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ABSTRACT 

The unsteady laminar boundary layer hydromagnetic flow of an incompressible, viscous, 

and electrically conducting Newtonian fluid over a stretching sheet embedded in a porous 

medium in a rotating system has been investigated. The fluid is subjected to a transverse 

magnetic field that cuts perpendicularly across the flow in the positive direction of the 

z‐axis. The flow takes place between two parallel flat sheets that are made of an electrically 

non‐conducting material. The stretching sheet has a permeable surface, while the surface of 

the other sheet is impermeable. Each of the sheets has an isothermal surface, and both 

sheets are kept at different temperatures of  and  such that the temperature 

differences within the flow are sufficiently small. The small magnitude of the temperature 

difference allows expression of the Taylor series expansion about the freestream 

temperature  as a linear function of temperature at any interior point within the flow 

region. The unsteady boundary layer flow over a permeable sheet that stretches with a 

linear velocity has been investigated. The effect of varying various parameters on the 

velocity, temperature and concentration profiles has been discussed. These parameters 

include the Reynolds number Re, Prandtl number Pr, Eckert Number Ec, Magnetic 

parameter M, the Suction parameter , Joule heating parameter N, Radiation parameter R, 

Permeability constant Xi, Rotational parameter Ro, local temperature Grashof number , 

the local mass Grashof number , Schmidt number Sc, Soret number Sr and time t. The 

coupled non‐linear partial differential equations governing the flow field have been solved 

numerically using the finite difference method. The results that are obtained are then 

presented on graphs and the observations are discussed. Later the method of Least Squares 



xxi 

 

is used to study the effect of changing some of these parameters on the skin‐friction 

coefficients, rate of mass transfer and local wall heat flux. A change in the parameters is 

observed to either increase, decrease or to have no effect on the velocity, temperature, and 

concentration profiles respectively. The results that are obtained are presented in tables and 

then discussed. A change in the various parameters is observed to alter the velocity 

profiles, the concentration profiles, the temperature profiles, the rate of skin friction, the 

rates of heat and mass transfer on the surface of the stretching sheet. 
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CHAPTER ONE 

1.0  INTRODUCTION 

The production of sheeting material, which includes both metal and polymer sheets, 

arises in a number of industrial manufacturing processes. The fluid dynamics due to a 

stretching surface have important applications in many engineering processes. For 

instance, a number of technical processes concerning polymers involve the cooling of 

continuous strips (or filaments) extruded from a die by drawing them through a stagnant 

fluid with controlled cooling system. In the process of drawing these strips their surfaces 

are sometimes stretched and the quality of the final product depends on the rate of heat 

transfer and mass transfer on the stretching surface, Magapatra and Gupta (2004). 

Therefore rates of cooling and mass transfer have to be controlled effectively in order to 

attain the expected quality of the final product. In recent years considerable interest has 

been given to the theory of rotating fluids due to its applications in cosmic and 

geophysical sciences. In the last few years many studies on boundary layer flows of 

viscous fluids due to a uniformly stretching sheet have been done. For instance such 

studies have been carried out by Nazal et al. (2004), Kumari et al. (2006), Hayat et al. 

(2009), and many others. A linearly stretching sheet has been considered in this study 

because of the simplicity of modeling linear stretching. 

 

Heat transfer on a continuously moving surface has many applications in industrial 

manufacturing processes. The flow of fluids through porous media in a rotating system 

is of interest for instance to the petroleum engineer, who is concerned with the 
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movement of oil and gas through the reservoir; and to the hydrologist who is interested 

in the study of migration of underground water. Study of flows through porous media in 

a rotating system also finds applications in geothermal energy systems, oil and gas 

recovery, and in the spread of pollutants in groundwater. Research on flows through 

porous media has lately been applied in the manufacture of industrial machinery and 

computer disk drives, Herrero et al. (1994). In the field of energy conservation, attention 

has been focused on the use of saturated porous materials for insulation in storage tanks 

so as to control the rate of heat transfer. Insulating underground water pipes prevents the 

water in the pipes from freezing during winter. In this chapter the main terms used in this 

study have been defined and the literature review on MHD rotating flow in porous media 

over a stretching surface with heat and mass transfer has been cited. The chapter ends by 

stating the objectives and the applications of this study. 

 

1.1.  Magnetohydrodynamic (MHD) Flow 

Magnetohydrodynamics (MHD) is the science of the motion of electrically conducting 

fluids under magnetic fields. MHD studies the dynamics of the interaction of electrically 

conducting fluids and the electromagnetic field. The fluids can be ionized gases 

(commonly called plasmas) or liquid metals. The flow of an electrically conducting fluid 

under a magnetic field in general gives rise to induced electric currents. The magnetic 

field exerts mechanical forces on the induced electric currents. The induced electric 

currents flow in the direction perpendicular to both the magnetic field and the direction 
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of motion of the fluid. However the induced currents also generate their own magnetic 

field, which in turn affects the original magnetic field. 

 

1.2. Velocity Boundary Layer 

Velocity boundary layer arises as a result of the velocity difference between the fluid 

particles adjacent to a solid surface and those in the freestream. The fluid particles 

adjacent to the solid surface acquire the velocity of that surface, hence the assumption of 

the no‐slip condition. The latter is a physical requirement that the fluid and solid have 

equal velocities at their interface. Thus the flow velocity of a fluid is retarded by a fixed 

solid surface, and a finite, slow‐moving boundary layer is formed. For a viscous fluid, 

velocity boundary layer thickness is defined as the perpendicular distance, measured 

away from the solid surface, where the velocity of the fluid becomes 0.99 of the 

freestream velocity. As the fluid moves past the surface of the object, collisions of the 

fluid molecules within the fluid with those molecules touching the object’s surface 

reduce the kinetic energy of the molecules that are further away from the solid‐fluid 

interface. Thus a relatively thin layer of fluid is formed near the solid‐fluid interface in 

which there is a rapid change of velocity from zero to the freestream value. This is the 

layer referred to as the velocity boundary layer. 

 

1.3. Thermal Boundary Layer 

When temperature difference exists between the solid‐fluid interface and the fluid in the 

freestream, a thermal boundary layer is formed. The fluid particles in contact with the 
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solid‐fluid interface acquire the temperature of the interface. If the temperature of the 

interface is higher than that of the ambient fluid, the kinetic energy of the molecules of 

the adjacent fluid particles increases. These particles in turn exchange the acquired 

kinetic energy with those fluid particles in the adjacent fluid layers further away from 

the interface. This process continues in the adjacent fluid layers and temperature 

gradients develop in the fluid. 

 

1.4. Concentration Boundary Layer 

Concentration is a measure of how much of a given species is dissolved in another 

substance per unit volume. Concentration boundary layer manifests itself when species 

concentration difference exists between the solid‐fluid interface and the freestream 

region of the fluid. The region in which the species concentration gradient exists is 

known as the concentration boundary layer. The species transfer takes place through the 

process of diffusion and convection, and is governed by the properties of the 

concentration boundary layer. 

 

1.5. Radiation Heat Transfer 

Heat transfer through radiation takes place in form of electromagnetic waves mainly in 

the infrared region. Radiation emitted by a body is due to thermal agitation of its 

molecules. Radiation heat transfer can be described in reference to the so‐called ’black 

body’. A black body is defined as a hypothetical body that completely absorbs all 

wavelengths of thermal radiation incident on it. It is approximated by a hole in a box 
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filled with highly absorptive material. The emission spectrum of such a black body was 

first fully described by Max Planck in 1918. All black bodies heated to a given 

temperature emit thermal radiation. Radiation energy per unit time from a blackbody is 

proportional to the fourth power of the absolute temperature and can be expressed with 

Stefan‐Boltzmann Law as . For objects other than ideal black bodies (’gray 

bodies’) the Stefan‐Boltzmann Law can be expressed as  where 

 is the Stefan‐Boltzmann constant and  is emissivity of a 

black body. 

 

For the gray body the incident radiation (also called irradiation) is partly reflected, 

absorbed or transmitted. The emissivity coefficient lies in the range  depending 

on the type of material and the temperature of the surface. The fluid is considered to be a 

gray body and the Rosseland approximation is used to describe the radiative heat flux in 

the energy equation, Rohsenow, et al. (1998). In this study, the respective radiative heat 

flux in the x and y directions is considered negligible in comparison with that along the 

z‐axis direction. By using the Rosseland approximation, radiation energy per unit time is 

  (1.1) 

where  is the mean absorption coefficient. 

The assumption in this study is that the temperature differences within the flow are 

assumed to be sufficiently small so that the term  in equation (1.1) can be expressed as 

a linear function of the temperature T, using a truncated Taylor series about the 

freestream temperature . The orders of T and  are assumed to be more or less equal 
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so that any product of the two respective temperatures whose order is higher than 4 is 

neglected. Thus 

   

   

  (1.2) 

Substituting the partial derivative with respect to T of equation (1.2) in equation (1.1), 

the rate of change of radiative heat flux in the z‐axis direction becomes 

  (1.3) 

1.6. Flow in Rotating Co-ordinate System 

A rotating co‐ordinate system is one whose axes as seen in an inertial coordinate system 

are rotating. When fluid flows within such a system, the fluid flow is said to take place 

in a rotating system. Coriolis effect is the apparent deflection of moving objects from a 

straight path when they are viewed from a rotating frame of reference. The effect is an 

inertial force described by the 19th‐century French engineer‐mathematician 

Gustave‐Gaspard Coriolis in 1835. Coriolis showed that if the ordinary Newtonian laws 

of motion of bodies are to be used in a rotating frame of reference, an inertial force 

acting to the right of the direction of body motion for counterclockwise rotation of the 

reference frame, or to the left for clockwise rotation, must be included in the equations 

of motion. 
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1.7. Joule Heating 

Joule heating, also known as ohmic heating or resistive heating, is the process by which 

the passage of an electric current through a conductor releases heat. Joule heating was 

first studied by James Prescott Joule in 1841. When an electric current passes through an 

electrolyte, it causes Joule heating. The increase in the kinetic or vibrational energy of 

the ions manifests itself as heat, and the heat causes a rise in the temperature of the fluid. 

The rise in the temperature of the fluid translates to non‐uniform properties of the fluid, 

such as change in density and conductivity of the fluid. Changes in the applied electric 

potential field and the flow field are among some of the factors that alter the properties 

of the fluid. 

 

1.8. Porous Medium 

A porous medium is a solid permeated by an interconnected network of pores filled with 

a fluid (liquid or gas). The pore network is usually assumed to be continuous so as to 

form two interpenetrating continua, such as in a sponge. Many natural substances such 

as rocks, soils, bones; and man‐made materials such as cement slabs, foam and ceramics 

are some examples of porous media. Porosity is a measure of the void spaces in a 

material, and is the fraction of the volume of voids over the total volume of the material; 

its value ranges between 0 and 1, or as a percentage between 0 and 100. The bulk 

material includes the sum of volumes of the solid and the void. The void may be 

occupied by air, water, or hydrocarbons. Hydrodynamic permeability measures the 
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ability of fluids to flow through porous media. Variation in the temperature may give 

rise to change in both the viscosity and the permeability of a porous medium. 

 

1.9. Significance of Boundary layer 

The velocity boundary layer is associated with the presence of the velocity gradients and 

shear stress. Thermal boundary layer is associated with the temperature gradients and 

heat transfer. Concentration boundary layer is associated with the concentration 

gradients and species transfer. Fluid flowing through porous media may cause the 

formation of the velocity, concentration and temperature boundary layers respectively. 

The three layers can affect each other. The respective distances over which the velocity, 

the temperature and the concentration change from zero to their freestream values are 

often different for the three types of boundary layers. The physical significance of the 

boundary layer is that it is the region that determines the magnitude of the surface 

friction, convective heat and convective mass transfer in a fluid. 

 

1.10. LITERATURE REVIEW 

The study of heat transfer in boundary layer flows has many engineering applications 

such as in the design of thrust bearings and radial diffusers, in transpiration cooling, in 

drag reduction and in thermal recovery of oil. In the past many authors have studied a 

wide variety of flow situations. Some of these studies can be found in the works of 

Magyari and Keller (1999, 2000), Liao and Pop (2004), and Nazar et al. (2004). Most of 

these studies have dealt with steady‐state flows. However the flow and thermal fields 
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may be naturally unsteady due to either impulsive stretching of the surface, sudden 

change in the surface temperature, or changes in the fluid stream. Most of the studies 

undertaken are experimental, numerical, analytical, or any combination of these. For 

instance Dawood et al. (2006) investigated numerically steady free convection flow 

through a porous medium around a rectangular isothermal body. This study showed that 

the Nusselt number Nu is a strong function of the modified Rayleigh number, the 

isothermal body size and boundary conditions. 

 

Sattar and Maleque, (2005) considered the effects of variable fluid properties, namely 

the density, viscosity and thermal conductivity to the flow due to a porous rotating disk. 

This study showed that for fixed values of the suction parameter and Prandtl number, the 

momentum boundary layer increased considerably. Emmanuel (2007) extended the work 

of Sattar and Maleque (2005) by including the effects of a magnetic field on flow due to 

a rotating disk in an electrically conducting fluid with a temperature dependent density, 

viscosity and thermal conductivity. Singh et al. (2007) studied two dimensional free 

convection and mass transfer flow of an incompressible, viscous and electrically 

conducting fluid past a continuously moving infinite vertical porous plate in the presence 

of a heat source, thermal diffusion, large suction and uniform magnetic field applied 

normal to the flow. 

 

Sakiadis (1961 a, b) pioneered the study of boundary layer flow over a continuous solid 

surface moving with constant velocity. Since then boundary layer flow over a stretching 
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surface has drawn the attention of many other researchers such as Griffin and Thorne 

(1967), Crane (1970), Gupta and Gupta (1977), Fox et al. (1966), Dutta et al. (1985), 

and Chen and Char (1988). Aboeldahab (2001) and Salem (2004) investigated the effects 

of magnetic field, convective and radiative heat transfer on flow over a stretching 

surface with heat and mass transfer. Hinze (1959) studied turbulent fluid motion in an 

irregular condition of flow; and showed that various quantities exhibited a random 

variation with time and space coordinates. 

 

There is extensive literature on flow through porous media that is governed by the 

generalized Darcy’s law. For instance Yamamoto and Iwamura (1976) investigated 

boundary layer flow of a Newtonian fluid through a highly porous medium. Later Raptis 

et al. (1981) used these equations to study the influence of free convective flow and 

mass transfer on flow through a porous medium. Raptis and Perdikis (1985) investigated 

oscillatory flow of a Newtonian fluid through a porous medium. 

 

Ahmed et al. (2010) carried out an analytical study of a two dimensional unsteady MHD 

free convective flow past a vertical porous plate immersed in a porous medium with Hall 

currents, thermal diffusion and heat source. The influence of certain flow parameters on 

velocity, temperature, species concentration, and shearing stress at the plate were 

investigated. This study concluded that the concentration at the surface of the plate 

increases under the Soret effect; and the Soret effect causes the main‐flow shear stress to 
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rise and the crossflow shear stress to fall. A decrease in the Soret effect leads to an 

increase in the main flow and crossflow velocities. 

 

Soundalgekar and Patil (1982) studied the effects of suction, free oscillations and free 

convection currents on the flow of a Newtonian fluid. Erickson et al. (1966) extended 

this problem to a case in which the transverse velocity at the moving surface is non‐zero, 

with heat and mass transfer in the boundary layer being taken into account. Danberg and 

Fansler (1976) investigated the non‐similar solution for the flow in the boundary layer 

past a wall that is stretched with a velocity proportional to the distance along the wall, 

the free‐stream velocity being constant. Gupta and Gupta (1977) analyzed the heat and 

mass transfer corresponding to the similarity solution for the boundary layer over a 

stretching sheet subjected to suction/blowing. 

 

Since the pioneering study by Crane (1970) who presented an exact analytical solution 

for the steady two‐dimensional stretching of a surface in a quiescent fluid, many authors 

have considered various aspects of this problem and obtained similar solutions. Bathaiah 

and Venkataramana (1986) investigated the effect of buoyancy force on the parallel 

flows bounded above by a rigid permeable plate which may be moving or stationary, and 

below, by a permeable bed. To discuss the solution, the flow region was divided into two 

zones: one zone made up of laminar flow and governed by the Navier‐Stokes equations, 

and the other zone was governed by the Darcy’s law. The study observed, in part, that in 
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the first zone the velocity decreases with the increase in magnetic parameter, and in the 

other zone velocity increases in the case of Poiseuille flow. 

 

Jagadeeswara et al. (1987) studied viscous fluid flow past a hot vertical porous plate. 

The flow parameters in this study were analyzed under the assumptions that the suction 

velocity was constant and the wall temperature was spanwise cosinusoidal. The solutions 

for the velocity, the temperature, skin friction and rate of heat transfer were obtained 

using perturbation method. The study observed that both the velocity and the skin 

friction decrease as the Magnetic parameter increases. The values of all flow quantities 

in the magnetic case were less than the values in the non‐magnetic case. The study also 

found that the velocity and the skin friction increased with increasing suction. 

Chaturvedi (2003) investigated MHD flow past an infinite porous plate with variable 

suction. 

 

Kinyanjui, et al. (1998) studied the MHD Stokes problem for a vertical infinite plate in a 

dissipative rotating fluid with Hall currents. Kinyanjui, et al. (2001) presented work on 

MHD free convection heat and mass transfer of a heat generating fluid past an 

impulsively started infinite porous plate with Hall currents and radiation absorption. 

Subhas et al. (2001) analyzed the effect of magnetic field on the visco‐elastic fluid flow 

and heat transfer over a non‐isothermal stretching sheet with internal heat generation. 

The solutions for heat transfer characteristics were evaluated numerically for different 

parameters such as Prandtl number, magnetic field, suction and visco‐elasticity. The 
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study concluded that visco‐elasticity decreased the temperature profiles in the flow field 

for small values of the Prandtl number; and that the temperature profiles decreased with 

increase in the strength of the magnetic field. 

 

Tania and Samad (2010) studied the effects of radiation, heat generation and viscous 

dissipation on MHD free convection flow along a stretching sheet. The study found that 

larger values of buoyancy parameter can be used to control the temperature and 

concentration boundary layers; and that suction stabilizes the boundary layer growth. 

The boundary layers were found to be highly influenced by the Prandtl number. The 

study also concluded that magnetic field can be used to control the flow characteristics 

and has significant effect on heat and mass transfer. In the study, increasing radiation 

reduced the momentum boundary layer and the thermal boundary layer thicknesses. The 

presence of a heavier species (large Sc) decreased the fluid velocity, heat transfer and the 

concentration in the boundary layer. Large values of heat source parameter Q had a 

significant effect on the velocity and temperature distributions whereas such large values 

reduced the concentration distribution in the boundary layer. Eckert number was found 

to have a significant effect on the boundary layer growth. 

 

Ram (1991) analyzed the effects of Hall currents on the combined thermal and mass 

diffusion effects through a porous medium in a rotating system bounded by a vertical 

plate when a strong magnetic field is imposed in a plane that makes various angles with 
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the normal to the plate. The works of Tania and Samad (2010), and Ram (1991) are main 

motivating factor behind this study. 

 

Various aspects of the problem of flow over a stretching surface have been studied under 

varied conditions. Most studies on fluid flows over stretching or non‐stretching surfaces 

have only focused on free convective flows occurring due to the temperature difference 

between the surface and the ambient fluid. Heat transfer due to the effects of radiation is 

rarely taken into account. The ambient fluid cannot always be pure and there are 

situations where it is mixed, naturally or industrially, with some foreign species. For 

example air may be mixed with water, benzene or ammonia. The concentration 

difference of such species would alter its rate of diffusion from the surface to the 

ambient fluid or vice versa. Thus for considerable concentration differences, free 

convection occurs not only due to temperature difference but also due to concentration 

difference or the combination of these two. The aim of this work is therefore to study 

MHD flow and analyze the combined effects of various parameters on the velocity, the 

concentration, the temperature, the rates of heat transfer and species transfer in the 

boundary layer region adjacent to the stretching sheet. 

 

1.11. Hypothesis 

MHD flow over a linearly stretching permeable surface embedded in porous medium in 

a rotating system does not affect heat and mass transfer characteristics of the system. 
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1.12. Problem statement 

In the studies cited above, the combined effects of stretching and thermal radiation, Joule 

heating, viscous dissipation, concentration and temperature gradients to the MHD flow 

in a rotating system have not been investigated in one combined study and such is the 

motivation behind this work. This study is on MHD flow over a linearly stretching 

permeable surface embedded in porous media in a rotating system with heat and mass 

transfer. 

 

1.13. General Research Objectives 

1. To study MHD heat and mass transfer characteristics near a linearly stretching 

permeable surface embedded in a porous medium in a rotating system. 

2. To determine the effects of various parameters that affect fluid flow over a 

stretching surface in porous medium. 

1.13.1.  Specific Research Objectives 

1. To investigate the effects of Magnetic parameter M, Soret number Sr, 

Permeability parameter Xi, Grashof number  and modified Grashof number 

 on the velocity, the temperature and the concentration distributions. 

2. To investigate the effects of time t on the velocity, the temperature and the 

concentration distributions within the boundary layer. 

3. To investigate the effects of Dufour number Df, Reynolds number Re, Radiation 

parameter N and Eckert number Ec on the velocity, the temperature and the 

concentration distributions. 
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4. To investigate the effects of Injection parameter  on the flow field variables. 

5. To investigate the effects of Schmidt number Sc and Rotation parameter Ro on 

the flow field variables. 

6. To investigate the effects of heat source/sink on the rate of heat transfer, rate of 

mass transfer and the shearing stress on the stretching sheet. 

 

1.14. Applications 

The study of MHD flow through porous media is of fundamental importance in a wide 

range of disciplines, including natural sciences and technology. For instance it finds 

applications in engineering and hydrogeology in dealing with ’seepage’ problems in rock 

mass, sand beds and subterranean aquifers. In civil and agricultural engineering, 

knowledge of flows through porous media is applied in the efficient layout of drainage 

systems for irrigation, and in the recovery of swampy areas. In geotechnical engineering 

and soil physics, studies of flows through porous media are used in predicting the water 

movement in clays and other surface‐active soils. The chemical engineers and ceramic 

engineers may make use of the filtration and seepage properties of the porous materials 

used. In nuclear science, MHD flows have applications in regulating fluid flow through 

reactors so as to maintain a uniform temperature throughout the bed of the reactors. In 

textile technology determining the rate of fluid flow through fibres has applications in 

dyeing. Biologists are interested in water movement through plant roots and out of the 

cells of living systems. Fluid flows involving rotation are encountered in various natural 

phenomena and finds applications in areas such as oceanography, meteorology and 
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aeronautics. Porous materials find applications in filtering harmful particles in a 

contaminated fluid. Fluid dynamics due to a stretching surface many industrial 

applications such as polymer technology, metallurgy, production of sheeting materials, 

cooling of metallic plates, aerodynamic extrusion of plastic sheets, control of the 

boundary layer along a liquid film in condensation processes, paper production, glass 

blowing, and metal spinning and drawing of plastic films. It is also necessary to 

understand the boundary layer manifestation along material handling conveyors. The 

Earth has its own magnetic field; therefore all activities taking place on earth involve an 

interaction with magnetic field. 

 

The general equations governing MHD flow over a stretching surface embedded in a 

porous medium, which include the equation of conservation of mass, the equation of 

momentum, the equation of conservation of energy, the equation of species 

concentration and the Maxwell’s equations are given in the next chapter. 
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CHAPTER TWO 

2.0  GOVERNING EQUATIONS AND METHODOLOGY 

In this chapter the equations governing the MHD flow of an electrically conducting fluid 

in a porous medium in a rotating system are given. The chapter starts by stating some of 

the approximations to be made when studying this type of flow. Thereafter, the basic 

electromagnetic equations that govern the flow of an electrically conducting fluid 

between two parallel sheets are given. This is followed by a discussion of the laws 

governing flow in porous media in a rotating system. The equations of the conservation 

of momentum, the equation of energy, and the equation of concentration are derived. 

This is followed by non‐dimensionalizing process of the equations governing the flow. 

The finite difference method used to approximate the solution to the governing equations 

is then discussed. Finally the results are discussed at the end of the chapter. 

 

2.1. Approximations and Assumptions 

1. The velocity of the fluid is too small compared with that of light i.e. . This 

means that the velocity scale in this study is non‐relativistic. 

2. The fluid flow is restricted to a laminar domain. 

3. Electrical conductivity, thermal conductivity, viscosity, Darcy permeability, and 

diffusion coefficient are constant. 

4. The density is a linear function of the temperature and species concentration so 

that the usual Boussinesq’s approximation is applicable in the boundary‐ layer 

flow. 
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5. There is no chemical reaction between the fluid and the diffusing species. 

6. The force  due to electric field is negligible compared with the force  

due to magnetic field. 

7. The induced magnetic field, the external electric field and the electric field due to 

the polarization of charges are negligible. 

8. The porous medium is isotropic, homogeneous and non-magnetic, therefore there 

is no magnetic induction. 

9. The fluid and the porous medium are in local thermodynamic equilibrium. 

10. The velocity components, the temperature, and the concentration are functions of 

variables x, z and t. 

1.0 There is no slip flow at the walls. 

 

2.2. Electromagnetic equations 

2.2.1. Maxwell’s equations 

Maxwell’s equations give the relations between the interacting electric and magnetic 

fields. Maxwell’s equations consist of four fundamental electromagnetic equations for 

time‐varying magnetic field, and the equations are given as 

  (2.1) 

  (2.2) 

  (2.3) 

  (2.4) 
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Equation (2.1) is known as Faraday’s law, named after Michael Faraday, who, in 1831, 

discovered experimentally that a current is induced in a conducting loop when magnetic 

flux linking the loop changes. It is an experimental law and can be considered as a 

postulate. The equation expresses the postulate for electromagnetic induction, which 

simply means that the electric field intensity in a region of time‐varying magnetic flux 

density is non‐conservative and cannot be expressed as a gradient or scalar potential. 

Equation (2.2) is Ampere’s law, named after the Ampere Andre‐Marie, who showed that 

wires carrying electric currents attract and repel each other magnetically. 

 

From Maxwell’s electromagnetic equations, the solenoidal relation  yields 

. When the magnetic Reynolds number is small, induced magnetic field is 

negligible in comparison with the applied magnetic field, so that 

 and  (a constant). 

If  are components of electric current density , the equation of conservation 

of electric charge  yields 

  (2.5) 

Since the sheet is non‐conducting,  at the sheet and hence zero everywhere in the 

flow. Neglecting polarization effect, the electric field  is given as . 

So 

  (2.6) 

The generalized Ohm’s law, neglecting Hall effect, is expressed as 

  (2.7) 
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Magnetic field is considered to be divergenceless, that is, there are not magnetic flux 

sources and sinks within the field, and therefore . The mathematical expression 

of equation of continuity in the case of conservation of electric charge is 

  (2.8) 

The term  in equation (2.7) yields 

  (2.9) 

Thus from equations (2.7) and (2.9), the x and y‐axis components of the current density 

respectively become 

  (2.10) 

The Lorentz force  is given as 

  (2.11) 

Heat generated due to electrical resistance of the fluid to the flow of induced electric 

current is 

  (2.12) 

Taking both Joule heating and radiative heat flux into consideration the equation of 

energy becomes 

 (2.13) 
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2.2.2. Forces on an electric charge 

When a unit electric charge e moves with velocity  in a region comprising of an electric 

field  and a magnetic field  , it experiences two types of forces: the electric force , 

and magnetic force . The total electromagnetic force  on  is given by 

Lorentz’s equation as the sum of these two forces, Bhag and Huseyin (2005). The 

electromagnetic force is therefore expressed as 

  (2.14) 

The force  is known as Lorentz force and is a force that acts on the fluid particles. 

Experiments show that this force acts in a direction perpendicular to both  and  and is 

proportional to their respective magnitudes. The generalized Ohm’s law can be written 

as 

  (2.15) 

The last term in equation (2.15) refers to current displacement current, which can be 

ignored since it is negligibly small at fluid velocity . 

 

2.3. The Coriolis effect 

The Coriolis effect is the apparent deflection of moving objects from a straight path 

when they are viewed from a rotating frame of reference. The Coriolis effect is caused 

by the Coriolis force, which appears in the equation of motion in a rotating frame of 

reference, Persson (1998). The whole system rotates with constant angular velocity of  

about the z‐axis. The vector formula for the magnitude and direction of the Coriolis 

acceleration is 
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  (2.16) 

2.4. Darcy’s Law 

Darcy’s law states that the area‐averaged velocity through a column of porous material 

between two points is directly proportional to the pressure gradient  and inversely 

proportional to both the fluid viscosity  and the distance between the two points. Thus 

  (2.17) 

Each individual porous structure has a complex geometry. It has been common practice 

to smooth out the local complexity of the actual phenomena by concentrating on the 

overall aspects of mass and momentum conservation principles, Nakayama (1995). In 

macroscopic view, flow through porous column is unidirectional, though each fluid 

particle inside a porous structure experiences a complex three‐dimensional motion. The 

pressure  is the intrinsic average pressure measured by a pressure gauge inside the 

fluid. The permeability  is an empirical constant that depends on the microstructure of 

the solid medium, and is independent of the properties of the saturated fluid. The 

velocity  is known as Darcian velocity, and is less than the actual pore velocity . Both 

velocities are related by the expression 

  (2.18) 

Equation (2.18) is called the Dupuit‐Forchheimer relation, and  is permeability, that is, 

the fraction of the total volume that is occupied by the fluid. So 
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  (2.19) 

The values of  are usually very small: in a brick  varies from  to ; in a 

cigarette , and in sand  varies from  to . 

 

2.5. The Equation of continuity 

The mass conservation equation is also called the equation of continuity. It is derived 

from the law of conservation of mass. The law of conservation of mass assumes that 

mass can neither be created nor destroyed and that on a steady flow process, the stored 

mass in a control volume does not change. A steady flow process is one where the flow 

rate does not change over time. This implies that inflow into the control volume equals 

outflow. For a steady fluid flow, the tensor form of the equation of continuity is 

  (2.20) 

where i = 1, 2, 3 along x, y and z directions respectively. Since the fluid in consideration 

is assumed to be incompressible, the equation of continuity takes the following form: 

  (2.21) 

2.6. Conservation of momentum 

The law of the conservation of momentum states that the rate of change of momentum in 

the control volume is equal to the sum of the net momentum flux into the control volume 

and any external forces acting on the control volume. This implies that the total 

momentum of a closed system of objects is constant. 
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The general momentum equation in tensor form is 

  (2.22) 

where  and  are the summation variables along x, y and z axes 

respectively. The term  represents body forces acting on the fluid. In this study the 

two body forces considered are the gravitational force and the electromagnetic force. 

The other two terms  and  in equation (2.22) represent the local acceleration 

and the convective acceleration respectively. 

 

In the equation of the conservation of momentum (2.22), the body forces and surface 

forces balance with the rate of change of momentum. Body forces act on the entire 

control volume. The most common body force is that due to gravity. Surface forces act 

on only one particular surface of the control volume at a time, and arise due to pressure 

or viscous stresses. All gases are Newtonian, as are most common liquids such as water, 

hydrocarbons, and oils. Water is a medium viscosity Newtonian fluid. Motor oil and 

Maple Syrup are high viscosity Newtonian fluids. A Newtonian fluid is one in which the 

viscous stress is linearly proportional to the rate of deformation. Fluids that do not 

follow the Newtonian behaviour law include toothpaste, blood and paints; and are 

referred to as non‐Newtonian fluids. 

 

For a three‐dimensional flow in a gravitational field, Darcy’s law (2.17) may be 

generalized to the following equation: 
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  (2.23) 

This is purely a momentum equation striking a balance between viscous forces and the 

pressure gradient in the porous medium. However this relation does not apply to flows in 

porous media at high velocity. Darcy’s law is based purely on the balance of viscous 

forces and pressure gradient. Forchheimer (1901) modified Darcy’s law to the following 

equation: 

  (2.24) 

Equation (2.24) is known as Forchheimer‐extended Darcy’s law, where  represents 

the Forchheimer constant, which is usually determined experimentally for different 

porous media. The linear Darcy term describing the distributed body force exerted by the 

fibers in the porous medium is retained, as discussed by Wu et al. (2005); but the 

non‐linear Forchheimer term is neglected in this study. The physical variables governing 

the flow are functions of x, z and t. 

 

For the case of highly porous media, the wall frictional effect becomes appreciable, and 

extends deep into the bulk of the flow, jumping over the microstructure. To model such 

boundary frictional effects, Brinkman (1947) modified Darcy’s law and made it appear 

as 

  (2.25) 
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where  is taken to be equal to  for the first approximation. For large values of , 

equation (2.25) reduces to the momentum equation for a viscous fluid flow where the 

flow does not occur in a porous medium. 

 

The following equation is a combination of Forchheimer and Brinkman modifications in 

form of a law known as Brinkman‐Forchheimer‐extended Darcy’s law: 

  (2.26) 

If the convective inertia terms are included in the Brinkman‐Forchheimer‐extended 

Darcy model as given by (2.26), the general macroscopic momentum equation for the 

fluid‐saturated porous media is 

  (2.27) 

The macroscopic inertia terms on the left hand side of equation (2.27) are referred to as 

convective inertia, while the last three terms on the right hand side are called Brinkman 

term (or boundary friction term), Darcy term (or porous viscous term) and Forchheimer 

term (or porous inertia term), respectively. As permeability  increases, the last two 

terms on the right hand side vanish, and equation (2.27) becomes the Navier‐Stokes 

equation. For subsonic flows and in free convection, the buoyancy force terms may be 

added to the right‐hand side of equation (2.26) to obtain 

 (2.28) 
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Equations (2.27) and (2.28) represent the macroscopic momentum equations for flow in 

porous media. 

 

2.7. The Equation of Species Concentration 

The equation of species concentration is based on the law of conservation of mass. This 

equation is used when the porous medium is saturated with fluid and obeys Darcy’s law. 

Convection is one of the major modes of heat transfer and mass transfer. Convective 

heat and mass transfer take place through both diffusion ‐ the random Brownian motion 

of individual particles in the fluid ‐ and advection, in which dissolved substances or heat 

are carried along with bulk fluid flow. In advection the species spread out from the path 

expected to be followed by the advection alone. The equation of species concentration is 

given as 

 (2.29) 

where  are the molecular diffusion coefficients and  are 

the thermal diffusion coefficients in the x, y, and z‐axis respectively. The last term on the 

right hand side of (2.29) represents change in species concentration due to chemical 

reaction. The species concentration is assumed to be a function of z and t, that is, . 

Equation (2.30) assumes that the thermal and molecular diffusion rates are equal. Since 

this study assumes there is no chemical reaction, equation (2.29) becomes 
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  (2.30) 

2.8. Equation of Conservation of Energy 

The equation of conservation of energy is derived from the First Law of 

Thermodynamics, which states that energy is conserved in any process involving a 

thermodynamic system and its surroundings. It simply states that the increase in the 

internal energy of  of a system is equal to the amount of energy added by heating the 

system  minus the amount lost as a result of the work done by the system on its 

surroundings . So . 

The First Law of Thermodynamics requires that 

  (2.31) 

where  and  are the heat flux and internal heat generation respectively, Bejan, 

(1984); and  is the material derivative or particle derivative. The two quantities in 

brackets on the left hand side of equation (2.31) represent material derivative of density 

 and the equation of continuity respectively. The material derivative is expressed as 

  (2.32) 

Using the law of conservation of mass and assuming that the fluid is incompressible, the 

material derivative of density and the equation of momentum are each equated to zero. 

The term  is the internal heating due to viscous dissipation. For an incompressible 

fluid flow, viscous dissipation function  in three‐dimensions is expressed as 
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  (2.33) 

The term  reduces to zero since it represents the equation of continuity. 

The partial derivatives of ; that is, ,  and  vanish since all are equal to zero. 

Since the sheet is moving parallel to the x‐axis, the contribution of the terms  and  to 

viscous dissipation is assumed to be negligible and the terms are therefore dropped from 

the equation. Lastly y‐axis is infinite and so the partial derivatives with respect to y are 

dropped from the equation. The viscous dissipation equation (2.33) thus reduces to 

  (2.34) 

In thermodynamics, enthalpy is defined as ; hence 

  (2.35) 

The local temperature gradient value  can now be expressed using the Fourier Law of 

Heat Conduction as 

  (2.36) 

where  is the thermal conductivity of the fluid. The negative sign signifies that heat 

flows from regions of high temperature to regions of low temperature. Substituting 

equations (2.33), (2.35) and (2.36) into equation (2.31) yields 
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  (2.37) 

Since the fluid is assumed to be incompressible, the divergence of the velocity vector is 

equal to zero. Hence the last term in parentheses in equation (2.37) is equal to zero. Thus 

the First Law of Thermodynamics reduces to 

           (2.38) 

Change in specific enthalpy can be written as 

  (2.39) 

where  is the change in specific entropy. The latter can be written as 

  (2.40) 

Maxwell’s relation is expressed as 

  (2.41) 

where  is the coefficient of thermal expansion; which can be expressed as 

  (2.42) 

The partial derivative of the specific entropy with respect to time is 

  (2.43) 

Substituting equations (2.39), (2.40), (2.41) and (2.42) into equation (2.43) yields 
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  (2.44) 

Therefore the equation of energy (2.38) reduces to 

  (2.45) 

Thus First Law of Thermodynamics in terms of absolute temperature  is 

  (2.46) 

For a saturated porous medium assumed to have constant thermal conductivity  and a 

negligible compressibility effect , taking radiation heat flux into consideration, the 

equation of energy (2.46) reduces to 

  (2.47) 

The equation of continuity for the kind of flow under consideration is given as 

  (2.48) 

On integration, equation (2.48) reduces to  which represents a constant suction 

velocity. A negative value of  implies constant injection. 

 

The next chapter investigates MHD flow over a stretching surface in porous media in a 

rotating system with heat and mass transfer. After studying the effects of various flow 

parameters on the velocity, temperature and concentration fields, the chapter concludes 

by investigating wall shear stress and rates of heat and mass transfer. The method of 

solution of the governing equations that arise is also given and the results have been 

discussed. 
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CHAPTER THREE 

3.0  MHD Flow Over a Stretching Surface in Porous Media in a 

Rotating System with Heat and Mass Transfer 

3.1. Mathematical Formulation 

Consider an unsteady MHD laminar boundary layer flow of an incompressible, 

electrically conducting, viscous Newtonian fluid past a stretching electrically 

non‐conducting semi‐infinite sheet embedded in porous media in a rotating system with 

heat and mass transfer. The stretching sheet is permeable to allow for possible blowing 

or suction, and is continuously stretching in the x‐axis direction in the plane  with a 

velocity . At distance H units away, a second impermeable and electrically 

non‐conducting sheet is placed parallel to the stretching sheet. The whole system is 

rotated with a constant angular velocity  about the z‐axis. The y‐axis is taken to be 

infinite. The pressure gradient is in the positive x‐axis direction, and is directed upward 

parallel to the direction of gravity. Due to rotation, Coriolis force is taken into 

consideration. The velocity vector  and magnetic field B have components  and 

 along the x, y, and z‐axis respectively. The fluid flows upwards against the 

force of gravity due to a constant pressure gradient  transmitted to the fluid by the 

stretching sheet. The permeable stretching sheet is subjected to a uniform injection of 

magnitude . 
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Figure 3.1 : The Flow Configuration 

The surface of the stretching sheet is maintained at a uniform temperature . The 

freestream temperature and the concentration of species are  and  respectively. 

The temperature  may either exceed the freestream temperature  or may be less 

than ; and  may either exceed the ambient concentration  or may be less than 

. When  an upward flow is established along the surface due to free 

convection; when , there is a down flow. Additionally, a magnetic field of 

strength  is applied normal to the two plates. In this flow Boussinesq approximation is 

used. There is variation in the temperature and the density respectively, so the buoyancy 

force also contributes towards driving the fluid. The variation in density is neglected 

everywhere except in the buoyancy terms. 

  (3.1) 

The volumetric coefficient of thermal expansion is given as 
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  (3.2) 

The coefficient of thermal expansion due to concentration gradient is given as 

  (3.3) 

From equations (3.2) and (3.3), equation (3.1) becomes 

  (3.4) 

Keeping the origin fixed, a force is suddenly applied to the permeable sheet along the 

x‐axis. The force stretches the sheet and an upward pressure gradient is created. To 

determine the pressure gradient term, the momentum equation is evaluated at the edge of 

the boundary layer where . When the fluid is at momentum equilibrium, the 

pressure gradient due to stretching is balanced by the pressure gradient downward due to 

the variation of the fluid density. Thus 

  (3.5) 

The body force term in the momentum equation along the x‐axis direction is 

  (3.6) 

Substituting the value of  given in equation (3.5) into equation (3.6): 

  (3.7) 

Equation (3.7) represents the overall pressure gradient term in the momentum equation 

along the x‐axis. 
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From equations (2.28), (2.29) and (2.13) and considering the usual boundary layer 

approximations, the equations of momentum, concentration, and energy in porous 

medium with the Darcian effects are given below. 

The equation of momentum along the x‐axis is 

  

(3.8) 

The equation of momentum along the y‐axis is 

 (3.9) 

The equation of energy is 

 (3.10) 

Equation of species concentration is 

 (3.11) 

The initial and boundary conditions of this problem are: 
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3.1.1. Non-dimesionalisation 

The subject of dimensional analysis considers how to determine the required set of 

scales for any given problem. It is a process that starts with selecting a suitable scale 

against which all dimensions in a given physical model are based. 

Non‐dimensionalization is basically aimed at ensuring that the results are applicable to 

other geometrically similar configurations under a similar set of flow conditions. The 

non‐dimensionalized boundary layer equations have a solution that is bounded, where 

the solution values lie between 0 and 1 inclusive. The characteristic length is taken as 

perpendicular distance  units between the parallel sheets. The characteristic velocity is 

taken as the freestream velocity . 

The non‐dimensional parameters are defined as follows: 

 (3.12) 

In order to transform the equations of continuity, momentum, energy, and concentration 

into their respective non‐dimensional form, the following analysis is first carried out: 

  (3.13) 

  (3.14) 

  (3.15) 

  (3.16) 
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  (3.17) 

  (3.18) 

  (3.19) 

  (3.20) 

  (3.21) 

  (3.22) 

  (3.23) 

  (3.24) 

  (3.25) 

 (3.26) 

 (3.27) 

Substituting equations (3.13) to (3.19) into equations (3.8) and (3.9) and dividing each of 

the resulting terms by , the two equations of momentum respectively become: 
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 (3.28) 

 (3.29) 

where  is the Magnetic field parameter,  is the Reynolds number, 

 is the Rotation parameter,  is the Permeability parameter, 

 is the local temperature Grashof number and  is 

the local mass Grashof number. 

 

Similarly substituting equations (3.20) to (3.25) into equation (3.10) and dividing each of 

the resulting terms by , equation (3.10) becomes 

 (3.30) 

where  is the Prandtl number,  is the Dufour number, 

 is the Radiation parameter,  is the Eckert Number,  is 

the Joule heating parameter and  represents the temperature difference . 

Similarly the equation of concentration (3.11) becomes 
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 (3.31) 

where  is the Schmidt number, and  is the Soret number. 

The initial and boundary conditions in equation (3.12) appear as follows when 

transformed to their equivalent non‐dimensional form: 

 (3.32) 

The non‐dimensionalized equations above contain the non‐dimensional parameters 

discussed below. 

3.1.2. Prandtl Number 

The Prandtl number (Pr) is the ratio of fluid properties controlling the velocity and the 

temperature distributions. It is the ratio of viscous force to thermal force. 

  (3.33) 

where  is the thermal diffusivity and . Fluids that are particularly viscous 

have a relatively large value of  and correspondingly a large Prandtl number, for 

instance lubricating oils have large Prandtl numbers which can exceed . A fluid with 

a Prandtl number close to unity has thermal and momentum boundary layers of similar 

(nearly equal) thickness. For instance water vapour at  has a Prandtl number of 1. 

Fluids which are good conductors of heat have a relatively large value of ; and this 
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occurrence is found in liquid metals whose Prandtl numbers are correspondingly small, 

such as Mercury (Pr = 0.023). 

3.1.3. Dufour number 

The Dufour number (Df) signifies the contribution of the concentration gradients to the 

thermal energy flux in the flow. 

  (3.34) 

3.1.4. The local temperature Grashof number 

The local temperature Grashof number ( ) signifies the relative effect of the thermal 

buoyancy force to the viscous hydrodynamic force in the boundary layer. A positive 

value of  corresponds to cooling of the stretching sheet (or heating the fluid in 

contact with the sheet) while a negative value corresponds to heating the sheet (or 

cooling the fluid). 

  (3.35) 

3.1.5. The local mass Grashof number 

The local mass (or solutal) Grashof number ( ) defines the ratio of the species 

buoyancy force to the viscous hydrodynamic force. 

  (3.36) 

3.1.6. Schmidt number 

The Schmidt number (Sc) is a dimensionless number that is a measure of the relative 

effectiveness of momentum and mass transport by diffusion in the velocity and the 
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concentration boundary layers, respectively, Incropera and DeWitt (2002). The Schmidt 

number embodies the ratio of the momentum to the mass diffusivity. The Schmidt 

number therefore quantifies the relative effectiveness of momentum and mass transport 

by diffusion in the hydrodynamic (velocity) and the concentration (species) boundary 

layers. It physically relates the relative thickness of the hydrodynamic layer and mass 

transfer boundary layer. 

  (3.37) 

3.1.7. Soret number 

The Soret number (Sr) defines the effect of the temperature gradients inducing 

significant mass diffusion effects. 

  (3.38) 

3.1.8. Eckert number 

The Eckert number (Ec) expresses the relationship between the kinetic energy in the 

flow and the enthalpy. It represents the conversion of kinetic energy into internal energy 

by work that is done against the viscous fluid stresses. A positive Eckert number implies 

cooling of the stretching sheet (or loss of heat from the sheet to the fluid). 

  (3.39) 

3.1.9. Nusselt number 

The Nusselt number (Nu) is the ratio of the convective heat transfer to the conductive 

heat transfer. For instance if  =1, then the rates of heat transfer by convection and by 
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conduction are equal. Similarly if  =10, then rate of convective heat transfer is 10 

times the rate of heat transfer if the fluid was stagnant. Nusselt number is thus equal to 

the dimensionless temperature gradient at the surface and provides a measure of the 

convention heat transfer occurring at the surface. 

  (3.40) 

3.1.10. Sherwood number 

Sherwood number (Sh) is equal to the dimensionless concentration gradient at the 

surface, and provides a measure of the convection mass transfer occurring at the surface. 

Sherwood number is to the concentration boundary layer what the Nusselt number is to 

the thermal boundary layer. 

  (3.41) 

3.2. METHODOLOGY 

Equations (3.28), (3.29), (3.30) and (3.31) that govern MHD flow in porous media over 

a stretching surface with heat and mass transfers are coupled and highly non‐linear. 

Getting an exact analytical solution to them is not possible. The equations are solved 

using the finite difference method that applies Crank‐Nicholson algorithm. The latter is 

second order accurate. A given level of accuracy can be obtained with a coarser grid, 

translating to less computation cost. The finite difference method replaces each PDE 

with a discrete approximation for space and time domains. In this context the term 

’discrete’ means that the numerical solution is known only at a finite number of points in 



44 

 

the physical flow domain. The number of points can be selected by the user of the 

numerical method. In general, increasing the number of points not only increases the 

resolution but also the accuracy of the numerical solution, Hoffman, et al. (1992). 

 

3.2.1. Definition of the mesh 

The flow domain is confined by the x, z and t axes. The x‐axis values range from  

to , z‐axis values range from  to . So  and 

. The t‐axis has values of t that range from 0 to t. The interval 

 is divided into ( ) intervals at different x values indexed by i = 0, 1, . . 

. , M. The interval  is divided into ( ) equally spaced intervals along the 

z‐axis, and the values are indexed by j=0, 1,. . . ,N. Similarly the interval [0, t] is divided 

into ( ) equally spaced intervals at different t values indexed by k = 0, 1, . . . ,K. 

The length of each interval is h units in the x‐axis direction, m units in the z‐axis 

direction, and n units in the t‐axis direction. (See the solution grid 3.2) shown. The aim is 

to get an approximation to the values of U, V, C and T at the various grid points in the 

discretised domain. For instance  and  denote the approximation for the 

primary velocity and the concentration values respectively at the grid point . A 

general point along the x‐axis is denoted by  , and a general point along 

the z‐axis is denoted by  respectively. 
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Figure 3.2 : Solution grid 

 

3.2.2. The Finite Difference Method 

The partial derivatives of U, V, C and T at each grid point are expressed using finite 

difference approximation. , ,  and  for each  are calculated directly 

from the initial value condition. Thus it is natural to start from the boundary and working 

outwards so as to obtain , ,  and  respectively. The derivatives 

are approximated using the Forward Time Backward Space (FTBS) finite difference 

scheme. The FD expressions for ,  and  averaged for times  and  and are 

given below. 

  (3.42) 
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  (3.43) 

  (3.44) 

Equation (3.42) is the forward difference approximation for  at  and has a 

truncation error of order . The error can be denoted by writing this equation as 

  (3.45) 

Equation (3.42) is the FTBS approximation for  at  and has a truncation error of 

order . The error can be denoted by writing this equation as 

  (3.46) 

Equation (3.44) is the FTBS approximation for  at  has a truncation error that is of 

order . The error can be denoted by writing this equation as 

 (3.47) 

The finite difference approximations for ,  and  and ,  and  are: 

  (3.48) 

  (3.49) 

  (3.50) 
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  (3.51) 

  (3.52) 

  (3.53) 

The finite difference equations corresponding to equations (3.28), (2.29), (3.30), and 

(3.31) are as given below. The primes used in the earlier notation have been omitted for 

clarity. 

The equation of momentum along the x‐axis is 

 

 (3.54) 

Making  in equation (3.53) the subject of the formula: 
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 (3.55) 

Equation of momentum along the y‐axis is 

 

 (3.56) 

Making  in equation (3.56) the subject of the formula gives 
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 (3.57) 

Equation of energy is 

 

 (3.58) 

Making  in equation (3.58) the subject of the formula gives 
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 (3.59) 

Equation of concentration is 

 

 (3.60) 

Making  in equation (3.60) the subject of the formula gives 
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 (3.61) 

The values of U in equation (3.55) are found at every nodal point for a particular i at 

 time level. Similarly, the values of V are calculated from equation (3.57). The 

values of U and V at  time level are used to compute the values of C in equation 

(3.61) at  time level. Thus, the values of U, V and C are known on a particular 

i‐level. Finally the values of T are calculated using equation (3.59) at every nodal point 

on a particular i‐level at  time level. Thus the values of U, V, C and T are 

determined, at all grid points at  time level. This process is repeated for all the 

i‐levels. 

 

The numerical calculations have been performed by fixing the mesh sizes at , 

, and , where the rectangular region formed by the x‐axis and z‐axis 

has 41x41 meshes. When the mesh sizes and the time step are reduced and the results are 

compared, the results more or less agree up to the fourth decimal place. Hence the mesh 
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size is considered appropriate for the calculation of the values of the velocity, 

temperature and concentration. The local truncation error is of order 

 and tends to zero as ,  and  tend to zero. Thus the 

present scheme is convergent. 

 

3.2.3. Discussion of the results 

The various parameters that have been varied include the Schmidt number Sc, Soret 

number Sr, Magnetic field M, Rotational parameter Ro, Permeability parameter Xi, local 

temperature Grashof number , local mass Grashof number , time t, Dufour 

number Df, Reynold’s number Re, Nusselt number Nu, Eckert number Ec, Schmidt 

number Sc, and Injection parameter . These parameters are input into a computer 

program where each parameter is varied at a time. 

 

Figures 3.3 and 3.4 show that increase in Magnetic field parameter M causes a decrease 

in the magnitude of both the primary and the secondary velocity profiles respectively. 

Figure 3.5 shows that increase in M causes an increase the concentration profiles. Figure 

3.6 shows that increase in M causes a decrease in the temperature profiles. It is clear that 

increasing the value of M has a tendency to slow down the velocity of the fluid. 

Decreasing the velocity of the fluid slows down the movement of the species. 

Application of a transverse magnetic field to an electrically conducting fluid gives rise to 

a resistive type force called the Lorentz force. This force has the tendency to slow down 

the motion of the fluid in the boundary layer and to increase its concentration, Tania et 
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al. (2010). (However Tania does not explain why temperature profiles decrease with 

increase in M). The temperature profiles decrease with increasing M. The reduced 

velocity by the frictional drag due to the Lorentz force is responsible for reducing 

thermal viscous dissipation in the fluid leading to a thinner thermal boundary layer. 

Magnetic field can therefore be employed to control the velocity, temperature and 

concentration boundary layer characteristics of a fluid. 

 

Figure 3.3: Secondary velocity field for different values of Magnetic parameter M. 
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Figure 3.4 : Primary velocity field for different values of Magnetic parameter M. 

 

 

Figure 3.5 : Concentration field for different values of Magnetic parameter M. 
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Figure 3.6 : Temperature field for different values of Magnetic parameter M. 

 

From Figure 3.7 increase in Sr causes an increase in the primary velocity profiles. From 

Figure 3.8 increase in Sr causes an increase in the magnitude of the secondary velocity 

profiles. From Figure 3.9 increase in Sr causes an increase in the concentration profiles. 

Soret number (Sr) defines the effect of the temperature gradients inducing significant 

mass diffusion effects. Figure 3.10 shows that increase in Sr causes an increase in the 

temperature profiles. Increase in Soret number Sr causes an increase in the 

concentration, the temperature and the velocity profiles, Ferdows, et al. (2010). 
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Figure 3.7 : Primary velocity field for different values of Soret number Sr. 

 

 

 

Figure 3.8 : Secondary velocity field for different values of Soret number Sr. 
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Figure 3.9 : Concentration field for different values of Soret number Sr. 

 

 

Figure 3.10 : Temperature field for different values of Soret number Sr. 

 

From Figures Figure 3.11 and 3.12, increase in the local temperature Grashof number 

 causes an increase in the primary velocity profiles and an increase in the magnitude 

of the secondary velocity profiles respectively. Increase in  causes a decrease in the 

temperature profiles, as shown by Figure 3.13. From Figure 3.14 increase in  causes 
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a decrease in the concentration profiles. The local temperature Grashof number  

represents the effects of free convection currents and physically  corresponds to 

heating of the fluid (or cooling of the surface). Velocity of the fluid increases because 

the fluid flow is assisted by the free convection currents. As expected, increase in the 

velocity profiles is partly due to the enhancement of thermal buoyancy force. The 

species concentration keeps on decreasing and finally approaches zero with increasing 

distance away from the fixed end of the stretching sheet. Free convection currents 

transport the species away from the surface of the stretching sheet resulting to lower 

concentration of the fluid. The observed increase in the magnitude of the secondary 

velocity profiles with increase in  is as a result of emergence of secondary circulation 

currents due to the presence of the temperature gradient. 

 

Figure 3.11 shows that increase in modified Grashof number  causes an increase in 

the primary velocity profiles. Figure 3.12 shows that increase in modified Grashof 

number  causes increase in the magnitude of the secondary velocity profiles. Figure 

3.13 shows that increase in the modified Grashof number  causes a decrease in the 

temperature profiles. Physically, it means that thermal boundary layer thickness 

decreases with increase in , and hence the observed decrease in the temperature 

profiles. Figure 3.14 shows that increase in the modified Grashof number  causes a 

decrease in the concentration profiles. The modified Grashof number  defines the 

ratio of the species buoyancy force to the viscous hydrodynamic force. Increase in  

implies reduced viscous hydrodynamic forces that causes decrease in viscous 
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dissipation. The latter directly translates to a decrease in the temperature profiles. As 

expected, the fluid velocity increases due to increase in the species buoyancy force. 

Increase in species buoyancy force results into a higher species transportation rate away 

from the stretching surface, resulting into lower concentration, Shateyi (2008). 

 

Figure 3.11 shows that increase in Permeability parameter Xi causes a decrease in the 

primary velocity profiles. Figure 3.12 shows that increase in Xi causes a decrease in the 

magnitude of the secondary velocity profiles. Figure 3.13 shows that increase in Xi 

causes decrease in the temperature profiles. Figure 3.14 shows that increase in Xi causes 

an increase in the concentration profiles. The Permeability parameter Xi is inversely 

proportional to the actual permeability  of the porous medium. Increase in Xi leads to 

enhanced deceleration of the flow and hence the velocity decreases. Increasing Xi 

increases the resistance of the porous medium (as the permeability physically becomes 

less with increasing ). This decelerates the flow and reduces the magnitudes of both 

the primary and the secondary velocities respectively. Increase in Xi reduces the rate of 

species transportation from the surface of the stretching sheet, leading to the observed 

increase in the concentration profiles. Thus velocity, temperature and concentration of 
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the fluid can be controlled by varying the permeability of the porous medium. 

 

Figure 3.11 : Primary velocity field for different values of the permeability, 

Grashof and modified Grashof numbers. 

 

Figure 3.12 : Secondary Velocity field for different values of the permeability, 

Grashof and modified Grashof numbers. 
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Figure 3.13 : Temperature field for different values of the permeability, Grashof 

and modified Grashof numbers. 

 

 

Figure 3.14 : Concentration field for different values of the permeability, Grashof 

and modified Grashof numbers. 
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Figure 3.15 shows that increase in time t causes an increase in the primary velocity 

profiles. Figure 3.16 shows that increase in time t causes an increase in the magnitude of 

the secondary velocity profiles. Figure 3.17 shows that increase in time causes a 

decrease in the concentration profiles. It means the concentration boundary layer 

decreases with time. Figure 3.18 shows that increase in time causes decrease in the 

temperature profiles. Physically, it means that thermal boundary layer thickness 

decreases as time increases. As time t increases the velocity, concentration and 

temperature of the fluid fall steeply near the fixed end of the stretching sheet, and the 

gradient decreases gradually as the distance from the fixed end of the stretching sheet 

increases. 

 

Figure 3.15 : Primary velocity profiles for different values of time t. 
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Figure 3.16 : Secondary velocity profiles for different values of time t. 

 

 

 

Figure 3.17 : Concentration profiles for different values of time t. 
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Figure 3.18 : Temperature profiles for different values of time t. 

Figure 3.19 shows that increase in the Dufour number Df causes decrease in the primary 

velocity profiles. The figure also shows that increase in the Soret number Sr leads to an 

increase in the primary velocity profiles. Figure 3.20 shows that increase in Df causes a 

decrease in the magnitude of the secondary velocity profiles. The figure also shows that 

increase in Sr causes increase in the magnitude of the secondary velocity profiles. Figure 

3.21 shows that increase in Df causes an increase in the concentration profiles. The 

figure also shows that increase in Sr causes an increase in the concentration profiles. 

Figure 3.22 shows that increase in Df causes a decrease in the temperature profiles. The 

figure also shows that increase in Sr causes a decrease in the temperature profiles. The 

Dufour number signifies the contribution of the concentration gradients to the thermal 

energy flux in the flow. From the definition of the Dufour number, an increase in Df 
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translates directly to a decrease in the temperature profiles of the fluid, or to an increase 

in the concentration profiles of the fluid. 

 

Figure 3.19 : Primary velocity field for different values of Dufour number. 

 

 

 

Figure 3.20 : Secondary velocity field for different values of Dufour number. 
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Figure 3.21 : Concentration field for different values of Dufour number. 

 

 

Figure 3.22 : Temperature field for different values of Dufour number. 
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Figures 3.23 and 3.24 show that increase in Reynold’s number Re causes an increase in 

the primary velocity profiles and increase in the magnitude of the secondary velocity 

profiles respectively. The Reynolds number represents the ratio of the inertial to 

viscosity forces. Increase in Re results to a larger inertia force that in turn translates to 

higher velocities. Figure 3.25 and Figure 3.26 show that increase in Re causes a decrease 

in the concentration profiles but an increase in the temperature profiles. A higher 

velocity of the fluid takes away more species from the surface of the stretching sheet 

thereby reducing the species concentration. 

 

 

 

Figure 3.23 : Primary velocity field for different values of Re. 
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Figure 3.24 : Secondary velocity field for different values of Re. 

 

Figure 3.25 : Concentration field for different values of Re. 
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Figure 3.26 : Temperature field for different values of Re. 

 

Figure 3.27 and Figure 3.28 show that increase in Radiation parameter N leads to a 

decrease in the primary velocity profiles but to an increase in the magnitude of the 

secondary velocity profiles. Figure 3.29 show that increase in N leads to an increase in 

the concentration profiles. Figure 3.30 shows that increase in N leads to a decrease in the 

temperature profiles. So radiation can be used to control the velocity, concentration and 

the thermal boundary layers quite effectively. So decreasing the value of N lowers both 

the flow velocity and the temperature of the fluid. The rate of the respective boundary 

layer growth for the temperature, concentration and primary and secondary velocities is 

higher near the fixed end of stretching sheet. 
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Figure 3.27 : Primary velocity profiles for different values of N and Ec. 

 

Figure 3.28 : Secondary velocity profiles for different values of N and Ec. 
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Figure 3.29 : Concentration profiles for different values of N and Ec. 

 

 

Figure 3.30 : Temperature profiles for different values of N and Ec. 

 

Figure 3.27 shows that increase in Eckert number Ec causes an increase in the primary 

velocity profiles. From Figure 3.28 increase in Ec leads to an increase in the magnitude 
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of the secondary velocity profiles. Figure 3.29 shows that concentration profiles decrease 

with increase in the Eckert number. Figure 3.30 shows that increase in Eckert number Ec 

causes an increase in the temperature profiles. Thus increasing Eckert number boosts 

both the velocity and the temperature of the fluid flowing in a porous medium. The 

Eckert number expresses the relationship between the kinetic energy in the flow and the 

enthalpy. It embodies the conversion of kinetic energy into internal energy by work done 

against the viscous fluid stresses. A positive Eckert number implies cooling the sheet, 

implying heating the fluid. This causes a rise in the temperature and the velocity of the 

fluid respectively. So introducing radiation can be used to control the velocity, 

concentration and thermal boundary layers in porous media. 

 

Figure 3.31 and Figure 3.32 show that increase in Schmidt number Sc causes a decrease 

in primary profiles and in the magnitude of the secondary velocity profiles respectively. 

Figure 3.33 shows that an increase in Schmidt number Sc causes decrease in the 

concentration profiles near the fixed end of the stretching sheet, and causes a cross‐over 

of the concentration profiles further away along the stretching sheet. The effect of 

stretching on velocity is overcome by freestream velocity, leading to the observed 

cross‐over of concentration profiles. Figure 3.34 shows that increase in Sc leads to a 

decrease in the temperature profiles. An increase in Sc leads to thinning of the velocity 

and the concentration boundary layers respectively, Abo‐Eldahab (2005). A large value 

of Sc means a presence of a heavier fluid and this implies a lower velocity of the fluid. 
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Figure 3.31 : Primary velocity profiles for different values of Sc. 

 

 

Figure 3.32 : Secondary velocity profiles for different values of Sc. 



74 

 

 

Figure 3.33 : Concentration profiles for different values of Sc. 

 

 

Figure 3.34 : Temperature profiles for different values of Sc. 

Figure 3.35 shows that an increase in the magnitude of the Injection parameter  causes 

a decrease in the primary velocity profiles near the fixed end of the stretching sheet but 

there is a cross‐over of the velocity profiles further away from the fixed end of the sheet. 
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The cross‐over occurs when the effect of stretching on velocity is overcome by the 

effects of the freestream velocity on the boundary layer. Figure 3.36 shows that an 

increase in the magnitude of the injection parameter  causes a decrease in the 

magnitude of the secondary velocity profiles near the fixed end of the stretching sheet 

but there is a cross‐over of the velocity profiles at around x=5.5. Figure 3.37 shows that 

an increase in the magnitude of the Injection parameter  causes a decrease in the 

concentration profiles. Figure 3.38 shows that an increase in the magnitude of the 

injection parameter  causes a decrease in the temperature profiles, but there is a 

cross‐over of profiles at around x=3. The results show that introducing injection can be 

used to destabilize the velocity and the temperature boundary layers away from the fixed 

end of the stretching sheet; but can also be used to stabilize the two boundary layers near 

the fixed end of the sheet. This indicates the usual fact that blowing destabilizes the 

growth of the velocity and temperature the boundary layers respectively. 
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Figure 3.35 : Primary velocity profiles for various values of Injection parameter, 

. 

 

 

Figure 3.36 : Secondary velocity profiles for various values of injection parameter, 

. 

 



77 

 

 

Figure 3.37 : Concentration profiles for various values of injection parameter, . 

 

Figure 3.38 : Temperature profiles for various values of injection parameter,  

 

Figure 3.39 shows that primary velocity profiles decrease with increase in the value of 

the Rotation parameter Ro. Figure 3.40 shows that the magnitude of the secondary 
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velocity profiles decrease with increase in Ro; and absence of rotation translates to 

absence of the secondary velocity profiles. This means rotation can be used to control 

emergence of the secondary velocity profiles in a rotating system. Figure 3.41 shows that 

increase in Ro leads to an increase in the concentration profiles. Figure 3.42 shows that 

increase in Ro leads to a decrease in the temperature profiles. An increase in Ro, which 

leads to a decrease in the primary velocity profiles, leads to slowing down of the fluid 

thus retarding the movement of the species away from the stretching sheet, leading to the 

observed increase in the concentration profiles. 

 

Figure 3.39 : Primary velocity profiles for various values of Rotation parameter, 

Ro. 
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Figure 3.40 : Secondary velocity profiles for various values of Rotation parameter, 

Ro. 

 

Figure 3.41 : Concentration profiles for various values of Rotation parameter, Ro. 
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Figure 3.42 : Temperature profiles for various values of Rotation parameter, Ro. 

 

3.3. Nusselt number, Sherwood number and Local Skin-friction 

Coefficient 

The quantities of main engineering interest in the problem at hand are the local Nusselt 

number, the local Sherwood number, and the shearing stress on the stretching sheet. The 

Nusselt number and the local Sherwood number physically indicate the rate of heat 

transfer and the rate of mass transfer respectively. The shearing stress on the surface of 

the stretching sheet is defined as 

  (3.62) 

  (3.63) 

The local skin friction coefficients are defined as 
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  (3.64) 

  (3.65) 

Equations (3.64) and (3.65) represent the respective local skin friction coefficients due to 

the primary and the secondary velocity profiles. The local surface mass flux is defined 

by 

  (3.66) 

At characteristic length H units along the x‐axis from the fixed end of the stretching 

sheet, the local Sherwood number Sh is expressed as 

  (3.67) 

Assuming the no‐slip condition at the wall, and that heat transfer at the wall is by 

conduction, the local surface heat flux is expressed as 

  (3.68) 

where  is the thermal conductivity of the saturated porous medium. The local Nusselt 

number Nu is expressed as 

  (3.69) 
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3.3.1. The Least Squares Approximation Method 

The method of least squares approximation has been used to determine a quadratic 

bivariate polynomial that is a function of z and t; say, , ,  and 

 where each polynomial approximates the continuous functions , , 

 and  respectively. The method of least squares is used in order to minimize 

the difference between each of the following functions: 

       

(3.70) 

Since  is a second degree bivariate approximating polynomial, then 

; 

where  and  are real constants. In order to obtain an approximating 

polynomial for , the following equation is minimized: 

      (3.71) 

where n is the number of points used. The respective partial derivatives with respect to 

 are given below. 
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Using the preceding six partial derivatives using  the flowing six respective normal 

equations are obtained: 

 

 

 

 

 

 

 

For instance when x = 3, the values shown in Table 3.1 are obtained. 

Table 3.1 : Values of t, z and U(z,t) Sc = 0.22, Sr = 0.4, M = 1.0, Xi =0.5 , Ro = 0.5,      

   N = 0.5,  = 0.5, Re = 50, Df = 0.03, Ec = 0.5, R = 0.2, = 5,  = 10, Pr = 0.71. 

t 0.399 0.400 0.401 0.402 0.403 0.404 

z 0 0.03 0.06 0.09 0.12 0.15 

U(z,t) 0.46335 0.42591 0.42881 0.42887 0.42888 0.42894 

 

 

              [Table continued] 

 

The matrix A of coefficients  derived from the normal equations is 

t 0.405 0.406 0.407 

z 0.18 0.21 0.24 

U(z,t) 0.42899 0.42904 0.42909 
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 (3.72) 

The column matrix given by the left‐hand side of the respective normal equations is 

given by matrix C below. 

  (3.73) 

The column matrix of the constants  is given as matrix B below: 

  (3.74) 

Solving the matrix equation  using Matlab’s command  leads to the 

following approximating polynomial. 

 . 

Similarly the approximating polynomials for ,  and  are: 

. 

. 

. 
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The bivariates for U, V, C and T are used in obtaining the results shown in Table 3.2. 

 

Table 3.2 : Variation of Coefficients of friction, Sherwood and Nusselt numbers with 

various parameters. 

M Xi Ro N t wo Ec Cfx Cfy Sh Nu 

1.0 0.50 0.50 0.50 0.40 0.5 0.50 0.01556 ‐0.00296 ‐0.66713 ‐0.73540 

2.0 0.50 0.50 0.50 0.40 0.5 0.50 0.01089 ‐0.00260 ‐0.69767 ‐0.83061 

3.0 0.50 0.50 0.50 0.40 0.5 0.50 0.00686 ‐0.00168 ‐0.70727 ‐0.91100 

1.0 1.50 0.50 0.50 0.40 0.5 0.50 0.01089 ‐0.00260 ‐0.69767 ‐0.83061 

1.0 2.50 0.50 0.50 0.40 0.5 0.50 0.00686 ‐0.00168 ‐0.70727 ‐0.91100 

1.0 0.50 2.50 0.50 0.40 0.5 0.50 0.01120 ‐0.01344 ‐0.68330 ‐0.76090 

1.0 0.50 4.50 0.50 0.40 0.5 0.50 0.00175 ‐0.01947 ‐0.71278 ‐0.87060 

1.0 0.50 0.50 2.50 0.40 0.5 0.50 0.01719 ‐0.00298 ‐0.68550 ‐0.41046 

1.0 0.50 0.50 4.50 0.40 0.5 0.50 0.01787 ‐0.00313 ‐0.69598 ‐0.35613 

1.0 0.50 0.50 0.50 0.40 0.4 0.50 0.01209 ‐0.00187 ‐0.48325 ‐0.65535 

1.0 0.50 0.50 0.50 0.40 0.3 0.50 0.00809 ‐0.00137 ‐0.29031 ‐0.55647 

1.0 0.50 0.50 0.50 0.40 0.5 1.00 0.01641 ‐0.00255 ‐0.67420 ‐0.71822 

1.0 0.50 0.50 0.50 0.40 0.5 1.50 ‐0.01761 ‐0.00354 ‐0.67118 ‐0.34306 

1.0 0.50 0.50 0.50 5.00 0.5 0.50 0.01421 ‐0.00325 ‐0.56666 ‐0.64909 

1.0 0.50 0.50 0.50 6.00 0.5 0.50 0.00865 0.00542 ‐0.04937 ‐0.42828 
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3.3.2. Discussion of the results 

From Table 3.2 the following observations can be made: 

1. Increase in Magnetic parameter M results in decrease in the magnitudes of both shear 

stresses,  and  respectively; but to an increase in the magnitude of the 

Sherwood number Sh and Nusselt number Nu. The magnitude of shear stress is 

proportional to velocity and since both velocity profiles decrease with increase in M, 

the shear stress is expected to decrease. Increase in the value of M causes thickening 

of the concentration boundary layer, resulting to a lower rate of transportation of the 

species in the concentration boundary layer. Thermal boundary layer thickness 

decreases with increase in M resulting to the observed increase in the Nusselt 

number. 

2. Increase in the Permeability parameter Xi causes a decrease in the magnitudes of  

and  respectively. This is explained by the fact that increase in Xi means a 

decrease in the size of the pores of the porous medium and this causes an increased 

resistance to the flow, leading to lower velocity, and consequently to a decrease in 

the two respective coefficients of friction. An increase in Xi leads to an increase in 

the magnitude of Nusselt number Nu and Sherwood number Sh. This observation is 

due to the fact that increase in Xi leads to thinner temperature boundary layer, 

thereby leading to an increase in the rate of heat transfer. Decrease in velocity of the 

fluid results to a reduced rate of transportation of species away from the surface of 

the stretching sheet, leading to the observed increase in the value of Sh. 
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3. Increase in the Rotational parameter Ro leads to a decrease in the magnitude of  

but to an increase in the magnitude of . Increase in Ro causes an increase in the 

magnitude of the secondary velocity profiles that in turn lead to increase in the 

magnitude of . Increase in Ro leads to an increase in the magnitude of Sh and Nu 

respectively. Increase in Ro leads to a thinner thermal boundary layer, resulting to an 

increased rate of heat transfer. Decrease in the primary velocity profiles leads to a 

reduced rate of transportation of species away from the surface of the stretching 

sheet, leading to the observed increase in the value of Sh. 

4. Increase in the Radiation parameter N leads to an increase in the magnitudes of , 

, Nu and Sh respectively. Increase in N leads to an increase in the rate of species 

transportation. Increase in Radiation parameter N leads to a thinner thermal 

boundary layer, resulting to an increase in the rate of heat transfer. Increase in N also 

enhances the flow of convection currents on the surface of the sheet, leading to an 

increase in  and  respectively. 

5. Increase in the magnitude of the suction parameter  leads to an increase in the 

magnitudes of , , Sh and Nu. Suction accelerates the velocity of the fluid 

particles leading to higher flow velocities. Thermal boundary layer thickness 

decreases with increase in , leading to an increased rate of heat transfer. Decrease 

in concentration boundary layer thickness leads to an increased rate of species 

transportation, and hence to increase in the Sherwood number Sh. 

6. Increase in the Eckert number Ec leads to an increase in the magnitudes of  and 

 respectively; but to a decrease in the magnitude of the Nusselt number Nu and 
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Sherwood number Sh respectively. Increasing the value of Ec leads to an increase in 

the velocity of the fluid and hence the observed increase in the magnitude of the 

values of both shear stresses. Increasing Ec results to a lower rate of species 

transportation leading to a decrease in Sh. Increase in Ec translates to a lower value 

of the temperature difference, and to a reduced rate of heat transfer. 

7. Increase in time t leads to a decrease in the magnitudes of , Sh and Nu 

respectively; but to an increase in the magnitude of . The respective transient 

temperature and concentration differences within the fluid decrease with time, 

leading to a decreased rate of mass transfer and heat transfer respectively. The 

transient shear stress due to secondary velocity increases with time while that due to 

the primary velocity profiles decrease with time. The effect of rotation on the 

secondary velocity profiles increases with time hence the observed increase the 

magnitude of  with time t. 

 

3.4. Conclusion 

Tania and Samad (2010) analyzed the effects Magnetic field parameter, Suction 

parameter, Schmidt number, Radiation parameter, buoyancy force, viscous stress and 

Eckert number on a steady two‐dimensional magneto‐hydrodynamics free convection 

flow along a stretching sheet in the presence of a heat source. The problem at hand has 

in addition considered the effects of the Dufour number, Soret number, Reynold’s 

number, Nusselt number, rotation and porosity on the flow variables. To validate the 

present results, the additional flow parameters are removed from the governing 
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equations by giving each of them a value of zero. The results are compared with those of 

Tania and Samad; and the results agree. However, the important part of this work in 

comparison with the previous work is that there are sharp rises in the momentum, 

concentration and thermal boundary layers near the fixed end of the stretching sheet. 

This can easily be explained as the usual effect of the stretching, buoyancy force, 

radiation, magnetic field, rotation, permeability and viscous dissipation on the flow 

variables. 

 

The next chapter considers MHD flow over a stretching sheet in a rotating system in 

porous media with Hall currents, heat and mass transfer. 
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CHAPTER 4  

4.0  MHD Flow over a Stretching Sheet in Porous Media in a Rotating 

System with Hall Currents, Heat and Mass Transfer 

4.1. Introduction 

MHD is the study of the motion of electrically conducting fluids. In Chapter 3, unsteady laminar 

boundary layer flow of an incompressible, electrically conducting, viscous Newtonian fluid past 

an electrically non‐conducting stretching sheet embedded in porous media in a rotating system 

with heat and mass transfer has been discussed. In this chapter the effects of Hall currents and 

heat flux have been considered. In addition, the heat source effect, thermal diffusion effect 

(commonly known as Soret effect) and mass diffusion effect (commonly known as Dufour 

effect) have been considered. The problem of heat source is important for it has applications in 

areas such as effective cooling of electronic equipment, design of heaters and combustion 

engines. Possible heat generation effects may alter the temperature distribution and 

consequently, alter the rate of particle deposition in a nuclear reactor, electronic chips and semi 

conductor wafers. The magnitude of thermal diffusion effect may be considerably large, and as 

such it can be utilized in the separation of isotopes in a mixture of gases with very light 

molecular weight (hydrogen, helium) and gases with medium molecular weight (nitrogen, air). 

MHD free convection flow has applications in the fields of stellar and planetary magnetospheres, 

Tania and Samad (2010). MHD flows with Hall and ion‐slip currents have applications in the 

design of MHD generators, Hall accelerators and flight magnetohydrodynamics. In this work the 

combined effect of thermal radiation, heat generation, free convection and viscous dissipation on 

unsteady free convection heat and mass transfer flow over a stretching sheet in the presence of a 
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transverse magnetic field in a rotating system has been investigated. A computer program, 

appended to this work, has been employed to solve the coupled non‐linear PDEs. 

 

4.1.1. Mathematical formulation 

Consider an unsteady MHD flow of an electrically conducting Newtonian fluid between two 

vertical parallel sheets embedded in a porous medium in a rotating system. The configuration of 

this type of flow is shown by Figure 3.1 in Section 3.1 of Chapter 3. The equation of continuity 

for the problem at hand is .  A negative value of  therefore represents injection. The 

equation of conservation of electric charge is . The components of the electric current 

density  along the x, y, and z‐axes are  and  respectively. Since both sheets are 

electrically non‐conducting . Thus  is zero everywhere in the flow. Taking Hall current 

into account, the generalized Ohm’s law can be written as 

                                                           (4.1) 

In equation (4.1) the electron pressure gradient (for weakly ionized fluid), ion‐slip and 

thermo‐electric effects are neglected. Under these assumptions, and in the absence of electric 

field, equation (4.1) becomes 

 (4.2) 

                                                (4.3) 

where  is the Hall parameter. Solving equations (4.2) and (4.3) for  and  yields 

   (4.4) 

  (4.5) 

The Lorentz force  yields 
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  (4.6) 

When there is an appreciable temperature difference between the stretching surface and the 

ambient fluid, it is important to consider the temperature dependent heat source or sink which 

may exert a strong influence on the heat transfer characteristics within the fluid. If  is the 

temperature dependent volumetric heat generation parameter, then  represents a heat 

source, and  represents a heat sink. Incorporating equations (4.4) to (4.6) into the 

equations of momentum discussed in Chapter 3 in Section 3.1, the following respective 

equations of momentum, energy and concentration are obtained: 

Equations of momentum: 

 (4.7) 

 (4.8) 

Equation of energy: 

 (4.9) 

Equation of concentration: 

 (4.10) 

The initial and boundary conditions of the problem are: 
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4.1.2. Non-dimensionalization 

The equations of momentum, energy and concentration have been derived in Chapter 3. The 

non‐dimensionalization process discussed in Chapter 3 in Section 3.11 has been used in 

transforming the equations governing the flow to their respective non‐dimensionalized form. 

Thus the respective non‐dimensionalized form of equations (4.7) and (4.8) is 

        

(4.11) 

       (4.12) 

Similarly non‐dimensional form of the equation of energy (4.9) is 

 (4.13) 

where  is the non‐dimensional heat source/sink parameter. The non‐dimensional 

parameters appearing in these equations, namely , , ,  ,  and  have been 

discussed in Chapter 3. 

The non‐dimensional form of the equation of concentration (4.10) is 

 (4.14) 



94 

 

where  and  are the Schmidt number and Soret number respectively. The non‐dimensional 

form of the initial and boundary conditions for this problem is 

  

 

4.2. Methodology 

The equations that govern the flow in porous media over a stretching surface in the presence of 

heat source/sink are coupled and highly non‐linear. They are represented by equations (4.11), 

(4.12), (4.13) and (4.14). 

 

4.2.1. Definition of the mesh 

The discretised domain for this problem is same as the one discussed Section 3.2 of Chapter 3. 

 

4.2.2. The Finite Difference Method 

The numerical method used to solve the equations governing the flow together with the initial 

and boundary conditions applies Crank‐Nicholson algorithm. This method has been discussed in 

Section 3.22 of Chapter 3. 

The FD form of the equation of momentum along the x‐axis is 
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 (4.16) 

The FD form of the equation of momentum along the y‐axis is 

 

 (4.17) 

The FD form of the equation of energy is 
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(4.18) 

The FD form of the equation of concentration is 

 

(4.19) 
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The values of U in equation (4.15) are computed at every nodal point for a particular i at the 

 time level. This is followed by computing the values of V in equation (4.16). Using the 

values of U and V at  time level, the values of C at  time level in equation 

(4.18) are also computed. At this point the values of U, V and C are known on a particular 

i‐level. Finally the known values of U, V and C are employed in computing the values of T in 

equation (4.17) at every nodal point on a particular i‐level at  time level. This process is 

repeated for all the i‐levels. Thus the values of U, V, C and T are determined at every grid point 

in the domain at all time levels. 

 

The numerical calculations have been performed by fixing the mesh sizes at , 

, and  where the region formed by the x‐axis and the z‐axis is a 41 x 41 

mesh. The suitability of the mesh sizes has been discussed in Section 3.22 of Chapter 3. 

 

4.2.3. Discussion of the results 

In order to get a physical insight into the problem at hand, the velocity, temperature and 

concentration fields have been discussed by assigning numerical values to various 

non‐dimensional parameters. For instance the following parameters have been used: M = 1, Pr = 

0.71, m = 0.5, N = 0.45, Q = 0.8, R = 0.2, Ec = 0.4, Sc = 0.78, Xi = 0.5, Sr = 1, Ro = 0.3,  = 

‐0.5, Re = 50, Df = 0.03, , and . The values of Prandtl number Pr used are 0.64, 

0.71, and 7.00 and represent flue gas, air, and water respectively at  and one atmosphere 

pressure. The values of Schmidt number used are 0.22, 0.62, and 0.78 and represent hydrogen, 

water vapour and ammonia respectively at  and one atmosphere pressure. A positive value 

of thermal Grashof number ( ) corresponds to a cooled sheet. 
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Figures 4.1 and 4.2 show that in the presence of a heat source, increase in Hall parameter m 

leads to an increase in the magnitude of primary velocity profiles and secondary velocity profiles 

respectively. Increase in Magnetic parameter M leads to a decrease in the magnitude of primary 

velocity profiles and secondary velocity profiles respectively. A large value of M causes a 

reversal in the direction of the secondary velocity profiles. The fluid velocity increases with 

increasing m due to the fact that the effective conductivity of the fluid decreases with increase in 

the Hall parameter m, since the magnetic damping force is reduced. However the magnetic 

damping force increases with increasing M, causing a decrease in the velocity profiles. Increase 

in time t leads to an increase in the magnitude of the primary and secondary velocity profiles 

respectively. 

 

Figure 43 : Primary velocity profiles when m, M and t are varied. 



99 

 

 

Figure 44 : Secondary velocity profiles when m, M and t are varied. 

 

Figure 4.3 shows that an increase in Hall parameter m leads to a decrease in the concentration 

profiles. An increase in the Magnetic parameter M leads to an increase in the concentration 

profiles. Increase in m leads to decrease in the conductivity of the fluid, reducing the magnetic 

damping force. This increases the rate of transportation of the species by convection away from 

the boundary layer region, leading to lower species concentration. Similarly, increase in M leads 

to an increase in the magnetic damping force, resulting to an increase in the concentration 

profiles. Increase in the concentration profiles is as a result of reduced rate of species 

transportation. Increase in time t leads to a decrease in the concentration profiles. Thus 

concentration of the fluid decreases with time. 
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Figure 45 : Concentration profiles when m, M and t are varied. 

 

From Figure 4.4 increase in the Hall parameter m causes increase in the temperature profiles. 

Increasing m decreases the conductivity of the fluid, resulting in increase in Joule heating, 

leading to a thicker thermal boundary layer. Increase in the Magnetic parameter M leads to a 

decrease in the temperature profiles. Reduced velocity implies lower viscous dissipation and 

hence the observed decrease in the temperature profiles. 
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Figure 46 : Temperature profiles when m, M and t are varied. 

 

Figures 4.5, 4.6, 4.7 and 4.8 show that in the presence of a heat source ( ), increase in the 

Schmidt number Sc causes a decrease in the velocity profiles. Increase in Sc causes an increase 

in concentration and temperature profiles respectively. Physically increase in concentration 

implies that when subjected to a heat source, Hydrogen diffuses faster in Air (Pr=0.71) than 

Water vapour does; and Water vapour diffuses slower in Air than it does in Ammonia. Increase 

in temperature implies that under similar conditions, a mixture of Air and Hydrogen is warmer 

than a mixture of Air and Water vapour; and Water vapour is warmer than a mixture of Air and 

Ammonia. Increase in concentration with increase in Sc shows that Ammonia diffuses faster into 

Air than it does in Water vapour and Hydrogen respectively. A large value of Sc implies a 

heavier fluid. Figure 4.8 shows that there is a cross‐over of the temperature profiles at along the 

stretching sheet. A cross‐over in the temperature profiles takes place when the effect of 

stretching on temperature is overcome by the effects of Schmidt number on the temperature in 
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the thermal boundary layer region. Increase in time t leads to a decrease in the velocity, 

temperature and concentration profiles of the fluid. 

 

Figures 4.5, 4.6, 4.7 and 4.8 show that in the presence of a heat source ( ), increase in 

Prandtl number Pr causes an increase in the velocity and concentration profiles respectively. 

Increase in Pr causes a decrease in temperature profiles. Physically this means that when 

subjected to similar conditions, a mixture of Flue gas (Pr = 0.64) and Hydrogen (Sc = 0.22, at 

 temperature and one atmosphere pressure) diffuses faster than does a mixture of Air and 

Hydrogen; and a mixture of Air and Hydrogen diffuses faster than a mixture of Water and 

Hydrogen. Under similar conditions, Hydrogen diffuses faster in Flue gas than it does in the Air; 

and the latter diffuses less faster in Water. Increase in time t causes a decrease in concentration 

and temperature profiles respectively. Increase in time causes an increase in velocity profiles. 

 

Figure 47 : Primary velocity profiles when Pr, Sc and t are varied. 
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Figure 48 : Secondary velocity profiles when Pr, Sc and t are varied. 
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Figure 49 : Concentration profiles when Pr, Sc and t are varied. 

 

 

 

Figure 50 : Temperature profiles when Pr, Sc and t are varied. 
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Figures 4.9, 4.10, 4.11 and 4.12 show that increase in the magnitude of the Heat sink parameter 

Q leads to a decrease in the magnitude of velocity and temperature profiles respectively. Increase 

in Q leads to an increase in the concentration profiles. The presence of a heat sink produces a 

cooling effect that decreases velocity of the convection currents that move upwards next to the 

surface of the stretching sheet, leading to higher concentration profiles. 

 

Figures 4.9, 4.10, 4.11 and 4.12 show that in the presence of a heat sink, increase in the Eckert 

number Ec leads to an increase in the magnitude of the velocity and temperature profiles 

respectively; but to a decrease in the concentration profiles. Increase in Ec means the fluid 

absorbs more heat energy that is released from the internal viscous forces. This in turn increases 

the temperature and the velocity of the convection currents due to increased thermal buoyancy 

forces respectively.  Higher velocity profiles imply an increased rate of species transportation 

away from the boundary layer region, and hence the observed decrease in the concentration 

profiles. 

 

Figures 4.9, 4.10, 4.11 and 4.12 show that in the presence of a heat sink, increase in the 

Radiation parameter N leads to a decrease in the magnitude of the velocity and temperature 

profiles respectively; but to an increase in the concentration profiles. Thus radiation can be used 

to control the velocity and thermal boundary layers quite effectively. Increase in time t leads to 

an increase in the magnitude of the velocity, concentration and temperature profiles. This shows 

that the transient velocity, concentration and temperature increase with time. 
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Figure 51 : Primary velocity profiles when Q, Ec, N, and t are varied. 

 

 

Figure 52 : Secondary velocity profiles when Q, Ec, N, and t are varied. 
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Figure 53 : Concentration profiles when Q, Ec, N, and t are varied. 

 

 

Figure 54 : Temperature profiles when Q, Ec, N, and t are varied. 
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Figures 4.13, 4.14, 4.15 and 4.16 show that in the presence of a heat sink, increase in the 

magnitude of the Injection parameter  leads to an increase in the velocity and temperature 

profiles respectively; but to a decrease in the concentration profiles. Injection increases the 

velocity of the fluid thus increasing the rate at which the species are carried away from the 

boundary layer region, and hence the observed decrease in the species concentration. Thus 

velocity, temperature and concentration boundary layers can be controlled by varying the rate of 

injection. Increase in the Permeability parameter Xi leads to a decrease in the velocity and 

temperature profiles; but to an increase in the concentration profiles. Increase in the Rotation 

parameter Ro leads to a decrease in the velocity and temperature profiles; but to an increase in 

the concentration profiles. Increase in Xi will results in increased resistance to the flow by the 

porous medium (as the permeability physically becomes less with increasing  ) which will in 

turn lead to deceleration of the flow velocity of the fluid; resulting into reduced magnitudes of 

the primary and the secondary velocities respectively. Increase in the Joule heating parameter R 

leads to an increase in the velocity and temperature profiles respectively; but to a decrease in the 

concentration profiles. Increase in Joule heating parameter leads to the heating of the fluid 

thereby boosting the velocity of the convection currents on the surface of the stretching 
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sheet.

 

Figure 55 : Primary velocity profiles when , Xi, Ro, R, and t are varied. 

 

 

Figure 56 : Secondary velocity profiles when , Xi, Ro, R, and t are varied. 
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Figure 57 : Concentration profiles when , Xi, Ro, R, and t are varied. 

 

 

Figure 58 : Temperature profiles when , Xi, Ro, R, and t are varied. 
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4.3. Nusselt number, Sherwood, and Local Skin-friction Coefficient 

The velocity, temperature and concentration profiles have been analyzed and discussed above. 

What follows in this section is therefore an investigation of the rate of heat transfer and mass 

transfer, and shear stress at the surface of the stretching sheet. Thus the quantities of main 

interest in the problem at hand are the local Nusselt number Nu, the local Sherwood number Sh, 

and the shearing stresses  and : which indicate physically the rate of heat transfer, rate of 

mass transfer and the wall shear stresses respectively. The method used in calculating these rates 

has been discussed in Section 3.3 of Chapter 3. 

  (4.20) 

  (4.21) 

The local skin friction coefficients are defined as 

  (4.22) 

  (4.23) 

Equations (4.22) and (4.23) represent the respective local skin friction coefficients due to the 

primary and secondary velocity profiles. The local surface mass flux is expressed as 

  (4.24) 

At length H units along the stretching sheet, the Sherwood number Sh is expressed as 

  (4.25) 



112 

 

The local surface heat flux is expressed as  where  is the thermal conductivity of 

the saturated porous medium. Thus the local Nusselt number Nu may be expressed as 

  (4.26) 

4.3.1. The Least Squares Approximation Method 

The method of the Least Squares Approximations discussed in Section 3.31 of Chapter 3.  Shear 

is used in the computation of the Nusselt number, Sherwood number, and the respective local 

Skin‐friction coefficients. The respective values have been computed at i = 3 and k = 400, that is, 

x = 0.15 and t = 0.401 respectively. The values of t, z, and U are shown in Table 4.1. 

 

Table 4.1 : Values of t, z and U(z,t) for M = 1, Pr = 0.71, m = 0.5, N = 0.45, Q = 0.8, R 

= 0.2, Ec = 0.4, Sc = 0.78, Xi = 0.5, Sr = 1, Ro = 0.3,  = ‐0.5, Re = 50, Df = 0.03,  

= 5,  = 2. 

t 0.399 0.400 0.401 0.402 0.403 0.404 

z 0 0.03 0.06 0.09 0.12 0.15 

U(z, t) 0.36538 0.42951 0.44124 0.44298 0.44328 0.44340 

  

            [Table continued] 

 

 

The matrix for coefficients  derived from the normal equations is 

t 0.407 0.408 0.409 

z 1.75 2.00 2.25 

U(z, t) 0.44349 0.44359 0.44368 
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   (4.27) 

The resulting column matrix C is given is 

     (4.28) 

The column matrix of the constants  is given by matrix B shown below. 

     (4.29) 

The matrix equation  is solved using Matlab command  so as to obtain the 

constants . These constants are used in evaluating the four bivariates for U, V, C 

and T. Thus 

. 

Similarly the bivariates for ,  and  are: 

. 

. 

. 

The bivariates for U, V, C and T obtained above are used in obtaining the results in Table 4.2. 
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Table 4.2: Variation of Coefficients of friction, Sherwood and Nusselt numbers with 

various parameters. 

M Pr m N Q R Ec t Cfx Cfy Sh Nu 

1.0 0.71 0.50 0.45 0.8 0.2 0.40 0.4 ‐0.03396 0.00323 1.21982 0.07100 

2.0 0.71 0.50 0.45 0.8 0.2 0.40 0.4 ‐0.02207 0.00212 1.25290 0.16228 

3.0 0.71 0.50 0.45 0.8 0.2 0.40 0.4 ‐0.01369 0.00206 1.25974 0.26508 

1.0 0.89 0.50 0.45 0.8 0.2 0.40 0.4 ‐0.03398 0.00335 1.19728 0.09954 

1.0 0.64 0.50 0.45 0.8 0.2 0.40 0.4 ‐0.03322 0.00329 1.23594 0.04404 

1.0 0.71 1.00 0.45 0.8 0.2 0.40 0.4 ‐0.03735 0.00258 1.20272 0.03108 

1.0 0.71 1.50 0.45 0.8 0.2 0.40 0.4 ‐0.03887 0.00144 1.19998 0.01416 

1.0 0.71 0.50 0.10 0.8 0.2 0.40 0.4 ‐0.04531 0.00353 1.55106 ‐1.56942 

1.0 0.71 0.50 1.00 0.8 0.2 0.40 0.4 ‐0.03169 0.00310 1.15656 0.31710 

1.0 0.71 0.50 0.45 1.4 0.2 0.40 0.4 ‐0.03443 0.00316 1.21932 0.04528 

1.0 0.71 0.50 0.45 2.0 0.2 0.40 0.4 ‐0.03490 0.00310 1.21882 0.03022 

1.0 0.71 0.50 0.45 0.8 0.5 0.40 0.4 ‐0.03651 0.00371 1.23336 ‐0.22190 

1.0 0.71 0.50 0.45 0.8 1.5 0.40 0.4 ‐0.04626 0.00382 1.27518 ‐1.41616 

1.0 0.71 0.50 0.45 0.8 0.2 0.80 0.4 ‐0.03378 0.00328 1.21288 0.06726 

1.0 0.71 0.50 0.45 0.8 0.2 1.00 0.4 ‐0.03360 0.00340 1.20916 0.06352 

1.0 0.71 0.50 0.45 0.8 0.2 0.40 0.6 ‐0.03459 0.00313 1.21526 0.04784 

1.0 0.71 0.50 0.45 0.8 0.2 0.40 0.8 ‐0.03472 0.00247 1.21262 0.04078 
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4.3.2. Discussion of the results 

From Table 4.2 following observations are noted: 

1. When , increase in the Magnetic parameter M leads to a decrease in the magnitude 

of the local skin‐friction coefficients  and  due to the primary and the secondary 

velocity profiles respectively. The decreasing frictional drag is due to increase in the 

Lorentz force that decreases the primary velocity of the fluid. Decrease in  is due to 

decreasing secondary velocity with increasing M. Increase in M leads to an increase in 

the Sherwood number Sh and in Nusselt number Nu respectively. Increase in M leads to 

increase in the concentration gradients hence the observed increase in the value of Sh. 

Increase in the value of M results into a lower rate of transportation of the species in the 

concentration boundary layer. Thermal boundary layer thickness decreases with increase 

in M leading to the observed increase in the Nusselt number. 

2. When  increase in the Prandtl number Pr leads to an increase in the magnitude of 

 and  respectively; but to a decrease in Sh and Nu respectively. Increase in Pr 

leads to higher velocities and hence the observed increase in the values  and  

respectively. Fluids which are good conductors of heat have a relatively small value of 

Prandtl number. Increase Pr decreases the thickness of thermal boundary layer leading to 

a higher rate of heat transfer. Decrease in Sherwood number is due to an increased rate 

of transportation of the species toward the surface of the stretching sheet due to 

increased velocity of the fluid. 

3. When  increase in the Hall parameter m leads to an increase in the magnitude of 

, Sh and Nu respectively; but to a decrease in . Increase in m leads to higher 

primary velocity thereby increasing the shear stress . Decrease in the magnitude of 
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the secondary velocity profiles lead to a decrease in . Increase in m increases the 

Joule heating since the conductivity of the fluid decreases, leading to a thicker thermal 

boundary layer. This leads to a reduced rate of heat transfer. 

4. Increase in the Radiation parameter N leads to an increase in the magnitudes of , 

, and Nu respectively; but to a decrease in Sh. Increase in N leads to an increase in 

the rate of species transportation. This result qualitatively agrees with expectations, since 

the effect of radiation is to decrease the rate of energy transport to the fluid, thereby 

decreasing the temperature of the fluid. Increase in Radiation parameter leads to a 

thinner thermal boundary layer, leading to an increase in the rate of heat transfer. 

Increase in N enhances convection currents on the surface of the sheet, leading to 

increase in  and  respectively. 

5. Increase in the heat source parameter Q leads to an increase in the magnitudes of , 

 respectively; but to a decrease in the Sherwood number Sh and Nusselt number Nu 

respectively. Increase in Q enhances convection currents on the surface of the sheet, 

leading to increase in  and  respectively. Increase in Q leads to a thicker thermal 

boundary layer, leading to lower temperature gradients leading to a decrease in Nu. 

6. Increase in the Joule heating parameter R leads to an increase in , , Sh and Nu 

respectively. The results qualitatively agree with what is expected since the effect of 

Joule heating is to decrease the rate of energy transport to the fluid, thereby decreasing 

the temperature of the fluid. Increase in the velocity of the fluid leads to an increase in 

the values of  and , that in turn lead to a decrease in the species concentration. 

7. Increase in the Eckert number Ec leads to an increase in ,  but to a decrease in 

Nu and Sh respectively. Increasing the velocity of the fluid leads to an increase in the 

species concentration. A positive Eckert number implies cooling of the stretching sheet 
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thereby enhancing convection currents leading to increased velocity and the temperature 

of the fluid respectively. The resulting thicker thermal boundary layer leads to a reduced 

rate of heat transfer. 

8. Increase in time t leads to a decrease in the magnitude of , , Nu and Sh 

respectively. This physically means that shear stresses  and , Nu and Sh decrease 

with time. This is expected since the velocity, temperature and concentration of the fluid 

decrease gradually with time, finally equalizing with their respective freestream values. 

 

4.4. Conclusion 

In order to assess the validity of the presented results, the results obtained by the present method 

are compared with those of Ram (1991). Ram analyzed the effects of Hall current on 

hydromagnetic free convective flow past an infinite porous plate in a rotating fluid with mass 

transfer through a porous medium when a magnetic field is imposed in a plane that makes 

various angles with the normal to the plate. The plate used in Ram’s work is not stretching. He 

also considered ion-slip currents. In order to validate the current results, the boundary conditions 

one of the plates in Ram’s work is changed so as to reflect stretching, magnetic field is imposed 

at an angle of  to the flow and ion-slip currents are ignored. Both this work and Ram’s work 

have observed that increase in Hall parameter m leads to an increase in the shear stress ; but 

such an increase leads to a decrease in both the shear stress  and the rate of heat transfer 

respectively. This study has observed that increase in Hall parameter leads to an increase in the 

rate of mass transfer; though Ram did not investigate the effect of m on the rate of mass transfer. 

It can be seen that the present results agree very well with those previously published by Ram. 

This has established confidence in the numerical results and observations presented in this 

chapter. 
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CHAPTER FIVE 

5.0 CONCLUSIONS AND RECOMMENDATIONS 

In this chapter conclusions from the results obtained in this work are presented. The 

recommendations for further future are also discussed. 

5.1 Conclusion 

The analysis of various parameters on unsteady MHD laminar boundary layer flow of an 

incompressible, electrically conducting, and viscous Newtonian fluid past a stretching 

electrically non‐conducting sheet embedded in porous media in a rotating system with 

heat and mass transfer has been carried out. The direction of the applied magnetic field 

is considered to be normal to the direction of the flow. The effects of free convection 

currents on the flow have been investigated by varying the values of the local 

temperature Grashof number . The PDE’s governing the flow are highly non‐linear 

and coupled, and the equations have been solved by using the finite difference method as 

outlined in Section 3.21 of Chapter 3. In the FD method the spatial mesh sizes used in 

the computations are reduced and there is no significant difference in the results 

obtained. Thus the scheme used in the computations is stable. Chapter 3 and Chapter 4 

are each concluded by determining the approximate local rate of heat transfer and mass 

transfer, and the coefficients of friction due to the primary and the secondary flow fields 

respectively. 

 

The results obtained in Chapter 3 show that the rates of heat transfer and mass transfer 

on the stretching sheet embedded in a porous medium in a rotating system is influenced 
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by the Magnetic field parameter, Soret number, mass Grashof number, thermal Grashof 

number, Injection parameter, Rotational parameter, Permeability parameter, Dufour 

number, Reynold’s number, Radiation parameter, the Eckert number, Schmidt number 

and time. For instance the current study has shown that imposing a transverse magnetic 

field to a flow slows down the velocity of the fluid, decreases the temperature of the 

fluid, but increases the concentration of the fluid. Increasing the value of the Soret 

number increases the velocity, concentration and temperature of the fluid. Increasing the 

Soret number causes a cross‐over in the concentration profiles at some distance away 

from the fixed end of the stretching sheet. However increasing the value of the Dufour 

number decreases the velocity and temperature of the fluid respectively; but to leads to 

an increase in the concentration profiles. The results obtained in this study regarding 

thermal and mass diffusion effects can be applied in the industry, for instance, in the 

separation of isotopes contained in a mixture of very light molecular‐weight gases (for 

instance, hydrogen and helium) and medium molecular‐weight gases (for instance, 

nitrogen and air). This study has also shown that increasing the thermal Grashof number 

causes an increase in the velocity profiles; while a decrease in the temperature and 

concentration profiles is observed. Increasing the value of local mass Grashof number 

causes an increase in the velocity profiles; but a decrease in the temperature and 

concentration profiles respectively. Increasing the value of the Schmidt number causes a 

decrease in the velocity profiles; but an increase in the temperature profiles. The effect 

of heat source has also been investigated and the results on the same have been 

discussed. Other important findings of Chapter 3 are: 
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1. Velocity of the fluid can be controlled by introducing a porous medium in a 

rotating system. 

2. Both thermal and concentration boundary layers thickness decrease with increase 

in time; but the velocity boundary layer increases with time. 

3. The velocity, temperature and concentration of a fluid can be controlled by 

varying the Reynold’s number. 

4. Radiation can be used to control the velocity, concentration and thermal 

boundary layers of flow in porous media quite effectively. 

5. Introducing injection/suction can be used to control the boundary layer growth, 

the shear stresses and rates of heat transfer and mass transfer. 

6. Varying time can be used as a means of controlling the velocity, concentration 

and temperature of a fluid flowing in porous media over a stretching surface. 

7. Rotational can be used to control the magnitude of shear stresses and the 

boundary layer formation over a stretching sheet. 

8. Introducing porous media in a flow domain can be used to control the velocity, 

concentration and temperature of the fluid. 

 

The study of MHD flows with Hall and ion‐slip currents has important applications in 

engineering problems such as MHD generators, Hall accelerators and flight 

magnetohydrodynamics. Chapter 4 has included the effects of Hall currents to the flow 

problem encountered in Chapter 3. The problem of heat source/sink is important for it 

has applications in areas such as effective cooling of electronic equipment, air 
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circulation in buildings and cooling of combustion engines. Various flow parameters 

have been investigated by subjecting the flow to a heat source, and then to a heat sink. 

The parameters investigated in this chapter include the Magnetic field parameter, Hall 

parameter, Heat source parameter, Prandtl number, Eckert number, Radiation parameter, 

Injection parameter, Joule heating parameter and time. Chapter 4 has been concluded by 

investigating the coefficients of shear stress, rate of heat transfer and rate mass transfer. 

The study in Chapter 4 has shown that increasing the strength of a magnetic field 

decreases the frictional drag due to velocity profiles, but the same leads to an increase in 

the rate of heat transfer and the rate mass transfer respectively. Other important findings 

of Chapter 4 are: 

1. Varying the Prandtl number can be used to control the fluid’s flow velocity, 

temperature, concentration, sheer stress, and the rates of heat and mass transfer 

respectively. 

2. The Hall effects can be utilized in controlling the fluid’s velocity, concentration, 

temperature and sheer stress and the rates of heat and mass transfer respectively. 

3. Varying the value of the Heat source parameter can be used to control the shear 

stresses, rate of heat transfer and rate of mass transfer respectively. 

4. Varying time can used as a measure of controlling the velocity, concentration and 

temperature of a fluid. Radiation can be use to control the shear stress, rate of 

heat transfer and mass transfer on the surface of a stretching sheet. 
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5.2 Recommendations 

This work has considered the unsteady laminar boundary layer MHD flow of an 

incompressible, viscous, and electrically conducting Newtonian fluid over a stretching 

sheet in a fluid‐saturated porous medium in a rotating system. The Hall current effects 

have also been taken into consideration. The present work can provide a basis for further 

research by including the following considerations: 

1. Flow over a surface stretching with a non‐linear velocity. 

2. Flow that involves non‐Newtonian fluids. 

3. Flow over a contracting surface. 

4. Three dimensional flows. 

5. Flow of a compressible fluid. 

6. Flow subjected to a variable magnetic field. 

7. Flow with chemical reaction. 

8. Flow with Hall and ion‐slip currents. 

9. Flow with variable suction/injection. 

10. Turbulent flow over a stretching surface. 

11. Flow over a stretching surface with variable viscosity and thermal conductivity. 

12. Variation of the method of solving the coupled non‐linear equations. 
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CHAPTER 6 
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2. Giterere, K., Kinyanjui, M., and Uppal, S. M., "MHD Flow in Porous Media over A 

Stretching Surface in Rotating System with Heat and Mass Transfer," International 

Electronic Journal of Pure and Applied Mathematics – IeJPAM, ISSN 1314‐0744, 

March 2011, to appear. 

3. Kinyanjui, M., Giterere, K., and Uppal, S. M., "MHD Flow in Porous Media over A 

Stretching Surface in Rotating System with Hall Currents, Heat and Mass Transfer," 
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PROGRAM CODES 

 

Figure 59 : The GUI for the Program. 

 

CODES FOR CHAPTER THREE 

Private Sub cmdCompute_Click() 

Dim Choice As Integer 

Choice = CInt(InputBox("Enter 1 for Steady " & vbCrLf & "2 for Unsteady", "User", 2)) 

If Choice = 2 Then 

    Call ComputeUnsteadyValues 

Else 

        Call ComputeSteadyValues 

End If 

MsgBox "AM THROUGH!!!" 

End Sub 

 

Private Sub cmdDelete_Click() 

On Error GoTo kan 

Kill "C:\Documents and Settings\kangethe\Desktop\Numerical experiments\Thesis 

Prog\LaxConc.txt" 

kan: 

Exit Sub 



134 

 

End Sub 

 

Private Sub cmdEnd_Click() 

Dim Response As Integer 

Response = CInt(MsgBox("Are you sure you want to close?", vbYesNo + vbCritical)) 

If Response = vbYes Then 

    End 

Else 

    Exit Sub 

End If 

End Sub 

 

Private Sub cmdLeastSquares_Click() 

Dim U(0 To 43, 0 To 43, 0 To 1501) As Double, V(0 To 43, 0 To 43, 0 To 1501) As 

Double, C(0 To 43, 0 To 43, 0 To 1501) As Double, T(0 To 43, 0 To 43, 0 To 1501) As 

Double, Sc As Single, Sr As Single, Ma As Single 

Dim Re As Single, Df As Single, Ec As Single, Gr_theta As Single, Gr_c As Single, wo 

As Single, Ro As Single, Xi As Single, Str As Single 

Dim Pr As Single, R As Single, Ni As Single 

Dim ITMAX As Double, M As Integer, N As Integer, K As Integer 

Dim delX As Double, delZ As Double, delT As Double, I As Integer, J As Integer 

Dim ITCOUNT As Integer 

Dim FILENUM As Byte 

M = 41:   N = 41 'Grid 

Re = 3: Sc = 0.6: Sr = 1: Ma = 0.5: Re = 50: Df = 0.03: Ec = 0.5: R = 0.2: Ni = 0.5: 

Gr_theta = 5: Gr_c = 2: wo = 0.5: Pr = 0.71: Ro = 0.3: Xi = 0.5: Str = 1     'Constants 

Sc = 0.78: Sr = 0.4: Ma = 1: Xi = 1.5: Ro = 0.5: Ni = 0.5: wo = 0.5: Ec = 0.5: Re = 50: 

Df = 0.03: R = 0.2: Gr_theta = 5: Gr_c = 10: Pr = 0.71: Str = 1 

delT = 0.001 
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'*************** the following ensures aspect ratio h=H/L=0.5*************** 

delX = 0.05 

delZ = 0.25 

'********************************************************** 

ITMAX = 710 

FILENUM = FreeFile() 

Open "C:\Documents and Settings\kangethe\Desktop\Numerical experiments\Thesis 

Prog\LeastSquares.txt" For Append As FILENUM 

Rem Initial condition 

For I = 0 To M 

For J = 0 To N 

For K = 0 To ITMAX 

          U(I, J, 0) = 0: V(I, J, 0) = 0: C(I, J, 0) = 0: T(I, J, 0) = 0 

Next 

Next 

Next 

 Rem  Boundary conditions 

For I = 1 To M 

For K = 1 To ITMAX 

     U(I, 0, K) = I * Str * delX: V(I, 0, K) = 0#: C(I, 0, K) = 1: T(I, 0, K) = 1# 

'stretching wall 

       U(I, N, K) = 0: V(I, N, K) = 0#: C(I, N, K) = 0: T(I, N, K) = 0# 'impermeable 

plate 

Next 

Next 

For J = 0 To N 

For K = 1 To ITMAX 

     'inlet variables 

     U(0, J, K) = 1#:    V(0, J, K) = 0#:    C(0, J, K) = 1#:    T(0, J, K) = 1# 
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   Next 

Next 

'Solving for velocities 

 

For I = 1 To M - 1 

    For J = 1 To N - 1 

        For K = 1 To ITMAX - 1 

         'calculate u 

        U(I, J, K + 1) = (U(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-U(I - 1, J, K + 1) + 

U(I, J, K) - U(I -1, J, K)) + (delT * wo / (2 * delZ)) * (-U(I, J - 1, K + 1) + U(I, J, K) 

- U(I, J - 1, K)) + Ro * delT *  (V(I, J, K + 1) + V(I, J, K))   + (delT / (2 * Re * delX 

* delX)) * (U(I + 1, J, K + 1) + U(I - 1, J, K )+  U(I + 1, J, K) - 2 * U(I, J, K) + U(I - 

1, J, K)) + (delT / (2 * Re * delZ * delZ)) * (U(I, J + 1, K + 1) + U(I, J - 1, K + 1) + 

U(I, J + 1, K) - 2 * U(I, J, K) + U(I, J - 1, K)) - (delT * Xi / 2) * U(I, J, K) - (delT * 

Ma / 2) * U(I, J, K) + (delT * Gr_theta / 2) * (T(I, J, K + 1) + T(I, J, K)) + (delT * _ 

        Gr_c / 2) * (C(I, J, K + 1) + C(I, J, K))) / (1 + U(I, J, K) * delT / (2 * delX) - (wo * 

delT) / (2 *    delZ) + delT / (Re * delX * delX) + delT / (Re * delZ * delZ) + delT * 

Xi / 2 + Ma * delT / 2) 

          

         'calculate v 

        V(I, J, K + 1) = (V(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-V(I - 1, J, K + 1) + 

V(I, J, K) - V(I - 1,  J, K)) + (delT * wo / (2 * delZ)) * (-V(I, J - 1, K + 1) + _ 

        V(I, J, K) - V(I, J - 1, K)) - Ro * delT * (U(I,  J, K + 1) + U(I, J, K)) + _ 

        (delT / (2 * Re * delX * delX)) * (V(I + 1, J, K + 1) + V(I - 1, J, K + 1) + V(I + 1, J, 

K) - 2 * V(I, J, K) + V(I - 1, J, K)) + (delT / (2 * Re * delZ * delZ)) * (V(I, J + 1, K 

+ 1) + V(I,   J - 1, K + 1) + V(I, J + 1, K) - 2 * V(I, J, K) + V(I, J - 1, K)) -_ 

        (delT * Xi / 2) * V(I, J, K) - (delT * Ma / 2) * V(I, J, K)) /_ 

      (1 + U(I, J, K) * delT / (2 * delX) - (wo * delT) / (2 * delZ) +_ 

        delT / (Re * delX   * delX) + delT / (Re * delZ * delZ) + _ delT * Xi / 2 +_ 
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     Ma * delT / 2) 

 'Solving for temperatures C 

 C(I, J, K + 1) = (C(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-C(I - 1, J, K + 1) + C(I, J, 

K) + C(I - 1, J, K)) + (delT * wo / (2 * delZ)) * (-C(I, J - 1, K + 1) + C(I, J, K) - _ 

C(I, J - 1, K)) + ((delT) / (2 * Sc * Re * delX * delX)) * (C(I + 1, J, K + 1) +_ 

 C(I - 1, J, K + 1) + C(I + 1, J, K) - 2 * C(I, J, K) + C(I - 1, J, K))  _ 

  + ((delT) / (2 * Sc * Re * delZ * delZ)) * (C(I, J + 1, K + 1) + C(I, J - 1, K + 1) + _  

C(I, J + 1, K) - 2 * C(I, J, K) + C(I, J - 1, K)) + ((delT * Sr) / (2 * Re * delX * delX)) * 

(T(I + 1, J, K + 1) - 2 * T(I, J, K + 1) + T(I - 1, J, K + 1) + T(I + 1, J, K) - 2 * T(I, J, K) + 

T(I - 1, J, K)) + ((delT * Sr) / (2 * Re * delZ * delZ)) * (T(I, J + 1, K + 1) - 2 * T(I, J, K 

+ 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * T(I, J, K) + T(I, J - 1, K))) / _ 

(1 + U(I, J, K) * delT / (2 * delX) - (wo * delT) / (2 * delZ) + delT / (Re * Sc * delX * 

delX) + delT / (Re * Sc * delZ * delZ)) 

 

  'Solving for temperatures T 

 T(I, J, K + 1) = (T(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-T(I - 1, J, K + 1) + T(I, J, 

K) - T(I - 1, J, K)) + (delT * wo / (2 * delZ)) * (-T(I, J - 1, K + 1) + T(I, J, K) - T(I, J - 1, 

K)) + ((Df * delT) / (2 * Re * delX * delX)) * (C(I + 1, J, K + 1) - 2 * C(I, J, K + 1) + 

C(I - 1, J, K + 1) + C(I + 1, J, K) - 2 * C(I, J, K) + C(I - 1, J, K)) _ 

        + ((Df * delT) / (2 * Re * delZ * delZ)) * (C(I, J + 1, K + 1) - 2 * C(I, J, K + 1) + 

C(I, J - 1, K + 1) + C(I, J + 1, K) - 2 * C(I, J, K) + C(I, J - 1, K)) + (delT / (2 * Pr * Re * 

delX * delX)) * (T(I + 1, J, K + 1) + T(I - 1, J, K + 1) + T(I + 1, J, K) - 2 * T(I, J, K) + 

T(I - 1, J, K)) + (delT / (2 * Pr * Re * delZ * delZ)) * (T(I, J + 1, K + 1) + T(I, J - 1, K + 

1) + T(I, J + 1, K) - 2 * T(I, J, K) + T(I, J - 1, K)) + (delT * R * Re / 4) * (U(I, J, K) ^ 2 _ 

        + V(I, J, K) ^ 2) - ((4 * delT) / (3 * Ni * Pr * Re * 2 * delZ * delZ)) * (T(I, J + 1, K 

+ 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * T(I, J, K) + T(I, J - 1, K)) + (Ec * delT / (Re 

* 4 * delX * delX)) * (U(I, J, K + 1) - U(I - 1, J, K + 1) + U(I, J, K) - U(I - 1, J, K)) ^ 2 + 

(Ec * delT / (Re * 4 * delZ * delZ)) * (V(I, J, K + 1) - V(I, J - 1, K + 1) + V(I, J, K) - 

V(I, J - 1, K)) ^ 2) / (1 + U(I, J, K) * delT / (2 * delX) - (wo * delT) / (2 * delZ) + delT / 
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(Re * Pr * delX * delX) + delT / (Re * Pr * delZ * delZ) - 4 * delT / (3 * Ni * Pr * Re * 

delZ * delZ)) 

Next 

Next 

Next 

I = 3  ‘position along the plate 

Print #FILENUM, U(I, 1, 401); U(I, 2, 402); U(I, 3, 403); U(I, 4, 404); U(I, 5, 405);_ 

U(I, 6, 406); U(I, 7, 407); U(I, 8, 408); U(I, 9, 409) 

Print #FILENUM, V(I, 1, 401); V(I, 2, 402); V(I, 3, 403); V(I, 4, 404); V(I, 5, 405);_  

V(I, 6, 406); V(I, 7, 407); V(I, 8, 408); V(I, 9, 409) 

Print #FILENUM, C(I, 1, 401); C(I, 2, 402); C(I, 3, 403); C(I, 4, 404); C(I, 5, 405); _ 

C(I, 6, 406); C(I, 7, 407); C(I, 8, 408); C(I, 9, 409) 

Print #FILENUM, T(I, 1, 401); T(I, 2, 402); T(I, 3, 403); T(I, 4, 404); T(I, 5, 405);_ 

T(I, 6, 406); T(I, 7, 407); T(I, 8, 408); T(I, 9, 409) 

Close #FILENUM 

MsgBox "AM THROUGH!!!" 

End Sub 

 

CODES FOR CHAPTER FOUR 

 

REM**********CODE FOR GENERAL DECLARATIONS SECTION 

const M = 41 

Const N = 41 

Dim Re As Single, Df As Single, Ec As Single, Gr_theta As Single, Gr_c As Single, wo 

As Single, Ro As Single, Xi As Single, Str As Single 

Dim Pr As Single, R As Single, Ni As Single, Q As Single, mi As Single 

Dim ITMAX As Double, K As Integer 
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Dim U(0 To 43, 0 To 43, 0 To 1501) As Double, V(0 To 43, 0 To 43, 0 To 1501) As 

Double, C(0 To 43, 0 To 43, 0 To 1501) As Double, T(0 To 43, 0 To 43, 0 To 1501) As 

Double, Sc As Single, Sr As Single, Ma As Single 

Dim delZ As Double, delX As Double, delT As Double, I As Integer, J As Integer 

Dim ITCOUNT As Integer 

Dim UTep As Single, CTep As Single, VTep As Single, TTep As Single, UTepCon As 

Single  'temporary storage 

Dim FILENUM As Byte 

 

'REM c  is the stretching parameter 

 

Public Sub MainBody() 

'M = 41:   N = 41 'Grid 

'Sc = 0.6: Sr = 1: Ma = 0.5: Re = 3: Df = 0.03: Ec = 0.5: R = 0.2: Ni = 0.5: Gr_theta = 5: 

Gr_c = 2: wo = 0.5: Pr = 0.71: Ro = 0.3: Xi = 2.5: Str = 1     'Constants 

Sr = 1: Pr = 0.71: mi = 0.5: Ma = 1#: Sc = 0.62: Q = 0.8: Xi = 0.5: Ro = 0.3: Ni = 0.5: 

wo = -0.5: Ec = 0.5: Re = 50: Df = 0.03: R = 0.2: Gr_theta = 5: Gr_c = 2: Str = 1 

 

delT = 0.001 

delX = 0.05 

delZ = 0.25 

 

REM ********************************************************** 

ITMAX = 900 

FILENUM = FreeFile() 

Open "E:\PhD Thesis\Thesis Prog Chap 3\Laxconc.txt" For Append As FILENUM 

Rem Initial conditions 

For I = 0 To M 

For J = 0 To N 
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        U(I, J, 0) = 0: V(I, J, 0) = 0: C(I, J, 0) = 1: T(I, J, 0) = 1 

Next 

Next 

 Rem  Boundary conditions 

 

For I = 1 To M 

     For K = 1 To ITMAX 

         

       U(I, 0, K) = I * Str * delX: V(I, 0, K) = 0#: C(I, 0, K) = 1: T(I, 0, K) = 1#  

       'permeable hot stretching wall 

      U(I, N, K) = 0: V(I, N, K) = 0#:  C(I, N, K) = 0: T(I, N, K) = 0# 'impermeable plate 

    Next 

Next 

For J = 0 To N 

       For K = 1 To ITMAX 

    'inlet variables 

   U(0, J, K) = 1# 

   V(0, J, K) = 0# 

   C(0, J, K) = 1# 

   T(0, J, K) = 1# 

       Next 

Next 

'Considering radiation 

'Solving for velocities 

 

For I = 1 To M - 1 

    For J = 1 To N - 1 

       For K = 1 To ITMAX - 1 

         'calculate U 
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      U(I, J, K + 1) = (U(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-U(I - 1, J, K + 1) +     

      U(I, J, K) - U(I - 1, J, K)) + (delT * wo / (2 * delZ)) * (-U(I, J - 1, K + 1) _ 

       + U(I, J, K)   - U(I, J - 1, K)) + Ro * delT * (V(I, J, K + 1) + V(I, J, K)) _ 

       + (delT / (2 * Re * delX * delX)) * (U(I + 1, J, K + 1) + U(I - 1, J, K + 1) +_ 

       U(I + 1, J, K) - 2 * U(I, J, K) + U(I - 1, J, K)) + _ 

        (delT / (2 * Re * delZ * delZ)) * (U(I, J + 1, K + 1) + U(I, J - 1, K + 1) + _ 

        U(I, J + 1, K) - 2 * U(I, J, K) + U(I, J - 1, K))  - (delT * Xi / 2) * U(I, J, K)_ 

       - (delT * Ma / 2) * U(I, J, K) + (Ma / (2 + 2 * mi ^ 2)) * delT *_ 

       (mi * V(I, J, K + 1) + mi * V(I, J, K) - U(I, J, K)) + (delT * Gr_theta / 2) *_ 

         (T(I, J, K + 1) + T(I, J, K)) + (delT * Gr_c / 2) * (C(I, J, K + 1) + C(I, J, K))) / (1 +            

        U(I, J, K) * delT / (2 * delX) + ((wo) * delT) / (2 * delZ) + delT / (Re * delX *   

         delX) + delT / (Re * delZ * delZ) + delT * Xi / 2 + Ma * delT / 2 + (Ma * delT) / _ 

          (2 + 2 * mi ^ 2)) 

   '  calculate V 

V(I, J, K + 1) = (V(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-V(I - 1, J, K + 1) 

+ V(I, J, K) - V(I - 1, J, K)) + (delT * (wo) / (2 * delZ)) * (-V(I, J - 1, K + 1) + 

V(I, J, K) - V(I, J - 1, K)) - Ro * delT * (U(I, J, K + 1) + U(I, J, K)) _ 

        + (delT / (2 * Re * delX * delX)) * (V(I + 1, J, K + 1) + V(I - 1, J, K + 1) + 

V(I + 1, J, K) - 2 * V(I, J, K) + V(I - 1, J, K)) + (delT / (2 * Re * delZ * delZ)) * 

(V(I, J + 1, K + 1) + V(I, J - 1, K + 1) + V(I, J + 1, K) - 2 * V(I, J, K) + V(I, J - 1, 

K)) - (delT * Xi / 2) * V(I, J, K) - (delT * Ma / 2) * V(I, J, K) + (delT * Ma / (2 + 

2 * mi ^ 2)) * (V(I, J, K) + mi * (U(I, J, K + 1) + U(I, J, K)))) / (1 + U(I, J, K) * 

delT / (2 * delX) + ((wo) * delT) / (2 * delZ) + delT / (Re * delX * delX) + delT 

/ (Re * delZ * delZ) + delT * Xi / 2 + Ma * delT / _ 

2 - Ma * delT / (2 + 2 * mi ^ 2)) 

    '   calculate W 

      ' W(I, J, K + 1) = (W(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-W(I - 1, J, K + 1) +  

W(I, J, K) - W(I - 1, J, K)) - (delT / (2 * delZ)) * W(I, J, K) * (-W(I, J - 1, K + 1) + W(I, 

J, K) - W(I, J - 1, K))  + (delT / (2 * Re * delX * delX)) * (W(I + 1, J, K + 1) + W(I - 1, 
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J, K + 1) + W(I + 1, J, K) - 2 * W(I, J, K) + W(I - 1, J, K)) + (delT / (2 * Re * delZ * 

delZ)) * (W(I, J + 1, K + 1) + W(I, J - 1, K + 1) + W(I, J + 1, K) - 2 * W(I, J, K) + W(I, J 

- 1, K))  - (delT * Xi / 2) * W(I, J, K)) / (1 + U(I, J, K) * delT / (2 * delX) + ((W(I, J, K)) 

* delT) / (2 * delZ) + delT / (Re * delX * delX) + delT / (Re * delZ * delZ) + _ 

delT * Xi / 2) 

 'calculate W 

 ' W(I, J, K + 1) = (U(I - 1, J, K + 1) - U(I, J, K + 1)) * delZ / delX + W(I - 1, J, K + 1) 

 

 'Solving for temperatures C 

 C(I, J, K + 1) = (C(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-C(I - 1, J, K + 1) + C(I, J, 

K) + C(I - 1, J, K)) + (delT * (wo) / (2 * delZ)) * (-C(I, J - 1, K + 1) + C(I, J, K) - C(I, J - 

1, K))  + ((delT) / (2 * Sc * Re * delX * delX)) * (C(I + 1, J, K + 1) + C(I - 1, J, K + 1) + 

C(I + 1, J, K) - 2 * C(I, J, K) + C(I - 1, J, K)) + ((delT) / (2 * Sc * Re * delZ * delZ)) * 

(C(I, J + 1, K + 1) + C(I, J - 1, K + 1) + C(I, J + 1, K) - 2 * C(I, J, K) + C(I, J - 1, K)) + 

((delT * Sr) / (2 * Re * delX * delX)) * (T(I + 1, J, K + 1) - 2 * T(I, J, K + 1) + T(I - 1, J, 

K + 1) + T(I + 1, J, K) - 2 * T(I, J, K) + T(I - 1, J, K)) + ((delT * Sr) / (2 * Re * delZ * 

delZ)) * (T(I, J + 1, K + 1) - 2 * T(I, J, K + 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * 

T(I, J, K) + T(I, J - 1, K))) / (1 + U(I, J, K) * delT / (2 * delX) - (wo * delT) / (2 * delZ) 

+ delT / (Re * Sc * delX * delX) + delT / (Re * Sc * delZ * delZ)) 

 

 'Solving for temperatures T 

Private Sub cmdLeastSquares_Click() 

 

Dim U(0 To 43, 0 To 43, 0 To 1501) As Double, V(0 To 43, 0 To 43, 0 To 1501) As 

Double, C(0 To 43, 0 To 43, 0 To 1501) As Double, T(0 To 43, 0 To 43, 0 To 1501) As 

Double, Sc As Single, Sr As Single, Ma As Single 

Dim Re As Single, Df As Single, Ec As Single, Gr_theta As Single, Gr_c As Single, wo 

As Single, Ro As Single, Xi As Single, Str As Single 

Dim Pr As Single, R As Single, Ni As Single, Q As Single 
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Dim ITMAX As Double, M As Integer, N As Integer, K As Integer, mi As Integer 

Dim delX As Double, delZ As Double, delT As Double, I As Integer, J As Integer 

Dim ITCOUNT As Integer 

Dim FILENUM As Byte 

M = 41:   N = 41 'Grid 

 

Ma = 1#: Pr = 0.71: mi = 0.5: Ni = 0.45: Q = 1: R = 0.2: Ec = 1: Sc = 0.78: Xi = 0.5: Sr 

= 1: Ro = 0.3: wo = -0.5: Re = 50: Df = 0.03: Gr_theta = 5: Gr_c = 2: Str = 1 

delT = 0.001 

'*************** the following ensures aspect ratio h=H/L=0.5*************** 

delX = 0.05 

delZ = 0.25 

'********************************************************** 

ITMAX = 900 

FILENUM = FreeFile() 

Open "E:\PhD Thesis\Thesis Prog Chap 3\LeastSquares.txt" For Append As FILENUM 

Rem Initial condition 

For I = 0 To M 

For J = 0 To N 

        U(I, J, 0) = 0: V(I, J, 0) = 0: C(I, J, 0) = 1: T(I, J, 0) = 1 

Next 

Next 

 Rem  Boundary conditions 

For I = 1 To M 

For K = 1 To ITMAX 

   U(I, 0, K) = I * Str * delX: V(I, 0, K) = 0#: C(I, 0, K) = 1: T(I, 0, K) = 1#  

'permeable  hot stretching wall 

   U(I, N, K) = 0: V(I, N, K) = 0#:  C(I, N, K) = 0: T(I, N, K) = 0# 'impermeable plate 

Next 
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Next 

For J = 0 To N 

For K = 1 To ITMAX 

    'inlet variables 

   U(0, J, K) = 1# 

   V(0, J, K) = 0# 

   C(0, J, K) = 1# 

   T(0, J, K) = 1# 

Next 

Next 

'*****************************Solving for velocities 

For I = 1 To M - 1 

  For J = 1 To N - 1 

    For K = 1 To ITMAX - 1     

'***************************calculate U 

U(I, J, K + 1) = (U(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-U(I - 1, J, K + 1) + U(I, J, 

K) - U(I - 1, J, K)) + (delT * wo / (2 * delZ)) * (-U(I, J - 1, K + 1) + U(I, J, K) - U(I, J - 

1, K)) + Ro * delT * (V(I, J, K + 1) + V(I, J, K)) _ 

        + (delT / (2 * Re * delX * delX)) * (U(I + 1, J, K + 1) + U(I - 1, J, K + 1) + U(I + 1, 

J, K) - 2 * U(I, J, K) + U(I - 1, J, K)) + (delT / (2 * Re * delZ * delZ)) * (U(I, J + 1, K + 

1) + U(I, J - 1, K + 1) + U(I, J + 1, K) - 2 * U(I, J, K) + U(I, J - 1, K)) _ 

        - (delT * Xi / 2) * U(I, J, K) - (delT * Ma / 2) * U(I, J, K) + (Ma / (2 + 2 * mi ^ 2)) 

* delT * (mi * V(I, J, K + 1) + mi * V(I, J, K) - U(I, J, K)) + (delT * Gr_theta / 2) * (T(I, 

J, K + 1) + T(I, J, K)) + (delT * Gr_c / 2) * (C(I, J, K + 1) + C(I, J, K))) / (1 + U(I, J, K) 

* delT / (2 * delX) + ((wo) * delT) / (2 * delZ) + delT / (Re * delX * delX) + delT / (Re 

* delZ * delZ) + delT * Xi / 2 + Ma * delT / 2 + (Ma * delT) / (2 + 2 * mi ^ 2)) 

'UTep = U(I, J, K + 1) 

   '  calculate V 
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V(I, J, K + 1) = (V(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-V(I - 1, J, K + 1) + V(I, J, 

K) - V(I - 1, J, K)) + (delT * (wo) / (2 * delZ)) * (-V(I, J - 1, K + 1) + V(I, J, K) - V(I, J - 

1, K)) - Ro * delT * (U(I, J, K + 1) + U(I, J, K)) _ 

        + (delT / (2 * Re * delX * delX)) * (V(I + 1, J, K + 1) + V(I - 1, J, K + 1) + V(I + 1, 

J, K) - 2 * V(I, J, K) + V(I - 1, J, K)) + (delT / (2 * Re * delZ * delZ)) * (V(I, J + 1, K + 

1) + V(I, J - 1, K + 1) + V(I, J + 1, K) - 2 * V(I, J, K) + V(I, J - 1, K)) - (delT * Xi / 2) * 

V(I, J, K) - (delT * Ma / 2) * V(I, J, K) + (delT * Ma / (2 + 2 * mi ^ 2)) * (V(I, J, K) + 

mi * (U(I, J, K + 1) + U(I, J, K)))) / (1 + U(I, J, K) * delT / (2 * delX) + ((wo) * delT) / 

(2 * delZ) + delT / (Re * delX * delX) + delT / (Re * delZ * delZ) + delT * Xi / 2 + Ma 

* delT / 2 - Ma * delT / (2 + 2 * mi ^ 2)) 

 

 '***************************Solving for temperatures C 

 C(I, J, K + 1) = (C(I, J, K) - (delT / (2 * delX)) * U(I, J, K) * (-C(I - 1, J, K + 1) + C(I, J, 

K) + C(I - 1, J, K)) + (delT * (wo) / (2 * delZ)) * (-C(I, J - 1, K + 1) + C(I, J, K) - C(I, J - 

1, K)) _ 

        + ((delT) / (2 * Sc * Re * delX * delX)) * (C(I + 1, J, K + 1) + C(I - 1, J, K + 1) + 

C(I + 1, J, K) - 2 * C(I, J, K) + C(I - 1, J, K)) + ((delT) / (2 * Sc * Re * delZ * delZ)) * 

(C(I, J + 1, K + 1) + C(I, J - 1, K + 1) + C(I, J + 1, K) - 2 * C(I, J, K) + C(I, J - 1, K)) + 

((delT * Sr) / (2 * Re * delX * delX)) * (T(I + 1, J, K + 1) - 2 * T(I, J, K + 1) + T(I - 1, J, 

K + 1) + T(I + 1, J, K) - 2 * T(I, J, K) + T(I - 1, J, K)) + ((delT * Sr) / (2 * Re * delZ * 

delZ)) * (T(I, J + 1, K + 1) - 2 * T(I, J, K + 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * 

T(I, J, K) + T(I, J - 1, K))) / (1 + U(I, J, K) * delT / (2 * delX) - (wo * delT) / (2 * delZ) 

+ delT / (Re * Sc * delX * delX) + delT / (Re * Sc * delZ * delZ)) 

'***************************Solving for temperatures T 

   T(I, J, K + 1) = (T(I, J, K) + (Q * delT / 2) * T(I, J, K) - (delT / (2 * delX)) * U(I, J, K) 

* (-T(I - 1, J, K + 1) + T(I, J, K) - T(I - 1, J, K)) + ((delT * (wo)) / (2 * delZ)) * (-T(I, J - 

1, K + 1) + T(I, J, K) - T(I, J - 1, K)) _ 

        + ((Df * delT) / (2 * Re * delX * delX)) * (C(I + 1, J, K + 1) - 2 * C(I, J, K + 1) + 

C(I - 1, J, K + 1) + C(I + 1, J, K) - 2 * C(I, J, K) + C(I - 1, J, K)) + ((Df * delT) / (2 * Re 
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* delZ * delZ)) * (C(I, J + 1, K + 1) - 2 * C(I, J, K + 1) + C(I, J - 1, K + 1) + C(I, J + 1, 

K) - 2 * C(I, J, K) + C(I, J - 1, K)) + (delT / (2 * Pr * Re * delX * delX)) * (T(I + 1, J, K 

+ 1) + T(I - 1, J, K + 1) + T(I + 1, J, K) - 2 * T(I, J, K) + T(I - 1, J, K)) + (delT / (2 * Pr * 

Re * delZ * delZ)) * (T(I, J + 1, K + 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * T(I, J, 

K) + T(I, J - 1, K)) + (delT * R * Re / 4) * (U(I, J, K) ^ 2 _ 

        + V(I, J, K) ^ 2) - ((4 * delT) / (3 * Ni * Pr * Re * 2 * delZ * delZ)) * (T(I, J + 1, K 

+ 1) + T(I, J - 1, K + 1) + T(I, J + 1, K) - 2 * T(I, J, K) + T(I, J - 1, K)) + (Ec * delT / (Re 

* 4 * delX * delX)) * (U(I, J, K + 1) - U(I - 1, J, K + 1) + U(I, J, K) - U(I - 1, J, K)) ^ 2 + 

(Ec * delT / (Re * 4 * delZ * delZ)) * (V(I, J, K + 1) - V(I, J - 1, K + 1) + V(I, J, K) - 

V(I, J - 1, K)) ^ 2) / (1 + U(I, J, K) * delT / (2 * delX) - ((wo) * delT) / (2 * delZ) + delT 

/ (Re * Pr * delX * delX) + delT / (Re * Pr * delZ * delZ) - Q * delT / 2 - 4 * delT / (3 * 

Ni * Pr * Re * delZ * delZ)) 

Next 

Next 

Next 

 I = 3 

 Print #FILENUM, U(I, 1, 401); U(I, 2, 402); U(I, 3, 403); U(I, 4, 404); U(I, 5, 405); 

U(I, 6, 406); U(I, 7, 407); U(I, 8, 408); U(I, 9, 409) 

Print #FILENUM, V(I, 1, 401); V(I, 2, 802); V(I, 3, 403); V(I, 4, 404); V(I, 5, 405); V(I, 

6, 406); V(I, 7, 407); V(I, 8, 408); V(I, 9, 409) 

 Print #FILENUM, C(I, 1, 401); C(I, 2, 402); C(I, 3, 403); C(I, 4, 404); C(I, 5, 405); C(I, 

6, 406); C(I, 7, 407); C(I, 8, 408); C(I, 9, 409) 

Print #FILENUM, T(I, 1, 401); T(I, 2, 402); T(I, 3, 403); T(I, 4, 404); T(I, 5, 405); T(I, 

6, 406); T(I, 7, 407); T(I, 8, 408); T(I, 9, 409) 

Close #FILENUM 

MsgBox "AM THROUGH!!!" 

 

End Sub 
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Private Sub Command1_Click() 

On Error GoTo kan 

Kill "E:\PhD Thesis\Thesis Prog Chap 3\LeastSquares.txt" 

kan: 

Exit Sub 

 

End Sub 

   

Private Sub cmdCompute_Click() 

    Call ComputeUnsteadyValues 

End If 

MsgBox "AM THROUGH!!!" 

End Sub 

 

Private Sub cmdDelete_Click() 

On Error GoTo kan 

Kill "E:\PhD Thesis\Thesis Prog Chap 3\LaxConc.txt" 

kan: 

Exit Sub 

End Sub 


