt
Linear 4.89 4.71 3.62

Quadratic 13.62 13.63 10.62
Bump 11.24 5.60 2.94

Exponential 8.97 8.45 4.18
Cycle 1 4.16 4.33 3.52
Cycle 2 6.53 5.11 4.21

Mean Function ŷnplp − Yt ŷnplp − Yt ŷnplp − Yt
Linear 5.16 4.92 4.33

Quadratic 29.29 29.31 23.39
Bump 7.22 6.34 5.12

Exponential 9.78 8.71 8.81
Cycle 1 12.94 12.41 8.29
Cycle 2 19.77 16.02 14.53

Mean Function ŷnpnw − Yt ŷnpnw − Yt ŷnpnw − Yt
Linear 12.39 11.82 10.07

Quadratic 37.19 38.12 33.74
Bump 15.75 13.90 10.60

Exponential 27.71 23.83 19.49
Cycle 1 29.55 29.07 23.12
Cycle 2 33.25 31.30 22.62
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4.1.3 Bias

From the comparative analysis, we obtained the following results. They are or-

ganized as follows. The first three are model calibrated estimators based on

penalized splines, local polynomial and nadaraya watson kernel respectively. The

fourth is a design estimator. The fifth, sixth and seventh are internally cal-

ibrated estimators based on penalized splines, local polynomial and Nadaraya

Watson kernel respectively.

Table 4.3: Relative Biases (semiparametric)
ŷsmsp ŷsmlp ŷsmnw ŷht ŷregsp ŷreglp ŷregnw

Linear 0.008 0.008 0.018 0.008 0.019 0.038 0.301
Quadratic 0.024 0.023 0.024 0.023 0.465 1.587 2.016

Bump 0.014 0.016 0.028 0.016 0.029 0.167 0.259
Exponential 0.001 0.004 0.009 0.010 0.002 0.017 0.103

Cycle 1 0.005 0.008 0.014 0.010 0.007 0.022 0.073
Cycle 2 0.006 0.005 0.008 0.015 0.007 0.005 0.019

From table (4.3) we observe that the biases are very small given that the popu-

lation totals were in hundreds, pointing to unbiasedness. Comparing the model

calibrated estimators with their corresponding internal calibrated estimators, that

is ŷsmsp with ŷregsp,ŷsmlp with ŷreglp and ŷsmnw with ŷregnw , we see that model

calibration results in reduced bias than internal calibration.

Table 4.4: Relative Biases (nonparametric)
ŷnpsp ŷnplp ŷnpnw ŷht ŷgensp ŷgenlp ŷgennw

Linear 0.010 0.009 0.020 0.008 0.019 0.038 0.301
Quadratic 0.020 0.021 0.022 0.019 0.443 2.187 2.536

Bump 0.024 0.027 0.029 0.027 0.039 0.216 0.349
Exponential 0.003 0.004 0.012 0.002 0.0016 0.019 0.143

Cycle 1 0.007 0.010 0.017 0.013 0.009 0.025 0.077
Cycle 2 0.006 0.006 0.008 0.005 0.010 0.011 0.018

From table (4.4) we again observe that the biases are very small. Again Compar-

ing the model calibrated estimators with their corresponding internal calibrated

estimators, that is ŷgensp with ŷgensp,ŷnplp with ŷgenlp and ŷnpnw with ŷgennw , we
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see that model calibration results in reduced bias than internal calibration just

like in semiparametric estimation.

4.1.4 Relative Efficiency

Table 4.5: Relative Efficiency (semiparametric)
ŷsmsp ŷsmlp ŷsmnw ŷht ŷregsp ŷreglp ŷregnw

Linear 1.180 1.301 1.752 1 3.639 34.583 1641.763
Quadratic 1.229 1.627 1.930 1 3.153 11308.16 15369.7

Bump 1.277 1.411 1.832 1 2.561 545.785 431.521
Exponential 1.417 1.827 1.873 1 3.081 784.672 479.265

Cycle 1 1.361 1.901 2.136 1 2.909 7.962 71.887
Cycle 2 1.218 1.267 1.970 1 3.361 10.251 12.003

Figure 4.1: Inverse RE (Semiparametric onestage)

The estimators 1 to 7 in figure (4.1) represent the estimators ŷsmsp to ŷregnw

respectively in the table (4.5). We used the design estimator as the bases for

comparison since all the model based estimators are new in the context of semi-

parametric estimation and so that we could carry out a sensitivity analysis when
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some categorical variables are not included in a semiparametric estimator. From

table (4.5) and figure (4.1), all the model calibrated estimators ŷsmsp ,ŷsmlp and

ŷsmnw have performance very close to that of design estimator even though none

of them performs better than the design estimator. The model calibrated es-

timator based on penalied splines ŷsmsp performs better than the other model

calibrated estimators based on kernel methods. For the internally calibrated esti-

mators, only the penalized spline one has a performace close to that of the design

estimator while the kernel based estmators are found to perform poorly, again

illustrating the power of penalized spline estimators. The internally calibrated pe-

nalized spline estimator ŷregsp does not however fare better than the kernel based

model calibrated estimators ŷsmlp and ŷsmnw. It would appear that whether to

model-calibrate or not is more significant than the choice of the nonparametric

function to use to fit the missing values.

Table 4.6: Relative Efficiency (nonparametric)
ŷnpsp ŷnplp ŷnpnw ŷht ŷgensp ŷgenlp ŷgennw

Linear 1.390 1.501 1.965 1 3.340 30.573 1591.803
Quadratic 1.329 1.337 2.230 1 3.633 11190.10 14329.17

Bump 1.579 1.721 2.134 1 2.963 540.725 433.542
Exponential 1.527 1.922 1.979 1 4.108 780.290 496.361

Cycle 1 1.601 1.936 2.112 1 3.600 6.783 66.856
Cycle 2 1.468 1.562 1.988 1 2.991 10.001 13.123
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Figure 4.2: Inverse RE (Nonparametric Onestage)

The estimators 1 to 7 in figure (4.2) represent the estimators ŷnpsp to ŷgennw re-

spectively in the table (4.6). From table (4.6) and figure (4.2), all the model

calibrated estimators ŷnpsp ,ŷnplp and ŷnpnw hace performance close to the de-

sign estimator just like in semiparametric estimation, but none performs better

than the design estimator. The model calibrated estimator based on penalized

splines ŷnpsp performs better than the other model calibrated estimators. For

the internally calibrated estimators, only the one based on penalized splines has

a performance close to the performance of the design estimator. The internally

calibrated penalized spline does not fare better than the kernel based model cal-

ibrated estimators ŷnplp and ŷnpnw just like in the case of semiparametric model.
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4.1.5 Bias on Sensitivity Analysis

Table 4.7: Bias on Removing Z3(semiparametric)
ŷsmsp ŷsmlp ŷsmnw ŷht ŷregsp ŷreglp ŷregnw

Linear 0.012 0.029 0.029 0.012 0.015 0.276 0.103
Quadratic 0.041 0.068 0.045 0.039 0.045 1.201 0.233

Bump 0.014 0.030 0.018 0.016 0.017 0.373 0.113
Exponential 0.145 0.131 0.151 0.146 0.143 0.591 0.176

Cycle 1 0.012 0.011 0.017 0.012 0.012 0.225 0.049
Cycle 2 0.010 0.011 0.023 0.010 0.014 0.113 0.105

Looking at table (4.7) we observe that the biases still remain very small even after

the vector Z3 is dropped. Comparing the model calibrated estimators with their

corresponding internally calibrated estimators, that is ŷsmsp with ŷregsp, ŷsmlp with

ŷreglp and ŷsmnw with ŷregnw, we observe that the model calibrated estimators re-

main less biased than their corresponding internally calibrated estimators. Same

observations were made even when Z1 and Z2 were the omitted vectors.

4.1.6 Relative Efficiency on Sensitivity

Table 4.8: Relative Efficiency on Removing Z3(semiparametric)
ŷsmsp ŷsmlp ŷsmnw ŷht ŷregsp ŷreglp ŷregnw

Linear 1.144 1.344 2.016 1 4.192 580.989 91.503
Quadratic 1.297 4.031 4.528 1 4.353 1953.703 58.408

Bump 1.308 2.020 2.365 1 3.117 851.133 77.568
Exponential 1.6910 2.230 2.636 1 3.697 1903.492 33.693

Cycle 1 1.456 2.150 2.8882 1 3.179 701.722 19.286
Cycle 2 1.352 2.311 3.205 1 3.511 64.356 115.493
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Figure 4.3: Inverse RE on removing Z3

The estimators 1 to 7 in figure (4.3) represent the estimators ŷsmsp to ŷregnw re-

spectively in the table (4.8). We observe, from table (4.8) and figure (4.3) that

all the model calibrated estimators have performance close to the performance of

the design estimator with the one based on penalized splines being the best. Of

the internally calibrated estimators, only the one based on penalized penalized

splines has a performance close to the performance of the design estimator. The

kernel based ones, ŷreglp and ŷregnw perform poorly compared to the design esti-

mator. It is certain therefore that model calibrated estimators are more robust

than the corresponding internally calibrated estimators. Same observations were

made even when Z1 and Z2 were dropped.
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4.2 Empirical Analysis Under Two Stage

Sampling

4.2.1 Auxilliary Information at Cluster Level Only

We simulated a population of independent and identically distributed variable x

using uniform(0.1) and a categorical matrix Z. For each generated xi and vector

Zi and for each mean function , Ni = 100 element values were generated as follows

for semiparametric modelling.

(4.3)yik =
g(xi, Zi)

Ni

+
εik√
Ni

, {εik} iidN(0, 0.1)

where yik is the kth element in the ith cluster and g(xi, Zi) which we simply write

gi is the mean function for ti, the cluster total, obtained semiparametrically. For

nonparametric estimation element values were generated as

(4.4)yik =
µ(xi)

Ni

+
εik√
Ni

, {εik} iidN(0, 0.1)

ˆµ(xi) is the mean function for ti.

At stage one, a sample of clusters was generated by simple random sampling

with sample size m=50. At stage two, within each of the selected clusters, sub

samples of elements of size ni were generated by simple random sampling. We

considered the case where ni = 50 for all clusters and the case ni = Ni which is

just but one stage sampling. Since no auxilliary information within the clusters

is considered, cluster totals were estimated using the Horvitz Thompson design

estimator. For each pair (xi, Zi) in the case of semiparametric modelling or for

each xi in case of nonparametric modelling, and for each generating function

described earlier , R=100 replicate samples of clusters were generated and the

estimates calculated.Trials involving 500 and 1000 replicate samples yielded same

results as for 100 replicates.

We consider the following estimators in the analysis.
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1. Horvitz Thompson, ŷht2 with inclusion probability πi = m
M

2. Model Calibrated Model Assisted Semiparametric Estimator ŷsm2, (3.50),

proposed, for which we considered three cases;ŷsm2 based on penalized

splines which we denote by ŷsmsp2 in which ĝi is as defined in (3.40), ŷsm2

based on local polynomial which is denoted by ŷsmlp2 in which ĝi is as de-

fined in (3.43) and ŷsm2 based on Nadaraya Watson kernel smoothing which

we denote by ŷsmnw2 in which ĝi is as defined in (3.43) but with polynomial

degree zero.

3. Internally Calibrated Model Assisted Semiparameric Estimator ŷreg2, (3.54),

for which we consider the three cases; ŷreg2 based on penalized splines which

we denote by ŷregsp2 in which ĝi is as defined in (3.40), ŷreg2 based on local

polynomial which we denote by ŷreglp2 in which ĝi is as defined in (3.43)and

ŷreg2 based on Nadaraya Watson kernel smoothing which we denote by

ŷregnw2 in which ĝi is as defined in (3.43) but with polynomial degree zero.

The performance of any estimator say yest in ŷht2, ŷsmsp2, ŷsmlp2, ŷsmnw2, ŷregsp2,

ŷreglp2, ŷregnw2 was evaluated using its relative bias RB and relative efficiency RE

defined ealier

Like in one stage sampling, we also carried out a Sensitivity Analysis by looking

at the effects that ignoring a variable in the categorical matrix would have on the

estimators.

For nonparameric estimation, we compare the performance of the three set of

estimators. First if the design estimator ŷht2. Second is the model calibrated

estimators ŷnp2, (3.57), for which we consider three cases; ŷnp2 based on penalized

splines denoted by ŷnpsp2 in which µ̂i is as defined in (3.55), ŷnp2 based on local

polynomial denoted by ŷnplp2 in which µ̂i is as defined in (3.56)and ŷnp2 based

on Nadaraya Watson kernel which we denote as ŷnpnw2 in which µ̂i is as defined
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in (3.56) but with polynomial degree zero.Third is the internally calibrated esti-

mators ŷgen2, (3.61), for which we consider three cases; ŷgen2 based on penalized

splines denoted by ŷgensp2 in which µ̂i is as defined in (3.55), ŷgen2 based on local

polynomial denoted by ŷgenlp2 in which µ̂i is as defined in (3.56)and ŷgen2 based

on Nadaraya Watson kernel which we denote as ŷgennw2 in which µ̂i is as defined

in (3.56) but with polynomial degree

4.2.1.1 Normality Test

Before the comparative analysis, we carried out a shapiro-wilk test for normality

for the proposed model calibrated estimators and obtained the following results.

At α = 0.05, normality is proven. A sample of normal graphs are provided in

appendix 2.

Table 4.9: Shapiro-Wilk p-values(two stage)
ŷsmsp2 ŷsmlp2 ŷsmnw2 ŷnpsp2 ŷnplp2 ŷnpnw2

Linear 0.497 0.550 0.502 0.439 0.599 0.428
Quadratic 0.672 0.507 0.473 0.555 0.555 0.555

Bump 0.761 0.748 0.744 0.829 0.828 0.828
Exponential 0.343 0.337 0.311 0.231 0.166 0.166

Cycle 1 0.497 0.497 0.497 0.567 0.578 0.578
Cycle 2 0.700 0.699 0.699 0.713 0.748 0.744

4.2.1.2 Consistency Test

We carried out a consistency test by varying the the sample size mρ,population

size Mρ for each population ρ = 1, 2, 3 and obtaining the diference between the

estimate and actual total Yt. The estimated total is taken to be the average from

the R replicates. The results in the table (4.10) show the estmators are consistent.
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Table 4.10: Absolute Diferences for Two Stage Sampling
m1 = 30,M1 = 300 m2 = 450,M2 = 900 m3 = 1350,M3 = 1800

Mean Function ŷsmsp2 − Yt ŷsmsp2 − Yt ŷsmsp2 − Yt
Linear 8.45 8.44 7.10

Quadratic 34.53 29.42 29.11
Bump 25.12 20.32 16.17

Exponential 14.19 13.22 9.58
Cycle 1 8.82 8.45 8.26
Cycle 2 10.24 8.92 8.81

Mean Function ŷsmlp2 − Yt ŷsmlp2 − Yt ŷsmlp2 − Yt
Linear 8.90 8.56 7.07

Quadratic 37.22 33.64 30.39
Bump 10.66 10.64 8.49

Exponential 14.65 14.22 12.55
Cycle 1 18.89 17.44 14.50
Cycle 2 28.77 19.17 19.15

Mean Function ŷsmnw2 − Yt ŷsmnw2 − Yt ŷsmnw2 − Yt
Linear 16.66 15.34 15.13

Quadratic 44.29 44.45 35.034
Bump 20.17 18.76 18.21

Exponential 32.73 29.73 25.65
Cycle 1 31.72 31.15 28.41
Cycle 2 37.21 37.33 27.09

Mean Function ŷnpsp2 − Yt ŷnpsp2 − Yt ŷnpsp2 − Yt
Linear 6.78 6.67 6.35

Quadratic 32.16 27.77 27.00
Bump 23.32 18.66 15.84

Exponential 12.54 11.67 8.89
Cycle 1 6.99 6.71 6.02
Cycle 2 8.20 7.88 6.95

Mean Function ŷnplp2 − Yt ŷnplp2 − Yt ŷnplp2 − Yt
Linear 6.99 6.28 5.37

Quadratic 34.36 31.10 27.36
Bump 8.76 8.09 6.55

Exponential 12.85 12.11 10.78
Cycle 1 16.98 14.64 12.53
Cycle 2 24.00 15.13 14.75

Mean Function ŷnpnw2 − Yt ŷnpnw2 − Yt ŷnpnw2 − Yt
Linear 14.85 13.48 13.10

Quadratic 40.44 40.43 31.64
Bump 17.53 16.67 15.52

Exponential 30.77 27.56 24.44
Cycle 1 29.27 28.45 27.46
Cycle 2 35.49 34.03 26.28
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4.2.1.3 Bias

Below are the results obtained. As was the case in previous tables, the first three

are model calibrated estimators, fourth is a design estimator and the last three

are the internally calibrated estimators.

Table 4.11: Relative Biases (semiparametric-one level covariate)
ŷsmsp2 ŷsmlp2 ŷsmnw2 ŷht2 ŷregsp2 ŷreglp2 ŷregnw2

Linear 0.009 0.009 0.018 0.010 0.021 0.038 0.308
Quadratic 0.034 0.033 0.034 0.033 0.445 1.595 2.216

Bump 0.024 0.026 0.038 0.026 0.039 0.177 0.279
Exponential 0.003 0.006 0.011 0.012 0.004 0.019 0.105

Cycle 1 0.006 0.010 0.017 0.013 0.010 0.026 0.077
Cycle 2 0.006 0.005 0.009 0.017 0.010 0.007 0.022

From table (4.11), we observe that the biases are very small again pointing to

unbiasedness. Comparing each model calibrated estimator with its corresponding

internally calibrated estimator, ŷsmsp2 with ŷregsp2, ŷsmlp2 with ŷreglp2 and ŷsmnw2

with ŷregnw2 , we see that model calibration results in reduced bias than internal

calibration.

Table 4.12: Relative Biases (nonparametric-one level covariate)
ŷnpsp2 ŷnplp2 ŷnpnw2 ŷht2 ŷgensp2 ŷgenlp2 ŷgennw2

Linear 0.008 0.008 0.018 0.011 0.024 0.035 0.401
Quadratic 0.044 0.043 0.044 0.043 0.443 1.515 2.198

Bump 0.034 0.036 0.045 0.019 0.046 0.197 0.309
Exponential 0.003 0.005 0.011 0.011 0.008 0.020 0.112

Cycle 1 0.007 0.012 0.018 0.012 0.012 0.024 0.082
Cycle 2 0.006 0.006 0.008 0.019 0.012 0.009 0.021

From table (4.12), Comparing ŷnpsp2 with ŷgensp2, ŷnplp2 with ŷgenlp2 and ŷnpnw2

with ŷgennw2 , we still see that model calibration resulting in reduced bias than

internal calibration just like was the case in semiparametric estimation above.
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4.2.1.4 Relative Efficiency

Table 4.13: Relative Efficiency (Semiparametric one level covariate)
ŷsmsp2 ŷsmlp2 ŷsmnw2 ŷht2 ŷregsp2 ŷreglp2 ŷregnw2

Linear 1.286 1.541 1.976 1 4.039 36.583 1538.704
Quadratic 1.829 2.227 2.530 1 3.753 10309.77 14332.5

Bump 1.977 2.116 2.542 1 3.244 546.585 432.271
Exponential 2.010 2.425 2.493 1 3.679 787.646 469.355

Cycle 1 1.861 2.451 2.639 1 3.529 8.922 74.437
Cycle 2 1.928 1.967 2.678 1 4.061 11.001 13.113

Figure 4.4: Inverse RE (Semiparametric one level covariate)

The estimators 1 to 7 in figure (4.4) represent the estimators ŷsmsp2 to ŷregnw2

respectively in the table (4.13). As in one stage sampling, we used the design

estimator as the bases for comparison since all the model based estimators are

new in the context of semiparametric estimation and so that we could carry out

a sensitivity analysis when some categorical variables are not included in a semi-

parametric estimator. From table (4.13) and figure (4.4), all the model calibrated

estimators ŷsmsp2, ŷsmlp2 and ŷsmnw2 have performances close to the performance

of the design estimator but none performs better than the design estimator. The
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model calibrated estimator based on penalized splines, ŷsmsp2 performs better

than the other model calibrated estimators based on kernel methods. The inter-

nally calibrated estimator ŷregsp2 based on penalized splines has a performance

close to the design estimator while kernel based perform poorly compared to

the design estimator, again illustrating the power of penalized spline estimators.

ŷregsp2 does not however fare better than the kernel based model calibrated es-

timators ŷsmlp2 and ŷsmnw2. This confirms that the choice of whether to model

calibrate or not is more significant than the choice of the nonparametric procedure

to use to fit the missing values.

Table 4.14: Relative Efficiency (nonparametric one level covariate)
ŷnpsp2 ŷnplp2 ŷnpnw2 ŷht2 ŷgensp2 ŷgenlp2 ŷgennw2

Linear 1.586 1.839 1.998 1 4.339 34.681 1538.704
Quadratic 1.730 2.422 2.639 1 4.213 10117.12 12372.6

Bump 1.872 2.006 2.361 1 3.004 526.345 437.431
Exponential 1.980 2.143 2.198 1 3.638 790.001 471.349

Cycle 1 1.881 2.215 2.479 1 4.126 9.721 72.467
Cycle 2 1.956 2.065 2.529 1 4.361 12.013 15.102

Figure 4.5: Inverse RE (Nonparametric one level covariate)
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The estimators 1 to 7 in figure (4.5) represent the estimators ŷnpsp2 to ŷgennw2

respectively in the table (4.14). From table (4.14) and figure (4.5), all the model

calibrated estimators ŷnpsp2, ŷnplp2 and ŷnpnw2 have performances close to the per-

formance of the design estimator but again none performs better than it. ŷnpsp2

performs better than the other model calibrated estimators. For the internally

calibrated estimators, only the penalized spline one has a performance close to

that of the design estimator while the kernel based ones perform poorly com-

pared to the design estimator, again illustrating the power of penalized splines

estimators.

4.2.1.5 Bias on Sensitivity Analysis

Table 4.15: Bias on Removing Z3(semiparametric-one level covariate)
ŷsmsp2 ŷsmlp2 ŷsmnw2 ŷht2 ŷregsp2 ŷreglp2 ŷregnw2

Linear 0.022 0.039 0.039 0.023 0.026 0.292 0.113
Quadratic 0.062 0.089 0.066 0.061 0.065 1.231 0.263

Bump 0.025 0.052 0.038 0.035 0.038 0.400 0.133
Exponential 0.244 0.232 0.249 0.245 0.243 0.690 0.277

Cycle 1 0.023 0.022 0.028 0.022 0.024 0.235 0.059
Cycle 2 0.019 0.020 0.029 0.021 0.024 0.123 0.117

Looking at table (4.15), we observe that the biases still remain very small even

after the variable Z3 is dropped. Comparing ŷsmsp2 with ŷregsp2, ŷsmlp2 with ŷreglp2

and ŷsmnw2 with ŷregnw2, we observe that the model calibrated estimators remain

less biased than their corresponding internally calibrated estimators. Same ob-

servations were made even when Z1 and Z2 were the omitted variables.
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4.2.1.6 Relative Efficiency on Sensitivity

Table 4.16: Relative Efficiency on Removing Z3(semiparametric one level covari-
ate)

ŷsmsp2 ŷsmlp2 ŷsmnw2 ŷht2 ŷregsp2 ŷreglp2 ŷregnw2

Linear 1.944 2.144 2.816 1 4.992 579.968 92.573
Quadratic 2.007 4.834 5.326 1 5.152 1950.456 60.206

Bump 2.008 2.822 3.169 1 3.921 856.100 77.568
Exponential 1.992 2.533 2.942 1 3.986 1900.425 36.234

Cycle 1 1.952 2.669 3.389 1 3.689 704.142 19.906
Cycle 2 1.973 2.944 3.901 1 4.131 66.337 120.063

Figure 4.6: Inverse RE on removing Z3 (Semiparametric one level covariate)

The estimators 1 to 7 in figure (4.6) represent the estimators ŷsmsp2 to ŷregnw2 re-

spectively in the table (4.16). We observe, from table (4.16) and figure(4.6), that

all the model calibrated estimators have performances close to the performance

of the design estimator with the penalized spline one being the best. Of the inter-

nally calibrated estimators, only the penalized spline one has a performance close

to the performance of the design estimator with the kernel based ones performing

poorly compared to the design estimator. The observations are similar to those
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obtained before dropping Z3

4.2.2 Auxilliary Information at Both Element and Cluster

Levels

We simulated a population of independent and identically distributed variable x

using uniform(0.1) and a categorical matrix Z. For each generated xi and vector

Zi and for each mean function , Ni = 100 element values were generated as follows

for semiparametric modelling.

(4.5)yik =
g(xi, Zi)√

Ni

+
εik√
Ni

, {εik} iidN(0, 0.1)

Where yik is the kth element in the ith cluster and g(xi, Zi) which we simply write

gi is the mean function for ti, the cluster total, obtained semiparametrically. For

nonparametric estimation element values were generated as

(4.6)yik =
µ(xi)

Ni

+
εik√
Ni

, {εik} iidN(0, 0.1)

µ(xi) is the mean function for ti. For simplicity, within each cluster the auxiliary

information at element level xik for semiparametric modelling was generated using

the linear and quadratic mean functions and working backward to obtain

(4.7)xik =
yik − 2− Zikβ′

5

and

(4.8)xik =

√
yik − Zikβ′ − 2

5

Where the squareroot is assumed posive and Zik is the matrix (Zi1, Zi2, Zi3),where

Zi1 is a matrix of 1s, Zi2 is a matrix of 2s,3s and 4s, while Zi3 is a matrix of 5s,

6s and 7s. β is the matrix (1,2,3). For nonparametric modelling the aixilliary

information was obtained as

(4.9)xik =
yik − 2

5
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and

(4.10)xik =

√
yik − 2

5

This provides the auxilliary information that we use to model missing values

within clusters.

For each pair (xi, Zi) and mean function, R = 100 replicate samples of clusters

were generated. At stage one, a sample of clusters was generated by simple

random sampling with sample size m = 50. At stage two, within each of the

selected clusters, sub samples of elements of size ni were generated by simple

random sampling. We considered the case where ni = 50 for all clusters and the

case ni = Ni which is just but one stage sampling. Cluster totals for the clusters

were estimated using the estimators employed in one stage sampling. Using the

estimated totals of the clusters and the estimators described next, estimates of

the population total were generated.

The estimation was such that a similar estimator to the one used in the estimation

of cluster totals is used at the estimation of the population total. For example,

if at cluster level we use model calibrated estimator based on penalized splines

to estimate the cluster totals, then we also use the model calibrated estimator

based on penalized splines to estimate the population total.

We consider the following estimators in the analysis.

1. Horvitz Thompson, ŷht2 with inclusion probability πi = m
M

2. The Model Calibrated Model Assisted Semiparametric Estimator ŷssm2,

(equation 3.63) that we have proposed. We considered three cases based

on the nonparametric method used to obtain the mean estimate. These

are; ŷssmsp2 whepenalized splines are used , ŷssmlp2 when local polynomial

is used and ŷssmnw2 in case of Nadaraya Watson kernel smoothing.
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3. Internally Calibrated Model Assisted Semiparameric Estimator ŷregreg2, (equa-

tion 3.64). We also consider three cases; ŷregregsp2 in case of penalized

splines, ŷregreglp2 in case of local polynomial and ŷregregnw2 for Nadaraya

Watson kernel smoothing.

The performance of any estimator say yest in ŷht2, ŷssmsp2, ŷssmlp2, ŷssmnw2, ŷregregsp2,

ŷregreglp2, ŷregregnw2 was evaluated using its relative bias RB and relative efficiency

RE defined ealier

We also carried out a Sensitivity Analysis by looking at the effects that ignoring

a variable in the categorical matrix would have on the estimators. We dropped

values available at cluster level. Same effects would be expected if an auxilliary

variable at element level is dropped since the processes of estimation at both

stages are similar.

For nonparameric estimation, we compare the performance of the three sets of

estimators.

1. Design estimator ŷht2

2. model calibrated estimator ŷnnp2, (equation 3.70), for which we consider

three cases. ŷnnpsp2 denote ŷnnp2 when its based on penalized splines, ŷnnplp2

denote ŷnnp2 when its based on local polynomial and ŷnnpnw2 represent ŷnnp2

based on Nadaraya Watson kernel smoothing.

3. Internally calibrated estimators ŷgengen2, (equation 3.71), where we also

look at three cases;ŷgengensp2 to denote ŷgengen2 based on penalized splines

, ŷgengenlp2 to denote ŷgengen2 based on local polynomial and ŷgengennw2 to

represent ŷgengen2 based on Nadaraya Watson kernel smoothing.
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We report on the observations for the case where the auxilliary information at

element level was obtained from the linear function. Similar observations were

obtained when the auxilliary information at the element level was obtained from

the quadratic function. Clearly, the results would similary not be different if any

of the six generating functions is considered.

From the analysis, we obtained the following results.

4.2.2.1 Bias

Table 4.17: Relative Biases (semiparametric-two level covariates)
ŷssmsp2 ŷssmlp2 ŷssmnw2 ŷht2 ŷregregsp2 ŷregreglp2 ŷregregnw2

Linear 0.015 0.015 0.025 0.017 0.028 0.048 0.328
Quadratic 0.041 0.039 0.041 0.039 0.516 1.645 2.906

Bump 0.031 0.036 0.040 0.036 0.048 0.247 0.339
Exponential 0.013 0.016 0.021 0.023 0.014 0.030 0.125

Cycle 1 0.012 0.015 0.023 0.019 0.018 0.034 0.086
Cycle 2 0.012 0.010 0.015 0.022 0.017 0.013 0.028

From table (4.17), we observe that the biases are very small again pointing to

unbiasedness. Comparing ŷssmsp2 with ŷregregsp2, ŷssmlp2 with ŷregreglp2 and ŷssmnw2

with ŷregregnw2 , we see that model calibration results in reduced bias than internal

calibration. Comparing table (4.17) with table (4.11) and comparing the observa-

tions for corresponding estimators, for example ŷssmsp2 with ŷsmsp2 , ŷssmlp2 with

ŷsmlp2 and so on, we see that biases are higher when we apply modelling even

within the clusters(table (4.17)) than when we used design estimation within

clusters(table (4.11)).This is expected because a design method is always more

efficient.
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Table 4.18: Relative Biases (nonparametric-two level covariates)
ŷnnpsp2 ŷnnplp2 ŷnnpnw2 ŷht2 ŷgengensp2 ŷgengenlp2 ŷgengennw2

Linear 0.012 0.012 0.023 0.016 0.029 0.038 0.407
Quadratic 0.053 0.054 0.052 0.053 0.453 1.565 2.258

Bump 0.045 0.046 0.046 0.030 0.057 0.307 0.320
Exponential 0.010 0.012 0.019 0.018 0.016 0.031 0.122

Cycle 1 0.010 0.015 0.022 0.015 0.015 0.028 0.086
Cycle 2 0.009 0.009 0.010 0.022 0.015 0.012 0.024

From table (4.18), Comparing ŷnnpsp2 with ŷgengensp2, ŷnnplp2 with ŷgengenlp2 and

ŷnnpnw2 with ŷgengennw2 , we see that model calibration resulted in reduced bias

than internal calibration just like was the case in one stage sampling.

Comparing table (4.18) with table (4.12) and comparing the observations for

corresponding estimators, for example ŷnnpsp2 with ŷnpsp2 , ŷnnplp2 with ŷnplp2 and

so on, we see that biases are higher when we apply modelling even within the

clusters(table (4.18)) than when we used design estimation within clusters(table

(4.12)). This, as stated earlier is expected since a design method is more efficient.

4.2.2.2 Relative Efficiency

Table 4.19: Relative Efficiency (semiparametric-two level covariates)
ŷssmsp2 ŷssmlp2 ŷssmnw2 ŷht2 ŷregregsp2 ŷregreglp2 ŷregregnw2

Linear 1.497 1.242 2.175 1 4.229 38.573 1550.004
Quadratic 2.027 2.431 2.730 1 3.933 10330.00 14370.6

Bump 2.168 2.320 2.743 1 3.454 560.659 446.332
Exponential 2.213 2.630 2.691 1 1.890 791.657 480.553

Cycle 1 2.059 2.641 2.841 1 3.731 10.945 77.077
Cycle 2 2.131 2.172 2.879 1 4.259 13.456 14.321
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Figure 4.7: Inverse RE (semiparametric two level covariate)

The estimators 1 to 7 in figure (4.7) represent the estimators ŷssmsp2 to ŷregregnw2

respectively in the table (4.19). As in previous cases, we used the design estimator

as the bases for comparison. From table (4.19) and figure (4.7), all the model

calibrated estimators ŷssmsp2, ŷssmlp2 and ŷssmnw2 have performances close to the

design estimator but as has been the case so far, none performs better than

it. ŷssmsp2 performs better than the other model calibrated estimators. For the

internally calibrated estimators, only the penalized spline one has a performance

close to that of the design estimator while the kernel based ones perform poorly to

the design estimator, again illustrating the power of penalized spline estimators.

Comparing table (4.19) with table (4.13) and comparing the observations for

corresponding estimators, for example ŷssmsp2 with ŷsmsp2 , ŷssmlp2 with ŷsmlp2 and

so on, we see that applying modelling even within the clusters(table (4.19)) does

not result in better than when we used design estimation within clusters(table

(4.13)). This is expected because as mentioned severaly, a design method is more

efficient. However, the estimators in using modelling within clusters are still
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performing closely to the design estimator and hence still very reliable.

Table 4.20: Relative Efficiency (nonparametric-two level covariates)
ŷnnpsp2 ŷnnplp2 ŷnnpnw2 ŷht2 ŷgengensp2 ŷgengenlp2 ŷgengennw2

Linear 1.783 2.136 2.208 1 4.542 36.683 1541.342
Quadratic 1.931 2.623 2.842 1 4.418 10134.21 12389.6

Bump 2.072 2.205 2.571 1 3.214 531.350 447.443
Exponential 2.180 2.342 2.396 1 4.842 801.211 491.356

Cycle 1 2.079 2.417 2.682 1 4.331 9.923 84.234
Cycle 2 2.159 2.270 2.727 1 4.565 13.020 17.162

Figure 4.8: Inverse RE (nonparametric two level covariate)

The estimators 1 to 7 in figure (4.8) represent the estimators ŷnnpsp2 to ŷgengennw2

respectively in the table (4.20). From table (4.20) and figure (4.8) , all the model

calibrated estimators ŷnnpsp2, ŷnnplp2 and ŷnnpnw2 have performances close to that

of the design estimator but none of them performs better than it. ŷnnpsp2 performs

better than the other model calibrated estimators. For the internally calibrated

estimators, only the penalized spline one has a performance close to performance

of the design estimator while the kernel based ones perform poorly compared

to the design estimator, confirming once more the power of penalized splines
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estimators over kernel besed ones.

A Comparison of table (4.20) with table (4.14) reveals similar relatioships as

obeserved in comparison of table (4.19) with table (4.13) in the above section.

4.2.2.3 Bias on Sensitivity Analysis

Table 4.21: Bias on Removing Z3(semiparametric-two level covariates)
ŷssmsp2 ŷssmlp2 ŷssmnw2 ŷht2 ŷregregsp2 ŷregreglp2 ŷregregnw2

Linear 0.024 0.040 0.040 0.024 0.029 0.302 0.173
Quadratic 0.063 0.092 0.066 0.063 0.067 1.250 0.274

Bump 0.026 0.054 0.041 0.035 0.040 0.431 0.161
Exponential 0.252 0.252 0.253 0.246 0.261 0.710 0.302

Cycle 1 0.024 0.024 0.029 0.022 0.026 0.242 0.063
Cycle 2 0.021 0.022 0.031 0.022 0.028 0.155 0.152

Looking at table (4.21), we observe that the biases still remain very small even

after the variable Z3 is dropped meaning the estimators still perform well.

Comparing table (4.21) with table (4.15) and comparing the observations for

corresponding estimators, for example ŷssmsp2 with ŷsmsp2 , ŷssmlp2 with ŷsmlp2

and so on, reveals that biases are higher when we apply modelling within the

clusters(table (4.21) than when we used design estimation within clusters(table

(4.15).

4.2.2.4 Relative Efficiency on Sensitivity

Table 4.22: Relative Efficiency on Removing Z3(semiparametric-two level covari-
ates)

ŷssmsp2 ŷssmlp2 ŷssmnw2 ŷht2 ŷregregsp2 ŷregreglp2 ŷregregnw2

Linear 1.952 2.214 2.897 1 5.112 582.348 93.783
Quadratic 2.017 4.911 5.525 1 5.892 1955.006 63.786

Bump 2.022 2.889 3.312 1 4.021 860.134 81.532
Exponential 2.112 2.634 2.992 1 4.289 1931.129 42.245

Cycle 1 1.992 2.745 3.429 1 3.987 715.164 22.923
Cycle 2 2.194 3.004 4.101 1 4.934 72.356 126.912
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Figure 4.9: Inverse RE on Removing Z3(Semiparametric two level covariates

The estimators 1 to 7 in figure (4.9) represent the estimators ŷssmsp2 to ŷregregnw2

respectively in the table (4.22). We observe, from table (4.22) and figure(4.9)

that all the model calibrated estimators have performances close to the design

estimator illustrating the robustness of the model calibrated estimators. For the

internally calibrated estimators, only the one based on penalized splines has a

performance close to that of the design estimator while the kernel based ones

perform poorly.
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CHAPTER FIVE

5.0 SUMMARY, CONCLUSIONS AND

RECOMMENDATIONS

5.1 Summary and Conclusions

We have derived a general model calibrated model assited nonparametric estima-

tor for population total and mean as envisaged in the first objective. We have

shown that the estimator is design unbiased, consistent and asymptotic normal.

The estimator has been shown to perform better than the nonparametric inter-

nally calibrated estimator. Any nonparametric smoothing method may be used

to fit the missing values. We have considered three specific methods;penalized

splines, local polynomial and Nadaraya Watson kernel smoothing.

We have also derived a general model calibrated model assited semiparametric

estimator for population total and mean as envisaged in the second objective and

derived an estimate for the variance. We have shown that the estimator is design

unbiased, consistent and asymptotic normal. The estimator has been shown to

perform better than the semiparametric internally calibrated estimator. We have

again considered penalized splines, local polynomial and Nadaraya Watson kernel

smoothing methods to fit the missing values.

When penalized splines are used to fit the missing values, both model calibrated

and internally calibrated estimators performs better than when local polynomial

or nadaraya watston smoothing are used. In fact,only when penalized splines were

used did we have the internally calibrated estimators having a performance close

to that of the design estimator. It is observed that even though using penalized

splines results in a more efficient model calibrated or internally calibrated estima-

tor than when kernel based methods are used, an internally calibrated estimator
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that uses penalized splines is less efficient than a model calibrated estimator that

uses kernel based method to fit missing values. Thus, to model calibrate or not

is more significant than the choice of the nonparametric method to use to fit the

missing values.

By letting our auxilliary information be available at the cluster level and let-

ting the cluster be the sampling units, we have extended our estimation to two

stage sampling. The resulting model calibrated estimators( both nonparamet-

ric and semiparametric) have been shown to be design unbiased, consistent and

asymptotic normal. We have also considered a case where auxilliary information

is available at both element and cluster level in which case we have used the

various models for the estimation even within the clusters. Even though this

has not yielded better results than when design estimation is used for the es-

timations within clusters, the difference is very small, thus the results are still

reliable. Thus, we have shown that in cases where some elements within clusters

are unreachable but auxilliary information is available at element level, we can

take advantage of this auxilliary information to obtain cluster totals which are

then used in the estimation of population total. If there is a possibility that some

clusters may be unreachable, it means there is a posibility too that some cluster

elements may be unreachable.

When some of the categorical variables are not considered in estimation,the model

calibrated semiparametric estimators(for both one stage and two stage sampling)

remain robust still having performances close to the performance of the design

estimator even though none performed better than the design estimator. The

internally calibrated estimators were shown to perform poorly when some of the

categorical variables are dropped. In a real world problem where we may not have

or may not be sure that we have all the relevant auxilliary information about a

variable, model calibrated estimators would therefore be the estimators of choice.

The Horvitz Thompson design estimator performs better than all the other esti-
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mators considered.

5.2 Recommendations

We would recommend further research on using semiparametric and nonpara-

metric models in the presence of auxilliary information to estimate population

parameters like total and mean at any given time for a population that grows

with time. That is, population size is time dependent. This is a broad area if we

were to think of application of internal calibration,model calibration and model

assistance techniques.

Consider two random variables say Y1 and Y2 generated by two different systems

and suppose they are both depedent on the same set of auxiliary variables(both

continuous and categorical), it would be interesting to study the use of non-

parametric and semiparametric techniques to model the relationship between the

populations of the two random variables, more so if the generating systems are

non-terminating.
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Appendix 1: Proofs

Proof of Theorem 1

Firstly, due to the constraint
∑
i∈swi = N and the fact that wi is chosen to be

as close as possible to di, then
∑
i∈s di is also very close to

∑
i∈swi when N is

large. In fact sometimes
∑
i∈s di is used to estimate the population size N in the

constraints (1.5). See Wu and sitter,(2001). The term N−∑i∈s di is therefore the

error term in the estimation of N . Under SRSWOR,
∑
i∈s di = N . In our anal-

ysis where we have assumed equal probability sampling, the term reduces to zero.

Secondly, by theorem 1 of Chen and Sitter(1999), if Lc is a set of all constant

sequences C = {c1, c2, ......} such N−1∑N
i=1(ci − CN)2 → c 6= 0 as N →∞ where

CN = N−1∑N
i=1 ci then we have the following mean estimator for a population of

unknown size obtained by minimizing a chi-square distance measure.

(5.1)ŷEC =

∑
i∈s diyi∑
i∈s di

+

{∑
i∈U ci
N

−
∑
i∈s dici∑
i∈s di

}
β̂mc +Op(

1√
n

)

where β̂mc is defined as β̂m but with qi = 1. But since
∑
i∈s di is an estimator for

N , by modifying the theorem and letting gi ∈ Lc, one has that

(5.2)ŷsm =
∑
i∈s

yi
πi

+

{∑
i∈U

ĝi −
∑
i∈s

ĝi
πi

}
β̂m +Op(

N√
n

)

Thirdly, under an equal probability sampling scheme in which
∑
i∈s di is unbiased

for N , we have from condition (a) of assumption 6 in section (3.2.1) that
∑
i∈s di =

O(N).

Suppose we let qi = 1, and ĝi be unbiased for yi. By arguments similar to

lemma 4 of Breidt et al (2000), lemma 4 of Montanari and Ranalli (2003) and

condition (b) of assumption 6 in section (3.2.1),
∑

i∈s diqiyi∑
i∈s diqi

− β̂m = Op(
1√
n
) and

hence (N −∑i∈s di)(
∑

i∈s diqiyi∑
i∈s diqi

− β̂m) = Op(
N√
n
)
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Appendix 2: Sample Normal Graphs

Graphs for Spline Model Calibrated Estimator

Nonparametric one stage Estimation (cycle 1 function )

Figure 5.1: Spline Graph for Population ρ1(nonparametric one stage)

Figure 5.2: Spline Graph for Population ρ2(nonparametric one stage)

Figure 5.3: Spline Graph for Population ρ3(nonparametric one stage)
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Semiparametric one stage Estimation (cycle 1 function)

Figure 5.4: Spline Graph for Population ρ1(semiparametric one stage)

Figure 5.5: Spline Graph for Population ρ2(semiparametric one stage)

Figure 5.6: Spline Graph for Population ρ3(semiparametric one stage)
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Two stage Estimation (cycle 1 function)

Figure 5.7: Spline Graph for Population ρ1(semiparametric two stage)

Figure 5.8: Spline Graph for Population ρ2(semiparametric two stage)

Figure 5.9: Spline Graph for Population ρ3(semiparametric two stage)
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Graphs for Local Polynomial Model Calibrated Estimator

Nonparametric one stage Estimation (cycle 1 function )

Figure 5.10: Local Polynomial Graph for Population ρ1(nonparametric one stage)

Figure 5.11: Local Polynomial Graph for Population ρ2(nonparametric one stage)

Figure 5.12: Local Polynomial Graph for Population ρ3(nonparametric one stage)
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Semiparametric one stage Estimation (cycle 1 function)

Figure 5.13: Local Polynomial Graph for Population ρ1(semiparametric one
stage)

Figure 5.14: Local Polynomial Graph for Population ρ2(semiparametric one
stage)

Figure 5.15: Local Polynomial Graph for Population ρ3(semiparametric one
stage)
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Two stage Estimation (cycle 1 function)

Figure 5.16: Local Polynomial Graph for Populationρ1(semiparametric two stage)

Figure 5.17: Local Polynomial Graph for Population ρ2(semiparametric two
stage)

Figure 5.18: Local Polynomial Graph for Population ρ3(semiparametric two
stage)
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Appendix 3: Code for Nonparametric Estima-

tion

unipop<-data.frame(runif(300)

names(unipop)<-"a"

#unipop

xpop<-c((unipop$a))

ypop<-2+sin(4*360*xpop)

#ypop

popsize<-300

samplesize<-0.1*popsize

samplenumber<-10

knotsnumber<-4

knotsmatrix<-c(0.2,0.4,0.6,0.8)

#polynomialdegree

q<-3

h<-0.5

inclusionprobability<-samplesize/popsize

di<-1/inclusionprobability

qi<-1

types_of_estimators<-7

estimatorsmatrix<-matrix(0,types_of_estimators,samplenumber)

relative_biase_matrix<-matrix(0,1,types_of_estimators)

relative_mse_matrix<-matrix(0,1,types_of_estimators)

absolute_biase_matrix<-matrix(0,1,types_of_estimators)

bias_numerator_matrix<-matrix(0,types_of_estimators,samplenumber)

mean_squared_error_matrix<-matrix(0,types_of_estimators,1)
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localpolynomial_x_matrix<-matrix(1,samplesize,1)

locallinear_x_matrix<-matrix(1,samplesize,2)

e<-c(1,0)

polynomial_diagonal_matrix<-matrix(0,samplesize,samplesize)

for(r in 1:samplenumber)

{ similar_de<-0

mu_spline_nu<-0

y_nu<-0

mu_local_nu<-0

mu_linear_nu<-0

q<-3

xsample<-sample(unipop$a,samplesize)

ysample<-2+sin(4*360*xsample)

splines_sample_mean_estimates<-matrix(0,1,samplesize)

splines_pop_mean_estimates<-matrix(0,1,popsize)

penaltymatrix<-matrix(0,1+q+knotsnumber,1+q+knotsnumber)

samplemodelmatrix<-matrix(0,samplesize,1+q+knotsnumber)

popmodelmatrix<-matrix(0,popsize,1+q+knotsnumber)

i<-0

#elements model matrix

for(x in xsample)

{

i<-i+1

ith_x_samplemodelmatrix<-c(1,x,x^2,x^3,(x-0.2)^q,(x-0.4)

^q,(x-0.6)^q,(x-0.8)^q)

samplemodelmatrix[i,]<-ith_x_samplemodelmatrix

}

#penalty matrix and setting -ve values in model matrix to zero
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for(t in (2+q):(1+q+knotsnumber))

{

penaltymatrix[t,t]<-1600*(samplesize/4)^4

for(z in 1:samplesize)

{

if (samplemodelmatrix[z,t]<=0) samplemodelmatrix[z,t]<-0

}

}

#print(samplemodelmatrix)

bu<-solve(t(samplemodelmatrix)%*%samplemodelmatrix

+penaltymatrix)%*%t(samplemodelmatrix)%*%ysample

#spline sample means estimates

p<-0

for(y in ysample)

{

p<-p+1

splines_sample_mean_estimates[1,p]<-

t(samplemodelmatrix[p,])%*%bu

#some regression step values

y_nu<-(y_nu)+di*qi*y

similar_de<-(similar_de)+di*qi

mu_spline_nu<-(mu_spline_nu)+

di*qi*splines_sample_mean_estimates[1,p]

#print(similar_de)

}

#print(similar_de)

y_avg<-(y_nu)/(similar_de)

spline_mu_avg<-(mu_spline_nu)/(similar_de)
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#the regression step bmc

spline_bmc_nu<-0

spline_bmc_de<-0

for(v in 1:samplesize)

{

spline_bmc_nu<-(spline_bmc_nu)+di*qi*

(splines_sample_mean_estimates[1,v]-spline_mu_avg)*

(ysample[v]-(y_avg))

spline_bmc_de<-(spline_bmc_de)+di*qi*

(splines_sample_mean_estimates[1,v]-spline_mu_avg)^2

}

spline_bmc<-(spline_bmc_nu)/(spline_bmc_de)

#print(spline_bmc)

#element model matrix for entire population

j<-0

for(x in xpop)

{j<-1+j

ith_x_popmodelmatrix<-c(1,x,x^2,x^3,(x-0.2)^q,

(x-0.4)^q,(x-0.6)^q,(x-0.8)^q)

popmodelmatrix[j,]<-ith_x_popmodelmatrix

}

#setting -ve values in model matrix to zero

for(t in (2+q):(1+q+knotsnumber))

{

for(z in 1:popsize)

{

if (popmodelmatrix[z,t]<=0) popmodelmatrix[z,t]<-0

}
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}

#population mean estimates

for(y in 1:popsize)

{

splines_pop_mean_estimates[1,y]<-t(popmodelmatrix[y,])%*%bu

}

#polynomial estimations

# kernel, x matrix ,and mean estmates for the sample

polynomial_sample_mean_estimates<-matrix(0,2,samplesize)

for(xi in 1:samplesize)

{

for(xj in 1:samplesize)

{

polynomial_diagonal_matrix[xj,xj]<-(3/4)*(1-((xsample[xj]-

xsample[xi])/h)^2)locallinear_x_matrix[xj,2]<-xsample[xj]-

xsample[xi]

}

polynomial_sample_mean_estimates[1,xi]<-

solve(t(localpolynomial_x_matrix)%*%(polynomial_diagonal_

matrix)%*%(localpolynomial_x_matrix))%*

%t(localpolynomial_x_matrix)%*

%(polynomial_diagonal_matrix)%*%ysample

polynomial_sample_mean_estimates[2,xi]<-t(e)%*

%solve(t(locallinear_x_matrix)%*%(polynomial_

diagonal_matrix)%*%(locallinear_x_matrix))%*

%t(locallinear_x_matrix)%*%

(polynomial_diagonal_matrix)%*%ysample
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#print("y")

#print(ysample[xi])

#print("est")

#print(polynomial_sample_mean_estimates[1,xi])

#print(polynomial_sample_mean_estimates[2,xi])

}

mu_local_nu<-sum(polynomial_sample_mean_estimates[1,]

*di*qi)

mu_linear_nu<-sum(polynomial_sample_mean_estimates[2,]

*di*qi)

local_mu_avg<-(mu_local_nu)/similar_de

linear_mu_avg<-(mu_linear_nu)/similar_de

#print(mu_local_nu)

#print(mu_linear_nu)

#print(local_mu_avg)

#print(linear_mu_avg)

#print("anpter")

local_bmc_nu<-0

local_bmc_de<-0

linear_bmc_nu<-0

linear_bmc_de<-0

for(w in 1:samplesize)

{

local_bmc_nu<-local_bmc_nu+di*qi*(polynomial_sample_

mean_estimates[1,w]-local_mu_avg)*(ysample[w]-y_avg)

local_bmc_de<-local_bmc_de+di*qi*(polynomial_sample_mean_

estimates[1,w]-local_mu_avg)^2

linear_bmc_nu<-linear_bmc_nu+di*qi*(polynomial_sample_
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mean_estimates[2,w]-linear_mu_avg)*(ysample[w]-y_avg)

linear_bmc_de<-linear_bmc_de+di*qi*(polynomial_sample_

mean_estimates[2,w]-linear_mu_avg)^2

}

local_bmc<-local_bmc_nu/local_bmc_de

linear_bmc<-linear_bmc_nu/linear_bmc_de

#print(spline_bmc)

#print(local_bmc)

#print(linear_bmc)

# kernel, x matrix ,and mean estmates for the entire population

polynomial_pop_mean_estimates<-matrix(0,2,popsize)

for(xi in 1:popsize)

{

for(xj in 1:samplesize)

{

polynomial_diagonal_matrix[xj,xj]<-(3/4)*(1-((xsample[xj]-

xpop[xi])/h)^2)locallinear_x_matrix[xj,2]<-xsample[xj]-xpop[xi]

}

polynomial_pop_mean_estimates[1,xi]<-

solve(t(localpolynomial_x_matrix)%*%(polynomial_

diagonal_matrix)%*%(localpolynomial_x_matrix))%*

%t(localpolynomial_x_matrix)%*

%(polynomial_diagonal_matrix)%*%ysample

polynomial_pop_mean_estimates[2,xi]<-

t(e)%*%solve(t(locallinear_x_matrix)%*%

(polynomial_diagonal_matrix)%*

%(locallinear_x_matrix))%*%t(locallinear_x_matrix)%*

%(polynomial_diagonal_matrix)%*%ysample
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}

#population total estimation

ht_total<-sum(ysample*di)

actual_total<-sum(ypop)

estimatorsmatrix[1,r]<-ht_total+(sum(splines_pop_mean_

estimates)-sum(splines_sample_mean_estimates*di))

*spline_bmc

estimatorsmatrix[2,r]<-ht_total+(sum(splines_pop_mean_

estimates)-sum(splines_sample_mean_estimates*di))

estimatorsmatrix[3,r]<-ht_total+(sum(polynomial_pop_mean_

estimates[1,])-sum(polynomial_sample_mean_estimates[1,]

*di))*local_bmc

estimatorsmatrix[4,r]<-ht_total+(sum(polynomial_pop_mean_

estimates[1,])-sum(polynomial_sample_mean_estimates[1,]*di))

estimatorsmatrix[5,r]<-ht_total+(sum(polynomial_pop_mean_

estimates[2,])-sum(polynomial_sample_mean_estimates[2,]*di))

*linear_bmc

estimatorsmatrix[6,r]<-ht_total+(sum(polynomial_pop_mean_

estimates[2,])-sum(polynomial_sample_mean_estimates[2,]*di))

estimatorsmatrix[7,r]<-ht_total

#bias_numerator_matrix[1,r]<-spline_total-actual_total

#bias_numerator_matrix[2,r]<-ht_total-actual_total

}

print(actual_total)

print(estimatorsmatrix)

#average_absolute biases rb

absolute_biase_matrix[1,1]<-sum(abs(estimatorsmatrix[1,]
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-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,2]<-sum(abs(estimatorsmatrix[2,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,3]<-sum(abs(estimatorsmatrix[3,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,4]<-sum(abs(estimatorsmatrix[4,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,5]<-sum(abs(estimatorsmatrix[5,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,6]<-sum(abs(estimatorsmatrix[6,

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,7]<-sum(abs(estimatorsmatrix[7,]

-actual_total))/(samplenumber*actual_total)

#relative biases

relative_biase_matrix[1,1]<-sum(estimatorsmatrix[1,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,2]<-sum(estimatorsmatrix[2,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,3]<-sum(estimatorsmatrix[3,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,4]<-sum(estimatorsmatrix[4,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,5]<-sum(estimatorsmatrix[5,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,6]<-sum(estimatorsmatrix[6,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,7]<-sum(estimatorsmatrix[7,]

-actual_total)/(samplenumber*actual_total)
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#relative mse’s

relative_mse_matrix[1,1]<-(var(estimatorsmatrix[1,])+

(relative_biase_matrix[1,1])^2)

/(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,2]<-(var(estimatorsmatrix[2,])+

(relative_biase_matrix[1,2])^2)

/(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,3]<-(var(estimatorsmatrix[3,])+

(relative_biase_matrix[1,3])^2)/

(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,4]<-(var(estimatorsmatrix[4,])+

(relative_biase_matrix[1,4])^2)/

(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,5]<-(var(estimatorsmatrix[5,])+

(relative_biase_matrix[1,5])^2)/

(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,6]<-(var(estimatorsmatrix[6,])+

(relative_biase_matrix[1,6])^2)/

(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

relative_mse_matrix[1,7]<-(var(estimatorsmatrix[7,])+

(relative_biase_matrix[1,7])^2)/

(var(estimatorsmatrix[1,])+(relative_biase_matrix[1,1])^2)

#output

print(relative_biase_matrix)

print(absolute_biase_matrix)

print(relative_mse_matrix)

shapiro.test(estimatorsmatrix[1,])

shapiro.test(estimatorsmatrix[2,])
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shapiro.test(estimatorsmatrix[3,])

shapiro.test(estimatorsmatrix[4,])

shapiro.test(estimatorsmatrix[5,])

shapiro.test(estimatorsmatrix[6,])

shapiro.test(estimatorsmatrix[7,])

Appendix 4: Code for Semiparametric Estima-

tion

popsize<-300

unipop<-data.frame(runif(popsize))

names(unipop)<-"a"

z1<-rep(c(2),popsize)

z2<-rep(c(3,4,5),popsize/3)

z3<-rep(c(6,7,8),c(popsize/3,popsize/3,popsize/3))

linearz<-matrix(0,popsize,3)

linearmatrix<-matrix(0,popsize,1)

indepedentvariables<-matrix(0,popsize,4)

linearz[,1]<-z1

linearz[,2]<-z2

linearz[,3]<-z3

linregressor<-c(1,2,3)

linearmatrix<-linearz%*%(linregressor)

xpop<-c((unipop$a))

indepedentvariables[,1]<-z1

indepedentvariables[,2]<-z2

indepedentvariables[,3]<-z3
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indepedentvariables[,4]<-xpop

ypop<-linearz%*%(linregressor)+(2+5*xpop)^2

samplesize<-0.1*popsize

samplenumber<-10

knotsnumber<-4

knotsmatrix<-c(0.2,0.4,0.6,0.8)

#polynomialdegree

q<-3

h<-0.5

inclusionprobability<-samplesize/popsize

di<-1/inclusionprobability

qi<-1

types_of_estimators<-4

estimatorsmatrix<-matrix(0,types_of_estimators,samplenumber)

relative_biase_matrix<-matrix(0,1,types_of_estimators)

relative_mse_matrix<-matrix(0,1,types_of_estimators)

absolute_biase_matrix<-matrix(0,1,types_of_estimators)

bias_numerator_matrix<-matrix(0,types_of_estimators,samplenumber)

mean_squared_error_matrix<-matrix(0,types_of_estimators,1)

localpolynomial_x_matrix<-matrix(1,samplesize,1)

locallinear_x_matrix<-matrix(1,samplesize,2)

linear_smoother_matrix<-matrix(0,samplesize,samplesize)

local_smoother_matrix<-matrix(0,samplesize,samplesize)

linear_pop_smoother_matrix<-matrix(0,popsize,samplesize)

local_pop_smoother_matrix<-matrix(0,popsize,samplesize)

e<-c(1,0)

polynomial_diagonal_matrix<-matrix(0,samplesize,samplesize)
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for(r in 1:samplenumber)

{ similar_de<-0

mu_spline_nu<-0

y_nu<-0

mu_local_nu<-0

mu_linear_nu<-0

q<-3

indsample<-indepedentvariables[sample(popsize,

samplesize,replace=FALSE),]

#print(indsample)

ysample<-indsample[,1:3]%*%(linregressor)+

(2+5*indsample[,4])^2

splines_sample_mean_estimates<-matrix(0,1,samplesize)

splines_pop_mean_estimates<-matrix(0,1,popsize)

penaltymatrix<-matrix(0,1+q+knotsnumber,1+q+knotsnumber)

samplemodelmatrix<-matrix(0,samplesize,1+q+knotsnumber)

popmodelmatrix<-matrix(0,popsize,1+q+knotsnumber)

#print(ysample)

# kernel, x matrix ,and mean estmates for the sample

polynomial_sample_mean_estimates<-matrix(0,2,samplesize)

for(xi in 1:samplesize)

{

for(xj in 1:samplesize)

{

polynomial_diagonal_matrix[xj,xj]<-(3/4)*(1-
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((indsample[,4][xj]-indsample[,4][xi])/h)^2)

locallinear_x_matrix[xj,2]<-indsample[,4][xj]

-indsample[,4][xi]

}

loc<-solve(t(localpolynomial_x_matrix)%*%(polynomial_

diagonal_matrix)%* %(localpolynomial_x_matrix))%*

%t(localpolynomial_x_matrix)%*%(polynomial_diagonal_

matrix)

lin<-t(e)%*%solve(t(locallinear_x_matrix)

%*%(polynomial_diagonal_matrix)%*%(locallinear_x_matrix))

%*%t(locallinear_x_matrix)%*%(polynomial_diagonal_matrix)

local_smoother_matrix[xi,]<-loc

linear_smoother_matrix[xi,]<-lin

}

linsmooth<-1-(di/popsize)*(linear_smoother_matrix)

locsmooth<-1-(di/popsize)*(local_smoother_matrix)

linbhat<-solve(t(indsample[,1:3])%*%(1-linsmooth)%*

%(indsample[,1:3]))%*%t(indsample[,1:3])%*%(1-linsmooth)%

*%ysample

locbhat<-solve(t(indsample[,1:3])%*%(1-locsmooth)%*

%(indsample[,1:3]))%*%t(indsample[,1:3])%*%(1-locsmooth)%*

%ysample

#sample mks

linmks<-linear_smoother_matrix%*%(ysample-(indsample[,1:3])

%*%linbhat)

locmks<-local_smoother_matrix%*%(ysample-(indsample[,1:3])

%*%locbhat)

#sample means
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lingk<-linmks+(indsample[,1:3])%*%linbhat

locgk<-locmks+(indsample[,1:3])%*%locbhat

#print(lingk)

#print(locgk)

for(xi in 1:popsize)

{

for(xj in 1:samplesize)

{

polynomial_diagonal_matrix[xj,xj]<-(3/4)*(1-

((xsample[xj]-xpop[xi])/h)^2)

locallinear_x_matrix[xj,2]<-xsample[xj]-

indepedentvariables[,4][xi]

}

poploc<-solve(t(localpolynomial_x_matrix)%*

%(polynomial_diagonal_matrix)%*%(localpolynomial_x_matrix))%*

%t(localpolynomial_x_matrix)%*%(polynomial_diagonal_matrix)

poplin<-t(e)%*%solve(t(locallinear_x_matrix)%*

%(polynomial_diagonal_matrix)%*%(locallinear_x_matrix))%*

%t(locallinear_x_matrix)%*%(polynomial_diagonal_matrix)

local_pop_smoother_matrix[xi,]<-poploc

linear_pop_smoother_matrix[xi,]<-poplin

}

#population mks

poplinmks<-linear_pop_smoother_matrix%*%(ysample-

(indsample[,1:3])%*%linbhat)

poplocmks<-local_pop_smoother_matrix%*%(ysample-

(indsample[,1:3])%*%locbhat)

#population means
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poplingk<-poplinmks+(indepedentvariables[,1:3])%*%linbhat

poplocgk<-poplocmks+(indepedentvariables[,1:3])%*%locbhat

#estimating bmc

p<-0

for(y in ysample)

{

p<-p+1

y_nu<-(y_nu)+di*qi*y

similar_de<-(similar_de)+di*qi

}

y_avg<-(y_nu)/(similar_de)

mu_local_nu<-sum(locgk*di*qi)

mu_linear_nu<-sum(lingk*di*qi)

local_mu_avg<-(mu_local_nu)/similar_de

linear_mu_avg<-(mu_linear_nu)/similar_de

local_bmc_nu<-0

local_bmc_de<-0

linear_bmc_nu<-0

linear_bmc_de<-0

local_bmc_nu<-di*qi*t(locgk-local_mu_avg)%*%(ysample-y_avg)

local_bmc_de<-di*qi*(locgk-local_mu_avg)^2

linear_bmc_nu<-di*qi*t(lingk-linear_mu_avg)%*

%(ysample-y_avg)

linear_bmc_de<-di*qi*(lingk-linear_mu_avg)^2

local_bmc<-sum(local_bmc_nu)/sum(local_bmc_de)

linear_bmc<-sum(linear_bmc_nu)/sum(linear_bmc_de)

#print(local_bmc)

#print(linear_bmc)
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i<-0

#elements model matrix

for(x in indsample[,4])

{

i<-i+1

ith_x_samplemodelmatrix<-c(1,x,x^2,x^3,(x-0.2)^q,

(x-0.4)^q,(x-0.6)^q,(x-0.8)^q)

samplemodelmatrix[i,]<-ith_x_samplemodelmatrix

}

#penalty matrix and

#setting -ve values in model matrix to zero

for(t in (2+q):(1+q+knotsnumber))

{

penaltymatrix[t,t]<-1600*(samplesize/4)^4

for(z in 1:samplesize)

{

if (samplemodelmatrix[z,t]<=0)

samplemodelmatrix[z,t]<-0

}

}

samplebsk<-solve(t(samplemodelmatrix)%*

%(samplemodelmatrix)

+penaltymatrix)%*%t(samplemodelmatrix)

spline_smoother_matrix<-samplemodelmatrix%*

%samplebsk

splinesmooth<-1-(di/popsize)*(spline_smoother_matrix)
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splinebhat<-solve(t(indsample[,1:3])%*%(1-splinesmooth)%*

%(indsample[,1:3]))%*%t(indsample[,1:3])%*

%(1-splinesmooth)%*%ysample

#print(splinebhat)

splinemks<-spline_smoother_matrix%*%(ysample-

(indsample[,1:3])%*%splinebhat)

splinegk<-splinemks+(indsample[,1:3])%*%splinebhat

#some regression step values

mu_spline_nu<-sum(di*qi*splinegk)

y_avg<-(y_nu)/(similar_de)

spline_mu_avg<-(mu_spline_nu)/(similar_de)

#the regression step bmc

spline_bmc_nu<-0

spline_bmc_de<-0

spline_bmc_nu<-di*qi*t(splinegk-spline_mu_avg)%*

%(ysample-y_avg)

spline_bmc_de<-di*qi*(splinegk-spline_mu_avg)^2

spline_bmc<-sum(spline_bmc_nu)/sum(spline_bmc_de)

#print(spline_bmc)

#element model matrix for entire population

j<-0

for(x in indepedentvariables[,4])

{j<-1+j

ith_x_popmodelmatrix<-c(1,x,x^2,x^3,(x-0.2)^q,

(x-0.4)^q,(x-0.6)^q,(x-0.8)^q)

popmodelmatrix[j,]<-ith_x_popmodelmatrix
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}

#setting -ve values in model matrix to zero

for(t in (2+q):(1+q+knotsnumber))

{

for(z in 1:popsize)

{

if (popmodelmatrix[z,t]<=0)

popmodelmatrix[z,t]<-0

}

}

popbsk<-solve(t(popmodelmatrix)%*%(popmodelmatrix)+

penaltymatrix)%*%t(popmodelmatrix)

spline_pop_smoother_matrix<-popmodelmatrix%*%samplebsk

#print(spline_pop_smoother_matrix)

popsplinemks<-spline_pop_smoother_matrix%*%(ysample-

(indsample[,1:3])%*%splinebhat)

popsplinegk<-popsplinemks+(indepedentvariables[,1:3])

%*%splinebhat

#poplinmks<-linear_pop_smoother_matrix%*%(ysample-

(indsample[,1:3])%*%linbhat)

ht<-sum(ysample*di)

actual_total<-sum(ypop)

estimatorsmatrix[1,r]<- ht+(sum(popsplinegk)-

sum(splinegk*di))*spline_bmc

estimatorsmatrix[2,r]<-ht+(sum(poplingk)-

sum(lingk*di))*linear_bmc

estimatorsmatrix[3,r]<-ht+(sum(poplocgk)-
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sum(locgk*di))*local_bmc

estimatorsmatrix[4,r]<-ht

}

print(actual_total)

print(estimatorsmatrix)

#average absolute biases

absolute_biase_matrix[1,1]<-sum(abs(estimatorsmatrix[1,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,2]<-sum(abs(estimatorsmatrix[2,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,3]<-sum(abs(estimatorsmatrix[3,]

-actual_total))/(samplenumber*actual_total)

absolute_biase_matrix[1,4]<-sum(abs(estimatorsmatrix[4,]

-actual_total))/(samplenumber*actual_total)

#relative biases

relative_biase_matrix[1,1]<-sum(estimatorsmatrix[1,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,2]<-sum(estimatorsmatrix[2,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,3]<-sum(estimatorsmatrix[3,]

-actual_total)/(samplenumber*actual_total)

relative_biase_matrix[1,4]<-sum(estimatorsmatrix[4,]

-actual_total)/(samplenumber*actual_total)

#relative mse’s

relative_mse_matrix[1,1]<-(var(estimatorsmatrix[1,])+

(relative_biase_matrix[1,1])^2)/(var(estimatorsmatrix

[4,])+(relative_biase_matrix[1,4])^2)

relative_mse_matrix[1,2]<-(var(estimatorsmatrix[2,])+
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(relative_biase_matrix[1,2])^2)/(var(estimatorsmatrix

[4,])+(relative_biase_matrix[1,4])^2)

relative_mse_matrix[1,3]<-(var(estimatorsmatrix[3,])+

(relative_biase_matrix[1,3])^2)/(var(estimatorsmatrix

[4,])+(relative_biase_matrix[1,4])^2)

relative_mse_matrix[1,4]<-(var(estimatorsmatrix[4,])+

(relative_biase_matrix[1,4])^2)/(var(estimatorsmatrix

[4,])+(relative_biase_matrix[1,4])^2)

#output

print(relative_biase_matrix)

print(absolute_biase_matrix)

print(var(estimatorsmatrix[1,]))

print(var(estimatorsmatrix[2,]))

print(var(estimatorsmatrix[3,]))

print(var(estimatorsmatrix[4,]))

print(relative_mse_matrix)

shapiro.test(estimatorsmatrix[1,])

shapiro.test(estimatorsmatrix[2,])

shapiro.test(estimatorsmatrix[3,])

shapiro.test(estimatorsmatrix[4,])

Appendix 5: Code for Two Stage Estimation

cnum=200

cpop<-data.frame(c(runif(cnum)))

names(cpop)<-"a"
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csize<-200

sampledclusters<-50

withinsize<-50

variable<-matrix(0,csize,cnum)

variable[1, ]<-c(cpop$a)

sampledvariable<-matrix(0,csize,sampledclusters)

popvariable<-matrix(0,csize,cnum)

httotal<-matrix(0,1,cnum)

poptotals<-matrix(0,2,cnum)

varpopmatrix<-matrix(0,csize,cnum)

poptotals[1, ]<-c(cpop$a)

poptotals[2, ]<-c(httotal)

clusterframe<-data.frame(t(poptotals))

sumdifht<-0

sumlocpol<-0

sumlocpolmc<-0

sumloclin<-0

sumloclinmc<-0

mselocpol<-0

mselocpolmc<-0

mseloclin<-0

mseloclinmc<-0

mseht<-0

varht<-0

varlocpol<-0

varlocpolmc<-0

varloclin<-0
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varloclinmc<-0

pop<-cnum

s<-sampledclusters

xs<-c(cpop$a)

for (j in 1:csize)

{

popvariable[j, ]<-c(((1+2*xs)/csize))

}

poperrvec<-c(rnorm(cnum*csize,0,0.1))

poperrors<-matrix(poperrvec,csize,cnum)

htpoptotal<-matrix(0,1,cnum)

popmatrix<-matrix(0,csize,cnum)

popmatrix<-popvariable+(poperrors/csize^0.25)

for (t in 1:cnum)

{htsum<-0

for(j in 1:csize)

{

htsum<-htsum+popmatrix[j,t]

}

htpoptotal[1,t]<-htsum

}

y<-c(htpoptotal)

pop<-cnum
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s<-sampledclusters

bandwith<-c(0.1,0.25,1,2)

for (b in bandwith)

{

samplesno=5

wubmse<-matrix(0,7,5)

est<-matrix(0,5,samplesno)

for (r in 1:samplesno)

{

samx<-sample(c(cpop$a),s)

for (j in 1:csize)

{

sampledvariable[j, ]<-c(((1+2*samx)/csize))

}

errvec<-c(rnorm(sampledclusters*csize,0,0.1))

errors<-matrix(errvec,csize,sampledclusters)

htsampletotal<-matrix(0,1,sampledclusters)

samplematrix<-matrix(0,csize,sampledclusters)

samplematrix<-sampledvariable+(errors/csize^0.25)

for (t in 1:sampledclusters)

{htsum<-0

for(j in 1:withinsize)

{

htsum<-htsum+samplematrix[j,t]*(csize/withinsize)
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}

htsampletotal[1,t]<-htsum

}

samy<-c(htsampletotal)

wui<-matrix(0,s,s)

e<-c(1,0)

xui<-matrix(1,s,2)

xu<-matrix(1,s,1)

totallocalin<-0

totallocpol<-0

totallocalinht<-0

totallocpolht<-0

h<-b

totalp<-0

ht<-0

qi<-1

di<-(pop/s)

dimi<-0

sumdiqi<-0

totaldiqi<-0

diyi<-0

sumnudif<-0

sumdedif<-0

for (i in 1:cnum)

{

tolk<-0

tolp<-0
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ii<-1

for (j in 1:s)

{

k<-(3/(4*5^0.5))*(1-((((samx[j]-xs[i])/h)^2)/5))

p=k*samy[j]

tolk<-tolk+k

tolp<-tolp+p

dif<- samx[j]-xs[i]

wui[ii,ii]<-(k)/h

xui[ii,2]<-dif

ii<-ii+1

}

mi<-(tolp/tolk)

milocpol<-solve(t(xu)%*%wui%*%xu)%*%t(xu)%*%wui%*%samy

miloclin<-t(e)%*%solve(t(xui)%*%wui%*%xui)%*%t(xui)%*

%wui%*%samy

totalp<-totalp+mi

totallocalin<-totallocalin+miloclin

totallocpol<-totallocpol+milocpol

}

totalsht<-0

for(ji in 1:s)

{

ii<-1
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talsamplek<-0

talsamplep<-0

for (j in 1:s)

{

k<-(3/(4*5^0.5))*(1-((((samx[j]-samx[ji])/h)^2)/5))

p=k*samy[j]

talsamplek<-talsamplek+k

talsamplep<-talsamplep+p

dif<- samx[j]-samx[ji]

wui[ii,ii]<-(k)/h

xui[ii,2]<-dif

ii<-ii+1

}

mj<-(talsamplep/talsamplek)

totalsht<-totalsht+di*mj

dimi<-dimi+(di*qi*mj)

sumdiqi<-sumdiqi+(di*qi)

mjloclin<-t(e)%*%solve(t(xui)%*%wui%*%xui)%*

%t(xui)%*%wui%*%samy

mjlocpol<-solve(t(xu)%*%wui%*%xu)%*%t(xu)%*

%wui%*%samy

totallocalinht<-totallocalinht+mjloclin*di

totallocpolht<-totallocpolht+mjlocpol*di

}

avgm<-(dimi/sumdiqi)

for(l in samy)

{

nu<-(di*qi*l)
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de<-(di*qi)

diyi<-diyi+nu

totaldiqi<-totaldiqi+de

}

avgy<-(diyi/totaldiqi)

for(ji in 1:s )

{

talsamplenu<-0

talsamplede<-0

for (j in 1:s)

{

k<-(3/(4*5^0.5))*(1-((((samx[j]-samx[ji])/h)^2)/5))

p=k*samy[j]

talsamplenu<-talsamplenu+k

talsamplede<-talsamplede+p

}

mj<-(talsamplenu/talsamplede)

nudif<-di*qi*(mj-avgm)*(samy[ji]-avgy)

dedif<-(di*qi*(mj-avgm)*(mj-avgm))

sumdedif<-sumdedif+dedif

sumnudif<-sumnudif+nudif

}
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bmc<-sumnudif/sumdedif

for (l in samy)

{

dy<-(pop/s)*l

ht<-ht+dy

}

ynw<-(ht+(totalp-totalsht))

ylocpol<-(ht+(totallocpol-totallocpolht))

yloclin<-(ht+(totallocalin-totallocalinht))

ylocpolmc<-(ht+(totallocpol-totallocpolht)*bmc)

yloclinmc<-(ht+(totallocalin-totallocalinht)*bmc)

ynwmc<-(ht+(totalp-totalsht)*bmc)

actualp<-sum(y)

est[1,r]<-ht

est[2,r]<-ylocpol

est[3,r]<-ylocpolmc

est[4,r]<-yloclin

est[5,r]<-yloclinmc

sumdifht<-sumdifht+(ht-actualp)/(samplesno*actualp)

sumlocpol<-sumlocpol+(ylocpol-actualp)/

(samplesno*actualp)

sumlocpolmc<-sumlocpolmc+(ylocpolmc-actualp)/

(samplesno*actualp)

sumloclin<-sumloclin+(yloclin-actualp)/

(samplesno*actualp)

sumloclinmc<-sumloclinmc+(yloclinmc-actualp)/
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(samplesno*actualp)

mseht<-mseht+((ht-actualp)^2)/samplesno

mselocpol<-mselocpol+((ylocpol-actualp)^2)/

samplesno

mselocpolmc<-mselocpolmc+((ylocpolmc-actualp)^2)/

samplesno

mseloclin<-mseloclin+((yloclin-actualp)^2)/samplesno

mseloclinmc<-mseloclinmc+((yloclinmc-actualp)^2)/

samplesno

}

for(r in samplesno)

{

varht<-varht+((est[1,r]-mean(est[1, ]))^2)/

(samplesno-1)

varlocpol<-varlocpol+((est[2,r]-mean(est[2, ]))^2)/

(samplesno-1)

varlocpolmc<-varlocpolmc+((est[3,r]-mean(est[3, ]))^2)/

(samplesno-1)

varloclin<-varloclin+((est[4,r]-mean(est[4, ]))^2)/

(samplesno-1)

varloclinmc<-varloclinmc+((est[5,r]-mean(est[5, ]))^2)/

(samplesno-1)

}

varht

msht<-varht+((sumdifht)^2)

varlocpol
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mslocpol<-varlocpol+((sumlocpol)^2)

varlocpolmc

mslocpolmc<-varlocpolmc+((sumlocpolmc)^2)

varloclin

msloclin<-varloclin+((sumloclin)^2)

varloclinmc

msloclinmc<-varloclinmc+((sumloclinmc)^2)

mht<-var(est[1,])+((sumdifht)^2)

var(est[1,])

mlpol<-var(est[2,])+((sumlocpol)^2)

var(est[2,])

mlpolmc<-var(est[3,])+((sumlocpolmc)^2)

var(est[3,])

mllin<-var(est[4,])+((sumloclin)^2)

var(est[4,])

mllinmc<-var(est[5,])+((sumloclinmc)^2)

var(est[5,])

wubmse[ ,1]<-c(sumdifht,mseht,(mseht/mselocpolmc),

msht,(msht/mslocpolmc),mht,(mht/mlpolmc))
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wubmse[ ,2]<-c(sumlocpol,mselocpol,mselocpol/

mselocpolmc,

mslocpol,mslocpol/mslocpolmc,mlpol,mlpol/mlpolmc)

wubmse[ ,3]<-c(sumlocpolmc,mselocpolmc,mselocpolmc/

mselocpolmc,mslocpolmc,mslocpolmc/mslocpolmc,mlpolmc,

mlpolmc/mlpolmc)

wubmse[ ,4]<-c(sumloclin,mseloclin,mseloclin/

mselocpolmc,msloclin,msloclin/mslocpolmc,mllin,

mllin/mlpolmc)

wubmse[ ,5]<-c(sumloclinmc,mseloclinmc,mseloclinmc/

mselocpolmc,msloclinmc,msloclinmc/mslocpolmc,

mllinmc,mllinmc/mlpolmc)

print("bandwith")

print(h)

print(" yht2 ynw2 ymc2 yln2 ylnmc2")

print(wubmse)

}
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