Identification and Tissue Localization of Olfactory Proteins in the Antenna

and Head of Glossina Species

Steven Reuben Ger Nyanjom

A thesis submitted in fulfilment for the Degree of Doctor of Philosophy in Biochemistry in the Jomo Kenyatta University of Agriculture and Technology

2011

DECLARATION

This thesis is my original work and has not been presented for a degree in any other		
University		
Signature Date		
Steven Reuben Ger Nyanjom		
This thesis has been submitted for examination with our approval as Supervisors		
1. Signature Date		
Prof. Peter Onyimbo Lomo		
JKUAT, Kenya		
2. Signature Date		
Dr. Daniel Khanani Masiga		
International Center of Insect Physiology and Ecology (ICIPE),		
Kenya		
3. Signature Date		
Prof. Ahmed Hassanali		
Kenyatta University, Kenya		

DEDICATION

I would like to dedicate my thesis to my: Wife Christine Anyango and daughters Michelle and Misha; Parents the late Tom Nyanjom and Alice Marenya Nyanjom; Brothers: Robert, Jacob and Byron; Sisters: Jane, Florence and Joan. Your continued support and encouragements have enabled me reach this far and produce this thesis

ACKNOWLEDGEMENTS

I wish to convey my sincere gratitude to the following individuals for providing me with the inspiration and support while pursuing my PhD studies. I thank the almighty God for having kept me throughout the study period. My deepest thanks goes to the supervisors, Prof. Peter Onyimbo Lomo, Dr. Daniel Khanani Masiga and Prof. Ahmed Hassanali, for their constant motivation, valuable help, precious advice and patience throughout the research period.

I extend my gratitude to Prof. Christian Borgemeister, the Director General, for allowing me carry out my research at *Duduville* ICIPE. I reserve my thanks to both Dr. Ellie O. Osir and Dr. J. P. R. Ochieng-Odero, formerly of ICIPE, for the motivation to proceed with the research at the onset of the study.

Special thanks goes to all staff of Molecular Biology and Biotechnology Department. I am indebted to Dr. Paul Odhiambo Mireji and Dr. Martin Rono for detailed constructive comments about the thesis and manuscripts. Thanks to all my lab mates: J. Kabii, M. Kimondo, P. Seda, F. Khamisi, B. Aman, E. Kouam, A. Mebeasealassie, H. Kibogo, E. Machuka, E. Obura, J. Bargul, N. Ndungu, P. Kuria, E. Muchunga, P. Amwayi, C. Ngambi, and E. Waweru for their friendship, support and humour. It was fun sharing the laboratory together and I appreciate the memorable and valuable experience we had.

My gratitude also goes to my employer, Jomo Kenyatta University of Agriculture and Technology. I need to thank the Vice Chancellor, Prof. Mabel Imbuga for granting me study leave to pursue my PhD studies. My sincere thanks to Prof. Gabriel Magoma (former department chairman), Dr. Daniel W. Kariuki and other members of the department for their support. Special thanks goes to the team at Wellcome Trust Sanger Institute, comprising of Dr. Batt Berriman, Dr. Michael A. Quail and Dr. Christiane Hertz-Fowler for the sequencing and generation of antennal and head ESTs. Without their involvement success of this project won't have been realised.

I acknowledge the pleasure of working with staff at ICIPE, capacity building (Lillian, Lisa and Margaret), colleagues in ARPPIS and DRIP programmes for their moral support and encouragement. Technical assistance of Joseph Saningo and all support staff while collecting tsetse flies at Nguruma are gratefully acknowledged.

I would extend my great appreciation to Netherlands SII Programme and WHO for granting me the scholarship and research grants respectively.

Finally, many thanks to my family members, wife Christine, daughters (Michelle and Misha), mother Alice M. Nyanjom, brothers (Robert, Jacob and Byron), sisters (Jane, Florence and Joan), uncles, aunties, cousins, nephews and nieces, for the patience, understanding and tremendous encouragement.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF APPENDICES	XV
ABBREVIATIONS AND ACRONYMS	xvi
ABSTRACT	xvii
CHAPTER 1	1
1.0 INTRODUCTION AND LITERATURE REVIEW	1
1.1 Tsetse Fly Systematics and Habitats	1
1.2 African Trypanosomiasis	
1.3 Trypanosomiasis control	6
1.3.1 Chemotherapy	7
1.3.2 Vaccine development	
1.3.3 Trypanotolerance	
1.3.4 Tsetse vector control	9
1.4 Glossina Species	
1.4.1 Glossina pallidipes	12
1.4.2 Glossina palpalis gambiensis and Glossina tachinoides	
1.5 Tsetse fly Hosts Preference	14

1	.6 Insects Olfactory System	15
	1.6.1 Odorant and Pheromone Binding Proteins	18
	1.6.2 Chemosensory Proteins	20
	1.6.3 Odorant Degrading Enzymes (ODEs)	21
	1.6. 4 Odorant Receptors (Ors)	22
1	.7 Mechanism of Olfactory Signal Transduction	24
1	.8 Justification	25
1	.9 General Objective	28
	1.9.1 Specific Objectives	28
CHA	PTER 2	29
201		
2.0 1	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN	
GLOS	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE)	29
2.0 I GLOS 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE)	29 29
2.0 1 GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE)	29 29 29
2.0 I GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects	29 29 29 29
2.0 I GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of G. pallidipes, G. p. gambiensis and G. tachinoides	29 29 29 29
2.0 I GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries	29 29 29 29 29
2.0 GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.3 Sequencing of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i>	29 29 29 29 31
2.0 1 GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes</i> , <i>G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.3 Sequencing of <i>G. pallidipes</i> , <i>G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries	 29 29 29 29 31 34
2.0 I GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.3 Sequencing of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.4 Analyses of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> EST	29 29 29 29 31
2.0 I GLOS 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.3 Sequencing of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.4 Analyses of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> EST sequence data	 29 29 29 31 34 35
2.0 I GLOS 2 2 2	DENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN SSINA SPECIES (DIPTERA: GLOSSINIDAE) 2.1 Introduction 2.2 Materials and Methods 2.2.1 Study area and preparation of test insects 2.2.2 Construction of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.3 Sequencing of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> cDNA libraries 2.2.4 Analyses of <i>G. pallidipes, G. p. gambiensis</i> and <i>G. tachinoides</i> EST sequence data	 29 29 29 31 34 35 36

2.3.2.1 Glossina pallidipes clusters with matches to nonredundant (NR),
Conserved Domains (CDD) and Gene ontology (GO) databases
2.3.2.2 Glossina palpalis gambiensis clusters with matches to (NR),
Conserved Domains (CDD) and Gene ontology (GO) databases
2.3.2.3 Glossina tachinoides clusters with matches to nonredundant
(NR), Conserved Domains (CDD) and Gene ontology (GO) databases 44
2.3.3 Molecular weights and Isoelectric points
2.3.4 Multiple Sequence Alignment
2.3.5 Phylogenetic analysis of Putative <i>Glossina</i> OBPs
2.3.5 Phylogenetic analysis of Putative <i>Glossina</i> OBPs53
2.4 Discussion
2.4 Discussion
2.4 Discussion
2.4 Discussion
2.4 Discussion57CHAPTER 3603.0 COMPARATIVE ANALYSIS OF GLOSSINA EXPRESSED SEQUENCETAGS (ESTS): IDENTIFICATION OF ORTHOLOGS ODORANT-BINDING PROTEINS AND CHEMOSENSORY PROTEINS OF DIPTERANSPECIES603.1 Introduction60
2.4 Discussion57CHAPTER 3603.0 COMPARATIVE ANALYSIS OF GLOSSINA EXPRESSED SEQUENCETAGS (ESTS):IDENTIFICATION OF ORTHOLOGS ODORANT-BINDING PROTEINS AND CHEMOSENSORY PROTEINS OF DIPTERANSPECIES603.1 Introduction603.2 Materials and Methods60
2.4 Discussion57CHAPTER 3603.0 COMPARATIVE ANALYSIS OF GLOSSINA EXPRESSED SEQUENCETAGS (ESTS): IDENTIFICATION OF ORTHOLOGS ODORANT-BINDING PROTEINS AND CHEMOSENSORY PROTEINS OF DIPTERANSPECIES603.1 Introduction603.2 Materials and Methods603.2.1 Processing of Glossina pallidipes antennal, Glossina palpalis

3.2.2 Bioinformatics analyses of Glossina pallidipes antennal, Glossina
palpalis gambiensis head and Glossina tachinoides head ESTs against
Glossina morsitans morsitans Proteins
3.2.3 Bioinformatics analyses of Glossina pallidipes antennal, Glossina
palpalis gambiensis head and Glossina tachinoides head ESTs against
Selected Dipteran Proteins
3.3 Results
3.3.1 Clustering of Glossina pallidipes antennal, Glossina palpalis
gambiensis head and Glossina tachinoides head ESTs
3.3.2 Categories of Glossina pallidipes antennal, Glossina palpalis
gambiensis head and Glossina tachinoides head clusters
3.3.2.1 Glossina pallidipes clusters with matches to Glossina morsitans
morsitans protein database
3.3.2.2 Glossina palpalis gambiensis clusters with matches to Glossina
morsitans morsitans protein database
3.3.2.3 Glossina tachinoides clusters with matches to Glossina morsitans
morsitans protein database
3.3.3 Comparison of Glossina Clusters with Drosophila melanogaster,
Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus protein
databases
3.3.4 Identification of Putative OBP genes
3.4 Discussion
CHAPTER 4

4.0 TISSUE LOCALISATION OF ODORANT-BINDING PROTEINS
(OBPS) AND
CHEMOSENSORY PROTEIN (CSP) IN GLOSSINA PALLIDIPES
(DIPTERA:
GLOSSINIDAE)
4.1 Introduction
4.2 Materials and Methods
4.2.1 Tsetse flies
4.2.2 Screening for the putative OBP transcripts in <i>G. pallidipes</i> tissues90
4.2.3 Sequencing and analysis of putative OBP transcripts in G. pallidipes
tissues
4.3 Results
4.3.1 Determination of Total RNA Quality
4.3.2 Determination of First Strand cDNA Integrity
4.3.3 Amplification of First Strand cDNA with designed putative OBP
primers94
4.3.4 Annotation of amplified <i>Glossina</i> sequences97
4.5. Discussion
CHAPTER 5
5.0 GENERAL DISCUSSION AND FUTURE DIRECTIONS 108
REFERENCES
APPENDICES

LIST OF TABLES

Table 2.0 Number of ESTs sequenced and clusters generated from G. pallidipes	
antennal, G. tachinoides head and G. p. gambiensis head libraries35	
Table 2.1 Summary of clusters found in G. pallidipes antennae, G. p. gambiensis	
head and G. tachinoides head libraries	
Table 2.2 Functional annotation of odorant/pheromone cDNA clusters from G.	
pallidipes antennae library, G. palpalis gambiensis and G. tachinoides head	
libraries producing best hits to nonredundant (NR) protein database of GenBank,	
gene ontology (GO) and conserved domains (CDD) database41	
Table 2.3 Predicted MW and pI for putative <i>Glossina</i> OBPs	
Table 3.0 Summary of EST sequences and clusters generated from G. pallidipes	
antennae, G. p. gambiensis head and G. tachinoides head libraries86	
Table 3.1 Number of clusters found in G. pallidipes antennae, G. p. gambiensis	
head and <i>G. tachinoides</i> head87	
Table 3.2 Olfactory related clusters from Glossina pallidipes antennae, Glossina	
palpalis gambiensis and Glossina tachinoides head producing best matches	
to Glossina morsitans morsitans protein GeneDB	
Table 3.3 Putative Odorant Binding Proteins (OBPs) identified from G. pallidipes	
antennal, G. tachinoides and G. p. gambiensis head libraries116	
Table 4.0 Primers of putative Glossina OBPs used in RT-PCR	
Table 4.1 Summary of amplified G. pallidipes body parts	
Table 4.2 Functional annotation of consensus sequences against NR and GO	
DB142	

LIST OF FIGURES

Figure 1.0 Distribution of the three Tsetse Groups (Palpalis, Fusca and Morsitans)
in Africa
Figure 1.1 Life Cycle of Trypanosoma brucei brucei, Trypanosoma congolense
and <i>Trypanosoma vivax</i> in mammalian host and Tsetse vector4
Figure 1.2 Distribution map of <i>G. pallidipes</i> (a), <i>G. p. gambiensis</i> (b) and
G. tachinoides (c)11
Figure 2.0 A map of Nguruman showing sampling sites
Figure 2.1 Poly(A) RNA (a) and cDNA (b) from <i>Glossina pallidipes</i> antenna
(Gpa)33
Figure 2.2 Poly(A) RNA (a) and cDNA (b) from Glossina tachinoids head
(Gth)33
Figure 2.3 Poly(A) RNA (a) and cDNA (b) from Glossina p. gambiensis head
(Gph)34
Figure 2.4 Alignment of putative Glossina pallidipes antennal, Glossina palpalis
gambiensis and Glossina tachinoides head OBPs with Glossina
morsitans morsitans OBPs72
Figure 2.5 Alignment of putative Glossina OBPs with other insect OBPs
downloaded from GenBank73
Figure 2.6 Multiple Sequence Alignment of Glossina tachinoides CSP
(Gthcontig63) with other insect CSPs downloaded from GenBank74

Figure 2.7 Phylogenetic relationships of Glossina pallidipes, Glossina palpalis	
gambiensis and Glossina tachinoides OBPs with other insect OBPs	
downloaded from GenBank76	
Figure 2.8 Phylogenetic relationships of Glossina tachinoides CSP with other	
insect CSPs downloaded from GenBank77	
Figure 3.0 Alignment of putative Glossina pallidipes, Glossina palpalis	
gambiensis and Glossina tachinoides OBPs with Glossina morsitans	
morsitans OBPs121	
Figure 3.1 Multiple Sequence Alignment of putative Glossina OBPs with Dipteran	
insect OBPs downloaded from Ensembl and Vector Base123	
Figure 3.2 Multiple Sequence Alignment of Glossina tachinoides chemosensory	
protein with selected homologous sequences download from	
GenBank124	
GenBank	

Figure 4.2a PCR amplification of GpF tissues with designed OBP primers140	
Figure 4.2b PCR amplification of GpF and GpM tissues with designed OBP	
primers140	
Figure 4.2c PCR amplification of GpM tissues with designed OBP primers140	
Figure 4.3a Multiple Sequence Alignment of GpM and GpF antennae and head	
sequences with selected homologs145	
Figure 4.3b Multiple Sequence Alignment of GpM and GpF thorax and abdomen	
sequences with selected homologous sequences147	
Figure 4.4 Multiple Sequence Alignment of GpM and GpF antennae, head, thorax	
and abdomen with selected homologous sequences148	

LIST OF APPENDICES

Appendix I Functional annotation of cDNA clusters from Glossina pallidipes antennae
library producing best hits to nonredundant (NR) protein DB of
GenBank, gene ontology (GO) and conserved domains database (CDD)121
Appendix II Functional annotation of cDNA clusters from Glossina papalis gambiensis
head library producing best hits to nonredundant (NR) protein database of
GenBank, gene ontology (GO) and conserved domains database (CDD)
Database131
Appendix III Functional annotation of cDNA clusters from Glossina tachinoides head
library producing best hits to nonredundant (NR) protein database of
GenBank, gene ontology (GO) and conserved domains database (CDD)
database140
Appendix IV Glossina pallidipes clusters producing best matches to Glossina
morsitans morsitans protein GeneDB148
Appendix V Glossina palpalis gambiensis clusters producing best matches to
Glossina morsitans morsitans protein GeneDB151
Appendix VI Glossina tachinoides clusters producing best matches to Glossina
morsitans morsitans protein GeneDB154
Appendix VII Glossina pallidipes, Glossina palpalis gambiensis and Glossina
tachinoides clusters and their best matches to Drosophila
melanogaster protein databases158
Appendix VIII Glossina pallidipes, Glossina palpalis gambiensis and Glossina
tachinoides clusters and their best matches to Anopheles gambiae,
Aedes aegypti and Culex quinguefasciatus protein databases163

ABBREVIATIONS AND ACRONYMS

AAT	Animal African Trypanosomiasis
CSPs	Chemosensory proteins
CAS	cDNA Annotation Software
cDNA	Complementary Deoxyribonucleic acid
DNA	Deoxyribonucleic acid
dNTP	Deoxyribonucleotide Triphosphate
ESTs	Expressed Sequence Tags
GO	Gene Ontology
GOBP	General odorant binding proteins
GPCRs	G protein-coupled receptors
НАТ	Human African Trypanosomiasis
IRD	Institut de Recherche pour le Dèveloppement
LD-PCR	Long distance Polymerase Chain Reaction
mRNA	Messenger Ribonucleic acid
NECT	Nifurtimox-Eflornithine Combination Therapy
OBPs	Odorant binding protein
ODEs	Odorant degrading enzymes
Ors	Odorant receptors
ORNs	Olfactory receptor neurons
PATTEC	The Pan African Tsetse and Trypanosomiasis Eradication Campaign
PBPs	Pheromone binding protein
RT-PCR	Reverse transcription Polymerase Chain Reaction

ABSTRACT

Tsetse flies use olfaction in search for food, mates and larviposition sites. Olfactory proteins [(odorant binding proteins (OBPs), pheromone binding proteins (PBPs), chemosensory protein (CSPs), odorant degrading enzymes (ODEs) and odorant receptors (Ors)], located within the antennae, play key role in this process. In this work, presence of olfactory proteins was investigated by constructing and sequencing cDNA libraries from Glossina pallidipes Austen, antennae; Glossina palpalis gambiensis Vanderplank, head and Glossina tachinoides Westwood, head. The Expressed sequence tags (ESTs) were clustered using cDNA Annotation[™] Software (CAS) and annotated by blast searches. ESTs were generated from the antennal (1127) and head (906 for G. p. gambiensis and 830 for G. tachinoides) libraries, composed of 296 clusters (18 contigs and 278 singletons for G. pallidipes antennae), 305 clusters (36 contigs and 269 singletons for G. p. gambiensis head) and 232 clusters (54 contigs and 178 singletons for G. tachinoides). The analyses implicated ten (10) sequences in olfaction (2 OBPs from G. pallidipes, 5 OBPs from G. p. gambiensis, 2 OBPs and 1 CSP from G. tachinoides). Clustal alignment revealed a diverse multigene family while phylogenetic analysis supports the existence of different olfactory protein subfamilies.

To identify Dipteran orthologs, the three *Glossina* ESTs (*G. pallidipes* antennae, *G. p. gambiensis* head and *G. tachinoides* head) were clustered using StackPACK, then compared to *G. morsitans morsitans, Drosophila melanogaster, Anopheles gambiae, Aedes aegypti* and *Culex quinquefasciatus* proteomes. A total of 663

clusters for *G. pallidipes* (45 contigs and 618 singletons), 930 clusters for *G. p. gambiensis* (43 contigs and 387 singletons) and 444 clusters for *G. tachinoides* (40 contigs and 404 singletons) were generated. Nine putative OBPs (*G. pallidipes*: 2, *G. p, gambiensis*: 5, *G. tachinoides*: 2) and one putative CSP (*G. tachinoides*) were identified by BLAST search against the dipteran protein databases. Multiple sequence alignments revealed a diverse OBP gene family and a conserved CSP.

Phylogenetic analysis revealed a closely related multigene family that could have evolved separately along different evolutionary time. Reverse Transcription Polymerase Chain Reaction (RT-PCR) screening of male and female G. pallidipes tissues (antennae, head, thorax and abdomen) for presence of OBPs and CSPs homologs identified in G. pallidipes, G. tachinoides and G. p. gambiensis, and similar ones (putative OBPs from G. m. morsitans), revealed 7 none sex specific (tissue dependent), and 2 sex (male) specific G. m morsitans OBP homologues, one specific to the thorax tissue (Gmm_cn14014) and the other to both thorax and abdomen tissues (Gmm_GLAAS20TVB). Two putative OBPs identified in G. pallidipes and G. p. gambiensis (Gpacontig266 and Gphcontig184) were localised to the antennae tissue. Alignment of the sequenced amplicons revealed a diverse OBP and conserved CSP gene families. These results indicates that olfactory process in tsetse is a complex and interactive process involving established olfactory and non olfactory tissues, suggesting that tissues, other than antennae should also be targeted/considered in development of novel odor based technologies for tsetse control.

CHAPTER 1

1.0 INTRODUCTION AND LITERATURE REVIEW

1.1 Tsetse Fly Systematics and Habitats

Tsetse flies (Diptera: Glossinidae) belong to the genus *Glossina* which contains about 30 living taxa, 22 species and 8 subspecies (Krafsur, 2009). Three main groups occur i.e. *Morsitans* (*Glossina*), *Fusca* (*Austenina*) and *Palpalis* (*Nemorhina*) (FAO, 1982a). *Morsitans* (Savannah flies) include: *Glossina austeni*, *G. longipalpis*, *G. morsitans centralis*, *G. morsitans morsitans*, *G. morsitans submorsitans*, *G. swynnertoni* and *G. pallidipes*. *Fusca* are forest flies and species in this group include: *G. brevipalpis*, *G. fusca congolensis*, *G. fusca fusca*, *G. fuscipleuris*, *G. frezili*, *G. haningtoni*, *G. longipennis*, *G. medicorum*, *G. nashi*, *G. nigrofusca hopkinsi*, *G. nigrofusca nigrofusca*, *G. severini*, *G. schwetzi*, *G. tabaniformis* and *G. vanhoofi*. Riverine flies belongs to *Palpalis* group and examples of species in this group are *G. caliginea*, *G. fuscipes fuscipes*), *G. fuscipes martinii*, *G. fuscipes quanzensis*, *G. pallicera pallicera*, *G. pallicera newsteadi*, *G. palpalis palpalis*, *G. palpalis gambiensis* and *G. tachinoides* (Jordan, 1993).

The three *Glossina* groups are distributed discontinuosly with the *morsitans* group occupying much of the savannah (grassy woodland) of Africa (Figure 1.0). Their distribution appears to be limited by cold winter conditions in the south (Zimbabwe, Botswana), hot dry conditions north of West and Central Africa, scarcity of game animals on which to feed and lack of trees where they rest in the

shade and larviposit (Rogers and Robinson, 2006). The distribution patterns of *fusca* group takes three main types. *G. longipennis* is confined to dry parts of South East Sudan, southern boarder of Ethiopia and north-eastern parts of Somalia, Kenya and Tanzania. *G. brevipalpis* is widely scattered throughout eastern parts of Africa, from Ethiopia and Somalia in the north, to Mozambique and South Africa in the south. The remainder of the *fusca* group are limited to thickly forested areas of Africa with *G. tabaniformis, G. nashi* and *G. haningtoni* being restricted to rain forests; *G. fusca, G. medicorum, G. fuscipleuris* and *G. schwetzi* being forest edge species while *G. medicorummay* living in riverine habitats (FAO, 1982a). *Palpalis* group are found in similar forest habitats throughout very humid areas of Africa and extend into the mangrove swamps, riverine and lakeside forests. Members of this group do not move far away from free water rivers and lakes (Rogers and Robinson, 2006).

Distribution of tsetse flies is influenced mainly by climatic and ecological barriers, vegetation and availability of food. A combination of these factors work synergistically to limit distribution of tsetse in many parts of Africa. In the north of West Africa, characterized by very hot climates, low vegetation cover and dry conditions, tsetse flies are found near rivers with some bushes and trees which provide shade and cooler conditions (FAO, 1982b).

Figure 1.0. Distribution of the three tsetse groups in Africa, A-*Fusca* group; B-*Palpalis* group and C – *Morsitans* group (Cecchi *et al.*, 2008)

1.2 African Trypanosomiasis

Tsetse flies are vectors of trypanosomes (protozoan parasites of the genus *Trypanosoma*), which cause Human African Trypanosomiasis (HAT)/sleeping sickness in humans and Animal African trypanosomiasis (AAT)/nagana in animals. The parasites are cyclically transmitted through the bite of infected tsetse fly or mechanically by other blood sucking arthropods such as horse-flies (Steverding, 2008). The two main forms of HAT are caused by *Trypanosoma brucei gambiense* resulting in chronic infection in countries of western and central Africa and *T. b. rhodesiense* causing acute illness in countries of eastern and southern Africa. Trypanosomes cause pathology in different hosts e.g. *T. vivax* and *T. congolense* are major pathogens of cattle, *T. simiae* causes high mortality in domestic pigs whereas *T. b. brucei* affects all livestock (Mugasa *et al.*, 2008).

The tsetse fly ingests stumpy forms of trypanosomes while taking blood from an infected mammalian host. The ingested parasites move to the fly's midgut where it transform into procyclic forms and upon leaving the midgut develop into epimastigotes which then proceeds to the salivary glands where they develop to the mature metacyclic forms.

The metacyclic trypanosomes get into tissues and blood system of mammalian host along with the saliva from a bite of an infected fly as it takes its blood meal. The parasite proliferates at the site of infection and cause inflammation which later swells. It multiplies in the lymph node and blood stream where they transform into trypomastigotes and later invades the brain and spinal cord (Blum *et al.*, 2001). The trypanosome can then be passed from the blood stream of an infected host to tsetse fly as it feeds. It then undergoes another cycle of development lasting about three weeks before the infection is mature and the fly becomes infective to new hosts (Figure 1.1). After that period the fly remains effective for the rest of its life. In humans, the disease is characterized by general malaise, headache, fever, oedema and anemia (Checchi *et al.*, 2008) and when untreated results into death (Masiga *et al.*, 2002).

Figure 1.1 Life Cycle of *Trypanosome brucei brucei*, *Trypanosome congolense* and *Trypanosome vivax* in mammalian host and Tsetse vector (Annual Report of the International Laboratory for Research on Animal Diseases, ILRAD 1981).

Trypanosomiasis is endemic in vast region of Africa defined by the infestation range of tsetse vector. The fly inhabits over a third of the continent south of the Sahara where it exposes an estimated 66 million people to the risk of contracting HAT (Maudlin, 2006). It is estimated that 30% of about 150 million cattle in tsetse-affected areas are exposed to the risk of infection (Simarro *et al.*, 2008). Nagana causes about three (3) million cattle deaths every year and farmers are required to administer high doses of expensive trypanocidal drugs, many of which the parasites have developed resistance (Geerts *et al.*, 2001). AAT depresses every aspect of livestock production and limit availability of meat and milk products, leaving much of the human population malnourished.

The disease also reduces productivity, causes abortions and prevents use of draught animal power. The consequences are that people have to rely on manual tillage which lowers food production. Economic losses in agricultural and cattle production are estimated at US\$ 4.75 billion and US\$ 1.2 billion per year respectively (Simarro *et al.*, 2008). Sub-Saharan Africa is having a high population growth rate and environmental degradation with severe local disruptions in rainfall patterns, perhaps a reflection of climate change on a global scale. As a result poverty levels are high and there is scarcity of food. Effective control of trypanosomiasis could significantly increase livestock production in Africa, as well as greatly benefit arable farming where animals provide most of the traction power in agriculture.

1.3 Trypanosomiasis control

Management of African trypanosomiasis depends on active surveillance, treatment of infected hosts and on vector control. Tsetse control and chemotherapy are the most commonly used methods. The problem of drug resistance is common although new drug targets have been reported (Cross, 2010; Frearson *et al.*, 2010). Different methods have been used to control the tsetse fly. Most of these methods have proven to be unsustainable. Considerable effort have been made to control trypanosomes but the complex interactions of the pathogenic parasite in the vertebrate host and insect vector hinders development of better intervention methods. As a result, to control trypanosomiasis, an integrated approach that utilizes several tools has to be adopted (Simarro *et al.*, 2008).

1.3.1 Chemotherapy

Few drugs are currently available for treatment of HAT and include pentamidine, suramin, melarsoprol, eflornithine, nifurtimox and diminazene aceturate. Pentamidine and suramin are used to treat the first stage of HAT, melarsoprol and effornithine are effective in treatment of second stage of HAT while nifurtimox and diminazene aceturate are alternative drugs (Priotto et al., 2009). The actual mode of action for these drugs is unknown and proposed mechanisms could involve disruption of multiple cellular processes (e.g. binding to nucleic acid, disruption of kinetoplast DNA, inhibition of RNA-editing and mRNA trans-splicing of trypanosomes) and inhibition of numerous enzymes (Checchi et al., 2007). AAT is primarily controlled in sub-Saharan Africa by three trypanocides: isometamidium chloride, homidium (bromide and chloride) and diminazene aceturate (Geerts et al., 2001). Different treatment strategies are adopted for trypanocidal drug usage which could be routine block treatments, strategic block treatments, monitoring and treatment of infected animals or monitoring and treatment of clinical cases (Priotto et al., 2007). The development of drug resistance (Geerts et al., 2001), compounded by toxicity and high cost of available drugs necessitated the search for improved chemotherapeutics. Treatment of sleeping sickness can be improved by combination of nifurtimox and effornithine (Priotto et al., 2009) and it has been demonstrated that Nifurtimox-Eflornithine Combination Therapy (NECT) is as effective treatment of second stage of HAT patients (Chatelain and Ioset, 2009).

1.3.2 Vaccine development

Currently, there is no vaccine for trypanosomiasis and its development is hampered by the antigenic variation of trypanosomes (Mehlert *et al.*, 2002). Trypanosomes have complicated bloodstream forms that evade the host's immune response. The antigenic variation is linked to change in composition of a glycoprotein that covers the surface of the trypanosome parasite. The parasite's distinct antigenic glycoprotein enables it to avoid host antibodies raised against their variant surface glycoproteins (VSGs) (Mehlert *et al.*, 2002). Despite considerable research efforts, antigenic variation presents a formidable obstacle towards vaccine development. It is hoped that comparative trypanosome genome studies may lead to identification of potential vaccine targets (Berriman *et al.*, 2005).

1.3.3 Trypanotolerance

Trypanotolerant cattle have been exploited as a method of trypanosomiasis control because the breeds are able to survive and be productive in tsetse-infected areas (Murray *et al.*, 2006). Examples of such breeds include N'Dama and West African short horn (Murray *et al.*, 1982). They are also known to be tolerant to tick infestation, gastrointestinal nematode infection, dermatophilosis and other tropical diseases (Mattioli *et al.*, 2000). However, the animals may succumb to trypanosomiasis under high challenge and physiological stress. These animals have been used as an option for sustainable livestock production (Roelants *et al.*, 1987). The mitigating factors that limit their use are limited distribution of trypanotolerant breeds in West Africa, their relatively small size, inherent low calving rate, low

meat and milk productivity and unsuitability as draught animals (D'Ieteren *et al.*, 1998).

1.3.4 Tsetse vector control

Different methods have been used to control tsetse fly with varying degrees of success. These include discriminative bush clearing and destruction of wild hosts (Rogers et al., 1994), ground and aerial spraying with insecticides (Jordan, 1986), application of sterile insect technique (SIT) (Bailey, 1998; Vreysen et al., 2000), insecticide treated livestock (Barrett, 1997) and insecticide-treated targets (Hargrove, 1980). Control of tsetse populations with insecticides proved to be effective in many areas of Africa (Jordan, 1986). The success of this resulted from rapid treatment of tsetse infested bush by ground and aerial spraying though eradication was not achieved because of re-infestation of cleared areas, high costs of spraying technology and there were also environmental objections about widespread use of insecticides and spread of insecticide resistance (FAO, 1993; Rogers et al., 1994). Sterile insect technique (SIT) was successfully used to eradicate Glossina austeni Newstead from Zanzibar (Vreysen et al., 2000). A number of SIT control programs have been undertaken in Africa (Cuisance et al., 1984; Brandl, 1988;) with considerable efforts initiated to implement the SIT program (Kabayo, 2002; Enserink, 2007). Though environmentally friendly, SIT is the most expensive tsetse control method and also requires complex logistics. It works best when preceded by initial suppression of tsetse populations by use of targets, traps, pour-ons and chemotherapy as was the case in Zanzibar (Vreysen *et al.*, 2000).

Later, 'bait technology' was used to attract flies to visual 'targets' treated with insecticides (Laveissiere *et al.*, 1990; Dransfield *et al.*, 1990). The control method proved highly adaptable and was rapidly adopted by individuals or communities of farmers to control trypanosomiasis. Traps and targets were highly appropriate for small-scale, community-based participatory control operations and above all were environmentally friendly. Despite its relatively low cost and technical simplicity, the bait technology has proved difficult to sustain for poor farmers working without support through external funding. Also, field problems associated with bait control e.g. losses due to theft, damage from humans and wild animals, fire or loss from being washed away in the rainy season, were a draw back to its full use (Hargrove *et al.*, 2000).

The development of 'bait technology' led to the emergence and use of synthetic pyrethroids applied as dip or as a 'pour-on' (Thomson, 1987). Insecticide-treated livestock was regarded as a modification of trap and target technique as Insecticide-treated domestic animals are taken as "moving targets" (Leak *et al.*, 1995; 1996). The method is quite effective when cattle are present in large numbers and are treated on a regular basis. The insecticides also reduce the number of biting flies and ticks (Warnes *et al.*, 1999). Problems associated with this control method included: high cost, environmental concerns which tend to destroy invertebrate

fauna in dung (Vale *et al.*, 2004) and contamination of blood and milk (Bourn *et al.*, 2005). The insect vector remains at the center of hope for development of long term control of trypanosomiasis, as declared by African heads of states in 2000 (Kabayo, 2002). Member states like Ethiopia have made big steps by setting up insectaries to produce sterile males to be used in SIT programs (Enserink, 2007). Availability of genomic data allow studies e.g. host-parasite interactions, which can be used to develop refractory tsetse flies and genes related to olfaction can result in improvement of trapping technologies (Aksoy *et al*, 2005).

The focus of this work was on *G. pallidipes*, a savanna tsetse fly that is the main vector of AAT and whose odor composition of preferred and nonpreferred hosts has been determined (Gikonyo *et al.*, 2002). Synthetic repellants have also been developed and used along with traps to reduce tsetse fly populations (Saini and Hassanali, 2007). Riverine tsetse flies are also important vectors of HAT and recent studies have identified natural odors that can be used to improve performance of traps to control the fly population. Hence, comparative analysis of *G. pallidipes* with riverine species (*G. palpalis gambiensis* and *G. tachinoides*) may help determine the differences in vectorial capacity as well as habitat and host selection preferences.

1.4 Glossina Species

1.4.1 Glossina pallidipes

Glossina pallidipes are the principal vectors of nagana with causative trypanosomes being *Trypanosoma congolense*, *T. vivax* or *T. brucei brucei*. In eastern Africa *G. pallidipes* predominates and occurs in many countries including Ethiopia, Sudan, Somalia, Kenya, Tanzania, Uganda, DRC Congo, Zambia, Zimbabwe and Mozambique [Figure 1.2(a)]. It is abundant along the coastal regions and certain river valleys in Somalia (Rogers and Robinson, 2006). Population genetic studies of *G. pallidipes*, supported by allozyme, mitochondrial and microsatellite markers, have shown high levels of genetic differentiation with restricted gene flow (Krafsur and Wohlford 1999; Ouma *et al.*, 2003; 2005) with the southern *G. pallidipes* population having experienced a severe and prolonged bottleneck (Krafsur, 2002). Examples of *G. pallidipes* hosts are bushbuck, warthog, bushpig and buffalo while oribi, impala, waterbuck, hartebeest and reedbuck are rarely fed on (Turner, 1987; Grootenhuis and Olubayo, 1993). Baits, insecticide spraying and SIT have been used to control *G. pallidipes* (Dutoit, 1954).

1.4.2 Glossina palpalis gambiensis and Glossina tachinoides

Both *G. palpalis gambiensis* and *G. tachinoides* are riverine flies restricted to humid areas, mangrove swamps, rain forest, lake shores and gallery forests along rivers (FAO, 1982a). *G. p. gambiensis* are localized in humid areas of Senegal, Cameroon, along the coast of Angola and north of Mali [Figure 1.2(b)] while *G. tachinoides* are found distributed from Guinea in the west to Central African

Republic in the east, along Sudan-Ethiopia border, northern Nigeria and Chad [Figure 1.2(c)].

Population genetic studies have not been carried out for G. tachinoides. However, low allozyme diversities have been reported for G. p. gambiensis (Elsen and Roelants, 1999) while microsatellite studies have shown that there is significant genetic variation in X-linked loci, indicating existance of genetic differentiation on macro- and micro-geographic scales (Solano et al., 1999). The main host for both species is man and cattle. Porcupines are preferred by G. tachinoides while G. p. gambiensis prefer feeding on reptiles and bushbuck. Generally, G. tachinoides and G. p. gambiensis do not feed on wild pigs like warthog, bushpig, red river hog and giant forest hog but they mainly fed on domestic pigs. Hence, they can also transmit AAT but the disease is less severe. Trypanosome parasites transmitted by the two species include T. vivax, T. congolense and T. brucei. However, palpalis group are the princple vectors of sleeping sickness caused by T. b. gambiense (Courtis et al., 2005). Insecticide-impregnated targets have been used to control G. tachinoides and G. p. gambiensis in West Africa and prospects of developing better traps are high with the identification of odors from human, cattle and pigs (Rayaisse et al., 2010).

Figure 1.2 Distribution map of *G. pallidipes* (a), *G. palpalis gambiensis* (b), and *G. tachinoides* (c) (Pollock, 1982).

1.5 Tsetse fly Hosts Preference

Tsetse flies exhibit different feeding patterns on specific groups of vertebrate hosts. Animals like warthog, bushpig, cattle, bushbuck, elephant and buffalo are frequently fed on by tsetse flies while others like zebra, giraffe, black rhinoceros, waterbuck, hartebeest and impala are rarely fed on (Clausen *et al.*, 1998). Tsetse locates and recognize preferred host through olfactory and visual cues. The host produce odors which activate the fly beyond its visual range and at close vicinity to the host, the fly is stimulated by visual cues such as shape, size, colour and movement (Leak, 1998). Excretory products (urine, dung, breath and glandular secretions) emit attractive odors to tsetse which are detected by the antennae (Warnes, 1990). Savannah tsetse flies are attracted by buffalo urine, reported to contain at least 7 phenolic compounds (Hassanali *et al.*, 1986; Madubunyi *et al.*, 1996; Owaga *et al.*, 1988). Body and breath odors are other sources of tsetse attractants (Vale and Hall, 1985) while body odors from Waterbuck repel tsetse flies (Gikonyo *et al.*, 2000). Of the known tsetse fly attractants 4-cresol (4-methylphenol) and 3-n-propylphenol are common to buffalo and Ox (Saini *et al.*, 1993). Guaicol (2-methoxyphenol), 3-isopropyl-6-methylphenol and a series of (C₈-C₁₃) methylketones in waterbuck are moderate repellents (Torr *et al.*, 1996), while 4-methylguaicol (2-methoxy-4-methylphenol) and δ -octalactone are strong repellents (Gikonyo *et al.*, 2002). Feeding response of *G. pallidipes*, *G. m. morsitans* and *G. fuscipes* to preferred hosts have been studied with a range of natural odors identified (Gikonyo *et al.*, 2002; Omolo *et al.*, 2009). The Identified volatile odors (attractants and repellents) from tsetse hosts find application in providing alternative means that can be exploited to control the fly by developing more potent odors through structural studies (Saini and Hassanali, 2007).

1.6 Insects Olfactory System

Living organisms detect chemicals from their external environment through chemosensory systems, broadly divided into physical (mechanical, sound, vision and temperature) and chemical (gustation and olfaction) systems. Both gustation (sense of taste) and olfaction (sense of smell) systems are similar as they transduce chemical signals into perception (Chandrashekar *et al.*, 2006). The olfactory system performs the complex task of detecting, differentiating the quality and assessing the

concentration of thousands of different odors e.g. aldehydes, esters, ketones, alcohols, alkenes, carboxylic acids, amines, imines, thiols, halides, nitriles, sulphides and ethers. Animals have developed sophisticated olfactory systems to decode chemical information from their environments with great precision (Hildebrand and Shepherd, 1997; Vogt, 2005). The functional organisation of the vertebrate and invertebrate olfactory system is highly conserved (Bargmann, 2006). The simplicity of Insects' olfactory system makes it an attractive and ideal model to study chemoreception (Rutzler and Zwiebel, 2005; de Bruyne and Baker, 2008).

The antennae, main olfactory organ in insects, is responsible for translating the chemical odorant messages into neuronal electrical activities to elicit behavioral-physiological responses. Its surface is innervated by sensilla which are also distributed in other parts of the insect's body and are often used for purposes unrelated to feeding including mechano-, hygro-, and thermo reception (Boeckh *et al.*, 1987; de Bruyne *et al.*, 2001). There occur three morphological and functionally different auxiliary cells per sensillum. These are thecogen, trichogen and tormogen cell. The thecogen encloses the neurons from the axons up to the outer dendritic segment, trichogen cell which is the largest secretes the cuticle of the hair shaft during development while tormogen cell secretes part of the hair base during development (Hansson, 1999). The cuticular forms of sensilla are very variable. For example, in the locust and *Drosophila* there are three distinct types, two of basiconic and one of coeloconic sensilla (Stocker, 1994).

The long hairs with thick walls are trichoid sensilla, short finger-like projections (basiconic pegs), flat plates level with the general surface of the cuticle (plate or placoid sensilla) and short pegs sunk in depressions of the cuticle and opening to the exterior via a relatively restricting opening (coeloconic sensilla) (Wegener et al., 1997). The sensilla contain one or several bipolar olfactory receptor neurons (ORNs) which detect chemical stimuli at the dendritic end and transform it into distinct neuronal signalling at the axonal end. The ORNs arise from epithelial cells and during development, pre-sensillum cluster of cells are formed, some of which move basally to become neurons but three remain apical to form the accessory cells that surrounds the neurons (Endo et al., 2007). The neurons determine the scope and accuracy that odors are identified and processed while accessory cells provide the extracellular environment that supports their function (Park et al., 2002). These cells (neurons and accessory) form sensilla that contain sensillum lymph that bath neuronal dendrites within the lumen (Zacharuk, 1985). The cuticle of sensilla are perforated by numerous small pores which permit entry of chemicals or odors (Steinbrecht, 1997). An ORN is differentiated into three compartments namely: the outer dendrite (exposed to the sensilum lymph), the inner dendrite and the soma (both tightly wrapped by the thecogen cell) and the axon (covered with a glial sheath). ORNs are situated in different types of sensilla each bearing 2-4 ORNs that send their afferent projections to the glomeruli in the antennal lobe, the first olfactory processing center (Stocker, 1994). The axons from the neurons extend without synapses, to the antennal lobes, ending in arborizations that form the olfactory glomeruli. In general, each neuron ends in one glomerulus and all neurons

responding to the same or group of compounds, end in the same glomerulus as it is the case for sensilla on the palps and antennae (Vosshall *et al.*, 2000).

The perireceptor events involved in odor coding range from odorant capture to activation of ORNs with generation of electrical messages through signal transduction processes. Olfactory proteins are involved in odor perception, transport, clearance, signal transduction and include: Odorant binding Proteins (OBPs), Pheromone Binding Proteins (PBPs), Chemosensory proteins (CSPs), Odorant Degrading Enzymes (ODEs) and Odorant receptors (Ors) (Pelosi *et al.*, 2006; de Bruyne and Baker, 2008). The OBPs, PBPs, CSPs and ODEs are expressed in the support cells and secreted into the sensilla lumen (Steinbrecht *et al.*, 1992; Sandler *et al.*, 2006).

1.6.1 Odorant and Pheromone Binding Proteins

Odorant binding Proteins (OBPs) and Pheromone Binding Proteins (PBPs) are a diverse multigene family of antennal specific proteins containing about 130 - 150 amino acids residues (Pelosi and Maida, 1995; Robertson *et al.*, 1999). They are small (14-20 kda) proteins with a signal peptide, a hydrophobic domain between residues 40 - 60 and six conserved cysteines (Prestwich, 1993; Biessmann *et al.*, 2002). A comparison between the amino acid sequences of PBP and two OBPs (general odorant binding proteins (GOBP1 and GOBP2), shows that they are conserved at certain amino acids hence they belong to the same class (Breer *et al.*,
1990; Vogt et al., 1991a,b). GOBPs expressed in both male and female antennae (Breer et al., 1990) and located in the sensilla basiconica (Laue et al., 1994), are more similar to each other (Pelosi and Maida, 1995) while PBPs are mainly expressed in male antennae and located in the pheromone sensitive sensilla (sensilla trichodea) (Raming et al., 1989). The distribution of OBPs in different types of sensilla is related to the odorants detected and associated with distinct classes of ORNs (Vogt et al., 1991a). Both OBPs and PBPs are involved in perireceptor events but differ in the molecules they bind with OBPs binding more general odors while PBPs bind pheromones (Du and Prestwich, 1995). OBPs are synthesized by accessory cells and secreted into sensillum lymph surrounding dendrites projections of ORNs (Steinbrecht et al., 1995). They are thought to bind volatile hydrophobic odorants entering this fluid and transport them to membrane bound odorant receptor (Or) located in the ORNs (Sandler et al., 2000). Insects OBPs have been isolated from a variety of insect species including Antheraea polyphemus (Raming et al., 1989), Antheraea pernyi (Breer et al., 1990), Heliothis virescens (Krieger et al., 1993), Bombyx mori (Gong et al., 2009), Drosophila melanogaster (McKenna et al., 1994; Pikielny et al., 1994; Kim and Smith, 2001), Apis mellifera (Foret and Maleszka, 2006), Anopheles gambiae (Biessmann et al., 2002; Xu et al., 2003), Culex pipens guinguefasciatus (Pelletier and Leal, 2009), Aedes aegypti (Zhou et al., 2008) and G. m. morsitans (Liu et al., 2010).

The discovery of great diversity of OBPs in insects suggests that these proteins could ensure the molecular coding of odorants and be the first step in odorant discrimination (Jacquin-Joly *et al.*, 2001; Biessmann *et al.*, 2002). Although the functional role ascribed to these soluble proteins in the perireceptor events is still unclear, it has been hypothesized that they may have the function to: recognize odors and pheromone, solubilize the hydrophobic odorant/pheromone components in the sensillum lymph (Maibeche-Cosine *et al.*, 1997), transport the odor through the sensillum lymph (Ziegelberger, 1995), mediate its delivery to the specific Ors located in the ORNs (Jacquin-Joly and Merlin, 2004;), degrade, clear (Prestwich, 1993) and act as scavenger protein for receptor deactivation (Rutzler and Zwiebel, 2005).

1.6.2 Chemosensory Proteins

Another soluble protein that is found within the insect's sensilium lymph is chemosensory protein (CSPs). It also contains α -helical domains just like the OBPs, and folded in two different patterns (Lartigue *et al.*, 2002). Unlike, OBPs, CSPs are better conserved with often greater than 50% identical residues even between members of phylogenetically distant species and share no sequence similarity with OBPs (Ozaki *et al.*, 2008). They consist of about 120 amino acid residues and are characterized by four conserved cysteines forming two disulphide links between adjacent residues, resulting in formation of two small loops of eight and four amino acids (Angeli *et al.*, 1999). Despite their different structures, OBPs and CSPs represent two different classes of proteins performing similar roles in perireceptor events by binding and transporting odors (Campanacci *et al.*, 2003; Zhou *et al.*, 2004). They are also expressed in non-chemosensory tissues implying that they are involved in functions other than olfaction (Jacquin-Joly *et al.*, 2001; Sabatier *et al.*, 2003; Gong *et al.*, 2007). Chemosensory proteins may also be implicated in immune response, circadian cycles or development (Sabatier *at al.*, 2003).

The first identified CSPs were OS-D proteins in *Drosophila melanogaster* antennae (McKenna *et al.*, 1994; Pikielny *et al.*, 1994). Several CSPs have been identified in different insects orders which include Lepidoptera (Jacquin-Joly *et al.*, 2001; Picimbon *et al.*, 2001; Gong *et al.*, 2007), Orthoptera (Angeli *et al.*, 1999; Ban *et al.*, 2003), Hymenoptera (Briand *et al.*, 2002; Ishida *et al.*, 2002), Blattoidea (Kitabayashi *et al.*, 1998; Picimbon and Leal, 1999), and Hemiptera (Jacobs *et al.*, 2005).

1.6.3 Odorant Degrading Enzymes (ODEs)

Odors and pheromones are xenobiotic substances and once they have activated Ors they need to be degraded to prevent interference with the recognition system. Odorant degrading enzymes (ODEs) are involved in the deactivation and are found in high levels within the sensillum lymph (Pelosi, 1996). In Insects, these detoxifying enzymes specific for species' sex pheromones have been identified and include esterases, oxidases and glutathione transferases. (Vogt and Riddiford, 1981; Vogt *et al.*, 1985; Rybczynski *et al.*, 1990). In *Drosophila* a NADPH-cytochrome P450 oxidoreductase is thought to be involved in olfactory clearance (Hovemann *et al.*, 1997). In *M. sexta* the pheromone consists of two or more aldehydes

(Tumlinson *et al.*, 1989) and the aldehyde oxidase is presumably capable of metabolising the entire signal. This is in contrast to *A. polyphemus* pheromone which is a mixture of an acetate ester and an aldehyde. The esterase is known to degrade the acetate ester component of the pheromone (Vogt *et al.*, 1985) while the aldehyde component is broken down by an aldehyde oxidase (Rybczynski *et al.*, 1990). Similarly, the silk moth *B. mori* pheromone consists of an alcohol (bombykol), degraded by either an oxidase or dehydrogenase (Kasang *et al.*, 1989) and an aldehyde (bombykal), degraded by an aldehyde oxidase (Rybczynski *et al.*, 1990).

The detoxifying mechanism is varied and in several Lepidoptera species, the functional group of the pheromone is first modified into a more hydrophilic one, with consequent increase of the compound's solubility. The modified pheromone is not capable of further excitation of the ORNs resulting in termination of the signal (Prestwich *et al.*, 1989; Vogt *et al.*, 1990). In *A. polyphemus*, the pheromone interacts with the receptor in its reduced form and is then converted to the oxidized form thereby deactivating the pheromone bound to the PBP (Kaissling, 1998).

1.6. 4 Odorant Receptors (Ors)

Odorant receptors (Ors) are a multigene family of about 370 – 400 amino acids that belong to the seven transmembrane G protein-coupled receptors (GPCRs) superfamily (Mombaerts, 1999) and are expressed in ORNs (Benton, 2006). The GPCRs are involved in a variety of cellular processes including hormonal regulation, neurotransmission and photoreception. It is a protein complex that has a membrane receptor for external signal reception, a heterotrimeric transducer (G protein) and one of several effector enzymes (e.g. phospholipase C or adenyl cyclase) (Breer, 2003). The G-proteins comprise of α , β and γ subunits. The α subunit is responsible for GTP binding and hydrolysis to GDP hence the G-proteins are generally referred to by this α subunit (Kalidas and Smith, 2002). The receptors have seven transmembrane regions with the C-terminus of the protein situated inside the cell cytoplasm and the N-terminus situated outside the cell, defining an external recognition domain (Buck and Axel, 1991).

In *Drosophila*, ORNs express one specific Or to the cell type and a ubiquitous one, Or83b, whose protein product dimerizes with the specific receptor and mediates its transport to olfactory cilia (Larsson *et al.*, 2004). The ORNs expressing the same Or converge on a common glomeruli in the antennal lobe. The number of Or genes reported varies with *Drosophila* having 62 Ors encoded by 60 genes (Clyne *et al.*, 1999) while the *Anopheles* mosquito has 85 Ors identified (Fox *et al.*, 2001). Generally, insects Ors are very divergent with little sequence conservation within and across insect orders and species (Hill *et al.*, 2002). However, *Heliothis* receptor HR2 shares a high degree of sequence identity (60–80%) with *Drosophila* (Or83b) and *Anopheles* (AgamGPROr7). Different orthologs of this unique Or subtype have been identified in several insect species which include moths (*Antheraea permyi*, *Bombyx mori*), honey bee (*Apis mellifera*), blowfly (*Calliphora erythrocephela*), yellow mealworm (*Tenebrio molitor*) (Krieger *et al.*, 2003), *M. brasicae* (JacquinJoly *et al.*, 2001) and yellow fever mosquito, *Aedes aegypti* (Melo *et al.*, 2004). In many insect species, Or83b is highly conserved, suggesting it could be involved in unique and essential functions in insect olfaction (Jones *et al.*, 2005). It is thought to be involved in Or activation as a dimerization partner (Vosshall *et al.*, 2000; Krieger *et al.*, 2003).

1.7 Mechanism of Olfactory Signal Transduction

Olfactory signal transduction is widely conserved across many organisms, including mammals, fish, crustaceans, nematodes and insects (Hildebrand and Shepherd, 1997; Krieger and Breer, 1999). Although many olfactory systems are complex, there is a general agreement that the transduction processes are initiated by highly specific interaction between an odor molecule and Ors on the dendrites of ORNs. Ors play a dual role, first they discriminate different odors and secondly, they transfer chemical message from extracellular to intracellular face of the ORN upon binding the ligand (Buck, 1996; Hildebrand and Shepherd, 1997). In mammals and nematodes binding of odorant to Ors activates G protein signalling cascade. This stimulates adenylate and guanylate cyclase, resulting in increase intracellular concentrations of cyclic AMP (cAMP) and GMP (cGMP) in mammals and nematodes respectively. Binding of either cAMP or cGMP activates and opens the cyclic nucleotide-gated (CNG) channels, allowing cations to enter into the neurons, producing an action potential that travels down the axon to the brain (Pellegrino and Nakagawa, 2009).

Before insect Or genes were identified, it was proposed that GPCR-mediated second messenger pathway was involved based on identification of phospholipase C and inositol-1,4,5-trisphosphate (IP₃) (Krieger and Breer, 1999). Increase in IP₃ concentration caused opening of IP₃-dependent Ca^{2+} channels in the outer dendrite membrane, causing Ca^{2+} influx in the cell. These inward currents form a receptor potential that elicits a discharge of action potentials which travel down ORN axons to antennal lobe where olfactory message is decoded (Krieger et al., 1997). Recent studies provide evidence that insect Ors are ligand-gated non-specific cation channels. Activation of G-protein by ligand-bound receptor stimulates adenyl cyclase. This generates cAMP which binds intracellular side of CNG channel causing an influx of Na⁺ and Ca²⁺, resulting in depolarizaton of ORNs (Wicher et al., 2008). Divergent views also propose a model involving a ligand-gated ion channel, formed by Or83b/Or complex, that is directly opened by binding of odorants to cause influx of cations (Sato et al., 2008). These proposals provide new insights on insects olfactory signal transduction mechanisms involving either ion or ligand-gated channels.

1.8 Justification

Effective control of tsetse flies depends on different complementary approaches that entails an integrated approach. Chemotherapy and tsetse vector control are the most widely used methods despite limitations linked to development of resistance, high costs and degradation to the environment. The use of *Bacillus thuringiensis* (Bt) toxin genes has been successfully applied in crops as an alternative insecticide to control insect pests. However, Bt toxins mostly target lepidopteran pests and there is need to develop strategies that reduce current reliance on insecticides to control insect vectors. One potential approach is to interfere with the tsetse olfactory system because of the vital role it performs in foraging for food, mates and sites to deposit their larvae. Determining molecular and structural aspects of olfactory proteins is an active area of research in insects chemical ecology as it promises alternative approach to controlling insects by interfering with its ability to find suitable mates and hosts through volatile chemical odors (semiochemicals). Such olfactory based approaches have been applied successfully in 'push-pull' strategies with plants that produce repellents (push) and traps that are blended with attractants (pull) to control insect pests. An alarm pheromone synthase gene from aphid has also been cloned into *Arabidopsis thaliana* to produce plants that repelled aphids and attracted beneficial insects. Thus, there is also need to develop environmentally friendly control strategies for insect vectors of human and animal diseases, such as mosquitoes, sand flies, horn flies and tsetse flies.

Tsetse flies use olfaction to find mates for reproduction and locate hosts for nutrition by detecting volatile semiochemicals in their external environment. The antennae is the main olfactory organ that allows odors to enter through pores and are transported to the olfactory receptor neurons (ORNs) through the sensillum lymph. A lot of research has been done to study insect olfaction system at the molecular level to help identify olfactory proteins and functional components involved in signal recognition and transduction mechanism. The main olfactory proteins include Odorant binding Proteins (OBPs), Pheromone Binding Proteins (PBPs), Chemosensory proteins (CSPs), Odorant Degrading Enzymes (ODEs) and Odorant receptors (Ors). It is important to undertake studies that will help identify olfactory genes in different tsetse species and determine their functions as it will contribute towards understanding the crucial role olfaction plays in tsetse chemical ecology as well as genomic divergence that may underline behavioural and physiological differences among the *Glossina* groups. Such information will be useful in developing novel and innovative ways of controlling tsetse flies to interfere with host interactions and mating behavior.

This study focussed on odorant binding proteins (OBPs) which are proposed to be the first molecules involved in odor perception during perireceptor events. *G. pallidipes* was selected because it is the principal vector of nagana and transmits *T. congolense*, *T. vivax* or *T. brucei brucei*. Moreover, its feeding patterns to preferred and nonpreferred hosts has been documented with a range of attractants and repellents already identified. The need to compare OBPs from riverine and savannah tsetse vectors necessitated the inclusion of *G. tachinoides* and *G. palpalis gambiensis* in this study. The latter two species are important riverine vectors of the disease trypanasomiasis. Thus, the three selected species make a good set for comparative studies because of the differences in their ecological habitats and host animal preference.

1.9 General Objective

To identify and characterise olfactory proteins in antennae of *G. pallidipes* and heads of *G. palpalis gambiensis* and *G. tachinoides*.

1.9.1 Specific Objectives

1. To profile the expression of genes in olfactory organs of *G. pallidipes, G. tachinoides* and *G. palpalis gambiensis.*

2. To identify putative olfactory protein homologs using bioinformatic approaches.

3. To assess tissue specificity of identified olfactory proteins in different body organs.

CHAPTER 2

2.0 IDENTIFICATION OF PUTATIVE OLFACTORY PROTEINS IN GLOSSINA SPECIES (DIPTERA: GLOSSINIDAE)

2.1 Introduction

This chapter reports analysis of OBPs and CSP obtained from sequencing of *G*. *pallidipes* antennal, *G. p. gambiensis* and *G. tachinoides* head libraries. The characteristic features (number of amino acids, molecular weight and isoelectric point) of the identified OBPs and CSP were predicted and then the OBPs and CSP compared with homologs identified in other insects. Phylogenetic relationship of the putative OBPs and CSP was also determined.

2.2 Materials and Methods

2.2.1 Study area and preparation of test insects

Adult *G. pallidipes* were sampled in Nguruman, Kajiado District, Kenya (1° 50'S; $36^{\circ} 05$ 'E) (between 14th and 24^{th} July 2005), using NGU traps baited with acetone and cow urine (Brightwell *et al.*, 1991), (Figure 2.0). Acetone was dispensed from 200 ml bottles each with a 2 mm diameter hole in the lid while cow urine was dispensed from suitable tins with the top covered by polythene and a 2 X 4 cm slot cut in the tin just below the rim. Cages were emptied after 24 hours catch. The area consists mostly of Acacia woodland with thickets along stream beds and is infested mainly by *G. pallidipes* Austen and smaller populations of *G. longipennis* Corti. Identification of *G. pallidipes* from other *Glossina* species was based on morphological characters that distinguish the species from *G. longipennis* (FAO,

1982a). The *G. pallidipes* sampled (4500) were immediately preserved in RNA*later* (Ambion Inc, Austin, TX) and transferred to the laboratory for analysis. *Glossina p. gambiensis* and *G. tachinoides* adults were reared from 250 and 220 pupae respectively, and exposed to acetone and cow urine for ten (10) minutes, all under standard laboratory conditions (temperature $25 \pm 1^{\circ}$ C; relative humidity 75 \pm 10%; fed on sterilized pig blood after every 24 hours using an artificial membrane) in the insectary at ICIPE (Moloo, 1971). The pupae were kindly donated by Dr. Philippe Solano of Institut de Recherche pour le Dèveloppement (IRD), Bukina Faso.

Figure 2.0 A map of Nguruman showing sampling sites (Dransfield et al., 1990)

2.2.2 Construction of *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides* cDNA libraries

Antennae were isolated from *G. pallidipes* (2000 male and female) (without sexing) using the standard methods of Pollock, (1982), and stored in RNA*later* (Ambion Inc, Austin, TX). Heads were similarly, isolated from *G. p. gambiensis* (100 males and 93 females) and *G. tachinoides* (93 males and 75 females) and stored at -80°C. Antennae were used for *G. pallidipes* as it is the main olfactory organ while head was used for *G. p. gambiensis* and *G. tachinoides* as it contains the antennae and other sensory appendages including mouthparts and sensilla. Poly (A) RNA were isolated from antenna (*G. pallidipes*) and heads (*G. p. gambiensis* and *G. tachinoides*) tissues using MicroPoly(A) Purist kit (Ambion Inc, Austin, TX). The process involved disruption and homogenization of the tissues followed by centrifugation at 4°C for 15 minutes. The clear lysate was transferred to a fresh tube and mixed with Oligo(dT) cellulose at room temperature. Centrifugation was done at 4,000g for 3 minutes to pellet the Oligo(dT) cellulose followed by two washes with lysate wash buffer.

The poly(A) RNA was then eluted with 200 µl of THE RNA Storage Solution and centrifuged at 5000g for 2 minutes. Final Ploy(A) RNA selection was carried out by re-suspending the Oligo(dT) cellulose then adding it to the eluted poly(A) RNA after which the mixture was heated for 5 minutes at 75°C. The tube was then rocked gently for 15 minutes at room temperature and Oligo(dT) cellulose

transferred back to the spin column followed by centrifugation at 5,000g for 20 seconds. After two washes, the poly(A) RNA was eluted into a fresh collection tube. To precipitate the eluted poly(A) RNA, 20 μ l of 5M ammonium acetate, 1 μ l glycogen and 550 ul absolute ethanol were added and the mixture left at -20°C overnight. RNA was recovered by centrifugation at 12,000g for 30 minutes at 4°C and pellet re-suspended in 5 μ l THE RNA storage solution. The quality of the poly(A)RNA was checked on a 0.3% agarose/ethidium bromide (0.1 μ g/ml) gel run at 60V for two (2) hours.

Complementary cDNA (cDNA) was constructed from respective RNAs using SMART cDNA library synthesis kit (BD Biosciences, Franklin Lakes, NJ) according to the manufacturer's instructions. Briefly, single strand cDNA was synthesized from 3 μ l poly(A) RNA (129 μ g/ml) using PowerScript reverse transcriptase, 1 μ l SMART IV oligonucleotide and 1 μ l CDS III/3' PCR primer. The tube contents were mixed, spun briefly, then incubated at 42°C for 1 hour in a 9800 Fast Thermal cycler (Applied Biosystems, Austin, TX) and then placed on ice to terminate first strand synthesis. Second-strand synthesis was performed by long distance (LD) PCR protocol using 5' PCR primer and CDS III/3' primer as sense and anti-sense primers respectively. The two primers also create *SfiI A* and *B* restriction enzyme sites at the end of nascent cDNA. Two identical amplification reactions were set up using 3 ul of first cDNA synthesis product. To both tubes the following were added in order: 79 ul PCR grade water, 10 ul 10X advantage 2 PCR buffer, 2 ul 50X dNTP mix, 2 ul 5' PCR primer, 2 ul CDS III/3' PCR primer and 2 ul 50X advantage 2 polymerase mix, to make a total volume of 100 ul. The contents were placed in a 9800 Fast Thermal cycler (Applied Biosystems, Austin, TX) with the following PCR program: 95°C for 1 minute, 30 cycles – 95°C for 10 seconds; 68°C for 6 minutes.

Integrities of the cDNAs were verified on 1.2% agarose gel (stained with ethidium bromide (0.5µg/ml)), immediately treated with 4 ul of proteinase K (20 ug/ul) at 45°C for 20 minutes and subsequently concentrated to a final volume of 79 ul using Microcon YM-100 column (Millipore, Bedford, MA). The cDNA concentrates were digested with Sfil restriction enzyme at 50°C for 2 hours and the resultant fragments size-fractionated on a ChromaSpin-400 drip column (BD Biosciences, Franklin Lakes, NJ). Validated profiles on 1% agarose gel (stained with ethidium bromide (0.5µg/ml)) revealed large (> 3000bp), medium (500bp to 3000bp) or small (<500bp) fragment fractions, which were individually concentrated (to 10 ul) using Microcon YM-100 columns (Millipore, Bedford, MA). Sequences in each fraction were ligated into lambda TripIEx2 vector (3 ul cDNA, 0.5 ul lambda TripIEx2 vector (500ng/ul), 0.5 ul 10X ligation buffer, 0.5 ul ATP (10 mM) and 0.5 ul T4 DNA ligase) (BD Biosciences, Franklin Lakes, NJ) and the resultant ligation mixture (4 ul) packaged into lamda vectors using Gigapack III gold packaging extract (Stratagene, La Jolla, CA). The packed phage libraries were plated using E. *coli* XL1-Blue competent cells, with transformation efficiency determined by percentage recombinant clones. Resultant plaques formed (~200 per library) were

eluted and plasmids purified using Qiagen plasmid purification kit (Qiagen Madison, WI) and integrity (size and quality) of respective cDNA insert validated via PCR using vector specific primers flanking the insert followed by fractionation of the fragments on 1% agarose gel stained with ethidium bromide $(0.5\mu g/ml)$.

2.2.3 Sequencing of *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides* cDNA libraries

Expressed sequence tags (ESTs) were generated by Sanger (capillary) sequencing from a total of 2863 cDNA library clones using an ABI3730 Sequencer and are available for download from <u>ftp://ftp.sanger.ac.uk/pub/pathogens/Glossina/</u>. Briefly, during capillary electrophoresis, the extension products of the cycle sequencing reaction enter the capillary as a result of electrokinetic injection. A high voltage charge applied to the buffered sequencing reaction forces the negatively charged fragments into the capillaries. The extension products are separated by size based on their total charge. The electrophoretic mobility of the sample can be affected by the run conditions: the buffer type, concentration, and pH; the run temperature; the amount of voltage applied; and the type of polymer used. Shortly before reaching the positive electrode, the fluorescently labeled DNA fragments, separated by size, move across the path of a laser beam. The laser beam causes the dyes on the fragments to fluoresce. An optical detection device on Applied Biosystems genetic analyzers detects the fluorescence. The Data Collection Software converts the fluorescence signal to digital data, then records the data in a *.ab1 file. Because each dye emits light at a different wavelength when excited by

the laser, all four colors, and therefore all four bases, can be detected and distinguished in one capillary injection (Applied Biosystems Chemistry Guide).

2.2.4 Analyses of G. pallidipes, G. p. gambiensis and G. tachinoides EST

sequence data

The ESTs (generated from the cDNA library sequencing) were processed and analysed using cDNA Annotation SoftwareTM (CAS) (Guo *et al.*, 2009). The software integrates different modules into a pipeline system with the final output piped into a tab-delimited file imported into an Excel spreadsheet (Valenzuela *et al.*, 2003). Briefly, primer and vector sequences were striped and the ESTs clustered using CAP3 assembler (Huang and Madan, 1999) of the software generating singletons and consensus sequences. Singletons are sequences not included in any clusters and consensus sequences contain two or more sequences within a cluster.

Both singletons and consensus sequences, referred hereafter as clusters, were functionally annotated using blastx (Altschul *et al.*, 1997) against nonredundant (NR) protein database of GenBank (Wheeler *et al.*, 2010) and gene ontology (GO) database (Ashburner *et al.*, 2000). Rpsblast identified conserved protein domains (Schaffer *et al.*, 2001) in Pfam (Bateman *et al.*, 2000), SMART (Letunic *et al.*, 2002) and KOG (Tatusov *et al.*, 2003) databases. Finally, signal peptides in the clusters were predicted using the SignalP program (Nielsen *et al.*, 1997). Subsequent clusters with putative olfactory protein domains (identified from the analyses with CAS software) were characterised for their molecular weights (MW)

and isoelectric points (pIs) using ProtParam software (Gasteiger *et al.*, 2005) and aligned against putative OBPs sequences of *G. morsitans morsitans* downloaded from GeneDB (Hertz-Fowler *et al.*, 2004) and other insects OBPs (*Drosophila*, *Musca domestica*, *Aedes aegypti*, *Anopheles gambiae*, *Heliothis virescens*, *Bombyx mori*, *Antheraea pernyi*, *Phyllopertha diversa* and *Apis mellifera*) in GenBank (Wheeler *et al.*, 2010), using ClustalW2 software (Larkin *et al.*, 2007).

Genetic distance between the putative OBPs and those in the databases were calculated using PHYML (Guindon and Gascuel, 2003) software, based on neighbour joining algorithm, maximum likelihood model and WAG substitution matrix (Whelan and Goldman, 2001). The generated consensus tree, based on 100 bootstrap replicates, was viewed using TreeDyn software (Chevenet *et al.*, 2006).

2.3 Results

2.3.1 Poly(A) RNA and cDNA Quality

Antennae and head were used as tissues to construct cDNA libraries. Poly(A) RNA was reverse transcribed to make first strand which formed template for second strand cDNA synthesis. The poly(A) RNA was found to be intact and assessment of its quality from agarose gel revealed that it looked like a diffuse smear from about 250 bp to about 1kb for *G. pallidipes* (Figure 2.1a), and ranges from 250 bp to about 2 kb for *G. tachinoides* and *G. palpalis gambiensis* (Figure 2.2a and 2.3a). cDNA synthesis was done by long-distance PCR (LD PCR) as it allows construction of cDNA library using nanogram amounts of poly(A) RNA with a

high percentage of full-length clones (Chenchik *et al.*, 1998). A moderately strong smear of cDNA from 250 bp to 2 kb was observed for *G. pallidipes* (Figure 2.1b) and from 250 bp to 2 kb for *G. tachinoides* and *G. palpalis gambiensis* (Figure 2.2b and 2.3b).

Figure 2.1 Poly(A) RNA (a) and cDNA (b) from *Glossina pallidipes* antenna (Gpa). 5 ul of poly(A) RNA and cDNA was resolved on 1% agarose gel stained with ethidium bromide. M-1 kb ladder, C - Control RNA.

Figure 2.2 Poly(A) RNA (a) and cDNA (b) from *Glossina tachinoids* head (Gth). 5 ul of poly(A) RNA and cDNA was resolved on a 1% agarose gel stained with ethidium bromide. M-1 kb ladder, C - Control RNA.

Figure 2.3 Poly(A) RNA (a) and cDNA (b) from *Glossina palpalis gambiensis* head (Gph). 5 ul of poly(A) RNA and cDNA was resolved on a 1% agarose gel stained with ethidium bromide. M-1 kb ladder, C - Control RNA.

2.3.2 Summary of Expressed Sequence Tags (ESTs)

Expressed sequenced tags (ESTs) obtained from G. pallidipes antennal, G. palpalis gambiensis and G. tachinoides head libraries were 1127, 906 and 830 respectively. These generated 18 consensus sequences and 278 singletons in G. pallidipes antennal library; 36 consensus sequences and 269 singletons in G. p. gambiensis head library. Similarly, 54 and 178 consensus sequences and singletons respectively were generated from G. tachinoides (Table 2.0). Clusters from G. pallidipes antennae, G. p. gambiensis head and G. tachinoides head were compared by the program blastx, rpsblast (Altschul et al., 1997) to NR protein database of GenBank (Wheeler et al., 2010), GO database (Ashburner et al., 2000) and conserved domains database of GenBank (Marchler-Bauer et al., 2002). Nine categories of transcripts were derived from manual annotation of the clusters. The clusters for G. pallidipes, G. p. gambiensis and G. tachinoides are as shown in Table 2.1. In G. pallidipes antennae, odorant/pheromone binding proteins were represented in 0.7% of the clusters and 0.9% of the sequences; energy metabolism had 3.7% of the clusters and 3.4% of the sequences, transcription factors with 4.7% of the clusters and 4.3% of the sequences and cytoskeletal having 7.8% and 7.4% of the clusters and sequences respectively.

	ESTs sequenced	Consensus	Singletons	Clusters
G. pallidipes	1127	18	278	296
G. p. gambiensis	906	36	269	305
G. tachinoides	830	54	178	232
Total	2863	108	725	833

Table 2.0 Number of ESTs sequenced and clusters generated from *Glossina* pallidipes antennal, *Glossina tachinoides* head and *Glossina palpalis gambiensis* head libraries

Table 2.1 Summary of	clusters found in (Glossina pallidipes	antennae, Gloss	ina palpalis go	<i>ambiensis</i> head a	nd <i>Glossina ta</i>	<i>chinoides</i> head
libraries							

G. pallidipes					G. p. gambiensis				G. tachinoides			
Category	Clusters	Seqs	% Clusters	% Seqs	Clusters	Seqs	% Clusters	% Seqs	Clusters	Seqs	% Clusters	% Seqs
Odorant/Pheromone Binding	2	3	0.7	0.9	5	6	1.6	0.9	3	4	1.4	0.7
Energy Metabolism	11	11	3.7	3.4	23	33	7.5	5.2	24	46	10.8	8.4
Transcription Factors	14	14	4.7	4.3	17	22	5.6	3.5	29	33	13.1	6.0
Cytoskeletal	23	24	7.8	7.4	11	14	3.6	2.2	6	15	2.7	2.7
Transporters	21	22	7.1	6.8	23	27	7.5	4.3	12	16	5.4	2.9
Signal transduction	27	36	9.1	11.1	15	26	4.9	4.1	7	34	3.2	6.2
Protein Function	56	60	18.9	18.6	90	100	29.5	15.8	56	261	25.2	47.5
Unknown	49	54	16.6	16.7	29	162	9.5	25.6	30	53	13.5	9.7
Hypothetical	93	99	31.4	30.7	92	242	30.2	38.3	65	82	29.3	14.9
Total	296	323			305	632			222	549		

2.3.2.1 Glossina pallidipes clusters with matches to nonredundant (NR),

Conserved Domains (CDD) and Gene ontology (GO) databases

Two clusters (265 and 266) from *G. pallidipes* antennae are related to *D. erecta* Olfactory Specific-F and *An. gambiae* AgamOBP1 respectively (Table 2.2). Cluster 265 did not have a signal peptide and a total of eleven clusters may be involved in energy transduction processes with fourteen clusters implicated in transcriptional factors. Cytoskeletal, transporters and signal transduction all had an average of 20 clusters. Fifty six clusters were matching proteins of known function that may be involved in basic metabolism and majority of the clusters were either unknown (49 clusters) or hypothetical (93 clusters) (Appendix I).

Of the 296 clusters, only thirty one (31) are possibly secretory proteins as they had a signal peptide signature. The remaining clusters have no conclusive indication of either a leader signal peptide or complete ORF, probably due to the diminished sequence quality. Many of the clusters have high identity to insects (*Drosophila*, *Anopheles gambiae*, *Vasdavidius concursus*, *Chrysomya putoria*, *Hypoderma sinense*, *Lucilia cuprina* and *Aedes aegypti*), confirmation that the annotation was good. Other clusters had best matches to proteins known from mammals, *Arabidopsis thaliana*, *Caenorhabditis briggsae* or other organisms. Clusters with no significant matches to either NR protein database of GenBank (Wheeler *et al.*, 2010) or GO database (Ashburner *et al.*, 2000) accounted for 17.9%.

2.3.2.2 *Glossina palpalis gambiensis* clusters with matches to nonredundant (NR), Conserved Domains (CDD) and Gene ontology (GO) databases

Four clusters from *G. p. gambiensis* (184, 204, 206 and 255) had significant matches to olfactory proteins from *Drosophila* (Table 2.2). Cluster 195 had homolog to transcription factor IIIB from *Dictyostelium discoideum* (Chung *et al.*, 2007). Its involvement in odorant/pheromone binding is based on GO annotation. Altogether, twenty three (23) clusters were linked to energy metabolism while transcriptional factors, cytoskeletal and transporters had 17, 11 and 23 clusters respectively. Fifteen clusters were associated with signal transduction molecules and ninety clusters annotated as proteins of various functions. The unknown and hypothetical clusters had 29 and 92 clusters respectively (Appendix II).

Notably, 4 clusters were homologs to *G. m. morsitans* proteins with cluster 174 being related to *G. m. morsitans* imaginal disc growth factor 4 and encodes a gene related to chitinase. Cluster 207 is similar to MnFe superoxide, cluster 221 represents *G. m. morsitans* homolog (Gmfb8) with unknown function and cluster 259 is homolog to *G. m. morsitans* ferritin. Among the signal transduction clusters, two clusters are related to vision, one cluster to *Homo sapiens* G-Protein Coupled Receptor (GPCR 52) and one arrestin. The percentage of clusters having signal peptide and those without significant matches to NR protein database was 13.4% and 4.9% respectively. Many high identities of species were of insects, few *Ixodes scapularis* and other organisms which included mammals, plants, parasites and nematodes.

2.3.2.3 Glossina tachinoides clusters with matches to nonredundant (NR),

Conserved Domains (CDD) and Gene ontology (GO) databases

Three clusters are probably involved in odorant binding with clusters 63 and 151 having significant matches to *D. melanogaster* PBP/OBP and cluster 216 similar to *Musca domestica* odorant binding protein 3 (Table 2.2). None of the *G. tachinoides* olfactory protein clusters had signal peptide. The number of clusters involved in energy metabolism, transcription factors and cytoskeletal were 24, 29 and 6 respectively. Transporters, signal trasduction and protein function had 12, 7 and 56 clusters respectively. Thirty clusters were classified as unknown and sixty five clusters as hypothetical (Appendix III). Cluster 125 was the only identified paralog from *G. m. morsitans*. As reported for *G. p. gambiensis*, signal transduction had clusters related to opsin, arrestin and olfactory receptor homologs from *Bos taurus*. The percentage of clusters with signal peptide stands at 29.3% while twelve clusters, all under unknown category, had no positive hits from NR protein database. Distribution of species varied among Insects with *Drosophila*, being the most dominant. Other hits included plants, ticks, nematodes and parasites.

Table 2.2 Functional annotation of odorant/pheromone cDNA clusters from *Glossina pallidipes* antennae library, *Glossina palpalis gambiensis* and *Glossina tachinoides* head libraries producing best hits to nonredundant (NR) protein database of GenBank, gene ontology (GO) and conserved domains (CDD) database

	No of	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
Cluster No.	Seqs										
Gpacontig265	1	Olfactory Specific F	emb CAE00444.1	7.0E-18	Drosophila erecta	Pfam PBP/GOBP family	0.029	pheromone binding	3.0E-18	0005550	No
Gpacontig266	2	AgamOBP1	gb AAO12081.1	3.0E-30	Anopheles gambiae	Pfam PBP/GOBP family	4.0E-19	pheromone binding	1.0E-30	0005550	Yes
Gphcontig184	2	Olfactory Specific F	ref NP_524241.1	5E-36	Drosophila melanogaster	Smart Insect PBP/OBP domains	8E-18	pheromone binding	3.0E-37	0005550	Yes
Gphcontig195	1	transcription factor IIIB	ref XP_640891.1	5E-05	Dictyostelium discoideum	Smart Putative single-stranded NAs	0.077	pheromone binding	3.0E-04	0005550	No
Gphcontig204	1	CG11852-PA	gb AAM50923.1	2E-19	Drosophila melanogaster	Pfam Odorant binding protein	2E-29				No
Gphcontig206	1	hypothetical protein	emb CAJ01441.1	2E-09	Drosophila pseudoobscura	Pfam Insect PBP-binding family	4E-09	pheromone binding	1.0E-09	0005549	No
Gphcontig255	1	GA16322-PA	gb EAL28074.1	1E-45	Drosophila pseudoobscura	Pfam PBP/GOBP family	2E-15	odorant binding	2.0E-46	0005549	No
Gthcontig63	2	RH74005p	gb AAM29645.1	1E-44	Drosophila melanogaster	Pfam Insect pheromone-binding family	1E-42	odorant binding	6E-46	0005549	No
Gthcontig151	1	odorant binding protein 83g	gb AAN13232.1	9E-19	Drosophila melanogaster	Smart Insect PBP/OBP domains	3E-10	odorant binding	4E-20	0005549	No
Gthcontig219	1	odorant binding protein 3	gb AAV74624.1	5E-07	Musca domestica	Smart Insect PBP/OBP domains	5E-08	pheromone binding	2E-08	0005550	No

2.3.3 Molecular weights and Isoelectric points

The numbers of amino acids for putative *Glossina* OBPs are in the range of 103 to 210. Predicted molecular weights (MWs) also vary considerably between 11.9 kDa to 25.1 kDa while pIs reported are mainly alkaline implying that OBPs in *Glossina* species are positively charged at physiological pH in the antennae (Table 2.3).

 Table 2.3 Predicted Molecular weight and Isoelectric points for putative Glossina

 OBPs

Putative <i>Glossina</i> OBP	Number of amino acids	Molecular Weight (kDa)	Isoelectric point (pI)
Gpacontig265	136	15.4	9.77
Gpacontig266	188	21.9	8.49
Gphcontig184	192	22.8	9.49
Gphcontig195	195	22.4	8.51
Gphcontig204	178	20.5	9.1
Gphcontig206	111	13.1	10.31
Gphcontig255	210	25.1	9.14
Gthcontig63	198	22.8	9.46
Gthcontig151	126	15	9.27
Gthcontig219	103	11.9	9.43

kDa – Kilo Daltons; GpacontigXXX - *Glossina pallidipes* antennae contigs; Gphcontig XXX - *Glossina palpalis* head contigs; GthcontigXXX - *Glossina tachinoides* head contigs

2.3.4 Multiple Sequence Alignment

An alignment of six putative *Glossina* OBPs (Gpacontig265; Gpacontig266; Gphcontig184; Gthcontig63, Gthcontig151 and Gthcontig219) with *G. m. morsitans* OBPs downloaded from geneDB (Hertz-Fowler *et al.*, 2004) showed that they had characteristic features of Insect OBPs (Figure 2.4). Two putative *Glossina* OBPs (Gpacontig266 and Gphcontig184) had six conserved cysteine amino acids while Gpacontig265, Gthcontig151 and Gthcontig219 all had one cysteine residue. Gthcontig63 had the characteristic four cysteine residues for chemosensory proteins (CSPs). Five *G. m. morsitans* putative OBPs (cn15569, cn15565, cn15220, cn7403 and GLAER58TV) had 6 conserved cysteines; three *G. m. morsitans* putative OBPs (cn13968, cn14014 and cn15331) had 5 cysteines. The putative OBPs (cn13435 and GLAAS20TVB) had 4 cysteines with cn14707 and cn15567 each having 3 cysteines while GLAC953TV contained 1 cysteine. The putative *Glossina* OBPs are low in sequence similarity (Figure 2.4), demonstrating the highly divergent nature of this protein family even in insects of the same genus.

The five putative *Glossina* OBPs and CSP were also aligned with selected insects OBPs (Figure 2.5) and CSPs (Figure 2.6) extracted from GenBank (Wheeler *et al.*, 2010). The OBPs included olfactory Specific-F (*Drosophila erecta*), olfactory Specific-E (*Drosophila simulans*), OBP3 (*Musca domestica*), OBP (*Drosophila willistoni*), OBP (*Aedes aegypti*), OBP (*Anopheles gambiae*) GOBP2 (*Heliothis virescens*), GOBP1 (*Bombyx mori*), GOBP2 (*Bombyx mori*), GOBP2 (*Antheraea*)

pernyi), OBP2 (Phyllopertha diversa), PBP (Bombyx mori), PBP (Heliothis virescens), OBPASP5 (Apis mellifera) and ABP8 (Manduca sexta). The CSPs used in the alignment were from Heliothis virescens, Bombyx mori, Apis mellifera, Microplitis mediator, Glossina morsitans morsitans, Tribolium castaneum, Aphis gossypii putative, Sclerodermus guani, Spodoptera exigua, Plutella xylostella, Drosophila melanogaster and Anopheles gambiae.

The alignment revealed that OBP sequences are diverse unlike the CSPs which are more highly conserved at certain amino acid residues. They have four conserved cysteines, three highly conserved aromatic residues, a lysine residue between cysteines 3 and 4 and a glutamine residue at the fourth amino acid from cysteine 4. The *Glossina* CSP ortholog (Gthcontig63) have the first, second and third aromatic amino acids as phenylalanine, tryptophan and tyrosine respectively (Figure 2.6).

It was noted that Antennal-binding protein (ABP) from *Manduca sexta* also had four conserved cysteines though at different positions from CSPs. The four cysteine amino acids are in similar position with the other cysteines found in OBPs, suggesting that ABP belongs to the OBP family.

Gpacontig266	RGRTAAEECLLQYLTKATKEHNSKKRRRRTIAAER	RLIKMEKYHI-YIVI	FFAMTLLLSFG	LNNAQKPRRI	DENYPPPDFLKSE	KIIHDV <mark>C</mark> EEKT	'G <mark>A</mark> T
Gphcontig184	LSKNCCGRVLASFNIRKQQRNIKINIKKKKRRKRRRRRR	RTIVEQKTSK-KSIS	SLRSPRCYCRS	VTYAQKPRRI	DENYPPPDFLKFF	KIIHEV <mark>C</mark> VEKT	'G <mark>A</mark> T
cn15569	VNTIQTTRTLENLVSS	SHLIICHF	SKTTAVILLA	LFALVSADY	KLRNQEDI	JNKARKE <mark>C</mark> MEAK	KVT
cn15567	VSS	SHYIVIF	SKTTAVILLA	LFALVSADY	KLRNQEDI	JNKARKE <mark>C</mark> MEAK	KVT
cn15565	-SWPRLTVWLCGGLGIHFRDSRPVPHWNTSQRKKGVPGVGRLEWDPRAQNWHEATGHRNLSS	SHLIILSFLVREYTK	KKKTTAVILLA	LFALVSADY	KLRNQEDI	JNKARKE <mark>C</mark> MEAK	KVT
cn15220		· N	MKLFLIILSTT	VALVFAKFD	IRTKDDA	ALKAHEE <mark>C</mark> HEEF	'QVP
cn7403	IKR	RVVVSVTNNMKTIIV	/IVFLVTLATV	WGHHHHEHHI	ODDDY <mark>VV</mark> KTREDI	JFKYRDE <mark>C</mark> SNKL	NVP
Gpacontig265	GEFSDGE	1	IPEVEALKCSM	INSLFHNSDLV	DAKGAV	/LF <mark>E</mark> KLVFKFPA	AVR
cn14707						MSER <mark>C</mark> MRLE	KVP
cn13435		MB	(ELILIFLLTI	VTCIRAEDEI	DWQPKTVADI	KSIRNE <mark>C</mark> LKEH	PLS
Gthcontig151						VFS <mark>C</mark> WVKV	NC-
GLAAS20TVB	VLVAXGDPCFARCIASEKGWFDIDLSRWNK	QRLVDELGANMY	YNYCRFELNRA	FKNVCSFAF	CGLKCLKQAEMN	IITHNNLLECV	KEK
Gthcontig219			RRYWTAFREI	SAYDTR		TV	PNG
cn14014		MMKYFEIFV	/VFALFSIMLV	VTNAEDDDE1	NEIGMTLDELADA	LESFAEDCEPK	PER
GLAC953TV		MEFLADFKHCKRE	ERGVGRFELDR	LRVGNLAYPS	SYEAKCFLGC	CLYERTGILKNG	VLQ
cn13968	SKNV	/IDLLEGKIYAPAQY	YQLKPADNFAS	SPVNKRQQMI	PTSDIPKNMQQFQ	DTLNEAKFKCA	RAM
cn15331		MKSWII	LVLLTVGAVTI	IDGSNDKAAA	ADNKVILLYHKRA	ACLEMEGLSEEV	FPG
GLAER58TV			-MKLITVIVFS	SIDFLLFIDAS	SPSG <mark>V</mark> QEG	IVLHQ <mark>C</mark> LAPF	GGY
GLAER58TV			-MKLITVIVFS	SIDFLLFIDAS	SPSGVQEG	IVLHQ <mark>C</mark> LAPF	GGY
GLAER58TV Gpacontig266 Gphcontig184	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP	FLEMVKHIIDAC	-MKLITVIVFS ESHIPKGETQS	DPAWSWHVO	SPSGVQEG	IVLHQ <mark>C</mark> LAPF	GGY
GLAER58TV Gpacontig266 Gphcontig184 cn15569	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP DELVEKYK-KEDEDDDELTP-CYLECIED-KEOLEDSOTGEKNDNI JAOLGOSK	FLEMVKHIIDAC	-MKLITVIVFS ESHIPKGETQS /SHIPKGETQ	DRAWSWHVCH DRAWSWHVCH DRAWSWHVCH	SPSGVQEG	IVLHQ <mark>C</mark> LAPF	GGY
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGE-IHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DEIVEKYK-KFD-FDDDEITR-CYIECIFD-KFQLFDSQTGKK-	FLEMVKHIIDAG YLKMFQHILDAG DNKDEVKADIEK <mark>G</mark> 2	-MKLITVIVFS ESHIPKGETQS /SHIPKGETQC ADKNTEKSDSC	IDFLLFIDAS DRAWSWHVCH DRAWSWHVCH TWAFRGFKCH	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI	IVLHQ <mark>C</mark> LAPF	GGY GENI
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGEKNDNLIAQLGQSK	FLEMVKHIIDAG YLKMFQHILDAG KONKDEVKADIEKGA	-MKLITVIVFS ESHIPKGETQS /SHIPKGETQC ADKNTEKSDSC	DFLLFIDAS	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI	IVLHQ <mark>U</mark> LAPF 	GGY GENI -
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn155220	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDLVEQYL-DYQEPEHKLIN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK	FLEMVKHIIDAG YLKMFQHILDAG (DNKDEVKADIEKG (DNKDEVKADIEKGA	-MKLITVIVFS ESHIPKGETQS VSHIPKGETQC ADKNTEKSDSC ADKNTEKSDSC	IDFLLFIDAS DRAWSWHVCH DRAWSWHVCH TWAFRGFKCH TWAFRGFKCH	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI	IVLHQ <mark>E</mark> LAPF 	GGY GENI
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWO-YDDEYYK-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYEN-F	FLEMVKHIIDAG YLKMFQHILDAG KDNKDEVKADIEKG MNKDEVKADIEKG KNLESVRHGLEKGI	-MKLITVIVFS SHIPKGETQS /SHIPKGETQC ADKNTEKSDSC ADKNTEKSDSC IDHNEWETDVC ADKNEDTDDC	DFLLFIDAS DRAWSWHVO DRAWSWHVO TWAFRGFKO TWAFRGFKO TWAFRGFKO TWANRVFSO	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WLKVNRHVVRKME FINSNLOLVKSS	IVLHQ <mark>E</mark> LAPF 	GGY GENI
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGE-IHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTK-CYMKCWFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV	FLEMVKHIIDAO YLKMFQHILDAO DNKDEVKADIEKO KONKDEVKADIEKO KNLESVRHGLEKO I DHSDETHEKIAKO	-MKLITVIVFS SHIPKGETQS JSHIPKGETQO ADKNTEKSDS ADKNTEKSDS IDHNEWETDVC ADKKPEDTDVC ADKKPEDTDVC	DFLLFIDAS DRAWSWHV DRAWSWHV TWAFRGFK TWAFRGFK TWAFRGFK AWAYRGGV AWAYRGGV TWANRVFS	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WLKVNRHVVRKMF FINSNLQLVKSSV SLKHNNKPPKKK	IVLHQ <mark>E</mark> LAPF .KKNNACRKFKV .KKN TT NDFILNKEFVF	GGY GENI FFSS
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGE-IHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQ-FPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCMFE-HFGFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-SRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK	FLEMVKHIIDAG YLKMFQHILDAG (DNKDEVKADIEKG (DNKDEVKADIEKG (KNLESVRHGLEKG) (DNSDETHEKIAKG 	-MKLITVIVFS SHIPKGETQS /SHIPKGETQO ADKNTEKSDS ADKNTEKSDS IDHNEWETDVO ADKKPEDTDVO MTQILTTHKKO WDQAKOPNYEI	IDFLLFIDAS DRAWSWHVDI DRAWSWHVDI TWAFRGFKOI TWAFRGFKOI TWANRVFSOV AWAYRGGVDI FIFYFIFYFS	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WLKVNRHVVRKME FINSNLQLVKSSV SLKHNNKFPKKKE	IVLHQ <mark>E</mark> LAPF JKKNNACRKFKV JKKN TT	GGY GENI - FFSS
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWDSSRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK	FLEMVKHIIDAG YLKMFQHILDAG CDNKDEVKADIEKG CDNKDEVKADIEKG KNLESVRHGLEKGI 7DHSDETHEKIAKG ANEEVVLPIISQ MNEEEVULPIISQ	-MKLITVIVFS ESHIPKGETQS /SHIPKGETQC ADKNTEKSDS IDHNEWETDVC ADKKPEDTDPC MTQLITTHKKC NQDAKQRNYEL HOSNDDNSSVT	DRAWSWHVE DRAWSWHVE DRAWSWHVE TWAFRGFKE TWAFRGFKE TWARRGFKE MAYRGGVE FIFYFIFYF WCYKAFLMH	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI SISKNLPLVMESI VLKVNRHVVRKME FINSNLQLVKSSV SLKHNNKFPKKKE FRYTSRRMV	IVLHQ E LAPF 	GGY GENI FFSS
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPEP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTK-CYMKCMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWDSSRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK DRYKAQFT-EFQFPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFE-FPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNIAKQFKMD	FLEMVKHIIDAG YLKMFQHILDAG CDNKDEVKADIEKG CDNKDEVKADIEKG CDNKDEVKADIEKG CDNKDEVKADIEKG CDNKDEVKADIEKG CDNKDEVKADIEKG 	-MKLITVIVFS SSHIPKGETQS VSHIPKGETQC ADKNTEKSDSC IDHNEWETDVC ADKKPEDTDPC MTQILTTHKKC NQDAKQRNYEI HDSNPDNSSVT	DRAWSWHVE DRAWSWHVE TWAFRGFKE TWAFRGFKE TWARRGFKE WANRVFSE AWAYRGGVE FIFYFIFYF WCYKAFLMH DVWAFRGHKE	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WLKVNRHVVRKME FINSNLQLVKSS SLKHNNKFPKKKE FRYTSRRMV	IVLHQ E LAPF 	GGY GENI FFSS NARN
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15220 cn7403 Gpacontig265 cn14707 cn13435 GLAS20TVB	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQ-FPEHKLIN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK ADLLEKYK-KWQ-YPDDEVTKCYMKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCWFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWD-SSRRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK DRYKAQFT-EFQFPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFEFPDEEEVR-QYLLGTAL-KMEVFCAHQGYHPNRIAKQFKMD -HVVRKMF-NFK-EEVGKLNHEQYLIINQN-IVTYIPSKKKKKKKKMS	FLEMVKHIIDAG YLKMFQHILDAG (DNKDEVKADIEKGA KDNKDEVKADIEKGA KNLESVRHGLEKGA /DHSDETHEKIAKGA 	-MKLITVIVFS SSHIPKGETQS VSHIPKGETQS ADKNTEKSDS IDHNEWETDVO ADKKPEDTDPO MTQILTTHKKO NQDAKQRNYEI HDSNPDNSSVD	DRAWSWHVE DRAWSWHVE TWAFRGFKE TWAFRGFKE TWARRGFKE WARRVFSE AWAYRGGVE FIFYFIFYF WCYKAFLMH DVWAFRGHKE	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WLKVNRHVVRKME FINSNLQLVKSS SLKHNNKFPKKKK FRYTSRRMV	IVLHQ E LAPF 	GGY GENI - FFSS NARN
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151 GLAAS20TVB Gthcontig219	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWD-SSRRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK DRYKAQFT-EFQFPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFEFPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNRIAKQFKMD	FLEMVKHIIDAG -YLKMFQHILDAG CDNKDEVKADIEKGA KDNKDEVKADIEKGA KNLESVRHGLEKGI /DHSDETHEKIAKGA 	-MKLITVIVFS SSHIPKGETQS VSHIPKGETQC ADKNTEKSDS IDHNEWETDVC ADKKPEDTDPC MTQILTTHKK NQDAKQRNYEI HDSNPDNSSVT NANEREKMDI ADAMPTTGY	DRAWSWHV DRAWSWHV TWAFRGFK TWAFRGFK TWAFRGFK TWARRVFS WAYRGGV FIFYFIFYF WCYKAFLMH VWAFRGHK AIMYEEYN	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI VLKVNRHVVRKME FINSNLQLVKSS SLKHNNKFPKKKE FRYTSRRMV MMSSAIGDKVKAS	IVLHQ <mark>E</mark> LAPF 	GGY GENI - FFSS NARN SSSD
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151 GLAAS20TVB Gthcontig219 cn14014	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNIVALIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCWFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWDSSRRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK DRYKAQFT-EFQFPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFEFPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNRIAKQFKMD -HVVRKMF-NFKEEVGKLNHEQYLIINQN-IVTYIPSKKKKKKKKKMS SISMDQLL-EYYH-FPQLEHIP-CIFKCFAD-KSHLYTVYEWNVLNWLKAFGPIR ETYYRCLI-SYTEGDTMRSRLVVACLLQ-TNRSSALLFAVKKHKPGLSQVS	FLEMVKHIIDAG -YLKMFQHIDAG CDNKDEVKADIEKGA CDNKDEVKADIEKGA KNLESVRHGLEKGA MNEEVVLPIISQO MNEEEVLEIAEKGA NENADISICRVV NENADISICRVA 	-MKLITVIVFS SHIPKGETQS VSHIPKGETQC ADKNTEKSDS ADKNTEKSDS IDHNEWETDVC ADKKPEDTDPC MTQILTTHKK NQDAKQRNYEL HDSNPDNSSVE NANEREKMDI AYAHPRTITGY VTKNGGTTEK	DRAWSWHVE DRAWSWHVE TWAFRGFKE TWAFRGFKE TWARRGFKE TWANRVFSE AWAYRGGVE FIFYFIFYF SWAFRGHKE AIMYEEYNE ENJAHOHGME	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI NLKVNRHVVRKME FINSNLQLVKSS SLKHNNKFPKKKE FRYTSRRMV MMSSAIGDKVKAS WERLNYNTDGISV VKYAENDYNAII- LINOLKEKGFYV	IVLHQLAPF KKNNACRKFKV KKN TOFILNKEFVF KK	GGY GENI FFSS NARN SSSD
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151 GLAAS20TVB Gthcontig219 cn14014 GLAC953TV	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQFPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKCMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWDSSRRPTLPGLVVPSFLE-ENRSGPILSGVKDRPCMARKSGK DRYKAQFT-EFQFPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFEFPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNRIAKQFKMD -HVVRKMF-NFKEEVGKLNHEQYLIINQN-IVTYIPSKKKKKKKKKMS SISMDQLL-EYYH-FPQLEHIP-LFKCFAD-KSHLTVNYEWNVLNWLKAFGPIR DHIKQLLT-NDENPHENSKCFRRCLME-QFELIDEGQSQMNKDKVVDMMSMMY-A NDVVGYLA-NRVLUDEVLPPCYAVSGTN-KCDLAFELKKCFKNVGFDKVWITTVP-K	FLEMVKHIIDAG -YLKMFQHILDAGV (DNKDEVKADIEKGA (DNKDEVKADIEKGA (DNKDEVKADIEKGA (DNKDEVRHGLEKGA (DNKDETHEKIAKGA NENADISICRVM NENADISICRVM Q ADNKETLEEIVDH (EDNTDPOYIAAMKI	-MKLITVIVFS SHIPKGETQS /SHIPKGETQC ADKNTEKSDSC IDHNEWETDVC ADKKPEDTDPC MTQILTTHKKC NQDAKQRNYEI HDSNPDNSSVT VANEREKMDIE AYAHPRTITGY VTKNGGTTEK .IDDLANVKYR	DRAWSWHVE DRAWSWHVE TWAFRGFKE TWAFRGFKE TWARRGFKE WANRVFSE AWAYRGGVE FIFYFIFYF WCYKAFLMH OVWAFRGHKE AIMYEEYNE ENAHQHGM	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI FISKNLPLVKSS SLKHNKFPKKKF FINSNLQLVKSS SLKHNKFPKKKF FRYTSRRMV	IVLHQLAPF KKNNACRKFKV KKN TDFILNKEFVF KK	GGY GENI FFSS NARN SSSD SSRIK
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151 GLAAS20TVB Ghcontig219 cn14014 GLAC953TV cn13968	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQ-FPEHKLTN-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQ-FPEHKLTN-CYVKCWVE-KMGIFTENRGFNEKNIVAQYTYEN ADLLEKYK-KWQ-YPDDEVTKCYMKCMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGGSK-GWD-SSRPTLFGLVVPSFLE-ENRSGFILSGVKDRPCMARKSGK DRYKAQFT-EFQ-FPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFE-FPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNRIAKQFKMD -HVVRKMF-NFK-EEVGKLNHEQYLIINQN-IVTYIPSKKKKKKKKNMS SISMDQLL-EYYH-FPQLEHIP-LFKCFAD-KSHLYTVNYEWNVLNWLKAFGPIR ETTYRCLIT-SYTEGDTMRSRLVVACLLQ-TNRSSALLFAVKKHKPGLSQVS	FLEMVKHIIDAG -YLKMFQHILDAG (DNKDEVKADIEKG (DNKDEVKADIEKG (DNKDEVKADIEKG (DNSDETHEKIAKG NENADISICRV NENADISICRV QA ADNKETLEEIVDH UEDNTDPQYIAAMKI	-MKLITVIVFS SHIPKGETQS /SHIPKGETQC ADKNTEKSDSC IDHNEWETDVC ADKKPEDTDPC MQDAKQRNYEI HDSNPDNSSVD NANEREKMDIC AYAHPRTITGY VTKNGGTTEY NATNAREP	DRAWSWHV DRAWSWHV TWAFRGFK TWAFRGFK TWAFRGFK TWARRVFS AWAYRGGV FIFYFIFYFS WCYKAFLMH OVWAFRGHK AIMYEEYN ENAHQHGM ENAHQHGM VAFADVHIF EAANO INK	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI FISKNLPLVMESI WEKVNRHVVRKME FINSNLQLVKSS SLKHNNKFPKKKE FRYTSRRMV MMSSAIGDKVKAS WERLNYNTDGISV WERLNYNTDGISV KYAENDYNAII- ILNQLKEKGFKVH IESFCDNESIIIS IANELKAHKINU.	IVLHQLAPF KKNNACRKFKV KKN TT	GGY GENI - FFSS NARN - SSSD - SSI SRIK LLI
GLAER58TV Gpacontig266 Gphcontig184 cn15569 cn15567 cn15565 cn15220 cn7403 Gpacontig265 cn14707 cn13435 Gthcontig151 GLAAS20TVB Gthcontig219 cn14014 GLAC953TV cn13968 cn15331	EEANKKFS-DGENQEDPALK-CYMNCLLH-EVKVVDDAGELHFEKLVRMIPKP EEAIKEFS-DGEIHEDPALK-CYMNCLFH-EVDVVDDAGELHFEKLVRMIPKP PELVEKYK-KFDFPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK PELVEKYK-KFD-FPDDEITR-CYIECIFD-KFQLFDSQTGFKNDNLIAQLGQSK DDIYEQYL-DYQ-FPEHKLTN-CYVKGWVE-KMGIFTENRGFNEKNIVAQYTYENF ADLLEKYK-KWQ-YPDDEVTKCYMKGMFE-HFGFFNEKQGFDVHKIHKQLMGAHGTV DFLVGSK-GWD-SSRPTLFGLVVPSFLE-ENRSGFILSGVKDRPCMARKSGK DRYKAQFT-EFQ-FPNDPIVH-KYILCVNR-ELQIWDNNQGFDIEKIYQQYKGR NEQITKMK-NFE-FPDEEEVR-QYLLCTAL-KMEVFCAHQGYHPNRIAKQFKMD -HVVRKMF-NFK-EEVGKLNHEQYLIINQN-IVTYIPSKKKKKKKKNMS SISMDQLL-EYYH-FPQLEHIP-CLFKCFAD-KSHLYTVNYEWNVLNWLKAFGPIR ETYYRCLI-SYTEGDTMRSRLVVACLQ-TNRSSALLFAVKKHKPGLSQV3 DHIKQLLT-NDENPHENSKCFRRCLME-QFELIDEGQSQMNKDKVVDMMSMMY-A NDVVGYIA-NRVLLDEVLPPGVAVSGTN-KCDIAFELKKCFKNVGFDKVWITVPW RLDSNKLL-MYEDQPSLREKCIMAGILK-RMKLMDSDYKLSVPTISHIAGMISDEN	FLEMVKHIIDAG -YIKMFQHILDAG (DNKDEVKADIEKGA (DNKDEVKADIEKGA (DNKDEVKADIEKGA (DNKDEVKADIEKGA (DNKDETHEKIAKGA 	-MKLITVIVFS SHIPKGETQS /SHIPKGETQ ADKNTEKSDSG IDHNEWETDVG ADKKPEDTDPG MTQILTTHKKG NQDAKQRNYEI HDSNPDNSSVD NANEREKMDIG AYAHPRTITGY VTKNGGTTEK LIDDLANVKY -NAINAREPG ERRAASRGDE	SIDFLLFIDAS DRAWSWHV I DRAWSWHV TWAFRGFK TWAFRGFK TWAFRGFK MAYRGGV I FIFYFIFYFS WCYKAFLMH DVWAFRGHK AIMYEEYN WAFRGHK ENAHQHGM ENAHQHGM EAANQINK EFAFLVOK	SPSGVQEG FKQTDPGL-ILP- FKQTDPVLYFLP- FISKNLPLVMESI VLKVNRHVVRKME FISKNLPLVMESI VRYSRRMV MSSAIGDKVKAY VRYSRRMV MERLNYNTDGISV VRYAENDYNAII- ILNQLKEKGFKVF IESFCDNESIIIS IANELKAHKLNLI DHLLDVNEFDY	IVLHQ <mark>E</mark> LAPF KKNNACRKFKV KKN TO TOFILNKEFVF KK TYKKAFNFLQF PEVKEFPKFAYT STRHFRCNLWPL YX-MYRHKQSK	GGY GENI - FFSS NARN - SSSD - SRIK LLLI LNQY

Figure 2.4. Alignment of putative *Glossina pallidipes* antennal, *Glossina palpalis gambiensis* and *Glossina tachinoides* head OBPs with *Glossina morsitans morsitans* OBPs. Multiple Sequence alignment was done using ClustalW2 software. The conserved cysteine residues are shaded red. GpacontigXXX - *Glossina pallidipes* antennae contigs; GphcontigXXX – *Glossina palpalis* head contigs; GthcontigXXX - *Glossina morsitans morsitans morsitans morsitans* contigs (cn15565, cn15567, cn15569, cn15220, cn7403, cn14707, cn13435, cn13435, GLAAS20TVB, cn14014, GLAC953TV, cn13968, cn15331 and GLAER58TV).

OSFDerecta	
OBP3Mdomestica	PALKGLGRGVSASVLLIVLSLLTGAPILPRATAQRDDNYPQPVKLKMAKPLH-DACVENTGVIEAAIKEFSD-GEIHEDENL
OSEDsimulans	EPRRDGEWPPPAILKLAKHFH-DICAPKTGVTDEAIKEFSD-GQIHEDEAL
GK14216PADwilli	AIRYCFLLCLFGGYAIGQAPRRDAEYPPPGLLKMGKHFH-DICVEKTGATDEAIKEFSD-GEIHEDEKL
OBPAaegypti	LSVGD-VTPRRDAEYPPPEFLEAMKPLR-EICIKKTGVTEEAIIEFSD-GKVHEDENL
OBPAnopheles	Deperdanyppellekmkpmh-dacvaetgasedaikrfsd-geiheddkl
Gpacontig266 RGR	TAAEECLLQYLTKATKEHNSKKRRRRTIAAERLIKMEKYHIYIVTFAMTLLLSFGLNNAQK <mark>PRRDENYPPPDFL</mark> KSFKIIH-DV <mark>C</mark> EEKTGATEEANKKFSD-GENQEDPAL
Gphcontig184 LSK	NCCGRVLASFNIRKQQRNIKINIKKKKRRKRRRRRRTIVEQKTSKKSISLRSPRCYCRSVTYAQK <mark>PRRDENYPPPDFL</mark> KFFKIIH-EV <mark>C</mark> VEKTGATEEAIKEFSD-GEIHEDPAL
GOBP2Heliothis	·MTSKSCLLLVAMVTLTTS-VMGTAEVMSHVTAHFGKALEE <mark>G</mark> REESGLS-AEVLEEFQHFWRE-DFEVVHREL
GOBP2Antheraea	·MGYKLLLMYIAIVIDS-VIGTAEVMSHVTAHFGKALEE <mark>C</mark> RDESGLS-PEILNEFKHFWSE-DFDVVHREL
GOBP2Bombyx	·MFSF-LILVFVASVADS-VIGTAEVMSHVTAHFGKTLEE <mark>G</mark> REESGLS-VDILDEFKHFWSD-DFDVVHREL
GOBP1Bombyx	·MWKLVVVLTVNLLQG-ALTDVYVMKDVTLGFGQALEQ <mark>G</mark> REESQLT-EEKMEEFFHFWND-DFKFEHREL
PBPBombyx	·BSIQGQIALALMVNMAVGSVDASQEVMKNLSLNFGKALDE <mark>G</mark> KKEMTLT-DAINEDFYNFWKE-GYEIKN <mark>RE</mark> T
PBPH.virescens	·MMSVRLMLVVAVWLCLR-VDASQDVMKNLSMNFAKPLED <mark>C</mark> KKEMDLP-DSVTTDFYNFWKE-GYEFTN <mark>R</mark> HT
ABP8Manducasexta	MKALLVLAACLVLAQALTDEQKEKLKKHKSE <mark>C</mark> LSETKVEEQLVNKLKAGDYKAENDNL
OBP_ASP5Apis	MHVKSVLLLITIVTFVALKPVKSMSADQVEKLAKNMRKS <mark>C</mark> LQKIAITEELVDGMRR-GEFPDDHDL
OBP2Phyllopertha	KEHGQKVLEQIIDYATS <mark>C</mark> ADSLGVSPEDMKLLMEKKFPTS <mark>RE</mark> G
Gpacontig265	GEFSDGEIPEVEALKCSMNSLFHNSDLVDAKGAVLFEKLVFKFPAAVRD-FLVGGSKGW
Gthcontig151	VFSCWVKVNCHVVRKMFN-FKEEVGKLNHEQYLIINQNIVTYIPSKKK-KKKKKKNMS
Gthcontig219	RTYWTAFREISAYDTRTVPNG
OCEDomosto	
OBD2Mdomostics	
OSEDaimulana	
CK14216DADwilligton	
OBPlaegynti	
OBPAnopheles	
Gpacontig266	
Gphcontig184	KCYMNGLEH EVDVVDD AGELH FEKTVRMTPEPYLKMFOHTLDACVSHTPKGETO-CDRAWSWHVGFKOTDPULVFTP
GOBP2Heliothis	GCALLEMSNKESLLODDSRMHHVNMHDYVKSEPNGHVLSEKLVELIHNCEKKYD-TMTDDCDRVVKVAACEKVDAKAAGTAPEVTMLEAVMEKY
GOBP2Antheraea	GOALLONSNKESLLKDDTRIHHVNMHDYVKSEPNGEVLSAKMVNLIHNOEKOYD-DITDEODRVVKVAAOFKVDAKKEGIAPEVAMIEAVIEKY
GOBP2Bombyx	GCALLEMSNKESLMDDDVRMHHVNMDEVIKGEPNGOVLAEKMVKLIHNCEKOFD-TETDDCTRVVKVAACEKKDSRKEGIAPEVAMIEAVIEKY
GOBP1Bombyx	GCALOCMSRHFNLLTDSSRMHHENTDKFIKSFPNGEILSOKMIDMIHTCEKTFD-SEPDHCWRILRVAECFKDACNKSGLAPSMELILAEFIMESEADK
PBPBombyx	GCAIMCLSTKLNMLDPEGNLHHGNAMEFAKKHGADETMAOOLIDIVHGCEKSTP-ANDDKCIWTLGVATCFKAEIHKLNWAPSMDVAVGEILAEV
PBPHeliothisviresce	ns GCALLCLSSKLELLDOEMKLHHGKAOEFAKKHGADDAMAKOLVDMIHGCSOSTPDATDDPCMKALNVAKCFKAKIHELNWAPSMELVVGEVLAEV
ABP8Manducasexta	KKYALGMMMKSELMTKEGKFKKDVALSKVPNPADKPMVEKLIDTCLANKGNTPHQTAWNYVKCYHEKDPKHAIFL
OBP_ASP5Apis	QCYTTCIMKLLRTFKNGN-FDFDMIVKQLEITMPPEEVVIGKEIACR-N-EEYTGDDCOKTYQYVQCHYKQNPEKFFFP
OBP2Phyllopertha	QCMPSCVNKKFGLQKADGTLNKEYRYSEMENVKAIDEEIYNKMNSVWDCV-N-GADGTDECDTGMKVVTCMKEESEKLGLSKDAIGF
Gpacontig265	DSSRRPTLPGLVVPSFLEENRSGPILSGVKDRPCMARKSGKILMTQILTTHKKCFIFYFIFYFSLKHNNKFPKKKKKKK
Gthcontig151	
00110011019101	

Figure 2.5. ClustalW2 alignment of putative *Glossina* OBPs with other insect OBPs downloaded from GenBank. The conserved cysteine residues are shaded red and conserved amino acids shaded grey. GpacontigXXX - *Glossina pallidipes* antennae contigs; GphcontigXXX - *Glossina palpalis* head contigs; GthcontigXXX - *Glossina tachinoides* head contigs.

Gthcontig63YGRGLKNFLTIAVAVVLMTIAVI-AEEQYTTK	FDNIDVDEILASDRLFDNYF	KCL VDEGK	T-PEGREL	KTLPDALETA	TKCNDK	OKATVDKVIRFLTEKKP	Q <mark>W</mark> KALQAK 111
GmmorsitansCSP1MKYLTIVAVIATLSAVVVMGAEEKYTTK	<mark>Y</mark> DDVDVDEVLKSDRLFKNYY	N <mark>C</mark> L IDQGK	T-PDAREL	KKSLPDALQTE	SK <mark>C</mark> SEK	2 <mark>KKTSEKVIKHLMDHKP</mark>	E <mark>w</mark> KVLQTK 108
AgambiaeCSP1MKHLTMVAIFAMVVVLASAQKYTDK	FDNIDVDRVLSNDRILNNYI	K <mark>C</mark> L LDKGP	CT-QEGREL	<mark>K</mark> -TLPDALKTN	EK <mark>C</mark> SEK	2RTSSRKVIAHLEERKPQ	E <mark>W</mark> KKLLDK 104
MmediatorCSP1MKVAIIFLAIIAVALAATTKTYTSK	FDDVDVDGILGSDRLLRNYV	N <mark>C</mark> L LDRGP	CT-KEGVTL	KEILPDALATS <mark>(</mark>	ES <mark>C</mark> TEK	2KTKSEKVIRHLVNNKKE	L <mark>W</mark> DELAVK 105
AgossypiiCSP1 IAVVCVVLAAFAVDQTVGAPQKDAVAASGPAYTTK	<mark>Y</mark> DHIDVDQVLASKRLVNSYV	Q <mark>C</mark> L LDKKP	CT-PEGAEL	RKILPDALKTQ <mark>(</mark>	AK <mark>C</mark> NAT	<mark>Q</mark> KNAALKVVDRLQKDYD A	E <mark>W</mark> KQLLDK 117
HvirescensCSP1MALARPDGAAYTDK	<mark>Y</mark> DNVDLDEILSNRRLLVPYV	K <mark>C</mark> I LDQGK	CA-PDAKEL	K <mark>EHIIEALENE</mark>	GK <mark>C</mark> TEA	2KKGTRRVIGHLINNEAI	94 NELTAK
SexiguaCSP1MKSFIVLCLFGLAAVAMARPDGSTYTDR	<mark>Y</mark> DNINLDEILGNRRLLTPYI	K <mark>C</mark> I LEEGK	CT-PDGKEL	K <mark>SHIREALEQN</mark>	AKCTDA	2RNGTRRVLGHLINNEEE	S <mark>W</mark> NRLKAK 108
BmoriCSP1MKCLTIAALLFVAGLSIAEKYTDK	<mark>Y</mark> DNIDVDEILENRKLLVPYI	K <mark>C</mark> V LDEGR	CT-PDGKEL	KAHIKDGMQTA <mark>(</mark>	AK <mark>C</mark> TDK	<mark>2</mark> KVSARKIVKHIKQHEAI	Y <mark>W</mark> EQMKAK 104
PxylostellaCSP1MKSAAFIALFLIGKAVCEDKPTYTTK	<mark>Y</mark> DNIDLDEILSSERLLTGYV	N <mark>C</mark> L LDQGP	CT-PDGKEL	KHTLPDAIDND	RK <mark>C</mark> TQK	2 KEGSDRVMGYIIEYRP1	ID <mark>w</mark> aklekk 106
AmelliferaCSP1MRHNYIVILILSLLTWTYAEELYSDK	Y DYVNIDEILANDRLRNQYY	D <mark>C</mark> F IDAGS	LTPDSVFF	K <mark>SHITEAF</mark> QTQ <mark>(</mark>	KK <mark>C</mark> TEI	2 <mark>KQNLDKLAEWFTTNEPE</mark>	K <mark>W</mark> NHFVEI 107
SguaniCSP1MKSIIVVFTVFAIVFAQESTPEYYTGK	<mark>W</mark> NDLNTHDIVDNARLFKKYK	Q <mark>C</mark> I MAETNTG	CP-QEVIEL	KVLPEALETV	SKCSPV	OVEKIRDTLKYVCEKRK I	D <mark>F</mark> DDILKH 109
TcastaneumCSP1MLILQIAHLCAQFCLLAAIFTCVKPQLTR	ISDEAIESTLNDRRYLLRQI	K <mark>C</mark> A TGEAP	D-PVGRRL	KSLAPLVLRGS	PQ <mark>C</mark> TPQ	EMKQIQKVLAFVQKNYPF	E <mark>W</mark> NKILHQ 109
DmelanogasterCSP1MLLLNKNRVISLVVNFIFLIILISSSVQ	ADERNINKLLNNQVVVSRQI	M <mark>C</mark> I LGKSE	D-QLGLQL	<mark>K</mark> AALPEVITRK <mark>O</mark>	RN <mark>C</mark> SPQ	<mark>2</mark> AQKAQKLTTFLQTRYPI	V <mark>W</mark> AMLLRK 108
:	: .	*	* :	: : '	* .*.		: :

Gthcontig63	YDPSGEYLKKYRAEAEKRGIKVINLMLRVECYSPMCNMCK	151
GmmorsitansCSP1	YDPEGIYYSKYKARDAKA	126
AgambiaeCSP1	YDPEGIYKSKFEKINKRS	122
MmediatorCSP1	YDPNNEYRKKYEDQAKAKGINV	127
AgossypiiCSP1	WDPKREHFQKFQQFLAEEKKKGFTKF	143
HvirescensCSP1	FDPEKKYVQKYEKELKEVKA	114
SexiguaCSP1	YDPQSKYTVKYELELRKLKQ	128
BmoriCSP1	YDPKDEFKEIYEGFLAGQN	123
PxylostellaCSP1	Y LSDGSYKKKYLEKKNASENNGDSKSTEAKNKDDEEKKSKGDGEEK	152
AmelliferaCSP1	MIKKKDEGA	116
SguaniCSP1	IDPEGTHRPKFEEKFGTLGC	129
TcastaneumCSP1	Y AG	112
DmelanogasterCSP1	Y DSA	112

Figure 2.6. Multiple Sequence Alignment of *Glossina tachinoides* CSP (Gthcontig63) with other insect CSPs downloaded from GenBank. The alignment was done using ClustalW2 software. The conserved cysteine residues are shaded green (*) and conserved amino acids are shaded blue and marked by (: and .). Aromatic amino acid residues are shaded yellow. Accession numbers of other Insects CSPs are: *Heliothis virescens* CSP1 gi|21898556|; *Bombyx mori* CSP1 gi|112983050|; *Apis mellifera* CSP1 gi|118150502|; *Microplitis mediator* CSP1 gi|126508768|; *Glossina morsitans morsitans* CSP1 gi|281426841|; *Tribolium castaneum* CSP1 gi|113951685|; *Aphis gossypii* putative CSP1 gi|215254064|; *Sclerodermus guani* putative CSP1 gi|91983607|; *Spodoptera exigua* CSP1 gi|122894084|; *Plutella xylostella* CSP1 gi|122894080|; *Drosophila melanogaster* putative CSP1 gi|48994224| and *Anopheles gambiae* putative CSP1 gi|48994214|.

2.3.5 Phylogenetic analysis of Putative *Glossina* OBPs

There is high bootstrap support for *B. mori* and *H. virescens* PBPs (100%), *M. domestica* OBP3 and *D. erecta* OS-F (96%), *H. virescens* and *A. pernyi, B. mori* GOBP2 (96%), Gpacontig266 and Gphcontig184 (83%) (Figure 2.8). The weak bootstrap values for *M. sexta* ABP8, Gpacontig265 and *A. mellifera* OBPASP5 could imply they are not related to the classical olfactory proteins (OBPs, PBPs and GOBPs) while PBPs and GOBPs could be more similar than to GOBP1. The clustering is supported by spacing pattern of the first conserved cysteines where it is the same for PBP, GOBP1 and GOBP2; Gpacontig266, Gphcontig184, OBPs, OS-E and OS-F and different for ABP8, Gpacontig265, OBPASP5, Gthcontig151 and Gthcontig219 (Figure 2.6). The phylogenetic tree in Figure 2.8 could indicate the existence of different olfactory protein subfamilies and shows the relationship between putative *G. pallidipes* OBPs (Gpacontig265; Gpacontig266), *G. p. gambiensis* OBP (Gphcontig184) and *G. tachinoides* OBPs (Gthcontig151 and Gthcontig219) with other insect's OBPs downloaded from GenBank.

The sequence similarity tree in Figure 2.9 shows the relationships between *G. tachinoides* CSP (Gthcontig63) with CSP1 from *H. virescens*, *B. mori*, *A. mellifera*, *M. mediator*, *G. m. morsitans*, *T. castaneum*, *A. gossypii*, *S. guani*, *S. exigua*, *P. xylostella*, *D. melanogaster* and *A. gambiae*. It is noted that the *Glossina* CSPs are more similar than to other Insects CSPs. There is good bootstrap support for many

terminal relationships with CSP1 from Insects of different orders randomly distributed.

2.3.5 Phylogenetic analysis of Putative *Glossina* OBPs

There is high bootstrap support for *B. mori* and *H. virescens* PBPs (100%), *M. domestica* OBP3 and *D. erecta* OS-F (96%), *H. virescens* and *A. pernyi, B. mori* GOBP2 (96%), Gpacontig266 and Gphcontig184 (83%) (Figure 2.8). The weak bootstrap values for *M. sexta* ABP8, Gpacontig265 and *A. mellifera* OBPASP5 could imply they are not related to the classical olfactory proteins (OBPs, PBPs and GOBPs) while PBPs and GOBPs could be more similar than to GOBP1. The clustering is supported by spacing pattern of the first conserved cysteines where it is the same for PBP, GOBP1 and GOBP2; Gpacontig266, Gphcontig184, OBPs, OS-E and OS-F and different for ABP8, Gpacontig265, OBPASP5, Gthcontig151 and Gthcontig219 (Figure 2.6). The phylogenetic tree in Figure 2.8 could indicate the existence of different olfactory protein subfamilies and shows the relationship between putative *G. pallidipes* OBPs (Gpacontig265; Gpacontig266), *G. p. gambiensis* OBP (Gphcontig184) and *G. tachinoides* OBPs (Gthcontig151 and Gthcontig219) with other insect's OBPs downloaded from GenBank.

The sequence similarity tree in Figure 2.9 shows the relationships between *G*. *tachinoides* CSP (Gthcontig63) with CSP1 from *H. virescens*, *B. mori*, *A. mellifera*,

M. mediator, *G. m. morsitans*, *T. castaneum*, *A. gossypii*, *S. guani*, *S. exigua*, *P. xylostella*, *D. melanogaster* and *A. gambiae*. It is noted that the *Glossina* CSPs are more similar than to other Insects CSPs. There is good bootstrap support for many terminal relationships with CSP1 from Insects of different orders randomly distributed.

Figure 2.8 Phylogenetic relationships of *Glossina* OBPs (blue) including [*Glossina pallidipes* OBPs - Gpacontig265, Gpacontig266; *Glossina palpalis gambiensis* OBP - Gphcontig184 and *Glossina tachinoides* OBPs - Gthcontig151 and Gthcontig219], with other OBPs downloaded from GenBank including Dipteran (red) *Drosophila erecta* olfactory Specific F, *Drosophila simulans* olfactory Specific E, *Musca domestica* OBP3, *Drosophila willistoni* OBP, *Aedes aegypti* OBP, *Anopheles gambiae* OBP; Lepidopteran (green) *Heliothis virescens* GOBP2, *Bombyx mori* GOBP1, *Bombyx mori* GOBP2, *Antheraea pernyi* GOBP2, *Phyllopertha diversa* OBP2, *Bombyx mori* PBP, *Heliothis virescens* PBP, *Manduca sexta* ABP8 and Hymenopteran (black) *Apis mellifera* OBPASP5. The tree was constructed from an alignment shown in Figure 2.6 using maximum likelihood model with PHYML program. Numbers on branches show values of 100 times replication bootstrap analysis.

Figure 2.9 Phylogenetic relationships of *Glossina* CSPs (blue) including *Glossina* tachinoides CSP-Gthcontig63 and *Glossina morsitans morsitans* CSP1) with other insect CSPs downloaded from GenBank including CSP1 from Lepidopteran (green) Heliothis virescens, Bombyx mori, Spodoptera exigua and Phutella xylostella; Hymenopteran (black) Apis mellifera, Microplitis mediator and Sclerodermus guani; Dipteran (red) Drosophila melanogaster and Anopheles gambiae; Coleopteran (pink) Tribolium castaneum and Hemipteran (brown) Aphis gossypii. The tree was constructed from an alignment shown in Figure 2.7 using maximum likelihood model with PHYML program. Numbers on branches show values of 100 times replication bootstrap analysis.

2.4 Discussion

Clustering of the G. pallidipes antennal, G. p. gambiensis and G. tachinoides head ESTs generated large numbers of singletons in the three libraries, an indication of a highly diverse collection of mRNA species in antennae and head. A variety of molecules were identified from both the antennal and head libraries which could be implicated in either olfaction, energy metabolism, transcription, structural, transport activity, signal transduction or general metabolism. The different cellular and metabolic molecules identified may reflect complex processes that occur within the *Glossina* antennae and head thus contribute to the survival of tsetse flies in their habitats. Interestingly, similar types of genes were observed in the three libraries, implying that G. pallidipes, G. p. gambiensis and G. tachinoides genes may perform similar functions in these tissues. Proteins with transmembrane domains that were reported included opsins, retinin and arrestins. Apart from olfaction, they mediate sense of taste, vision and pain. Arrestins are involved in desensitization of GPCRs that mediate neurotransmission, olfactory and visual sensory reception (Spaethe and Briscoe, 2004). Identification of energy metabolism genes suggests that most processes occurring within the antennae and head require energy which could be provided by hydrolysis of ATP.

In this work putative OBPs were identified from *G. pallidipes* (2), *G. p. gambiensis* (5) and *G. tachinoides* (2 OBPs and 1 CSP). This confirms occurrence of OBPs and CSPs in *Glossina*. Few OBPs were reported in this work, presumably because they are expressed at extremely low levels and proved hard to find using EST approaches (Robertson *et al.*, 1999).

However, this will be made certain when the complete *Glossina* genome sequence is available even though twenty two OBPs have also been identified in. G. m. morsitans (Liu et al., 2010). Two putative Glossina OBPs (Gpacontig266 and Gphcontig184) had the hallmark features of OBP protein family which includes a signal peptide, a major hydrophobic domain and particularly the six conserved cysteine residues. The other eight putative OBPs had neither signal peptide nor six cysteines. Classification of these proteins as OBPs was based on significant similarity to other OBPs from NR protein and GO database. The predicted amino acids, MWs and pIs for the tsetse OBPs are similar to those of other insects (Vogt, 2003). The predicted pIs are mainly basic at physiological pH, unlike lepidopteran OBPs found to be acidic (Horst et al., 2001; Lee et al., 2002) while dipteran is between 4 and 10 (Kruse et al., 2003; Wogulis et al., 2006). The low sequence similarity of OBPs within and across insect species is consistent suggesting that insects OBPs are under strong adaptive selection (Vogt, 2005). Insect species are numerous and occupy diverse biological niches. Over time they have evolved to have different lifestyles and feeding ecologies where they encounter a wide range of chemicals. In order to locate mates, nutrients, resting sites, oviposition and larviposition sites, insects rely on their chemical senses, particularly gustatory and olfactory. Hence, the great diverse OBPs play an important role in insect's behavioral ecology. The large number of OBPs found in different insects could account for the wide range of chemicals each species detect in its environment (de Bruyne and Baker, 2008). Alignment of the selected insect and putative Glossina OBPs revealed a highly conserved region, LKCYMNC, around the second and third conserved cysteine.

Similar results have been reported for the yellow fever mosquito, *A. aegypti* with *D. melanogaster* and *An. gambiae* (Zhou *et al.*, 2008). The conserved amino acids in OBPs are an indication that these regions may perform an important function in the proteins.

Unlike OBPs, CSPs were more conserved at certain amino acids and had the characteristics four cysteines (Angeli *et al.*, 1999). They have been identified in both chemosensory and non-chemosensory tissues of different insects suggesting they are involved in functions other than olfaction (Sabatier *at al.*, 2003; Gong *et al.*, 2007). Despite identifying a CSP in *G. tachinoides*, it remains unclear if it could serve both chemosensory and non-chemosensory role. Phylogenetic analysis revealed occurrence of different olfactory proteins that could have evolved from a common ancestor. Further evidence is required to determine the rate of evolution for the *Glossina* OBPs which could pinpoint the extent of divergence. However, the good bootstrap values indicate that olfactory proteins from different insect orders are quite similar implying they could have evolved from a common ancestor and diversified to perform similar role in different insects.

The major finding of this EST project was identification of OBPs and CSP in *Glossina*. This open avenues for studying molecular basis of olfaction in *Glossina* with the possibility of developing models to account for different behavioural responses to hosts during feeding and better methods to control tsetse vectors based on olfactory driven behaviours.

CHAPTER 3

3.0 COMPARATIVE ANALYSIS OF *GLOSSINA* EXPRESSED SEQUENCE TAGS (ESTS): IDENTIFICATION OF ORTHOLOGS ODORANT-BINDING PROTEINS AND CHEMOSENSORY PROTEINS OF DIPTERAN SPECIES

3.1 Introduction

In this study, a comparative analysis of three *Glossina* ESTs libraries (*G. pallidipes* antennal, *G. tachinoides* and *G. p. gambiensis* head) with various Dipteran proteomes, including *G. m. morsitans*, *Drosophila melanogaster*, *Anopheles gambiae*, *Aedes aegypti* and *Culex quinquefasciatus* was done. A total of nine putative OBPs and one CSP were identified with homologs reported for ubiquinol-cytochrome-*c* reductase and salivary gland OBPs. Comparative sequence analysis of the OBP and CSP homologs revealed a highly diverse and conserved multi gene protein family respectively, supported by good bootstrap values under phylogenetic analysis. These results should speed up determination of precise role the identified orthologs play in contributing to vectorial capacity of the analysed Dipteran insects.

3.2 Materials and Methods

3.2.1 Processing of *Glossina pallidipes* antennal, *Glossina palpalis gambiensis* head and *Glossina tachinoides* head ESTs

The Expressed sequence tags (ESTs) libraries (*G. pallidipes* antennae (1127), *G. tachinoides* head (830) and *G. p. gambiensis* head (906) were downloaded from the Sanger Center ftp site (<u>ftp://ftp.sanger.ac.uk/pub/pathogens/Glossina/</u>).

The sequences were trimmed of primer and vector sequences, clustered using StackPACKTM v2.2 (Miller *et al.*, 1999), generating singletons (sequences not included in any clusters) and contigs (consensus sequences containing two or more sequences). For each organism, singletons and contigs were analysed identically, thus were combined in a single set of sequences, referred hereafter as clusters.

3.2.2 Bioinformatics analyses of *Glossina pallidipes* antennal, *Glossina palpalis* gambiensis head and *Glossina tachinoides* head ESTs against *Glossina morsitans morsitans* Proteins

The resulting sequences were compared to the *G. m. morsitans* proteins available at GeneDB (Hertz-Fowler *et al.*, 2004) using wublastx (Gish and David, 1993). The dataset (*G. m. morsitans* proteins) contains sequences derived from different tissues and developmental stage specific libraries: head (2,700 ESTs), midgut (21,662 ESTs), reproductive organs (3,438 ESTs), salivary gland (27,426 ESTs), larvae (2,304 ESTs), pupae (2,304 ESTs), fat body (20,257 ESTs), male and female whole bodies (19,968 ESTs) (Hertz-Fowler *et al.*, 2004). StackPACKTM v2.2 was used in clustering the ESTs since the *G. m. morsitans* ESTs derived from different libraries had also been clustered using StackPACK software. *G. m. morsitans* sequences which gave the best hits (E-value <0.0) were collected as putative orthologs and grouped into eight different categories: odorant/pheromone binding, structural, transport, signal transduction, nucleic acid metabolism, energy metabolism, salivary gland and basic metabolism.

3.2.3 Bioinformatics analyses of *Glossina pallidipes* antennal, *Glossina palpalis* gambiensis head and *Glossina tachinoides* head ESTs against Selected Dipteran Proteins

These sequences (from *G. pallidipes* antennae, *G. tachinoides* head and *G. p. gambiensis* head) were then used to search phylogenetically related sequences using blastx (Altschul *et al.*, 1997) against the *D. melanogaster* (FlyBase5.13) (Ensembl), *An. gambiae* (AgamP3.5), *Ae. aegypti* (AaegL1.2) and *C. quinquefasciatus* (CpipJ1.2) (VectorBase) protein databases (Lawson *et al.*, 2009). The sequences grouped as putative odorant/pheromone binding proteins from the three *Glossina* species (*G. pallidipes, G. tachinoides* and *G. p. gambiensis*) and the selected Dipteran species (*G. m. morsitans, D. melanogaster, An. gambiae, Ae. aegypti* and *C. quinquefasciatus*) were aligned by ClustalW2 (Larkin *et al.*, 2007). The genetic distance was determined by phylogenetic analysis using PHYML (Guindon and Gascuel, 2003) and the neighbour joining algorithm, maximum likelihood model and WAG substitution matrix (Whelan and Goldman, 2001). The consensus tree was generated based on 100 bootstrap replicates and viewed using TreeDyn (*Chevenet et al.*, 2006).

3.3 Results

3.3.1 Clustering of *Glossina pallidipes* antennal, *Glossina palpalis gambiensis* head and *Glossina tachinoides* head ESTs

A total of 2863 ESTs were clustered by StackPACKTM v2.2 and generated 618 singletons and 45 contigs in *G. pallidipes* antennal library.

Similarly, 387 singletons and 43 contigs were generated in *G. p. gambiensis* head library while 404 singletons and 40 contigs were generated in the *G. tachinoides* head library (Table 3.0). Singletons included sequences not found in any clusters and contigs are consensus sequences containing two or more sequences. Singletons and contigs are hereafter referred to as clusters, which could encode possible transcripts. Compared with the clusters generated from cDNA Annotation Software (CAS), StackPACKTM v2.2 software generated more singletons and contigs resulting in a high number of sequences within the clusters. The singletons and consensus/contigs generated by the two softwares (CAS and StackPACKTM v2.2) included EST clones that could represent the same gene when compared with other protein sequences in different databases.

Table 3.0. Summary of EST sequences and clusters generated from *Glossina pallidipes* antennae, *Glossina palpalis gambiensis* head and *Glossina tachinoides* head libraries

	ESTs	Singletons	Contigs	Total Sequences in Clusters
G. pallidipes	1127	618	45	516
G. palpalis gambiensis	906	387	43	529
G. tachinoides	830	404	40	431
Total	2863	1409	128	1476

3.3.2 Categories of *Glossina pallidipes* antennal, *Glossina palpalis gambiensis* head and *Glossina tachinoides* head clusters

In order to identify orthologs between the four *Glossina* species, the clusters (singletons and contigs) were compared by wublastx (Gish and

David, 1993) to the *G. m. morsitans* proteins from the GeneDB database (Hertz-Fowler *et al.*, 2004). This resulted in 120 (18.1%), 154 (35.8%) and 170 (38.3%) positive hits for the *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides* clusters respectively, which were grouped into eight categories: odorant/pheromone binding, structural, transport, signal transduction, nucleic acid metabolism, energy metabolism, salivary gland and basic metabolism (Table 3.1). The majority of the clusters from *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides* (199 sequences in total) fall into the basic metabolism category and included male-specific sperm, iron transport ferritin, reproduction-associated vitellogenin, kinases and trypsin inhibitor Kunitz domain. A total of eighty-one clusters were linked to salivary glands category. Other categories identified included odorant/pheromone binding, signal transduction, energy and nucleic acid metabolism with 8, 23, 54 and 44 clusters respectively. Structural and transport categories each had 16 clusters.

Category	Number of <i>G. pallidipes</i> clusters	Number of G. palpalis gambiensis clusters	Number of G. tachinoides clusters
Odorant/Pheromone Binding	2	5	1
Structural	5	6	5
Transport	5	6	5
Signal transduction	8	6	9
Nucleic Acid Metabolism	8	15	21
Energy Metabolism	6	23	25
Salivary gland	29	26	26
Metabolism	57	64	78
Total	120	151	170

Table 3.1. Number of clusters found in *Glossina pallidipes* antennae, *Glossina palpalis gambiensis* head and *Glossina tachinoides* head

3.3.2.1 Glossina pallidipes clusters with matches to Glossina morsitans morsitans protein database

The 120 clusters from *G. pallidipes* antennae yielded a diverse large number of genes with similarity ranging from 23% to 100% (Table 3.2). Two clusters (cn30 and cn31) had low matches to PBP-related protein (29% similarity) and general odorant-binding protein (23% similarity) respectively. Six clusters were linked to energy metabolism with clusters gpafl-1a01.p1k and gpafl-6d02.p1k having a high similarity to NADH-ubiquinone oxidoreductase (100% similarity) and cytochrome c oxidase (93% similarity) respectively. A total of eight clusters were implicated in nucleic acid metabolism while both structural and transport category each had five clusters. Eight clusters gave matches to signal transduction molecules and a greater proportion of the clusters were either related to salivary gland (29 clusters) or basic metabolism (57 clusters) (Appendix IV).

Table 3.2 Olfactory related clusters from *Glossina pallidipes* antennae, *Glossina palpalis gambiensis* and *Glossina tachinoides* head producing best matches to *Glossina morsitans morsitans* protein GeneDB

Cluster	Size Best GeneDB Match	E-value
	(bp)	
gpacn30	771 29% to LAR-001B13.b PBP-related protein 5 precursor	0.00067
gpacn31	529 23% to cn15569 General odorant-binding protein 99a	0.994
gphcn109	746 31% to LAR-001B13.b PBP-related protein 5 precursor	0.00064
gphfl-8a06.p1k	488 26% to cn7404 General odorant-binding protein 99b precursor	0.99994
gphfl-5g01.p1k	568 67% to cn14025 Odorant binding protein	1.1E-44
gphfl-8d10.p1k	658 35% to cn15569 General odorant-binding protein 99a precursor	8.5E-22
gphfl-9d09.p1k	58 40% to cn15569 General odorant-binding protein 99a precursor	0.997
gthfl-5d10.q1k	393 28% to cn15569 General odorant-binding protein 99a precursor	6.1E-07
gpacnxx – Gloss gthf1 xxxx – Glossina	sina pallidipes antennae; gphcn/gphf1xxxx – Glossina p. gambiensis h	nead;

3.3.2.2 Glossina palpalis gambiensis clusters with matches to Glossina morsitans morsitans protein database

Blast results for *G. p. gambiensis* (154 clusters) matches to *G. m. morsitans* protein database are compiled as shown in Appendix V. Clusters cn109 and gphfl-5g01.p1k had significant matches to PBP (31% similarity) and OBP (67% similarity) respectively while clusters gphfl-8a06.p1k, gphfl-8d10.p1k and gphfl-9d09.p1k were all related to general odorant-binding proteins (GOBPs) with percentage of identity ranging from 26% to 40% (Table 3.2). Twenty-three clusters have significant indications of being involved in energy transduction processes while the nucleic acid metabolism category included fifteen clusters.

Notably, structural proteins, transport and signal transduction categories each had six clusters. The structural proteins included actin, cuticle and histone while transport category had acyl carrier proteins, ADP/ATP translocase, cation and tricarboxylate transport protein. Most signal transduction clusters are involved in vision. Salivary proteins category had 26 clusters and 64 clusters were attributed to basic metabolism category.

3.3.2.3 Glossina tachinoides clusters with matches to Glossina morsitans morsitans protein database

Significant matches reported for the 170 clusters from *G. tachinoides* were similar to those of *G. p. gambiensis* (Appendix VI). Only one cluster (gthfl-5d10.q1k) was related to GOBP with 28% identity (Table 3.2), while energy and nucleic acid metabolism categories had 25 and 21 clusters respectively. Structural and transport category each had 5 clusters with majority of structural clusters being adult cuticle protein and one cluster (gthfl-4g01.q1k) had tubulin fragment which wasn't reported for *G. palpalis gambiensis*. The transport category had a GDP-fructose transporter and sodium: neurotransmitter symporter which were also not identified in *G. p. gambiensis*. Transcripts implicated in signal transduction were 9 while salivary gland proteins constituted 26 clusters. Majority of the clusters (78) represented various proteins involved in basic metabolic processes with cluster cn65 having ejaculatory bulb-specific protein-3 (95% identity) as its ortholog.

3.3.3 Comparison of *Glossina* Clusters with *Drosophila melanogaster*, Anopheles gambiae, Aedes aegypti and Culex quinquefasciatus protein databases

In order to predict functions of reported orthologs between the dipteran insects, Glossina clusters within the eight categories were used to search D. melanogaster (Ensembl) (Appendix VII), An. gambiae, Ae. aegypti and C. quinquefasciatus (VectorBase) protein databases (Appendix VIII) because they are phylogenetically closely related and, importantly, have a well annotated genome (Lawson et al., 2009). Nine clusters were identified through BLAST search to belong to odorant/pheromone binding category. The structural category was represented by 10 clusters, which included mainly cuticle protein, histones, prion, proline/alanine rich regions, armadillo and profilin. Twelve clusters were found to be in the transport category and could be involved in transport of nucleotides, cations and organic molecules. The cell or neuron signalling category had 10 clusters with a majority implicated in vision and included arrestin, opsin, phosrestin, rhodopsin, and dopamine receptor. Orthologs linked to nucleic acid metabolism were mainly ribosomal proteins, few transcription initiation factors and core binding factors. Homologs reported under the energy metabolism category were mainly enzymes involved in mitochondria transport chain. Different orthologs were reported for salivary gland category and included ribosomal protein, retinin like protein, thiolase, adenosine, fibrinogen, salivary growth factor, rhodopsin receptor, cuticular proteins. It could be that the *Glossina* salivary gland clusters are not well annotated hence the discrepancy in finding orthologs in the dipteran species.

3.3.4 Identification of Putative OBP genes

A total of nine putative odorant-binding proteins (OBPs) and one chemosensory protein (CSP) were identified in G. pallidipes (2 OBPs), G. p. gambiensis (5 OBPs), G. tachinoides (2 OBPs and 1 CSP) clusters by searches against G. m. morsitans, D. melanogaster, An. gambiae, Ae. aegypti and C. quinquefasciatus protein databases (Table 3.3). The two G. pallidipes OBPs (GpOBP1, GpOBP2) and one of the G. p. gambiensis OBP (GpgOBP1) were most likely related to genes encoding pheromone binding proteins (PBPs) in G. m. morsitans, D. melanogaster and C. quinquefasciatus with percentage identity varying from 23% to 70.1%. The four other G. p. gambiensis OBPs had different homologs, with GpgOBP2 having no homolog in D. melanogaster and GpgOBP4 predicted to encode general odorant binding protein (GOBP) (31.1% sequence identity) in C. quinquefasciatus. Interestingly, GpgOBP3 had a match against GOBP (26% identity) in G. m. *morsitans* and ubiquinol-cytochrome-c reductase (63.6% identity) in D. melanogaster, An. gambiae and Ae. aegypti while the homologous gene reported in C. quinquefasciatus was a mitochondrial containing fragment having 55.7% sequence identity. The other OBP gene (GpgOBP5) was similar to the G. m. morsitans GmmOBP1 (40% identity), and had no match in Drosophila and mosquitoes. The only CSP gene reported in this study was in G. tachinoides (GtCSP); it had a high degree of similarity (95% identity) to the Ejaculatory Bulb Serum Protein-3 (EBSP-3) in G. m. morsitans. It also matched a Pherokine-3 protein (49.2% identity) in D. melanogaster, the CSP1 protein (49.6% identity) in C. quinquefasciatus, as well as the Olfactory Specific-D (OS-D)/PhBP protein

(61% identity) and the Antennal protein 10(A10)/PBP/OS-D (60% identity) in *Ae*. *aegypti* and *An. gambiae* respectively. The other two *G. tachinoides* genes (*GtOBP1* and *GtOBP2*) could be linked to GOBP, OBP or PBP. *GtOBP2* gene had a match against the TsalI salivary gland protein (45% identity) in *G. m. morsitans*.

Table 3.3 Putative Odorant Binding Proteins (OBPs) identified from *Glossina pallidipes* antennal, *Glosinna tachinoides* and *Glossina palpalis* gambiensis head libraries

Cluster	Size	Best G. morsitans Match	Best D. melanogaster Match	Best An. gambiae Match	Best Ae. aegypti Match	Best C. quinquefasciatus Match	Signal
	(aa)	(Identities, E value)	(Identities, E value)	(Identities, E value)	(Identities, E value)	(Identities, E value)	Peptide
Gpacn30 (OBP1)	143	PBPRP-5 (29%, 6.7e-4)	Pbprp-3 (70.1%, 8.e-41)	OBP17 (51.7%, 2e-037)	OBP (48.2%, 3e-36)	OBP (48.3%, 2e-35)	1 - 11aa
Gpacn31 (OBP2)	98	GmmOBP1 (23%, 0.994)	Os-E (66.7%, 4.6e-13)	OBP17 (49.5%, 2e-20)	OBP (43.8%, 3e-18)	OBP/ PhBP (45.5%, 5e-19)	1 - 16aa
Gphcn109 (OBP1)	123	PBPRP-5 (31%, 6.4e-4)	Os-E (63%, 5.1e-39)	OBP17 (53.7%, 1e-34)	OBP (52%, 1e-34)	OBP/ PhBP (52%, 3e-34)	1 - 14aa
Gphfl-5g01.p1k (OBP2)	99	OBP (67%, 1.1e-44)	No Hits	OBP (32.6%, 1e-8)	OBP (28.3%, 2e-7)	OBP (29.3%, 5e-9)	1 - 22aa
Gphfl-8a06.p1k (OBP3)	88	GOBP99b (26%, 0.994)	Ubq-cyt c red (72.9%, 1.4e-40)	Ubq-cyt.c red (53.9%, 1e-20)	Ubq-cyt.c red (64%, 4e-23)	Mitochondrial (55.7%, 1e-22)	No Signal P
Gphfl-8d10.p1k (OBP4)	136	GmmOBP1 (35%, 8.5e-22)	OBP83g (61.4%, 3.4e-65)	OBP9 (32.4%, 2e-17)	OBP 99c (31.6%, 4e-17)	GOBP (31.1%, 6e-17)	1 - 18aa
Gphfl-9d09.p1k (OBP5)	45	GmmOBP1 (40%, 0.997)	No Hits	No Hits	No Hits	No Hits	NA
Gthcn65 (CSP)	123	EBSP-3 (95%, 2.8e-62)	Pherokine-3 (49.2%, 2e-37)	PBP/A10/OS-D (60%, 5e-41)	OS-D/PhBP (61%, 1e-41)	CSP 1 (49.6%, 8e-35)	1 - 18aa
Gthfl-5d10.q1k (OBP1)	77	GmmOBP1 (28%, 6.1e-7)	OBP83g (63.6%, 2.1e-18)	OBP9 (28.6%, 0.002)	OBP 99c (29.5%, 8e-4)	GOBP 99a (27.3%, 0.002)	No Signal P
Gthfl-8b10.p1k (OBP2)	58	Tsal1 (45%, 0.74)	No Hits	OBP17 (42.6%, 9.0e-9)	OBP 56a (41.4%, 2e-8)	OBP/ PhBP (39.3%, 1e-7)	1 - 17aa

GpacnXX - *Glossina pallidipes* antennae cluster; GphcnXXX - *Glossina palpalis* head cluster; GthcnXX - *Glossina tachinoides* head cluster; Gphf1-XXXX - *Glossina palpalis* head singleton; Gthf1-XXXX - *Glossina tachinoides* head singleton.

71

The multiple alignments of the OBP gene sequences between *G. pallidipes, G. p. gambiensis, G. tachinoides* and *G. m. morsitans* revealed a highly diverse protein family (Figure 3.0). Most relationships have strong bootstrap support with the lowest identity being 13% between GmmOBP3 and GtOBP2, GmmOBP18, GmmOBP19 (Figure 3.4). Two OBPs (GpgOBP2 and GmmOBP17) are probably not related to the other *Glossina* OBPs as they didn't form any clusters. There is no bootstrap support for GmmOBP8 and GpOBP1, GmmOBP18 and GmmOBP19. The closely related sequences that clustered together with high identities of > 90% included: GtOBP1, GmmOBP11 and GpgOBP4 (97%); GmmOBP21 and GmmOBP22 (96%); GmmOBP and GmmOBP1 (98%); GmmOBP13 and GmmOBP14 (91%); GmmOBP5 and GmmOBP6 (94%); GmmOBP10 and GmmOBP12 (97%) and with GmmOBP9 (96%) (Figure 3.3).

Comparison of the putative *Glossina* OBPs with the OBPs from the four Dipteran (Figure 3.1) also showed a highly diverse gene family; a result also reported in other studies of several insect species (Zhou *et al.*, 2008; Liu *et al.*, 2010). Clustering of the clades indicates that the mosquitoes OBPs could have evolved separately from the *Glossina* and *Drosophila* OBPs (Figure 3.4). This is supported by evolutionary studies which indicate that Diptera split into two lineages about 260 million years ago, i.e. Brachycera (which includes both *Glossina* and *Drosophila*) and Nematocera (which includes mosquitoes). Clustering of *G. m. morsitans* and *D. melanogaster* OBPs separately from mosquitoes OBPs was also reported by Liu *et al.*, 2010. The OBPs identified from *G. pallidipes* (GpOBP1 and (GpOBP2) and *G. p. gambiensis* (GpgOBP1) are all related to GmmOBP8 with at least 69% bootstrapping support (Figure 3.4). GmmOBP8 was predicted to encode

classic OBPs and was found to be more expressed in the antennae of females than males *G*. *m. morsitans* (Liu *et al.*, 2010). Hence, the three OBPs (GpOBP1, GpOBP2 and GpgOBP1) could be involved in mediating olfaction process in *G. pallidipes* and *G. p. gambiensis*.

Both GpgOBP4 and GtOBP1 share a common ancestor with GmmOBP11 with the closest D. melanogaster homolog being OBP83g (84% bootstrap support). The two proteins (GmmOBP11 and DmelOBP83g) have been reported to play an important role in olfaction (Liu et al., 2010; Graham and Davies, 2002; Hekmat-Scafe et al., 2002) and this could implicate GpgOBP4 and GtOBP1 in odor binding suggesting occurrence of orthologs in the different Glossina species. Clustering of D. melanogaster OS-E and Pbprp3 to GmmOBP9 has also been reported and it was observed that GmmOBP9 is highly expressed in antennae (Liu et al., 2010) while OS-E and Pbprp3 (OS-F) are normally coexpressed with the *D. melanogaster* pheromone-binding protein LUSH in one neuron. The clustering analysis shows that some of G. m. morsitans OBPs are more closely related: GmmOBP13 and GmmOBP14 (30% bootstrap), GmmOBP15 and GmmOBP4 (47% bootstrap), GmmOBP6 and GmmOBP5 (45% bootstrap), GmmOBP22 and GmmOBP21 (68% bootstrap), GmmOBP3 and GmmOBP7 (37% bootstrap) (Figure 3.4). Interestingly, GmmOBP1 has a strong bootstrap support with GmmOBP (100%) and was found to be the only Glossina OBP that clustered with the three mosquitoes OBPs (AaegOBP99c, AgamOBP9 and CquiOBP99a). GmmOBP1 has been implicated in blood feeding in insects (Liu et al., 2010).

Multiple sequence alignment of *G. tachinoides* CSP (GtCSP) with the identified orthologs in *D. melanogaster*, *An. gambiae*, *Ae. aegypti*, *C. p. quinquefasciatus* and selected homologous CSPs (*Bombyx mori* Chemosensory protein 4; *Papilio xuthus* Chemosensory proteins; *Tribolium castaneum* Chemosensory protein 9; *Heliothis virescens* Chemosensory protein 1; *Mamestra brassicae* Chemosensory protein; *Schistocerca gregaria* Chemosensory protein; *Locusta migratoria* Chemosensory protein; *Apis mellifera* Chemosensory protein 1; *Anopheles gambiae* Chemosensory protein 5 and *Apis cerana cerana* Chemosensory protein), downloaded from GenBank revealed a highly conserved class of olfactory proteins (Zhou *et al.*, 2006).

The amino acid sequence of GtCSP was also consistent with the CSP family of other insects in many features i.e. predicted size of 123 amino acids, signal peptide of about 18 amino acids (Table 3.3), four conserved cysteines, three highly conserved aromatic residues, a lysine residue between cysteines 3 and 4 and a glutamine residue at the fourth amino acid from cysteine 4 (Figure 3.2). The *G. tachinoides* CSP (GtCSP) have the first, second and third aromatic amino acids as phenylalanine, tryptophan and tyrosine respectively (Figure 3.2). The 4 conserved cysteines and the 3 conserved aromatic residues are probably involved in formation of 2 disulfide bridges and in the binding sites respectively (Angeli *et al.*, 1999).

GpOBP1	IVTFAMTLLLSFGLNNAQKPRRDENYPPPDFLKSFKIIHDV	VEKT-GATEEAIKEFSDG	EIHEDPALK	YMNCI	74
GmmOBP8	GKKYHIYIVTFAITLLMSFGLNNAQKPRRDENYPPDFLKSFKIIHDV	VEKT-GATEEAIKEFSDG	EIHEDPALK	YMNCI	81
Gpg0BP1	PRRDENYPPPDFLKFFKIIHEV	VEKT-GATEEAITEFSDG	EIHDDPALK	YMNCI	55
GpOBP2	HYF	EEKT-GVTGGANKKFSDG	ENQEDPALK	YMNCI	36
GmmOBP10		EAIKEFSEG	NIHEDEALK	YMNCF	24
GmmOBP12		EAIREFSDG	EVHEDEALK	YMNCF	24
GmmOBP9	ATLSGKYRFLTVYTMLIVLLSAWTRAQQPRRDDEYPPAILKLAKPFHDI	VEQT-GVKEEAIKEFSDG	EIHEDEALK	YMNCI	83
GmmOBP18		H-MRYAEYLLAALYN	NTEHTESFK	YLQ <mark>C</mark> I	29
GmmOBP19		H-MRYAEYLLAALYN	NTEHTESFK	YLQ <mark>C</mark> I	29
GpgOBP4	AKFDIRTKDDALKAHEE	HEEF-NVPDDIYEQYLDY	QFPEHKLTN	YVKCW	66
GmmOBP11	TKDDALKAHEE	HEEF-QVPDDIYEQYLDY	QFPEHKLTN	YVKCW	44
GtOBP1			E	KVKCW	7
GmmOBP1	ADYKLRNQEDLNKARKE	MEAK-KVTPELVEKYKKF	DFPDDEITR	YIECI	66
GmmOBP	ADYKLRNQEDLNKARKE	MEAK-KVTPELVEKYKKF	DFPDDEITR	YIECI	66
GmmOBP2	MKTIIVVFLVTLATVWGHHHHEHHDDDDVVVKTREDLFKYRDE	SNKL-NVPADLLEKYKKW	QYPDDEVTK	YMKCM	77
GmmOBP21	AEDEDWQPKTVADIKSIRNE	LKEH-PLSNEQITKMKNF	EFPDEEEVRÇ	QYLL <mark>C</mark> I	53
GmmOBP22	DDFFQMSER	MRLE-KVPDRYKAQFTEF	QFPNDPIVH	(YIL <mark>C</mark> V	42
GmmOBP16		ENFNAFQSI	DMEPDRKFK	YAHCI	24
GmmOBP14	ATEEQMRSAANLMRDV	LPKFPKVSKETADGIRNG	NLSDNKDAK	YINCV	50
GmmOBP3	IPCFARCIASEKGWFDIDLSRWNKQRLVDELGANMYNYCRFELNRAFKNVCSFAFKGLKCLKQAEMNVIITHNN	LECVKEKSISMDQLLEYY	HFPQLEHIP	LFKCF	108
GmmOBP7	FPCFTNCYLNNMFNIYNETQGFNEENVIKRFGRSVYNACKEKLIQGN-NSCEIAYNGFHCLINREDDPFILIDN:	IEDISMEAKRAMKECLHKFNTDEWQYLS	DYVRFPVQEPIP	YTRCF	119
GmmOBP13	TKDDFEKILQS	REDM-QINENDLRTLSAS	PNDVSEGVK	YMKCV	44
GmmOBP15	TRETLQNYVKT	VIEENISTKDLKLFMAWN	FSNISNEGK	FFS <mark>C</mark> F	45
GmmOBP4	MKSKIIFDTRVRRKVMFRVTLILLAIVTSALFSENRYMEFLADFKH	KRERGVGRFELDRLRVGN	LAYPSYEAK	FLGCL	80
GmmOBP17		TNLPNYSLTDHFLGQIEYA	<mark>EIAPKNAK</mark>	FLR <mark>C</mark> W	38
GmmOBP5	MRFHIILKLMSWMCLMCAIESKNVIDLLEGKMYAPAQYQLKPADNFASSPVNKRQMPTSDIPKNMQQFQDTI	LNEAKFKCARAMRLDSNKLLMY	EDQPSLREK	LMACI	108
GpgOBP3	MPLRSFLKDI	FIALPVVKADDEELVDPKV	TLREQCNNK	HISAL	43
GmmOBP6	MFKLLLVTVLMLGILSVEAEIDVQEEIAKFILLANE	REEVGAKEADIQDLIHKH	PSAGQEGK	LRACI	69
GmmOBP20		MLFTLFLIVFIFS	SREASALNE	TSRFV	27
Gpg0BP2	LHDA	HFVVTINVELEKRQGKNYI	KFKKLVAMVÇ	2 <mark>PK</mark> NTT	38
GtOBP2	FFFFFFFVQLTIYY	IIIIFSISNNLYPRKKDY	LISLRNS	AWMGVR	48

GpOBP1	FHEVNVVDDAGE-LHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGETQ	DRAWSWHV	FKQTDPVLYFLP	143
GmmOBP8	FHEVNVVDDAGE-LHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGETQ	DRAWSWHV	FKQTDPVLYFLP	150
Gpg0BP1	FHEVDVVDDAGE-LHFEKLVRMIPEPYLKMFQHILDA	VSHIPKGETQ	DRAWSWHV	FKQTDPVLYFL	123
GpOBP2	LH-VKVFDDAGE-LHFEKLVGMIPKPFLEMVKHIIDA	ESHIPKGETQ	DRAWSWHV	FKQTDP	98
GmmOBP10	FHELGLVDDKGD-VHLETLHQSMPGSFVDLILKPAQH	VHPEGDTL	HKAWWFHQ	WKKADPVVSNLMEET	94
GmmOBP12	FHELGAVDDKGD-VHLETLNLIMPGSFVEAILKPAQH	IHPEGDTL	HKAWWFHQ	WKKADPEVSNLAQESL	95
GmmOBP9	FHEFDVVDDNGD-VHLEKLFSKIPAALRDLLMEASKG	VHPEGDTL	HKAWWFHQ	WKKADPVHYFLV	150
GmmOBP18	FDSLGLVDSNNQ-VNLEKLINFAPTEIHEHILELHRA	DTQRKLVDVIPAGKDS	DIVYTTSQ	YYELKPASREYIEYMMH	109
GmmOBP19	FDSLGLVDSNNQ-VNLEKLINFAPTEIHEHILELHRA	DTQRKLVDVIPAGKDS	DIVYTTSQ	YYELKPASREYIEYMMH	109
GpgOBP4	IEKMGIFTENRG-FNEKNIIAQYTFENYKNLESVRHGLEK	IDHNEWETDV	TWANRVFS	WLKVNRHVVR	136
GmmOBP11	VEKMGIFTENRG-FNEKNIVAQYTYENFKNLESVRHGLEK	IDHNEWETDV	TWANRVFS	WLKVNRHVVRKMFT	118
GtOBP1	LEKMGIITENCG-FNEKNVKVPYSLENFQKLESVRQGPEK	LDHNEWETEV	TWGYRVFS	WVKVNCHVVR	77
GmmOBP1	FDKFQLFDSQTG-FKNDNLIAQLGQSKDNKDEVKADIEK	ADKNTEKSDS	TWAFRGFK	FISKNLPLVMESLKKN	141
GmmOBP	FDKFQLFDSQTG-FKNDNLIAQLGQSKDNKDEVKADIEK	ADKNTEKSDS	TWAFRGFK	FISKNLPLVMESLKKN	141
GmmOBP2	FEHFGFFNEKQG-FDVHKIHKQLMGAHGTVDHSDETHEKIAK	ADKKPEDTDP	AWAYRGGV	FINSNLQLVKSSVN	153
GmmOBP21	ALKMEVFCAHQG-YHPNRIAKQFKMDMNEEEVLEIAEK	HDSNPDNSSVI	OVWAFRGHK	MMSSAIGDKVKAYIKKRQEENAAKNA	137
GmmOBP22	NRELQIWDNNQG-FDIEKIYQQYKGRANEEVVLPIISQ	NQDAKQRNYI	LWCYKAFL	ILDTQVGEWFKEDVRRQQTRTLTNGHQ	126
GmmOBP16	LSNLKYLNTFSGKFDIEDFKQQDGIEDEDVAVIAK	KKLYDNINDP	EYGFNILQ	ILMFEPTE	88
GmmOBP14	MEMMRTMKKGKFLYEGALKQVDLLMPDSYKEEYRPGLAK	KDSANGIKNN	DAAYAVLS	LRGEITQFVFP	121
GmmOBP3	ADKSHLYTVNYEWNVLNWLKAFGPIRNENADISICR	VNANEREKMDI	AIMYEEYN	WERLNYNTDGISVTYKKALKKIFNF	190
GmmOBP7	VYKMQLYNHRLRSWNIAAMQRLLGVPAEHANIEN	LSLSKRRNNNM	AWIYKEMT	FSLSQ	180
GmmOBP13	MEKQGHFKNGALLEEAVIKSLESSPADHNDQNQMSAIVKE	KKEIGSNE	ETAFKVSM	LREHKVDFEI	113
GmmOBP15	HEKIGLTINGVLQKKIAFGHLKRIFDRETAEFVLGE	VNLVGKDK	ETAYQFEK	LFNIEYNRLAK	111
GmmOBP4	YERTGILKNGVLQNDVLKKNVGYIANRVLLDEVLPP	YAVSGTNK	DIAFELKK	FKNVGFDKVWITVPWEDNTDPQYIAAMKLIDDLANVKYRVAFA	178
GmmOBP17	YKKMGILKENLV-TSAGPIPELRQHMRECNEVATE	AQNQSNGDE	EFAWSFYT	MHESLVKCLT	102
GmmOBP5	LKRMKLMDSDYKLSVPTISHIAGMISDENPLLISVAAATASN	NNAINAREP	EAANQINK	IANELKAHKLNLIY	184
Gpg0BP3	YNKYQECNDRVNSRSKTLEN	MEEL	DYVSELDH	VAHTLFSKLK	88
GmmOBP6	MKKYEVLDANGKLVKSVALEHAKKFTNSDENKLKIAGTIIDM	SAMDTVGDT	EAAEQYSE	FKKQADTYGITLEI	145
GmmOBP20	LKEPNVRFAQMRCAEKYPDARPFPNYPDTPANH	Y V Y	LFYKLGLII		88
GpgOBP2	FKFENLFDGNKELTDATNKVLTDSWQDVWNE	LGKDFNQGF	- ADALYLILTH	PVADSISYDDYF	99
GtOBP2	LRNLRKSGFMFFYGKK-STGSVCLKQTCHDQARSH	VSPFGIDSQASII	FTISRNGSC	GIIRTNFSKCSSPVSS	121

Figure 3.0. Alignment of putative *Glossina pallidipes* (GpXXXX), *Glossina palpalis gambiensis* (GpgXXXX) and *Glossina tachinoides* (GtXXXX) OBPs with *Glossina morsitans morsitans* (GmmXXXX) OBPs. Multiple Sequence alignment was done using ClustalW2 software. The numbers on the right of the alignment indicate amino acid residues in the sequence. The conserved cysteine residues, characteristics of insects OBPs, are shaded red.

GpOBP1	IVTFAMTLLLSFGLNNAQKPRRDENYPPPDFLKSFKIIHDV	VEKT	-GATEEAIK	54
GmmOBP8	MKKYHIYIVTFAITLLMSFGLNNAQKPRRDENYPPPDFLKSFKIIHDV	VEKT·	-GATEEAIK	61
Gpg0BP1	PRRDENYPPPDFLKFFKIIHEV	VEKT·	-GATEEAIT	35
GpOBP2	HYF	EEKT	-GVTGGANK	16
FBpp0078304(Os-E)	RDGEWPPPAILKLGKHFHDI	APKT	-GVTDEAIK	53
GmmOBP9	RDDEYPPPAILKLAKPFHDI	VEQT	-GVKEEAIK	63
FBpp0078305(Pbprp3)	MALNGFGRRVSASVLLIALSLLSGALILPPAAAQRDENYPPPGILKMAKPFHDA	VEKT·	-GVTEAAIK	67
AAEL009449-PA(OBP)	MNGSVVFVLSALVSLSVGDVT-PRRDAEYPPPEFLEAMKPLREI	IKKT·	-GVTEEAII	56
AAEL013018-PA(OBP)	VAVSIADVT-PRRDAEYPPPELLQALKPLRDI	QKKT·	-GVSDEAIL	56
AGAP003309-PA(OBP17)	MKLVTFVFAALLCCSMTLGDTT-PRRDAEYPPPELLEALKPLHDI	LGKT·	-GVTEEAIK	57
CPIJ007604(OBP/PhBP)	MAARCAKTLVLFSAVLGIAVVVLADVT-PRRDAEYPPPELLEALKPLHDI	AKKT·	-GVTDEAII	62
CPIJ007617(OBP)	MFTTTVLGLGLLLLLQVGLISCEEPRRDAEYPPPEFLVKMKPMHDE	VAET·	-GASEDAIK	59
AAEL015499-PA(OBP56a)	MILLNMAVVLLEVMLTLAADKPIPRRDAEYPPDFVLEISKKPHKM	VAST	-GVSEAAIK	58
GpgOBP4	AKFDIRTKDDALK-AHEE	HEEF	-NVPDDIYE	46
GmmOBP11	TKDDALK-AHEE	HEEF	-QVPDDIYE	24
GtOBP1		·		
FBpp0078266(OBP83g)	AKFLLKDHADAEK-AFEE	REDY	-YVPDDIYE	52
AAEL005772-PA(OBP99c)	AEFTVSTTEDLQR-YRTE	VSSL	-NIPADYVE	45
CPIJ017326(GOBP99a)	ADFTVKTTDDLQT-YRSE	VSSL	-SISDELVA	45
AGAP000278-PA(OBP9)	AEFVVQTREDLLA-YRAE	VKSL	-GVSDELVE	46
GmmOBP1	ADYKLRNQEDLNK-ARKE	MEAK	-KVTPELVE	46
GmmOBP	ADYKLRNQEDLNK-ARKE	MEAK	-KVTPELVE	46
GmmOBP2	MKTIIVIVFLVTLATVWGHHHHEHHDDDDVVVKTREDLFK-YRDE	SNKL	-NVPADLLE	57
GmmOBP21	AEDEDWQPKTVADIKS-IRNE	LKEH	-PLSNEQIT	33
GmmOBP13	TKDDFEKILQS	REDM·	-QINENDLR	24
GmmOBP15		VIEE·	-NISTKDLK	24
GmmOBP4	MKSKIIFDTRVRRKVMFRVTLILLAIVTSALFSENRYMEFLADFKH	KRER	-GVGRFELD	59
GmmOBP5	MRFHIILKLMSWMCLMCAIESKNVIDLLEGKMYAPAQYQLKPADNFASSPVNK	QMPT	-SDIPKNMQ	66
GmmOBP6	VEAEIDVQEEIAKFILLANE	REEV	-G <mark>AKEADI</mark> Q	49
GmmOBP22	DDFFQMSER	MRLE·	-KVPDRYKA	22
GmmOBP14	ATEEQMRSAANLMRDV	LPKFP	-KVSKETAD	30
GmmOBP3	IDQSQYNSSEVLLEKFKNYAYWSHEEIPCFARCIASEKGWFDIDLSRWNKQRLVDELGANMYNYCRFELNRAFKNV	SFAFKGLI	KCLKQAEMN	93
GmmOBP7	FKQWSDTYEEFPCFTNCYLNNMFNIYNETQGFNEENVIKRFGRSVYNACKEKLIQGNNSCEIAYNGFHCLINREDDPFILIDN	EDISMEA	KRAMKECLH	100

GpOBP1	EFSDGEIHEDPALK	CYMN	LFHEVNVVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHI-PKGETQ	DRAWSWHV	FKQTDPVLYFLP 126
GmmOBP8	EFSDGEIHEDPALK	CYMN	LFHEVNVVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHI-PKGETQ	DRAWSWHV	FKQTDPVLYFLP 150
Gpg0BP1	EFSDGEIHDDPALK	CYMN	LFHEVDVVDDAGELHFEKLVRMIPEPYLKMFQHILDA	VSHI-PKGETQ	DRAWSWHV	FKQTDPVLYFL- 123
GpOBP2	KFSDGENQEDPALK	CYMN	LLH-VKVFDDAGELHFEKLVGMIPKPFLEMVKHIIDA	ESHI-PKGETQ	DRAWSWHV	FKQTDP 98
FBpp0078304(Os-E)	EFSDGQEALK	CYMN	LFHEFEVVDDNGDVHMEKVLNAIPGEKLRNIMMEASKG	IHPEGDTL	HKAWWFHQ	WKKADPVHYFLV 141
GmmOBP9	EFSDGEIHEDEALK	CYMN	LFHEFDVVDDNGDVHLEKLFSKIPAALRDLLMEASKG	VHPEGDTL	HKAWWFHQ	WKKADPVHYFLV 150
FBpp0078305(Pbprp3)	EFSDGEEKLK	CYMN	FFHEIEVVDDNGDVHLEKLFATVPLSMRDKLMEMSKG	VHPEGDTL	HKAWWFHQ	WKKADPKHYFLP 154
AAEL009449-PA(OBP)	EFSDGKVHEDENLK	CYMN (LFHEAKVVDDTGHVHLEKLHDALPDSMHDIALHMGKR	LYPEGENL	EKAFWLHK	WKESDPKHYFLI 143
AAEL013018-PA(OBP)	EFSDGKEKLK	CYMN (LFHEAKVVDDTGHVHLEKLHDALPDSMRDIAMHMGKR	LYPEGENL	EKAFWLHK	WKESDPKHYFLI 143
AGAP003309-PA(OBP17)	KFSDEEEKLK	CYMN	LFHEAKVVDDNGDVHLEKLHDSLPSSMHDIAMHMGKR	LYPEGETL	D KAFWLHK	WKQSDPKHYFLV 144
CPIJ007604(OBP/PhBP)	EFSDGKEKLK	CYMN	LFHEAKVVDDNGDVHLEKLHDSLPNSMHDIAMHMGKR	LYPEGENL	EKAFWLHK	WKQADPKHYFLV 149
CPIJ007617(OBP)	RFSDQEIHEDDNLK	CYMN	LFHKAGVVNDKGEFHYVKIQDFLPESMHLITLNWFKR	LYPQGENL	EKAFWLNK	WKERDPVHYFLP 146
AAEL015499-PA(OBP56a	RFSDEDEKLK	CYMQ	LFEKLRYTDDKGELHLGKVMDSVPEEYEDIALKMGSK	LKPKGKTQ	ERAFWYHK	WKTSDPVVSICDYVFL 150
GpgOBP4	QYLDYQFPEHKLTN	C <mark>YVK</mark>	WIEKMGIFTENRGFNEKNIIAQYTFENYKNLESVRHGLEK	IDHN-EWETDV	TWANRVFS	WLKVNRHVVR 136
GmmOBP11	QYLDYQFPEHKLTN	C <mark>YVK</mark>	WVEKMGIFTENRGFNEKNIVAQYTYENFKNLESVRHGLEK	IDHN-EWETDV	TWANRVFS	WLKVNRHVVRKMFT 118
GtOBP1	E	CKVK	WLEKMGIITENCGFNEKNVKVPYSLENFQKLESVRQGPEK	LDHN-EWETEV	TWGYRVFS	WVKVNCHVVR 77
FBpp0078266(OBP83g)	KYLNYEFPAHRRTS	CFVK	FLEKLELFSEKKGFDERAMIAQFTSKSSKDLSTVQHGLEK	IDHN-EAESDV	TWANRVFS	WLPINRHVVRKVFA 146
AAEL005772-PA(OBP99c	KFKKWEDTTM	CYIK	VFNKMQLFDDTEGPLVDNLVHQLAH-GRD-AEEVRTEVLK	VDKN-TD-NNA	HWAFRGFK	FQKNNLSLIKASIKKD 138
CPIJ017326(GOBP99a)	KYRKWDFPEDDTTQ	CYIK	IFNKMELFDDNNGPIVDNLVLQLAH-GRD-ADEVRAEILK	VDKN-TD-DNS	HWAFRGFK	FQTNNLQLIKASIKKD 138
AGAP000278-PA(OBP9)	KYKSWNFPEDDTTQ	CYIK	IFNKMQLFDDTNGPIVDNLVVQLAH-GRD-ANEVREEIVK	AGSN-TD-GNV	HWAFRGFQ	FQKNNLSLIKASVKKD 139
GmmOBP1	KYKKFDFPDDEITR	CYIE	IFDKFQLFDSQTGFKNDNLIAQLGQ-SKDNKDEVKADIEK	ADKN-TEKSDS	TWAFRGFK	FISKNLPLVMESLKKN 141
GmmOBP	KYKKFDFPDDEITR	CYIE	IFDKFQLFDSQTGFKNDNLIAQLGQ-SKDNKDEVKADIEK	ADKN-TEKSDS	TWAFRGFK	FISKNLPLVMESLKKN 141
GmmOBP2	KYKKWQYPDDEVTK	C <mark>YMK</mark>	MFEHFGFFNEKQGFDVHKIHKQLMGAHGTVDHSDETHEKIAK	ADKK-PEDTDP	AWAYRGGV	FINSNLQLVKSSVN 153
GmmOBP21	KMKNFEFPDEEEVR	QYLL	TALKMEVFCAHQGYHPNRIAKQFKMDMNEEEVLEIAEK	HDSN-PDNSSV	VWAFRGH K	MMSSAIGDKVKAYIKK 127
GmmOBP13	TLSASPEGVK	CYMK	VMEKQGHFKN-GALLEEAVIKSLESSPADHNDQNQMSAIVKE	KKEIGSNE	ETAFKVSM	LREHKVDFEI 113
GmmOBP15	LFMAWNFSNISNEGK	CFFS	FHEKIGLTIN-GVLQKKIAFGHLKRIFDRETAEFVLGE	VNLVGKDK	ETAYQFEK	LFNIEYNRLAK 111
GmmOBP4	RLRVGNLAYPSYEAK	CFLG	LYERTGILKN-GVLQNDVLKKNVGYIANRVLLDEVLPP	Y AV SGTNK	DIAFELKK	FKNVGFDKVWITVPWE 151
GmmOBP5	QFQDTLNEAKFKCARAMRLDSNKLLMYEDQPSLREK	CLMA C	ILKRMKLMDSDYKLSVPTISHIAGMISDENPLLISVAAATASN	ICNNA-INAREP	EAANQINK	IANELKAHKLNLIY 184
GmmOBP6	DLIHKHPSAGQEGK	CLRA C	LMKKYEVLDANGKLVKSVALEHAKKFTNSDENKLKIAGTIID	ICSAM-DTVGDT	EAAEQYSE	FKKQADTYGITLEI 145
GmmOBP22	QFTEFQFPNDPIVH	KYIL	VNRELQIWDNNQGFDIEKIYQQYKGRANEEVVLPIISQ	NQDAKQRNY	LWCYKAFL	ILDTQVGEWFKEDVRR 115
GmmOBP14	GIRNGNLSDNKDAK	CYIN	VMEMMRTMKKGKFLYEGALKQVDLLMPDSYKEEYRPGLAK	KDSA-NGIKNN	DAAYAVLS	LRGEITQFVFP 121
GmmOBP3	VIITHNN-LLECVKEKSISMDQLLEYYHFPQLEHIP	CLFK	FADKSHLYTVNYEWNVLNWLKAFGPIRNENADISICR	/NANE-REKMDI	AIMYEEYN	WERLNYNTDGISVTYK 207
GmmOBP7	KFNTDEWQYLSDYVRFPVQEPIP	CYTR	FVYKMQLYNHRLRSWNIAAMQRLLGVPAEHANIEN	LSLSKRRNNNM	AWIYKEMT	FSLSQ 190

Figure 3.1. Multiple Sequence Alignment of putative *Glossina* OBPs with Dipteran insect (*Drosophila melanogaster*, *Anopheles gambiae*, *Aedes aegypti* and *Culex quinquefasciatus*) OBPs downloaded from Ensembl and Vector Base. The alignment was done using ClustalW2 software. The conserved cysteine residues are shaded red and the numbers on the right of the alignment indicate amino acid residues in the sequence. GpXXXX - Glossina pallidipes OBPs; GpgXXXX - *Glossina palpalis gambiae*, *SAELXXXX - Glossina tachinoides* OBPs; GmmXXXX - *Glossina morsitans morsitans* OBPs; FBppXXXX - *Drosophila melanogaster* OBPs; AGAPXXXX - *Anopheles gambiae* OBPs; AAELXXXX - *Aedes aegypti* OBPs; CPIJXXXX - *Culex pipens quinquefasciatus* OBPs.

GmmCSP4	-MKSTFCCLALLVVY	LSVIVTAQKSYTNK <mark>H</mark>	DGVDVDSVLSNERILTNYIK	LMEKGP	T-PEGREL	KELLPDALISD	T <mark>KC</mark> TD	V <mark>Q</mark> KKNSQKVINYL	.RANRPGE <mark>V</mark>	KLLLNK <mark>y</mark>	DPSG	113
FBpp0072311(Pheroki	.ne)-MKASLALVFCVCVG	LAAAAP-EKTYTNK <mark>3</mark>	DSVNVDEVLGNNRVLGNYLK	LMDKGP	T-AEGREL	KRLLPDALHSD	S <mark>KC</mark> TE	V <mark>Q</mark> RKNSQKVINYL	.RANKAGE <mark>V</mark>	KLLLNK <mark>Y</mark>	DPQG	112
GmmCSP2	-MLRFFGICIVTAIIAWDSVR	SLPHPPATTAAPFKQSYDNK <mark>I</mark>	DNVDLDEILGQERLLKNYVK	LEGTGP	T-PDGKML	KETIPDAMATD <mark>(</mark>	AK <mark>C</mark> TP	K <mark>Q</mark> KYGSEKVTHFL	IDNRPED <mark>W</mark>	VERLEKI <mark>y</mark>	DPAG	125
GtCSP	LTIAVAVVLMTIA	EEQYTTK <mark>E</mark>	DNIDVDEILASDRLFDNYFK	LVDEGK	T-PEGREL	KKTLPDALETA <mark>C</mark>	T <mark>KC</mark> ND	K <mark>Q</mark> KATVDKVIRFL	JTEKKPEQ <mark>v</mark>	KALQAK <mark>y</mark>	DPSG	108
GmmCSP3(EBSP-3)	-MKFLTIVVAVVLMTVA	VIAEEQYTTK <mark>I</mark>	DNIDVDEILASDRLFDNYFK	LVDEGK	T-PEGREL	KRSLPDALETA	AK <mark>C</mark> ND	K <mark>Q</mark> KATVDKVIRFL	JTEKKPDQ <mark>W</mark>	KALQAK <mark>y</mark>	DPAG	111
GmmCSP1	-MKYLTIVAVIATLSAV	<mark>VVMGAEE</mark> KYTTK <mark>3</mark>	DDVDVDEVLKSDRLFKNYYN	LIDQGK	T-PDAREL	K <mark>KSLPDALQTE</mark>	S <mark>KC</mark> SE	K <mark>Q</mark> KKTSEKVIKHL	'WDHKÞEE <mark>n</mark>	KVLQTK <mark>y</mark>	DPEG	113
AAEL002022-PA(OS-D)	MKIMIVIAFALLA	VASAQEEQYTTK <mark>3</mark>	ONIDVEEILKSDRLFNNYFK	LMDEGP	T-PDGNEL	K <mark>RILPEALQTN</mark>	AK <mark>C</mark> SE	S <mark>Q</mark> RAGAIKVINYM	IIENRAEQ <mark>W</mark>	KALQEK <mark>y</mark>	DPEN	110
AGAP008052-PA(A10)	MKLFVAIAFALLA	EAAAQ-EQYTTK <mark>3</mark>	DGIDLDEILKSDRLFNNYFK	LMDEGR	T-PDGNEL	K <mark>KILPEALQTN</mark>	EK <mark>C</mark> SE	K <mark>Q</mark> RSGAIKVINYV	'IENRKEQ <mark>W</mark>	<mark>7</mark> DALQKK <mark>Y</mark>	DPEN	109
CPIJ002618(CSP1)	MKLLIVFALVA	LVAAQDSTYTNK <mark>N</mark>	ONIDVDEILKSDRLFKNYFN	LIDQGP	T-PDATEL	KQSLPDALENN <mark>(</mark>	SK <mark>C</mark> TP	K <mark>Q</mark> KEVGYKVVGWL	JINNRPEE <mark>W</mark>	NVLRAK <mark>y</mark>	DPEN	108
BmoriCSP4	MKVLIVLSCVL	VAVLADDKYTDK <mark>3</mark>	CDKINLQEILENKRLLESYMD	VLGKGK	T-PEGKEL	K <mark>DHLQEALETG</mark>	EK <mark>C</mark> TE	A <mark>Q</mark> EKGAETSIDYL	'IKNETEI <mark>n</mark>	KELTAH <mark>F</mark>	DPDG	108
PxuthusCSP8b	MASKSLIILLCVV	YTNK <mark>3</mark>	DNINYEEVVSNEKLLNKYAD	ILDRGR	T-AEAKEL	K <mark>EHLKEAIENG</mark> C	KE <mark>C</mark> TE	K <mark>Q</mark> KEGTNY VI RYL	'I ENKRNT <mark>n</mark>	VEELCAK <mark>F</mark>	DPDG	108
TcastaneumCSP9	MTAIVFLLALACL	KTYVSSQEYLVP-	-QNIDVDEILKNDRLTRNYLD	VLGKGK	T-PEGEEL	KKDIPEALQNG <mark>(</mark>	AK <mark>C</mark> NE	KHKEGVRKVIHHL	'IENKDNM <mark>n</mark>	VQELESK <mark>e</mark>	DPQG	109
HvirescensCSP1	MA	LARPDGAAYTDK <mark>3</mark>	DNVDLDEILSNRRLLVPYVK	ILDQGK	A-PDAKEL	K <mark>EHIIEALENE</mark> C	G <mark>KC</mark> TE	A <mark>Q</mark> KKGTRRVIGHL	JINNEADY <mark>W</mark>	NELTAK <mark>F</mark>	DPEK	99
MbrassicaeCSP	-MKSCIVLCVLSVAVMA	LARPEEAHYTDR <mark>3</mark>	DSVDLDEILGNRRLMVPYIK	ILDQGK	A-PDAKEL	K <mark>EHIREALENE</mark> C	G <mark>KC</mark> TE	T <mark>Q</mark> KNGTRRVIGHL	JINHEDAY <mark>W</mark>	KELTAK <mark>y</mark>	DPQS	113
PxuthusCSP4a	-MKSVVLLCLFVVLATA	VAGP-AGQYTDR <mark>3</mark>	DSINIDEILGNRRLLIPYVH	LLDQGK	T-PEGKEL	K <mark>SHIKEALENN</mark>	AK <mark>C</mark> TP	P <mark>Q</mark> RTRSRQ VI GHL	JINHEPTF <mark>v</mark>	NELCQK <mark>y</mark>	DPTS	112
PxuthusCSP4b	MAIATA	MPSP-SETYTDR <mark>I</mark>	DNIDLDEIIGNRRLLVPYIH	VLDKGK	T-PDGKEL	K <mark>SHIAEAIEND</mark>	AK <mark>C</mark> TE	V <mark>Q</mark> RKGTRKVLGHL	JINNEQEF <mark>W</mark>	VDELTAR <mark>Y</mark>	DPEH	102
PxuthusCSP4c	-MKVLVCFLLALVII	AQARSNRKYTSR <mark>3</mark>	DNIDLDDVLANRRLLVSYIK	LLDLGK	S-SEGKEL	K <mark>SHINDALEDN</mark>	AQ <mark>C</mark> TD	V <mark>Q</mark> KSGFRRVIGHL	'INHEKDA <mark>N</mark>	<mark>7</mark> GKLTAK <mark>Y</mark>	DPER	111
SgregariaCSP-sg5		EEKYTTK <mark>3</mark>	DNVNLDEILANDRLLNKYVQ	LLEDDESN	T-ADGKEL	KKDIPDALSNE <mark>(</mark>	AK <mark>C</mark> NE	K <mark>Q</mark> KEGTKKVLKHL	JINHKPDV <mark>V</mark>	VAQLKAK <mark>y</mark>	DPDG	94
SgregariaCSP-sg4		EEKYTTK <mark>3</mark>	DNVNLDEILANDRLLNKYVQ	LLEDDESN	T-ADGKEL	K <mark>SVIPDALSNE</mark> C	AK <mark>C</mark> NE	K <mark>Q</mark> KEGTKKVLKHL	JINHKPDV <mark>V</mark>	VAQLKAK <mark>y</mark>	DPDG	94
LmigratoriaCSP	MQKCTLALLLA	CLVAAAAAYTTK <mark>3</mark>	DNIDLDDVLHNDRLLKKYHE	LLSDSDAS	T-PDGKEL	KAAIPDALTNE <mark>(</mark>	AQ <mark>C</mark> NE	K <mark>Q</mark> KAGAEKVIRFL	'IKEKDDT <mark>m</mark>	TPLEKK <mark>y</mark>	DPTG	110
AmelliferaCSP1	-MRHNYIVILILSLLTW	TYAEELYSDK <mark>3</mark>	DYVNIDEILANDRLRNQYYD	FIDAGS	LTPDSVFF	K <mark>SHITEAF</mark> QTQ <mark>C</mark>	KK <mark>C</mark> TE	I <mark>Q</mark> KQNLDKLAEWF	'TTNEPEK <mark>v</mark>	NHFVEIM	IIK	110
AngambiaeCSP5	-MRKVWLLASVVLAFLDFVK-	SQEVARTLYSTR <mark>3</mark>	DNLDIDTILASNRLVTNYVD	LLSRKP	P-PEGKDL	KRILPEALRTK	AR <mark>C</mark> SP	I <mark>Q</mark> KENALKIITRL	JYY <mark>D</mark> YPDQY	(RALRER <mark>W</mark>	DPSG	116
GmmCSP5	MKRIMISRVCVTCVIYLLMA		-DEKNINKLLNNQVIVSRQIM	VLEKSP	D-QLGRQL	K <mark>AALPEVIVRN</mark>	RN <mark>C</mark> SP	Q <mark>Q</mark> AQNAQKLTTFL	JQTKYPDV <mark>v</mark>	AMLLRK <mark>Y</mark>	KT	108
AngambiaeCSP4 M	ISSKALPNLFMLSAAVIVVMA	ALVIVGPQPAAAN	JDSQNINRLLNNQVIVSRQIM	VLEKSP	D-QLGRQL	K <mark>AALPEVIQRN</mark>	RN <mark>C</mark> SP	Q <mark>Q</mark> AQNAQKLTNFL	JQTRYPEV <mark>v</mark>	VAMLIRK <mark>Y</mark>	GAV-	117
AceranaCSP	MASAIKALLIVCALLVYTVT	AETEEGQSGRSRV	/SDEQLNMALSDQRYLRRQLK	ALGEAP	D-PVGRRL	K <mark>SLAPLVLRGA</mark>	PQCSP	EETRQIKKVLSHI	QRTYPKE <mark>v</mark>	<mark>7</mark> SMIVQQ <mark>Y</mark>	AGVS	117
			· · · · . · · ·	k 3	۰. :	* .: *	.*.		:	:		

Figure 3.2. Multiple Sequence Alignment of *Glossina tachinoides* chemosensory protein (GtCSP) with selected homologous sequences download from GenBank. The numbers on the right of the alignment indicate amino acid residues in the sequence. The conserved cysteine residues are shaded green and conserved amino acids are shaded blue. Aromatic amino acid residues are shaded yellow. GmmXXXX - *Glossina morsitans morsitans* CSPs; FBpp0072311 - *Drosophila melanogaster* Pherokine; AGAP008052 - *Anopheles gambiae* antennal protein 10/Olfactory specific-D; AAEL002022 - *Aedes aegypti* Olfactory specific-D/Pheromone binding protein; CPIJ002618 - *Culex pipens quinquefasciatus* Chemosensory protein 1; BmoriCSP4 - *Bombyx mori* Chemosensory protein 4; PxuthusXXXXX - *Papilio xuthus* Chemosensory proteins; TcastaneumCSP9 - *Tribolium castaneum* Chemosensory protein 9; HvirescensCSP1 - *Heliothis virescens* Chemosensory protein 1; MbrassicaeCSP - *Mamestra brassicae* - Chemosensory protein; SgregariaCSP-sg5 - *Schistocerca gregaria* Chemosensory protein; LmigratoriaCSP - *Locusta migratoria* Chemosensory protein; AmelliferaCSP1 - Apis mellifera Chemosensory protein 1; AngambiaeCSP5 - *Anopheles gambiae* Chemosensory protein 5; AceranaCSP - *Apis cerana cerana* Chemosensory protein; EBSP-3 - Ejaculatory bulb Serum protein 3

There is good bootstrap support of 97% between GtCSP and GmmCSP3, identified to be an ejaculatory bulb Serum protein 3 (EBSP-3) (Figure 3.5). High bootstrap values also support other othologs which includes *An. gambiae* A10/OS-D and *Ae. aegypti* OS-D/PhBP (92%), *S. gregaria* CSP-sg4 and 5 (93%), *M. brassicae* CSP and *H. virescens* CSP1 (91%), *An. gambiae* CSP4 and GmmCSP5 (97%) with *Apis cerana cerana* CSP (92%). However, there was moderate support for the other possible orthologs e.g. *C. quinquefasciatus* CSP1 and GmmCSP1 (50%), *L. migratoria* CSP and *S. gregaria* CSPsg4/5 (58%), *P. xuthus* CSP8b and *B. mori* CSP4 (52%). Clustering of the CSPs indicates that Dipteran (*Culex, Glossina, Anopheles* and *Aedes*), Orthoptera (*L. migratoria* and *S. gregaria*), Lepidoptera (*P. xuthus, M. brassicae, H. virescens* and *B. mori*) and Coleoptera (*T. castaneum*) could have diverged separately from *Glossina* (GmmCSP2, GmmCSP4 and GmmCSP5), *A. mellifera* CSP1, *An. gambiae* CSP4 and CSP5, *A. c. cerana* CSP and *D. melanogaster* Pherokine.

Figure 3.4. Phylogenetic relationships of identified putative OBPs (blue) in *Glossina* pallidipes – GpXXXX, Glossina palpalis gambiensis – GpgXXXX and Glossina tachinoides - GtXXXX with Glossina morsitans morsitans (GmmXXXX) OBPs (red). The tree was constructed from an alignment shown in Figure 3.1 using maximum likelihood model with PHYML program. Numbers on branches show values of 100 times replication bootstrap analysis.

Figure 3.5. Phylogenetic comparison of the OBP family members in Diptera including *Glossina morsitans morsitans* (GmmXXXX) OBPs (red); *Glossina pallidipes* (GpXXXX), *Glossina palpalis gambiensis* (GpgXXXX) and *Glossina tachinoides* (GtXXXX) OBPs (blue); *Drosophila melanogaster* (FBppXXXX) OBPs (orange); *Anopheles gambiae* (AGAPXXXX) OBPs (black); *Aedes aegypti* (AAELXXXX) OBPs (green) and *Culex quinquefasciatus* (CPIJXXXX) OBPs (pink). The tree was constructed from an alignment shown in Figure 3.2 using maximum likelihood model with PHYML program. Bootstrap support (100 replications) is indicated on the branches.

Figure 3.6. Phylogenetic relationships of Glossina tachinoides (GtCSP) and Glossina morsitans morsitans (GmmXXXX) chemosensory proteins (blue) with other insect CSPs downloaded from GenBank including Drosophila melanogaster Pherokine (FBpp0072311) (red); Anopheles gambiae antennal protein 10/Olfactory specific-D (AGAP008052) (red); Anopheles gambiae Chemosensory protein 5 (AngambiaeCSP5) (red); Aedes aegypti Olfactory specific-D/Pheromone binding protein (AAEL002022) (red); Culex quinquefasciatus Chemosensory protein 1 (CPIJ002618) (red); Lepidopteran (green) Bombyx mori Chemosensory protein 4 (BmoriCSP4), Papilio xuthus Chemosensory proteins (PxuthusXXXXX); Heliothis virescens Chemosensory protein 1 (HvirescensCSP1) and Mamestra brassicae -Chemosensory protein (MbrassicaeCSP); Orthopteran (orange) Schistocerca gregaria Chemosensory protein (SgregariaCSP- sg4 and sg5), Locusta migratoria Chemosensory protein (LmigratoriaCSP); Hymenopteran (black) Apis mellifera Chemosensory protein 1 (AmelliferaCSP1) and Apis cerana cerana Chemosensory protein (AceranaCSP); Coleopteran (pink) Tribolium castaneum Chemosensory protein 9 (TcastaneumCSP9). The tree was constructed from an alignment shown in Figure 3 using maximum likelihood model with PHYML program. Numbers on branches show values of 100 times replication bootstrap analysis. EBSP-3 - Ejaculatory bulb Serum protein 3

3.4 Discussion

A total of ten putative olfactory proteins (9 OBPs and 1 CSP) were identified from *Glossina* species, *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides*, by comparison of head and antennae EST libraries to *G. m. morsitans*, *D. melanogaster*, *An. gambiae*, *Ae. aegypti* and *C. quinquefasciatus* protein databases. Analysis of the homologs revealed a diverse set of genes implicated in different processes indicating the complexity of the *Glossina* antennae and head. The putative OBPs identified in this work is small comparable to the number identified in *G. m. morsitans* (Liu *et al.*, 2010) and *Apis mellifera* (Foret and Maleszka, 2006). Most studies have a repertoire of more than twice as many OBP genes (Krieger *et al.*, 1993; Kim and Smith, 2001; Xu *et al.*, 2003;). This may be due to the short truncated sequences but it is most likely due to the small scale of the gene discovery efforts are based (Ishida *et al.*, 2004; Zhou *et al.*, 2008; Gong *et al.*, 2009; Pelletier and Leal, 2009). It is very probable that more OBP and CSP genes are present in the unsequenced fraction of the ESTs. Completion of the *G. m. morsitans* genome and other species of tsetse flies may reveal more olfactory genes.

The characteristic features of the predicted OBPs (small size of about 120 amino acids, conserved 6 cysteines, signal peptide) identified in *G. pallidipes*, *G. p. gambiensis* and *G. tachinoides*, suggest that the OBPs are conserved across different Insect orders. Presence of a signal peptide confirms that the OBPs are secretory, while the 6 cysteines ensures formation of 3 disulfide bridges that enables the protein to fold into its 3-dimensional tertiary structure necessary for binding of odors (Sandler *et al.*, 2000; Kruse *et al.*, 2003;

Wogulis *et al.*, 2006). The Insect OBP gene family is very large, quite diverse in sequence and the different homologs identified from Dipteran species show that tsetse flies could also be expressing different olfactory proteins which may play significant roles to adjust to specific life cycle stages, adaptation to different habitats and response to various odors emitted by hosts.

The PBPs, predominantly expressed in males (Raming *et al.*, 1989) may be important in response to female tsetse fly's surface cuticular paraffins or synthetic 15,19dimethyltritriacontane that has been reported to evoke response in male G. m. morsitans to elicit a mating response (Huyton et al., 2008a,b). The OBPs/or GOBPs, expressed in both male and female Insects (Breer et al., 1990; Vogt et al., 1991a) may participate in odor induced host location in tsetse flies (Gikonyo et al., 2003; Saini and Hassanali, 2007; Omolo et al., 2009). Both PBPs and OBPs are most probably involved in binding and transport of hydrophobic pheromone/odors and delivery to odorant receptors (Ors) located in the dendritic membrane of olfactory receptor neurons (ORNs) as proposed in Insects olfaction models (Jacquin-Joly and Merlin, 2004; Rutzler and Zwiebel, 2005). Although there are no experimental studies done to determine functions of *Glossina* OBPs, the nonolfactory homologous genes reported in this work (ubiquinol-cytochrome-c reductase, mitochondrial fragment and TsaII) may pinpoint that some Glossina OBPs could be involved in functions not related to olfaction. Salivary odorant binding proteins have been identified in salivary transcriptome of some insects (Ribeiro et al., 2004; Kalume et al., 2005) and their tertiary structure predicted (Paramasivan et al., 2007). They belong to the D7 family of proteins and are thought to play a role either in endogenous or housekeeping

function (Calvo *et al.*, 2010). It will be interesting to determine the role of salivary OBP reported in *Glossina*.

Phylogenetic analysis of the *Glossina* OBPs suggests a diverse gene family that has undergone rapid evolution by duplication. This could be as a result of various odors produced by different hosts located in different ecological zones (Gikonyo *et al.*, 2002; Omolo *et al.*, 2009) hence the existence of many OBPs. Sequence similarity tree of the diptera Insects show that *Glossina* and *Drosophila* OBP genes evolved from a common ancestor independent from mosquitoes OBPs. The evolution could have taken place over 260 million years ago by speciation event (Liu *et al.*, 2010).

The high sequence identities of GtCSP reported in this study to its Dipteran species indicate presence of chemosensory protein (CSP) in tsetse flies. Chemosensory proteins are small soluble proteins of about 120 amino acids that are unrelated to OBPs. They are expressed widely in various tissues and are postulated to be involved in both olfactory and non-olfactory functions (Campanacci *et al.*, 2003). The strong sequence identity (95%) to *G. m. morsitans* homolog (EBSP-3) suggests that GtCSP could be involved in functions related to mating. Interestingly, the *Drosophila* Pherokine-3 homolog is strongly expressed during metamorphosis (Sabatier *et al.*, 2003) and may implicate GtCSP in tissue remodeling. A similar molecule, pherokine-2 (Phk-2), is related to olfactory specific-D (OS-D)/Antennal protein 10 (A10) (Phk-1). Olfactory specific-D (OS-D) is the first CSP gene identified in antennae of *D. melanogaster* by substractive hybridization experiments (McKenna *et al.*, 1994; Pikielny *et al.*, 1994). Other homologs of this protein family include CSP1 from *C. p. quinquefasciatus*, OS-D/PhBP from *Ae. aegypti* and

A10/PBP/OS-D from *An. gambiae*. The different CSP family members reported suggest broad functions GtCSP could be implicated to perform.

Unlike OBPs, CSPs are highly conserved multigene family with about 50% identity residues even in Insects of different orders (Gong *et al.*, 2007). This is supported by strong bootstrap support and phylogenetic analysis indicates that tsetse CSPs are more closely related to other insects CSPs and could have evolved rapidly by speciation events. The CSP reported in this work from *G. tachinoides* (1), *G. m. morsitans* (5) (CSP1-gi|281426841|; CSP2-gi|281426843|; CSP3-gi|281426845|; CSP4-gi|281426847| and CSP5-gi|281426849|) and other Diptera and Hymenoptera genomes (4 in *D. melanogaster* (Zhou *et al.*, 2006), (7 in *An. gambiae* (Zhou *et al.*, 2006) and (6 in *Apis mellifera* Foret *et al.*, 2007), are small in number relative to those identified in Lepidopteran and Orthopteran species (17 in *B. mori* (Gong *et al.*, 2007), (22 in *Locusta migratria* Foret *et al.*, 2007), (11 in *Papilio xuthus* Ozaki *et al.*, 2008). This could mean that CSPs are involved in many functions where they occur in large numbers and the small numbers could indicate that their expression levels are low in *Drosophila*, *Anopheles*, *Apis* and *Glossina*.

CHAPTER 4

4.0 TISSUE LOCALISATION OF ODORANT-BINDING PROTEINS (OBPS) AND CHEMOSENSORY PROTEIN (CSP) IN *GLOSSINA PALLIDIPES* (DIPTERA: GLOSSINIDAE)

4.1 Introduction

Tsetse flies use olfactory and visual cues to locate preferred hosts, attract potential mates, find larviposition sites and explore the environment. Olfactory sensillia, located in different olfactory and gustatory tissues, detect volatile hydrophobic odorants (semiochemicals) that enter the sensillium lymph through small pores that perforate its surface. Soluble proteins, chemosensory proteins (CSPs) and odorant binding proteins (OBPs), are found in high concentration within the lymph (Pelosi *et al.*, 2006), and are thought to bind hydrophobic odorants entering the sensillium fluid, transport them to Odorant receptors (Ors) located in the olfactory receptor neurons (ORNs) to evoke a response through either a ligand-gated or ion channel G-protein Coupled Receptor (GPCR) pathways (Wicher *et al.*, 2008; Pellegrino and Nakagawa, 2009).

Odorant binding proteins have been identified in many insects olfactory and non-olfactory tissues including: *Antheraea polyphemus* (Raming *et al.*, 1989), *Antheraea pernyi* (Breer *et al.*, 1990), *Heliothis virescens* (Krieger *et al.*, 1993), *Bombyx mori* (Gong *et al.*, 2009), *Drosophila melanogaster* (McKenna *et al.*, 1994; Pikielny *et al.*, 1994; Kim and Smith, 2001), *Apis mellifera* (Foret and Maleszka, 2006), *Anopheles gambiae* (Biessmann *et al.*, 2002; Xu *et al.*, 2003), *Culex pipens quinquefasciatus* (Pelletier and Leal, 2009), *Aedes aegypti* (Zhou *et al.*, 2008) and *G. m. morsitans* (Liu *et al.*, 2010). Examples of insect

orders where CSPs have been identified are Lepidoptera (Jacquin-Joly *et al.*, 2001; Picimbon *et al.*, 2001; Gong *et al.*, 2007), Orthoptera (Angeli *et al.*, 1999; Ban *et al.*, 2003), Hymenoptera (Briand *et al.*, 2002; Ishida *et al.*, 2002), Blattoidea (Kitabayashi *et al.*, 1998; Picimbon and Leal, 1999), and Hemiptera (Jacobs *et al.*, 2005).

In *Glossina morsitans morsitans*, OBPs have been identified and reported to be highly expressed in female than the male antennae (Liu *et al.*, 2010). Identification of OBPs and CSPs, coupled with the highly conserved nature of these proteins across different insect orders, suggests that these proteins could play an important role in recognizing and delivering hydrophobic odorants to Ors (Jacquin-Joly *et al.*, 2001; Biessmann *et al.*, 2002; Pelosi *et al.*, 2006). Furthermore, these proteins may be encapsulins as they have also been reported in both chemosensory as well as non-chemosensory tissues (Pelletier and Leal, 2009). This chapter reports detection of functional homologs of putative OBPs identified from *G. pallidipes*, *G. tachinoides*, *G. p. gambiensis* and *G. morsitans morsitans* in male and female *G. pallidipes* tissues (Antennae, head, thorax and abdomen).

4.2 Materials and Methods

4.2.1 Tsetse flies

Adult *G. pallidipes* were collected in Nguruman, Kajiado District, Kenya (1° 50'S; 36° 05'E) (between 6th and 11th February 2008), using NGU traps baited with acetone and cow urine as described earlier (Chapter 2, section 2.3). *G. pallidipes* males and females were sorted, immediately preserved in RNA*later* (Ambion Inc, Austin, TX) and transferred to the laboratory for analysis. Antennae, heads (without antennae), thorax and abdomen were

isolated from *G. pallidipes* (100 males and 100 females), using the standard methods of Pollock (1982), stored at -80°C and frozen in liquid nitrogen prior to use.

4.2.2 Screening for the putative OBP transcripts in G. pallidipes tissues

Total RNA was extracted from antennae, head (minus antennae), thorax and abdomen of G. pallidipes (100 males and 100 females flies), using RNAgents Total RNA Isolation System (Promega, Madison, WI), and treated with RNase-free DnaseI (Fermentas, Glen Burnie, MD). Integrity of extracted RNA was validated by electrophoresis in 1.0% agarose (Sigma – Aldrich Chemie, Gmbh) RNA denaturing gel in 0.3% agarose/ethidium bromide (0.1 ug/ml) gel run at 60V for two hours. The yield and quality of RNA was determined spectrophotometrically (Sambrook and Russell, 2001). The genomic DNA was extracted from the legs of the tsetse fly by conventional phenol-chloroform DNA extraction method and digested with RNAase A (Sambrook and Russell, 2001). The RNA was used for cDNA synthesis and DNA extracted was used for detection of gDNA contamination in each transcription product. Reverse transcriptions were conducted using RevertAidTM H M-MuLV reverse transcriptase (Fermentas, Glen Burnie, MD). Oligod(T)₁₈ was used as primer in the first strand cDNA synthesis in the reaction mix that consisted of 5X reaction buffer, 5µg total RNA, 2.5 µM oligo-dT, 20U/µl RNAse inhibitor, 500 µM dNTPs, 200 $U/\mu l$ M-MuLV reverse transcriptase and H₂0 in a total volume of 20 μl . This was incubated at 65°C for 5 minutes to maximize primer-RNA template binding, reverse-transcribed at 42°C for 60 minutes and heat inactivation at 70°C for 5 minutes. Integrity of each cDNA was validated through PCR amplification of G. m. morsitans GAPDH specific primers; forward (5'-TAAAATGGGTGGATGGTGAGAGTC-3') and reverse

(5'-CTACGATGAAATTAAGGCAAAAGT-3') (product size 377bp) (Attardo et al., 2006).
Standard PCR reactions were conducted with OBP specific primers as described by Marone *et al.* (2001). Briefly, 1 ul cDNA products were amplified with 0.2 ul Phusion DNA polymerase (0.02u/ul) (New England Biolabs, Ipswich, MA), 4 ul 5X Phusion GC buffer, 0.5 ul DMSO, 0.5 ul dNTPs (10mM) and 13 ul PCR grade water, in the presence of 0.5 ul of each primer (10pmol). Reactions were carried out in 9800 Fast Thermal Cycler (Applied Biosystems, Foster City, CA). Cycle conditions were as follows: initial denaturation at 98°C for 1 minute; 33 cycles of 98°C for 1 minute, 55°C for 1 minutes, 72°C for 1 minutes; final extension at 72°C for 8 minutes. The primers (Table 4.0) were manually designed for *G. m. morsitans* OBPs (Liu *et al.*, 2010), *G. pallidipes, G. tachinoides* and *G. p. gambiensis* OBPs, to span a predicted intron in the gene to exclude contamination of cDNA with genomic DNA.

4.2.3 Sequencing and analysis of putative OBP transcripts in G. pallidipes tissues

The amplicons (5 ul) were run and visualized in 1% agarose gel (stained with ethidium bromide (0.5μ g/ml)), gel purified using QIAquick gel extraction kit (Qiagen Madison, WI) and directly sequenced using ABI 3730 DNA sequencing system (Applied Biosystems, Foster City, CA). Consensus sequences were generated by pairwise alignment of the forward and reverse sequences using BioEdit software, (Hall, 1999) and function predicted by searches against non-redundant GenBank protein (Wheeler *et al.*, 2010) and GO (Ashburner *et al.*, 2000) databases using blast (Altschul *et al.*, 1997). Similarities between the protein sequences and selected homologs were estimated by multiple sequence alignments using ClustalW2 software (Larkin *et al.*, 2007). Where necessary, manual adjustment was done to align the conserved cysteines in the alignments.

Primer	Putative OBP	Forward primer (5'> 3')	Reverse primer (5'→ 3')						
No.									
1	Gpacontig265	GGGGAATTCAGTGATGGAGAA	CCCCCCCCAAGGGGGGGTT						
2	Gpacontig266	GCCTCGAGATGGAAAAGTATCATATT	GCTTCGAACTATTACGGCAAAAAGTAAAG						
3	Gthcontig63	GCCTCGAGATGACCATCGCGGTTATA	GCTTCGAATTAAACCTTAATGCCACG						
4	Gphcontig184	GCCTCGAGACATACGCACAGAAGCCA	GCTTCGAACTATTACGGCAAAAAGTAAAG						
5	Gthcontig151	GCCTCGAGATGGGAATTATAACCGAA	GCTTCGAACTAATTGAACATTTTACG						
6	Gmm_cn7403	GCCTCGAGATGAAAACAATTATCGTG	GCTTCGAACTATTAATTGACACTGGACTT						
7	Gmm_cn15569	GCCTCGAGATGGAAGCGAAGAAAGTC	GCTTCGAACTATTAGTTCTTTTTCAAACT						
8	Gmm_GLAAS20TVB	CCTCGAGATGTATAACTATTGTCGC	GCGAATTCCTAATCAGAAGATGAAAATTG						
9	Gmm_cn15567	AAGACTACCGCCGTTATATTG	GAAAGCTAAGATTGGGAAGGT						
10	Gmm_cn14707	GCCTCGAGATGTCTGAACGTTGCATG	GCTTCGAACTATTAAACCATTCGCCTACT						
11	Gmm_cn15220	GCCTCGAGATGAAACTATTTTTAATA	GCTTCGAACTACTAAGTAAACATTTTACG						
12	Gmm_cn13435	GCCTCGAGATGAAGGAATTAATTTTG	GCTTCGAACTATTAAGCATTTTTCGCTGC						
13	Gmm_cn15565	GCGAGCTCGGGGGAGAGTCCGAACCCT	GCTTCGAACTATTAGTTCTTTTTCAAACT						
14	Gmm_cn14014	GCCTCGAGATGATGAAATATTTCGAA	GCAAGCTTCTATCATTCTTTGACTTCGGG						
15	Gmm_GLAC953TV	GCCTCGAGATGGAATTTCTTGCGGAT	GCAAGCTTCTATTAAGCAAAAGCAACTCT						
16	Gmm_GLAER58TV	GCCTCGAGATGAAATTAATTACCGTT	GCAAGCTTCTATTAAGCAGTTTCGATATT						
17	Gmm_cn15331	GCCTCGAGATGAAATCTTGGATTCTC	GCAAGTAACTTCTAATAATCAAACTCGTT						
18	Gmm_cn13968	GCCTCGAGATGAGATTTCATATCATA	GCAAGCTTCTATTAATAAATCAAATTCAA						
19	Gthcontig219	GCCTCGAGATGCGATCGCGCTTGGTC	GCTTCGAACTACGTAATAGTGCGTGG						

Table 4.0 Primers of putative Glossina OBPs used in RT-PCR

Glossina pallidipes antennae (Gpa); *Glossina tachinoides* head (Gth); *G. palpalis* head (Gph); *G. morsitans morsitans* (Gmm). cn stands for consensus which represents the cluster sequence of each OBP. Primers designed from putative OBP ESTs have been assigned arbitrary primer numbers 1 to 19.

4.3 Results

4.3.1 Determination of Total RNA Quality

Assessment of total RNA extracted from antennae, head (without antennae), thorax and abdomen on 0.3% agarose gel showed a band smear between 250bp to 2kb for both *G. pallidipes* male and female (Figure 4.0).

Figure 4.0 Analysis of total RNA isolated from *G. pallidipes* male (GpM) and female (GpF) antennae (A), head (H), thorax (T) and abdomen (Ab). 5ul of total RNA was resolved on a 0.3% agarose gel stained with ethidium bromide. M-1kb ladder.

4.3.2 Determination of First Strand cDNA Integrity

All cDNA fractions from antennae, head (without antennae), thorax and abdomen

of G. pallidipes Male (GpM) and Female (GpF), amplified with internal control

primer, GAPDH, produced a band of comparable intensity and expected product

size of 377bp (Figure 4.1).

Figure 4.1 Amplification of first strand cDNA synthesized from *G. pallidipes* male (GpM) and female (GpF) antennae (A), head (H), thorax (T) and abdomen (Ab) with GAPDH internal control primer of band size 377bp. 5ul of the PCR product was resolved on a 1% agarose gel stained with ethidium bromide. M-1 kb ladder.

4.3.3 Amplification of First Strand cDNA with designed putative OBP primers

A set of nineteen primers (Table 4.0) were used to amplify G. pallidipes Male (GpM) and Female (GpF) antennae (A), head (H), thorax (T) and abdomen (Ab). No amplifications of either GpM or GpF tissues were reported for primers number 1 (Gpacontig265), 5 (Gthcontig151), 9 (Gmm_cn15567), 11 (Gmm_cn15220), 13 (Gmm_cn15565), 15 (Gmm_GLAC953TV), 16 (Gmm_GLAER58TV) and 18 (Gmm_cn13968). The primers, 8 (Gmm_GLAAS20TVB) and 14 (Gmm_cn14014), amplified fragments localised to GpM thorax and abdomen while primers 2 (Gpacontig266) and 4 (Gphcontig184) amplified antennae of both GpF and GpM. In general, the proportion of amplified fragments in antennae, head, thorax and abdomen was similar in both GpF and GpM (Table 4.1).

	GpF						GpM				
Primer No.	Putative OBP	Α	Η	Т	Ab	Primer No.	Putative OBP	Α	H	Т	Ab
1	Gpacontig265	Х	Х	Х	Х	1	Gpacontig265		Х	Х	Х
2	Gpacontig266	\checkmark	Х	Х	Х	2	Gpacontig266	\checkmark	Х	Х	Х
3	Gthcontig63		Х		Х	3	Gthcontig63		Х		\checkmark
4	Gphcontig184		Х	Х	Х	4	Gphcontig184		Х	Х	Х
5	Gthcontig151	Х	Х	Х	Х	5	Gthcontig151	Х	Х	Х	Х
6	Gmmcn7403	\checkmark				6	Gmm_cn7403		Х	\checkmark	\checkmark
7	Gmmcn15569				Х	7	Gmm_cn15569		Х		\checkmark
8	GmmGLAAS20TVB	Х	Х	Х	Х	8	Gmm_GLAAS20TVB	Х	Х	\checkmark	\checkmark
9	Gmmcn15567	Х	Х	Х	Х	9	Gmm_cn15567	Х	Х	Х	Х
10	Gmmcn14707				\checkmark	10	Gmm_cn14707		Х		\checkmark
11	Gmmcn15220	Х	Х	Х	Х	11	Gmm_cn15220	Х	Х	Х	Х
12	Gmmcn13435	Х			Х	12	Gmm_cn13435		Х	\checkmark	\checkmark
13	Gmmcn15565	Х	Х	Х	Х	13	Gmm_cn15565	Х	Х	Х	Х
14	Gmmcn14014	Х	Х	Х	Х	14	Gmm_cn14014	Х	Х	\checkmark	Х
15	GmmGLAC953TV	Х	Х	Х	Х	15	Gmm_GLAC953TV	Х	Х	Х	Х
16	GmmGLAER58TV	Х	Х	Х	Х	16	Gmm_GLAER58TV	Х	Х	Х	Х
17	Gmmcn15331			Х	Х	17	Gmm_cn15331		Х	\checkmark	\checkmark
18	Gmmcn13968	Х	Х	Х	Х	18	Gmm_cn13968	Х	Х	Х	Х
19	Gthcontig219	\checkmark				19	Gthcontig219	\checkmark			\checkmark

Table 4.1 Summary of amplified Glossina pallidipes body parts

Glossina pallidipes Male (GpM) and Female (GpF) antennae (A), head (H), thorax (T) and abdomen (Ab) amplified fragments with primers number 1 to 19. $\sqrt{-}$ represents amplification and X-represents No amplification.

Fifty (50) amplified fragments were resolved on a 1% agarose/ethidium bromide (0.1ug/ml) gel along with 1 Kb+ ladder. Most of the amplified fragments were of the size range between 250bp to 500bp (Figures 4.2 a, b and c).

Figure 4.2a. PCR amplification of GpF tissues with designed OBP primers. M–1 kb ladder, C–Control DNA (100ng/ul), DNA Samples – 1-GpF₂A; 2-GpF₄A; 3-GpF₃A; 4-GpF₃T; 5-GpF₁₉A; 6-GpF₁₉H; 7-GpF₁₉T; 8-GpF₁₉Ab; 9-GpF₆A; 10-GpF₆H; 11-GpF₆T; 12-GpF₆Ab; 13-GpF₇A; 14-GpF₇H; 15-GpF₇T; 16-GpF₁₀A; 17-GpF₁₀H. [1-GpF₂A - Sample1 GpF Antennae amplified with primer number 2]

Figure 4.2b. PCR amplification of GpF and GpM tissues with designed OBP primers. M–1 kb ladder, C–Control DNA (100ng/ul), DNA Samples – 18-GpF₁₀T; 19-GpF₁₀Ab; 20-GpF₁₂H; 21-GpF₁₂T; 22-GpF₁₇A; 23-GpF₁₇T; 24-GpM₂A; 25-GpM₄A; 26-GpM₆A; 27-GpM₆T; 28-GpM₆Ab; 29-GpM₃A; 30-GpM₃T; 31-GpM₃Ab; 32-GpM₁₉A; 33-GpM₁₉H; 34-GpM₁₉T. [34-GpM₁₉T – Sample 34 GpM Thorax amplified with primer number 34]

Figure 4.2c. PCR amplification of GpM tissues with designed OBP primers. M–1 kb ladder, C–Control DNA (100ng/ul), DNA Samples – 35-GpM₁₉Ab; 36-GpM₇A; 37-GpM₇T; 38-GpM₇Ab; 39-GpM₈T; 40-GpM₈Ab; 41-GpM₁₀A; 42-GpM₁₀T; 43-GpM₁₀Ab; 44-GpM₁₂A; 45-GpM₁₂T; 46-GpM₁₂Ab; 47-GpM₁₄T; 48-GpM₁₇A; 49-GpM₁₇T; 50-GpM₁₇Ab [36-GpM₇A- Sample36 GpM Antennae amplified with primer no. 7]

4.3.4 Annotation of amplified *Glossina* sequences

A total of eighty seven (87) amplified fragments were sequenced bi-directionally and functional annotation carried out using blastx program against NR protein database of GenBank (Wheeler *et al.*, 2010) and GO database (Ashburner *et al.*, 2000). All consensus sequences had an estimated size range of between 268bp to 522bp (comparable with the amplified fragments in Figures 4.2a,b,c) and are possibly related to olfaction based on the high E-values and similar homologs to other insect's olfactory proteins (Table 4.2). Similar results were reported for both *G. pallidipes* male and female with twenty-eight of the consensus sequences having OBP homologs to *Drosophila* and one consensus sequence to *A. gambiae* OBP homolog. Five of the consensus sequences had a signal peptide, an indication that they are secretory proteins.

Alignment of *G. pallidipes* male and female sequences with selected OBP homologs revealed that they had between three to six conserved cysteine residues with the exception of consensus sequence, con37_P7 and con46_P12, which had only one cysteine (Figure 4.3a & b). The OBPs are low in sequence similarity, demonstrating the highly divergent nature of this protein family in insects unlike the deduced CSPs homologs that had four remarkably conserved cysteine amino acids, a lysine residue between cysteines 3 and 4 and a glutamine residue at the fourth amino acid from cysteine 4 (Figure 4.4). In addition, three highly conserved

aromatic residues was revealed from the alignment with the first, second and third aromatic amino acids being phenylalanine, tryptophan and tyrosine respectively. A similar conserved pattern has been reported for lepidopteran CSPs at positions 26, 81 and 94 and is probably involved in ligand binding in all insect CSPs (Briand *et al.*, 2002; Gong *et al.*, 2007).

		Blastx match to										
Consensus	Size	NR database	Accession No	Species	E-value	SignalP	Best Match to	E-Value	GO No	Description		
No.	(bp)						GO database					
con1_P2	418	Os-E	ref NP_524242.2	Drosophila melanogaster	6.0E-36	Yes	Os-E	5.4E-36	0005549/ 0005550	MF odorant/pheromone binding		
con2_P4	352	PBP- protein 3	ref NP_524241.1	Drosophila melanogaster	4.0E-31	No	Pbprp3	1.9E-31	0005549	MF odorant/pheromone binding		
con3_P3	269	EBP III	ref NP_524966.1	Drosophila melanogaster	6.0E-38	No	EBP III	3.0E-37	0007552/0009615	BP metamorphosis/ response to virus		
con4_P3	301	EBP III	ref NP_524966.1	Drosophila melanogaster	6.0E-38	No	EBP III	3.0E-37	0007552/0009615	BP metamorphosis/ response to virus		
con9_P6	416	Obp 99b	gb ABW78183.1	Drosophila melanogaster	2.0E-29	No	Obp99b	3.2E-33	0005549	MF odorant binding		
con10_P6	418	Obp 99b	gb ABW78183.1	Drosophila melanogaster	4.0E-31	No	Obp99b	1.1E-34	0005549	MF odorant binding		
con11_P6	487	Obp 99b	gb ABW78399.1	Drosophila melanogaster	5.0E-31	Yes	Obp99b	1.1E-33	0005549	MF odorant binding		
con12_P6	414	Obp 99b	gb ABW78399.1	Drosophila melanogaster	3.0E-35	No	Obp99b	1.1E-34	0005549	MF odorant binding		
con13_P7	283	Obp44a	ref NP_610358.1	Drosophila melanogaster	9.0E-24	No	Obp99b	3.4E-27	0005549	MF odorant binding		
con14_P7	282	Obp44a	ref NP_610358.1	Drosophila melanogaster	9.0E-03	No	Obp44a	1.1E-30	0005549	MF odorant binding		
con15_P7	291	Obp44a	ref NP_610358.1	Drosophila melanogaster	7.0E-31	No	Obp44a	8.3E-31	0005549	MF odorant binding		
con16_P10	273	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-09	0005549	MF odorant binding		
con17_P10	274	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-08	0005549	MF odorant binding		
con18_P10	269	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-08	0005549	MF odorant binding		
con19_P10	270	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-08	0005549	MF odorant binding		
con20_P12	424	Obp 99c	gb ABW78717.1	Drosophila melanogaster	2.0E-43	No	Obp99c	1.3E-41	0005549	MF odorant binding		
con21_P12	522	Obp 99c	gb ABW78717.1	Drosophila melanogaster	1.0E-43	Yes	Obp99c	1.0E-41	0005549	MF odorant binding		
con24_P2	417	Os-E	ref NP_524242.2	Drosophila melanogaster	3.0E-35	Yes	OS-E	2.3E-35	0005549	MF odorant/pheromone binding		
con25_P4	364	AF437884_1 OBF	9 gb AAL84179.1	Anopheles gambiae	8.0E-32	No	Pbprp3	9.0E-33	0005549	MF odorant/pheromone binding		
con26_P6	439	Obp 99b	gb ABW78399.1	Drosophila melanogaster	1.0E-36	No	Obp99b	5.7E-36	0005549	MF odorant binding		
con27_P6	489	Obp 99b	gb ABW78399.1	Drosophila melanogaster	3.0E-30	Yes	Obp99b	3.6E-30	0005549	MF odorant binding		
con28_P6	488	Obp 99b	gb ABW78399.1	Drosophila melanogaster	5.0E-03	No	Obp99b	1.1E-33	0005549	MF odorant binding		

Table 4.2 Functional annotation of Consensus sequences against nonredundant and Gene Ontology database

Table	4.2	Cont.
-------	-----	-------

Consensus	Size	Blastx match to	Accession No	Species	E-value	SignalP	Best Match to	E-Value	GO No	Description
No.	(bp)	NR database					GO database			
con29_P3	298	EBP III	ref NP_524966.1	Drosophila melanogaster	6.0E-38	No	EBP III	3.0E-37	0007552/0009615	BP metamorphosis/ response to virus
con30_P3	298	EBP III	ref NP_524966.1	Drosophila melanogaster	6.0E-38	No	EBP III	3.0E-37	0007552/0009615	BP metamorphosis/ response to virus
con31_P3	302	EBP III	ref NP_524966.1	Drosophila melanogaster	3.0E-38	No	EBP III	3.0E-37	0007552/0009615	BP metamorphosis/ response to virus
con36_P7	283	Obp44a	ref NP_610358.1	Drosophila melanogaster	2.0E-30	No	Obp44a	1.7E-30	0005549	MF odorant binding
con37_P7	288	Obp44a	ref NP_610358.1	Drosophila melanogaster	2.0E-24	No	Obp44a	8.2E-28	0005549	MF odorant binding
con38_P7	296	Obp44a	ref NP_610358.1	Drosophila melanogaster	7.0E-31	No	Obp44a	8.4E-31	0005549	MF odorant binding
con39_P8	519	Obp 83ef	ref NP_731042.1	Drosophila melanogaster	1.0E-16	No	Obp83ef	9.2E-24	0005549	MF odorant binding
con40_P8	511	Obp83ef	ref XP_001358932.2	Drosophila pseudoobscura	5.0E-21	No	Obp83ef	8.8E-25	0005549	MF odorant binding
con41_P10	268	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-08	0005549	MF odorant binding
con42_P10	277	Obp 8a	ref NP_727322.1	Drosophila melanogaster	3.0E-06	No	Obp8a	2.0E-08	0005549	MF odorant binding
con43_P10	277	Obp 8a	ref NP_727322.1	Drosophila melanogaster	7.0E-07	No	Obp8a	5.9E-09	0005549	MF odorant binding
con 47_P14	437	Obp 19b	ref NP_608391.2	Drosophila melanogaster	5.0E-26	No	Obp19b	2.1E-26	0005549	MF odorant binding

con20_P12 – consensus sequence number 20 (derived from pair wise alignment of 20_P12F and 20_P12R) and amplified by primer number 12. Os-E - Olfactory specific E; PBP/Pbprp3 - Pheromone binding protein; Obp - Odorant binding protein; EBP III - Ejaculatory Bulb Protein III; MF – Molecular Function; BP – Biological Process

con1_P2	TFAMTLLLSFGLNNAQ	KPRRDENYPPPDFLKSFKIIHDV	VEKTGATEEAIKEFSDGE	IIHEDPALK	C <mark>YMN</mark> C	LFHEVN
con24_P2	TFAMTLLLSFGLNNAQ	KPRRDENYPPPDFLKSFKIIHDVC	VEKTGATEEAIKEFSDGE	IHEDPALK	C <mark>YMN</mark> C	LFHEVN
con25_P4		FRDENYPPPDFLKSFKIIHDV	VEKTGATEEAIKEF SDGE	IHEDPALK	CYMN <mark>C</mark>	LFHEVN
con2_P4		DAMKIYPPPDFLKSFKIIHDV	VEKTGATEEAIKEFSDGE	IHEDPALK	C <mark>YMN</mark> C	LFHEVN
OsEDro_melanogaster	MVKYPLILLLIGCAAAQ	EPRRDGEWPPPAILKLGKHFHDI	APKTGVTD <mark>EAIK</mark> EFSDGQ)IHEDE <mark>ALK</mark>	C <mark>YMN</mark> C	LFHEFE
OBPAnopheles_gambia	e-MLVQDSPLLLLVLLLVTQCLD	GADCSTTTTQRPAPRRDGQYPPPETLAFLRPLGKL	LEETGVSPEAVKRFSDAI	DPFDDNRALK	C <mark>YMD</mark> C	MFRVTN
con10_P6	LVTLATVWG	HHHHEHHDDDDY-VVKTREDLFKYRDE	SNKLNVPADLLEKYKKW)YPDDEVTK <mark>(</mark>	C <mark>YMK</mark> C	MFEHFG
con26_P6	LFVVTLATVWG	HHHHEHHDDDDY-VVKTREDLFKYRDE	SNKLNVPADLLEKYKKW)YPDDEVTK <mark>(</mark>	C <mark>YMK</mark> C	MFEHFG
con9_P6	IWSHWQQFG	VITIMNIMMMMITCLKTREDLFKYRDE	SNKLNVPAD <mark>LLEKYKKW</mark>	2YPDDEVTK <mark>(</mark>	C <mark>YMK</mark> C	MF <mark>EHF</mark> G
con14_P7			TPELVEKYKKFI	DFPDDEITR	C <mark>YIE</mark> C	IFDKFQ
con36_P7			SDELVEKYKKFI	DFPDDEITR	C <mark>YIE</mark> C	IFDKFQ
con13_P7			TAMLVEKYKKFI	DFPDDEITR	C <mark>YIE</mark> C	IFDKFQ
con16_P10			LEKVPDRYKAQFTEFÇ	2FPNDPIVH	KYIL <mark>(</mark>	VNRELQ
con41_P10			KVPDRYKAQFTEFÇ	2FPNDPIVH	KYIL <mark>C</mark>	VNRELQ
con17_P10			SKKYLHRYKAQFTEFÇ	2FPNDPIVH	KYIL <mark>C</mark>	VNRELQ
GOBP1Heli_virescens	MPGVLRALLLLAAAA	PLLADVNVMKDVTLGFGQALDK	REESQLTEEKMEEFFHFV	VRDDFKFEHRELG	AIQ	MSRHFN
GOBP2Bombyx_mori	MFSFLILVFVASVAD	SVIGTAEVMSHVTAHFGKTLEE	REESGLSVDILDEFKHFV	VSDDFDVVHRELG	CAII	MSNKFS
PBPBombyx	-MSIQGQIALALMVNMAVG	SVDASQEVMKNLSLNFGKALDE	KKEMTLTDAINEDFYNFV	KEGYEIKNRETG <mark>O</mark>	CAIM	LSTKLN
con20_P12	LLTIVTCIR	AEDEDWQPKTVADIKSIRNE	LKEHPLSNEQITKMKNFE	CFPDEEEVR	QYLL <mark>(</mark>	TALKME
MSSPG1C.capitata	MKYFIVILAAVVLA	QAQDDWKIKSANEVNDIRRE	HKEHLFNEELQKHEEVLE	PLPDEDVVRI	NYEV <mark>(</mark>	VFTKWE
ABP3Manduca_sexta	-MITATLHVVFALLGFVYG	AKNKPVFSEEIKEIIQTVHDE	VGKTGVSEEDIANCENG]	IFKEDVKLK	C <mark>YMF</mark> C	LL <mark>EVAG</mark>
SalivaryOBPC.tarsali	iMVSVTSIAVVLAFAVIS	ASSDDAVADSKQQYLKNKEL	GKLLQVPAEAMEQYQRFE	EYPENHETF	CYIR	IGILQG
OBPASP5A_mellifera	MHVKSVLLLITIVTFVA	LKPVKSMSADQVEKLAKNMRKS	LQKIAITEELVDGMRRGE	IFPDDHDLQ	CYTT <mark>C</mark>	IMKLLR
PBP2D.melanogaster	MSHLVHLTVLLLVGILCLG	INRDHAAELANE	KAETGATDEDVEQLMSHI	DLPERHEAK	CLRA	VMKKLQ
OBP56eAedes_aegypti	KFSSALSFCSLQLAWRFVT	ELQCANSDEEKKAQAKEMMRGMAEE	KKKEGATDEDVEALLED	(TPETEVQK	CFLS	FQHQFQ
OBP2Phy_diversa		KEHGQKVLEQIIDYATS	ADSLGVSPEDMKLLMEKK	(FPTSREGQ <mark>(</mark>	CMPS	VNKKFG

con1_P2	VVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGET	DRAWSWHV	FKQTDPVLYF	139
con24_P2	VVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGET	DRAWSWHV	FKQTDPVLY	138
con25_P4	VVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGET	DRAWSWHV	OFKQTDLMCF	120
con2_P4	VVDDAGELHFEKLVRMIPEPFLEMVKHIIDA	ESHIPKGET	DRAWSWHV	FKQTDP	117
OsEDro_melanogaster	VVDDNGDVHMEKVLNAIPGELRNIMMEASKG	IHPEGDTL-C	HKAWWFHQ	WKKADPVHYFLV	141
OBPAnopheles_gambiae	VTDDRGELHMGKLLEHVPTEFEDIALRMGVR	TRPKGKDV-	ERAFWFHK	OWKTSDPVHYYLV	157
con10_P6	FFNEKQGFDVHKIHKQLMGAHGT-VDHSDETHEKIAK	ADKKPE-DP	AWAYGV	CFINSNLQC	138
con26_P6	FFNEKQGFDVHKIHKQLMGAHGT-VDHSDETHEKIAK	ADKKPE-DP	AWAYGV	CFINSNLQLVKSS	144
con9_P6	FFNEKQGFDVHKIHKQLMGAHGT-VDHSDETHEKIAK	ADKKPE-DP	AWAYGV	FINSNLQ	138
con14_P7	LFDSQTGFKNDNLIAQLGQSKDNKDEVKADIEK	ADKNTEKS-	TWAFRGFK	OFISKNLPL	93
con36_P7	LFDSQTGFKNDNLIAQLGQSKDNKDEVKADIEK	ANKNTEKS-	TWAFRGFK	CFISKNLPLV	94
con13_P7	LFGSQTGFKNDNLIAQLGQSKDNKDEVKTDIEK	AXKNIKNQ-J	HVLGRSAA	SNVSLAR-IYLW	93
con16_P10	IWDNNQGFDIEKIYQQYKGRANEEVVLPIISQ	NQDAKQREW	YKAFL	CILD	90
con41_P10	IWDNNQGFDIEKIYQQYKGRANEEVVLPIISQ	NQDAKQREW	YKAFL	ILD	88
con17_P10	IWDNNQGFDIEKIYQQYKGRANEEVVLPIISQ	NQDAKQREW	YKAFL	CILD	90
GOBP1Heliothis_virescens	LLTDSSRMHHDNTEKFIQSFPNG-EVLARQMVELIHS	EKQFDHEEH	WRISHLAD	FKSSCVQRGIAPSMELMMTEFIMEAEAR	164
GOBP2Bombyx_mori	LMDDDVRMHHVNMDEYIKGFPNG-QVLAEKMVKLIHN	EKQFDTETD	TRVVKVAA	FKKDSRKEGIAPEVAMIEAVIEKY	160
PBPBombyx	MLDPEGNLHHGNAMEFAKKHGAD-ETMAQQLIDIVHG	EKSTPANDK	IWTLGVAT	FKAEIHKLNWAPSMDVAVGEILAEV	164
con20_P12	VFCAHQGYHPNRIAKQFKMDMNEEEVLEIAEK	HDSNPDNSS	/DVWAFRGH	OMMSSAIGDKVKAYIKKRQVN	140
MSSPG1C.capitata	FSNARNRFKKDRLVRQFEPVLKREEIDEIIGR	ADKNEQGSP\	/DVWVRFQQ	VSRSEIPPNFLKIIGKL	142
ABP3Manduca_sexta	LADEDGTVDYDMLVSLIPEEYSERASKMIFA	NHLDTPEK-I	OKCQRSFH-	TYEKDPEFYFLF	141
SalivaryOBPCulex_tarsalis	SHFEDEQGLQVDKLFALSNMGKSKEEFTELVNG	QAQVGEDVS	YCHKAYIL	FWKQFREWKKTAGSGEEAA	148
OBPASP5_Apis_mellifera	TFKN-GNFDFDMIVKQLEITMPPEEVVIGKEIVAV	RNEEYTGDD	Q <mark>K</mark> TYQY V Q	HYKQNPEKFFFP	143
PBP2Dro_melanogaster	IMDESGKLNKEHAIELVKVMSKHDAEKEDAPAEVVAK	EAIETPEDH	DAAFAYEE	IYEQMKEHGLELEEH	150
OBP56eAedes_aegypti	ISDG-KRFNKDGFMQLSAMMFGEDQEKMATAEEIAEE	SSVENADR-	QLSVDIKE	VEKAMDKRGIKMEK	151
OBP2Phyllopertha_diversa	LQKADGTLNKEYRYSEMENVKAIDEEIYNKMNSVWDK	VINGADGT-	DTGMKVVT	MKEESEKLGLSKDAIGF	130

Figure 4.3a Multiple Sequence Alignment of GpM and GpF antennae and head sequences (con1_P2; con2_P4; con9_P6; con10_P6; con13_P7; con14_P7; con16_P10; con17_P10; con20_P12; con24_P2; con25_P4; con26_P6; con36_P7; con41_P10) with selected homologs. Accession numbers are: OsE *Drosophila melanogaster* gi|24644477|; OBP *Anopheles gambiae* gi|19071272|; GOBP1 *Heliothis virescens* gi|1255931|; GOBP2 *Bombyx mori* gi|112984436|; PBP *Bombyx mori* gi|112984442|; EBPIII *Drosophila melanogaster* gi|24762502|; MSSPG1 *Ceratits capitata* gi|6682279|; ABP3 *Manduca sexta* gi|18140731|; Salivary OBP *Culex tarsalis* gi|215259537|; OBPASP5 *Apis mellifera* gi|18140749|; PBP2 *Drosophila melanogaster* gi|24643509|; OBP56e *Aedes aegypti* gi|157103281|; OBP2 *Phyllopertha diversa* gi|6521353|. Con1_P2 – consensus sequence number 1 (derived from pairwise alignment of 1_P2F and 1_P2R) and amplified by primer number 2. OsE-Olfactory-specific E; OBP-Odorant-binding protein; GOBP1-general odorant-binding protein; PBP-Pheromone-binding protein; MSSPG1-male specific serum polypeptide gamma 1; ABP3-antennal binding protein 3; OBPASP5-odorant binding protein ASP5. The conserved cysteine residues are shaded red and conserved amino acids shaded grey.

GOBP1Heliothis_virescens	MPGVLRALLLLAAAAPLLADVNVMKDVTLGFGQALDK	REESQLTEEKMEEFFH-FWRDD	FKFEHRELG <mark>C</mark> A
GOBP2Bombyx_mori	MFSFLILVFVASVADSVIGTAEVMSHVTAHFGKTLEE	REESGLSVDILDEFKH-FWSDD	FDVVHRELG <mark>C</mark> A
PBPBombyx	MSIQGQIALALMVNMAVGSVDASQEVMKNLSLNFGKALDE	KKEMTLTDAINEDFYN-FWKEG	YEIKNRETG <mark>C</mark> A
con11_P6	-GHIGKRRRDEFYLIFFFKNFSLLSLAYATVWGHHHHEHHDDDDXVVKTREDLFKYRDE	SNKLNVPA-DLLEKYK-KWQ	-YPDDEVTK <mark>C</mark> Y
con28_P6	IGHIGKRGRDEFYLIFFFKNFSLLSLAYATVWGHHHHEHHDDDDYVVKTREDLFKYRDE	SNKLNVPA-DLLEKYK-KWQ	-YPDDEVTKCY
con12_P6	LVTLATVWGHHHHEHHDDDDYVVKTREDLFKYRDE	SNKLNVPA-DLLEKYK-KWQ	-YPDDEVTKCY
con27_P6	FGHIGKRRRDEFYLIFFFKNFSLLSLAYATVWGHHHHEHHDDDDYVVKTREDLFKYRDE	SNKLNVPA-DLLEKYK-XWQ	-YPDDEVTKCY
con15_P7		S-ELVEKYK-KFD	-FPDDEITRCY
con38 P7		RHR-ELVEKYK-KFD	-FPDDEITR <mark>C</mark> Y
con37_P7		VTP-ELVEKYK-KFD	-FPDDEITRCY
con18_P10		EKVPD-RYKAQFT-EFQ	-FPNDPIVHKY
con43_P10		CLEKVPD-RYKAQFT-EFQ	-FPNDPIVHKY
con19_P10		EKVPD-RYKAQFT-EFQ	-FPNDPIVHKY
con42_P10		EKVPEYRYKAQFT-EFQ	-FPNDPIVHKY
OsEDro_melanogaster	MVKYPLILLLIGCAAAQEPRRDGEWPPPAILKLGKHFHDI	APKTGVTD-EAIKEFS-DGQ	-IHEDEALK <mark>C</mark> Y
OBPAnopheles_gambiae	MLVQDSPLLLLVLLLVTQCLDGADCSTTTTQRPAPRRDGQYPPPETLAFLRPLGKL	LEETGVSP-EAVKRFS-DADP-	-FDDNRALK <mark>C</mark> Y
con39_P8	IDRSRMSAHSLSRANALNRYYFLRIYFKNNYNKNLKYFLFKEMNINNLE	VKEKSISMDQLLEYYH	-FPQLEHIPCL
con40_P8	NERSRMSAHSLSRANALNRYYFLRIYFKNNYNKNFIYFLFAEMTHNNLE	VKEKSISMDQLLEYYH	-FPQLEHIP <mark>C</mark> L
ABP3Manduca_sexta	GITATLHVVFALLGFVYGAKNKPVFSEEIKEIIQTVHDE	VGKTGVSEEDIANCENGIFK	EDVKLKCY
con21_P12	YRSLVAPGVRGGLLLYLVGLLFYSRSFISQIRAEDEDWQPKTVADIKSIRNE	LKEHPLSNEQITKMKNFEFP	DEEEVR QY
MSSPG1C.capitata	MKYFIVILAAVVLAQAQDDWKIKSANEVNDIRRE	HKEHLFNEELQKHEEVLPLP	DEDVVRNY
SalivaryOBPCulex_tarsalis	SSAUNTSIAVVLAFAVISASSDDAVADSKQQYLKNKEL	GKLLQVPAEAMEQYQRFEYP	ENHETF <mark>C</mark> Y
OBPASP5_Apis_mellifera	MHVKSVLLLITIVTFVALKPVKSMSADQVEKLAKNMRKS	LQKIAITEELVDGMRRGEFP	DDHDLQ <mark>C</mark> Y
PBP2Dro_melanogaster	MSHLVHLTVLLLVGILCLGATSAKPHEEINRDHAAELANE	KAETGATDEDVEQLMSHDLP	ERHEAKCL
OBP2Phyllopertha_diversa	KEHGQKVLEQIIDYATS	ADSLGVSPEDMKLLMEKKFP	TSREGQ <mark>C</mark> M
OBP56eAedes_aegypti	KFSSALSFCSLQLAWRFVTELQCANSDEEKKAQAKEMMRGMAEE	KKKEGATDEDVEALLEDKTP	ETEVQK <mark>C</mark> F
con47_P14	BLYSLRFGIMLVVTNAEDDDENEIGMTLDELADALEED	EPKPERDHIKQLLTNDE	NPHENSKCF
con46_P12		AYLTNNNIPPVNH-EKP	CKRVSGTK

GOBP1Heliothis_virescens	IQ	MSRHFNLLTD-SSRMHHDNTEKFIQSFPNGEV-LARQMVELIHSCEKQFDHEEDH-CWRISHLADCFKS	SSCVQRGIAPSMELMMT	155
GOBP2Bombyx_mori	II	MSNKFSLMDD-DVRMHHVNMDEYIKGFPNGQV-LAEKMVKLIHN <mark>E</mark> EKQFDTETDD- <mark>E</mark> TRVVKVAAEFKH	KDSRKEGIAP-EVAMI	154
PBPBombyx	IM	LSTKLNMLDP-EGNLHHGNAMEFAKKHGADET-MAQQLIDIVHG <mark>E</mark> EKSTPANDDK- <mark>EIWTLGVAT</mark> EKK	AEIHKLNWAPSMDVAVG	154
con11_P6	MK	MFEHFGFFNE-KQGFDVHKIHKQLMGAHGTVD-HSDETHEKIAK <mark>A</mark> ADNETRRHSLRLGLSWR <mark>O</mark> VLH	HQFFT	158
con28_P6	MK	MFEHFGFFNE-KQGFDVHKIHKQLMGAHGTVD-HSDETHEKIAK <mark>C</mark> ADFYTRRHSLRLGLSWR <mark>C</mark> VLH	HQFFT	159
con12_P6	MK	MFEHFGFFNE-KQGFDVHKIHKQ LM GAHGTVD-HSDETHEKIAK <mark>C</mark> ADKKPEDTDP- <mark>C</mark> AWAYRGGV <mark>C</mark> FIN	NSNLQ	137
con27_P6	MK	MFEHFGFFNE-KQGFDVHKIHKQ LM GAHGTVD-HSDETHEKIAK <mark>C</mark> ADXKPEDTDP- <mark>C</mark> AWAYRGGVRSP(QFFT	160
con15_P7	ΙE	IFDKFQLFDS-QTGFKNDNLIAQLGQSKD-NKDEVKADIEK <mark>C</mark> ADKNTEKSDS- <mark>C</mark> TWAFRGFK <mark>C</mark> FIS	SKNLPLVDGKF	97
con38_P7	ΙE	IFDKFQLFDS-QTGFKNDNLIAQLGQSKD-NKDEVKADIEK <mark>C</mark> ADKNTEKSDS- <mark>C</mark> TWAFRGFK <mark>C</mark> FIS	SKNLPLVMLK	98
con37_P7	IE	IFDKFQLFDS-QTGFKNDNLIAQLGQSKD-NKDEVKADIEILRRQEYRKIRFMYLGVPRLQN	MFHQESTFG	93
con18_P10	IL	VNRELQIWDN-NQGFDIEKIYQQYKGRANEEVVLPIISQ O NQDAKQRNYEL O YKAFL O ILI	D	89
con43_P10	IL	VNRELQIWDN-NQGFDIEKIYQQYKGRANEEVVLPIISQ <mark>E</mark> NQDAKQRNYEL <mark>E</mark> YKAFL <mark>E</mark> ILI	DT	92
con19_P10	IL	VNRELQIWDN-NQGFDIEKIYQQYKGRANEEVVLPIISQ <mark>C</mark> NQDAKQRNYEL <mark>C</mark> YKAFL <mark>C</mark> ILI	D	89
con42_P10	IL	VNRELQIWDN-NQGFDIEKIYQQYKGRANEEVVLPIISQ O NQDAKQRNYEL O YKAFL O ILI	D	90
OsEDro_melanogaster	MN	LFHEFEVVDD-NGDVHMEKVLNAIPGEKLRNIMMEASKG <mark>E</mark> IHPEGDTLCHK <mark>AWWF</mark> HQCWKKADH	PVHYFLV	141
OBPAnopheles_gambiae	MD	MFRVTNVTDD-RGELHMGKLLEHVP-TEFEDIALRMGVR <mark>C</mark> TRPKGKDVCERAFWFHKCWKTSDI	PVHYYLV	157
con39_P8	FK	FADKSHLYTV-DYEWNVLNWLKAFGPIRNENADISI <mark>C</mark> RVNANEREKMI <mark>C</mark> AIFVRVLLGTSH	KLRYPPFPPTYKKAL	160
con40_P8	FK	FADKSHLYTV-DYEWNVLNWLKAFGPIRNENADISI <mark>C</mark> RVNANEREKMI <mark>C</mark> AIMYEEYN <mark>O</mark> WEH	RLNYNTDGISVTYKKAL	162
ABP3Manduca_sexta	MF	LLEVAGLADE-DGTVDYDMLVSLIPEEYSERASKMIFA E NHLDTPEKDK- <mark>O</mark> QRSFDVHK <mark>O</mark> TYF	EKDPEFYFLF	141
con21_P12	LL	TALKMEVFCA-HQGYHPNRIAKQFKMDMNEEEVLEIAEK <mark>E</mark> HDSN-PDNSSVDVWAFRGHK <mark>E</mark> MMS	SSAIGDKVNAYIKKRQE	162
MSSPG1C.capitata	EV	VFTKWEFSNA-RNRFKKDRLVRQFEPVLKREEIDEIIGR <mark>E</mark> ADKN-EQGSPVDVWVYRFQQ <mark>E</mark> VSI	RSEIPPNFLKIIGKL	142
SalivaryOBPCulex_tarsalis	IR	IGILQGHFED-EQGLQVDKLFALSNMGKSKEEFTELVNGQAQVGEDVSCYCHKAYIPLMCFWB	KQFREWKKTAGSGEEAA	148
OBPASP5_Apis_mellifera	TT	IMKLLRTFKNGNFDFDMIVKQLEITMPPEEVVIGKEIA <mark>E</mark> RNEEYTGDD <mark>E</mark> QKTYQYVQ <mark>E</mark> HY	KQNPEKFFFP	143
PBP2Dro_melanogaster	RA	VMKKLQIMDE-SGKLNKEHAIELVKVMSKHDAEKEDAPAEVVAK <mark>C</mark> EAIETPEDHCDAAFAYEECIYEQN	MKEHGLELEEH	150
OBP2Phyllopertha_diversa	PS	VNKKFGLQKA-DGTLNKEYRYSEMENVKAIDEEIYNKMNSVWDK <mark>C</mark> -VINGADGTDE <mark>C</mark> DTGMKVVT <mark>C</mark> MKF	EESEKLGLSKDAIGF	130
OBP56eAedes_aegypti	LS	FQHQFQISDGKRFNKDGFMQLSAMMFGEDQEKMATAAEE <mark>C</mark> SSVENADR <mark>C</mark> QLSVDIKE <mark>C</mark> VEH	KAMDKRGIKMEK	151
con47_P14	RR	LMEQFELIDEGQSQMNKDKVVDMMSMMYADNKETLEEIVDH <mark>C</mark> NTKNGATTEK- <mark>C</mark> ENAHQHGM <mark>C</mark> ILM	NQLKENGL	143
con46_P12	TG	RFSPPFGYEKS-TGKTQGNRFLILPIGGGGLAVSKEVAPCPAANFPFLGEE		76

Figure 4.3b Multiple Sequence Alignment of GpM and GpF thorax and abdomen sequences (con11_P6; con12_P6; con15_P7; con18_P10; con19_P10; con21_P12; con27_P6; con28_P6; con37_P7; con39_P8; con38_P7; con40_P8; con42_P10; con43_P10; con46_P12; con47_P14) with selected homologous sequences. Accession numbers are: OsE *Drosophila melanogaster* gi|24644477|; OBP *Anopheles gambiae* gi|19071272|; GOBP1 *Heliothis virescens* gi|1255931|; GOBP2 *Bombyx mori* gi|112984436|; PBP *Bombyx mori* gi|112984442|; EBPIII *Drosophila melanogaster* gi|24762502|; MSSPG1 *Ceratits capitata* gi|6682279|; ABP3 *Manduca sexta* gi|18140731|; Salivary OBP *Culex tarsalis* gi|215259537|; OBPASP5 *Apis mellifera* gi|18140749|; PBP2 *Drosophila melanogaster* gi|24643509|; OBP56e *Aedes aegypti* gi|157103281|; OBP2 *Phyllopertha diversa* gi|6521353|. Con12_P6 – consensus sequence number 12 (derived from pairwise alignment of 12_P6F and 12_P6R) and amplified by primer number 6. OsE-Olfactory-specific E; OBP-Odorant-binding protein; GOBP1-general odorant-binding protein; PBP-Pheromone-binding protein; MSSPG1-male specific serum polypeptide gamma 1; ABP3-antennal binding protein 3; OBPASP5-odorant binding protein ASP5. The conserved cysteine residues are shaded red and conserved amino acids shaded grey

con3_P3											Ç	YTTK	FDNID	VDEI	ASDR	LFD	Y FK	LVD	E <mark>G</mark> K
con29_P3											ç	YTTK	FDNID	VDEI	ASDR	LFD	Y FK	LVD	E <mark>G</mark> K
EBPIIID.melanogaster							- <mark>MK</mark> MII	LALV	VLGL	J-LVAA	AED-K	TK	Y DNI D	VDEI	KSDR	LFGN	Y FK	LVD	N <mark>G</mark> K
SAPC.quinquefascia							- <mark>MK</mark> CV-IV	VAVL	ALIA-	-LVSAÇ	Q <mark>EAE</mark> Ç	YTTK	YDNID	LDEI	KSDR	LFN	Y YK	LMD	EGP
STKA.aegypti							- <mark>MK</mark> YF-FV	VVFL	ALAA	IVIAQN	NEINÇ	YTTK	FDSID	VDEI	KSDR	LFN	Y YK	LLD	L <mark>C</mark> R
hypoProG_morsitans							- <mark>MK</mark> YLTIV	VAVI	ATLS	AVVVM	GAEEK	TK.	YDDVD	VDEV	KSDR	LFK	YYN	LID	Q <mark>C</mark> K
CSP7Tri_castaneum							- <mark>MK</mark> LISA-	-VIL	CAFL	JAVSAJ	AEN-F	YTNK	Y DNV D	VDKI	NNDR	VLTN	YIK	LMD	ECP
CSP6Apis_mellifera							- <mark>MK</mark> IY	-ILL	FVLV	ritc <mark>v</mark> i	IAE-I	YT TK	Y DDMD	IDRI	QNG <mark>R</mark>	ILT <mark>N</mark>	YIK	MLD	EGP
CSP4aPapilio_xuthus							- <mark>MK</mark> SVVLI	LCLF	VVLA	FAVAGE	PAG-Ç	YTDR	Y <mark>D</mark> SIN	IDEI	GNRR	LLIP	YVH <mark>(</mark>	LLD	Q <mark>C</mark> K
con4_P3											Q	YTTK	F <mark>DNID</mark>	VDEII	LASDR	LFDN	Y FK	LVD	E <mark>C</mark> K
con30_P3											Ç	YTTK	F <mark>DNID</mark>	VDEII	LASDR	LFDN	YFK	LVD	E <mark>C</mark> K
con31_P3											EÇ	YTTK	F <mark>DNID</mark>	VDEII	LASDR	LFDN	YFK	LVD	E <mark>G</mark> K
con3_P3	CTPEGRE	L <mark>K</mark> KRLPD	ALETA <mark>C</mark> A	K <mark>C</mark> -NDK	KATIDI	KVIRFL	FEKKPEQ <mark>V</mark>	WKAL	JQAKYI	DPSGE <mark>N</mark>	<mark>Y</mark> LKKY	RS			- 98				
con29_P3	CTPEGRE	L <mark>K</mark> KRLPD	LLETA<mark>C</mark>A	KC-NDK	KATIDI	KVIRFL	FEKKPEQ <mark>I</mark>	WKAL	<u>'QAKYI</u>	DPSGE <mark>N</mark>	<mark>Y</mark> LKKY	RSE-			- 99				
EBPIIID.melanogaster	CTPEGRE	L <mark>K</mark> KSLPD	ALKTE <mark>C</mark> S	K <mark>C</mark> -SEK(2 <mark>RQNTD</mark>	KVIRYI	I ENKPEE <mark>V</mark>	W <mark>k</mark> qL	JQAKYI	DPDEI <mark></mark>	Y <mark>IKRY</mark>	RATA	EASGI	KV	- 126				
SAPC.quinquefasciatus	CTPDGN <mark>E</mark>	L <mark>K</mark> RILPE	ll QTN <mark>C</mark> A	KC-SEA	RAGAI	VINHV	I DNRPEQ <mark>I</mark>	WKAL	<u>'QAKYI</u>	DP <mark>ENI</mark> S	<mark>Y</mark> VEKY	RTEA	AEAGI.	AL	- 128				
STKA.aegypti	CTPEGVE	L <mark>K</mark> RVLPE	LETS <mark>C</mark> A	K <mark>C</mark> -SEK(RETSDE	RAIKYLT	renrpee <mark>v</mark>	W <mark>KV</mark> L	KAR <mark>YI</mark>	DPDNK <mark>y</mark>	<mark>Y</mark> SKKN	IENDA			- 122				
hypoProGlossina_morsitans	CTPDAR <mark>E</mark>	L <mark>K</mark> KSLPD	<mark>ll</mark> qte <mark>C</mark> S	K <mark>C</mark> -SEK(KKTSEP	KVIKHLN	MDHKPEE <mark>I</mark>	W <mark>KV</mark> L	'QT <mark>KYI</mark>	DP <mark>EGI</mark> S	YYSKY	KARD	AKA		- 126	5			
CSP7Tribolium_castaneum	CTSEGRE	L <mark>K</mark> KTLPD	LL SSG <mark>C</mark> T	K <mark>C</mark> -NQK	KETAE	VIRHL	rqkrard <mark>i</mark>	NERL	SKKYI	DPQGQ <mark>3</mark>	Y <mark>KKRY</mark>	EEHV.	ATSRA	A	- 127				
CSP6Apis_mellifera	CTNEGR	I <mark>K</mark> KILPD	ALSTG <mark>C</mark> N	KC-NEK	KHTANI	K VVNYL F	KTKRPKD <mark>I</mark>	NERL	S <mark>AKYI</mark>	STGE	YKKRY	EHGL	QFAKN	N	- 125				
CSP4aPapilio_xuthus	CTPEGK	I <mark>K</mark> SHIKE/	ALENN <mark>C</mark> A	KC-TPP	2RTRSR(QVIGHLI	INHEPTF <mark>I</mark>	WNE L	CQ <mark>KYI</mark>	DPTSK <mark>N</mark>	Y <mark>TRKY</mark>	EEEL	RTIAA		- 127				
con4_P3	CTPEGRE	L <mark>K</mark> KRLPD	ALETA <mark>C</mark> A	KCND-K	KATID	KVI <mark>RFL</mark> 1	ГЕКК <mark>РЕ</mark> Q <mark>и</mark>	WKAL	QAKYI	DPSGE	Y <mark>LKK</mark> Y	RSE-			- 100				
con30_P3	CTPEGRE	L <mark>K</mark> KRLPD	ALETA <mark>C</mark> A	K <mark>C</mark> ND-K	KATID	KVI RFLI	ΓΕΚΚ <mark>ΡΕ</mark> Q <mark>Ι</mark>	WKAL	QAKYI	DPSGE	Y <mark>LKKY</mark>	RSE-			- 99				
con31_P3	CTPE GRE	LKKRLPD	I ETA <mark>C</mark> A	KCND-K	KATID	KVI RFLI	FEKK <mark>pe</mark> q <mark>v</mark>	N KAL	QAKYI	DPSGE	Y LKKY	RSE-			- 100)			

Figure 4.4 Multiple Sequence Alignment of GpM and GpF antennae, head, thorax and abdomen sequences (con3_P3; con29_P3; con4_P3; con30_P3 and con31_P3) with selected homologous sequences. Accession numbers are: EBPIII *Drosophila melanogaster* gi|24762502|; SAP *Culex quinquefasciatus* gi|170033663|; STK *Aedes aegypti* gi|157125736|; hypothetical protein *Glossina morsitans* gi|77415652|; CSP7 *Tribolium castaneum* gi|113951719|; CSP6 *Apis mellifera* gi|118150500|; CSP4a *Papilio xuthus* gi|207107814|. con29_P3 – consensus sequence number 29 (derived from pairwise alignment of 29_P3F and 29_P3R) and amplified by primer number 3. EBPIII-ejaculatory bulb protein III; SAP-sensory appendage protein; STK-serine/threonine kinase; hypoPro-hypothetical protein; CSP7-chemosensory protein 7; The conserved cysteine residues are shaded green and conserved amino acids shaded blue. Aromatic amino acid residues are shaded yellow.

4.5. Discussion

This study established that odorant binding proteins (OBPs) are located not only in G. pallidipes antennae but also in other body parts namely head, thorax and abdomen. Using reverse transcriptase polymerase chain reaction (RT-PCR), OBPs were amplified from both G. pallidipes male and female tissues using primers designed from G. pallidipes, G. p. gambiensis, G. tachinoides and G. morsitans *morsitans*, hence the possibility of occurrence of similar OBPs within the same and different tsetse species. Most of the amplified fragments from G. pallidipes male and female were similar and this could indicate that OBPs perform the same functions in both male and female tsetse flies. The antennae, being the main olfactory organ, was not amplified by some of the OBP gene primers as expected. This could be due to OBP gene primers from other *Glossina* species that are either not specific or localised within the male and female *Glossina pallidipes* antennae. The two OBP genes (Gmm_GLAAS20TVB and Gmm_cn14014) that were localised in male tissues could be sex specific OBPs whose role needs to be investigated since their identified homologs in D. melanogaster (Obp83ef and Obp19b), are involved in perception of chemical stimuli and binding of odorants. The two novel *Glossina* OBPs (Gpacn266 and Gphcn184) were only localized in both G. pallidipes male and female antennae, could represent OBPs that play an important role in tsetse olfaction. Most of the identified OBPs homologs were from *Drosophila* an indication of close relationship between these groups of sequences.

The other olfactory proteins reported in *D. melanogaster* were pheromone binding protein-related protein 3 and chemosensory protein homolog, ejaculatory bulb protein III, reported to function in reproduction and humoral response (Ludwig et al., 1991; Sabatier et al., 2003). It is similar to OBP in Mamestra brassicae in that they can detect vaccenly acetate as a ligand and could represent orthologs that have conserved function (Bohbot et al., 1998). Chemosensory proteins are small, highly conserved soluble proteins expressed in the sensillium lymph (Leal et al., 1999; Scaloni et al., 1999) and function as carriers binding a range of aliphatic compounds, esters and pheromone blends (Nagnan-Le Meillour et al., 2000; Briand et al., 2002). They have been identified in both chemosensory and nonchemosensory tissues of different insects (McKenna et al., 1994; Maleszka and Stange, 1997; Ozaki et al., 2008), implying that they could also be involved in functions other than olfaction. It is notable that only one CSP gene was identified in this work. Small numbers of CSPs have also been identified in complete genomes of D. melanogaster (4 CSPs), A. gambiae (7 CSPs), A. mellifera (6 CSPs) while a large number were identified in Lepidoptera, Orthoptera and phytophagous insects (Angeli et al., 1999; Robertson et al., 1999; Zhou et al., 2006). Identification of OBPs and CSP in antennae, head, thorax and abdomen could imply other functions of olfactory proteins in tsetse flies. Localisation of the olfactory proteins in different body parts of male and female G. pallidipes need to be investigated further to quantify their expression levels and determining their possible functions.

CHAPTER 5

5.0 GENERAL DISCUSSION AND FUTURE DIRECTIONS

This study reports the identification, characterization and tissue localisation of nine (9) putative odorant binding proteins (OBPs) and one (1) chemosensory protein (CSP) in the tsetse (Glossina pallidipes, Glossina palpalis gambiensis and Glossina *tachinoides*). The different genes identified in the tsetse antennae and head suggests occurance of many cellular and metabolic processes. Characterization of OBP and CSP genes open avenues for further analysis to elucidate their functional role and molecular basis of olfaction in tsetse flies that could be vital in determining the vectorial capacity of different *Glossina* species in parasite transmission. The discovery of orthologs in phylogenetically related dipteran species G. morsitans morsitans (Liu et al., 2010), Drosophila melanogaster (Pikielny et al., 1994), Anopheles gambiae (Xu et al., 2003), Aedes aegypti (Zhou et al., 2008) and Culex quinquefasciatus (Pelletier and Leal, 2009) suggests that the OBPs and CSP identified in G. pallidipes, G. p. gambiensis and G. tachinoides may be involved in olfactory process. These results are consistent with other Expressed sequence tag (EST) and genomic studies implicating OBPs and CSPs in olfaction. However, no mutant tsetse flies defective for any OBP or CSP gene have been described, thus the *in vivo* function of these proteins is unknown. Tsetse with mulfunctional OBP or CSP genes can, however be produced and examined for behavioural response to known attractants and repellents. Such studies have been done with Drosophila

LUSH mutants, reported to be defective for pheromone evoked behavior (Kim and Smith, 2001; Xu *et al.*, 2005). This study also established that both OBPs and CSPs are found in chemosensory (antennae) and non-chemosensory tissues (head, thorax and abdomen). This could imply that they are also involved in functions not related to olfaction. Identification of male specific G. m. morsitans OBP homologs in G. *pallidipes* males calls for further investigation to ascertain their precise role as previously identified OBPs in G. m. morsitans reported genes that were highly transcribed in the female antennae. Localisation of OBPs and CSPs in G. pallidipes males and females will be interesting to investigate further to determine their expression profile within olfactory as well as other chemosensory organs. In addition, ligand binding studies with already identified attractants and repellents will generate more information on mechanism involved in odor-OBP/or CSP interactions. Such information will accelerate discovery of new potent odors that can be used to improve existing tsetse control methods (Omolo et al., 2009; Rayaisse et al., 2010). These results can be used to study molecular basis of olfaction in *Glossina* and help develop environmentally friendly control methods based on odor behavior as have been used in 'push-pull' pest control strategies with recombinant aphid's alarm pheromone synthase gene in Arabidopsis thaliana (Beale et al., 2006). Thus, identification of Glossina OBPs provides alternative targets that can be investigated to control tsetse as it may interfere with insect host location and mating behavior (Zhou et al., 2010).

REFERENCES

Aksoy, S., Maudlin, I., Dale, C., Robinson, A. S. and O'Neill, S. L. (2001). Prospects for control of African trypanosomiasis by tsetse vector manipulation. *Trends in Parasitology* **17:** 29–35.

Aksoy, S., Berriman, M., Hall, N., Hattori, M., Hide, W. and Lehane, M. (2005). A case for a *Glossina* genome project. *Trends in Parasitology* **21**: 107–111.

Altschul, S. F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Research* **25**: 3389-3402.

Annual Report of the International Laboratory for Research on Animal Diseases, ILRAD, 1981.

Angeli, S., Ceron, F., Scaloni, A., Monti, M., Monteforti, G., Minnocci, A., Petacchi, R. and Pelosi, P. (1999). Purification, structural characterization, cloning and immunocytochemical localization of chemoreception proteins from *Schistocerca gregaria*. *European Journal of Biochemistry* **262**: 745–754.

Applied Biosystems Chemistry Guide (Second Edition). DNA Sequencing by Cappilary Electrophoresis.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M. and Sherlock, G. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. *Nature Genetics* 25, 25 – 29.

Attardo, G. M., Strickler-Dinglasan, P., Perkin, S. A. H., Caler, E., Bonaldo, M. F., Soares, M. B., El-Sayeed, N. and Aksoy, S. (2006). Analysis of fat body transcriptome from the adult tsetse fly, *Glossina morsitans morsitans. Insect Molecular Biology* **15**: 411–424.

Bailey, S. (1998). Tsetse fly eliminated on Zanzibar. Nuclear News January, 56 – 61.

Ban, L., Scaloni, A., Brandazza, A., Angeli, S., Zhang, L., Yan, Y. and Pelosi, P. (2003). Chemosensory proteins of Lo*custa migratoria*. *Insect Molecular Biology* **12**: 125–134.

Bargmann, C. I. (2006). Comparative chemosensation from receptors to ecology. *Nature* **444**: 295–301.

Barrett, J. C. (1997). *Economic issues in trypanosomiasis control*. NRI Bulletin 75. Chatham, UK. National Resources Institute.

Bateman, A., Birney, E., Durbin, R., Eddy, S. R., Howe, K. L. and Sonnhammer, E. L. (2000). The Pfam protein families database. *Nucleic Acids Research* **28**: 263–266.

Beale, M. H., Birkett, M. A., Bruce, T.J., Chamberlain, K., Field, L.M., Huttly, A.K., Martin, J.L., Parker, R., Phillips, A.L., Pickett, J.A., Prosser, I.M., Shewry, P.R., Smart, L.E., Wadhams, L.J., Woodcock, C.M. and Zhang, Y. (2006). Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior. *Proceedings of the National Academy of Science, U S A.* **103**: 10509-10513.

Benton, R. (2006). On the ORigin of smell: odorant receptors in insects. *Cellular and molecular life sciences* **63**: 1579–1585.

Berriman, M. *et al.*, (2005). The Genome of the African Trypanosome *Trypanosoma brucei*. *Science* **309**: 416–422.

Biessmann, H., Walter, M. F., Dimitratos, S. and Woods, D. (2002). Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria transmitting mosquito, *Anopheles gambiae*. *Insect Molecular Biology* **11**: 123–132.

Blum, J., Nkunku, S. and Burri, C. (2001). Clinical description of encephalopathic syndromes and risk factors for their occurrence and outcome during melarsoprol treatment of human African trypanosomiasis. *Tropical Medicine & International Health* **6**: 390–400.

Boeckh, J., Ernst, K. D. and Selsam, P. (1987). *Neurophysiology and neuroanatomy of the olfactory pathway in the cockroach*. In: Olfaction and taste, Vol IX (Roper, S.D, Atema, J, eds), pp. 39 – 43. New York: New York Academy of Sciences.

Bohbot, J., Sorbian, F., Lucas, P. and Meillour, P. N. (1998). Functional characterization of a new class of odorant binding proteins in the Moth *Mamestra* brassicae. Biochemical and Biophysical Research Communication **253**: 489–494.

Bourn, D., Maitima, J., Motsamai, B., Blake, R., Nicholson, C. and Sundstol, F. (2005). *Livestock and environment*. Chapter 9 In: Livestock and wealth creation: improving the husbandry of animals kept by resource-poor people in developing countries. Nottingham University Press.

Brandl, F. E. (1988). *Economics of trypanosomiasis control in cattle*. University of Hohenheim, Kiel, Germany, Wissenschaftsverlag Vaulk.

Breer, H., Boekhoff, I. and Tareilus, E. (1990). Rapid kinetics of second messenger formation in olfactory transduction. *Nature* **345**: 65–68.

Breer, H. (2003). Sense of smell: recognition and transduction of olfactory signal. *Biochemical Society transactions* **31**: 113–116.

Briand, L., Swasdipan, C., Nespoulous, V., Bezirard, F., Blon, J. C., Huet, P., Ebert, P. and Pernollet, J. C. (2002). Characterization of a chemosensory protein (ASP3c) from honeybee (*Apis mellifera* L) as a brood pheromone carrier. *European Journal of Biochemistry* **269**: 4586–4596.

Brightwell, R., Dransfield, R. D. and Kyorku, C. (1991). Development of a lowcost trap and odour baits for *Glossina pallidipes* and *Glossina longipennis* in Kenya. *Medical Veterinary Entomology* **5**: 153–164.

Buck, L. and Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odour recognition. *Cell* **65**: 175–187.

Buck, L. (1996). Information coding in the vertebrate olfactory system. *Annual Review of Neuroscience* **19**: 517–544.

Calvo, E., Sanchez-Vargas, I., Favreau, A. J., Barbian, K. D., Pham, V. M., Olson, K. E. and Ribeiro, J. M. C. (2010). An insight into the sialotranscriptome of the West Nile mosquito vector, *Culex tarsalis. BMC Genomics* **11**: 51. doi:10.1186/1471-2164-11-51

Campanacci, V., Lartigue, A., Hallberg, B. M., Jones, T. A., Giudici-Orticoni, M. T., Tegoni, M. and Cambillau, C. (2003). Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding. *Proceedings of the National Academy of Sciences* U.S.A. **100**: 5069–5074.

Cecchi, G., Mattioli, R. C., Slingenbergh, J. and Rocque, D, L. (2008). Land cover and tsetse fly distributions in sub–Saharan Africa. *Medical and Veterinary Entomology* doi: 10.1111/j.1365-2915.2008.00747.x

Chandrashekar, J., Hoon, M. A., Ryba, N. J. P. and Zuker, C. S. (2006). The receptors and cells for mammalian taste. *Nature* **444**: 288–294.

Chatelain, E. and Ioset, J-R. (2009). Drug discovery and development for neglected diseases: the DNDi model. In Preclinical Drug Development, *Genesis* 52 – 61.

Checchi, F., Piola, P., Ayikoru, H., Thomas, F., Legros, D. and Priotto, G. (2007). Nifurtimox plus Eflornithine for Late-Stage Sleeping Sickness in Uganda: A Case Series. *PloS Neglected Tropical Disease* 1(2):e64.

Chenchik, A., Zhu, Y. Y., Diatchenko, L., Li, R., Hill, J. and Siebert, P. D. (1998). *Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR*. In Gene Cloning and Analysis by RT-PCR (Bio Techniques Books, MA), pp. 305 – 319.

Chevenet, F., Brun, C., Banuls, A.L., Jacq, B. and Chisten, R. (2006). TreeDyn: towards dynamic graphics and annotations for analyses of trees. *BMC Bioinformatics* **7**: 439.

Chung, T., Siol, O., Dingermann, T. and Winckler, T. (2007). Protein Interactions Involved in tRNA Gene-Specific Integration of *Dictyostelium discoideum* Non-Long Terminal Repeat Retrotransposon TRE5-A. *Molecular and Cellular Biology* **27**: 8492–8501.

Clausen, P. H., Adeyemi, I., Bauer, B., Breloeer, M., Salchow, F. and Staak, C. (1998). Host preferences of tsetse flies (Diptera: Glossinidae) based on bloodmeal identifications. *Medical Veterinary of Entomology* **12**: 169–180.

Clyne, P. J., Warr, C. G., Freeman, M. R., Lessing, D., Kim, J. and Carlson, J. R. (1999). A novel family of divergent seven-transmembrane proteins: Candidate odorant receptors in *Drosophila*. *Neuron* **22**: 327-338.

Courtis, F., Dupont, S., Zeze, D. G., Jamonneau, V., Sane, B., Coulibaly, B., Cuny, G. and Solano, P. (2005). Human African Trypanosomiasis: Urban transmission in the focus of Bonon (Cote d'Ivoire). *Tropical Medicine in International Health* **10**(4): 340-346.

Cross, G. A. M. (2010). Drug discovery: Fat-free proteins kill parasites. *Nature* **464**: 689–690.

Cuisance, D., Politzar, H., Merot, P. and Tamboura, I. (1984). Les lachers de males irradies dans la campagne de lutte integree contre les glossines dans la zone pastorale de Sideradougou, Bukina Faso. *Revne d'Elevage et de medicine Veterinaire des Pays Tropicaux* **37**: 449–467.

de Bruyne, M., Foster, K. and Carlson, J. (2001). Odour coding in the *Drosophila* antenna. *Neuron* **30**: 537–552.

de Bruyne, M. and Baker, T. C. (2008). Odor detection in Insects: Volatile codes. *Journal of Chemical Ecology* **34**: 882–897.

D'Ieteren, G. D. M., Authie, E., Wisocq, N. and Murray, M. (1998). Trypanotolerance, an option for sustainable livestock production in areas at risk from trypanosomiasis. *Revue Scientifique et Technique* **17**: 154–175.

Dransfield, R. D., Brightwell, R., Kyorku, C. and Williams, B. (1990). Control of tsetse (Glossinidae) populations using traps at Nguruman, southwest Kenya. *Bulletin of Entomological Research* **80**: 265–276.

Du, G. and Prestwich, G. D. (1995). Protein structure encodes the ligand binding specificity in pheromone binding proteins. *Biochemistry* **34**: 8726–8732.

Dutoit, R. (1954). Trypanosomiasis in Zululand and the control of tsetse by chemical means. *Onderstepoort Journal of Veterinary Research* **26**: 317–387.

Elsen, P. and Roelants, P. (1999). Isozymic comparison of five laboratory lines of tsetse flies belonging to the two subspecies of *Glossina palpalis* (Diptera: Glossinidae). *Annals of Tropical Medicine and Parasitology* **93**: 97–104.

Endo, K., Aoki, T., Yoda, Y., Kimura, K. and Hama, C. (2007). Notch signal organizes the *Drosophila* olfactory circuitry by diversifying the sensory neuronal lineages. *Nature Neuroscience* **10**: 153–160.

Enserink, M. (2007). Welcome to Ethiopia's Fly Factory. Science 317: 310–313.

FAO (1982a). Training manual for tsetse control personnel. Vol. 1: *Tsetse biology, systematics and distribution; techniques*. Pollock, J. N. (Ed). Pp. 1 – 40.

FAO (1982b). Training manual for tsetse control personnel. Vol. 2: *Ecology and behaviour of tsetse*. Pollock, J. N. (Ed). Pp. 50 – 70.

FAO (1993). Training manual for tsetse control personnel. Vol. 5: *Insecticides for tsetse and trypanosomiasis control using attractive bait techniques*, Rome, FAO, 88.

Forêt, S. and Maleszka, R. (2006). Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (*Apis mellifera*). *Genome Research* **16**: 1404–1413.

Forêt, S., Wanner, K. W. and Maleszka, R. (2007). Chemosensory proteins in the honey bee: Insights from the annotated genome, comparative analyses and expressional profiling. *Insect Biochemistry and Molecular Biology* **37**: 19–28.

Fox, A. N., Pitts, R. J., Robertson, H. M., Carlson, J. R. and Zwiebel, L. J. (2001). Candidate odorant receptors from the malaria vector mosquito *Anopheles gambiae* and evidence of down-regulation in response to blood feeding. *Proceedings of the National Academy of Sciences* **98**: 14693-14697.

Frearson, J. A., Brand, S., McElroy, S. P., Cleghorn, L. A. T., Smid, O., Stojanovski, L., Price, H. P., Guther, M. L. S., Torrie, L. S., Robinson, D. A., Hallyburton, I., Mpamhanga, C. P., Brannigan, J. A., Wilkinson, A. J., Hodgkinson, M., Hui, R., Qiu, W., Raimi, O. G., van Aalten, D. M. F., Brenk, R., Gilbert, I. H., Read, K. D., Fairlamb, A. H., Ferguson, M. A. J., Smith, D. F. and Wyatt, P. G. (2010). *N*-myristoyltransferase inhibitors as new lead to treat sleeping sickness. *Nature* **464**: 728–732.

Gasteiger, E., Hoogland, C., Gattike, A., Duvaud, S., Wilkins, M. R., Appel, R. D. and Bairoch, A. (2005). *Protein Identification and Analysis Tools on the ExPASy Server*; (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press. Pages 571 – 607.

Geerts, S., Holmes, P. H., Eisler, M. C. and Diall, O. (2001). African bovine trypanosomiasis: the problem of drug resistance. *Trends in Parasitology* **17**: 25–28.

Gikonyo, N. K., Hassanali, A., Njagi, P. G. N. and Saini, R. K. (2000). Behaviour of *Glossina morsitans morsitans* Westwood (Diptera: Glossinidae) on Waterbuck *Kobus defassa* Ruppel and feeding membranes smeared with Waterbuck serum indicates the presence of allomones. *Acta Tropica* **77**: 295-303.

Gikonyo, N. K., Hassanali, A., Njagi, P. G. N., Gitu, P. M. and Midiwo, J. O. (2002). Odour composition of preferred (Buffalo and Ox) and nonpreferred (Waterbuck) hosts of some Savannah tsetse flies. *Journal of Chemical Ecology* **28**: 961-973.

Gikonyo, N. K., Hassanali, A., Njagi, P. G. N. and Saini, R. K. (2003). Responses of *Glossina morsitans morsitans* to blends of electroantennographically active compounds in the odours of its preferred (Buffalo and Ox) and none preferred (waterbuck) hosts. *Journal of Chemical Ecology* **29**: 2331-2346.

Gish, W. and David, J. S. (1993). Identification of protein coding regions by database similarity search. Nature Genetics **3**: 266-272.

Gong, D., Zhang, H., Zhao, P., Lin, Y., Xia, Q. and Xiang, Z. (2007). Identification and expression pattern of chemosensory protein gene family in the silkworm, *Bombyx mori. Insect Biochemistry and Molecular Biology* **37**: 266–277.

Gong, D., Zhang, H., Zhao, P., Lin, Y., Xia, Q. and Xiang, Z. (2009). The Odorant binding protein gene family from the genome of Silkworm, *Bombyx mori. BMC Genomics* **10**: 332 doi:10.1186/1471-2164-10-332.

Graham, L. A. and Davies, P. L. (2002). The odorant-binding proteins of *Drosophila melanogaster*: annotation and characterization of a divergent gene family. *Gene* **292**: 43–55.

Grootenhuis, J. G. and Olubayo, R. O. (1993). Disease research in the wildlife livestock interface in Kenya. Vet. Q. **15**: 55–59.

Guindon, S. and Gascuel, O. (2003). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematics Biology* **52**: 696–704.

Guo, Y., Ribeiro, J. M., Anderson, J. M. and Bour, S. (2009). dCAS: a desktop application for cDNA sequence annotation. *Bioinformatics* **25**: 1195–1196.

Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic acids symposium series* **41**: 95–98.

Hansson, B. S. (1999). Insect Olfaction. Springer-Verlag Berlin Heidelberg.

Hargrove, J. W. (1980). The effect of model size and Ox odour on the alighting responses of *Glossina morsitans* Westwood and *G. pallidipes* Austen (Diptera: Glossinidae). *Bulletin of Entomology Research* **70**: 229–234.

Hargrove, J. W., Omolo, S., Msalilwa, J. S. I. and Fox, B. (2000). Insecticide treated cattle for tsetse control: the power and the problems. *Medical Veterinary Entomology* **14**: 123–130.

Hassanali, A., McDowell, P. G., Owaga, M. L. A. and Saini, R. K. (1986). Identification of tsetse attractants from excretory products of a wild host animal, *Syncerus caffer. Insect Science Application* **7**: 5-9.

Hekmat-Scafe, D. S., Scafe, C. R., McKinney, A. J. and Tanouye, M. A. (2002). Genome-Wide analysis of the Odorant-Binding Protein gene family in *Drosophila melanogaster*. *Genome Research* **12**: 1357–1369.

Hertz-Fowler, C., Peacock, C. S., Wood, V., Aslett, M., Kerhornou, A., Mooney, P., Tivey, A., Berriman, M., Hall, N., Rutherford, K., Parkhill, J., Ivens, A. C., Rajandream, M-A. and Barrell, B. (2004). GeneDB: a resource for prokaryotic and eukaryotic organisms. *Nucleic Acids Research* **32**: Database issue D339-D343.

Hildebrand, J. G. and Shepherd, G. M. (1997). Mechanisms of olfactory discrimination: Converging evidence for common principles across phyla. *Annual Review of Neuroscience* **20**: 595–631.

Hill, C. A., Fox, A. N., Pitts, R. J., Kent, L. B., Tan, P. L., Chrystal, M. A., Crunchy, A., Collins, F. H., Robertson, H. M. and Zwiebel, L. J. (2002). G protein-coupled receptors in *Anopheles gambiae*. *Science* **298**: 176-178.

Horst, R., Damberger, F., Luginbuhl, P., Guntert, P., Peng, G. and Nikonova, L. (2001). NMR structure reveals intermolecular regulation mechanism for pheromone binding and release. *Proceedings of National Academy of Science USA* **98**: 14374–14379.

Hovemann, B. T., Schimeyer, F and Malz, J. (1997). *Drosophila* melanogaster NADPH-cytochrome P450 oxidoreductase: pronounced expression in antennae may be related to odorant clearance. *Gene* **189**: 213–219.

Huang, X. and Madan, A. (1999). CAP3: A DNA sequence assembly program. *Genome Research* **9**: 868-877

Huyton, P. M., Langley, P. A., Carlson, D. A., Coates, T. W. (2008a). The role of sex pheromones in initiation of copulatory behaviour by male tsetse flies, *Glossina* morsitans morsitans. *Physiological Entomology* **5**: 243–252.

Huyton, P. M., Langley, P. A., Carlson, D. A., Schwarz, M. (2008b). Specificity of contact sex pheromones in tsetse flies, *Glossina* spp. *Physiological Entomology* **5**: 253–264.

Ishida, Y., Chiang, V. and Leal, W. S. (2002). Protein that makes sense in the Argentine ant. *Naturwissenschaften* **89**: 505–507.

Ishida, Y., Chen, A. M., Tsuruda, J. M., Cornel, A. J., Debboun, M. and Leal, W. L. (2004). Intriguing olfactory proteins from the yellow fever mosquito, *Aedes aegypti. Naturwissenschaften* **91**: 426–431.

Jacobs, S. P., Liggins, A. P., Zhou, J. J., Pickett, J. A., Jin, X. and Field, L. M. (2005). OS-D-like genes and their expression in aphids (Hemiptera: Aphididae). *Insect Molecular Biology* **14**: 423–432.

Jacquin-Joly, E., Vogt, R. G., Francois, M. and Meillour, P. N. (2001). Functional and expression pattern of chemosensory proteins expressed in antennae and pheromonal gland of *Mamestra brassicae*. *Chemical Senses* **26**: 833-844.

Jacquin-Joly, E. and Merlin, C. (2004). Insect olfactory receptors: Contribution of molecular biology to chemical ecology. *Journal of Chemical Ecology* **30**: 2359–2397.

Jones, W. D., Nguyen, T. A., Kloss, B., Lee, K. J. and Vosshall, L. B. (2005). Functional conservation of an insect odorant receptor gene across 250 million years of evolution. *Current Biology* **15**: R119–R121.

Jordan, A. M. (1986). Trypanosomiasis Control and African Rural Development. Longman, London.

Jordan, A. M. (1993). *Tsetse flies (Glossinidae)*. In Medical Insects and Arachnids. R. P. Lane and R. W. Crosskey (Eds). Chapman and Hall, London.

Kabayo, J. P. (2002). Aiming to eliminate tsetse from Africa. *Trends in Parasitology* **18**: 473–475.

Kaissling, K. E. (1986). Chemo-electrical transduction in insect olfactory receptors. *Annual Review of Neuroscience* **9**: 121–145.

Kaissling, K. E. (1998). Pheromone deactivation catalyzed by receptor molecules: a quantitative kinetic model. *Chemical Senses* **23**: 385–395.

Kalume, D. E., Okulate, M., Zhong, K., Reddy, R., Suresh, S., Deshpande, N., Kumar, N. and Pandey, A. (2005). A proteomic analysis of salivary glands of female *Anopheles gambiae* mosquito. *Proteomics* **5**: 3765–3777.

Kalidas, S. and Smith, D. P. (2002). Novel genomic cDNA hybrids produce effective RNA interference in adult *Drosophila*. *Neuron* **33**: 177–184.

Kasang, G., Nicholls, M. and van Proff, L. (1989). Sex pheromone conversion and degradation in antennae of the silkworm moth *Bombyx mori* L. *Experentia* **45**: 81–87.

Kim, M. S. and Smith, D. P. (2001). The invertebrate odorant binding protein LUSH is required for normal olfactory behaviour in *Drosophila*. *Chemical Senses* **26**: 195–199.

Kitabayashi, A. N., Arai, T., Kubo, T. and Natori, S. (1998). Molecular cloning of cDNA for p10, a novel protein that increases in the regenerating legs of *Periplaneta americana* (American cockroach). *Insect Biochemistry and Molecular Biology* **28**: 785–790.

Krafsur, E. S and Wohlford, D. L. (1999). Breeding structure of *Glossina pallidipes* populations evaluated by mitochondrial variation. *The Journal of Heredity* **90**: 635-642.

Krafsur, E. S (2002). Population structure of the tsetse fly *Glossina pallidipes* estimated by allozyme, microsatellite and mitochondrial gene diversities. *Insect Molecular Biology* **11**: 37–45.

Krafsur, E. S. (2009). Tsetse flies: Genetics, evolution, and role as vectors. *Infection, Genetics and Evolution* **9**: 124–141.

Krieger, J., Ganble, H., Raming, K. and Breer, H. (1993). Odorant binding proteins of *Heliothis virescens*. *Insect Biochemical Molecular Biology* **23**: 449–456.

Krieger, J., Mameli, M. and Breer, H. (1997). Elements of the olfactory signaling pathways in insect antennae. *Invertebrate Neuroscience* **3**: 137–144.

Krieger, J. and Breer, H. (1999). Olfactory reception in invertebrates. *Science* **286**: 720–723.

Krieger, J., Klink, O., Mohl, C., Raming, K. and Breer, H. (2003). A candidate olfactory receptor subtype highly conserved across different insect orders. *Journal of Comparative Physiology* **189**: 519-526.

Kruse, S. W., Zhao, R., Smith, D. P. and Jones, D. N. (2003). Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from *Drosophila melanogaster*. *Nature Structural Biology* **10**: 694–700.

Larkin, M. A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. and Higgins, D.G. (2007). ClustalW and ClustalX version 2. *Bioinformatics* **23**: 2947-2948.

Larsson, M. C., Domingos, A. I., Jones, W. D., Chiappe, M. E., Amrein, H. and Vosshall, L. B. (2004). Or83b Encodes a Broadly Expressed Odorant Receptor Essential for *Drosophila* Olfaction. *Neuron* **43**: 703–714.

Lartigue, A., Campanacci, V., Roussel, A., Larsson, A.M., Jones, T.A., Tegoni, M. and Cambillau C. (2002). X-ray structure and ligand binding study of a moth chemosensory protein. *Jorunal of Biological Chemistry* **277**: 32094-32098

Laue, M., Steinbrecht, R. A. and Ziegelberger, G. (1994). Immunocytochemical localization of general odorant binding proteins in olfactory sensilla of the silkmoth *Antheraea polyphemus*. *Naturwissenschaften* **81**: 178–181.

Laveissiere, C., Vale, G. A., Gouteux, J. P. (1990). *Bait methods of tsetse control*. In: Curtis, C. F. (Ed), Appropriate Technology in Vector Control. CRC Press, Boca Raton, FL, pp. 47 – 74.

Lawson, D. et al. (2009). VectorBase: a data resource for invertebrate vector genomics. *Nucleic Acids Research* **37**: D583-587; PMID: 19028744

Leak, S. G. A., Rowlands, G. J. and Mulatu, W. (1995). A trial of cypermethrin pour-on insecticide to control *Glossina pallidipes* and *G. Morsitans submorsitans* in southwest Ethiopia. *Bulletin of Entomology Research* **85**: 241–251.

Leak, S. G. A., Peregrine, A. S., Rowlands, G. J. and Mulatu, W. (1996). Use of impregnated targets for the control of tsetse flies (*Glossina* spp) and trypanosomiasis occurring in cattle in an area of southwest Africa with high prevalence of drug resistant trypanosomes. *Tropical Medicine of International Health* **1**: 599–609.

Leak, S. (1998). *Tsetse Biology and Ecology*. Their role in the Epidemiology and Control of Trypanosomiasis. New York, NY, USA: CABI Publishing.

Leal, W. S., Nikonova, L. and Peng, G. (1999). Disulfide structure of the pheromone binding protein from the silkworm moth, *Bombyx mori. FEBS Letters* **464**: 85–90.

Lee, D., Damberger, F. F., Peng, G., Horst, R., Guntert, P. and Nikonova, L. (2002). NMR structure of the unliganded *Bombyx mori* pheromone-binding protein at physiological pH. *FEBS Letters* **531**: 314-318.

Letunic, I., Goodstadt, L., Dickens, N. J., Tobias Doerks, T., Joerg Schultz, J., Richard Mott, R., Ciccarelli, F., Copley, R. R., Ponting, C. P. and Bork, P. (2002). Recent improvements to the SMART domain-based sequence annotation resource. *Nucleic Acids Research* **30**: 242-244.

Liu, R., Lehane, S., He, X., Lehane, M., Hertz-Fowler, C., Berriman, M., Pickett, J. A., Field, L. M. and Zhou, J. J. (2010). Characterisations of odorant-binding proteins in the tsetse fly *Glossina morsitans morsitans*. *Cellular Molecular Life Science* **67**: 919–929.

Ludwig, M. Z., Uspensky, I. I., Ivanov, A. I., Kopantseva, M. R., Dianov, C. M. Tamarina, N. A. and Korochkin, L. I. (1991). Genetic control and expression of the major ejaculatory bulb protein (PEB-me) in *Drosophila melanogaster*. *Biochemical Genetics* **29**: 215–239.

Madubunyi, L. C., Hassanali, A., Ouma, W., Nyarango, D. and Kabii, J. (1996). Chemoecological role of mammalian urine in host location by tsetse, *Glossina* spp. (Diptera: Glossinidae). *Journal of Chemical Ecology* **22**: 1187-1199.

Maibeche-Coisne, M., Sobrio, F., Delaunay, T., Lettere, M., Dubroca, J., Jacquin-Joly, E. and Nagnan-Le Meillour, P. (1997). Pheromone binding proteins of the moth *Mamestra brassicae*: specificity of ligand binding. *Insect Biochemistry and Molecular Biology* **27**: 213–221.

Maleszka, R. and Stange, G. (1997). Molecular cloning, by a novel approach, of a cDNA encoding a putative olfactory protein in the labial palps of the moth *Cactoblastis cactorum. Gene* **202**: 39–43.

Marchler-Bauer, A., Panchenko, A. R., Shoemaker, B. A., Thiessen, P. A., Geer, L. Y. and Bryant, S. H. (2002). CDD: A database of conserved domain alignments with links to domain three-dimensional structure. *Nucleic acid Research* **30**: 281–

Marone, M., Mozzetti, S., De Ritis, D., Pierelli, L. and Scambia, G. (2001). Semiquantitative RT-PCR analysis to assess the expression levels of multiple transcripts from the same sample. *Biological Procedures Online* **3**: 19–25.

Masiga, D. K., Okech, G., Irungu, P., Ouma, J., Wekesa, S., Ouma, B., Guya, S. O. and Ndung'u, J. M. (2002). Growth and mortality in sheep and goats under high tsetse challenge in Kenya. *Tropical Animal Health Production* **34**: 489–501.

Mattioli, R. C., Pandey, V. S., Murray, M. and Fitzpatrick, J. L. (2000). Immunogenetic influences on tick resistance in African cattle with particular reference to trypanotolerant N'Dama (*Bos Taurus*) and trypanosusceptible Gobra zebu (*Bos indicus*) cattle. *Acta Tropica* **75**: 263–277.

Maudlin, I. (2006). African trypanosomiasis. Annals of tropical medicine and parasitology **100**: 679–701.

McKenna, M. P., Hekmat-Scafe, D. S., Gaines, P. and Carlson, J. R. (1994). Putative *Drosophila* pheromone-binding proteins expressed in a subregion of the olfactory system. *Journal of Biological Chemistry* **169**: 16340–16347.

Mehlert, A., Bond, C. S and Ferguson, M. A. J. (2002). The glycoforms of a *Trypanosoma brucei* variant surface glycoprotein and molecular modeling of a glycosylated surface coat. *Glycobiology* **12**: 607–612.

Melo, A. C. A., Rutzler, M., Pitts, R. J. and Zwiebel, L. J. (2004). Identification of a chemosensory receptor from the yellow fever mosquito, *Aedes aegypti*, that is highly conserved and expressed in olfactory and gustatory organs. *Chemical Senses* **29**: 403–410.

Miller, R. T., Alan, G. C., Chella, G., Burke, J., Ptitsyn, A. A., Broveak, T. R. and Hide, W. A. (1999). A Comprehensive Approach to Clustering of Expressed Human Gene Sequence: The Sequence Tag Alignment and Consensus Knowledge Base. *Genome Research* **9**: 1143-1155.

Moloo, S. K. (1971). An artificial feeding technique for *Glossina*. *Parasitology* **63**: 507–512.

Mombaerts, P. (1999). Seven-transmembrane proteins as odorant and chemosensory receptors. *Science* **286**: 707-711.

283.

Mugasa, C. M., Schoone, G. J., Ekangu, R. A., Lubega, G. W., Kager, P. A. and Schallig, H. (2008). Detection of *Trypanosoma brucei* parasites in blood samples using real-time nucleic acid sequence-based amplification. *Diagnostic Microbiology of Infectious Diseases* **61**: 440–445.

Murray, M., Morrison, W. I. And Whitelaw, D. D. (1982). Host susceptibility to African trypanosomiasis: trypanotolerance. *Advanced Parasitology* **21**: 1–68.

Murray, M., D'leteren, G. D. M. and Teale, A. J. (2006). *Trypanotolerance*. The Trypanosomiasis (Ed. By I. Maudlin, Holmes, P.H. and Miles, M. A), pp. 461 – 477.

Nagnan-Le Meillour, P., Cain, A. H., Jacquin-Joly, E., Francois, M. C., Ramachandran, S., Maida, R. and Steinbrecht, R. A. (2000). Chemosensory proteins from the proboscis of *Mamestra brassicae*. *Chemical Sense* **25**: 541–553.

Nielsen, H., Engelbrecht, J., Brunak, S. and von Heijne, G. (1997). Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. *Protein Engineering* **10**: 1–6.

Omolo, M. O., Hassanali, A., Mpiana, S., Esterhuizen, J., Lindh, J., Lehane, M. J., Solano, P., Rayaisse, J. B., Vale, G. A., Torr, S. J. and Tirados, I. (2009). Prospects for Developing Odour Baits To Control *Glossina fuscipes* spp., the Major Vector of Human African Trypanosomiasis. *PLoS Neglected Tropical Disease* **3**(5): e435.

Ouma, J. O., Cummings, M. A., Jones, K. C. and Krafsur, E. S. (2003). Characterization of microsatellite markers in the tsetse fly, *Glossina pallidipes* (Diptera: Glossinidae). *Molecular Ecology Notes* **3**: 450–453. doi: 10.1046/j.1471-8286.2003.00480.x.

Ouma, J. O., Marquez, J.G. and Krafsur, E. S. (2005). Macrogeographic population structure of the tsetse fly, *Glossina pallidipes* (Diptera: Glossinidae). *Bulletin of Entomological Research* **95**: 437–447. doi:10.1079/BER2005376

Owaga, M. L. A., Hassanali, A. and McDowell, P. G. (1988). The role of 4-cresol and 3-n-propylphenol in the attraction of tsetse flies to buffalo urine. *Insect Science Application* **9**: 95-100.

Ozaki, K., Utoguchi, A., Yamada, A. and Yoshikawa, H. (2008). Identification and genomic structure of chemosensory proteins (CSP) and odorant binding proteins (OBP) genes expressed in foreleg tarsi of the swallowtail butterfly *Papilio xuthus*. *Insect Biochemistry and Molecular Biology* **38**: 969–976.

Paramasivana, R., Sivaperumalb, R., Dhananjeyana, K. J., Thenmozhia, V. and Brij Kishore Tyagib, B. K. (2007). Prediction of 3-Dimensional Structure of Salivary Odorant-Binding Protein-2 of the Mosquito *Culex Quinquefasciatus*, the Vector of Human Lymphatic Filariasis. *In Silico Biology* **7**: 1–6.

Park, S. K., Shanbhag, S. R., Dubin, A. E., De Bruyne, M., Wang, Q., Yu, P., Shimoni, N., D'Mello, S., Carlson, J. R., Harris, G. L., Steinbrecht, R. A. and Pikielny, C. W. (2002). Inactivation of olfactory sensilla of a single morphological type differentially affects the response of *Drosophila* to odors. *Journal of neurobiology* **51**: 248–260.

Pelosi, P. and Maida, R. (1995). Odorant binding proteins in insects. *Comparative Biochemistry and Physiology* **111B**: 503–514.

Pelosi, P. (1996). Perireceptor events in olfaction. *Journal of Neurobiology* **30**: 3–19.

Pelosi, P., Zhou, J.-J., Ban, L. P. and Calvello, M. (2006). Soluble proteins in Insect chemical communication. *Cellular Molecular Life Sciences* **63**: 1658–1676.

Pellegrino, M. and Nakagawa, T. (2009). Smelling the difference: controversial ideas in Insect Olfaction. *Journal of Experimental Biology* **212**: 1973–1979.

Pelletier, J. and Leal, W. S. (2009) Genome Analysis and Expression Patterns of Odorant-binding Proteins from the Southern House Mosquito *Culex pipiens quinquefasciatus*. *PLoS ONE* **4**(7): e6237.

Picimbon, J. F. and Leal, W. S. (1999). Olfactory soluble proteins of cockroaches. *Insect Biochemistry and Molecular Biology* **29**: 973–978.

Picimbon, J. F., Dietrich, K., Krieger, J. and Breer, H. (2001). Identity and expression pattern of chemosensory proteins in *Heliothis virescens* (Lepidoptera, Noctuidae). *Insect Biochemistry and Molecular Biology* **31**: 1173–1181.

Pikielny, C. W., Hasan, G., Rouyer, F. and Rosbash, M. (1994). Members of a family of *Drosophila* putative odorant-binding proteins are expressed in different subsets of olfactory hairs. *Neuron* **12**: 35–49.

Pollock, J. N. (1982). Training manual for tsetse control personnel. Food and Agriculture Organization of the United Nations.

Prestwich, G. D., Graham, S., Handley, M., Latli, B., Streinz, L. and Tasayco, M. J.

(1989). Enzymatic processing of pheromones and pheromone analogs. *Experientia* **45**: 263–270.

Prestwich, G. D. (1993). Bacterial expression and photoaffinity labeling of a pheromone binding protein. *Protein Science* **2**: 420–428.

Prestwich, G. D., Du, G. and LaForest, S. (1995). How is pheromone specificity encoded in proteins? *Chemical Senses* **20**: 461–469.

Priotto, G., Kasparian, S., Ngouama, D., Ghorashian, S., Arnold, U., Ghabri, S. and Karunakara, U. (2007). Nifurtimox-Eflornithine Combination Therapy for Second-Stage *Trypanosoma brucei gambiense* Sleeping Sickness: A Randomized Clinical Trial in Congo. *Clinical Infectious Diseases* **45**: 1435–1442.

Priotto, G., Kasparian, S., Mutombo, W., Ngouama, D., Ghorashian, S., Arnold, U., Ghabri, S., Baudin, E., Buard, V. and Kazadi-Kyanza, S. (2009). Nifurtimoxeflornithine combination therapy for second-stage African *Trypanosoma brucei* gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. *The Lancet* **374**: 56–64.

Raming, K., Krieger, J. and Breer, H. (1989). Molecular cloning of an insect pheromone binding protein. *FEBS Letters* **356**: 215–218.

Rayaisse, J, B., Tirados, I., Kaba, D., Dewhirst, S,Y., Logan, J.G., Diarrassouba, A., Salou1, E., Omolo, M. O., Solano, P., Lehane, M. J., Pickett, J. A., Vale, G. A., Torr, S. J. and Esterhuizen, J. (2010). Prospects for the Development of Odour Baits to Control the Tsetse Flies *Glossina tachinoides* and *G. palpalis s.l.*. *PloS Neglected Tropical Disease* **4**(3): e632.

Ribeiro, J. M. C., Charlab, R., Pham, V. M., Garfield, M. and Valenzuela, J. (2004). An insight into the salivary transcriptome and proteome of the adult female mosquito *Culex pipiens quinquefasciatus*. *Insect Biochemistry and Molecular Biology* **34**: 543–563.

Robertson, H. M., Martos, R., Sears, C. R., Todres, E. Z., Walden, K. K. O. and Nardi, J. B. (1999). Diversity of odourant binding proteins revealed by an expressed sequence tag project on male *Manduca sexta* moth antennae. *Insect Molecular Biology* **8**: 501–518.

Roelants, G. E., Fumoux, F., Pinder, M., Queval, R., Bassinga A. and Authie, E. (1987). Identification and selection of cattle naturally resistant to African trypanosomiasis. *Acta Tropica* **44**: 55–66.

Rogers, D. J., Hendrickx, G. and Slingenbergh, J. (1994). Tsetse flies and their control. *Rev. Sci. Tech. Off. Int. Epiz* **13**(4): 1075-1124.

Rogers, D. J. and Robinson, T. P. (2006). *Tsetse distribution*. In Maudlin, I., Holmes, P. H. and Miles, M. A. (Eds), The Trypanosomiases, CABI Publishing, UK. Pp. 139 – 179.

Rutzler, M. and Zwiebel, L.J. (2005). Molecular biology of insect olfaction: recent progress and conceptual models. *Journal of Comparative Physiology A*.

Rybczynski, R., Vogt, R. G. and Lerner, M. R. (1990). Antennal-specific Pheromone degrading Aldehyde oxidases from the moths *Antheraea polyphemus* and *Bombyx mori*. The Journal of Biological Chemistry **265**: 19712–19715.

Sabatier, L., Jouanguy, E., Dostert, C., Zachary, D., Dimareq, J. L., Bulet, P. and Imler, J. L. (2003). Pherokine-2 and -3. *European Journal of Biocmistry* **270**: 3398–3407.

Saini, R. K., Hassanali, A., Ahuya, P., Andoke, J. and Nyandat, E. (1993). Close range responses of tsetse flies *Glossina morsitans morsitans* Westwood (Diptera: Glossinidae) to host body kairomones. *Discovery and innovation* **5**: 149–153.

Saini, R. K. and Hassanali A. (2007). 4-Alkyl-substituted Analogue Of Guaiacol Shows Greater Repellency To Savannah Tsetse (Glossina spp.). *Journal of Chemical Ecology* **33**: 985–995.

Sambrook, J. P. and Russell, D. (2001). Molecular Cloning: A Laboratory Manual (Third Edition). Cold Spring Habour Laboratory (CSHL) Press.

Sandler, B. H., Nikonova, L., Leal, W. S. and Clardy, J. (2000). Sexual attraction in the silkworm moth: structure of the pheromone binding protein, bombykol complex. *Chemical Biology* **7**: 143–151.

Sato, K., Pellegrino, M., Nakagawa, T., Vosshall, L. B. and Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. *Nature* **452**: 1002–1006.

Scaloni, A., Monti, M., Angeli, S. and Pelosi, P. (1999). Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from *Bombyx mori*. *Biochemical Biophysical Research Communication* **266**: 386–391.
Schäffer, A. A., Aravind, L., Madden, T. L., Shavirin, S., Spouge, J. L., Wolf, Y. I., Koonin, E. V. and AltschulS. F. (2001). Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. *Nucleic Acids Research* **29**: 2994-3005.

Simarro, P. P., Jannin, J. and Cattand, P. (2008). Eliminating human African trypanosomiasis: Where do we stand and what comes next. *PloS Medicine* 5(2): e55.

Solano, P., de la Rocque, S., Cuisance, D., Geoffroy, B., de Meeus, T., Cuny, G. and Duvalle, G. (1999). Intraspecific variability in natural populations of *Glossina palpalis gambiensis* from West Africa, revealed by genetic and morphometric analyses. *Medical and Veterinary Entomology* **13**: 401–407.

Spaethe, J. and Briscoe, A. D. (2004). Early Duplication and Functional Diversification of the Opsin Gene Family in Insects. *Molecular Biology and Evolution* **21**: 1583-1594.

Steinbrecht, R. A., Ozaki, M. and Ziegelberger, G. (1992). Immunocytochemical localization of pheromone binding protein in moth antennae. *Cell Tissue Research* **270**: 287–302.

Steinbrecht, R. A., Lave, M. and Ziegelberger, G. (1995). Immunolocalization of pheromone binding protein and general odorant binding protein in olfactory sensilla of the Silk Moths *Antheraea* and *Bombyx*. *Cell and Tissue Research* **282**: 203–217.

Steinbrecht, R. A. (1997). Pore structures in insect olfactory sensilla: A review of data and concepts. *International Journal of Insect Morphology and Embryology* **26**: 229–245.

Steverding, D. (2008). The History of African Trypanosomiasis. *Parasite Vectors* **1**:3.

Stocker, R. F. (1994). The organization of the chemosensory system in *Drosophila* melanogaster. Cell and Tissue Research **275**: 3–26.

Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. and Natale, D.A. (2003). The COG database: an updated version includes eukaryotes. *BioMed Central Bioinformatics* **4**: 41.

Thomson, M. C. (1987). The effect on tsetse flies (*Glossina* spp.) of deltamethrin applied to cattle. *Tropical Pest Management* **33**: 329–335.

Torr, S. J., Mangwiro, T. N. C. and Hall, D. R. (1996). Responses of *Glossina* pallidipes (Diptera: Glossinidae) to synthetic repellents in the field. *Bulletin of Entomology Research* **86**: 609-616.

Tumlinson, J. H., Brennan, M, M., Doolittle, R. E., Mitchell, E. R., Brabham, A., Mazomenos, B. E., Baumhover, A. H. and Jackson, D. M. (1989). *Archives of Insect Biochemistry and Physiology* **10**: 255–272.

Turner, D. A. (1987). The population ecology of *Glossina pallidipes* Austen (Diptera: Glossinidae) in the Lambwe Valley, Kenya. I. Feeding behaviour and activity patterns. *Bulletin of Entomology Research* **77**: 317–333.

Vale, G. A. and Hall, D. R. (1985). The use of 1-octen-3-ol, acetone and carbon dioxide to improve baits for tsetse flies, *Glossina* spp. (Diptera: Glossinidae). *Bulletin of Entomology Research* **75**: 219–231.

Vale, G. A., Grant, I. F., Dewhurst, C. F. and Aigreau, D. (2004). Biological and chemical assays of pyrethroids in cattle dung to cattle. *Bulletin of Entomology Research* **94**: 273–282.

Valenzuela, J. G., Francischetti, I. M., Pham, V. M., Garfield, M. K. and Ribeiro, J. M. C. (2003). Exploring the salivary gland transcriptome and proteome of the *Anopheles stephensi* mosquito. *Insect Biochemistry and Molecular Biology* **33**: 717–732.

Vogt, R. G. and Riddiford, L. M. (1981). Pheromone binding and inactivation by moth antennae. *Nature* **293**: 161–163.

Vogt, R. G., Riddiford, L. M. and Prestwich, G. D. (1985). Kinetic properties of a sex pheromone-degrading enzyme: the sensillar esterase of *Antheraea polyphemus*. *Proceedings of National Academy of Science USA* **82**: 8827–8831.

Vogt, R. G., Rybczynski, R. and Lerner, M. R. (1990). *The biochemistry of odorant reception and transduction*. In: Chemosensory Information Processing, NATO ASI Series H, Vol. 39. D. Schild, Ed. Springer-Verlag, Berlin, pp. 33 – 76.

Vogt, R. G., Prestwich, G. D and Lerner, M. R. (1991a). Odorant binding protein subfamilies associate with distinct classes of olfactory receptor neurons in insects. *Journal of Neurobiology* **22**: 74–84.

Vogt, R. G., Rybezynski, R. and Lerner, M. R. (1991b). Molecular cloning and sequencing of general odourant binding proteins GOBP1 and GOBP2 from the tobacco hawk moth *Manduca Sexta*; comparison with other insect OBPs and their signal peptides. *Journal of Neuroscience* **11**: 2972–2984.

Vogt, R. G. (2003). *Biochemical diversity of odor detection: OBPs, ODEs and SNMPs*. In G. J. Blomquist and R. G. Vogt. Insect Pheromone Biochemistry and Molecular Biology. Elsevier, Oxford. pp. 391–445.

Vogt, R. G. (2005). *Molecular basis of pheromone detection in insects*. In L. I. Gilbert, K. Iatro. And S. Gill (eds). Comprehensive insect physiology, biochemistry, pharmacology and molecular biology. Volume 3 Endocrinology. Elsevier, London. pp. 753–804.

Vosshall, L. B., Wong, A. M. and Axel, R. (2000). An olfactory sensory map in the fly brain. *Cell* **102**: 147-159.

Vreysen, M. J. B., Saleh, K. M., Ali, M. Y., Abdulla, A. M., Zhu, Z. K., Juma, k. G., Dyck, V. A., Msangi, A. R., Mkonyi, P. A. and Feldmann, H. V. (2000). *Glossina austeni* (Diptera: Glossinidae) Eradicated on the island of Unguja, Zanzibar, using the sterile insect techniques. *Journal of Economic Entomology* **93**: 123–135.

Warnes, M. I. (1990). The effect of host odour and carbon dioxide on the flight of tsetse flies (*Glossina* spp) in the laboratory. *Journal of Insect Physiology* **36**: 607–611.

Warnes, M. L., Van den Bossche, P., Mudenge, D., Robinson, T. P., Shereni, W. and Chadenga, V. (1999). Evaluation of insecticide-treated cattle as a barrier to reinvasion of tsetse to cleared areas in northeastern Zimbabwe. *Medical Veterinary Entomology* **13**: 177–184.

Wegener, J. W., Hanke, W. and Breer, H. (1997). Second messenger controlled membrane conductance in locust (*Locust migratoria*) olfactory neurons. *Journal of Insect Physiology* **43**: 595–605.

Wheeler, D. L., Church, D. M., Edgar, R., Federhen, S., Helmberg, W., Madden, T. L., Pontius, J. U., Schuler, G. D., Schrimi, L. M., Sequeira, E., Suzek, T. O., Tatusova, T. A. and Wagner, L. (2010). Database resources of the National Centre for Biotechnology Information: *Nucleic Acids Research* **38**: D5-D16; doi:10.1093/nar/gkp967.

Whelan, S. and Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. *Molecular Biology Evolution* **18**: 691–699.

Wicher, D., Schafer, R., Bauernfeind, R., Stensmyr, M. C., Heller, R., Heinemann, S. H. and Hansson, B. S. (2008). *Drosophila* odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. *Nature* **452**: 1007–1011.

Wogulis, M., Morgan, T., Ishida, Y., Leal, W. S. and Wilson, D. K. (2006). The crystal structure of an odorant binding protein from *Anopheles gambiae*: evidence for a common ligand release mechanism. *Biochemical Biophysics Research Communication* **339**: 157–164.

Xu, P. X., Zwiebel, L. J. and Smith, D. P. (2003). Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Molecular Biology **12**: 549–560.

Xu, P. X., Atkinson, R., Jones, D. N. M. and Smith, D. P. (2005). *Drosophila* OBP LUSH is Required for Activity of Pheromone-Sensitive Neurons. *Neuron* **45**, 193-200.

Zacharuk, R. Y. (1985). *Antennae and sensilla*. In G. A. Kerkut and L. I. Gilbert (Eds). Comprehensive insect physiology biochemistry and pharmacology, Vol. 6, Nervous system: sensory. Pergamon press, Oxford. pp. 1 – 69.

Zhou, J. J., Huang, W., Zhang, G. A., Pickett, J. A. and Field, L. M. (2004). "Plus-C" odorant binding proteins from the southern house mosquito *Culex pipiens quinquefasciatus*. *PloS One* **4**:e6237.

Zhou, J. J., Kan, Y., Antoniw, J., Pickett, J. A. and Field, L. M. (2006). Genome and EST analyses and expression of a gene family with putative functions in insect chemoreception. *Chemical Senses* **31**: 453–465.

Zhou, J.-J., He, X.-L., Pickett, J. A. and Field, L. M. (2008). Identification of odorant-binding proteins of the yellow fever mosquito *Aedes aegypti*: genome annotation and comparative analyses. *Insect Molecular Biology* **17**: 147–163.

Zhou, J.-J., Field, L. M. and He, X. L. (2010). Insect Odorant-Binding Proteins: Do They Offer an Alternative Pest Control Strategy? *Outlooks on Pest Management* **21**, 31-34.

Ziegelberger, G. (1995). Redox-shift of the pheromone binding protein in the silkmoth *Antheraea polyphemus*. *European Journal of Biochemistry* **232**: 706–711.

APPENDICES

Appendix I - Functional annotation of cDNA clusters from *Glossina pallidipes* antennae library producing best hits to nonredundant (NR) protein database of GenBank, gene ontology (GO) and conserved domains database (CDD) database

Cluster No.	No of Seas	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
Odorant/ Pheromone Bi	inding										
265	1	Olfactory Specific F	emb CAE00444.1	7.0E-18	Drosophila erecta	Pfam PBP/GOBP family	0.029	pheromone binding	3.0E-18	0005550	No
266	2	AgamOBP1	gb AAO12081.1	3.0E-30	Anopheles gambiae	Pfam PBP/GOBP family	4.0E-19	pheromone binding	1.0E-30	0005550	Yes
Energy Metab	olism	-	•								
1	1	NADH DH subunit 4	ref YP_133766.1	0.11		Kog G protein-coupled receptors	0.68				No
20	1	NADH DH subunit 2	ref NP_694903.1	0.027		Kog Predicted membrane protein	0.071	kinase activity	0.029		No
60	1	cytochrome b	gb AAT99389.2	0.074	Vasdavidius concursus	Smart Cytochrome b-561	0.059				Yes
107	1	NADH DH subunit 2	ref YP_271927.1	0.4		Kog UDP-galactose transporter	0.044				No
109	1	GA10478-PA	gb EAL33178.1	9.0E-76	Drosophila pseudoobscurd	1 Kog Cytochrome c oxidase	8.0E-61	cytoc-c oxidase activity	9.0E-76		No
148	1	NADH DH subunit 5	emb CAI38858.1	6.3		Kog Long chain fatty acid elongase	0.095				No
207	1	NADH DH subunit 5	gb AAK21325.1	5.0E-06	Chrysomya putoria	Pfam NADH DH subunit 5	9.0E-08				No
234	1	NADH DH subunit 6	dbj BAD90827.1	2.5		Kog Predicted DHHC-type Zn-finger	1.5				Yes
237	1	cytochrome oxidase	gb AAR11468.1	0.027	Hypoderma sinense	Kog Voltage-gated Ca2+ channels	0.014	sleep	0.002		No
254	1	ENSANGP00000014099	gb EAA11886.2	4.0E-04		Kog Ca2+/Mg2+-permeable channels	0.002	NADH DH activity	3.0E-05		No
271	1	NADH DH subunit 2	ref NP_694903.1	0.076		Pfam Protein of unknown function	0.034				No
Transcription	Factors										
11	1					Smart DNA Topoisomerase IV	0.093				No
40	1	transcription initiation F	ref XP_629530.1	0.025		Smart Ribonuclease III family	0.28				Yes
44	1	receptor-like pro kinase	ref NP_914396.1	0.034	Oryza sativa	Kog Translation initiation factor 3	0.11				Yes
48	1	SJCHGC01957 protein	gb AAX27763.1	0.003	Schistosoma japonicum	Smart Ribosomal protein L11/L12	0.024				Yes
55	1	hypothetical protein	ref XP_642344.1	0.027		Kog Alpha-1,2 glucosyltransferase	0.015	mRNA processing	0.052		Yes
90	1	Friedlin nascent p/peptide	emb CAC22620.1	0.001		Kog Uncharacterized conserved pro	0.072	nucleic acid binding	5.0E-04	0003677	No
97	1	unknown	gb AAX27955.1	1.0E-07	Schistosoma japonicum	Kog Ribosome biogenesis protein	2.0E-05	snRNA binding	5.0E-05	0017069	No
104	1	TonB-dependent receptor	gb AAZ44891.1	4.4		Kog RNA polymerase II	0.075				No
136	1	hybrid proline-rich protein	gb AAA33132.1	6.0E-05		Kog 5'-3' exonuclease HKE1	1.0E-04	DNA binding	3.0E-04		Yes

Appendix I Con	nt.										
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
167	1					Smart tRNA-adenosine deaminase	0.091				No
289	1					Smart Histone 2A	0.11				No
290	1	unnamed protein	dbj BAA97098.1	5.0E-06	Arabidopsis thaliana	Kog Translation initiation factor	9.0E-04	embryonic/larval devmnt	2.0E-04	0003723	No
296	1	TFIID subunit	ref XP_629530.1	3.4		Pfam Domain of unknown function	0.04				No
Cytoskeletal											
8	1	TonB, C-terminal	gb AAZ48780.1	0.004		Kog Histone H1	0.025	locomotory behavior	0.023		No
54	1	unnamed protein product	ref XP_503326.1	9.5		Smart bacterial histone like domain	0.054				No
69	1	guanylyl cyclase	emb CAB52252.1	9	Tetrahymena pyriformis	Smart Ras-like GTPases	0.005				No
70	1	Serpentine Receptor	gb AAC25815.1	2		Smart LITAF	0.16				No
71	1					Smart Four-disulfide core domains	0.4				No
83	1	Nucleoporin Nup205	ref XP_416176.1	10	Gallus gallus	Pfam BT1 family	0.15				No
108	1	Cleavage factor 6	gb AAQ97763.1	0.061		Smart Protein phosphatase 2A	0.078				No
116	1	Serpentine receptor	ref NP_504379.1	2.9		Smart DNA polymerase type-B family	0.4				No
118	1	sperm autoantigenic protein	gb AAH75539.1	4.4		Kog RNA polymerase II complex	0.68				No
127	1	hypothetical protein	emb CAB96200.1	4.0E-07	Capsella rubella	Pfam CAP protein	4.0E-04	eggshell formation	1.0E-06	0003779	No
130	1					Smart Histone 2A	1.8				No
131	1	Huntington disease gene	ref XP_573634.1	4.0E-07	Rattus norvegicus	Kog RhoA GTPase effector	0.003	spliceosome assembly	2.0E-08	0003676	No
168	1	expressed protein	gb AAT85077.1	6.0E-06	Oryza sativa	Smart Cytochrome b-561	0.12	contractile ring formation	5.0E-06	0003779	No
178	1	SJCHGC09076 protein	gb AAW26562.1	0.027	Schistosoma japonicum	Kog Uncharacterized conserved protein	0.024	Maintenance of chromatin	0.088		No
179	2	SJCHGC09076 protein	gb AAW26562.1	8.0E-15	Schistosoma japonicum	Kog RNA polymerase II C-terminal domain	n 0.005	cartilage condensation	7.0E-04	0005201	No
187	1	hypothetical protein	gb EAA75452.1	2.0E-06		Kog WASP-interacting protein	4.0E-04	contractile ring formation	1.0E-06	0003779	No
202	1	unnamed protein	emb CAG02796.1	9.0E-07	Tetraodon nigroviridis	Pfam CAP protein	2.0E-04	axonogenesis	2.0E-05	0003779	No
210	1					Kog DHHC-type Zn-finger proteins	1.8				No
213	1	formin homology protein B	dbj BAC16797.1	7.0E-08	Dictyostelium discoideum	Kog Adenylate cyclase-protein	0.01	cytoskeletal protein binding	1.0E-06	0008092	No
215	1	Hypothetical protein	emb CAE58429.1	1.0E-06	Caenorhabditis briggsae	Kog WASP-interacting protein	7.0E-04	structural cytoskeleton compt	3.0E-07	0005200	No
235	1	hypothetical protein	gb AAU28478.1	0.51		Pfam Domain of unknown function	0.006	Microtubule complex	0.04		No
258	1					Smart Acidic/basic fibroblast factor	0.16				No

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value Match to GO DB	E-Value GO No	SignalP
Transporters									
3	1					Kog mannosyltransferase family	1.8		No
5	1	cytochrome b	gb AAB91353.1	0.15	Dennyus d. distinctus	Kog Na+:Ca2+ antiporter	0.29		No
15	1	hypothetical protein	ref XP_646009.1	0.018		Pfam 7TM chemoreceptor	0.22		No
22	1					Kog Ferric reductase	0.098		No
42	1	ADP/ATP translocase	gb AAF32322.1	1.0E-58	Lucilia cuprina	Kog Mith ADP/ATP carrier proteins	1.0E-47 ATP:ADP antiporter	3.0E-59 0015207	No
43	2	aspartic acid-rich protein	emb CAA07355.1	0.003	Plasmodium falciparum	Kog Secretory carrier membrane protein	1.1		No
49	1	SAM-methyltransferase	emb CAG21321.1	6.7		Kog Nuclear transport receptor	0.24		No
52	1	CWC22	gb ABA27413.1	0.37	Bigelowiella natans	Smart Ras-like GTPases	0.22		No
56	1	unnamed protein product	dbj BAC87585.1	6.0E-07	Homo sapiens	Pfam ATP synthase A chain	0.021		No
75	1	SJCHGC01957 protein	gb AAX27763.1	4.0E-07	Schistosoma japonicum	Kog Ferric reductase-like proteins	0.001 odontogenesis	0.039	No
91	1					Smart rRNA adenine dimethylases	1.6		No
92	1	phosphatase	ref XP_728980.1	0.016		Kog Na+/K+ ATPase	0.06		No
98	1					Kog Cl- channel CLC-7	0.61		No
139	1					Kog LDL B-like protein	0.5		No
146	1	CG11739-PC, isoform C	gb AAL90157.1	8.0E-05		Pfam Tricarboxylate carrier	4.0E-07 tricarboxylate carrier	3.0E-06	No
152	1	variola B22R-like protein	ref NP_955149.1	7.3		Kog Cytochrome P450	0.3		No
166	1	unnamed protein	dbj BAC86300.1	0.007	Homo sapiens	Kog Ferric reductase-like proteins	0.43		No
208	1	ear1 protein-like	dbj BAD28171.1	2.7		Kog Ca2+/Mg2+-permeable channels	0.63		No
221	1	Zea mays permease 1	gb AAB60909.1	0.51	Arabidopsis thaliana	Pfam Ribosomal prokaryotic protein	0.17		No
224	1	succinyl-CoA synthetase	ref NP_700961.1	0.16		Kog Permease-major facilitator	0.048		No
260	1	hypothetical protein	ref NP_705155.1	0.002		Kog Protein transporter-TRAM	7.0E-04 K ⁺ transporter activity	0.018	No
Signal transdu	iction								
6	1	Unknown protein	gb AAH96212.1	6.0E-04	Homo sapiens	Kog RhoA GTPase effector	1.0E-04 nucleic acid binding	2.0E-04 0003723	Yes
9	3	Salivary proline protein	sp P04280 PRP1	1.0E-16		Kog RhoA GTPase effector	8.0E-11 structural molecule activity	5.0E-18 0005201	No
10	1	unnamed protein product	emb CAG02796.1	9.0E-06	Tetraodon nigroviridis	Kog RhoA GTPase effector	0.11 nucleic acid binding	6.0E-04 0003723	No
16	4	receptor type 1	gb AAR12889.1	8.2		Kog Signaling protein	1.7		No
24	1	CG3983-PB, isoform B	ref NP_732199.2	9.0E-35		Kog GTPase	2.0E-24 hydrolase activity	5.0E-15 0003924	No

Appendix I Cont Cluster No.	No of Segs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
36	1	similar to Nebulin	ref XP_851603.1	4.3	Canis familiaris	Pfam Diaphanous GTPase-binding	0.17				No
41	1	Adenylate cyclase 8	ref XP_418437.1	5	Gallus gallus	Smart G protein alpha subunit	0.12				No
80	1	unknown	gb AAX27955.1	1.0E-12	Schistosoma japonicum	Kog RhoA GTPase effector	1.0E-06	ISG15 carrier activity	2.0E-05	0005522	No
85	3	pherophorin-dz1 protein	emb CAD22154.1	2.0E-62	Volvox nagariensis	Kog RhoA GTPase effector	7.0E-39	dense fibrillar component	2.0E-37	0003723	No
93	1	Wiskott-Aldrich syndrome	ref NP_001001206.1	0.45		Kog Rac1 GTPase effector	0.063				No
138	1	Protein kinase	ref ZP_00769315.1	2.0E-06		Kog RhoA GTPase effector	2.0E-07	transcription factor activity	7.0E-06	0003779	No
142	1	unnamed protein	emb CAG08643.1	1.0E-11	Tetraodon nigroviridis	Kog RhoA GTPase effector	8.0E-09	ribonucleoprotein complex	1.0E-07	0003723	No
143	1	Hypothetical protein	emb CAE70686.1	1.0E-08	Caenorhabditis briggsae	Kog RhoA GTPase effector	2.0E-09	collagen type V	1.0E-08	0003723	No
165	1	formin homology protein A	dbj BAC16796.1	2.0E-06	Dictyostelium discoideum	Kog RhoA GTPase effector DIA	1.0E-07		4.0E-06	0003924	No
176	1	GA20725-PA	gb EAL31318.1	6.0E-10	Drosophila pseudoobscurd	Kog CDP-diacylglycerol synthase	9.0E-08	rhodopsin mediated signal	2.0E-11		No
177	1	NAD(+) synthase	gb ABA04487.1	0.4		Kog guanine/nucleotide exchange factor	0.93				No
182	2	mannose-6-phosphate	gb AAO34909.1	2.1		Kog Protein tyrosine phosphatase	0.059				No
189	1	formin	gb EAN92551.1	2.0E-07		Kog Wiskott Aldrich syndrome proteins	0.005	GTPase regulator activity	6.0E-07	0003676	No
195	1	Hypothetical protein	emb CAE69130.1	3.0E-05	Caenorhabditis briggsae	Kog Adenylate cyclase protein	0.002	GTPase regulator activity	5.0E-05	0008321	No
196	2	capsid associated protein	ref NP_848457.1	1.0E-06		Pfam CAP protein	8.0E-05	GTPase regulator activity	3.0E-07	0008321	No
199	1	regulatory protein	gb AAA33306.1	0.002	Emericella nidulans	Kog RhoA GTPase effector	1.0E-04	actin filament bundle	0.002	0003676	No
200	1	diaphanous-related formin	ref XP_636106.1	3.0E-06		Kog RhoA GTPase effector	0.001	ISG15 carrier activity	6.0E-05	0005522	No
275	1	putative membrane protein	ref YP_294122.1	1.0E-24		Kog RhoA GTPase effector	7.0E-19	dense fibrillar component	1.0E-16	0003723	No
276	1	putative membrane protein	ref YP_293961.1	7.0E-16		Kog RhoA GTPase effector	1.0E-17	Rac protein signal	3.0E-15	0003723	No
278	1	ferlin	emb CAH97750.1	5.6		Smart G protein alpha subunit	0.027				No
287	1	OHproline/rich glycoprotein	emb CAB62280.1	1.0E-20	Volvox c. f. nagariensis	Kog RhoA GTPase effector DIA	2.0E-20	N/A binding	4.0E-17	0003723	No
294	1	PELP1	gb AAC17708.2	2.0E-07	Homo sapiens	Kog RhoA GTPase effector	3.0E-08	embryonic/ larval develop	2.0E-07	0003723	No
Protein Functio	n										
2	2					Smart Protein phosphatase	0.058				No
12	1					Smart c4 zinc finger	0.2				No
14	1					Smart Interleukin-7	0.92				No
37	1					Smart G protein alpha subunit	0.52				No

Appendix I Cont	t.										
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
57	1	hypothetical protein	ref NP_700707.1	2.0E-07		Pfam 7TM chemoreceptor	2.0E-05	ubiquitin-protein ligase	1.0E-04	0003677	No
61	1					Smart LITAF	0.24				No
62	2	SJCHGC01957 protein	gb AAX27763.1	0.028	Schistosoma japonicum	Pfam Geminivirus AL3 protein	0.087				No
68	1	SJCHGC01957 protein	gb AAX27763.1	2.0E-04	Schistosoma japonicum	Kog Predicted RNA methylase	0.025				Yes
76	3	unknown	gb AAX27955.1	3.0E-21	Schistosoma japonicum	Kog Ribosome biogenesis protein	4.0E-10	Ca^+/K^+ channel activity	7.0E-10	0005267	No
87	1	proenkephalin	gb AAU95755.1	0.1	Bombina orientalis	Pfam Vert endogenous opioids	0.086	perception of pain	0.008		No
89	1	unknown	gb AAX27955.1	5.0E-10	Schistosoma japonicum	Kog Telomerase elongation inhibitor	6.0E-06	Embryonic morphogenesis	3.0E-04	0003702	No
95	1	GH01724p	ref NP_610284.1	4.0E-35		Kog Protein tyrosine phosphatase	1.0E-35	Golgi biogenesis	7.0E-24		No
121	1	formin homology protein A	dbj BAC16796.1	2.0E-07	Dictyostelium discoideum	Pfam CAP protein	7.0E-04	Lamellipodium / actin	2.0E-06	0003677	No
125	1	SJCHGC01964 protein	gb AAX24673.2	0.008	Schistosoma japonicum	Pfam Acyltransferase family	0.16				No
134	1	SPAPB15E9.02c	ref NP_001018275.1	0.015		Kog Molecular chaperone	0.008				No
141	1	Glycosyl transferase	gb ABB32237.1	9.7		Kog spliceosome subunit	0.44				No
144	1	TLL2 protein	gb AAH13871.1	0.007	Homo sapiens	Kog CBF1-interacting corepressor	0.098				No
145	1					Smart Glycosyl hydrolase family 10	0.69				No
155	1	super cysteine rich protein	gb AAB05810.1	1.0E-04	Homo sapiens	Pfam Metallothionein	0.005				No
157	1	Sec14d containing protein	gb EAK90545.1	9.5		Smart endonuclease III	0.056				No
158	1	SJCHGC01957 protein	gb AAX27763.1	0.22	Schistosoma japonicum	Pfam Arginine-tRNA-protein transferase	0.031				No
162	1					Smart Glycosyl hydrolases family 32	2.1				No
163	1	unknown	gb AAX27911.1	2.0E-06	Schistosoma japonicum	Pfam DUP family	0.74				No
169	1	unknown	gb AAX27911.1	2.0E-06	Schistosoma japonicum	Kog CBF1-interacting corepressor	0.004	odontogenesis	0.03		No
170	1					Pfam Sre, C	0.29				No
175	1					Smart E3 ubiquitin-protein ligases	1.4				No
181	1	hypothetical protein	gb AAH49534.1	3.0E-04		Smart LITAF	0.003	neurotransmitter secretion	0.008		No
183	1	ENSANGP00000025094	gb EAA43936.2	3.0E-05		Kog finger-containing proteins	0.027				No
185	1					Smart Presenilin	0.04				No
191	1	SJCHGC01957 protein	gb AAX27763.1	0.016	Schistosoma japonicum	Pfam Acetyl co-enzyme A carboxylase	0.65				Yes
192	1					Kog Permease of the major facilitator	0.25				No

Appendix I Con	ıt.									
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value GO No	SignalP
203	1					Smart DNA binding domain-helix-turn	0.36			No
204	1	KIAA1657 protein	dbj BAB33327.1	0.009	Homo sapiens	Kog Chitin synthase/hyaluronan synthase	0.055			No
206	1	reverse transcriptase	emb CAI96711.1	3.2	Aedes aegypti	Pfam Tryptophan/tyrosine permease	0.46			No
209	1	TcC31.7	gb AAC14069.1	0.23	Trypanosoma cruzi	Smart prohibitin homologues	0.14			No
212	1					Pfam Surfeit locus protein 2	0.18			No
222	1	ENSANGP00000016593	gb EAA00286.3	0.002		Smart Tissue inhibitor- metalloproteinase	0.44	high affinity sulfate permease	1.0E04	No
223	1					Smart RIO-like kinase	0.48			No
225	1	phosphoribosyltransferase	gb AAO35570.1	5.1		Smart GTPase-activator protein	0.15			No
228	1					Pfam Poxvirus P4B major core protein	0.16			No
231	1	similar to Furin precursor	ref XP_850069.1	1.5	Canis familiaris	Smart Ly-6 antigen / uPA receptor	0.18			No
233	1					Pfam Envelope glycoprotein	0.33			No
239	1	Zgc: 55396 protein	gb AAH71500.1	0.003	Danio rerio	Smart LITAF	0.042			Yes
241	1	WRKY11	gb AAQ20911.1	0.009	Oryza sativa	Pfam Cytochrome C oxidase subunit II	0.12			No
242	1	putative chaperonin	ref XP_730128.1	0.012		Smart basic region leucin zipper	0.019			No
244	1	Uba1 gene product-related	ref XP_729708.1	0.006		Kog Putative receptor CCR1	0.024			No
250	1	putative chaperonin	ref XP_730128.1	0.007		Pfam Borrelia ORF-A	4.0E-04			No
267	2	condensin component cnd2	pir T49494	0.88	Neurospora crassa	Pfam Protein of unknown function	0.003			No
273	1	major surface glycoprotein	emb CAC43461.1	1.2	Pneumocystis carinii	Pfam 4-OHphenylacetate 3-hydroxylase	0.17			No
277	1	similar to Torsin family 1	ref NP_001034286.1	1.5		Pfam Rotavirus VP3 protein	0.055			No
279	1					Smart Phosphoinositide 3-kinase	0.79			No
280	1	KIAA1657 protein	dbj BAB33327.1	1.1	Homo sapiens	Pfam Papillomavirus E5	0.025			No
288	1					Pfam SCAMP family	1.8			Yes
292	1	ClpC/MecB	emb CAD74986.1	3.3		Smart Low MW phosphatase family	0.35			No
295	1					Smart bacterial periplasmic substrate	0.27			No
Unknown										
7	1	unknown	gb AAX27955.1	0.003	Schistosoma japonicum	Kog Actin filament-binding protein	0.17			Yes
13	1					Pfam Poxvirus serine/threonine	0.024			No
18	1	unnamed protein	dbj BAC86300.1	0.025	Homo sapiens	Kog Endocytosis/signaling protein	1.8			No

		• т	<u> </u>
A 10.	nono	1 37	1 ont
AD	16110	II X I	• • • • • • •
110		1111 1	com.
• • P	P • • • •		00

Cluster No.	No of Match to NR DB Seqs		Accession No	E-Value	e Species Match Be	Best Rpsblast to CDD DB	E-value Match to GO DB	E-Value GO No	SignalP
23	1	unknown	gb AAX27911.1	0.52	Schistosoma japonicum	Kog Cytochrome oxidase subunit III	0.3		No
27	2	putative chaperonin	ref XP_730128.1	0.07		Kog Uncharacterized conserved protein	0.097		No
29	2	putative chaperonin	ref XP_730128.1	0.048		Smart hypothetical protein domain	0.19		No
31	1	putative chaperonin	ref XP_730128.1	0.004		Pfam Domain of unknown function	0.006		No
39	1					Pfam Protein of unknown function	0.38		No
46	1	unknown	gb AAX27911.1	0.005	Schistosoma japonicum	Pfam LacY proton/sugar symporter	0.068		Yes
65	1					Kog Predicted membrane protein	0.59		No
66	1	unnamed protein	ref XP_454192.1	0.095		Smart Ras-Guanine nucleotide factor	0.1		No
67	1	unnamed protein	ref XP_502130.1	2.0E-06		Kog Ferric reductase	5.0E-04		No
72	1	unknown	gb AAX27911.1	0.083	Schistosoma japonicum	Kog Cytochrome P450	0.027		No
81	1	unknown	gb AAX27955.1	0.008	Schistosoma japonicum	Kog Secretory carrier membrane protein	0.56		Yes
99	1	unknown	ref NP_704103.1	0.012		Kog Ca2+/Mg2+-permeable channels	0.048		No
101	2	unnamed protein product	dbj BAC87052.1	0.002	Homo sapiens	Smart Glycosyl hydrolases family 32	0.3		No
106	1	unnamed protein	dbj BAC87430.1	0.89	Homo sapiens	Smart Syntaxin N-terminal domain	0.14		No
114	1	unnamed protein	dbj BAC87575.1	0.004	Homo sapiens	Smart Putative GTP-ase	0.013		No
115	1	unnamed protein	ref NP_059419.1	1.1		Pfam CHD5-like protein	0.094		No
123	1	unnamed protein	emb CAG10585.1	3.3	Tetraodon nigroviridis	Pfam recA bacterial DNA recom protein	0.13		No
124	1					Kog WD40 repeat-containing protein	0.35		No
126	1	unnamed protein	dbj BAC86958.1	0.11	Homo sapiens	Kog Uncharacterized conserved protein	0.043		No
150	1					Kog Predicted membrane protein	1.9		No
151	1	predicted protein	ref XP_366618.1	1.3	Magnaporthe grisea	Pfam Protein of unknown function	0.19		No
159	1	unnamed protein	dbj BAC87575.1	5.0E-15	Homo sapiens	Pfam Sre, C	0.007		No
160	1	unknown	gb AAX27955.1	0.053	Schistosoma japonicum	Smart PRE_C2HC, PRE_C2H2 domain	0.28		No
171	1	SJCHGC09731 protein	gb AAX31025.1	3.3	Schistosoma japonicum	Pfam Uncharacterised protein family	0.14		No
172	1					Pfam Protein of unknown function	1.5		No
173	1	unknown	gb AAX27911.1	0.1	Schistosoma japonicum	Kog Endosomal membrane proteins	0.042		No
180	1					Pfam Uncharacterised protein family	0.28		Yes

Appendix I Cont	t.								
Cluster No.	No o Sequ	of Match to NR DB s	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value Match to GO DB	E-Value GO No	SignalP
194	1	unnamed protein	dbj BAC86300.1	0.005	Homo sapiens	Kog Predicted lipoprotein	0.005		No
197	1	unnamed protein	dbj BAC32804.1	0.036	Mus musculus	Kog Sodium/hydrogen exchanger protein	0.15		No
201	1	unnamed protein	dbj BAC04995.1	0.021	Homo sapiens	Pfam Sec-indep protein translocase	0.016		No
211	1					Pfam Poxvirus of unknown function	0.28		No
216	1	WRKY11	gb AAQ20911.1	0.53	Oryza sativa	Kog Uncharacterized PilT N-term protein	0.035		No
217	1					Smart VPS10 domain	0.48		No
229	1	unnamed protein	dbj BAC86276.1	5.8	Homo sapiens	Smart CLUSTERIN Beta chain	0.61		No
230	1	unnamed protein	dbj BAC86178.1	0.22	Homo sapiens	Smart Presenilin	0.005		No
245	1	unnamed protein	dbj BAC86300.1	0.006		Kog Uncharacterized conserved protein	0.13		Yes
259	1	SJCHGC01957 protein	gb AAX27763.1	0.046	Schistosoma japonicum	Pfam hypo plant mitochondrial protein	0.071		Yes
263	1	unnamed protein	dbj BAC86958.1	0.002	Homo sapiens	Pfam Sre, C	0.08		No
268	1					Pfam Protein of unknown function	1.3		No
274	1					Smart Ribosomal protein	0.79		No
281	1	SJCHGC03128 protein	gb AAX26662.2	8.0E-10	Schistosoma japonicum	Kog RhoA GTPase effector	4.0E-08		No
283	1	unnamed protein	dbj BAC86958.1	0.004	Homo sapiens	Smart lipopolysaccharide enzyme	0.11		No
Hypothetical									
4	1	hypothetical protein	ref XP_675398.1	0.67		Kog Golgi-associated protein	0.13		No
17	4	hypothetical protein	ref NP_473073.2	0.004		Pfam YMF19 plant mitochondrial protein	0.056		No
19	1	hypothetical protein	ref XP_727001.1	0.03		Pfam Cyt c oxidase subunit III	0.085		Yes
21	1	hypothetical protein	ref XP_644272.1	0.1		Kog P-type ATPase	0.19		No
25	1	hypothetical protein	ref XP_646781.1	0.009		Smart Ubiquitin-conjugating enzyme E2	0.056		No
26	1	hypothetical protein	ref XP_679980.1	5.7		Kog Uncharacterized conserved protein	0.047		No
28	1	hypothetical protein	ref NP_703298.1	1.5		Kog ubiquitin ligase	0.41		No
30	1	hypothetical protein	emb CAC13617.1	2.3		Pfam Protein of unknown function	0.11		No
32	1	hypothetical protein	ref NP_701505.1	7.4		Pfam Major intrinsic protein	0.33		No
33	1	hypothetical protein	ref XP_642253.1	0.013		Pfam LacY proton/sugar symporter	0.042		No
34	1	hypothetical protein	ref XP_638906.1	9.0E-04		Smart Integrin beta subunits	0.063		No
35	1	hypothetical protein	ref XP_645450.1	3.3		Pfam LacY proton/sugar symporter	0.77		No

Appendix I Con	ıt.									
Cluster No.	No of Some	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value GO No	SignalP
29	2	hypothetical protein	rofIVD 642556 1	7 OF 04		Kog Sagratory corrier membrane protein	0.078			No
38 45	2	hypothetical protein	$\frac{101}{AF} = 043330.1$	7.0E-04		Rog Secretory carrier memorane protein	0.078			No
43	1	hypothetical protein	rofIND 701627.1	0.3 5 7		Smort Clucosul hydrolose family 10	1.6			No
47 50	1	hypothetical protein	refIVD 642102.1	0.02		Kag Almha 1.2 alwaasultronafarraa	0.015			No
50	1	hypothetical protein	rel AP_045102.1	0.02		Kog Alpha-1,2 glucosyltransierase	0.015			No
51	1	hypothetical protein	gb EAN32317.1	7.4		Smart G protein alpha subunit	0.28			NO No
53	1	nypotnetical protein	ref XP_6/0256.1	0.51		Pfam / I M chemoreceptor	0.053			NO
58	1	hypothetical protein	ref XP_640040.1	0.016		Smart Presenilin	0.2			No
59	1	hypothetical protein	gb AAY61752.1	2.1		Ptam Domain of unknown function	2.0E-05			No
63	1	hypothetical protein	ref XP_638906.1	0.018		Pfam Rhabdovirus matrix protein	0.16			No
64	1	hypothetical protein	ref XP_643681.1	0.013		Smart Presenilin	0.036			Yes
73	2	hypothetical protein	pir T31613	9.0E-06	Caenorhabditis elegans	Kog Lipid exporter ABCA1	4.0E-06			No
74	1	hypothetical protein	gb EAN94557.1	5.8		Pfam LacY proton/sugar symporter	0.29			No
78	1	hypothetical protein	ref NP_702127.1	0.092		Kog RNA-binding protein	0.045			Yes
79	1	hypothetical protein	ref XP_646296.1	0.059		Kog 60S ribosomal protein	0.17			No
82	1	hypothetical protein	ref XP_644272.1	0.13		Smart Homeodomain	0.099			Yes
84	1	hypothetical protein	gb EAN93140.1	5.8		Smart NEAr Transporter domain	0.044			No
86	1	hypothetical protein	ref NP_700707.1	0.001		Pfam Baculovirus of unknown function	0.015	nucleic acid binding	0.086	No
88	1	hypothetical protein	ref XP_646201.1	0.003		Kog Uncharacterized conserved protein	0.023			No
94	1	hypothetical protein	pir E22845	4.0E-05	Trypanosoma brucei	Kog Transporter, ABC superfamily	0.004			No
96	1	hypothetical protein	ref NP_700669.1	0.048		Pfam YMF19 plant mitochondrial protein	0.035			No
100	1	hypothetical protein	ref XP_642344.1	0.26		Pfam 7 transmembrane receptor	0.29			No
102	1	hypothetical protein	ref XP_645969.1	9.9		Smart hypothetical Domains - Drosophila	0.46			No
103	1	hypothetical protein	ref XP_643102.1	0.022		Pfam Fibronectin-binding protein	0.45			No
105	1	hypothetical protein	ref NP_700715.1	3.3		Smart DNA polymerase type-B family	0.14			No
110	1	hypothetical protein	ref ZP_00738855.1	1.5		Smart Broad-Complex	0.42			No
111	1	hypothetical protein	ref XP_742832.1	5.7		Kog mannosyltransferase family	0.2			No
112	1	hypothetical protein	ref NP_473342.1	1.1		Smart STE like transcription factors	0.63			No
113	1	hypothetical protein	gb EAN87037.1	2		Kog C-4 sterol methyl oxidase	0.27			No

Cluster No. No of SeqsMatch to NR DBAccession NoE-ValueSpecies MatchBest Rpsblast to CDD DBE-valueMatch to GO DBE-Value GO NoSig1171hypothetical proteinemb CAI76869.17Smart Presenilin0.075NoNo1191hypothetical proteinref NP_703238.13.7Smart Ras-Guanine nucleotide factor0.39O.001CoNo1201hypothetical proteinref XP_719067.10.29SectorKog Uncharacterized conserved protein0.001CoNo1221hypothetical proteinref XP_63707.010.12SectorKog Uncharacterized conserved protein0.029CoNo1281hypothetical proteinref NP_703246.10.87SectorKog Predicted mitochondrial protein1.4CoNo1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideeKog Polytopic membrane protein0.43SectorNo	
No of Seqs1171hypothetical proteinemb CAI76869.17Smart Presenilin0.075No1191hypothetical proteinref NP_703238.13.7Smart Ras-Guanine nucleotide factor0.39No1201hypothetical proteinref XP_719067.10.29Kog Uncharacterized conserved protein0.001No1221hypothetical proteinref XP_637070.10.12Kog Uncharacterized conserved protein0.029No1281hypothetical proteinref NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No	gnalP
1171hypothetical proteinemb/CAI76869.17Smart Presenilin0.075No1191hypothetical proteinref/NP_703238.13.7Smart Ras-Guanine nucleotide factor0.39No1201hypothetical proteinref/XP_719067.10.29Kog Uncharacterized conserved protein0.001No1221hypothetical proteinref/XP_637070.10.12Kog Uncharacterized conserved protein0.029No1281hypothetical proteinref/NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb/AA052249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No	
1191hypothetical proteinref NP_703238.13.7Smart Ras-Guanine nucleotide factor0.39No1201hypothetical proteinref XP_719067.10.29Kog Uncharacterized conserved protein0.001No1221hypothetical proteinref XP_637070.10.12Kog Uncharacterized conserved protein0.029No1281hypothetical proteinref NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No)
1201hypothetical proteinref XP_719067.10.29Kog Uncharacterized conserved protein0.001No1221hypothetical proteinref XP_637070.10.12Kog Uncharacterized conserved protein0.029No1281hypothetical proteinref NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No)
1221hypothetical proteinref XP_637070.10.12Kog Uncharacterized conserved protein0.029No1281hypothetical proteinref NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No)
1281hypothetical proteinref NP_703246.10.87Kog Predicted mitochondrial protein1.4No1291Hypothetical proteingb AAO52249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43No)
1291Hypothetical proteingb AA052249.1 0.39Dictyostelium discoideumKog Polytopic membrane protein0.43)
)
132 1 hypothetical protein ref XP_640208.1 0.001 Kog Histone H1 0.077 No)
133 1 hypothetical protein ref XP_643102.1 0.88 Pfam Protein of unknown function 0.18 No)
137 1 hypothetical protein gb/AAA96601.1 0.011 Kog Ceramide glucosyltransferase 0.013 No)
140 2 hypothetical protein ref]XP_674063.1 0.61 Smart TLC/TRAM/LAG1 domains 0.034 No)
147 1 hypothetical protein ref XP_415764.1 5.7 Gallus gallus Pfam Ribosomal protein S8e 1.5 No)
153 1 hypothetical protein ref]NP_703576.1 3.3 Smart Ras-Guanine nucleotide factor f 0.09 No)
154 1 hypothetical protein ref]NP_702771.1 4.4 Smart Presenilin 0.064 No)
156 1 hypothetical protein ref[XP_737285.1 2.3 Pfam Chordopoxvirus G3 protein 0.23 No)
161 1 hypothetical protein ref[XP_641754.1 0.32 Kog Acetylcholine receptor 0.28 No)
164 1 hypothetical protein gb AAM67677.1 0.13 Kog Ribosomal protein 0.048 No)
174 1 hypothetical protein ref[XP_646911.1 0.18 Smart LITAF 0.12 No)
184 1 hypothetical protein ref]NP_703819.1 0.4 Pfam Yip1 domain 0.11 No)
188 1 hypothetical protein ref[XP_644272.1 2.2 Smart Alpha-amylase domain 0.61 No)
190 1 Hypothetical protein emb CAE74867.1 3.6 <i>Caenorhabditis briggsae</i> Pfam Sec-independent protein translocase 0.058 No)
193 1 hypothetical protein pir T31613 9.0E-06 <i>Caenorhabditis elegans</i> Kog Uncharacterized conserved protein 0.011 Ye	'S
198 1 hypothetical protein ref[XP_642369.1 0.51 Kog Predicted transporter 0.37 No)
186 1 hypothetical protein ref[ZP_00367506.1 1.9 Smart Presenilin 0.13 No)
205 1 hypothetical protein ref NP_701331.1 9.8 Smart VPS10 domain 0.33 No)
214 1 hypothetical protein refIXP 640208.1 0.027 Smart TLC/TRAM/LAG domains 0.13 No)
218 1 hypothetical protein ref XP_636844.1 0.005 Smart Presenilin 0.009 No)
220 1 hypothetical protein refIXP 638906.1 0.45 Pfam 7TM chemoreceptor 0.002 No)
232 1 hypothetical protein ref YP_456730.1 3.3 Kog Uncharacterized conserved protein 0.15 No)

Appendix I Cor	nt.								
Cluster No.	No of Segs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value Match to GO DB	E-Value GO No	SignalP
236	1	hypothetical protein	gb EAN85835.1	0.028		Smart Presenilin	0.077		Yes
238	1	hypothetical protein	ref XP_644272.1	0.048		Kog RNA-directed RNA polymerase	0.47		Yes
240	1	hypothetical protein	ref XP_643556.1	0.009		Pfam 7TM chemoreceptor	0.06		No
243	1	hypothetical protein	ref XP_638498.1	0.035		Kog CBF1-interacting corepressor	0.021		No
246	1	hypothetical protein	ref XP_640040.1	0.046		Kog Predicted alpha/beta hydrolase	0.035		No
247	1	hypothetical protein	ref XP_646009.1	0.016		Smart Formin Homology 2 Domain	0.014		Yes
248	1	hypothetical protein	ref XP_635821.1	0.02		Pfam Rifin/stevor family	0.072		No
249	1	hypothetical protein	gb EAN93140.1	0.067		Pfam Vps52 / Sac2 family	0.026		No
251	1	hypothetical protein	ref XP_644272.1	2.0E-04	Homo sapiens	Smart N-terminal to some SET domains	0.26		Yes
253	1	hypothetical protein	ref NP_113368.1	3.3		Kog Uncharacterized conserved protein	0.27		No
255	1	hypothetical protein	ref XP_645982.1	0.009		Kog Uncharacterized conserved protein	0.007		Yes
256	1	hypothetical protein	gb EAN86251.1	0.078		Kog Predicted RNA methylase	0.044		No
261	1	hypothetical protein	gb EAL87103.1	5.4		Smart TopoisomeraseII	0.13		No
264	1	hypothetical protein	emb CAH86969.1	2.0E-10		Kog finger-containing proteins	0.003		No
269	1	hypothetical protein	emb CAH87320.1	4.4		Smart Galectin - galactose-binding lectin	0.22		No
270	1	hypothetical protein	ref XP_666801.1	7.4		Kog Sodium/hydrogen exchanger protein	0.56		No
282	1	hypothetical protein	ref XP_644272.1	0.13		Pfam Cytidylyltransferase family	0.015		No
284	1	hypothetical protein	ref XP_728229.1	0.3		Pfam Borrelia ORF-A	0.001		No
285	1	hypothetical protein	ref NP_701842.1	4.3		Pfam Domain of unknown function	0.071		No
286	1	hypothetical protein	gb EAN76693.1	1.5		Smart DSRM/ZnF_C2H2 domains	0.21		No
291	1	hypothetical protein	ref XP_629925.1	5.6		Pfam Sre, C	0.029		No

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
Odorant/Phor	omone Bi	nding									
184	2 2	Olfactory Specific E	refINP 524241.1	5E-36	Drosophila melanogaster	Smart Insect PRP/ORP domains	8E-18	pheromone binding	3 0E-37	0005550	Ves
104	1	transcription factor IIIB	ref XP_6/0891_1	5E-05	Dictostalium discoidaum	Smart Dutative single-stranded NAs	0.077	pheromone binding	3.0E-04	0005550	No
204	1	CG11852-PA	gb A A M50923 1	2E-19	Drosophila melanogaster	Pfam Odorant hinding protein	2E-29	pheromone officing	5.01 04	0005550	No
204	1	hypothetical protein	emblC A I01/4/1 1	2E 19 2E-09	Drosophila neudoobscura	Pfam Insect PRP-binding family	2E 2) 4E-09	pheromone binding	1.0E_09	0005549	No
200	1	GA16322-PA	gb EAI 28074 1	1E-45	Drosophila pseudoobscura	Pfam PRP/GORP family	4E-07	odorant binding	2.0E-46	0005549	No
Enorgy Motoh	aliem	0A10322-1 A	g0 LAL20074.1	112-45	Drosophila pseudoobscura		21-15	odorant binding	2.01-40	0003347	110
15	2	mtAcvl carrier subunit 2	emb CAA70290.1	6E-18	Drosophila melanogaster	Kog NADH-ubiqui oxidoreductase	1E-13	NADH DH activity	3.0E-19		Yes
21	1	mtAcyl carrier subunit 2	emb CAA70290.1	8E-50	Drosophila melanogaster	Kog NADH-ubiqui oxidoreductase	2E-39	NADH DH activity	4.0E-51		No
32	2	NADH DH subunit 1	ref YP 245509.1	2E-58	Haematobia irritans irritans	Kog NADH DH subunit 1	1E-46	NADH DH activity	8.0E-51		Yes
33	2	NADH DH subunit 1	ref YP 245509.1	3E-64	Haematobia irritans irritans	Kog NADH DH subunit 1	3E-52	NADH DH activity	8.0E-57		No
34	4	cvt-c oxidase subunit III	ref NP_075453.1	2E-88	Cochliomvia hominivorax	Pfam Cvt-c oxidase subunit III	5E-94	cvt-c oxidase activity	4.0E-87		No
35	2	cvt-c oxidase subunit III	ref NP_075453.1	2E-91	Cochliomvia hominivorax	Pfam Cvt-c oxidase subunit III	1E-96	cvt-c oxidase activity	8.0E-92		Yes
46	1	cvt oxidase subunit II	gb AAO13680.1	5E-66	Drosophila wassermani	Pfam Cvt-C oxidase subunit II	4E-64	cvt-c oxidase activity	1.0E-63		No
47	2	Cyt oxidase subunit 2	gb AAX47684.1	3E-69	Calliphora sternalis sternalis	Pfam Cyt-C oxidase subunit II	5E-64	cyt-c oxidase activity	7.0E-67		No
53	1	NADH subunit 2	ref NP_075448.1	2E-43	Cochliomyia hominivorax	Kog NADH DH subunits	3E-16	NADH DH activity	2.0E-36		No
54	1	NADH subunit 2	ref NP_075448.1	2E-45	Cochliomyia hominivorax	Kog NADH DH subunits	3E-17	NADH DH activity	2.0E-39		No
70	2	cyt c oxidase p/peptide	gb AAP88317.1	4E-23	Drosophila simulans	Pfam Cyt oxidase c subunit VIII	0.014	cyt-c oxidase activity	2.0E-24		No
72	1	NADH DH subunit	gb AAK21325.1	2E-16	Chrysomya putoria	Pfam NADH DH subunit 5 C-terminus	3E-17	NADH DH activity	8.0E-11		No
73	1	NADH DH subunit	gb AAL88695.1	2E-04	Trichophthalma sp.	Pfam NADH DH subunit 5 C-terminus	0.0004	Actin depolymerization	1.0E-05	0005522	No
113	1	NADH DH subunit 5	ref YP_025917.1	9.8	Xiphinema americanum	Smart delta serrate ligand	0.47				No
166	2	cytc oxidase subunit I	gb AAX35708.1	2E-91	Drosophila ficusphila	Pfam Cyt-C, Quinol oxidase p/peptide	6E-56	sleep	6.0E-92		No
177	1	NADH subunit 5	ref NP_075455.1	2E-57	Cochliomyia hominivorax	Pfam NADH DH subunit 5 C-terminus	1E-45	NADH DH activity	9.0E-48		No
196	1	Cyt-c oxidase p/peptide Va	gb AAR30197.1	3E-55	Drosophila melanogaster	Pfam Cyt c oxidase subunit Va	4E-45	cyt-c oxidase activity	2.0E-56	0005489	No
212	1	GA18962-PA	gb EAL32669.1	7E-42	Drosophila pseudoobscura	Pfam NADH-ubiqui oxidoreductase	5.0E-42	NADH DH activity	1.0E-42		No
228	1	IP05690p	ref NP_724697.1	3E-27	Drosophila melanogaster	Kog Ubiquinol-Cyt c reductase	9E-17	ubiquinol-cyt-c reductase	2.0E-28		No

Appendix II - Functional annotation of cDNA clusters from *Glossina papalis gambiensis* head library producing best hits to nonredundant (NR) protein database of GenBank, gene ontology (GO) and conserved domains database (CDD) database

Appendix II Cont.

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Valu	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
238	1	Dro. melanogaster CG9306	gb AAR10178.1	4E-56	Drosophila yakuba	Kog NADH:ubiqui oxidoreductase	1E-45	NADH DH activity	2.0E-57		No
248	1	CG3446-PA	gb AAL48700.1	2E-56	Drosophila melanogaster	Kog NADH:ubiqui oxidoreductase	2E-45	mit electron transport	9.0E-58	0005524	No
260	1	LD31474p	ref NP_727921.1	6E-95	Drosophila melanogaster	Kog NADH-ubiqui oxidoreductase	6E-90	NADH DH activity	3.0E-96		No
297	1	ENSANGP00000011766	gb EAA00203.3	6E-24	Anopheles gambiae	Kog NADH:ubiqui oxidoreductase	9E-25	NADH DH activity	2.0E-23		No
Transcription F	actors										
17	6	SJCHGC01957 protein	gb AAX27763.1	2E-27	Schistosoma japonicum	Kog Predicted RNA binding protein	2E-10	small ribonucleoprotein	7.0E-10	0005267	No
25	1	similar to D. melano RpL15	5 gb AAR10086.1	1E-99	Drosophila yakuba	Pfam Ribosomal L15	1E-78	struct constituent of ribosome	1.0E-101	0003723	No
26	1	similar to D. melano RpL15	5 gb AAR10086.1	6E-89	Drosophila yakuba	Pfam Ribosomal L15	4E-77	struct constituent of ribosome	3.0E-90	0003723	Yes
31	1	diaphanous homologue	ref XP_478998.1	4E-06	Oryza sativa	Pfam CAP protein	0.002	ribosomal DNA binding	7.0E-05	0000182	No
97	1	RNA-binding protein	gb EAN97599.1	1.2	Trypanosoma cruzi	Smart Protein phosphatase 2A	0.21				No
116	1	T-box transcription factor	ref NP_001027587	0.51	Ciona intestinalis	Kog Flavin-containing monooxygenase	0.087				No
172	1	CG17489-PA.3	gb AAL48927.1	1E-100	Drosophila melanogaster	Kog 60S ribosomal protein	4E-61	struct constituent of ribosome	1.0E-101	0008097	No
179	1	D. melanogaster CG2099	gb AAR10024.1	1E-67	Drosophila yakuba	Kog 60S ribosomal protein	2E-43	struct constituent of ribosome	1.0E-66	0003723	No
185	1	CG8636-PA	gb AAM50793.1	2E-90	Drosophila melanogaster	Smart RNA recognition motif	8E-13	eukaryotic TIF 3 complex	1.0E-91	0003723	No
229	1	GA20486-PA	gb EAL32194.1	3E-56	Drosophila pseudoobscura	Pfam Ribosomal protein L36e	1E-40	struct constituent of ribosome	1.0E-55	0003723	No
239	1	SJCHGC01957 protein	gb AAX27763.1	2E-02	Schistosoma japonicum	Pfam plant mitochondrial protein	0.005	ribonuclease MRP complex	0.056		No
245	1	transcriptional regulator	ref ZP_01000137.1	1.2	Oceanicola batsensis	Smart Ras-like small GTPases	0.096				No
271	1	CG7726-PA	gb AAM11143.	5E-95	Drosophila melanogaster	Pfam ribosomal L5P family C-terminus	2E-41	RNA binding	2.0E-96	0003723	No
273	1	similar to D.melanogaster	gb AAR10020.1	2E-30	Drosophila yakuba	Kog 60S ribosomal protein	4E-32	struct constituent of ribosome	7.0E-32	0003723	No
275	1	GA19229-PA	gb EAL33406.1	1E-122	Drosophila pseudoobscura	Kog 40S ribosomal protein	1E-106	Struct constituent of ribosome	1.0E-123	0003723	No
278	1	60S ribosomal protein L23	gb AAY66949.1	2E-12	Ixodes scapularis	Kog 60S ribosomal protein	3E-11	Struct constituent of ribosome	6.0E-14		No
281	1	GA20722-PA	gb EAL30266.1	5E-90	Drosophila pseudoobscura	Pfam Core binding factor beta subunit	4E-75	transcription coactivator	6.0E-91	0046982	No
80	1	similar to Splicing factor	ref XP_213658.3	2E-02	Rattus norvegicus	Smart Phosphoinositide 3-kinase	8E-04	cytoskeletal protein binding	0.002	0003779	No
107	1	unnamed protein product	dbj BAA97098.1	8E-18	Arabidopsis thaliana	Kog Histone H1	2E-08	Struct constituent - cytoskelete	on 6.0E-08	0005200	Yes
168	1	GA21525-PA	gb EAL25823.1	2E-48	Drosophila pseudoobscura	Pfam Insect cuticle protein	1E-25	structural constituent of cuticle	e 6.0E-49	0005214	No
183	1	CG13041-PA	gb AAL49186.1	2E-13	Drosophila melanogaster	Pfam Drosophila Retinin like protein	3E-08				Yes
197	1	GA21874-PA	gb EAL34274.1	3E-58	Drosophila pseudoobscura	Smart Profilin/Binds actin monomers	3E-38	actin filament organization	2.0E-59	0003779	No
226	2	CG13043-PA	ref NP_648868.2	2E-21	Drosophila melanogaster	Pfam Drosophila Retinin like protein	7E-17	structural constituent of cuticle	e 0.005	0005214	Yes

Appendix II Cont.	•										
Cluster No.	No o	f Match to NR DB	Accession No	E-Valu	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
	Seqs						0.000		0.05.04		
234	2	CG7216-PA	gb AAM51018.1	2E-22	Drosophila melanogaster	Kog Ultrahigh sulfur keratin	0.0002	structural constituent of cuticle	8.0E-24	0008012	Yes
243	2	RH70420p	gb AAM29629.1	1E-23	Drosophila melanogaster	Pfam Male specific sperm protein	0.0001	structural constituent of cuticle	3.0E-15	0008012	Yes
249	1	CG13042-PA	gb AAY85051.1	2E-26	Drosophila melanogaster	Pfam Drosophila Retinin like protein	1E-18	structural constituent of cuticle	2.0E-05	0005214	Yes
266	1	CG7178-PE, isoform E	gb AAM52657.1	2E-44	Drosophila melanogaster	Pfam Troponin	4E-13	troponin complex	2.0E-40	0003779	No
291	1	H3f3b protein	gb AAH88835.1	4E-68	Mus musculus	Kog Histones H3 and H4	1E-66	chromosome org & biogenesis	7.0E-69	0003677	No
Transporters											
4	1	hypothetical protein	emb CAH87320.1	2E-04	Plasmodium chabaudi	Pfam Sugar transporter	0.035	kinase activity	0.08	6	No
38	1	hypothetical protein	ref XP_678650.1	2E-12	Plasmodium berghei	Pfam Domain of unknown function	8E-06	nucleocytoplasmic transport	1.0E	-06 0003702	No
57	2	succinyl-CoA synthetase	ref NP_700961.1	0.12	Plasmodium falciparum 3D7	Kog Voltage-gated Ca2+ channels	0.049				Yes
91	2	LD45288p	emb CAA20899.2	1E-105	Drosophila melanogaster	Pfam Synaptobrevin	3E-17	vesicle-mediated transport	1.0E	-65 0005485	No
92	1	LD45288p	emb CAA20899.2	6E-58	Drosophila melanogaster	Pfam Synaptobrevin	9E-17	vesicle-mediated transport	5.0E	-33 0005485	No
93	1					Pfam LacY proton/sugar symporter	0.17				No
102	1	Substrate transporter	ref ZP_00845774.1	1.5	Rhodopseudomonas palustris	Smart Guanine nucleotide factor	0.071				Yes
119	1	putative chaperonin	ref XP_730128.1	0.004	Plasmodium yoelii yoelii	Pfam HCO3- transporter family	0.006				Yes
126	1	SJCHGC01957 protein	gb AAX27763.1	0.005	Schistosoma japonicum	Kog Predicted transporter	0.008				No
130	1					KogNa+:iodide/myo-inositol symporters	0.21				No
154	1	K ⁺ voltage-gated channel	ref XP_692589.1	1.5	Danio rerio	Kog Voltage-gated K+ channel	1.2				No
155	1	K ⁺ voltage-gated channel	ref XP_692589.1	9.8	Danio rerio	Kog Putative Rab5-interacting protein	0.13				No
173	3	ATP synthase F0 subunit 6	ref YP_133762.1	8E-96	Dermatobia hominis	Pfam ATP synthase A chain	3E-48	proton-transporting ATP synth	ase 9.0E	-95 0046933	No
176	1	CG6782-PA, isoform A	gb AAL29051.1	3E-70	Drosophila melanogaster	Kog Mit tricarboxylate carrier proteins	1E-53	mitochondrial citrate transport	7.0E	-59 0015137	No
181	1	ADP/ATP translocase	gb AAF32322.1	6E-66	Lucilia cuprina	Pfam Mitochondrial carrier protein	5E-15	ATP: ADP antiporter activity	3.0E	-66 0015207	No
191	1	ENSANGP00000011079	gb EAA05846.2	1E-34	Anopheles gambiae str. PEST	⁷ Pfam Mitochondrial ATP synthase	2E-22	proton transport	2.0E	2-34	No
192	1	CG8931-PA	gb AAK92928.1	7E-32	Drosophila melanogaster	Pfam Mitochondrial carrier protein	3E-06				No
201	1	ABC cobalt transpor	t dbiBAD04265.11	0.28	Onion vellows phytoplasma	Pfam Srg. C	0.13				No
211	1	SD10334p	ab]AAK03568 1	0.20 0E 62	Drosophila melanogaster	Kog Muosin assembly protein	6E 33	Mit outer membrane transloca	5 0E	63	No
211	1	CC18624 DA isoform A	g0 AAR95508.1	9E-02	Drosophila melanogaster	Kog Na /// transporter	0.020	NADH dabudroganaga activity	2 0E	-05	No
200	1	CA20881 DA	-hEAL20617.1	0E-10	Drosopnita metanogaster	Kog Mat/K+ transporter	0.029		3.0E	-17	INU No.
290	1	GA20881-PA	gD EAL29617.1	8E-94	Drosophila pseudoobscura	Kog Millochondrial F1F0-A1P synthase	3E-67	proton-transporting ATP synth	ase 3.0E	-94	Yes
293	1	NoaD	emb CAA88827.1]	0.23	Azorhizobium caulinodans	Kog Na+/H+ antiporter	0.037				No

Cluster No.	No o Seqs	f Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-valu	e Match to GO DB	E-Value GO No	SignalP
296	1	RE66761p	gb AAM48442.1	6E-10	Drosophila melanogaster	Kog Translocase of outer mit membrane	6E-06	mit outer membrane translocase	3.0E-11	No
Signal transduc	tion									
6	1	SJCHGC08168 protein	gb AAW24991.1	3E-06	Schistosoma japonicum	Kog Adenylate cyclase	0.002	G-protein/camp 2nd messenger	1.0E-05 0003779	No
13	2	Y22D7AR.1	gb AAK29874.1	3E-08	Caenorhabditis elegans	Kog RhoA GTPase effector	9E-08	spliceosome complex	2.0E-07 0008307	No
18	1					Pfam taste receptor protein	0.18			No
42	1	Cyclic nucleotide-binding	ref ZP_00600408.1	4.6	Rubrobacter xylanophilus	Smart Ras-like GTPases	0.082			No
61	1	Hypothetical protein	gb AAC00575.1	0.0001	Arabidopsis thaliana	Kog RhoA GTPase effector	0.008	nucleic acid binding	1.0E-04 0003723	No
66	1	GPCR 52	ref NP_005675.2	6.5	Homo sapiens	Smart Amb_all domain	0.47			No
74	7	opsin Rh1	gb AAS88872.2	1E-138	Bactrocera dorsalis	Pfam 7 transmembrane (rhodopsin)	7E-45	G-protein coupled photoreceptor	1.0E-135	No
75	2	Opsin Rh1	gb AAA62725.1	7E-66	Unknown	Pfam 7 transmembrane (rhodopsin)	1E-09	G-protein coupled photoreceptor	2.0E-66	Yes
98	1					Pfam 7tm Odorant receptor	0.25			No
109	1	similar to Or 10T2	ref XP_597712.2	5.7	Bos taurus	Smart Thrombospondin N-terminal	0.23			No
148	1	SJCHGC01957 protein	gb AAX27763.1	2E-05	Schistosoma japonicum	Smart Calpain-like thiol protease family	0.005	small GTPase signal transduction	0.068 0005522	No
194	1	ENSANGP00000013043	gb EAA09123.2	3E-14	Anopheles gambiae str. PEST	Smart calmodulin-binding motif	9E-06	myosin/ ATPase activity	0.003 0042623	No
244	4	arrestin1	emb CAA55672.1	5E-77	Calliphora vicina	Pfam Arrestin (or S-antigen)	5E-26	metarhodopsin inactivation	2.0E-74 0016030	No
288	1	CG9224-PA	ref NP_476736.1	5E-81	Drosophila melanogaster	Pfam von Willebrand factor type C	6E-15	torso signaling pathway	3.0E-82 0008083	No
299	1	ENSANGP00000012700	gb EAA05425.2	3E-79	Anopheles gambiae str. PEST	Smart calcium binding motif	9E-09	rhodopsin mediated signaling	2.0E-79	No
Protein Functio	n									
1	1	CG31075-PA	ref NP_733183.1	1E-67	Drosophila melanogaster	Pfam Aldehyde DH family	9E-60	aldehyde DH (NAD) activity	7.0E-69 0005489	No
2	1	SJCHGC09076 protein	gb AAW26562.1	4E-13	Schistosoma japonicum	Kog Predicted hydrolase	0.03			No
5	1	tRNA-dihydrouridine synthase	ref XP_710328.1	0.12	Candida albicans SC5314	Pfam hypothetical mitochondrial protein	0.006			No
12	4	formin	gb EAN92551.1	1E-05	Trypanosoma cruzi	Pfam CAP protein	0.004	cell migration-locomotory	3.0E-06 0008017	No
20	4	polyprotein	ref YP_145791.1	3E-20	Varroa destructor virus 1	Pfam RNA dependent RNA polymerase	2E-20			No
30	1	CG10217-PA, isoform A	ref NP_732903.2	0.005	Drosophila melanogaster	Pfam eubacterial secY protein	0.37			No
37	1	putative chaperonin	ref XP_730128.1	0.004	Plasmodium yoelii yoelii	Smart Intercrine alpha family	0.3			No
39	1	unnamed protein product	ref XP_501207.1	3E-07	Yarrowia lipolytica	Pfam Atrophin-1 family	9E-06	pancreatic ribonuclease activity	2.0E-05 0003676	No
40	1	GH17891p	gb AAK52961.1	2E-81	Drosophila melanogaster	Kog Glutamine PRPP amidotransferase	1E-55	de novo' IMP biosynthesis	1.0E-82	No
41	1	CG10078-PA, isoform A	ref NP_729191.1	5E-49	Drosophila melanogaster	Kog Glutamine PRPP amidotransferase	1E-41	de novo' IMP biosynthesis	3.0E-50	No
Appendix II Con	nt.							-		
Cluster No.	No o Seqs	f Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-valu	e Match to GO DB	E-Value GO No	SignalP

145	1	Ubiquitin	ref XP_889225.1	7.5	Mus musculus	Kog (Down-regulated in metastasis)	0.14				No
Cluster No.	No o Seqs	f Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value G	O No	SignalP
Appendix II Cont.		- *									
144	1	putative chaperonin	ref XP_730128.1	0.018	Plasmodium yoelii yoelii	Pfam Domain of unknown function	0.26				Yes
143	1	3-hydroxyacyl-CoA DH	gb EAM76027.1	7.6	Kineococcus radiotolerans	Pfam Cyt c oxidase assembly protein	0.13				No
139	1	LD31383p	ref NP_572704.1	0.006	Drosophila melanogaster	Pfam Atrophin-1 family	0.0004	Rab guanyl-nucleotide factor	2.0E-04 00)17112	No
135	1	SJCHGC01957 protein	gb AAX27763.1	9E-05	Schistosoma japonicum	Pfam YMF19 plant mitochondrial protein	0.13	<u>r</u>			No
134	1	CG9717-PA	gb AAL48537.1	0.06	Drosophila melanogaster	Smart Galanin	0.38	sulfate permease activity	0.002		No
131	1	polyadenylate-binding protein	gb EAL88129.	5.6	Aspergillus fumigatus Af293	Pfam Prolipoprotein DAG transferase	0.38				No
129	1	SJCHGC01957 protein	gb AAX27763.1	0.013	Schistosoma japonicum	Pfam FtsH Extracellular	0.11				Yes
128	1	similar to Nebulin	ref XP_851603.1	4.3	Canis familiaris	Pfam Diaphanous GTPase-binding Domain	0.17				No
127	1	similar to FIP1 like 1	ref XP_690394.1	2.1	Danio rerio	Kog Cytochrome P450	0.19				No
123	1	hybrid proline-rich protein	gb AAA33132.1	0.019	Unknown	Smart STE like transcription factors	0.02				Yes
121	1	SJCHGC01957 protein	gb AAX27763.1	0.002	Schistosoma japonicum	Pfam TB2/DP1/HVA22 family	0.008				No
117	1	SJCHGC01957 protein	gb AAX27763.1	1E-07	Schistosoma japonicum	Pfam Sec-independent protein translocase	3E-06	Ca ⁺ -activated K ⁺ channel activity	4.0E-04 00	05267	Yes
106	1	reductase sulfoxid	e gb AAV62883.1	0.87	Streptococcus thermophilus	Pfam Rft protein	0.12				No
100	1	Phosphoribosyltransferase	gb AAO35570.1	1.1	Clostridium tetani E88	Smart SprT homologues	0.27				No
96	1	P0518C01.25	ref NP_914359.1	0.06	Oryza sativa	Kog P-type ATPase	0.064				No
94	1					Kog Predicted nucleolar protein	1.9				No
90	1	SJCHGC01957 protein	gb AAX27763.1	0.51	Schistosoma japonicum	Smart LITAF	0.15				No
89	1	SJCHGC01957 protein	gb AAX27763.1	3E-16	Schistosoma japonicum	Kog Telomerase elongation inhibitor	2E-08	embryonic development	2.0E-06 00	003723	Yes
85	1	SJCHGC03138 protein	gb AAX25791.2	0.19	Schistosoma japonicum	Smart Presenilin	0.007	Ca ⁺ -activated K ⁺ channel activity	0.03 00	05267	No
76	1	GA22021-PA	gb EAL28728.1	1E-32	Drosophila pseudoobscura	Kog Translation initiation factor 3	5E-30	salivary gland cell death	3.0E-33		No
67	1	SJCHGC01957 protein	gb AAX27763.1	0.026	Schistosoma japonicum	Pfam Synapsin, N-terminal domain	0.11				Yes
64	1	mFLJ00419 protein	dbj BAD21439.1	0.018	Mus musculus	Pfam Atrophin-1 family	0.002	transcription corepressor activity	0.039		No
63	1	putative chaperonin	ref XP_730128.1	0.023	Plasmodium yoelii yoelii	Pfam Envelope glycoprotein	0.028				No
62	1	Similar- dispatched homolo	g ref XP_785823.1	5E-06	Strongylocentrotus purpuratus	Smart LITAF	0.005	neurotransmitter secretion	5.0E-04 00	03676	No
59	1	diaphanous homologue	ref XP_478998.1	9E-06	Oryza sativa	Pfam CAP protein	0.012	mitochondrion	2.0E-05 00	008017	No
58	1	putative Kazal-type serpin	gb AAL09362.1	0.18	Trypanosoma cruzi	Pfam Herpesvirus BMRF2 protein	0.36				No
55	1	SJCHGC01974 protein	gb AAW26857.1	5E-10	Schistosoma japonicum	Pfam Ferric reductase like transmembrane	0.034				No
52	1	hypothetical protein	ref XP_640250.1	0.001	Dictyostelium discoideum	Kog Cadherin EGF/LAG G-type receptor	0.084	spliceosome complex	0.022		No

146	1	3-oxoacyl-synthase	ref ZP_00980631.1	0.16	Burkholderia cenocepacia	Smart Villin headpiece domain	0.061				Yes
147	1	SJCHGC01957 protein	gb AAX27763.1	3E-04	Schistosoma japonicum	Kog CBF1-interacting corepressor	0.006				No
153	1	protein kinase	gb EAL44480.1	9.8	Entamoeba histolytica	Smart Glycosyl hydrolase family 10	0.33				No
160	1	Ab1-181	gb AAP92554.1	9.6	Rattus norvegicus	Smart K homology RNA-binding domain	0.05				No
167	1	GA12109-PA	gb EAL26389.1	0.58	Drosophila pseudoobscura	Pfam Protein of unknown function	0.071				No
174	1	imaginal disc growth factor	r ab ABC25096.1	4E-58	Glossing morsitans morsitans	Kog Chitingse	2E-15	imaginal disc growth factor	5.0E-49	0008084	No
186	1	recentor-like protein kinase	refINP 181196 1	4L-50	Arabidonsis thaliana	Pfam Probable DNA packing protein	0.25	kinase activity	0.039	0000004	No
180	1	envelope glycoprotein	emb[CAB95107.1]	9.9	Human immunodeficiency viru	s Pfam Photosystem II reaction centre I	0.17	kinase activity	0.037		No
189	1	unnamed protein product	dbiBAB11454 1	5.5 6E-08	Arahidonsis thaliana	Pfam CAP protein	0.002	protein hinding	2.0E-06	0003676	No
190	1	C2 domain putative	ref XP_723898_1	1.5	Plasmodium voelii voelii	Smart Presenilin	0.002	protein binding	2.02-00	0003070	No
198	1	GA12593-PA	gh F AI 29998 1	1.5 5E-12	Drosophila pseudoobscura	Smart Serine/Threonine protein kinases	0.075				No
207	1	MnFe superoxide dismutase	gb A AT85826 1	1E-113	Glossina morsitans morsitans	Pfam manganese superoxide dismutases	5E-40	antiovidant activity	8 0F-84		No
210	1	putative chaperonin	ref XP_730128.1	0.0007	Plasmodium voelii voelii	Pfam Prominin	0.26	antioxidant activity	0.02 04		Yes
213	1	RE70703n	ob AAL683581	3E-56	Drosophila melanogaster	Pfam Tim17/Tim22/Tim23 family	2E-05	mitochondrion	1.0E-15		No
215	1	GA11203-PA	gb EAL30481.1	1E-21	Drosophila pseudoobscura	Kog 4-hydroxyphenylpyruvate dioxygenase	2E 05	4-OHphenylpyruvate dioxygenase	2 0E-22		No
215	1	adenosine deaminase	gb AA023537.1	6E-07	Drosophila melanosaster	Pfam 7TM chemorecentor	0.25	adenosine deaminase factor	2.0E 22	0008083	No
217	1	Sodium channel protein type	e ref XP_600250.2	46	Bos taurus	Kog Cyclic nucleotide phosphodiesterase	0.57	denositie deutitituse fuetor	2.02.00	0000005	No
220	1	nerve growth factor	ob AAH63835.1	1.0	Homo saniens	Kog Adaptor protein	0.02				No
220	1	Gmfb8	gb AAL 83358 1	8E-05	Glossina morsitans morsitans	Pfam Domain of unknown function	6E-04				No
223	2	similar to putative protein	ref XP_344805_1	0.012	Rattus norvegicus	Pfam AI G6/AI G8 glycosyltransferase	0.25	DNA exonuclease activity	0.088	0009381	No
225	2	hypothetical protein	ref XP_642201_1	4E-04	Dictvostelium discoideum	Pfam Translocation protein Sec62	1E-04	nseudohynhal growth	0.036	0003677	No
223	-	clip-domain sering	e	IE 01	Diciyosicium discolucum	Fram Fransioeurion protein Seco2	IL 01	psoudonyphur growth	0.050	0005077	110
227	1	proteinase	gb AAW57295.1	2E-07	Delia antiqua	Smart Trypsin-like serine protease	1E-06	trypsin activity/proteolysis	2.0E-04	0017080	No
230	1	putative enzyme	gb AAN42522.2	5E-23	Shigella flexneri 2a str. 301	Smart Domain associated with PX domains	0.095				No
232	1	CG1420-PA	ref NP_651659.2	1E-08	Drosophila melanogaster	Kog Pyruvate dehydrogenase E1	6E-07	pre-mRNA splicing factor y	5.0E-09	0008248	No
233	1	chromosome proteins	gb AAC74010.1 f	1E-109	Escherichia coli K12	Pfam PspA/IM30 family	4E-07	cytokinesis	6.0E-05	0042623	No
237	1	hypothetical protein	pir T31613	1E-05	Unknown	Pfam Borrelia ORF-A	3E-05	anaphase-promoting complex	0.03	0003704	No
242	1	GA14282-PA	gb EAL32706.1	7E-21	Drosophila pseudoobscura	Pfam Transcription initiation factor IIF	3E-06	ATP-binding cassette	2.0E-16	0005200	No
Appendix II Cont.					<u> </u>						<u> </u>
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
246	1	htpE	gb AAT65047.1	0.53	Bacteriophage phiMFV1	Smart LITAF	0.075				Yes
251	1	GA16794-PA	gb EAL32306.1	8E-33	Drosophila pseudoobscura	Kog Calcyclin-binding protein	1E-29	nuclear membrane lumen	4.0E-20		No

252	1	COG1230	ref ZP_00109846.2	7.1	Nostoc punctiforme	Smart Intron encoded nuclease repeat motif	f 0.098				No
254	1	Wiskott-Aldrich syndrome	emb CAI21159.1	3E-08	Danio rerio	Pfam CAP protein	0.002	actin nucleation	2.0E-06	0003677	No
259	1	ferritin heavy chain-like	gb ABC48949.1	0.0008	Glossina morsitans	Kog Ferritin	0.04				No
261	1	hypothetical protein	ref XP_635201.1	6E-05	Dictyostelium discoideum	Kog FERM domain protein	0.002	histone methylation	0.001	0003677	No
264	1	similar to Myol protein	ref XP_623750.1	9E-40	Apis mellifera	Kog Myotrophin and similar proteins	2E-40	DNA binding	1.0E-40	0003677	No
265	1	unknown	gb AAX27911.1	5E-05	Schistosoma japonicum	Pfam 7TM chemoreceptor	0.003	double-stranded RNA binding	0.018	0003725	No
267	1	hypothetical protein	ref XP_638834.1	1E-05	Dictyostelium discoideum	Kog Aminopeptidases of the M20 family	5E-06	response to aluminum ion	2.0E-05	0019789	Yes
268	1	GA17562-PA	gb EAL30728.1	9E-38	Drosophila pseudoobscura Thermoanaerobacter	Smart Protein tyrosine phosphatase	0.04	regulation of cell shape	2.0E-37		No
276	1	hypothetical protein	ref ZP_00779277.1	3E-05	ethanolicus	Pfam T-cell surface antigen CD2 protein	0.004	purine nucleotide binding	0.019	0005524	No
277	1	SJCHGC01957 protein	gb AAX27763.1	1E-06	Schistosoma japonicum	Kog CBF1-interacting corepressor CIR	1E-04	locomotory behavior	0.008		No
279	1					Pfam Human herpesvirus U26 protein	0.34				Yes
282	1	receptor-like protein kinase	ref NP_914396.1	0.001	Oryza sativa	Kog Alpha-1,2 glucosyltransferase	0.013				Yes
286	1	GH10454p	ref NP_651385.3	5E-36	Drosophila melanogaster	Smart HLH domain containing kinases	4E-12				No
287	1	polyprotein	gb AAP49283.1	2E-17	Deformed wing virus	Pfam RNA dependent RNA polymerase	5E-06				No
292	1	chromosome protein Membrane	ref NP_703436.1	1.5	Plasmodium falciparum 3D7	Smart TLC/TRAM/LAG1/CLN8 domains	0.042				No
295	1	glycosyltransferase tRNA pseudouriding	gb AAN42667.2 e	4E-49	Shigella flexneri 2a str. 301	Smart LITAF	0.004	Oligosaccharidebiosynthesis	1.00E-10)	Yes
298	1	synthase B ATP-dependent RNA	ref YP_115618.1	1.5	Mycoplasma hyopneumoniae	Smart Domain A in dwarfin family proteins	s 0.13				No
300	3	helicase	ref YP_309759.1	1E-64	Shigella sonnei Ss046	Kog ATP-dependent RNA helicase	5E-37	ATP-dependent helicase activity	4.0E-39	0003723	Yes
303	1	LD35854p	gb AAK93286.1	3E-06	Drosophila melanogaster	Pfam Protein of unknown function	1E-07				No
304	1	LD35669p	ref NP_651209.1	1E-101	Drosophila melanogaster	Pfam Autophagy protein Apg6	3E-79	salivary gland cell death	1.0E-102	2	No
305	1	GA14438-PA	gb EAL28349.1	4E-63	Drosophila pseudoobscura	Kog Typepeptidyl-prolylcis-isomerase	4E-06	FK506 binding	0.012	0005528	No
Unknown											
3	1	unknown	gb AAX27911.1	2E-07	Schistosoma japonicum	Kog Secretory carrier membrane protein	0.005	pseudouridine synthesis	0.008	0030519	No
8	1	unknown	gb AAX27955.1	2E-18	Schistosoma japonicum	Kog Ribosome biogenesis protein	4E-08	DNA topoisomerase type I	2.0E-08	0000217	No
Appendix II Cont.											
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-valu	e Match to GO DB	E-Value	GO No	SignalP
7	1	unknown	gb AAX27911.1	0.002	Schistosoma japonicum	Kog Ferric reductase-like proteins	0.0004				No
14	8	unknown	gb AAX27955.1	2E-17	Schistosoma japonicum	Kog CBF1-interacting corepressor	1E-06	zinc D-Ala-carboxypeptidase	3.0E-11	0004180	No
16	127	unknown	gb AAX27955.1	2E-07	Schistosoma japonicum	Pfam DIE2/ALG10 family	5E-06	nucleic acid binding	0.001	0003723	No
22	1					Smart semaphorin domain	1				No

27	1	unnamed protein product	dbj BAC86300.1	0.01	Homo sapiens	Pfam Domain of unknown function	0.022		No
29	1	unnamed protein product	dbj BAC86300.1	0.005	Homo sapiens	Pfam Domain of unknown function	0.061		No
81	1					Kog Mannosyltransferase	0.23		No
83	1					Pfam Herpesvirus virion protein	0.11		No
87	1	Unknown protein	ref NP_919611.1	1E-08	Oryza sativa	Pfam CAP protein	0.001	transcription mediator activity 6.0E-06 0003702	No
95	1					Smart meprin/TRAF homology	0.26		No
103	1	unnamed protein product	dbj BAC86300.1	0.1	Homo sapiens	Pfam TB2/DP1/HVA22 family	0.088		No
108	1	unknown	ref NP_704103.1	0.021	Plasmodium falciparum 3D7	Pfam Herpes virus tegument protein	0.08		No
114	1	unnamed protein product	dbj BAC86300.1	0.036	Homo sapiens	Pfam Protein of unknown function	0.31		No
118	1	unknown	gb AAX27955.1	0.047	Schistosoma japonicum	Pfam WzyE protein	0.005	RNA polymerase II transcription 0.088 0003704	No
133	1	unknown	gb AAX27955.1	1.9	Schistosoma japonicum	Smart Cytoplasmic phospholipase A2	0.36		No
138	1	unknown	gb AAX27911.1	0.0003	Schistosoma japonicum	Kog Predicted G-protein coupled receptor	0.08		No
140	1	unnamed protein product	emb CAA91606.1	0.004	Saccharomyces cerevisiae	Pfam Protein of unknown function	0.009		No
142	1					Kog (Half-A-TPR) repeat-containing protein	0.096		No
149	1					Pfam protein of unknown function	0.24		No
164	1					Pfam Conserved carboxylase domain	0.18		No
178	1	unnamed protein product	emb CAA33190.1	0.01	Crithidia fasciculata	Smart Presenilin	0.007		No
199	1	unnamed protein product	ref NP_059418.1	0.036	Paramecium aurelia	Kog Lipid exporter ABCA1	0.03		Yes
256	1					Smart Domain in homologues of a S	1.2		No
269	1	unknown	gb AAX27955.1	0.0008	Schistosoma japonicum	Kog Transporter, ABC superfamily	0.006		No
289	1	unnamed protein product	emb CAF91062.1	0.027	Tetraodon nigroviridis	Pfam Adenovirus E3B protein	0.018		No
294	1					Pfam RTA1 like protein	0.047		No
301	1	unknown	gb AAX27955.1	7E-06	Schistosoma japonicum	Smart Presenilin	0.0007	transcription regulator activity 0.023 003702	No

Appendix II Cont.

Cluster No.	No of	Match to NR DB	Accession No	E-Value Species Match Bes		Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value GO No	SignalP	
	Seqs										
Hypothetical											
9	1	hypothetical protein	emb CAE75230.1	1E-24	Caenorhabditis briggsae	Pfam Sec-independent protein translocase	2E-10	N/O-linked glycosylation	4.0E-13 0017069	Yes	
10	1	hypothetical protein	emb CAE75230.1	9E-25	Caenorhabditis briggsae	Pfam Sec-independent protein translocase	2E-11	N/O-linked glycosylation	2.0E-12 0017069	No	
19	25	hypothetical protein	ref XP_642369.1	0.018	Dictyostelium discoideum	Pfam Borrelia ORF-A	0.001			No	
23	1	hypothetical protein	ref XP_645055.1	2.2	Dictyostelium discoideum	Pfam Protein of unknown function	0.24			No	
24	1	hypothetical protein	ref XP_646912.1	0.071	Dictyostelium discoideum	Pfam Protein of unknown function	0.27			No	
28	1	hypothetical protein	ref XP_729957.1	7.4	Plasmodium yoelii yoelii	Smart Presenilin	1			No	
36	1	hypothetical protein	gb AAZ68053.1	1.7	Ehrlichia canis str. Jake	Pfam Mammalian taste receptor protein	0.01			No	

43	1	hypothetical protein	ref XP_644193.1	0.05	Dictyostelium discoideum	Pfam Domain of unknown function	0.011	kinase activity	0.037	No
44	1	hypothetical protein	ref XP_644272.1	0.57	Dictyostelium discoideum	Pfam Uncharacterised protein family	0.14			No
45	1	hypothetical protein	ref XP_642163.1	0.078	Dictyostelium discoideum	Pfam Coronavirus nonstructural protein 4	0.002			No
48	1	hypothetical protein	ref XP_720764.1	4E-06	Candida albicans SC5314	Smart TLC/TRAM/LAG1/CLN8 domains	8E-06			No
49	1	hypothetical protein	ref XP_638906.1	0.001	Dictyostelium discoideum	Pfam Sec-independent protein translocase	2E-06	G-protein coupled receptor	0.005	No
50	1	hypothetical protein 4	pir E22845	2E-06	Trypanosoma brucei	Pfam Domain of unknown function	5E-06			No
51	1	hypothetical protein 4	pir E22845	0.052	Trypanosoma brucei	Smart Presenilin	0.007			No
56	4	hypothetical protein	ref XP_642527.1	0.52	Dictyostelium discoideum	Pfam Domain - MnhB of Na+/H+ antiporter	0.17			No
60	1	hypothetical protein	ref NP_701006.1	0.061	Plasmodium falciparum 3D7	Kog Uncharacterized membrane protein	0.054			No
65	1	hypothetical protein	ref NP_197106.1	0.051	Arabidopsis thaliana	Pfam Atrophin-1 family	0.002			No
68	1	hypothetical protein	ref XP_638495.1	0.18	Dictyostelium discoideum	Pfam SCAMP family	0.027			No
69	1	hypothetical protein	ref XP_643220.1	0.018	Dictyostelium discoideum	Pfam YMF19 plant mitochondrial protein	0.035			No
71	1	hypothetical protein	ref XP_638906.1	0.031	Dictyostelium discoideum	Kog Alpha-1,2 glucosyltransferase	0.042			No
77	1	hypothetical protein	ref NP_700666.1	0.027	Plasmodium falciparum 3D7	Pfam Domain of unknown function	0.006			No
78	1	hypothetical protein	emb CAC09395.1	0.036	Neurospora crassa	Smart Horizontally Transferred Domain	0.036			No
79	1	hypothetical protein	gb AAN57898.1	0.52	Streptococcus mutans UA159	Smart Phosphoinositide 3-kinase	0.006			No
82	1	hypothetical protein	ref XP_846856.1	3.4	Trypanosoma brucei TREU927	Kog Mannosyltransferase	0.19			No
88	1	hypothetical protein	emb CAJ04956.1	0.0002	Leishmania major	Pfam Domain of unknown function	0.001			No
84	1	hypothetical protein	ref NP_704585.1	0.51	Plasmodium falciparum 3D7	Pfam Domain of unknown function	0.044			No
86	1	hypothetical protein	ref XP_641074.1	0.0001	Dictyostelium discoideum	Pfam Sec-independent protein translocase	0.0008	peptidyl-proline hydroxylation	0.023	No
99	1	hypothetical protein	gb EAL87031.1	0.002	Aspergillus fumigatus Af293	Smart Formin Homology	0.26			No
101	1	hypothetical protein	ref XP_645982.1	9.1	Dictyostelium discoideum	Kog Secretory carrier membrane protein	0.001			No
104	1	hypothetical protein	ref XP_646781.1	0.042	Dictyostelium discoideum	Kog Predicted UDP-galactose transporter	0.32			No
105	1	hypothetical protein	ref XP_725254.1	7.4	Plasmodium yoelii yoelii	Pfam Domain of unknown function	0.008			No
110	1	hypothetical protein	ref XP_644272.1	0.0002	Dictyostelium discoideum	Smart Eukaryotic DNA topoisomerase II	0.04			No
111	1	hypothetical protein	ref XP_640207.1	7.5	Dictyostelium discoideum	Pfam Pox virus E6 protein	0.077			No
112	1	hypothetical protein	ref XP_644272.1	0.053	Dictyostelium discoideum	Kog Oxoprolinase	0.076			No

Appendix II Cont.

Cluster No.	No of	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	e GO No	SignalP
	Seqs										
115	1	hypothetical protein	ref XP_676757.1	0.3	Plasmodium berghei strain	Pfam Mammalian taste receptor protein	0.017				No
120	1	hypothetical protein	ref XP_643799.1	0.005	Dictyostelium discoideum	Smart Presenilin	0.002	odontogenesis	0.01		No
122	1	hypothetical protein	ref XP_635915.1	0.0002	Dictyostelium discoideum	Kog Uncharacterized conserved protein	0.21	snoRNP binding	0.053	0030519	No
124	1	hypothetical protein	ref NP_701505.1	9.6	Plasmodium falciparum 3D7	Smart RIO-like kinase	0.23				No
125	1	hypothetical protein	ref ZP_00236498.1	0.019	Bacillus cereus G9241	Smart human TAF130/Drosophila TAF110	0.19				No
132	1	hypothetical protein	ref XP_673325.1	7.6	Plasmodium berghei strain	Smart TopoisomeraseII	0.88				No
136	1	hypothetical protein	ref NP_702215.1	0.3	Plasmodium falciparum 3D7	Pfam Borrelia ORF-A	0.0008				No
137	1	hypothetical protein	ref XP_644809.1	0.0005	Dictyostelium discoideum	Pfam Borrelia ORF-A	0.002				No
150	1	hypothetical protein	ref XP_644809.1	0.14	Dictyostelium discoideum	Pfam Sec-independent translocase protein	0.076				No
151	1	hypothetical protein	emb CAH81582.1	0.013	Plasmodium chabaudi	Pfam GPI transamidase subunit	0.005				No
152	1	hypothetical protein	gb EAN76494.1	0.1	Trypanosoma brucei	Pfam Protein of unknown function	0.13				No
157	1	hypothetical protein	ref XP_644272.1	0.006	Dictyostelium discoideum	Kog Predicted small molecule transporter	0.077				No
				150							

158	1	hypothetical protein	ref XP_636844.1	0.049	Dictyostelium discoideum	Pfam Sugar (and other) transporter	0.073				No
159	1	hypothetical protein	pir T31613	0.0005	Unknown	Pfam NADH-ubiquinone oxidoreductase	0.0003	odontogenesis	0.03		No
161	2	hypothetical protein	gb AAF18309.1	0.062	SVTS2 plectrovirus	Kog Pleiotropic drug resistance proteins	0.12				No
162	2	hypothetical protein	gb AAF18309.1	0.036	SVTS2 plectrovirus	Pfam SCAMP family	0.011				Yes
163	5	hypothetical protein	gb EAN85835.1	0.22	Trypanosoma cruzi	Pfam YMF19 plant mitochondrial protein	0.18				Yes
165	2	hypothetical protein	gb EAN86251.1	0.21	Trypanosoma cruzi	Pfam Chordopoxvirus G3 protein	0.24				Yes
169	1	hypothetical protein	ref XP_737285.1	0.13	Plasmodium chabaudi chabaudi	Smart Pentraxin/C-reactive protein	0.04				No
170	1	hypothetical protein	ref NP_702053.1	0.069	Plasmodium falciparum 3D7	Smart CLUSTERIN alpha chain	0.007				No
171	1	hypothetical protein	gb EAN85835.1	0.002	Trypanosoma cruzi	Pfam Cytochrome c oxidase	0.014	Mitochondria transporter activity	0.03		Yes
175	1	hypothetical protein	gb EAN86251.1	0.022	Trypanosoma cruzi	Smart minichromosome proteins	0.007				No
180	1	hypothetical protein	ref XP_637981.1	0.011	Dictyostelium discoideum	Pfam CHD5-like protein	0.1				No
182	1	hypothetical protein	gb AAC74862.1	7E-55	Escherichia coli K12	Pfam Protein of unknown function	3E-27				No
193	1	hypothetical protein	ref NP_703646.1	7.5	Plasmodium falciparum 3D7	Pfam Guanylate-binding protein	0.26				No
200	1	hypothetical protein	gb AAX45893.1	0.061	Zygnema circumcarinatum	Pfam Uncharacterised protein family	0.012				No
205	1	hypothetical protein	gb EAN92483.1	0.31	Trypanosoma cruzi	Smart LITAF	0.14				No
208	1	hypothetical protein	ref NP_703519.1	0.035	Plasmodium falciparum 3D7	Smart Presenilin	0.049				No
209	1	hypothetical protein	ref NP_702447.1	9E-05	Plasmodium falciparum 3D7	Smart Presenilin	0.0002	transcription factor activity	0.001	0003702	No
219	1	hypothetical protein	ref XP_641763.1	0.014	Dictyostelium discoideum	Pfam Protein of unknown function	0.017				No
222	3	hypothetical protein	ref XP_636996.1	8.8	Dictyostelium discoideum	Pfam Uncharacterised protein family	0.12				No
224	1	hypothetical protein	ref XP_721601.1	1.9	Candida albicans SC5314	Smart DNA polymerase type-B family	0.066				No
231	1	hypothetical protein	ref XP_725833.1	0.39	Plasmodium yoelii yoelii	Smart LITAF	0.004				No
235	1	hypothetical protein	pir T31613	1E-05		Pfam Borrelia ORF-A	0.0001				No
236	1	hypothetical protein	gb EAL87031.1	0.046	Aspergillus fumigatus Af293	Pfam DIE2/ALG10 family	0.012				Yes
240	1	hypothetical protein	ref NP_703519.1	5.7	Plasmodium falciparum 3D7	Pfam Ion transport protein	0.087				No
241	1	hypothetical protein	ref XP_644272.1	0.012	Dictyostelium discoideum	Pfam 7TM chemoreceptor	0.002				No
250	1	hypothetical protein	emb CAC13940.1	2.5	Mycoplasma pulmonis	Pfam Apical membrane antigen 1	0.076				No

Appendix I	I Cont
------------	--------

Cluster No.	No of	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value GO No	SignalP
	Seqs					-				
257	1	hypothetical protein	ref XP_745683.1	0.09	Plasmodium chabaudi chabaudi	Pfam Protein of unknown function	0.003			No
258	1	hypothetical protein	ref NP_700669.1	0.043	Plasmodium falciparum 3D7	Pfam V-type ATPase	0.2			No
263	1	hypothetical protein	ref NP_700669.1	2.7	Plasmodium falciparum 3D7	Pfam Trehalose receptor	0.22			No
270	1	hypothetical protein	ref XP_963466.1	1.5		Smart Presenilin	0.12			No
272	1	hypothetical protein	ref XP_643799.1	3E-06	Dictyostelium discoideum	Smart Presenilin	0.0002	odontogenesis	0.066	No
274	1	hypothetical protein	gb EAN85835.1	0.006	Trypanosoma cruzi	Smart Presenilin	0.14			No
280	1	hypothetical protein	emb CAE76809.1	1.6	Mycoplasma mycoides	Pfam Protein of unknown function	0.004			No
283	1	hypothetical protein	gb EAN31130.1	1.2	Theileria parva	Pfam Disulfide bond formation protein	0.22			No
284	1	hypothetical protein	ref XP_638906.1	0.0001	Dictyostelium discoideum	Kog Secretory carrier membrane protein	0.008			No
285	1	hypothetical protein	ref XP_646009.1	1.1	Dictyostelium discoideum	Pfam Fijivirus P9-2 protein	0.029			No
302	1	hypothetical protein	ref XP_670767.1	0.007	Plasmodium berghei strain	Pfam 7TM chemoreceptor	0.008			No

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	GO No	SignalP
Odoran	/Pheron	none Binding									
63	2	RH74005p	gb AAM29645.1	1E-44	Drosophila melanogaster	Pfam Insect pheromone-binding family	1E-42	odorant binding	6E-46	0005549	No
151	1	odorant binding protein 83g	gb AAN13232.1	9E-19	Drosophila melanogaster	Smart Insect PBP/OBP domains	3E-10	odorant binding	4E-20	0005549	No
219	1	odorant binding protein 3	gb AAV74624.1	5E-07	Musca domestica	Smart Insect PBP/OBP domains	5E-08	pheromone binding	2E-08	0005550	No
Energy	Metabol	ism									
9	3	CG4412-PA	ref NP_477194.1	2E-40	Drosophila melanogaster	Kog Mitochondrial F1F0-ATP synthase	3E-33	proton-transporting ATP synthase	1E-41		No
11	2	cyt c oxidase polypeptide IV	gb AAP88303.1	1E-71	Drosophila simulans	Kog Cytochrome c oxidase	3E-59	cyt-c oxidase activity	4E-72		Yes
32	2	LD14731p	gb EAL25276.1	7E-19	Drosophila pseudoobscura	Pfam Cyt c oxidase subunit VIIc	7E-07	cyt-c oxidase activity	4E-20		No
33	2	ENSANGP00000010167	ref XP_625078.1	4E-23	Apis mellifera	Kog F0F1-type ATP synthase	3E-27	proton-transporting ATP synthase	9E-24	0046933	No
35	5	cytochrome oxidase subunit 3	ref YP_133763.1	1E-108	Dermatobia hominis	Pfam Cytochrome c oxidase subunit III	1E-107	cytochrome-c oxidase activity	1E-109		No
36	6	cytochrome b	gb AAG08980.1	6E-93	Scathophaga obscura	Pfam Cytochrome b(C-terminal)/b6/petD	6E-26	ubiquinol-cyt-c reductase activity	2E-90	0005489	No
				152							

Appendix III - Functional annotation of cDNA clusters from *Glossina tachinoides* head library producing best hits to nonredundant (NR) protein database of GenBank, gene ontology (GO) and conserved domains database (CDD) database

2	GA14437-PA	gb EAL25670.1	2E-41	Drosophila pseudoobscura	Pfam Cytochrome c oxidase subunit VIa	8E-26	cytochrome-c oxidase activity	2E-42		Yes
3	cytochrome oxidase subunit 2	gb AAX47696.1	1E-100	Hemipyrellia fergusoni	Kog Cytochrome c oxidase	7E-93	cytochrome-c oxidase activity	1E-95		No
2	CG9603-PA	ref NP_652184.2	5E-29	Drosophila melanogaster	Pfam Cytochrome c oxidase subunit VIIa	3E-09	cytochrome-c oxidase activity	3E-30		Yes
1	ENSANGP00000017699	gb EAA13279.2	2E-13	Anopheles gambiae str.	Kog Ubiquinol cytochrome c oxidoreductase	2E-13	spermatid cell development	6E-14		No
1	SJCHGC01957 protein NADH dehydrogenase subuni	gb AAX27763.1 it	4E-10	Schistosoma japonicum	Kog Ubiquinol cytochrome c oxidoreductase	0.001				No
3	4	gb AAK21326.1	6E-61	Chrysomya putoria	Kog NADH dehydrogenase	6E-43	NADH dehydrogenase activity	2E-56		No
2	GA14517-PA	gb EAL26698.1	2E-65	Drosophila pseudoobscura	Pfam ATP synthase subunit C	3E-21	hydrogen-exporting ATPase	4E-66	0008289	No
2	cytochrome oxidase subunit I	gb AAF28303.1	3E-36	Scathophaga tropicalis	Pfam Cytochrome C	1E-05				No
1	ATP synthase A chain	gb AAV41426.1	3E-12	Periplaneta americana	Kog ATP synthase F0 subunit 6	1E-04	hydrogen-exporting ATPase	2E-08		Yes
1	ATP synthase F0 subunit 6	ref YP_133762.1	1E-43	Dermatobia hominis	Kog ATP synthase F0 subunit 6	5E-30	hydrogen-exporting ATPase	5E-43	0046933	No
1	NADH subunit 5 NADH dehydrogenase subuni	ref NP_075455.1 it	1E-104	Cochliomyia hominivorax	Pfam NADH DH subunit 5	2E-55	NADH dehydrogenase activity	4E-93		No
1	5	ref YP_054477.1	7.4	Podura aquatica	Pfam RofA transcriptional regulator	0.17				No
1	CG18624-PA, isoform A	ref NP_727209.1	9E-17	Drosophila melanogaster	Pfam Phosphatidylinositolglycan class N	0.009	NADH dehydrogenase activity	3E-18		No
1	IP05690p	ref NP_724697.1	2E-17	Drosophila melanogaster	Pfam Ubiquinol-cytochrome C reductase	6E-12	ubiquinol-cytochrome-c reductase	9E-19		No
	2 3 2 1 1 3 2 2 1 1 1 1 1 1 1 1	 2 GA14437-PA 3 cytochrome oxidase subunit 2 2 CG9603-PA 1 ENSANGP00000017699 1 SJCHGC01957 protein NADH dehydrogenase subunit 3 4 2 GA14517-PA 2 cytochrome oxidase subunit I 1 ATP synthase A chain 1 ATP synthase F0 subunit 6 1 NADH subunit 5 NADH dehydrogenase subuni 1 5 1 CG18624-PA, isoform A 1 IP05690p 	2 GA14437-PA gb EAL25670.1 3 cytochrome oxidase subunit 2 gb AAX47696.1 2 CG9603-PA ref]NP_652184.2 1 ENSANGP00000017699 gb EAA13279.2 1 SJCHGC01957 protein NADH dehydrogenase subunit gb AAX27763.1 3 4 gb EAL26698.1 2 GA14517-PA gb EAL26698.1 2 cytochrome oxidase subunit I gb AAF28303.1 1 ATP synthase A chain gb AAV41426.1 1 ATP synthase F0 subunit 6 ref]YP_133762.1 1 NADH subunit 5 ref[YP_054477.1 1 CG18624-PA, isoform A ref]NP_72269.1 1 IP05690p ref]NP_724697.1	2 GA14437-PA gb EAL25670.1 2E-41 3 cytochrome oxidase subunit 2 gb AAX47696.1 1E-100 2 CG9603-PA ref NP_652184.2 5E-29 1 ENSANGP00000017699 gb EAA13279.2 2E-13 1 SJCHGC01957 protein NADH dehydrogenase subunit gb AAX27763.1 4E-10 3 4 gb EAL26698.1 2E-65 2 Cq14517-PA gb EAL26698.1 2E-65 2 cytochrome oxidase subunit I gb AAF28303.1 3E-36 1 ATP synthase A chain gb AAV41426.1 3E-12 1 ATP synthase F0 subunit 6 ref YP_133762.1 1E-104 NADH subunit 5 ref YP_054477.1 7.4 1 5 ref YP_727209.1 9E-17 1 IP05690p ref NP_724697.1 2E-17	2GA14437-PAgb EAL25670.1 2E-41Drosophila pseudoobscura3cytochrome oxidase subunit 2gb AAX47696.1 1E-100Hemipyrellia fergusoni2CG9603-PAref NP_652184.2 5E-29Drosophila melanogaster1ENSANGP00000017699gb EAA13279.2 2E-13Anopheles gambiae str.1SJCHGC01957 proteingb AAX27763.1 4E-10Schistosoma japonicum34gb EAL26698.1 2E-65Drosophila pseudoobscura2GA14517-PAgb EAL26698.1 2E-65Drosophila pseudoobscura2cytochrome oxidase subunit Igb AAF28303.1 3E-36Scathophaga tropicalis1ATP synthase A chaingb AAV41426.1 3E-12Periplaneta americana1NADH subunit 5ref YP_133762.1 1E-104Cochliomyia hominivorax1Sref YP_054477.1 7.4Podura aquatica1CG18624-PA, isoform Aref NP_727209.1 9E-17Drosophila melanogaster1IP05690pref NP_724697.1 2E-17Drosophila melanogaster	2GA14437-PAgb EAL25670.1 2E-41Drosophila pseudoobscuraPfam Cytochrome c oxidase subunit VIa3cytochrome oxidase subunit 2gb AAX47696.1 1E-100Hemipyrellia fergusoniKog Cytochrome c oxidase2CG9603-PAref NP_652184.2 5E-29Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa1ENSANGP0000017699gb EAA13279.2 2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreductase1SJCHGC01957 protein NADH dehydrogenase subunitgb AAX27763.1 4E-10Schistosoma japonicumKog NADH dehydrogenase2GA14517-PAgb EAL26698.1 2E-65Drosophila pseudoobscuraPfam ATP synthase subunit C2cytochrome oxidase subunitgb AAY21326.1 6E-61Chrysomya putoriaKog NADH dehydrogenase2GA14517-PAgb EAL26698.1 2E-65Drosophila pseudoobscuraPfam ATP synthase subunit C2cytochrome oxidase subunitgb AAY21426.1 3E-12Periplaneta americanaKog ATP synthase FO subunit 61ATP synthase A chaingb AAV41426.1 3E-12Periplaneta americanaKog ATP synthase FO subunit 61NADH subunit 5 NADH dehydrogenase subunitref YP_133762.1 1E-104Cochliomyia hominivoraxPfam NADH DH subunit 51Sref YP_054477.1 7.4Podura aquaticaPfam RofA transcriptional regulator15ref YP_054477.1 7.4Podura aquaticaPfam Phosphatidylinositolglycan class N1IP05690pr	2GA14437-PAgb[EAL25670.1]2E-41Drosophila pseudoobscuraPfam Cytochrome c oxidase subunit VIa8E-263cytochrome oxidase subunit 2gb[AAX47696.1]1E-100Hemipyrellia fergusoniKog Cytochrome c oxidase7E-932CG9603-PAref]NP_652184.2]5E-29Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa3E-091ENSANGP0000017699gb[EAA13279.2]2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreductase2E-133JSJCHGC01957 proteingb[AAX21763.1]4E-10Chrysomya putoriaKog NADH dehydrogenase6E-432GA14517-PAgb[EAL26698.1]2E-65Drosophila pseudoobscuraPfam ATP synthase subunit C3E-212cytochrome oxidase subunit 1gb[AAV1426.1]3E-12Periplaneta americanaKog ATP synthase F0 subunit 61E-051ATP synthase F0 subunit 5ref]YP_133762.1]1E-43Dermatobia hominisKog ATP synthase F0 subunit 65E-301NADH subunit 5ref]YP_054477.1]7.4Podura aquaticaPfam NADH DH subunit 52E-55NADH dehydrogenase subunitref]YP_054477.1]7.4Podura aquaticaPfam Phosphatidylinositolglycan class N0.0091IP05690pref]NP_724697.1]2E-17Drosophila melanogasterPfam Ubiquinol-cytochrome C reductase6E-111Find Scatterref]YP_054477.1]7.4Podura aquaticaPfam NADH DH subunit 50.171Find Scatterref]YP_054477.1] </td <td>2GA14437-PAgb[EAL25670.1]2E-41Drosophila pseudoobscuraPfam Cytochrome c oxidase subunit VIa8E-26cytochrome-c oxidase activity3cytochrome oxidase subunit 2gb[AAX47696.1]1E-100Henipyrellia fergusoniKog Cytochrome c oxidase7E-93cytochrome-c oxidase activity2CG9603-PAreflNP_652184.2]5E-29Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa3E-09cytochrome-c oxidase activity1ENSANGP0000017699gb[EAA13279.2]2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreductas2E-13spermatid cell development1SJCHGC01957 protein NADH dehydrogenase suburitgb[AAX2132.6]6E-61Chrysonya putoriaKog NADH dehydrogenase0.0012GA14517-PAgb[AAX2132.6]6E-61Chrysonya putoriaKog NADH dehydrogenase6E-43NADH dehydrogenase activity1ATP synthase A chaingb[AAX2132.6]6E-61Chrysonya putoriaKog ATP synthase Subunit C3E-20hydrogen-exporting ATPase1ATP synthase A chaingb[AAX4142.6]3E-26Drosophila pseudoobscuraPfam Cytochrome C1E-05hydrogen-exporting ATPase1ATP synthase A chaingb[AAV4142.6]3E-12Periplaneta americanaKog ATP synthase F0 subunit 61E-04hydrogen-exporting ATPase1NADH subunit 5 NADH subunit 5 NADH dehydrogenasereflNP_075455.11E-14Dermatoia hominivorPfam NADH DH subunit 5SE-55NADH dehydrogenase activity1Sci (</td> <td>2GA14437-PAgb[EAL25670.1]2E-41Drosophila pseudoobscuraPfam Cytochrome c xidase subunit VIa8E-26cytochrome-c xidase activity2E-423cytochrome oxidase subuni 2gb[AAX47696.1]1E-100Hemipyrellia fergusoniKog Cytochrome c oxidase7E-93cytochrome-c xidase activity1E-952CG9603-PAreflNP_652184.2]5E-99Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa3E-00cytochrome-c xidase activity3E-301ENSANGP0000017699gb[EAA13279.2]2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreducus0.001spermatic cell development6E-141SJCHGC01957 protein NADH dehydrogenase subunitgb[AAX2136.1]6E-61Chrysomya putoriaKog NADH dehydrogenase subunit C3E-26NADH dehydrogenase activity2E-562GA14517-PAgb[AA2136.1]6E-61Chrysomya putoriaPfam ATP synthase subunit C3E-26NADH dehydrogenase activity2E-5634gb[AA2136.1]8E-65Drosophila pseudoobscuraPfam Cytochrome C3E-21hydrogen-exporting ATPase4E-662cytochrome oxidase subunitgb[AA2136.1]8E-65Drosophila pseudoobscuraPfam Cytochrome C3E-21hydrogen-exporting ATPase4E-662oytochrome oxidase subunitgb[AA2763.1]8E-65Scathophaga tropicalisPfam Cytochrome C1E-051E-051ATP synthase A chaingb[AA2136.1]BE-10Cochlomya hominivoraKog ATP synthase FO subunit 6<</td> <td>2 GA1437-PA gbEAL25670.11 2E41 Drosophila pseudoobscura Pfam Cytochrome oxidase subunit 1 8E-26 cytochrome-oxidase activity 2E-42 3 cytochrome oxidase subunit 2 gbIAAX7606.11 1E-100 Hemipyrellia fergusoni Kog Cytochrome oxidase subunit 1 3E-00 cytochrome-oxidase activity 3E-30 1 ENSANGP000001769 gbEA1327.22 2E-13 Anophele sgambiae str. Kog Ubiquind cytochrome oxidoreducate 2E-13 sprantid cell development 6E-14 3 SICHGC0157 protein NADH debydrogenase gbIAX2132.21 6E-14 Chrosomy approximation Kog NADH debydrogenase 6E-14 Chrosomy approximation Kog NADH debydrogenase NADH debydrogenase activity 2E-56 2 GA14517-PA gbIAX2132.11 6E-14 Chrosomy approximation Kog NADH debydrogenase 6E-43 NADH debydrogenase activity 2E-56 2 GA14517-PA gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6 NaDF syntase Chain gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6 NaDF syntase Chain gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6</td>	2GA14437-PAgb[EAL25670.1]2E-41Drosophila pseudoobscuraPfam Cytochrome c oxidase subunit VIa8E-26cytochrome-c oxidase activity3cytochrome oxidase subunit 2gb[AAX47696.1]1E-100Henipyrellia fergusoniKog Cytochrome c oxidase7E-93cytochrome-c oxidase activity2CG9603-PAreflNP_652184.2]5E-29Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa3E-09cytochrome-c oxidase activity1ENSANGP0000017699gb[EAA13279.2]2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreductas2E-13spermatid cell development1SJCHGC01957 protein NADH dehydrogenase suburitgb[AAX2132.6]6E-61Chrysonya putoriaKog NADH dehydrogenase0.0012GA14517-PAgb[AAX2132.6]6E-61Chrysonya putoriaKog NADH dehydrogenase6E-43NADH dehydrogenase activity1ATP synthase A chaingb[AAX2132.6]6E-61Chrysonya putoriaKog ATP synthase Subunit C3E-20hydrogen-exporting ATPase1ATP synthase A chaingb[AAX4142.6]3E-26Drosophila pseudoobscuraPfam Cytochrome C1E-05hydrogen-exporting ATPase1ATP synthase A chaingb[AAV4142.6]3E-12Periplaneta americanaKog ATP synthase F0 subunit 61E-04hydrogen-exporting ATPase1NADH subunit 5 NADH subunit 5 NADH dehydrogenasereflNP_075455.11E-14Dermatoia hominivorPfam NADH DH subunit 5SE-55NADH dehydrogenase activity1Sci (2GA14437-PAgb[EAL25670.1]2E-41Drosophila pseudoobscuraPfam Cytochrome c xidase subunit VIa8E-26cytochrome-c xidase activity2E-423cytochrome oxidase subuni 2gb[AAX47696.1]1E-100Hemipyrellia fergusoniKog Cytochrome c oxidase7E-93cytochrome-c xidase activity1E-952CG9603-PAreflNP_652184.2]5E-99Drosophila melanogasterPfam Cytochrome c oxidase subunit VIIa3E-00cytochrome-c xidase activity3E-301ENSANGP0000017699gb[EAA13279.2]2E-13Anopheles gambiae str.Kog Ubiquinol cytochrome c oxidoreducus0.001spermatic cell development6E-141SJCHGC01957 protein NADH dehydrogenase subunitgb[AAX2136.1]6E-61Chrysomya putoriaKog NADH dehydrogenase subunit C3E-26NADH dehydrogenase activity2E-562GA14517-PAgb[AA2136.1]6E-61Chrysomya putoriaPfam ATP synthase subunit C3E-26NADH dehydrogenase activity2E-5634gb[AA2136.1]8E-65Drosophila pseudoobscuraPfam Cytochrome C3E-21hydrogen-exporting ATPase4E-662cytochrome oxidase subunitgb[AA2136.1]8E-65Drosophila pseudoobscuraPfam Cytochrome C3E-21hydrogen-exporting ATPase4E-662oytochrome oxidase subunitgb[AA2763.1]8E-65Scathophaga tropicalisPfam Cytochrome C1E-051E-051ATP synthase A chaingb[AA2136.1]BE-10Cochlomya hominivoraKog ATP synthase FO subunit 6<	2 GA1437-PA gbEAL25670.11 2E41 Drosophila pseudoobscura Pfam Cytochrome oxidase subunit 1 8E-26 cytochrome-oxidase activity 2E-42 3 cytochrome oxidase subunit 2 gbIAAX7606.11 1E-100 Hemipyrellia fergusoni Kog Cytochrome oxidase subunit 1 3E-00 cytochrome-oxidase activity 3E-30 1 ENSANGP000001769 gbEA1327.22 2E-13 Anophele sgambiae str. Kog Ubiquind cytochrome oxidoreducate 2E-13 sprantid cell development 6E-14 3 SICHGC0157 protein NADH debydrogenase gbIAX2132.21 6E-14 Chrosomy approximation Kog NADH debydrogenase 6E-14 Chrosomy approximation Kog NADH debydrogenase NADH debydrogenase activity 2E-56 2 GA14517-PA gbIAX2132.11 6E-14 Chrosomy approximation Kog NADH debydrogenase 6E-43 NADH debydrogenase activity 2E-56 2 GA14517-PA gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6 NaDF syntase Chain gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6 NaDF syntase Chain gbIAX2132.11 6E-14 Chrosomy approximation Fam Arpsyntase Subunit 6

Appendix III Cont.

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	Go No	SignalP
144	1	CG9306-PA	gb AAL48406.1	3E-29	Drosophila melanogaster	Kog NADH:ubiquinone oxidoreductase	5E-21	NADH dehydrogenase activity	1E-30	0008017	No
155	1	LD31474p	ref NP_727921.1	1E-27	Drosophila melanogaster	Pfam NADH ubiquinone oxidoreductase	5E-15	NADH dehydrogenase activity	5E-29		Yes
181	1	CG8189-PA, isoform A	gb AAR99111.1	4E-20	Drosophila melanogaster	Pfam Mitochondrial ATP synthase B chain	8E-14	hydrogen-exporting ATPase	2E-21		Yes
207	1	NADH subunit 4	ref NP_075456.1	6E-85	Cochliomyia hominivorax	Pfam NADH-Ubiquinone/plastoquinone	1E-38	NADH DH (ubiquinone) activity	2E-81		No
Transcriptio	n Fact	ors									
3	1	AT10293p	gb AAO42670.1	7E-27	Drosophila melanogaster	Kog Troponin	3E-07	double-stranded RNA binding	3E-28	0003725	No
4	1	CG5163-PA	emb CAA58244.1	3E-48	Drosophila melanogaster	Pfam Transcription initiation factor IIA	3E-15	transcription factor TFIIA complex	2E-49		No
8	2	CG15442-PA	gb AAL48766.1	6E-64	Drosophila melanogaster	Kog 60s ribosomal protein L15/L27	9E-55	structural constituent of ribosome	3E-65	0003723	Yes
10	2	CG15603-PA	ref NP_996473.1	5E-39	Drosophila melanogaster	Pfam BAF1/ABF1 chromatin factor	2E-05	chromatin/transcriptional repressor	0.0002	0016564	Yes
19	1	RNAse III (dsRNA binding motif)	g ref YP_142697.1	2.5	Acanthamoeba polyphaga	Pfam emp24/gp25L/p24 family	0.035				No
30	2	ribosomal protein S3	emb CAD12886.1	1E-89	Drosophila virilis	Kog 40S ribosomal protein S3	9E-84	structural constituent of ribosome	8E-90	0003676	Yes
31	1	hypothetical protein	ref XP_723186.1	0.18	Candida albicans SC5314	Smart Protein phosphatase 2A	0.06	RNA polymerase II activity	0.099	0003704	No
34	2	receptor-like protein kinase	ref NP_914396.1	0.035	Oryza sativa	Pfam Sec-independent protein translocase	3E-04	mRNA processing	0.037		No

48	1	GA20693-PA	gb EAL32444.1	2E-52	Drosophila pseudoobscura	Kog Mit/chloroplast ribosomal protein	2E-45	perception of sound	2E-53		No
50	1	CG11835-PA	ref NP_608532.1	2E-52	Drosophila melanogaster	Kog RNA polymerase II	9E-37	transcription factor activity	1E-53	0003702	No
		DNA-directed RNA	Α								
64	1	polymerase	emb CAA41631.1	7E-65	Drosophila melanogaster	Kog RNA polymerase III	3E-70	DNA-directed RNA polymerase	4E-66	0003677	No
91	1	Integrin alpha-8 precursor	ref XP_796395.1	0.006	Strongylocentrotus purpuratus	Kog Predicted DHHC/Zn-finger protein	0.008	transcription of nuclear rRNA	0.03		No
103	1	Drosophila melanogaster	gb AAR10024.1	7E-18	Drosophila yakuba	Kog 60S ribosomal protein	8E-07	structural constituent of ribosome	2E-19	0000049	Yes
115	1	condensin complex component	t pir T49494	0.056		Smart Ribosomal protein L11/L12	0.008				No
137	1	GA20486-PA	gb EAL32194.1	4E-48	Drosophila pseudoobscura	Pfam Ribosomal protein L36e	2E-36	structural constituent of ribosome	1E-48	0003723	No
139	1	CG1420-PA	ref NP_651659.2	3E-08	Drosophila melanogaster	Kog RNA splicing factor-Slu7p	2E-04	pre-mRNA splicing factor activity	2E-08	0008248	No
148	1	hypothetical protein	ref XP_644272.1	3E-05	Dictyostelium discoideum	Pfam Der1-like family	0.038	transcription of nuclear rRNA	0.051	0030519	Yes
143	1	transcription initiation factor	ref XP_629530.1	0.061	Dictyostelium discoideum	Smart Doublesex DNA-binding motif	0.036				No
154	1	Wiskott-Aldrich syndrome-like	e ref NP_082735.1	2E-05	Mus musculus	Pfam Wilm's tumour protein	0.051	actin nucleation	9E-07	0003677	No
162	1	SJCHGC01957 protein	gb AAX27763.1	8E-05	Schistosoma japonicum	Pfam Ribonucleases P/MRP protein	0.004	transcription factor activity	0.039	0003723	No
164	1	ribosomal protein L11	gb AAV34822.1	7E-11	Bombyx mori	Kog 60S ribosomal protein L11	9E-11	protein binding	3E-11	0003723	Yes
Appendix II	[
Cont.											

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	e Go No	SignalP
167	1	GA19229-PA	gb EAL33406.1	2E-41	Drosophila pseudoobscura	Pfam Ribosomal protein S5	3E-19	structural constituent of ribosome	4E-42	0003723	No
168	1	60S ribosomal protein	gb AAY66949.1	4E-14	Ixodes scapularis	Pfam Ribosomal protein L14p/L23e	3E-08	structural constituent of ribosome	1E-15		No
173	1	CG17489-PC.3	gb AAS93729.1	2E-25	Drosophila melanogaster	Kog 60S ribosomal protein L5	8E-17	structural constituent of ribosome	1E-26	0008097	No
174	1	GA20722-PA	gb EAL30266.1	2E-39	Drosophila pseudoobscura	Kog Transcription factor CBF	2E-26	transcription coactivator activity	2E-40	0046982	No
200	1	GA10244-PA	gb EAL28204.1	3E-56	Drosophila pseudoobscura	Smart glycine rich nucleic binding domain	3E-04	nuclear mRNA splicing	0.0002		No
203	1	GM14667p	gb AAM49965.1	9E-67	Drosophila melanogaster	Kog E3 ubiquitin ligase	3E-26	nucleic acid binding	5E-68	0003676	No
212	1	Eukaryotic ribosomal protein	ref XP_729142.1	0.009	Plasmodium yoelii yoelii	Pfam Borrelia ORF-A	0.02				No
213	1	GA20722-PA	gb EAL30266.1	6E-34	Drosophila pseudoobscura	Pfam Core binding factor	5E-24	transcription coactivator activity	3E-35	0046982	No
Cytoskeletal	l										
12	6	GA20185-PA	gb EAL33529.1	4E-31	Drosophila pseudoobscura	Pfam MAGE family	3E-04	structural constituent-adult cuticle	6E-16	0008012	Yes
13	2	RH70420p	gb AAM29629.1	4E-24	Drosophila melanogaster	Kog Ultrahigh sulfur keratin protein	2E-04	structural constituent-adult cuticle	2E-15	0008012	Yes
60	3	CG13043-PA	ref NP_648868.2	2E-21	Drosophila melanogaster	Pfam Drosophila Retinin like protein	7E-17	structural constituent of cuticle	0.006	0005214	Yes
117	1	structural constituent of cel wall	ll ref NP_683431.1	9E-09	Arabidopsis thaliana	Kog Rac1 GTPase effector	2E-06	Ca-dependent phospholipid binding	9E-07	0005522	No
161	2	GA17562-PA	gb EAL30728.1	2E-22	Drosophila pseudoobscura	Kog Mitogen-activated protein kinase	0.098	actin filament organization	3E-22		No
191	1	MAP1B protein	gb AAH17240.1	0.002	Homo sapiens	Kog Pleiotropic drug resistance proteins	0.007	potassium channel activity	0.006	0005267	No

Transporters

6	2	CG3725-PA, isoform A	ref NP_476832.1	1E-103	Drosophila melanogaster	Kog Ca2+ transporting ATPase	2E-72	calcium-transporting ATPase	1E-101		No
14	2	unnamed protein product	ref XP_454192.1	0.06	Kluyveromyces lactis	Kog Nuclear transport receptor LGL2	0.085				No
25	2	CG2968-PA	gb AAL48825.1	2E-62	Drosophila melanogaster	Kog Mitochondrial F1F0-ATP synthase	2E-51	proton-transporting ATP synthase	1E-63	0046933	No
43	2	GA20584-PA	gb EAL33947.1	8E-12	Drosophila pseudoobscura	Pfam Sec-independent protein translocase	0.008				
92	1	ABC transporter	ref XP_670113.1	1.2	Plasmodium berghei strain	Smart LITAF	0.081				No
100	1	ENSANGP00000018102	gb EAA12925.2	2E-61	Anopheles gambiae	Kog Mitochondrial tricarboxylate/carrier	7E-49	mitochondrial citrate transport	2E-51	0015137	No
111	1	SJCHGC01957 protein	gb AAX27763.1	0.002	Schistosoma japonicum	Pfam LacY proton/sugar symporter	0.027				No
129	1	GA15439-PA	gb EAL28731.1	1E-17	Drosophila pseudoobscura	Kog Myosin assembly protein	0.001	mit outer membrane translocase	6E-19		Yes
179	1	transposon protein	gb ABA96402.1	0.0002	Oryza sativa	Kog Synaptic vesicle protein Synapsin	7E-04	ISG15 carrier activity	0.0007	0005522	No

Appendix III Cont.

Cluster No.	No of Sec	Match to NR DB	Accession No	E-Value	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Valu	e Go No	SignalP
184	1	putative chaperonin	ref XP_730128.1	0.018	Plasmodium yoelii yoelii	Kog Na+/H+ antiporter	0.086				Yes
228	1	phosphatidylinositol 4-kinase	ref NP_113372.1	0.036	Guillardia theta	Pfam Acyltransferase family	0.05				No
231	1	putative protein kinase	ref XP_549827.1	0.86	Oryza sativa	Kog Na+-nucleoside cotransporter	5E-04				No
Signal transductior	1										
5	1	RH28686p	gb AAX33382.1	4E-62	Drosophila melanogaster	Kog Arrestin	2E-38	rhodopsin mediated signaling	2E-63	0016030	No
39	21	opsin Rh1	gb AAS88872.2	0	Bactrocera dorsalis	Kog G protein-coupled receptor	6E-25	phototransduction	0		No
46	8	arrestin1	emb CAA55672.1	1E-66	Calliphora vicina	Kog Arrestin	3E-52	metarhodopsin inactivation	8E-65	0016030	No
93	1	formin binding protein 30 hydroxyproline-rich	ref XP_230291.3	0.021	Rattus norvegicus	Kog RhoA GTPase effector	0.009	ligand-dependent nuclear receptor	0.003	0003704	No
118	1	glycoprotein	emb CAB62280.1	2E-22	Volvox carteri f. nagariensis	Pfam Formin Homology Region 1	2E-16	small GTPase regulator activity	2E-17	0003677	No
197	1	arrestin1	emb CAA55672.1	9E-80	Calliphora vicina	Pfam Arrestin (or S-antigen)	4E-15	metarhodopsin inactivation	5E-79	0016030	No
198	1	similar to Olfactory receptor	ref XP_870536.1	0.86	Bos taurus	Smart TLC/TRAM/LAG1/CLN8 domains	0.009				No
Protein Fun	ction										
7	3	SJCHGC01957 protein	gb AAX27763.1	0.004	Schistosoma japonicum	Smart LITAF	0.078				No
16	1	conserved protein	ref XP_743082.1	0.41	Plasmodium c. chabaudi	Smart SERine Proteinase Inhibitors	0.37				No
17	1	putative chaperonin	ref XP_730128.1	0.079	Plasmodium yoelii yoelii	Smart Olfactomedin-like domains	0.3				No
20	1	aspartic acid-rich protein	emb CAA07355.1	0.004	Plasmodium falciparum	Smart LITAF	0.039				No
21	177	galactosidase α -polypeptide	gb AAA84370.1	0.0005		Pfam YMF19 plant mitochondrial protein	0.12				No

22	8	putative chaperonin	ref XP_730128.1	0.011	Plasmodium yoelii yoelii	Pfam YMF19 plant mitochondrial protein	0.14				Yes
24	2	maturase-like protein	emb CAA10854.1	0.44	Euglena spirogyra	Pfam Riboflavin kinase (Flavokinase)	0.25				No
26	2	CG11079-PA, isoform A	ref NP_611785.1	7E-18	Drosophila melanogaster	Pfam Mitochondrial ATPase inhibitor	4E-16	5-formyltetrahydrofolate cyclo-ligase	4E-19	0004857	Yes
27	2	LD46083p	gb AAL90297.1	4E-38	Drosophila melanogaster	Pfam Lyase	6E-20	fumarate hydratase activity	1E-39		Yes
28	1	SJCHGC01957 protein	gb AAX27763.1	6E-07	Schistosoma japonicum	Pfam Cytidylyltransferase family	4E-04	embryonic development	0.023	0003723	No
29	8	polyprotein	emb CAD34006.2	3E-38	Deformed wing virus	Pfam RNA dependent RNA polymerase	1E-27				No
37	1	CG7875-PA	ref NP_476768.1	2E-19	Drosophila melanogaster	Kog Calreticulin	3E-04	calmodulin binding	1E-20	0005516	Yes
52	2	SJCHGC01957 protein	gb AAX27763.1	0.017	Schistosoma japonicum	Pfam Protein of unknown function	0.11	calcium channel activity	0.09	0005262	Yes
56	2	putative chaperonin	ref XP_730128.1	0.014	Plasmodium yoelii yoelii	Smart Domain in homologues of a S	0.024				No
74	1	CG3590-PA	ref NP_650586.2	1E-67	Drosophila melanogaster	Kog Adenylosuccinate lyase	4E-55	adenylosuccinate lyase activity	4E-68		No
Appendix II Cont.	II										

	No										
Cluster No.	of	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value	Go No	SignalP
	Seqs	8									
75	1	GH08719p	gb AAL28209.1	5E-10	Drosophila melanogaster	Kog Adenylosuccinate lyase	4E-06	adenylosuccinate lyase activity	2E-11		No
77	3	ENSANGP00000012700	gb EAA05425.2	1E-58	Anopheles gambiae	Smart calcium binding motif	9E-09	calcium ion sensing	7E-60		Yes
80	2	cement precursor protein 3B	gb AAY29121.1	6E-10	Phragmatopoma californica	Smart DNA-binding domain - MUTS family	2E-05	cell adhesion molecule binding	4E-08		Yes
82	2	CG7985-PA	ref NP_650689.1	7E-60	Drosophila melanogaster	Smart Calpain-like thiol protease family	0.045				Yes
85	2	receptor-like protein kinase	ref NP_914396.1	0.017	Oryza sativa	Smart Phospholipase A2	0.011				Yes
88	1	beta-galactosidase α -polypeptide	e gb AAA84370.1	0.0002		Kog Tyrosine kinase negative regulator	0.002				No
95	1	CG5670-PD, isoform D	ref NP_732575.1	2E-98	Drosophila melanogaster	Pfam haloacid dehalogenase-like hydrolase	3E-06	regulation of cell shape	3E-99	0005524	No
99	1	expressed protein	ref NP_565801.1	4.3	Arabidopsis thaliana	Smart DNA/RNA-binding repeats	0.16				Yes
102	1	troponin T	gb AAD33604.1	2E-07	Libellula pulchella	Kog Troponin	0.005	mesoderm development	2E-08	0005523	No
106	1	Cyanate permease	ref ZP_00697373.1	1E-16	Shigella boydii BS512	Kog Protein of unknown function	3E-04				Yes
110	1	syntaxin	gb EAN81394.1	0.019	Trypanosoma cruzi	Pfam SCAMP family	0.56				Yes
119	1	CG13877-PA	ref NP_612014.1	3E-08	Drosophila melanogaster	Kog Multitransmembrane protein	0.025				No
121	1	GA18355-PA	gb EAL28490.1	4E-51	Drosophila pseudoobscura	Kog Aldehyde dehydrogenase	5E-46	succinate-semialdehyde DH activity	4E-50	0005489	No
123	1	P0518C01.25	ref NP_914359.1	0.003	Oryza sativa	Pfam TB2/DP1, HVA22 family	0.049				Yes
124	1	succinyl-CoA synthetase	ref NP_700961.1	0.065	Plasmodium falciparum 3D7	Smart TopoisomeraseII	0.084				No
125	1	MnFe superoxide dismutase	gb AAT85826.1	5E-04	Glossina morsitans morsitans	Kog Manganese superoxide dismutase	0.028				Yes
127	1	oligosacharyl transferase subunit	t ref NP_701033.1	0.013	Plasmodium falciparum 3D7	Smart Cysteine-rich domain- Drosophila	0.094				Yes
128	1	rpoD	emb CAA64574.1	0.68	Plasmodium falciparum	Kog Tryptophan-rich basic nuclear protein	0.24				No
132	1	adenosine deaminase factor	gb AAQ23537.1	0.51	Drosophila melanogaster	Kog Ethanolamine kinase	0.46	adenosine deaminase activity	0.018	0008083	No

133	1	RH52407p	gb AAX33371.1	1E-59	Drosophila melanogaster	Kog Molecular chaperone	5E-23	response to heat	5E-61	0051082	Yes
136	1	putative enzyme	gb AAN42522.2	7E-14	Shigella flexneri 2a str. 301	Smart Domain associated with PX domains	0.095				No
140	1	putative diaphanous homologue	ref XP_478998.1	2E-06	Oryza sativa	Pfam Survival motor neuron protein	0.002	mRNA processing/RNA splicing	2E-05	0004722	No
146	1	GA14282-PA	gb EAL32706.1	6E-12	Drosophila pseudoobscura	Kog eIF2-interacting protein	1E-10	physiological process	1E-09	0017151	No
152	1	SJCHGC01957 protein	gb AAX27763.1	4E-06	Schistosoma japonicum	Kog CBF1-interacting corepressor proteins	6E-04			0005267	No
153	1	aspartic acid-rich protein	emb CAA07355.1	0.001	Plasmodium falciparum	Kog Alpha-1,2 glucosyltransferase	0.009				Yes
159	1	CG31715-PA	gb AAM29484.1	2E-05	Drosophila melanogaster	Myotrophin and similar proteins	0.009				No
160 Appendix II	2 II	hypothetical protein	ref XP_638834.1	1E-05	Dictyostelium discoideum	Kog Aminopeptidases of the M20 family	3E-05	regulation of nitrogen utilization	2E-05	0019789	Yes

	No										
Cluster No.	of Soci	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Valu	e Go No	SignalP
172	1	cysteine repeat modular protein	ref XP 726874.1	0.24	Plasmodium voelii voelii	Pfam Ferric reductase like transmembrane	0.024				No
183	1	e receptor-like protein kinase	ref NP 914396.1	0.008	Orvza sativa	Smart Horizontally TransMembrane Domain	0.23				Yes
186	1	Membrane glycosyltransferase	gb AAN42667.2	9E-57	Shigella flexneri 2a str. 301	Pfam Tymovirus 45/70Kd protein	0.012	oligosaccharide biosynthesis	7E-22		No
187	1	SJCHGC01957 protein	gb AAX27763.1	0.079	Schistosoma japonicum	Kog Adenylate cyclase- calcitonin receptor	0.047	c ,			No
189	1	putative chaperonin	ref XP_730128.1	0.003	Plasmodium yoelii yoelii	Kog Alpha amylase	0.08				No
190	1	ATP-dependent RNA helicase	dbj BAB34298.1	4E-38	Escherichia coli O157:H7	Pfam DEAD/DEAH box helicase	6E-16	ATP-dependent helicase activity	1E-24		No
194	1	LD35669p	ref NP_651209.1	4E-70	Drosophila melanogaster	Pfam Autophagy protein	2E-57	autophagic cell death	2E-71		Yes
195	1	CG17282-PA	gb AAR96163.1	3E-11	Drosophila melanogaster	Kog Alpha-1,2 glucosyltransferase	0.014				No
196	3	RE19540p	gb AAL90338.1	2E-24	Drosophila melanogaster	Kog WD40 repeat-containing protein	4E-24	eggshell pattern formation	8E-26	0045502	No
202	1	CG8839-PD, isoform D	ref NP_725139.1	4E-88	Drosophila melanogaster	Pfam Amidase	4E-12				Yes
205	1	GA18185-PA	gb EAL31565.1	5E-72	Drosophila pseudoobscura	Smart Ubiquitin-conjugating enzyme	5E-37	ubiquitin conjugating enzyme activity	2E-71		No
209	1	similar to D. mela EG:22E5.9	gb AAR10251.1	8E-23	Drosophila yakuba	Kog Uncharacterized conserved protein	6E-16	integral to membrane	0.0001		No
217	1	ZNF285 protein	gb AAH74824.1	2.6	Homo sapiens	Pfam Cytochrome C oxidase subunit II	0.06				No
230	1	GA14438-PA	gb EAL28349.1	2E-39	Drosophila pseudoobscura	Kog Dolichol kinase	0.04				No
Unknown											
2	20	unknown	gb AAX27955.1	0.0002	Schistosoma japonicum	Smart Presenilin	0.03				No
38	4	unknown	gb AAX27955.1	4E-25	Schistosoma japonicum	Kog Telomerase elongation inhibitor	3E-12	N-linked glycosylation	6E-11	0005267	No
45	1	unknown	gb AAX27911.1	0.027	Schistosoma japonicum	Smart Presenilin	0.089				No
54	1					Pfam Uncharacterised protein family Pfam Baculovirus protein of unknown	0.057				No
55	1	CG6579-PA	ref NP_609558.2	7E-48	Drosophila melanogaster	function	0.007				No
61	1	unknown	gb AAX27911.1	0.0007	Schistosoma japonicum	Pfam YMF19 plant mitochondrial protein	0.019				No
				157							

62	1	integral membrane protein	pir A71606	0.016	Unknown	Pfam Zona-pellucida-binding protein	0.015		No
69	2	GA11916-PA	gb EAL26149.1	1E-27	Drosophila pseudoobscura	Kog Unnamed protein	1E-28		No
73	1	integral membrane protein	pir A71606	3.4	Unknown	Pfam Sec-independent protein translocase	0.13		No
83	1					Smart Presenilin	2.5		No
94	1	putative chaperonin	ref XP_730128.1	0.024	Plasmodium yoelii yoelii	Smart CLUSTERIN alpha chain	0.006		Yes
98	1					Smart Lipoxygenase homology 2	0.4		No
Appendix II Cont.	Ι								
Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value Match to GO DB	E-Value Go No	SignalP
104	1	predicted coding region HP1516	ref NP_208307.1	3.4	Helicobacter pylori 26695	SmartTopoisomeraseII	0.12		No
108	1					Smart erythroblast transformation domain	0.17		No
114	1	transesterase	gb ABA02244.1	0.034	Monascus pilosus	Pfam YMF19 plant mitochondrial protein	0.064		No
120	1	unknown	ref NP_704103.1	0.003	Plasmodium falciparum 3D7	Pfam 7TM chemoreceptor	0.011		No
150	1	unknown	gb AAX27911.1	5.7	Schistosoma japonicum	Pfam Srg, C	0.048		No
166	1	unnamed protein product	emb CAA97071.1	0.021	Saccharomyces cerevisiae	Pfam Protein of unknown function	0.002		No
177	1	putative chaperonin	ref XP_730128.1	0.001	Plasmodium yoelii yoelii	Kog Uncharacterized conserved protein	0.063		Yes
178	1	unnamed protein product	dbj BAC86300.1	0.007	Homo sapiens	Smart Presenilin	0.008		No
193	1	LD35854p	gb AAK93286.1	1E-06	Drosophila melanogaster	Pfam Protein of unknown function	2E-06		No
199	1					Smart G protein alpha subunit	0.06		No
206	1					Smart Domain A in dwarfin family proteins	0.17		No
210	1					Pfam Herpesvirus egress protein UL20	0.28		No
211	1					Kog Beta-transducin family protein	0.099		No
216	1					Pfam Domain of unknown function	0.29		No
220	1					function	0.21		No
221	1					Pfam Trehalose receptor	0.39		No
224	1	unnamed protein product	emb CAF95619.1	2.7	Tetraodon nigroviridis	Smart Glycoprotein hormone alpha chain	0.37		No
227	1					Smart Domain of Unknown Function	0.41		No
Hypothetica	al								
1	1	hypothetical protein	ref XP_638538.1	3E-10	Dictyostelium discoideum	Smart Presenilin	7E-05 nucleic acid binding	1E-07 000367	6 No
15	1	hypothetical protein	gb EAN85835.1	0.13	Trypanosoma cruzi	Pfam Rft protein	0.075		Yes
18	1	hypothetical protein	ref NP_704173.1	3.3	Plasmodium falciparum 3D7	Pfam DNA polymerase family B	0.11		No
23	2	hypothetical protein	gb EAN86251.1	0.027	Trypanosoma cruzi	Smart DNA polymerase type-B family	0.017		No
				158					

40	2	hypothetical protein	ref XP_636844.1	0.019	Dictyostelium discoideum	Smart Ribosomal protein L11/L12	0.033	No
41	10	hypothetical protein	gb EAL89832.1	0.035	Aspergillus fumigatus Af293	Pfam Uncharacterised protein family	0.23	Yes
49	1	hypothetical protein	ref XP_638906.1	0.003	Dictyostelium discoideum	Pfam Sec-independent protein translocase	0.006	Yes
51	1	hypothetical protein	ref XP_672587.1	0.016	Plasmodium berghei strain	Pfam Sec-independent protein translocase	0.002	Yes
Annondiv								

Appendix III Cont.

Cluster No.	No of Seqs	Match to NR DB	Accession No	E-Value	e Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Value Go No	SignalP
53	2	hypothetical protein	ref NP_701936.1	0.038	Plasmodium falciparum 3D7	Pfam Domain of unknown function	0.014			Yes
57	2	hypothetical protein	ref XP_644272.1	0.0002	Dictyostelium discoideum	Pfam Domain of unknown function	0.01			Yes
58	1	hypothetical protein	ref XP_637301.1	0.022	Dictyostelium discoideum	Kog Ribosome biogenesis protein	0.48			No
59	2	hypothetical protein	ref XP_643220.1	0.017	Dictyostelium discoideum	Smart domain in FBox and BRCT	0.41			Yes
67	1	hypothetical protein	ref NP_703519.1	0.87	Plasmodium falciparum 3D7	Pfam Sre, C	0.026			No
68	2	hypothetical protein	emb CAD70304.1	0.67	Neurospora crassa	Pfam Glycine rich protein family	0.077			Yes
70	1	hypothetical protein	emb CAE06957.1	2.1	Synechococcus sp. WH 8102	Smart Ubiquitin-conjugating enzyme E2	0.039			No
71	1	hypothetical protein	ref XP_638495.1	0.001	Dictyostelium discoideum	Pfam GtrA-like protein	0.019			No
78	1	hypothetical protein	ref NP_704964.1	1.3	Plasmodium falciparum 3D7	Pfam Myelin proteolipid protein	0.16			Yes
79	1	hypothetical protein	ref XP_726011.1	0.031	Plasmodium yoelii yoelii	Pfam Protein of unknown function	0.012			No
81	1	hypothetical protein	gb EAA71490.1	9.6	Gibberella zeae PH-1	Smart Protein phosphatase 2A homologues	0.3			No
84	1	hypothetical protein	gb EAN85835.1	0.007	Trypanosoma cruzi	Kog CAATT-binding transcription factor	0.34			No
86	1	hypothetical protein	gb EAN77150.1	0.31	Trypanosoma brucei	Smart LITAF	0.047			No
87	1	hypothetical protein	ref XP_730830.1	5.7	Plasmodium yoelii yoelii	Kog Serine/threonine protein kinase	0.16			No
90	1	hypothetical protein	gb EAN85835.1	0.011	Trypanosoma cruzi	Pfam Protein of unknown function	0.15			Yes
105	1	hypothetical protein	ref NP_473073.2	0.037	Plasmodium falciparum 3D7	Kog Multitransmembrane protein	0.1			Yes
107	1	hypothetical protein	ref XP_644272.1	0.006	Dictyostelium discoideum	Pfam Fibronectin-binding protein A	0.12			No
109	1	hypothetical protein	ref XP_642253.1	0.81	Dictyostelium discoideum	Pfam Protein of unknown function	0.44			No
112	1	hypothetical protein	ref NP_700669.1	0.093	Plasmodium falciparum 3D7	Pfam YMF19 plant mitochondrial protein	0.026			Yes
113	1	hypothetical protein	ref XP_636980.1	0.046	Dictyostelium discoideum	Pfam Accessory gene regulator B	0.014			No
122	1	hypothetical protein	ref NP_703849.1	5.8	Plasmodium falciparum 3D7	Smart Histone 2A	0.4			No
126	1	hypothetical protein	ref XP_646781.1	2E-05	Dictyostelium discoideum	Smart Presenilin	4E-05			No
130	1	hypothetical protein	ref XP_643220.1	0.009	Dictyostelium discoideum	Smart Cysteine-rich domain - Drosophila	0.097	integral to membrane	0.053	Yes
134	1	hypothetical protein	ref XP_756946.1	3.3	Ustilago maydis 521	Smart RIO-like kinase	0.09			No
138	1	hypothetical protein	ref XP_640658.1	4.4	Dictyostelium discoideum	Smart LITAF	0.009			No

141	1	hypothetical protein	ref XP_642086.1	0.041	Dictyostelium discoideum	Smart Presenilin	0.002	odontogenesis	0.077		Yes
142	1	hypothetical protein	ref XP_644272.1	0.001	Dictyostelium discoideum	Smart TLC/TRAM/LAG1/CLN8 domains	0.014				Yes
Appendix											
Cluster											
No.	No of	Match to NR DB	Accession No	E-Value	Species Match	Best Rpsblast to CDD DB	E-value	Match to GO DB	E-Valu	e Go No	SignalP
	Seqs										
145	1	hypothetical protein	ref NP_909739.1	0.001	Oryza sativa	Pfam Sec-independent protein translocase	0.037				No
147	1	hypothetical protein	ref XP_643102.1	0.001	Dictyostelium discoideum	Pfam Bacterial low temperature requirement	0.083				Yes
149	1	hypothetical protein	gb EAN85835.1	0.007	Trypanosoma cruzi	Pfam LacY proton/sugar symporter	0.04				Yes
157	1	hypothetical protein	gb EAN85835.1	0.012	Trypanosoma cruzi	Pfam Ion transport protein	0.028				No
163	1	hypothetical protein	gb EAL87031.1	0.16	Aspergillus fumigatus Af293	Smart MADS domain	0.18				No
165	1	hypothetical protein	ref XP_644272.1	0.013	Dictyostelium discoideum	Kog 60S ribosomal protein L38	0.01				Yes
169	1	hypothetical protein	ref XP_644272.1	0.005	Dictyostelium discoideum	Pfam Domain of unknown function	0.015				Yes
170	1	hypothetical protein	gb EAN85835.1	0.004	Trypanosoma cruzi	Pfam hypothetical plant mitochondrial	0.027				No
175	1	hypothetical protein	ref XP_640860.1	0.009	Dictyostelium discoideum	Pfam Baculoviridae late expression factor 5	0.018				No
176	1	hypothetical protein	ref XP_643556.1	0.021	Dictyostelium discoideum	Pfam Fijivirus P9-2 protein	0.016				Yes
180	1	hypothetical protein	gb EAL87031.1	0.033	Aspergillus fumigatus Af293	Pfam Rifin/stevor family	0.2				Yes
182	1	hypothetical protein	ref XP_642253.1	0.059	Dictyostelium discoideum	Pfam Cytochrome c oxidase subunit III	0.077				Yes
185	1	hypothetical protein	ref XP_643102.1	0.003	Dictyostelium discoideum	Kog Uncharacterized conserved protein	0.003				No
188	1	hypothetical protein	ref XP_658760.1	0.66	Aspergillus nidulans FGSC	Kog Uncharacterized membrane protein	0.14				No
192	1	hypothetical protein	emb CAH87333.1	0.078	Plasmodium chabaudi	Pfam Replication initiator protein A	0.31				No
201	2	hypothetical protein	ref NP_701827.1	5E-17	Plasmodium falciparum 3D7	Pfam Merozoite surface protein	4E-12	mesoderm development	3E-18	0005523	Yes
204	1	hypothetical protein	ref XP_643799.1	2.6	Dictyostelium discoideum	Pfam Borrelia ORF-A	0.073				Yes
208	1	hypothetical protein	emb CAJ16304.1	0.13	Trypanosoma brucei	Pfam Protein of unknown function	1.1				No
214	1	hypothetical protein	gb EAN31143.1	0.4	Theileria parva	Smart Pulmonary surfactant proteins	0.058	sensory perception- chemical stimulus	0.087		No
215	1	hypothetical protein	emb CAB16287.1	9.6	Schizosaccharomyces pombe	Pfam Retinoblastoma-associated protein	0.17				No
218	1	hypothetical protein	ref XP_643556.1	0.4	Dictyostelium discoideum	Smart semaphorin domain	0.18				No
222	1	hypothetical protein	ref NP_704043.1	0.78	Plasmodium falciparum 3D7	Smart TLC/TRAM/LAG1/CLN8 domains	0.009				No
223	1	hypothetical protein	ref XP_638775.1	9.7	Dictyostelium discoideum	Pfam S-adenosyl-L-homocysteine hydrolase	0.31				No
225	1	hypothetical protein	ref NP_704010.1	0.39	Plasmodium falciparum 3D7	Pfam Domain of unknown function	0.014				No
226	1	hypothetical protein	pir T31613	0.001	J	Pfam Sec-independent protein translocase	0.004				No
229	1	hypothetical protein	gb AAP95837_1	5.7	Haemophilus ducrevi 35000HI	P Smart Zinc/CREB-binding domain	0.65				Yes
	-	Jr F-otom	6-1								

Cluster	Size	Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)				(bp)		
Odorant/ Pheromone Binding				Metabolism			
cn30	771	29% to LAR-001B13.b PBP-related protein 5 precursor	0.00067	cn22	251	36% to cn3410 steamer duck	0.48
cn31	529	23% to cn15569 General odorant-binding protein 99a	0.994	cn25	510	58% to cn6749 GS1-like protein	0.15
Energy Metabolism				cn58	457	28% to LAR-009C04.g Mitochondrial cysteine	0.9999
cn33	402	34% to GMsg73e09.p1k Cytochrome b (Fragment)	0.9993	cn61	441	36% to cn14513 Male-specific sperm protein	0.95
gpafl-1a01.p1k	128	100% to cn11620 NADH-ubiquinone oxidoreductase chain 4	0.79	cn76	364	24% to cn3382 Dystrophin, isoform B	0.97
gpafl-2e11.q1k	105	69% to Gmm-11491 putative Cytochrome P450 4d2	0.99	cn104	96	52% to cn9439 tRNA-dihydrouridine synthase 2-like	0.99993
gpafl-2h05.q1k	136	46% to Gmm-8608 putative Cytochrome P450 18a1	0.18	cn119	173	54% to GLAFJ50TV Carboxylesterase	0.9
gpafl-6c10.p1k	444	37% to Gmm-1831 putative Vacuolar ATP synthase	0.81	cn120	793	45% to GLAF815TV Arginyl-tRNA synthetase	0.99993
gpafl-6d02.p1k	581	93% to cn1999 Cytochrome c oxidase polypeptide IV	5.0E-88	cn126	111	50% to Gmm-11822 Probable ATP-dependent helicase	0.89
Nucleic Acid Metabolism				cn124	299	37% to cn16612 PFTAIRE-interacting factor 2 (CG31483-PA)	0.21
cn77	363	47% to cn16179 40S ribosomal protein S5a	0.999	cn132	210	86% to cn16564 BSD domain containing protein	4.40E-21
cn95	234	39% to cn7969 putative Ribosomal protein S2 (Fragment)	0.16	cn139	389	40% to Gmm-2796 putative G-rich selenoprotein	0.92
gpafl-1e10.p1k	333	41% to LAR-003I21.g Ribosomal protein L6e	0.62	gpafl-1b12.p1k	407	82% to cn3698 Ferritin heavy chain-like	5.30E-32
gpafl-1d08.p1k	228	35% to cn3371 RNA-binding protein squid	0.2	gpafl-2a12.p1k	272	41% to cn9380 Ornithine decarboxylase antizyme	0.048
gpafl-2c08.p1k	734	28% to cn12317 Reverse transcriptase (Fragment)	0.034	gpafl-2c03.p1k	226	40% to Gmm-3295 putative Polyadenylate-binding protein	0.64
gpafl-6c10.q1k	291	48% to LAR-005N05.g Ribosomal protein L15 (Fragment)	0.13	gpafl-2c07.q1k	130	72% to cn369 Protein flightless-1 (Flightless-I)	0.994
gpafl-7b08.p1k	507	44% to GMsg-6130 putative 60S ribosomal protein L13	0.79	gpafl-2c08.q1k	302	37% to cn7046 Methionyl-tRNA synthetase, mitochondrial precursor	0.44
gpafl-9b05.q1k	157	53% to cn16006 chromatin transcription complex subunit	0.94	gpafl-2f06.p1k	621	52% to Gmm-9567 putative Septin interacting protein	0.73
Structural				gpafl-2h05.p1k	112	40% to cn9428 Dynein light chain 2, cytoplasmic	0.998
cn1	505	36% to GMre-18h04.q1k Collagen alpha-1 (II) chain precursor	0.016	gpafl-3b07.q1k	134	41% to Gmm-0994 putative Clathrin-associated adaptor complex	0.93
cn101	177	47% to LAR-005F17.g Insect cuticle protein family protein	0.036	gpafl-3c12.q1k	208	41% to cn1143 Acyl-coa dehydrogenase	0.77
gpafl-8f02.p1k	105	58% to Gmm-2730 putative Troponin T, skeletal muscle	0.64	gpafl-4g07.p1k	97	41% to cn15926 Failed axon connections protein (Fragment)	0.45
gpafl-9c09.p1k	194	36% to Gmm-2730 putative Troponin T, skeletal muscle	0.051	gpafl-5e09.p1k	570	92% to cn482 NSFL1 cofactor p47 (p97 cofactor p47)	4.8E-72
gpafl-9e01.q1k	242	63% to cn13510 Cuticle protein 1 (Bc-NCP1)	0.00057	gpafl-6a02.q1k	113	83% to cn15926 Failed axon connections protein (Fragment)	0.55

Appendix IV - Glossina pallidipes clusters producing best matches to Glossina morsitans morsitans protein GeneDB

Appendix IV cont.

Cluster	Size	Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)				(bp)		
Transport				gpafl-6a05.p1k	628	36% to Gmm-1932 putative 14-3-3 protein epsilon	0.052
cn125	98	54% to Mitchondrial carnitine/acylcarnitine carrier protein	0.72	gpafl-6a07.p1k	169	46% to cn3824 Peptidase S1 & S6, chymotrypsin/Hap domain	0.6
cn130	112	31% to PUM-112D03.g Mit. inner membrane translocase	0.94	gpafl-6b05.p1k	235	38% to cn3380 Largest subunit of the RNA polymerase II complex	0.14
gpafl-1c09.q1k	160	50% to GMsg77d10.q1k Organic cation transporter protein	0.31	gpafl-6d02.q1k	177	38% to Gmm-6852 putative mRNA capping enzyme	0.2
gpafl-1h05.p1k	374	93% to GMsg-8198 putative ADP, ATP carrier protein	8.9E-59	gpafl-6d10.p1k	387	52% to Gmm-1691 putative NipSnap protein	0.77
gpafl-6g09.q1k Signal	244	44% to cn1167 carrier protein (ADP/ATP translocase)	0.055	gpafl-6e06.p1k	65	100% to cn12514 Probable sulfate permease C3H7.02	0.995
ransduction				gpafl-6e08.p1k	113	36% to cn6008 Tropomyosin-1, isoforms 9A/A/B (Tropomyosin II)	0.998
2n81	352	38% to cn14990 G protein-coupled receptor kinase 1	0.999	gpafl-6g05.p1k	224	32% to cn12876 Ser/Thr protein kinase PAR-1alpha	0.81
m138	165	31% to cn5003 Phosrestin-2 (Phosrestin II) (Arrestin A) 31% to cn5273 Opsin Rh1 (Outer R1-R6 photoreceptor cells	0.78	gpafi-/a12.p1k	330	32% to Gmm-2574 putative Cathepsin L precursor	0.38
cn156	228	opsin)	0.11	gpafl-7b08.q1k	124	39% to cn4833 Arginine kinase	0.92
gpafl-1d06.q1k	188	37% to TUM013_P18.b Gustatory receptor trehalose 1	0.43	gpafl-7b12.q1k	199	46% to Gmm-7627 putative Heparin sulfate O-sulfotransferase	0.992
gpafl-1h08.q1k	133	32% to GMsg25c01.q1k Gustatory receptor candidate 39	0.998	gpafl-7c06.p1k	179	31% to GMsg-6407 putative Ubiquitin-conjugating enzyme	0.8
gpafl-6a07.q1k	92	56% to cn10928 Transmembrane GTPase Marf	0.53	gpafl-7c02.p1k	678	65% to cn6218 Y-box binding protein	0.0032
gpafl-7e07.q1k	224	33% to cn7444 Retinoblastoma-family protein 37% to Gmm-10446 putative Probable GPCR Mth-like 9	0.0086	gpafl-7c07.p1k	687	25% to Gmm-10891 putative CORTACTIN	0.7
gpafl-7f12.p1k	304	precursor	0.996	gpafl-7c11.p1k	236	41% to cn48 Imaginal disc growth factor 4	0.65
Salivary Gland				gpafl-7d01.p1k	355	80% to PUP-003M08.g Bee antimicrobial peptide family protein	0.23
cn29	100	85% to GMsg-4370 Heterogeneous nuclear ribonucleoprotein	0.87	gpafl-7d07.q1k	382	55% to cn7452 Trypsin alpha precursor	0.96
cn45	1219	56% to GMsg-2943 putative Diaphanous protein	2.3E-5	gpafl-7e01.p1k	136	41% to cn3294 Acyl-coenzyme A oxidase 1, peroxisomal	0.96
cn52	591	72% to GMsg-88d06.q1k Tsal1 protein precursor	0.999	gpafl-7b08.q1k	124	39% to cn4833 Arginine kinase	0.92
cn82	347	35% to GMsg-43c12.q1k CG12008-PA, isoform A	0.98	gpafl-7b12.q1k	199	46% to Gmm-7627 putative Heparin sulfate O-sulfotransferase	0.992
cn97	223	50% to GMsg-9481 putative Histone H2B	0.61	gpafl-7c06.p1k	179	31% to GMsg-6407 putative Ubiquitin-conjugating enzyme	0.8
cn107	78	66% to GMsg-98d10.p1k Alanine aminotransferase 2 50% to GMsg-172c11.p1k BTB/POZ domain-containing protein	0.98	gpafl-7c02.p1k	678	65% to cn6218 Y-box binding protein	0.0032
cn140	137	9	0.89	gpafl-7c07.p1k	687	25% to Gmm-10891 putative CORTACTIN	0.7
gpafl-1c01.p1k	96	60% to GMsg-5352 Raf homolog serine/threonine-protein kinase	0.13	gpafl-7c11.p1k	236	41% to cn48 Imaginal disc growth factor 4	0.65
gpafl-1f03.p1k	195	30% to GMsg-0826 Selenophosphate synthetase 2-like protein	0.74	gpafl-7d01.p1k	355	80% to PUP-003M08.g Bee antimicrobial peptide family protein	0.23
gpafl-5b06.p1k	191	47% to GMsg-02f08.p1k Medea-B	0.85	gpafl-7d07.q1k	382	55% to cn7452 Trypsin alpha precursor	0.96
Appendix IV cont	•						
Cluster	Size	Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
_	(bp)				(bp)		
----------------	------	---	---------	----------------	------	--	--------
gpafl-5g10.p1k	348	52% to GMsg-7068 putative TSC1 protein	0.22	gpafl-7e01.p1k	136	41% to cn3294 Acyl-coenzyme A oxidase 1, peroxisomal	0.96
gpafl-6a04.p1k	114	50% to GMsg-13d02.q1k Tsal1 protein precursor	0.997	gpafl-7e04.p1k	528	6% to cn6762 Calpain B, Contains: Calpain B catalytic subunit 1	3
gpafl-6f10.p1k	56	50% to GMsg-2943 putative Diaphanous protein	0.29	gpafl-7e10.p1k	105	53% to cn14858 Proteinase inhibitor I1, Kazal domain protein	0.997
gpafl-7a02.q1k	335	50% to GMsg-87c12.q1k Pleckstrin homology domain	0.97	gpafl-7f01.q1k	566	32% to cn6781 Metallothionein-1 (MT-1)	0.43
gpafl-7b07.q1k	85	42% to GMsg-36a05.q1k Tsal1 protein precursor	0.97	gpafl-8b01.q1k	135	41% to cn7946 Matrix metalloproteinase 1	0.93
gpafl-7d05.p1k	439	42% to GMsg-9481 putative Histone H2B	0.23	gpafl-8c02.p1k	125	36% to cn12771 Mod (Mdg4)-h55.7	0.98
gpafl-7e12.q1k	295	48% to GMsg-96h03.q1k Dosage compensation regulator	0.59	gpafl-8g10.p1k	393	58% to cn2171 5'-nucleotidase	0.0043
gpafl-7f02.q1k	61	100% to GMsg-1858 putative Diaphanous protein	0.84	gpafl-8e05.p1k	477	33% to Gmm-10891 putative CORTACTIN	0.53
gpafl-8e05.q1k	308	36% to GMsg-5145 putative DnaJ-like protein 60	0.00093	gpafl-9a03.q1k	143	38% to cn4721 Tetratricopeptide region domain containing protein	0.996
gpafl-8e10.p1k	269	43% to GMsg-15f09.p1k Mitotic checkpoint/RNA export protein	0.26	gpafl-9b01.q1k	279	42% to cn797 Ferritin light-chain	0.61
gpafl-9b12.q1k	146	23% to GMsg-6889 putative XL6 protein	0.994	gpafl-9c02.q1k	156	33% to PUF-105D09.b Alpha esterase	0.4
gpafl-9c02.p1k	153	63% to GMsg-08a08.p1k Gamma-tubulin complex component 3	0.8	gpafl-9e05.p1k	622	29% to Gmm-10891 putative CORTACTIN	0.49
gpafl-9g03.q1k	112	57% to GMsg-95g09.p1k Tsal1 protein precursor	0.991	gpafl-9e11.q1k	110	66% to cn4317 Protein expanded	0.12
gpafl-2c05.p1k	90	2% to Tse64g05.p1c S-adenosylmethionine synthetase 4	0.75				
gpafl-3b07.p1k	108	62% to Tse91c02.q1c Retrotransposon hot spot protein, RHS3	0.996				
gpafl-5e08.p1k	243	41% to Tse80e02.p1c RINT1-like protein (DmRINT-1)	0.27				
gpafl-7c07.q1k	276	37% to Tse129h11.q1c CG5427-PA	0.47				
gpafl-7e02.q1k	233	38% to Tse114g11.q1c MADF domain containing protein	0.6				
gpafl-7f07.q1k	126	46% to Tse59c01.p1c Leucine-rich repeat	0.72				

cnxxx - Glossina pallidipes consensus sequences; gpafl-xxxx.p1k - Glossina pallidipes singleton

Appendix V - Glossina palpalis gambiensis clusters producing best matches to Glossina morsitans morsitans protein GeneDB

Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
	1.60					

Odorant Binding							
cn109	746	31% to LAR-001B13.b PBP-related protein 5 precursor (PBPRP-5)	0.00064	Metabolism			
gphfl-8a06.p1k	488	26% to cn7404 General odorant-binding protein 99b precursor	0.99994	cn3	463	100% to cn15353 Paramyosin, long form	3.1E-16
gphfl-5g01.p1k	568	67% to cn14025 Odorant binding protein	1.1E-44	cn16	622	40% to cn12243 WD repeat protein 89	0.81
gphfl-8d10.p1k	658	35% to cn15569 General odorant-binding protein 99a precursor	8.5E-22	cn20	300	50% to cn4870 Annexin-B11	0.994
gphfl-9d09.p1k	58	40% to cn15569 General odorant-binding protein 99a precursor	0.997	cn67	169	87% to cn8537 Derlin-1 (DER1-like protein 1)	0.68
Energy Metabolis	m			cn68	168	37% to GLAAX73TH Lipase 1 precursor, putative	0.8
cn2	553	77% to cn9829 mitochondrial NADH-ubiquinone oxidoreductase	1.9E-27	cn81	547	39% to cn16418 Larval serum protein 1 gamma	0.34
cn4	634	68% to PUM-101L21.g Cytochrome oxidase subunit I	0.2	cn86	840	20% to Gmm-10891 putative CORTACTIN	0.89
cn5	488	80% to Gmsg53b04.p1k Cytochrome oxidase subunit II	2.5E-18	cn89	709	99% to cn3089 Amidophosphoribosyltransferase	2.7E-88
cn6	676	97% to cn10291 Cytochrome c oxidase subunit 3	5.5E-47	cn91	396	52% to Gmm-10891 putative CORTACTIN	9.8E-01
cn15	684	100% to cn3694 Mitochondrial-processing peptidase subunit beta	5.0E-33	cn118	402	41% to cn4283 DEAD box ATP-dependent RNA helicase	9.2E-22
cn79	665	36% to PUM-113B01.g Cytochrome c oxidase polypeptide VIII	4.1E-01	gphfl-1a05.q1k	113	72% to GLAF430TV Serine protease inhibitor 4	9.9E-01
cn88	420	97% to cn13470 Cytochrome c oxidase polypeptide VIII	1.6E-31	gphfl-1b02.p1k	80	92% to cn3507 Alanine-glyoxylate transaminase 1	7.8E-01
cn98	318	47% to cn5050 NADH-ubiquinone oxidoreductase chain 2	0.34	gphfl-1b02.q1k	101	87% to cn3507 Alanine-glyoxylate transaminase 1	2.3E-01
cn114	701	87% to cn5432 ATPase subunit 6	4.4E-41	gphfl-1c12.p1k	601	31% to PUM-113B11.b Vacuolar ATP synthase proteolipid subunit	8.0E-01
cn115	142	91% to cn10291 Cytochrome c oxidase subunit 3	5.7E-06	gphfl-1f12.q1k	255	40% to PUM-105P23.b Trypsin precursor	4.5E-01
cn116	508	91% to cn10291 Cytochrome c oxidase subunit 3	2.5E-37	gphfl-2c01.p1k	437	43% to Gmm-3119 putative Rexin L3	9.5E-01
gphfl-2a08.p1k	115	50% to cn10293 Cytochrome c oxidase subunit 3	1.0	gphfl-2c08.q1k	305	37% to cn10472 Smad7 (Fragment),	9.9E-01
gphfl-2g11.p1k	267	53% to cn3977 Cytochrome P450	6.9E-01	gphfl-2c09.q1k	111	36% to cn5485 GPI inositol-deacylase	9.99E-01
gphfl-3g03.q1k	103	66% to Tse65g07.p1c Cytochrome oxidase subunit II	9.97E-01	gphfl-2c12.p1k	293	31% to cn10138 Carbonic anhydrase, eukaryotic family protein	8.6E-01
gphfl-5e01.p1k	593	94% to cn9606 ATP synthase subunit g, mitochondrial	8.9E-46	gphfl-2d11.p1k	355	27% to cn14999 Proteinase inhibitor I2, Kunitz metazoa domain	6.4E-01
gphfl-5e07.p1k	607	80% to cn14982 Cytochrome c oxidase subunit 5A	1.1E-81	gphfl-2e05.q1k	107	87% to cn5753 Transient-receptor-potential-like protein	1.0
gphfl-5h02.p1k	567	97% to PUF-101C07.b NADH dehydrogenase	1.1E-49	gphfl-2f06.q1k	249	50% to LAR-007N03.b Mitochondrial associated cysteine-rich	6.8E-01
gphfl-8b10.p1k	615	96% to cn13916 NADH dehydrogenase 1 beta subcomplex subunit 9	3.2E-77	gphfl-2f10.p1k	199	36% to cn5197 Protein ariadne-1 (Ari-1)	9.8E-01
gphfl-8c10.p1k	578	97% to cn13743 NADH dehydrogenase 1 alpha subcomplex subunit 13	1.1E-76	gphfl-2f11.p1k	132	45% to cn10094 Saposin-like type B, 1 domain containing protein	2.6E-01

Г

Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
gphfl-8e04.q1k	116 75% to cn5236 NADH-ubiquinone oxidoreductase chain 5	9.9E-01	gphfl-2g01.p1k	390	37% to cn950 ATP-dependent RNA helicase p62	9.93E-01
gphfl-8e08.p1k	697 90% to cn9962 NADH dehydrogenase [ubiquinone] iron-sulfur protein	2.0E-100	gphfl-2g02.q1k	178	50% to cn604 Vitellogenin-2 precursor (Vitellogenin II)	7.6E-01
gphfl-9c09.p1k	669 97% to cn1940 ATP synthase B chain, mitochondrial precursor	4.9E-104	gphfl-2g06.q1k	112	71% to cn5758 Transient-receptor-potential-like protein	9.7E-01

gphfl-9e09.q1k	516 78% to cn14468 NADH dehydrogenase	2.8E-35	gphfl-2g11.q1k	256	60% to cn50 Imaginal disc growth factor 4	0.7
Nucleic Acid Metabolism			gphfl-2h01.p1k	74	47% to cn12665 CG7769-PA (Damage-specific DNA binding protein)	0.9999
cn1	685 83% to cn840 60S ribosomal protein L15	1.4E-81	gphfl-3b08.p1k	175	29% to cn6 selenium-binding protein	0.87
cn49	841 30% to cn3379 RNA polymerase II largest subunit	4.7E-03	gphfl-5b03.p1k	429	81% to cn49 Imaginal disc growth factor 4	3.6E-58
cn53	504 31% to cn3379 RNA polymerase II largest subunit	9.9E-01	gphfl-5c02.p1k	474	20% to Gmm-10891 putative CORTACTIN	0.71
cn111	896 97% to cn11956 RNA-directed RNA polymerase, P3D protein family	1.2E-114	gphfl-5d04.p1k	615	32% to cn14311 SR family splicing factor SC35 (LD32469p)	0.000001
cn119	793 30% cn1504 Translation elongation factor 2 (EF-2)	0.93	gphfl-5d08.p1k	89	100% to cn11741 PFTAIRE-interacting factor 1A (CG33719-PA,	0.0061
gphfl-2a10.q1k	180 37% to GMsg-4148 putative RNA-binding protein cabeza	0.16	gphfl-5e02.p1k	492	53% to Gmm-2344 putative Congested-like trachea protein	0.0014
gphfl-2c01.q1k	146 44% to Gmsg-2447 putative 60S ribosomal protein L7	0.48	gphfl-5e06.p1k	601	34% to LAR-004G19.g Sperm mit-associated cysteine-rich protein	0.99992
gphfl-2d08.p1k	219 35% to cn3371 RNA-binding protein squid	0.25	gphfl-5e08.p1k	653	88% to cn9015 Profilin (Protein chickadee)	6.20E-90
gphfl-2h11.q1k	198 50% to GMre-04d03.q1k Transcription factor Adf-1	0.998	gphfl-5f08.p1k	486	34% to cn4416 Gamma actin-like protein	1.0E-100
gphfl-7d07.p1k	412 100% to Gmm-2661 Heterogeneous nuclear ribonucleoprotein 87F	0.74	gphfl-5f10.q1k	505	37% to cn4930 1-pyrroline-5-carboxylate dehydrogenase 1	6.1E-15
gphfl-8a07.p1k	399 100% to cn14492 60S ribosomal protein L36 (Protein minute(1)1B)	1.2E-54	gphfl-5g04.p1k	367	37% to PUP-005O21.g Vacuolar ATP synthase subunit D 1	0.95
gphfl-8g08.p1k	410 100% to cn13635 60S ribosomal protein L38	3.7E-33	gphfl-5h10.p1k	649	57% to Glycoprotein-N-acetylgalactosamine-3-ß-galactosyltransferase	3.6E-21
gphfl-8g10.p1k	702 92% to GMsg-6767 40S ribosomal protein S2	9.8E-115	gphfl-7f03.p1k	181	37% to LAR-005113.b Nascent polypeptide complex subunit α	2.4E-01
gphfl-8h01.p1k	190 100% to cn13583 60S ribosomal protein L23 (L17A)	2.1E-14	gphfl-8a05.p1k	487	44% to cn14907 Serine protease persephone precursor	5.1E-08
gphfl-8h07.p1k	715 98% to cn2789 Ribosomal protein L5 (Fragment)	7.9E-111	gphfl-8a10.q1k	209	36% to cn5649 Dihydroorotate dehydrogenase, mitochondrial	0.63
Structural			gphfl-8c06.p1k	486	35% to cn3341 Sn1-specific diacylglycerol lipase alpha	0.999
cn82	248 29% to cn4456 Actin-87E	0.7	gphfl-8c08.q1k	334	46% to Gmm-8019 putative Diaphanous protein	0.97
cn110	547 88% to cn13615 Cuticle protein	8.0E-25	gphfl-8d04.p1k	190	54% to cn12125 Protein spitz precursor	0.83
cn113	588 87% to cn5217 Adult cuticle protein 1 precursor (dACP-1)	3.2E-53	gphfl-8d07.p1k	598	93% to cn2376 Calcyclin-binding protein (CacyBP)	9.3E-58
gphfl-5g03.p1k	548 92% to cn3635 Endocuticle structural glycoprotein ABD-4	5.9E-58	gphfl-8e06.p1k	555	84% to cn3698 Ferritin heavy chain-like	1.0E-44
gphfl-5g11.p1k	646 97% to GLAAL91TH UNC45 (Smooth muscle cell protein1)	5.1E-70	gphfl-8f01.p1k	574	70% to cn15801 Two-Kunitz protease inhibitor	3.3E-39
gphfl-9d01.p1k	741 84% to cn718 Histone H3.3	1.1E-71	gphfl-8f08.p1k	553	39% to cn14188 Ankyrin	8.0E-10
Appendix V cont.						
Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
Transport			gphfl-8f09.p1k	523	79% to cn2901 Troponin I-b2	7.2E-37
gphfl-1a02.p1k	641 91% to cn3215 Acyl carrier protein, mitochondrial precursor (ACP)	3.0E-67	gphfl-8h10.q1k	172	30% to Gmm-9756 putative Serine/threonine protein phosphatase	0.31
gphfl-1a02.q1k	564 52% to cn15856 Acyl carrier protein, mitochondrial precursor (ACP)	3.2E-20	gphfl-9a01.p1k	681	98% to cn16483 Protein big brother	5.5E-89
gphfl-2d10.p1k	248 47% to cn7468 Sodium/potassium-transporting ATPase subunit beta-1	0.99	gphfl-9c03.p1k	689	85% to cn11956 RNA-directed RNA polymerase, P3D protein family	2.3E-98
gphfl-5b10.p1k	572 84% to cn12247 Tricarboxylate transport protein	1.5E-70	gphfl-9c05.p1k	653	88% to cn12618 Dorsal-ventral patterning protein	1.3E-82

gphfl-5c11.p1k	726	81% to cn1167 ADP, ATP carrier protein (ADP/ATP translocase)	7.5E-77	gphfl-9c06.p1k	341	23% to cn14710 Major facilitator superfamily MFS_1	6.9E-01
gphfl-8a09.p1k	147	50% to cn6319 Translocation-associated membrane protein 1	0.92	gphfl-9d11.p1	425	27% to cn9034 Lingerer protein type1	4.9E-01
Signal transduction	on			gphfl-9f01.p1k	653	98% to cn460 Calmodulin-A (CaM A)	4.7E-88
cn13	147	91% to cn5249 Rhodopsin 1 Fragment	5.2E-06	gphfl-9f10.p1k	688	26% to cn6382 Prefoldin domain containing protein	9.93E-01
cn84	1216	93% to cn5253 opsin Rh1 (Outer R1-R6 photoreceptor cells opsin)	6.1E-155	gphfl-10h01.pl	k 1025	88% to cn4930 1-pyrroline-5-carboxylate dehydrogenase 1	1.4E-74
cn112	765	86% to cn3533 Phosrestin-2 (Phosrestin II)	4.5E-96				
gphfl-1e04.q1k	140	95% to cn5249 Rhodopsin 1 (Fragment)	8.6E-06				
gphfl-1f09.q1k	141	53% to cn11426 Transmembrane and TPR repeat-containing protein	0.71				
gphfl-5d02.p1k	540	29% to cn16801 Retinin-like protein family protein	0.00021				
Salivary Gland							
cn8	227	40% to Tse104g08.q1c LD18186p (CG12489-PA)	0.96				
cn14	2019	58% to GMsg68f01.p1ka Nucleosome assembly protein NAP-1	0.2				
cn37	411	37% to Tse110g12.q1c Rabconnectin	0.92				
cn56	364	47% to Tse104g08.q1c LD18186p (CG12489-PA)	0.17				
cn58	315	34% to GMsg41h07.q1k Tsal1 protein precursor	0.54				
cn66	175	50% to GMsg25g01.q1k Tsal1 protein precursor	0.96				
cn95	155	37% to GMsg-0682 putative Zinc finger motif protein	9.9E-01				
cn106	99	66% Gmsg07c04.p1k Tsal1 protein precursor	0.9992				
cn108	529	65% to cn13931 Putative secreted salivary protein	5.4E-26				
gphfl-1c12.q1k	468	43% to GMsg-9054 putative Pygopus protein	4.6E-01				
gphfl-2a09.q1k	89	52% to Gmsg107c10.p1k crinkled	9.98E-01				
gphfl-2f12.p1k	121	33% to Tse5e01.p1c Iron regulatory protein 1B (SD12606p)	7.8E-01				
gphfl-2g05.q1k	183	46% to GMsg74d10.q1k Protein Tube	9.7E-01				
Appendix V cont.							
Cluster	Size	Best GeneDB Match	E-value				
	(bp)						
gphfl-2h09.q1k	120	55% to Gmsg-10331 putative DNA-directed RNA polymerase I	9.4E-01				
gphfl-2f06.p1k	228	42% to GMsg50g08.p1k Tsal1 protein precursor	6.1E-01				
gphfl-2f10.q1k	220	30% toGMsg91g10.p1k Tsal1 protein precursor	0.08				
gphfl-5c07.q1k	247	44% to GMsg-6886 putative Caspase-8 precursor	0.13				
gphfl-5c09.q1k	136	42% to Tse115h06.q1c Nucleoporin 98-96 (Fragment)	0.73				
gphfl-5d05.p1k	362	33% to Tse20e12.q1c Projectin (Fragment)	0.14				
gphfl-5g09.p1k	760	37% to Tse31e04.q1c Predicted membrane protein	0.997				

gphfl-5g10.q1k	206	47% to Tse68e10.q1c Kinesin-associated family protein	0.41
gphfl-5h09.p1k	157	33% to cn8884 Salivary gland growth factor-2	0.17
gphfl-7d12.q1k	115	42% to GMsg110h11.p1k Nuclear hormone receptor HR96 (dHR96)	0.9995

cnxxx - Glossina palpalis gambiensis consensus sequences; gphfl-xxxx.p1k - Glossina palpalis gambiensis head singleton.

Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
Odorant Binding gthfl-5d10.q1k Energy	393 28% to cn15569 General odorant-binding protein 99a precursor	6.1E-07	Metabolism cn3	610	90% to cn1796 ATP synthase coupling factor 6, mitoch precursor	4.8E-65
Metabolism			cn9	660	95% to cn460 Calmodulin-A (CaM A)	1.0E-69
cn6	471 92% to cn9925 NADH-ubiquinone oxidoreductase chain 4	1.2E-23	cn17	1276	33% to Gmm-10891 putative CORTACTIN	9.6E-01
cn19	930 97% to cn10291 Cytochrome c oxidase subunit 3	5.4E-47	cn21	895	35% to Gmm-10148 putative Nuclear hormone receptor HR96	0.36
cn23	521 76% to cn7406 Ubiquinol-cytochrome c reductase complex	1.2E-30	cn25	505	35% to cn139 Carnitine palmitoyltransferase I	0.56
cn33	359 84% to cn14468 NADH dehydrogenase	9.2E-07	cn35	337	47% to cn50 Imaginal disc growth factor 4	0.063
cn57 cn58	555 93% to cn13205 Cytochrome c oxidase polypeptide Via 886 47% to Gmsg82h07.p1k Cytochrome b (Fragment)	5.7E-53 8.0E-31	cn36 cn38	336 311	33% to cn8930 Coproporphyrinogen III oxidase 45% to cn9299 Elongation factor 1-alpha (EF-1-alpha)	0.94 0.34
cn60	669 97% to cn3108 Probable cytochrome c oxidase polypeptide VIIa	7.0E-32	cn42	248	31% to cn12648 Sticky ch1 (Fragment)	0.69
cn69	754 96% to cn10291 Cytochrome c oxidase subunit 3	4.0E-45	cn43	247	41% to cn1251 Gelsolin (Fragment)	0.99
gthfl-1a11.p1k	563 95% to cn1999 Cytochrome c oxidase polypeptide IV	9.4E-87	cn47	212	32% to cn15475 T-cell lymphoma breakpoint associated target protein	n 0.64
gthfl-1a11.q1k	470 88% to cn1999 Cytochrome c oxidase polypeptide IV	1.1E-21	cn55	823	82% to cn4165 ATP synthase delta chain, mitochondrial	5.1E-61
gthfl-1c07.p1k	442 97% to cn13690 Cytochrome c oxidase subunit VIIc	5.1E-31	cn62	602	88% to cn3887 Laminin subunit gamma-1 precursor	1.3E-06
gthfl-1c07.q1k	381 87% to cn13690 Cytochrome c oxidase subunit VIIc	8.1E-26	cn65	613	95% to cn13725 Ejaculatory bulb-specific protein 3 precursor	2.8E-62
gthfl-2b11.q1k	570 69% to cn9925 NADH-ubiquinone oxidoreductase chain 4	6.1E-19	cn67	518	61% to cn2301 N(2),N(2)-dimethylguanosine tRNA methyltransferase	e 7.7E-06
gthfl-2c08.p1k	417 73% to Gmm-8685 putative Probable cytochrome P450 311a1	2.6E-01	cn68	424	96% to cn221 ATP synthase gamma chain, mitochondrial precursor	6.2E-41
gthfl-4a05.p1k	246 66% to GMsg53b04.p1k Cytochrome oxidase subunit II	9.6E-01	cn75	771	95% to cn5310 Calcium-tran ATPase sarcoplasmic/endo reticulum	4.1E-105
gthfl-4b01.q1k gthfl-4b11.q1k	298 66% to cn5432 ATPase subunit 6157 91% to cn10291 Cytochrome c oxidase subunit 3	2.6E-12 1.8E-08	cn78 cn83	531 685	56% to cn3779 ATPase inhibitor homolog, mitochondrial precursor 83% to cn7418 ATP synthase lipid-binding protein	2.2E-18 1.5E-45
gthfl-4c01.p1k	790 71% to GMsg144h12.p1k NADH dehydrogenase subunit 5	3.5E-24	gthfl-1d08.p1k	595	100% to cn13644 Trp protein	7E-9
gthfl-4h09.q1k	127 50% to GLABL12TV AAA+ ATPase	8.4E-01	gthfl-1e06.q1k	205	40% to cn6566 Protein YIPF5 (YIP1 family member 5)	0.49
gthfl-5b10.q1k	388 82% to cn13916 NADH DH [ubiquinone] 1 beta subcomplex	9 8E-37	gthfl-1e08.q1k	281	68% to cn16618 Beta-NAC-like protein	2.9E-17
gthfl-5c10.q1k	208 55% to cn13743 NADH DH [ubiquinone] 1 α -subcomplex	1.0E-01	gthfl-1g03.q1k	447	53% to Gmm-9433 putative Ubiquitin-conjugating enzyme E2-17 kDa	a 2.8E-01

Appendix VI - Glossina tachinoides clusters producing best matches to Glossina morsitans morsitans protein GeneDB

Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
gthfl-5e08.q1k	371 45% to cn9962 NADH DH [ubiquinone] iron-sulfur protein 7	5.4E-11	gthfl-1h09.q1k	213	40% to cn11882 Ser/threonine-protein phosphatase 4 catalytic subun	it 9.92E-01
gthfl-5h04.q1k	176 23% to PUM-113B01.g Cytochrome c oxidase polypeptide VIII	9.7E-01	gthfl-2d09.p1k	489	85% to cn1876 Adenylosuccinate lyase	2.2E-71
gthfl-6b01.q1k	398 88% to cn5432 ATPase subunit 6	1.6E-40	gthfl-2g07.q1k	144	39% to Gmm-9432 putative Protein-cysteine N-palmitoyltransferase	9.3E-01
gthfl-7h05.p1k Nucleic Acid	662 85% to cn11626 NADH dehydrogenase subunit 4	8.2E-20	gthfl-3b12.q1k	121	38% to cn2313 Microsomal glutathione S-transferase-like protein	1.0E+00
Metabolism			gthfl-3h06.q1k	540	41% to cn8813 Brain protein 44	8.1E-01
cn8	901 81% to cn2826 60S ribosomal protein L5 116	1.3E-30	gthfl-4a09.p1k	228	52% to cn884 Dolichyl-diphosphooligosaccharide glycosyltransferase	e 2.8E-01
cn10	0 91% to cn11956 RNA-directed RNA polymerase	4.3E-164	gthfl-4b05.p1k	347	42% to Gmm-10891 putative CORTACTIN	9.7E-01
cn34	353 52% to cn3189 Activating transcription factor	6.6E-01	gthfl-4c04.q1k	148	53% to cn15796 Aldose 1-epimerase family protein	9.6E-01
gthfl-2h05.p1k	199 50% to cn8660 28S ribosomal protein S5	7.6E-01	gthfl-4c07.p1k	348	54% to cn15902 Troponin T-4 (Fragment)	2.7E-09
gthfl-4c07.q1k	330 78% to cn30 Ribosomal protein L35Ae	3.0E-27	gthfl-4c11.p1k	259	57% to cn12991 RabGAP/TBC	8.0E-01
gthfl-4e10.p1k	460 37% to LAR-005F13.g 60S ribosomal protein L36	1.7E-01	gthfl-4d04.q1k	128	48% to Gmm-8207 putative Myosin IA	9.4E-01
gthfl-4f03.q1k	241 63% to cn1435 39 kDa FK506-binding nuclear protein	3.1E-01	gthfl-4d07.p1k	157	75% to cn4101 Dynamin associated protein isoform Dap160-1	9.95E-01
gthfl-5a07.q1k	379 93% to cn14492 60S ribosomal protein L36	3.3E-47	gthfl-4d11.q1k	256	33% to GLAC352TV Superoxide dismutase, copper/zinc binding	9.5E-01
gthfl-5f03.q1k	154 58% to GMre-05b12.q1k 40S ribosomal protein S3a	5.9E-01	gthfl-4e09.p1k	202	82% to cn482 NSFL1 cofactor p47 (p97 cofactor p47)	4.6E-11
gthfl-5g08.q1k	205 89% to cn13635 60S ribosomal protein L38	1.7E-03	gthfl-4f10.p1k	663	31% to cn6792 Aldehyde dehydrogenase, mitochondrial	5.1E-14
gthfl-5h01.q1k	209 100% to cn13583 60S ribosomal protein L23 (L17A)	6.5E-16	gthfl-4g08.q1k	230	81% to cn3244 Superoxide dismutase [Mn], mitochondrial precursor 87% to GLAAL91TH UNC45 homolog A-Smooth muscle cell protei	4.1E-07 n
gthfl-5h07.q1k	409 92% to cn2795 Ribosomal protein L5	3.6E-35	gthfl-4g11.q1k	404	1	2.1E-27
gthfl-5g10.q1k	458 63% to cn7965 40S ribosomal protein S2	2.7E-41	gthfl-4h06.p1k	156	41% to cn2955 TXBP181-like protein (CG2072-PA)	5.1E-01
gthfl-6c06.q1k	130 42% to cn6031 60S acidic ribosomal protein P1 (RP21C)	9.7E-01	gthfl-4h12.p1k	696	64% to cn10818 Heat shock protein Hsp40	2.1E-41
gthfl-6d11.q1k	265 43% to cn12819 Eukaryotic TIF 5A (eIF-5A)	9.9E-01	gthfl-5a03.q1k	103	43% to cn16764 Calreticulin precursor	9.94E-01
gthfl-8b08.p1k	281 42% to cn3189 Activating transcription factor	5.5E-01	gthfl-5b04.q1k	248	39% to LAR-002O19.b Fatty acyl-CoA elongase	6.8E-01
gthfl-8c02.q1k	457 47% to cn11956 RNA-directed RNA polymerase	1.7E-03	gthfl-5e06.q1k	393	45% to cn3698 Ferritin heavy chain-like	2.3E-12
gthfl-16e08.p1k	976 99% to LAR-007D18.b Transcription initiation factor IIA	2.1E-53	gthfl-5f01.q1k	368	47% to cn15801 Two-Kunitz protease inhibitor	3.7E-07

	1.	T 7 T	
$\Delta \mathbf{n}$	nendu	v V/I/	ont
D U	Denuiz	V VIV	Joint.

Cluster	Size Best GeneDB Match	E-value	Cluster	Size	Best GeneDB Match	E-value
	(bp)			(bp)		
Structural			gthfl-5f02.q1k	328	37% to cn16368 NEB-CGP=CAMP generating peptide	1.0
cn52	911 57% to cn13836 Adult cuticle protein 1 precursor (dACP-1)	2.6E-62	gthfl-5f09.q1k	80	72% to Gmm-11567 putative Tunen	1.0
cn53	624 60% to cn8742 Adult cuticle protein 1 precursor (dACP-1)	2.1E-54	gthfl-5f11.q1k	159	35% to Gmm-10891 putative CORTACTIN	9.7E-01
gthfl-4g01.q1k	190 66% to cn5187 Tubulin alpha-1 chain	3.5E-01	gthfl-5g03.q1k	117	62% to cn3876 Phosphoinositide 3-kinase	9.9E-01
gthfl-5b03.q1k	211 58% to cn5223 Adult cuticle protein 1 precursor (dACP-1)	7.7E-10	gthfl-6a01.q1k	495	91% to cn8844 Protein big brother	9.1E-46
gthfl-6d01.q1k	435 48% to Gmm-02e05.p1k Histone H3.3 type 1	9.6E-08	gthfl-6c06.p1k	144	53% to cn7284 Peptidase S1 and S6, chymotrypsin/Hap	5.2E-01
Transport			gthfl-6c09.q1k	478	73% to cn1934 ATP synthase B chain, mitochondrial precursor	1.8E-26
gthfl-1h10.p1k	156 37% to Gmm-7520 putative Probable GDP-fructose transporter	3.1E-01	gthfl-6c10.q1k	107	42% to cn261Protein Mo25 (dMo25)	9.9E-01
gthfl-4a12.p1k	682 99% to Gmm-3336 Sodium/potassium-transporting ATPase α -	1.1E-92	gthfl-6d12.q1k	265	34% to GLAAQ06TV Moesin/ezrin/radixin homolog 2	2.3E-01
gthfl-4b10.q1k	535 81% to cn12247 Tricarboxylate transport protein	1.9E-61	gthfl-6e04.p1k	653	30% to Gmm-1607 putative Hook protein	9.2E-01
gthfl-4c11.q1k	117 91% to cn1169 ADP, ATP carrier protein (ADP/ATP translocase)	7.8E-06	gthfl-6e08.q1k	315	32% to cn14304 Palmitoyltransferase ZDHHC3	1.0
gthfl-4h02.q1k	331 44% to cn7983 Sodium:neurotransmitter symporter	9.1E-01	gthfl-6f01.p1k	307	45% to cn9227 ATP-dependent RNA helicase vasa	5.3E-15
Signal transduction	on		gthfl-6g09.q1k	329	70% to cn11468 Protein Peter pan	9.0E-05
cn1	97 37% to Gmm-7284 putative Probable GPCR Mth-like 10 precursor	0.55	gthfl-7g04.p1k	718	94% to cn2130 Ubiquitin-conjugating enzyme E2 G2	5.9E-91
cn15	229 56% to cn5258 Opsin Rh1 (Outer R1-R6 photoreceptor cells opsin)	0.016	gthfl-8a07.p1k	208	30% to cn10843 Zinc finger, CCCH-type domain containing protein	1.9E-01
cn59	732 83% to cn3533 Phosrestin-2 (Phosrestin II) (Arrestin A)	2.4E-84	gthfl-8a10.q1k	194	40% to cn8570 Chaperonin	7.4E-01
cn87	237 75% to Gmm-10447 putative Probable GPCR Mth-like 9 precursor	1.9E-01	gthfl-8b01.p1k	313	91% to cn16483 Protein big brother	2.0E-36
gthfl-1e10.q1k	146 84% to cn5249 Rhodopsin 1	2.6E-02	gthfl-8b02.p1k	217	58% to cn797 Ferritin light-chain	3.7E-01
gthfl-4d09.q1k	129 41% to PUP-005M12.g G protein-coupled receptor kinase 1	0.97	gthfl-8b07.p1k	312	53% to cn12215 Zinc finger/leucine zipper protein DALF isoform C3	9.97E-01
gthfl-7b01.p1k	692 80% to cn3528 Phosrestin-2 (Phosrestin II) (Arrestin A)	2.0E-89	gthfl-8c01.p1k	290	27% to Gmre-05a07.p1k DNA primase small subunit	1.0
gthfl-8b07.q1k	246 76% to cn3533 Phosrestin-2 (Phosrestin II) (Arrestin A)	2.8E-12	gthfl-8c05.q1k	127	60% to cn4278 Protein jagunal homolog 1	9.92E-01
gthfl-18b01.p1k	1357 85% to cn5034 Phosrestin-1 (Phosrestin I) (Arrestin B)	9.6E-110	gthfl-8c07.p1k	579	32% to Gmm-2730 putative Troponin T, skeletal muscle	0.9999
Salivary Gland			gthfl-8c10.p1k	153	46% to cn5744 Transient-receptor-potential-like protein	0.83
cn2	571 51% to Tse128b04.q1c 60S ribosomal protein L28-like protein	5.6E-09	gthfl-8c12.p1k	425	50% to Gmm-2574 putative Cathepsin L precursor	0.998
cn11	1784 98% to Gmsg-0907 putative Opsin Rh1	1.2E-205	gthfl-14h01.p1k	1041	73% to cn12539 Nesprin	1.4E-36

Appendix VI cont	•		
Cluster	Size	Best GeneDB Match	E-value
	(bp)		
cn74	563	65% to cn13931 Putative secreted salivary protein	5.8E-26
cn81	533	29% to Gmsg124b06.q1k Tsal1 protein precursor	0.994
gthfl-1c05.p1k	431	65% to Gmsg-6716 putative A kinase anchor protein 200	6.7E-23
gthfl-1e09.q1k	98	66% to Gmsg-5145 putative DnaJ-like protein 60	0.999
gthfl-1g09.p1k	161	43% to GMsg30g11.q1k Tsal1 protein precursor	0.79
gthfl-1h03.p1k	506	42% to Tse91c02.q1c Retrotransposon hot spot protein, RHS3	0.45
gthfl-1h08.q1k	566	80% to Gmsg13a02.p1k DNA-directed RNA polymerase III	1.2E-68
gthfl-3b01.q1k	134	87% to GMsg15f09.p1k Mitotic checkpoint protein & RNA protein	4.3E-02
gthfl-4d11.p1k	94	32% to Gmsg-7692 putative Arginine kinase	9.5E-01
gthfl-5b09.p1k	487	66% to GMsg75b08.p1k Glycylpeptide N-tetradecanoyltransferase	9.4E-01
gthfl-5b10.p1k	286	42% to Tse28c06.q1c Protein roadkill	4.8E-01
gthfl-5d08.q1k	237	48% to GMsg-5449 Selenophosphate synthetase 2-like protein	9.95E-01
gthfl-5e06.p1k	125	62% to GMsg53b04.p1k Cytochrome oxidase subunit II	0.00064
gthfl-5g02.q1k	244	52% to Gmsg-9068 Serine/threonine protein phosphatase PP-V	0.32
gthfl-6c05.q1k	186	42% to GMsg55h10.p1k Mucolipin	0.52
gthfl-8a02.p1k	85	44% to GMsg32e12.q1k Peptidase,trypsin-like serine & cysteine	0.74
gthfl-8b09.p1k	184	42% to GMsg161a05.q1k Myb protein	2.0E-01
gthfl-8b10.p1k	371	45% to Gmsg19h08.p1k Tsal1 protein precursor	0.74
gthfl-8b11.p1k	198	53% to Gmsg107f12.p1k phospholipid-transporting ATPase VA	9.6E-01
gthfl-9b01.p1k	335	53% to Tse14c06.p1c Pro3 precursor	9.95E-01

cnxxx - Glossina tachinoides consensus sequences; gthfl-xxxx.q1k - Glossina tachinoides head singletons

	Best Ensembl Match				Best Ensembl Match				
Cluster	D. melanogaster	Protein ID	E-value	Chr. Location	Cluster	D. melanogaster	Protein ID	E-value	Chr. Location
	Gene					Gene			
Odorant Binding					Salivary Gland				
Gpa-cn30	Pbprp3	FBpp0078305	8.0E-41	3R:1798209-1798945	Gpgh-cn108	CG13043	FBpp0075192	0.012	3L:16298643-16298687
Gpa-cn31	Os-E	FBpp0078304	4.6E-13	3R:1802188-1802355	Gpghfl-5c07.p1k	Ribosomal protein	FBpp0078416	2.5E-89	3R:1291433-1291979
Gpgh-cn109	Os-E	FBpp0078304	5.1E-39	3R:1802125-1802480	Gpghfl-2f12.p1k	CG9717	FBpp0085041	1.4E-06	3R:26412320-26412385
Gth-cn65	Pherokine 3	FBpp0072311	8.2E-37	2R:20858474-20858779	Gth-cn74	CG13044	FBpp0075225	0.11	3L:16295906-16295956
Gthfl-5d10.q1k	OBP83g	FBpp0078266	2.1E-18	3R:1937471-1937602	Gth-cn81	CG12929	FBpp0111973	1.3E-33	2R:5473796-5473957
Gpghfl-8a06.p1k	CG30354	FBpp0087782	1.4E-40	2R: 4564888-4565097	Gthfl-1h08.q1k	RNA polymerase I 135kD subunit	FBpp0077714	2.0E-05	2L:407574-407651
Gpghfl-8d10.p1k	OBP83g	FBpp0078266	3.4E-65	3R:1937474-1937917	Gthfl-1e06.p1k	technical knockout	FBpp0070443	3.7E-76	X:2336416-2336742
Gpghfl-5g01.p1k	No Hits				Gpa-cn29	CG18557	FBpp0077373	9.8	2L:2844799-2844819
Gthfl-8b10.p1k	No Hits				Gpafl-7f02.q1k	Cuticular protein 65Az	FBpp0076704	8.6	3L:6154157-6154177
Structural					Gpafl-9b12.q1k	CG15311	FBpp0071371	7.6	X:10082268-10082291
Gpgh-cn110	Cuticle protein	FBpp0079123	8.2E-12	2L: 7740959-7741057	Gpafl-5b06.p1k	stranded at second	FBpp0081089	2.5	3R:3005897-3005932
Gpgh-cn113	CG31904	FBpp0079125	2.5E-05	2L: 7734853-7734906	Gpgh-cn37	Ribosomal protein L27A	FBpp0077142	1.5	2L:4457414-4457458
Gpghfl-9d01.p1k	Histone H3.3A	FBpp0078650	3.7E-82	2L:5055259-5055727	Gpghfl-2f06.p1k	No Hits			
Gpghfl-5g03.p1k	Cuticular protein	FBpp0077993	0.62	3L:21288980-21289039	Gpghfl-2h09.q1k	adenosine 2	FBpp0078851	3.7	2L:6044056-6044094
Gpghfl-5e08.p1k	chickadee	FBpp0078864	1.2E-87	2L:5973601-5979522	Gpghfl-5h09.p1k	CG33174	FBpp0073656	3.7	X:13702517-13702540
Gpghfl-5g11.p1k	Tom 34	FBpp0081284	2.5E-87	3R:3861765-3862187	Gth-cn2	Ribosomal protein L27A	FBpp0077142	8.2E-78	2L:4457384-4457964
Gth-cn52	CG32113	FBpp0271898	4.5	3L:12/52356-12/52406	Gth-cn11	Neuropeptide F-like Receptor	FBpp0074640	0.56	3L:20068662-20068778
Gth-cn53	CG7214	FBpp0079122	4.1E-12	2L:7744217-7744309	Gthfl-1e09.q1k	CG15390	FBpp0077444	0.64	2L:2375406-2375441
Gpa-cn1	No Hits				Gthfl-8a02.p1k	CG5674	FBpp0080575	4	2L:17972088-17972108
Gpafl-8f02.p1k	CG7224	FBpp0099502	0.0069	2L: 7999170-7999202	Gthfl-5e06.p1k	mitochondrial Cyt. c oxidase	FBpp0100177	6.9E-13	dmel_mitochondrion_genome: 3638- 3706
Transport					Gthfl-5g02.q1k	Thiolase	FBpp0072135	9	2R:19754402-19754452
Gpafl-1h05.p1k	CG8026	FBpp0087691	0.71	2R:5076267-5076332					
Gpafl-7d12.q1k	CG11739	FBpp0078553	1.9E-11	3R:205465-205654					

Appendix VII - Glossina pallidipes, Glossina palpalis gambiensis and Glossina tachinoides clusters and their best matches to Drosophila melanogaster protein databases

	Best Ensembl Match					Best Ensembl Match			
Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location	Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location
Gpghfl-5e02.p1k	CG18327	FBpp0086651	0.0031	2R:10055529-10055648	Metabolism				
Gth-cn75	Calcium ATPase	FBpp0072125	3.5E-141	2R:19816838-19817618	Gpa-cn132	CG18869	FBpp0073060	7.2	3L:4060537-4060572
Gthfl-4a12.p1k	ATP7	FBpp0271765	2.3E-07	X:11756985-11757122	Gpafl-5e09.p1k	p47	FBpp0088069	2.2E-47	2R:3352651-3353002
Gthfl-4b10.q1k	CG9582	FBpp0079379	5.8	2L:9025241-9025270	Gpafl-8c02.p1k	CDP diglyceride synthetase	FBpp0076411	3.0E-18	3L:8122553-8122633
Gthfl-1h10.p1k	CG14778	FBpp0070244	3.2	X:1364274-1364300	Gpgh-cn89	Phosphoribosylamidotransferase	FBpp0081261	2.5E-108	3R:3735796-3736107
Gpa-cn130	Ankyrin	FBpp0088239	6.9	4:139375-139474	Gpgh-cn118	CG10077	FBpp0076649	9.8	3L:6947540-6947581
Gpghfl-1a02.q1k	No Hits				Gpghfl-8d07.p1k	CG3226	FBpp0070953	7.7E-40	X:6547313-6547495
Signal transduction					Gpghfl-8f09.p1k	wings up A	FBpp0074298	1.8E-39	X:18000765-18003514
Gpgh-cn84	Dopamine receptor	FBpp0288722	0.14	3R:10003804-10006023	Gpghfl-8f08.p1k	Ank2	FBpp0111609	8.2	3L:7703123-7703218
Gpgh-cn112	Arrestin 2	FBpp0076326	3.5E-28	3L:8640809-8641310	Gpghfl-5d04.p1k	cyclophilin-33	FBpp0086101	0.74	2R:13432932-13433061
Gth-cn59	Arrestin 2	FBpp0076326	3.5E-22	3L:8640809-8641268	Gpghfl-5e08.p1k	chickadee	FBpp0078864	1.2E-87	2L:5973601-5979522
Gthfl-7b01.p1k	CG32683	FBpp0071397	8.8E-22	X:10315511-10321501	Gpghfl-5e02.p1k	CG18327	FBpp0086651	0.0031	2R:10055529-10055648
Gthfl-18b01.p1k	CG10625	FBpp0271739	9.4	3L:5533568-5533801	Gpghfl-9c05.p1k	short gastrulation	FBpp0073879	1.2E-62	X:15500008-15500256
Gpghfl-5d02.p1k	CG13040	FBpp0075189	0.029	3L:16318549-16318868	Gpghfl-9f01.p1k	Dynamin associated protein 160	FBpp0081031	8.7	2L:21140789-21140842
Gpa-cn138	CG17834	FBpp0079298	1.5	2L:8536069-8536228	Gpghfl-9f10.p1k	Autophagy-specific gene 6	FBpp0083975	2.5E-109	3R:19875410-19875694
Gpafl-7e07.q1k	Ptx1	FBpp0271894	4.8	3R:26750265-26754895	Gpghfl-9a01.p1k	Brother	FBpp0072643	5.2E-95	3L:1647959-1648426
Gpafl-7f12.p1k	No Hits				Gpghfl-5f10.q1k	CG31075	FBpp0084452	1	3R:22811511-22811549
Nucleic Acid Metabolism	l				Gpghfl-10h01.p1k	CG31075	FBpp0084452	2.7E-96	3R:22811454-22811885
Gpgh-cn1	Ribosomal protein L15	FBpp0112467	4.1E-124	3LHet:2398667-2398930	Gth-cn3	CG12027	FBpp0073228	5.4E-16	3L:5011883-5012020
Gpgh-cn89	Phosphoribosylamidotra nsferase	FBpp0081261	2.5E-108	3R:3735796-3736107	Gth-cn9	Dynamin associated protein 160	FBpp0081031	6.4	2L:21140789-21140842
Gpgh-cn118	CG10077	FBpp0076649	9.8	3L:6947540-6947581	Gth-cn55	lethal (1) G0230	FBpp0071373	1.5E-78	X:10107326-10107774
Gpghfl-8g10.p1k	string of pearls	FBpp0079500	6.0E-159	2L:9896474-9897028	Gth-cn68	ATP synthase-gamma chain	FBpp0084907	5.0E-36	3R:25573582-25573749
Gpghfl-8h01.p1k	Ribosomal protein L23	FBpp0071808	2.1E-23	2R:18743058-18743162	Gth-cn75	Calcium ATPase at 60A	FBpp0072125	3.5E-141	2R:19816838-19817618
Gpghfl-8g08.p1k	Ribosomal protein L38	FBpp0110412	1.3E-49	2R:403615-403824	Gth-cn78	CG13551	FBpp0071943	1.4E-09	2R:19265671-19270185
Gpghfl-8h07.p1k	Ribosomal protein L5	FBpp0110420	1.1E-61	2L:22428526-22428855	Gth-cn83	CG1746	FBpp0085135	8.5E-68	3R:27043502-27044712

	Best Ensembl Match Best Ensembl Match									
Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location	Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location	
Gpghfl-9a01.p1k	Brother	FBpp0072643	5.2E-95	3L:1647959-1648426	Gthfl-2d09.p1k	CG3590	FBpp0082816	2.6E-83	3R:12846069-12846308	
Gpghfl-5d04.p1k	cyclophilin-33	FBpp0086101	0.74	2R:13432932-13433061	Gthfl-8b01.p1k	Brother	FBpp0072643	3.0E-38	3L:1647959-1648177	
Gpghfl-9d01.p1k	Histone H3.3A	FBpp0078650	3.7E-82	2L:5055259-5055727	Gthfl-6f01.p1k	Dead box protein 80	FBpp0112438	0.22	3LHet:2423709-2423774	
Gth-cn56	Ribosomal protein S3	FBpp0083802	9.3E-128	3R:19185044-19185535	Gthfl-4f10.p1k	CG31075	FBpp0084452	1.7	3R:22811511-22811549	
Gthfl-8b01.p1k	Brother	FBpp0072643	3.0E-38	3L:1647959-1648177	Motobolism					
Gthfl-5g08.q1k	lilliputian	FBpp0077318	3.7	2L:2950300-2950335	Gthfl-4h12.p1k	CG2887	FBpp0071393	2.5E-16	X:10371602-10371763	
Gthfl-5h01.q1k	Ribosomal protein L23	FBpp0071808	7.8E-26	2R:18743049-18743162	Gthfl-4c07.p1k upheld FBpp0100015		2.5E-13	X:13489076-13489254		
Gthfl-5h07.q1k	Ribosomal protein L5	FBpp0110423	2.2E-35	2L:22427727-22428399	Gthfl-6c09.q1k ATP synthase-2C subunit b FBpp007		FBpp0076134	9.4E-25	3L:9723956-9724066	
Gthfl-6f01.p1k	Dead box protein 80	FBpp0112438	0.22	3LHet:2423709-2423774	Gthfl-6a01.q1k	Brother	FBpp0072643	3.5E-22	3L:1648259-1648408	
Gthfl-6a01.q1k	Brother	FBpp0072643	3.5E-22	3L:1648259-1648408	Gthfl-7g04.p1k	Bruce	FBpp0081717	0.34	3R:6139271-6139357	
Gthfl-4c07.q1k	Ribosomal protein	FBpp0078416	9.0E-34	3R:1291582-1291704	Gthfl-14h01.p1k	Muscle-specific protein 300	FBpp0091017	8.3E-18	2L:5204509-5204868	
Gthfl-16e08.p1k	TfIIA-S-2	FBpp0070177	1.9E-14	X:905246-905392	Gpafl-4g07.p1k	CG10317	FBpp0082769	1.2	3R:12195606-12195738	
Gthfl-5g10.q1k	string of pearls	FBpp0079500	9.3E-33	2L:9896330-9896626	Gpafl-6a02.q1k	CG12360	FBpp0082186	7.9	3R:8853086-8853115	
Gthfl-1h08.q1k	RNA polymerase I	FBpp0077714	2.5E-18	2L:407385-407705	Gpafl-6b05.p1k	No Hits				
Gpa-cn95	CG7702	FBpp0083080	2.4	3R:14498679-14498708	Gpafl-9e11.q1k	CG3884	FBpp0086913	8	2R:8836858-8836878	
Gpghfl-8a07.p1k	Ribosomal protein L36	FBpp0070150	1.9E-81	X:522498-522891	Gpafl-7a12.p1k	CG7304	FBpp0075329	5	3L:15673312-15673341	
Gpghfl-5c07.q1k	CG31814	FBpp0080157	3.1	2L:13678375-13678407	Gpafl-7d01.p1k	shuttle craft	FBpp0080266	7.1	2L:15114145-15114180	
Gpghfl-7d07.p1k	CG32529	FBpp0074570	9.1	X:19796431-19796448	Gpafl-7e04.p1k	No Hits				
Gthfl-8c02.q1k	CG14642	FBpp0088629	0.94	3R:68094-68123	Gpgh-cn3	CG42319	FBpp0289014	4.9	2R:9151311-9151343	
Gthfl-5a07.q1k	Ribosomal protein L36	FBpp0070150	9.6E-72	X:522498-522873	Gpgh-cn20	No Hits				
Gpafl-2c08.p1k	No Hits				Gpgh-fl-1b02.q1k	CG3546	FBpp0070647	4.9	X:4453460-4453486	
Gpgh-cn49	No Hits				Gpghfl-2d11.p1k	No Hits				
Gpgh-cn53	No Hits				Gpghfl-8e06.p1k	Ferritin 1 heavy chain homologue	FBpp0084995	0.00014	3R:26211709-26211771	
Gth-cn8	No Hits				Gthfl-4e09.p1k	p47	FBpp0088069	1.2	2R:3352651-3352683	
Gthfl-8b08.p1k	No Hits				Gthfl-5g03.q1k	CG40113	FBpp0112518	0.54	2RHet:2239984-2240007	
					Gthfl-4c04.q1k	mitochondrial Cyt. c oxidase	FBpp0100176	1.3E-11	dmel_mitochondrion_genome:2908- 3009	

	Best Ensembl Match				Best Ensembl Match					
Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location	Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location	
Energy Metabolism										
Gpafl-6d02.p1k	CG10396	FBpp0085425	7.0E-19	2R:1241966-1242157	Gthfl-4g11.q1k	Translocase of outer membrane	FBpp0081284	6.3E-29	3R:3862014-3862214	
Gpgh-cn15	CG3731	FBpp0082459	4.0E-20	3R:10717814-10718014	Gthfl-1d08.p1k	transient receptor potential	FBpp0084879	1.3E-12	3R:25740321-25740398	
Gpghfl-8b10.p1k	CG9306	FBpp0080051	6.9E-79	2L:13370374-13370517	Gpghfl-5h10.p1k	No Hits				
Gpghfl-8c10.p1k	CG3446	FBpp0070885	2.5E-78	X:6243768-6244230	Gpghfl-9c03.p1k	No Hits				
Gpghfl-8e08.p1k	CG2014	FBpp0084806	4.3E-108	3R:25341696-25342028	Gpghfl-8a05.p1k	No Hits				
Gpghfl-9c09.p1k	CG17300	FBpp0075626	1.1E-10	3L:13079667-13079936	Gpghfl-9c06.p1k	No Hits				
Gpghfl-9e09.q1k	CG10320	FBpp0112014	1.1E-29	2R:17545870-17546120	Gthfl-8c01.p1k	No Hits				
Gpghfl-5e01.p1k	CG7211	FBpp0079104	2.0E-27	2L:7747647-7747754	Gthfl-4g08.q1k	No Hits				
Gpghfl-5e07.p1k	Cyt. c oxid subunit Va	FBpp0081947	1.8E-73	3R:7645521-7645877	Gthfl-6g09.q1k	No Hits				
Gpghfl-5h02.p1k	CG5548	FBpp0073777	4.1E-46	X:14958200-14958364						
Gth-cn3	CG12027	FBpp0073228	5.4E-16	3L:5011883-5012020						
Gth-cn57	CG30093	FBpp0086341	1.5E-22	2R:11831745-11831879						
Gth-cn60	CG34172	FBpp0111278	0.04	2L:2192626-2192700						
Gthfl-1a11.q1k	CG13397	FBpp0079316	1.7	2L:8410206-8410241						
Gthfl-1a11.p1k	CG10396	FBpp0085425	2.2E-19	2R:1241966-1242157						
Gthfl-1c07.q1k	CG2249	FBpp0087485	1.1E-33	2R:5937084-5937371						
Gthfl-1c07.p1k	CG12907	FBpp0087440	8.2	2R:6241122-6241154						
Gthfl-5e08.q1k	CG2014	FBpp0084806	6.1E-10	3R:25342074-25342142						
Gthfl-4h06.q1k	CG18624	FBpp0071092	2.4E-27	X:7787181-7787330						
Gpgh-cn88	CG7181	FBpp0078037	1.1E-38	3L:21532175-21532454						
Gpafl-1a01.p1k	Mit. NADH-ubiq. oxidoreductase	FBpp0100183	3.4	dmel_mitochondrion_genome: 8210-8254						
Gpgh-cn2	Mit. NADH-ubiq. oxidoreductase	FBpp0100187	2.7E-44	dmel_mitochondrion_genome: 11918-12085						
Gpgh-cn4	mitochondrial Cyt. c oxidase subunit I	FBpp0100176	1.5E-107	dmel_mitochondrion_genome: 2650-2859						
Gpgh-cn5	mitochondrial Cyt c oxidase subunit II	FBpp0100177	3.5E-78	dmel_mitochondrion_genome: 3545-3724						

Appendix VII cont.				
	Best Ensembl Match			
Cluster	D. melanogaster Gene	Protein ID	E-value	Chr. Location
Gpgh-cn6	Mit. Cyt c oxidase nit III	FBpp0100180	2.2E-107	dmel_mitochondrion_genome: 5108-5509
Gpgh-cn7	Mit. NADH-ubiq. oxidoreductase	FBpp0100182	3.3E-06	dmel_mitochondrion_genome: 6508-6573
Gpgh-cn114	mitochondrial ATPase subunit 6	FBpp0100179	6.9E-73	dmel_mitochondrion_genome: 4398-4568
Gpgh-cn115	mitochondrial Cyt c oxidase subunit III	FBpp0100180	0.69	dmel_mitochondrion_genome: 5357-5383
Gpgh-cn116	mitochondrial Cyt c oxidase subunit III	FBpp0100180	1.0E-69	dmel_mitochondrion_genome: 5087-5398
Gpghfl-3g03.q1k	CG15456	FBpp0077015	3.8	X:20297904-20297921
Gth-cn6	mitochondrial NADH- ubiquinone oxidoreductase chain 4	FBpp0100183	1.4E-45	dmel_mitochondrion_genome: 8510-8677
Gth-cn19	mitochondrial Cytochrome c oxidase subunit III	FBpp0100180	2.5E-97	dmel_mitochondrion_genome: 5108-5509
Gth-cn55	lethal (1) G0230	FBpp0071373	1.5E-78	X:10107326-10107774
Gth-cn58	mitochondrial NADH- ubiquinone oxidoreductase chain 1	FBpp0100187	1.3E-09	dmel_mitochondrion_genome: 11780-11851
Gth-cn69	mitochondrial Cytochrome c oxidase subunit III	FBpp0100180	2.8E-121	dmel_mitochondrion_genome: 5087-5425
Gth-cn70	mitochondrial Cytochrome c oxidase subunit II	FBpp0100177	5.7E-102	dmel_mitochondrion_genome: 3320-3769
Gthfl-2b11.q1k	No Hits			
Gthfl-5b10.q1k	CG9306	FBpp0080051	1.8E-30	2L:13370374-13370517
Gthfl-7h05.p1k	mitochondrial NADH- ubiquinone oxidoreductase chain 4	FBpp0100183	8.6E-72	dmel_mitochondrion_genome: 8771-8986
Gthfl-5h04.q1k	CG6723	FBpp0081881	1.5	3R:7242355-7242378
Gthfl-6b01.q1k	mitochondrial ATPase subunit 6	FBpp0100179	1.3E-55	dmel_mitochondrion_genome: 4392-4598

	Best Ensembl Match			
Cluster	D. melanogaster	Protein ID	E-value	Chr. Location
Cthfl 4b01 a1k	mitoshondrial ATDasa	EPpp0100170	0.4E.00	dmal mitachandrian ganama
Guill-4001.q1k	subunit 6	Г.Брро100179	9.4E-09	4632-4727
Gthfl-4b11.q1k	mitochondrial Cyt c	FBpp0100180	1.1E-05	dmel_mitochondrion_genome:
-	oxidase subunit III			5351-5398
Gthfl-4c01.p1k	Mit. NADH-ubiquinone	FBpp0100182	6.0E-46	dmel_mitochondrion_genome:
-	oxidoreductase	* *		7003-7128
Gthfl-4h09.q1k	CG33174	FBpp0073656	9.9	X:13702517-13702540
•				

Gpa-cnxxx - *Glossina pallidipes* consensus sequences; Gpaf-xxxx.q1k - *Glossina pallidipes* antennae singletons; Gpgh-cnxxx - *Glossina palpalis* gambiensis consensus sequences; Gpghfl-xxxx.q1k - *Glossina palpalis gambiensis* head singletons; Gth-cnxxx - *Glossina tachinoides* consensus sequences; Gthfl-xxxx.q1k - *Glossina tachinoides* head singletons

Cluster	An. gambiae Description	Protein ID	E-value	Chr. Location	Ae. aegypti Description	Protein ID	E-value	Genomic Location Supercont	<i>Culex quinquefasciatus</i> Description	Protein ID	E-value	Genomic Location Supercont
Odorant Binding												
Gpa-cn30	OBP17	AGAP003309-PA	2.0E-37	2R: 35,643,124- 35,644,111	OBP	AAEL009449-PA	3.0E-36	1.397:1,059,826- 1,064,022	OBP	CPIJ007617	2.0E-35	3.150:672930- 673546
Gpgh-cn109	OBP17	AGAP003309-PA	1.0E-34	2R: 35,643,124- 35,644,111	OBP	AAEL009449-PA	1.0E-34	1.397:1,059,826- 1,064,022	Insect OBP/ PhBP	CPIJ007604	3.0E-34	3.150:170718 - 174721
Gth-cn65	PBP/A10/OS-D	AGAP008052-PA	5.0E-41	3R: 4,868,812- 4,869,195	OS-D/PhBP	AAEL002022-PA	1.0E-41	1.47:2,418,811- 2,419,194	CSP 1	CPIJ002618	8.0E-35	3.42:1,053,230- 1,053,607
Gthfl-5d10.q1k	OBP9	AGAP000278-PA	0.002	X: 5,035,500- 5,035,999	OBP 99c	AAEL005772-PA	8.0E-04	1.174:1,533,074- 1,533,545	GOBP 99a	CPIJ017326	0.002	3.984:154,116- 154,609
Gpghfl-8a06.p1k	Ubiquinol-cyt.c redu hinge	AGAP002245-PA	1.0E-20	2R: 18,083,401- 18,083,756	Ubiquinol-cyt.c redu hinge	AAEL010801-PB	4.0E-23	1.509:141,153 - 141,587	Mitochondrial	CPIJ008356	1.0E-22	
Gpghfl-8d10.p1k	OBP9	AGAP000278-PA	2.0E-017	X: 5,035,500- 5,035,999	OBP 99c	AAEL005772-PA	4.0E-17	1.174: 1,533,074- 1,533,545	GOBP	CPIJ017326	6.0E-17	
Gpghfl-5g01.p1k	OBP	AGAP004263-PA	1.0E-08	2R: 53,468,012- 53,469,656	OBP	AAEL011966-PA	2.0E-07	1.638:389,885- 404,032	OBP	CPIJ015482	5.0E-09	3.639:116,905- 125,388
Gthfl-8b10.p1k	OBP17	AGAP003309-PA	9.0E-09	2R: 35,643,124- 35,644,111	OBP 56a	AAEL015499-PA	2.0E-08	1.2733:6,977-7,429	Insect OBP/ PhBP	CPIJ007604	1.0E-07	3.150:170,719- 174,721
Structural												
Gpgh-cn110	Cuticular protein 15	AGAP008459-PA	2.0E-07	3R: 10,897,827- 10,898,198	Cuticle protein	AAEL002181-PA	7.0E-07	1.51:1,124,480- 1,124,944	cuticle protein	CPIJ003482	2.0E-06	3.48:207,283- 207,796
Gpgh-cn113	Alanine-rich region profile	AGAP008454-PA	3.0E-05	3R: 10,888,884- 10,889,372	Alanine-rich region	AAEL017402-PA	1.0E-04	1.51:1,134,955- 1,135,681	cuticle protein	CPIJ003453	9.0E-06	3.48:38,673- 39,135
Gpghfl-9d01.p1k	Histone H3	AGAP001813-PA	4.0E-70	2R: 10,860,617- 10,861,148	histone H3.3	AAEL006158-PA	4.0E-70	1.192:1,123,692- 1,124,168	histone H3.3 type 2	CPIJ017187	5.0E-70	3.876:94,629- 95,108
Gpghfl-5g03.p1k	cuticular protein 75	AGAP009871-PA	5.0E-37	3R: 44,607,075- 44,608,893	pupal cuticle protein	AAEL003259-PA	2.0E-38	1.82:349,372- 357,541	pupal cuticle protein	CPIJ009331	1.0E-35	3.242:229,831- 231,878
Gpghfl-5e08.p1k	Profilin/allergen	AGAP009861-PA	1.0E-53	3R: 44,535,146- 44,555,606	profilin	AAEL013353-PD	1.0E-53	1.827:268,874- 304,152	profilin	CPIJ001546	8.0E-54	3.17:367,863- 385,968
Gpghfl-5g11.p1k	Tetratricopeptide TPR-1	AGAP003727-PA	6.0E-41	2R: 42,626,025- 42,628,951	Armadillo	AAEL009168-PA	2.0E-38	1.375:491,598- 493,244	translocase of outer membrane	CPIJ001395	1.0E-37	3.20:866,214- 869,072
Gth-cn52	Cuticular protein 16	AGAP008460-PA	3.0E-06	3R: 10,900,320- 10,900,829	Alanine-rich region profile	AAEL017402-PA	7.0E-07	1.51:1,134,955- 1,135,681	cuticle protein	CPIJ003474	1.0E-06	3.48:188,147- 188,597
Gth-cn53	Cuticular protein 1	AGAP008444-PA	1.0E-05	3R: 10,866,569- 10,867,012	cuticle protein	AAEL002181-PA	2.0E-05	1.51:1,124,480- 1,124,944	cuticle protein	CPIJ003473	7.0E-05	3.48:186,440- 186,946

Appendix VIII - Glossina pallidipes, Glossina palpalis gambiensis and Glossina tachinoides clusters and their best matches to Anopheles gambiae, Aedes aegypti and Culex quinguefasciatus protein databases

Cluster	An. gambiae Description	Protein ID	E-value	Chr. Location	Ae. aegypti Description	Protein ID	E-value	Genomic Location Supercont	<i>Culex quinquefasciatus</i> Description	Protein ID	E-value	Genomic Location Supercont
Gpa-cn1	Prion	AGAP008439-PA	0.005	3R: 10,805,155- 10,807,128	Proline-rich region	AAEL005017-PA	0.021	1.139:780,568- 782,310	Proline-rich region	CPIJ000931	0.036	3.9:1,953,966- 1,959,660
Gpafl-8f02.p1k	No Hits				No Hits				No Hits			
Transport												
Gpafl-1h05.p1k	ADP,ATP carrier protein 2	AGAP002358-PC	1.0E-54	2R:20,598,090- 20,599,178	ADP, ATP carrier protein	AAEL004855-PA	2.0E-46	1.132:1,668,937- 1,682,495	ADP, ATP carrier	CPIJ005941	3.0E-54	3.104:143,246- 144,296
Gpafl-7d12.q1k	Tricarboxylate/iron carrier	AGAP004519-PA	6.0E-05	2R: 57,327,659- 57,329,455	No Hits				sideroflexin	CPIJ008314	7.0E-05	3.167:673,160- 677,888
Gpgh-cn101	Longin	AGAP012717-PA	1.0E-101	UNKN: 24,915,268- 24,916,389	snare protein sec22	AAEL012875-PA	1.0E-105	5 1.753:388,957- 389,921	transport protein SEC22	CPIJ017814	1.0E- 105	3.1019:93,459- 94,353
Gpghfl-5b10.p1k	Adenine nucleotide translocator 1	AGAP007653-PA	1.0E-11	2L: 48,762,165- 48,765,808	tricarboxylate transport protein	AAEL005991-PA	1.0E-63	1.184:106,061- 115,898	tricarboxylate transport protein	CPIJ013697	2.0E-64	3.492:260,522- 261,566
Gpghfl-5c11.p1k	ADP,ATP carrier protein 2	AGAP002358-PC	1.0E-62	2R:20,598,090- 20,599,178	ADP, ATP carrier protein	AAEL004855-PA	1.0E-54	1.132:1,668,937- 1,682,495	ADP, ATP carrier protein	CPIJ005941	4.0E-63	3.104:143,246- 144,296
Gpghfl-5e02.p1k	Mit. substrate/solute carrier	AGAP002704-PA	2.0E-26	2R: 25,826,373- 25,828,086	Mitochondrial substrate carrier	AAEL008718-PA	1.0E-27	1.344:870,632- 889,122	Mitochondrial substrate carrier	CPIJ002886	9.0E-27	3.37:1,054,405- 1,056,054
Gth-cn75	Calcium-transporting ATPase	AGAP006186-PB	7.0E-97	2L: 27,903,046- 27,928,073	calcium-transporting ATPase	AAEL006582-PA	3.0E-98	1.211:1,168,009- 1,213,899	calcium-transporting atpase sarcoplasmic	CPIJ018021	5.0E-96	3.1063:57,960- 81,174
Gthfl-4a12.p1k	ATPase, P-type cation exchange	AGAP002858-PE	4.0E-99	2R:28,371,857- 28,387,114	Na+/K+ ATPase alpha subunit	AAEL012062-PC	2.0E-98	1.650:512,971- 547,252	sodium/potassium- transporting ATPase alpha chain	CPIJ005966	9.0E-57	3.104:497,581- 503,775
Gthfl-4b10.q1k	Mitochondrial carrier protein	AGAP007653-PA	3.0E-09	2L: 48,762,165- 48,765,808	tricarboxylate transport protein	AAEL005991-PA	1.0E-54	1.184:106,061- 115,898	tricarboxylate transport protein	CPIJ013697	4.0E-55	3.492:260,522- 261,566
Gthfl-1h10.p1k	No Hits				No Hits				No Hits			
Gpa-cn130	No Hits				No Hits				No Hits			
Gpghfl-1a02.q1k	Acyl carrier protein (ACP)	AGAP010464-PA	8.0E-14	3L: 3,944,950- 3,945,956	acyl carrier protein precursor	AAEL011689-PA	1.0E-11	1.603:180,673- 194,411	Acyl carrier protein (ACP)	CPIJ006168	7.0E-08	3.109:639,109- 645,442
Signal transduction												
Gpgh-cn84	putative rhodopsin receptor 3	AGAP012985-PA	1.0E-90	2R:671,584- 672,696	GPCR (Rhod)opsin Family Source	AAEL006498-PA	7.0E-88	1.208:1,715,269- 1,716,390	opsin-1	CPIJ012052	1.0E-89	3.358:153,562- 154,668
Gpgh-cn112	Arrestin	AGAP010134-PA	2.0E-51	3R: 49,303,097- 49,304,807	phosrestin ii (arrestin a) (arrestin 1)	AAEL013535-PA	2.0E-52	1.864:398,197- 406,521	phosrestin ii	CPIJ003101	3.0E-50	3.39:314,782- 318,945
Gth-cn59	Arrestin	AGAP010134-PA	1.0E-42	3R: 49,303,097- 49,304,807	phosrestin ii (arrestin a)	AAEL013535-PA	1.0E-43	1.864:398,197- 406,521	phosrestin ii	CPIJ003101	2.0E-42	3.39:314,782- 318,945

Cluster	An. gambiae Description	Protein ID	E-value	Chr. Location	<i>Ae. aegypti</i> Description	Protein ID	E-value	Genomic Location Supercont	<i>Culex quinquefasciatus</i> Description	Protein ID	E-value	Genomic Location Supercont
Gthfl-7b01.p1k	Arrestin	AGAP010134-PA	4.0E-57	3R: 49,303,097- 49,304,807	phosrestin ii (arrestin a)	AAEL013535-PA	4.0E-55	1.864:398,197- 406,521	phosrestin ii	CPIJ003101	2.0E-56	3.39:314,782- 318,945
Gthfl-18b01.p1k	arrestin, Arr2-like	AGAP006263-PA	1.0E-44	2L: 28,771,909- 28,773,907	phosrestin i (arrestin b) (arrestin 2)	AAEL003116-PA	5.0E-45	1.78:2,394,436- 2,395,931	phosrestin-1	CPIJ014777	4.0E-45	3.588:39,146- 40,948
Gpghfl-5d02.p1k	No Hits				No Hits				No Hits			
Gpa-cn138	No Hits				No Hits				No Hits			
Gpafl-7f12.p1k	No Hits				No Hits				ucrose transport protein	CPIJ012070	0.055	3.377:161,231- 163,559
Nucleic Acid Metabolism												,
Gpgh-cn1	60S ribosomal protein L15	AGAP004919-PA	5.0E-73	2L: 6,015,542- 6,016,396	ribosomal protein L15	AAEL001488-PA	4.0E-51	1.34:3,448,327- 3,448,923	60S ribosomal protein L15	CPIJ008103	4.0E-73	3.184:249,409- 250,210
Gpgh-cn89	Amidophosphoribos vl transferase	AGAP000179-PA	1.0E-76	X: 2,993,095- 2,995.080	amidophosphoribosy ltransferase	AAEL003581-PB	2.0E-80	1.92:1,708,067- 1.709.917	amidophosphoribosyltr ansferase	CPIJ009001	4.0E-78	3.210:183,267- 185.112
Gpgh-cn118	RNA helicase, DEAD-box type, Q motif	AGAP010656-PA	2.0E-27	3L: 8,078,239- 8,100,371	DEAD box ATP- dependent RNA helicase	AAEL013985-PA	7.0E-27	1.976:331,090- 339,354	ATP-dependent RNA helicase DDX54	CPIJ008599	4.0E-23	3.202:434,116- 436,557
Gpghfl-8g10.p1k	Ribosomal protein S5,	AGAP003768-PA	1.0E-106	2R: 43,124,620- 43,125,724	40S ribosomal protein S2	AAEL010168-PB	1.0E-106	1.458:871,944- 872,978	40S ribosomal protein S2	CPIJ010326	1.0E- 103	3.295:280,049- 282,560
Gpghfl-8h01.p1k	Ribosomal protein L14b	AGAP010252-PA	3.0E-14	3R: 51,662,651- 51,663,450	60S ribosomal protein L23	AAEL013097-PA	3.0E-14	1.789:366,699- 367,486	RL23	CPIJ011325	4.0E-14	3.310:461,499- 462,272
Gpghfl-8g08.p1k	60S ribosomal protein L38	AGAP010163-PA	5.0E-29	3R: 49,777,851- 49,778.063	Ribosomal protein L38e	AAEL005451-PA	1.0E-30	1.157:1,727,679- 1.727.891	60S ribosomal protein L38	CPIJ005613	3.0E-30	3.95:734,463- 734.675
Gpghfl-8h07.p1k	60S ribosomal protein L5	AGAP009031-PA	4.0E-75	3R: 24,355,978- 24,357,240	ribosomal protein L5	AAEL004325-PA	2.0E-90	1.114:1,986,958- 1,990,971	60S ribosomal protein L5	CPIJ010112	4.0E-89	3.276:498,078- 499,646
Gpghfl-9a01.p1k	Core binding factor, beta	AGAP000317-PA	1.0E-71	X: 5,610,066- 5.616.769	Core binding factor, beta	AAEL005829-PA	1.0E-70	1.176:643,909- 677.173	Core binding factor, beta subunit	CPIJ019164	7.0E-70	3.1457:33,910- 44.867
Gpghfl-5d04.p1k	Eukaryotic TIF-3 subunit G	AGAP007668-PA	9.0E-65	2L: 48,887,512- 48.888,419	eukaryotic TIF-3	AAEL012661-PA	6.0E-69	1.722:40,930- 42.245	eukaryotic TIF-3	CPIJ000190	2.0E-67	3.3:1,729,170- 1.730.055
Gpghfl-9d01.p1k	Histone H3	AGAP001813-PA	4.0E-70	2R: 10,860,617- 10,861,148	histone H3.3	AAEL006158-PA	4.0E-70	1.192:1,123,692-	histone H3.3 type 2	CPIJ017187	5.0E-70	3.876:94,629- 95.108
Gth-cn56	K Homology, prokarvotic type	AGAP001910-PA	3.0E-78	2R: 12,009,718- 12.011.048	40S ribosomal protein S3	AAEL008192-PB	1.0E-79	1.305:1,304,669-	40S ribosomal protein	CPIJ013941	4.0E-79	3.525:165,880-
Gthfl-8b01.p1k	Core binding factor, beta subunit	AGAP000317-PA	2.0E-29	X: 5,610,066- 5,616,769	Core binding factor, beta subunit	AAEL005829-PA	7.0E-29	1.176:643,909-	Core binding factor, beta subunit	CPIJ019164	9.0E-29	3.1457:33,910-
Gthfl-5g08.q1k	60S ribosomal protein L38	AGAP010163-PA	0.01	3R: 49,777,851- 49,778,063	Ribosomal protein L38e	AAEL005451-PA	0.01	1.157:1,727,679- 1,727,891	60S ribosomal protein	CPIJ005613	0.024	3.95:734,463- 734,675

Cluster	An. gambiae	Protein ID	E-value	Chr. Location	Ae. aegypti	Protein ID	E-value	Genomic Location	Culex quinquefasciatus	Protein ID	E-value	Genomic Location
	Description				Description			Supercont	Description			Supercont
Gthfl-5h01.q1k	Ribosomal protein	AGAP010252-PA	8.0E-16	3R: 51,662,651-	60S ribosomal	AAEL013097-PA	8.0E-16	1.789:366,699-	RL23	CPIJ011325	9.0E-16	3.310:461,499-
Cthfl 5b07 all	L140/L25e Dibosomal protain	ACAD000021 DA	2 OF 06	2D: 24 255 078	ribosomal protain	A AEL 004225 DA	1 OE 19	307,480 1 114,1 086 059	608 ribosomal protain	CDU010112	2 OF 19	402,272
Ouni-5107.qrk	L5	AUAI 009031-1 A	2.01-00	24,357,240	L5	AAEE004325-1 A	1.0L-10	1.990.971	005 H00s0inai protein	CI IJ010112	2.01-16	499.646
Gthfl-6f01.p1k	RNA helicase,	AGAP008578-PA	1.0E-16	3R: 13,262,401-	DEAD box ATP-	AAEL009285-PA	3.0E-15	1.387:804,914-	ATP-dependent RNA	CPIJ009286	3.0E-15	3.218:487,325-
1	DEAD-box type, Q			13,264,364	dependent RNA			823,594	helicase vasa			489,515
	motif				helicase							
Gthfl-6a01.q1k	Core binding factor,	AGAP000317-PA	1.0E-27	X: 5,610,066-	Core binding factor,	AAEL005829-PA	5.0E-28	1.176:643,909-	Core binding factor,	CPIJ019164	2.0E-27	3.1457:33,910-
	beta			5,616,769	beta subunit			677,173	beta subunit			44,867
Gthfl-4c07.q1k	Histone H5	AGAP002754-PA	2.0E-12	2R: 26,675,074-	ribosomal protein	AAEL000823-PB	2.0E-12	1.17:998,091-	60S ribosomal protein	CPIJ008184	5.0E-14	3.183:728,929-
G1 G 1 C 00 11		1 C 1 D00 1250 D 1	5 0 E 1 C	26,675,740	L35A		5 OF 10	998,675		CD11005200	2 OF 17	729,634
Gthfl-16e08.p1k	TIF factor IIA	AGAP004370-PA	5.0E-46	2R: 55,365,431-	(TFIIA)	AAEL002140-PA	5.0E-48	1.50:2,297,312-	TIF IIA gamma chain	CPIJ007398	3.0E-47	3.14/:699,/98-
Gthfl 5a10 a1k	Pibosomal protein	AGA 0003768 DA	2 OF 20	22,202,951 22,202,951	40S ribosomal	A A EL 010168 DB	5 OF 20	2,297,791	40S ribosomal protain	CPU010326	1 OF 26	700,204
Ouni-5g10.q1k	S5	AGAI 005700-1 A	2.0L-27	43 125 724	protein S2	AALLO10100-1 D	5.0L-27	872 978	405 Hoosomai protein	CI 15010520	1.01-20	282 560
	50			10,120,721	protein 62			0/2,//0				202,000
Gthfl-1h08 a1k	RNA nolymerase	AGAP008151-PA	3 0E-64	3R·6212809-	RNA polymerase	AAEL017156-PA	7 0E-64	1 84.2 256 737-	DNA-directed RNA	CPU007655	1.0E-33	3 159.169 512-
Guin moo.qrk	Rpb2.	110/11/0001011/11	5.01 01	6.238.165	Rpb2.	THELOIT 150 TH	7.01 01	2.268.271	polymerase II	0113007055	1.01 55	173.328
Gpa-cn95	No Hits			, ,	No Hits			, ,	No Hits			,
Gnghfl-8a07 p1k	Ribosomal protein	AGAP002921-PB	9.0E-48	2R·29 615 444-	ribosomal protein	AAEL000010-PB	1.0E-46	1.1.4.236.762-	No Hits			
-r8	L36e			29,616,107	L36			4,237,585				
Gpghfl-5c07.q1k	No Hits				No Hits				No Hits			
Gpghfl-7d07.p1k	No Hits				No Hits				No Hits			
Gthfl-8c02.q1k	No Hits				No Hits				No Hits			
Gthfl-5a07.q1k	Ribosomal protein	AGAP002921-PB	3.0E-41	2R:29,615,444-	ribosomal protein	AAEL000010-PB	2.0E-40	1.1:4,236,762-	No Hits			
	L36e			29,616,107	L36			4,237,585				
Gpafl-2c08.p1k	No Hits				No Hits				hypothetical protein	CPIJ009839	0.031	3.253:560,664-
Grah-cn49	Proline-rich region	AGAP005529-PB	0.001	2I · 16 654 663-	Sec24B protein	A AFI 004977-PA	0.047	1 137.1 147 263-	Proline-rich region	CPU017787	0.008	561,263 3 1119·98-27 917
Opgii elity	r tonne men region	110/11 005527 TB	0.001	16.656.903	beez+b protein	THELOOH) IT IN	0.047	1.174.647	rionne nen region	CI 13017707	0.000	5.1117.96 27,917
Gpgh-cn53	Chitin binding	AGAP001005-PA	0.02	X: 19,092,108-	No Hits			-,,.,	No Hits			
10	protein, peritrophin-			19,095,128								
	А											
Gth-cn8	Cysteine-rich region	AGAP013541-PA	0.01	X:20,029,435-	No Hits				No Hits			
G1 G 01 00 11	NT TT'.			20,030,978	NT TT'.				7' (° COLLO '''	CD1100 (252	0.002	2 11 6 502 210
Ginfl-8608.p1k	NO Hits				NO Hits				Zinc finger, C2H2-like	CPIJ006352	0.093	3.116:592,218- 594,934

Cluster	An. gambiae Description	Protein ID	E-value	Chr. Location	Ae. aegypti Description	Protein ID	E-value	Genomic Location Supercont	<i>Culex quinquefasciatus</i> Description	Protein ID	E-value Genomic Location Supercont
Energy Metabolism											
Gpafl-6d02.p1k	Cyt. c oxidase subunit IV	AGAP008727-PA	2.0E-55	3R: 16,158,434- 16,159,082	cytochrome c oxidase subunit iv	AAEL013009-PA	5.0E-57	1.775:455,628- 461,779	cytochrome c oxidase subunit IV	CPIJ004823	2.0E-54 3.76:758,796- 762,083
Gpgh-cn15	Peptidase M16, zinc- binding site	AGAP000935-PA	9.0E-29	X: 17,669,389- 17,671,168	mitochondrial processing peptidase	AAEL005435-PB	2.0E-28	1.156:1,726,989- 1,729,306	mitochondrial processing peptidase beta subunit	CPIJ013398	1.0E-28 3.456:95,436- 98,497
Gpghfl-8b10.p1k	Complex 1 LYR protein	AGAP009865-PA	8.0E-50	3R: 44,586,368- 44,587,032	NADH:ubiquinone dehydrogenase	AAEL010230-PA	2.0E-50	1.464:19,653- 31,462	NADH:ubiquinone dehydrogenase	CPIJ002649	3.0E-21 3.42:1,327,695- 1,328,454
Gpghfl-8c10.p1k	GRIM-19	AGAP009652-PA	. 3.0E-53	3R: 37,625,238- 37,625,878	mitochondrial NADH:ubiquinone oxidoreductase B16.6 subunit	AAEL005693-PB	6.0E-50	1.170:43,032- 43,570	cell death-regulatory protein GRIM19	CPIJ000908	1.0E-52 3.9:1,540,609- 1,541,061
Gpghfl-8e08.p1k	NADH_UbQ_OxRdt ase-like_20kDa	AGAP000170-PA	2.0E-79	X: 2,905,106- 2,905,729	NADH- plastoquinone oxidoreductase	AAEL008072-PA	3.0E-78	1.299:1,166,704- 1,167,351	NADH dehydrogenase iron-sulfur protein 7	CPIJ018869	7.0E-78 3.1453:49,857- 50,495
Gpghfl-9c09.p1k	ATPase, F0 complex, subunit B, mitochondrial	AGAP001138-PA	3.0E-76	2R: 569,086- 570,174	mitochondrial ATP synthase b chain	AAEL005610-PA	2.0E-77	1.164:50,521- 58,740	ATP synthase B chain	CPIJ006067	1.0E-77 3.106:527,151- 528,237
Gpghfl-9e09.q1k	NADH_UbQ_OxRdt ase_B12	AGAP012374-PA	3.0E-20	3L: 41,232,911- 41,233,246	NADH dehydrogenase	AAEL007054-PA	3.0E-21	1.233:1,318,060- 1,318,383	NADH-ubiquinone oxidoreductase B12 subunit	CPIJ014084	3.0E-19 3.496:66,701- 67,045
Gpghfl-5e01.p1k	ATPase, F0 complex, subunit G, mitochondrial	AGAP009491-PA	2.0E-36	3R: 34,710,853- 34,711,314	ATPase, F0 complex, subunit G	AAEL006509-PA	9.0E-33	1.209:719,920- 720,340	hydrogen-transporting ATP synthase, G- subunit	CPIJ002431	1.0E-33 3.32:671,140- 673,562
Gpghfl-5e07.p1k	Cytochrome c oxidase, subunit Va	AGAP011159-PA	2.0E-48	3L: 18,111,843- 18,112,304	cytochrome c oxidase polypeptide	AAEL014944-PA	6.0E-47	1.1350:13,581- 14,039	cytochrome c oxidase subunit 5A	CPIJ008200	3.0E-45 3.168:362,317- 362,775
Gpghfl-5h02.p1k	NADH_UbQ_OxRdt ase B18 su	AGAP007574-PA	6.0E-25	2L: 47,791,258- 47,792,012	NADH dehydrogenase,	AAEL008490-PA	4.0E-24	1.328:823,062- 832,150	Zinc finger, MYND- type	CPIJ000198	1.0E-24 3.3:1,833,672- 1,841,944
Gth-cn3	ATPase, F0 complex, subunit F6, mitochondrial subgroup	AGAP004616-PA	1.0E-26	2R: 58,515,049- 58,515,445	coupling factor	AAEL002813-PA	2.0E-26	1.68:1,541,837- 1,563,004	mitochondrial ATP synthase coupling factor 6	CPIJ008665	8.0E-27 3.198:433,410- 434,623
Gth-cn57	Cytochrome c oxidase, subunit VIa	AGAP000851-PA	1.0E-36	X: 15,724,507- 15,725,070	cytochrome c oxidase	AAEL003234-PA	3.0E-33	1.82:1,176,603- 1,177,001	cytochrome c oxidase, subunit VIA	CPIJ004219	4.0E-23 3.63:241,673- 242,099
Gth-cn60	Cytochrome c oxidase, subunit VIIa	AGAP000109-PA	6.0E-17	X: 1,792,841- 1,793,381	cytochrome c oxidase, subunit VIIA	AAEL007752-PA	1.0E-14	1.278:1,401,045- 1,401,670	cytochrome c oxidase subunit VIIa	CPIJ015566	2.0E-15 3.680:230,253- 230,725

Cluster	An. gambiae	Protein ID	E-value	Chr. Location	Ae. aegypti	Protein ID	E-value	Genomic Location	Culex quinquefasciatus	Protein ID	E-value	Genomic Location
	Description				Description			Supercont	Description			Supercont
Gthfl-1a11.q1k	Cytochrome c	AGAP008727-PA	7.0E-14	3R: 16,158,434-	cytochrome c	AAEL005170-PA	1.0E-14	1.144:82,069-	cytochrome c oxidase	CPIJ004823	6.0E-14	3.76:758,796-
	oxidase subunit IV			16,159,082	oxidase subunit iv			101,730	subunit IV			762,083
Gthfl-1a11.p1k	Cytochrome c	AGAP008727-PA	6.0E-55	3R: 16,158,434-	cytochrome c	AAEL013009-PA	2.0E-56	1.775:455,628-	cytochrome c oxidase	CPIJ004823	3.0E-54	3.76:758,796-
~ . ~	oxidase subunit IV			16,159,082	oxidase subunit iv			461,779	subunit IV			762,083
Gthfl-1c07.q1k	Cytochrome c	AGAP007621-PB	1.0E-12	2L: 48,354,815-	cytochrome c	AAEL011514-PA	3.0E-12	1.586:394,316-	zinc finger protein	CPIJ008759	1.0E-11	3.205:97,140-
	oxidase subunit VIIc			48,355,245	oxidase, subunit			394,624				100,516
Cthfl 1 207 m11	Cutochnome	AC AD007601 DD	5 OF 15	21. 40 254 015	VIIC	A AEL 011514 DA	1.0E 14	1 596.204 216	zina finaan matain	CD11009750	4 OF 14	2 205.07 140
Guill-1c07.p1k	cytochronie c	AGAP00/021-PD	3.0E-13	2L: 46,554,615- 48 355 245	cytochrome c	AAELUIIJI4-PA	1.0E-14	1.380:394,310-	zine ninger protein	CPIJ008739	4.0E-14	5.205:97,140-
	Oxidase subuint vite			+0,555,2+5	VIIC			574,024				100,510
Gthfl-5e08.a1k	NADH UbO OxRdt	AGAP000170-PA	2.0E-10	X: 2.905.106-	NADH-	AAEL008072-PA	2.0E-10	1.299:1.166.704-	NADH dehvdrogenase	CPIJ018869	2.0E-10	3.1453:49.857-
	ase-20kDa			2,905,729	plastoquinone			1,167,351	iron-sulfur protein 7			50,495
					oxidoreductase				I			
Gthfl-4h06.q1k	NADH_UbQ_OxRdt	AGAP000849-PA	4.0E-16	X: 15,717,168-	NADH	AAEL003423-PB	6.0E-13	1.86:474,964-	NADH dehydrogenase	CPIJ015857	2.0E-13	3.679:40,646-
	ase_MNLL			15,717,335	dehydrogenase			475,131				40,816
Gpgh-cn88	No Domain	AGAP004400-PA	6.0E-05	2R: 55,672,938-	conserved	AAEL007490-PB	0.018	1.258:944,532-	No Hits			
				55,673,356	hypothetical protein			944,911				
Gpafl-1a01.p1k	No Hits				No Hits				No Hits			
Gpghfl-3g03.q1k	No Hits				No Hits				No Hits			
Gth-cn6	No Hits				NADH/Ubiquinone/	AAEL009076-PA	5.0E-18	1.368:182,965-	No Hits			
					plastoquinone			183,204				
Gth-cn23	No Hits				Ubiquinol-	AAEL000182-PA	7.0E-12	1.3:2,042,509-	Ubiquinol-cytochrome	CPIJ000728	9.0E-12	3.6:1,764,455-
					cytochrome C			2,042,761	C reductase			1,764,704
~					reductase							
Gth-cn55	No Hits				ATP synthase delta	AAEL002504-PB	7.0E-40	1.59:964,612-	ATP synthase delta	CPIJ012335	6.0E-40	3.375:305,600-
	NT TT'.				chain		0.05.15	972,428	chain			306,213
Gthfl-2b11.q1k	No Hits				NADH/Ubiquinone/	AAEL0090/6-PA	2.0E-15	1.368:182,965-	No Hits			
					(complex I)			185,204				
Gthfl-5b10 a1k	Complex 1 I VR	AGAP009865-PA	4.0E-23	3R · 11 586 368-	(complex I)	A A EL 010230-PA	2.0E-24	1 /6/.19 653-	No Hits			
Guill-5010.q1k	protein	AGAI 007005-1 A	4.0L-23	44 587 032	dehydrogenase	AALLO10250-IA	2.01-24	31 462	NO IIIts			
Gthfl-7h05.p1k	NADH-auinone	AGAP012727-PA	4.0E-14	UNKN:	No Hits			51,102	No Hits			
2	oxidoreductase			25.591.108-								
				25,592,481								

Cluster	An. gambiae Description	Protein ID	E-value	Chr. Location	Ae. aegypti Description	Protein ID	E-value	Genomic Location Supercont	<i>Culex quinquefasciatus</i> Description	Protein ID	E-value	Genomic Location Supercont
Salivary Gland												
Gpgh-cn108	Retinin-like protein	AGAP006148-PA	2.0E-06	2L: 27,158,621- 27,159,093	Retinin-like protein	AAEL001704-PA	1.0E-04	1.39:666,749- 667,183	Retinin-like protein	CPIJ009100	3.0E-06	3.241:27,182- 27,621
Gpghfl-5c07.p1k	Histone H5	AGAP002754-PA	7.0E-44	2R: 26,675,074- 26,675,740	ribosomal protein L35A	AAEL000823-PB	2.0E-44	1.17:998,091- 998,675	60S ribosomal protein L35a	CPIJ008184	2.0E-43	3.183:728,929- 729,634
Gpghfl-2f12.p1k	Sulphate transporter	AGAP002331-PA	0.01	2R: 19,954,166- 19,956,783	sulphate transporter	AAEL006372-PA	0.002	1.202:885,946- 968,456	sulfate transporter	CPIJ012147	6.0E-04	3.394:339,528- 347,182
Gth-cn74	Retinin-like protein	AGAP006148-PA	2.0E-06	2L: 27,158,621- 27,159,093	Retinin-like protein	AAEL001704-PA	2.0E-04	1.39:666,749- 667,183	Retinin-like protein	CPIJ009100	3.0E-06	3.241:27,182- 27,621
Gth-cn81	UPF0546 membrane protein	AGAP012180-PA	7.0E-20	3L: 38,406,794- 38,407,382	conserved hypothetical protein	AAEL005466-PA	9.0E-17	1.158:1,966,829- 1,967,281	conserved hypothetical protein	CPIJ017962	1.0E-15	3.1053:54,127- 54,615
Gthfl-1h08.q1k	RNA polymerase Rpb2 domain 7	AGAP008151-PA	3.0E-64	3R: 6,212,809- 6,238,165	RNA polymerase Rpb2, domain 3	AAEL017156-PA	7.0E-64	1.84:2,256,737- 2,268,271	DNA-directed RNA polymerase II 140 kDa polypeptide	CPIJ007655	1.0E-33	3.159:169,512- 173,328
Gthfl-1e06.p1k	Ribosomal protein S12/S23	AGAP013102-PA	8.0E-53	2R:11,822,409- 11,823,412	30S ribosomal protein S12	AAEL008169-PA	2.0E-52	1.304:67,556- 67,888	30S ribosomal protein S12	CPIJ008389	2.0E-51	3.185:297,859- 298,677
Gpghfl-2f06.p1k	Fibrinogen, alpha/beta chain	AGAP002005-PA	0.082	2R: 13,533,900- 13,535,451	No Hits				No Hits			
Gpghfl-2h09.q1k	No Hits				No Hits				No Hits			
Gpghfl-5h09.p1k	No Hits				salivary gland growth factor	AAEL003214-PA	0.039	1.82:1,757,685- 1,769,965	No Hits			
Gth-cn2	Ribosomal protein L15	AGAP011706-PA	3.0E-45	3L: 31,717,517- 31,718,791	No Hits				60S ribosomal protein L15	CPIJ015042	3.0E-45	3.626:186,334- 187,743
Gth-cn11	putative rhodopsin receptor 1	AGAP013149-PA	1.0E-126	2R:736,038- 737,150	No Hits				opsin-1	CPIJ011571	1.0E- 122	3.361:253,314- 254,429
Gthfl-1e09.q1k	No Hits				No Hits				No Hits			
Gthfl-8a02.p1k	No Hits				No Hits				No Hits			
Gthfl-5e06.p1k	No Hits				No Hits				No Hits			
Gthfl-5g02.q1k	No Hits				No Hits				No Hits			

Gpa-cnxxx - *Glossina pallidipes* consensus sequences; Gpaf-xxxx.q1k - *Glossina pallidipes* antennae singletons; Gpgh-cnxxx - *Glossina palpalis* gambiensis consensus sequences; Gpghfl-xxxx.q1k - *Glossina palpalis gambiensis* head singletons; Gth-cnxxx - *Glossina tachinoides* consensus sequences; Gthfl-xxxx.q1k - *Glossina tachinoides* head singleton