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ABSTRACT

In modern competitive manufacturing industry, machining processes are expected

to deliver products with high accuracy and good surface integrity. This should be

achieved through shorter production cycle times with reduced operator intervention

and increased flexibility. In order to accomplish this, the trend is towards increased

use of machine intelligence in machining processes. Grinding process is usually em-

ployed to machine harder materials, or, as a finishing process. A fast, accurate

and efficient grinding process contributes greatly to the productivity in a production

setup.

In the current work, a theoretical model was developed and used to predict the vi-

brations resulting from the grinding process. A controller based on adaptive neural

fuzzy inference system (ANFIS), was developed for the cylindrical grinding machine-

tool. The main aim of this study was to optimize the grinding process by adaptively

controlling the speed of the grinding wheel based on the infeed and the speed of the

workpiece. This would help in prevention of excessive vibrations that would affect

the machining process, resulting in poorly finished surfaces and degraded grinding

wheel. Also, experimental work was carried out to validate the model.

From this study, it was demonstrated that, ANFIS based controller controlled vibra-

tions during grinding through in-process adjustment of speed of the grinding wheel

so that there would be minimal vibrations. The proposed controller was tested ex-

perimentally and was seen to be effective in reducing the machining vibrations by as

much as 90 percent.

xxi



CHAPTER 1

1 INTRODUCTION

1.1 Background

Grinding is a machining process that employs an abrasive grinding wheel rotating

at high speed to remove material from a softer material. It may be thought of as

milling using a cutter with a large number of teeth of irregular shape, size, and

spacing. Each grit can be seen as a cutting tooth with a specific orientation and

sharpness. The grinding process parameters can vary for many reasons. Some of the

factors that contribute to the process variation include; sharpness of the grits, wheel

microstructure, workpiece material variation and loading of workpiece material on the

wheel [1]. The grinding processes can broadly be classified as either surface grinding

or cylindrical grinding. Surface grinding is a process that involves a flat workpiece

mounted on the table and is ground in both the transverse and longitudinal directions

by a cylindrical grinding wheel. Cylindrical grinding process involves a cylindrical

workpiece and grinding wheel, each rotating about its own axis. Some examples of

cylindrical grinding processes are;

• centerless grinding

• internal and external cylindrical plunge grinding

• internal and external cylindrical transverse grinding

• jig grinding

1
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Figure 1.1: Illustration of the cylindrical plunge grinding process
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The external cylindrical plunge grinding process can be schematically represented

as shown in Fig. 1.1, [2], with the main input parameters being the workpiece and

2



Workpiece

Grinding wheel

SCALE: 1:2

2

DO NOT SCALE DRAWING SHEET 2 OF 2

centerless-grinding

UNLESS OTHERWISE SPECIFIED:

WEIGHT: 

REVDWG.  NO.

A
SIZE

TITLE:

NAME DATE

COMMENTS:

Q.A.

MFG APPR.

ENG APPR.

CHECKED

DRAWN

FINISH

MATERIAL

3

TOLERANCING PER:
INTERPRET GEOMETRIC

45

TWO PLACE DECIMAL    

PROHIBITED.

THREE PLACE DECIMAL  

     BEND 

PROPRIETARY AND CONFIDENTIAL

APPLICATION

USED ONNEXT ASSY

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>.  ANY 
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS 

1

Figure 1.3: Illustration of the internal cylindrical grinding process

grinding wheel rotational speeds Vw and Vs, respectively, and infeed f(t).

1.1.1 Setup and equipment

The setup of a cylindrical grinding machine has a grinding (abrasive) wheel, two

centers that hold the workpiece, a chuck and a grinding dog, or other mechanism to

drive the workpiece. Most cylindrical grinding machines include a swivel to allow for

the forming of tapered pieces. The wheel and workpiece move relative to one another

in both the normal and transverse directions. The abrasive wheel can have many

shapes. Standard disk shaped wheels can be used to create a tapered or straight

workpiece geometry while formed wheels are used to create a shaped workpiece. The

process using a formed wheel creates less vibration than using a regular disk shaped

wheel.

3



1.1.2 Abrasive materials

The most commonly used abrasive materials are Aluminium oxide, silicon carbide,

diamond, and cubic boron nitride (CBN), with aluminium oxide being the most

common of the four. Diamond and CBN wheels are often made of a cheaper core

with outer layer of abrasive material to make the wheel less expensive. Diamond

and CBN wheels are very hard and can grind down materials such as ceramic and

carbides economically [3].

1.1.3 Dressing

This is a process of using a diamond tool to remove the outer layer of a wheel, so

that it becomes round (true) and the ends square.

During the grinding process which includes cutting, rubbing and ploughing, vibra-

tion is generated. There are two classes of vibration; self excited vibration, commonly

known as chatter vibration, and externally induced vibration known as forced vibra-

tion. Chatter vibration is generated by the interaction between the wheel and the

workpiece and corresponds to the relative movement between the machined part and

the cutting tool and can be seen as waves on the machined surface in grinding. The

self excited vibration results from the generation of different chip thicknesses during

machining [4].

The main objective of carrying out the grinding process is to achieve the required

shape, size and surface topography of the finished product in the most economical

way. The essential step used to achieve this target are

4



1. the process design, which design involves selection of suitable input parame-

ters, i.e., grinding wheel and process variables (such as, grinding wheel speed,

workpiece speed and feed)

2. dressing type and its variables

3. cutting fluid specifications and its flow conditions.

The selection of the optimum variables depends on a good understanding of their

effects on the process output parameters such as, cutting force, feed force, consumed

power, cutting temperature and workpiece quality.

However, improvement on the efficiency of the grinding processes is important as

the processes develop to compete with increased efficiency in other primary material

removal processes and alternative finishing processes. Notably, the grinding process

differs from many of the other processes in the complexity of the relationship between

the machining parameters and the process performance.

As a consequence, in both manual and Computer Numerical Control (CNC) opera-

tions, the process quality and productivity depend to a large extent on the experience

of the operator, and as a result many operations are undertaken at conditions far from

optimal. Also in modern competitive manufacturing industry, machining processes

are expected to deliver products with high accuracy and good surface integrity, using

shorter cycle times with reduced operator intervention and increased flexibility. To

meet such demands, there is need for increased use of machine intelligence in ma-

chining systems and operations. ANFIS has the advantage over the other control
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methods in that, it combines the learning ability of neural networks and the ability

of fuzzy logic to represent data in a human like manner.

In this study, an adaptive neural fuzzy inference system (ANFIS) is developed for

the control of the vibrations that occur during the grinding process. The vibrations

in cylindrical grinding process result from the forces generated during the grinding

process. The forces are brought about by factors such as, improper infeed, grind-

ing wheel and workpiece speeds and machine wear. Vibrations generated during the

grinding process with different parameters are monitored. A decision is made, based

on the amplitudes of the vibration either to increase or decrease the necessary process

parameters, in order to operate at the optimum conditions.

1.2 Problem statement

Grinding process accounts for about 20-25 percent of the total expenditures on ma-

chining operations [5]. During the grinding process and in the interaction between

the wheel and the workpiece, chatter vibration is generated. Chatter vibration in

grinding operations usually has undesirable effects, such as accelerated tool wear,

excessive noise, damage of the machine tool, poor surface finish and low dimensional

accuracy of the machined part [6]. All of these negative effects of chatter not only

increase the machine downtime, hence lowering productivity, but, they also lower the

quality of the finished surface. The chatter vibration is as a result of poor selection of

machining parameters. There is, therefore, need for the development of an in-process

control system that is able to detect the changes in the machining conditions and

adjust the various process parameters to their optimum values.
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1.3 Objectives

The main objective was to develop an adaptive neural fuzzy inference system (ANFIS)

based controller, for the optimization of the process parameters in the cylindrical

plunge grinding process, in real-time. To achieve this objective, the following specific

objectives were accomplished;

1. Development of a theoretical model for predicting the chatter vibrations that

result from the grinding process, based on the process parameters.

2. Validation of the model through a series of experiments.

3. Development of a controller based on adaptive neural fuzzy inference system

(ANFIS), for the control of the vibrations.

4. Simulation, testing and implementation of the ANFIS based controller.

1.4 Justification of the study

Cylindrical plunge grinding process is usually employed as a final stage machining

process for cylindrical workpieces, or for the machining of hard materials. The process

is expected to improve on the quality of a product’s surface finish. However, the

process is usually affected negatively by the occurrence of chatter vibrations during

the grinding process. These vibrations are difficult to control by conventional control

methods, due to the complex nature of the grinding process. The proposed ANFIS

based controller is aimed at controlling the cylindrical plunge grinding process by

minimizing the chatter vibration. The controller significantly and effectively reduces
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the vibration amplitudes, leading to improved quality of the machined part, reduced

machine downtime and at the same time eliminating the need for a human operator

during the grinding process.

1.5 Outline of thesis

This thesis contains five chapters. The first chapter provides an introduction to

the research by highlighting the existing problem, the objective and the scope of

the research work. Chapter 2 is a literature review on occurrence of vibration in

cylindrical plunge grinding process and the various methods employed in its control.

Chapter 3 outlines a theoretical approach in modeling and analysis of the chatter

vibrations in the cylindrical plunge grinding process. In chapter 4, theoretical results

obtained in chapter 3 are validated through experimental work. Finally chapter 5

outlines the design procedure for the adaptive neural fuzzy controller, its simulation

and implementation. The conclusion and recommendations are made in chapter 6.
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CHAPTER 2

2 LITERATURE REVIEW

2.1 Overview

In recent years, grinding research has had a renewed focus on the mechanics of the

grinding process. A question such as how material is removed from the surface is of

considerable importance from both research and industrial perspectives. However,

significant challenges exist when attempting to answer this fundamental question.

This could be addressed by empirical models, but such empirical approaches often

require the fitting of non-physical parameters into experimental data, which creates a

phenomenological model [7]. As a result, the fundamental physical processes at work

during material removal cannot be directly investigated. Furthermore, advanced

modeling of the material removal process requires constitutive material models incor-

porating elastoplasticity theory. Elastoplastic (EP) material models are commonly

used in metal-cutting and metal-forming applications [7], but present an analytical

impasse where equations can only be solved numerically.

2.2 Modeling of the grinding process

Many researchers have made attempts to come up with models of the grinding process.

This has resulted in a number of models, each attempting to address, or emphasize

on, a specific area of the grinding processes.

Modeling of the grinding process can be achieved through development of empiri-

cal and theoretical models, but, modeling generally involves a trade-off between the
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accuracy of the model and the difficulty (or physical possibility) of obtaining the

necessary information or parameters.

Theoretical grinding models for calculating material removal rates are based on the

specific cutting energy of the material and energy distribution of the applied power [8].

Mathematical models make it possible to simulate machining vibration quite accu-

rately, but in practice, it is difficult to avoid vibrations. The following is a review of

the milestones achieved in modeling of the grinding process.

Rogelio et al [9] developed equations governing the surface roughness in plunge

grinding. These equations included several physical mechanisms in grinding. The

physical mechanisms considered were wheel-workpiece overall deflection, local grit

deflection and individual grit-workpiece interaction. The equations also took into

account the workpiece material properties, type of wheel, machine characteristics

and machining parameters, such as, tool feed per revolution, dressing conditions and

wheel/workpiece tangential velocities. The time dependent behavior of the grinding

process was also considered. The equations were used in an optimization strategy

composed of an accelerated spark-out process combined with a power controlled stock

removal stage. The control system that was developed used surface roughness equa-

tions to control the part dimension, and also ensure that, surface roughness require-

ments were met. This ensured dimensional accuracy of the part.

Mohammed et al [10] investigated the effects of dynamic changes in the grinding force

components due to changes in the grinding wheel’s flat area wear, and the workpiece

material on the vibration behavior of the grinding spindle. The steady-state dynam-
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ics and vibration behavior of the grinding machine spindle was simulated by a five

degree of freedom model. The results indicated different vibration behavior, when

grinding different materials using a grinding wheel with fixed wear flat area. As the

grinding wheel flat area increased, the level of vibration increased for all the degrees

of freedom, which indicated that, there was an upper limit for the level of wear on the

grinding wheel beyond which, dressing operation must be conducted on the grinding

wheel.

Biera et al [11] presented a time-domain dynamic model of the external cylindrical

plunge grinding process. The model consisted of a block-based simulation tool that

simplified the inclusion of process or machine parameters. Since the model was a

time-domain model, non-linear effects could be considered. The model included the

interference phenomenon between two consecutive workpiece revolutions. The reason

for the inclusion of this phenomenon was to explain which process parameters cause

unstable conditions during stability analysis. The model permitted the visualization

of the lobe destruction effect between consecutive workpiece revolutions.

Franciszek et al [12] conducted theoretical analysis of the dynamics for the machine

tool-workpiece system, for cylindrical plunge grinding process. A mathematical model

of grinder equipped with hydrostatic bearing on the grinding wheel spindle and hy-

drostatic slideways was developed. Simulations based on the developed model allowed

qualitative investigation of grinding force characteristics, and its influence on forced

vibrations in the grinder. It was demonstrated that, the grinding force significantly

influenced the forced vibration damping of the headstock for a grinding wheel.
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Orynski et al [13] developed a physical model of a cylindrical plunge grinder with

hydrostatic slideways and hydrostatic bearings for the grinding wheel spindle. The

model was used to check the influence of the grinding process on forced vibration

damping by the grinding wheel headstock.

Huang et al [14] presented a closed form expression for the stochastic grinding force

as a function of the grinding conditions and grit distribution that incorporated the

random nature of grit distribution. The stochastic grit density function was intro-

duced to describe the random grit distribution of the rotating wheel. The dynamic

grinding force was formulated as the convolution of a single-grit force and the grit

density function. The single-grit force was obtained from analysis of the grinding

geometry and treated as a deterministic impulse response of the grinding process.

The spectrum characteristics of the grinding force were investigated in the frequency

domain, where the power spectral density (PSD) of the total grinding force could be

expressed as a product of the energy spectral density of the single-grit force and the

PSD of the grit density function. The analytical nature of the PSD expression of the

grinding force allowed the identification of the PSD of the grit density function and

the mechanistic grinding coefficients, and facilitated the analysis of the effects of the

grit distribution and grinding conditions upon the grinding force.

Sakakura et al [15] carried out a visual simulation of the grinding process. The

work involved several computer simulations using the Monte Carlo Method. Most

of the simulations calculated static geometrical interference between a grain and a

workpiece. They also developed a simulation program based on the elastic behaviour
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model of a grain, that focused on the generation process of a workpiece surface, and

simulation of the interaction of grains with a workpiece, which includes the elastic

and plastic deformation as well as the removal of workpiece material.

Kuang et al [16] modeled and predicted the grinding force for the creep feed grind-

ing process, using back propagation (BP) neural network. The BP neural network

was improved by integrating an error distribution function (EDF), to overcome local

minimum problems. This was done in order to find the global minimum solution, and

to accelerate the convergence speed. Compared with the theoretical force model, the

force model implemented by the improved BP neural network was found to be more

accurate.

2.3 Occurrence of chatter in grinding process

Chatter vibration occurs when there is contact and relative motion between the grind-

ing wheel and the workpiece. The waves generated on the workpiece surface are

caused by the periphery of the grinding wheel and vice versa. There are conditions

that can cause the amplitudes of the relative vibration and the waves generated on

the workpiece surface to be identical. The conditions are; low vibration frequency,

small relative amplitude and low workpiece velocity.

However, once the critical limit determined using the above-mentioned parameters is

exceeded, the amplitude of waves generated on the workpiece surface becomes smaller

than that of the relative vibration. In other words, the envelope curve starts to have

a mode (a characteristic pattern or shape in which the system will vibrate).
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Assuming that the amplitude of the relative vibration and the waves is y and aw,

respectively, geometrical interference, Ge0, which is a non-linear relationship, can be

derived [17]. In equations 2.1 through 2.3 ycr represents a critical amplitude, vw, is

the workpiece surface velocity, and ω is the angular chatter frequency.

Ge0 =
aw
y

(2.1)

Ge0 =
1

2
(1− cos

√
ycr
y
π)for

ycr
y
< 1 (2.2)

ycr =
vw
ω2

2(dw + ds)

dwds
(2.3)

When ycr < y, the amplitude of waves becomes smaller than that of the relative

vibration. Otherwise, both amplitudes remain identical. As for the waves generated

on the grinding wheel, the critical amplitude is obtained by replacing workpiece

surface velocity vw with grinding wheel speed vs. Therefore, the critical amplitude

will be much larger for the waves generated on the grinding wheel because the wheel

speed is always much higher than the workpiece speed. This implies that, workpiece

regeneration (wear on workpiece due to chatter vibration) has a complete effect on

process instability and the development of grinding wheel regeneration (wear on wheel

due to chatter vibration) is much slower than workpiece regeneration.

The phenomenon of self excited vibration in grinding are summarized as below [18]:

1. Self-excited vibration due to regenerative effect on the workpiece periphery can

progress so fast that, it becomes impossible to perform the process. Self-excited

vibration of this type is likely to be generated when the peripheral speed of the

workpiece is high.
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2. On the other hand, by reducing the workpiece peripheral speed, self-excited

vibration due to regenerative effect on the workpiece can be restrained. This, in

turn, leads to generation of self-excited vibration due to the regenerative effect

on the grinding wheel surface. Although vibration(s) of this type progress(es)

relatively slowly, the grinding conditions fall in an unstable area. This is because

the wheel surface must be adjusted (trued or dressed), at a point when the

gradually progressing amplitude of vibration reaches the allowable limit. Due

to the dressing/truing, the end of the service life of the grinding wheel can

be reached. It is, therefore, necessary to select such grinding conditions that

would restrain the progress of vibration and thereby extend the service life of

the grinding wheel.

2.4 Chatter detection and control

One of the major causes of low efficiency in the grinding process is vibration, that is,

either self-induced (chatter) or forced vibration [19]. The forced vibration is caused

by factors that do not result directly from the grinding operation, and they include:

(i) wear of the bearings and other machine parts, (ii) spindle misalignment and (iii)

lack of proper spindle geometry, caused by such factors as worn out belts and bent

shafts. Regenerative, i.e., chatter vibration starts as a slip-slide interaction between

wheel and workpiece, and then causes the regenerative effect, which is produced when

the tool passes through a previously cut surface. Under certain cutting conditions,

this effect causes the undulations of the workpiece to regenerate, leading to chatter

vibrations [20]. Chatter is caused by a number of factors that include: (i) a heavy
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cut, (ii) non-uniformity of the workpiece profile, (iii) change of material properties,

which could be as a result of cast materials or hardening of the material being ground

and (iv) too much or too low feed rate.

Vibrations in cylindrical grinding affect the quality of the finished surface, the round-

ness of the workpiece, and also the lifetime of the machine and the tool [21]. Forced

vibrations can to a certain extent be controlled through proper maintenance of ma-

chine. Therefore, to a large extent, the productivity of material removal machining

operations is primarily limited by the presence of chatter vibration [20].

Oscar et al [22] developed a technique for chatter detection on ground cylindrical

parts. In their work, the waviness was measured with a mechanical stylus profiler

with a diamond tip, and then converted into height values with the help of a precision

displacement transducer. The output signal was later converted to digital form and

transformed to the time-frequency domain by means of the wavelet transform, which

allowed its coefficients to grow as a function of surface defects and chatter marks. The

method was validated experimentally. This technique could measure the depth of the

defects, and give information on the location of the chatter marks on the surface.

Hassui et al [23] studied the relationship between the process vibration signals and

the workpiece quality parameters, namely mean roughness, circularity and burning.

The purpose of the study was to use these signals to decide the exact moment to

dress the wheel. In order to reach this goal, several experiments were carried out

in a plunge cylindrical grinding operation of an AISI 52100 quenched and tempered

steel, having as input variables, the dressing overlap ratio, the spark out time and
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the workpiece velocity. The output variables were the workpiece surface roughness

and circularity and also the process vibration during both the cutting phase and the

spark out phase of the grinding cycle. The study revealed that it was possible to have

good workpiece quality even with a vibration level much higher than that obtained

with a recently dressed wheel. In addition, vibration during cutting phase and at

the end of complete spark out could be used to monitor the wheel condition, at least

when high dressing overlap ratio was used. Furthermore, the decrease in the spark

out time made the vibration at the end of spark out increase but did not cause any

significant damage in surface finish.

Fernandes et al [24] applied a novel process approach to simulate an active vibration

control system in a centerless grinding machine. Based on the updated finite element

model of the machine, the structural modifications performed to incorporate active

elements were detailed, as well as the subsequent reduction procedure to obtain a

low-order state space model. This reduced structural model was integrated in the

cutting process model to give a tool that was adapted for the purpose of simulating

different control laws.

Shaw et al [25] used magnetic Barkhausen noise method to develop a control system

for the grinding process. The controller was used to detect small changes in the level

of surface residual stress and hardness which would allow the detection of grinding

damage at its onset. The controller that was developed focused on detection and

avoidance of destruction of the workpiece.

Jason et al [26] carried out a study on cylindrical grinding open architecture and
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feed rate control by power feedback. The controller that was developed applied PID

control techniques. It used Kalman filter and state variable feedback to control the

velocity and hence the feed rate.

Janez et al [4] developed two methods for automatic chatter detection in outer diam-

eter plunge feed grinding using acoustic emissions. The methods employed entropy

and coarse-grained information rate (CIR) as indicators of chatter. Entropy was cal-

culated from a power spectrum, while CIR was calculated directly from fluctuations

of a recorded signal. The methods were verified using signals of the normal grind-

ing force and Root Mean Square (RMS) acoustic emission. The results showed that

entropy and CIR performed equally well as chatter indicators. Based on the normal

grinding force, they detected chatter in its early stage, while only cases of strong

chatter were detected based on RMS acoustic emission.

Lee et al [27] investigated the characteristics of external plunge grinding using the

current signals of the spindle motor through a hall sensor. Grinding experiments were

conducted under various grinding conditions such as wheel speeds, workpiece speeds

and feed rates with a conventional vitrified bonded wheel. Analysis of the current

signal of the spindle motor was done and a relationship between current signals and

the metal removal rate in terms of the feed rate was shown. It was also shown that, a

hall sensor has similar capabilities in evaluation of grinding behavior as those of the

acoustic emission (AE) signals, which are useful for monitoring the grinding process.

Jae et al [28] developed a trouble diagnosis system for the grinding process. The

acoustic emission signals generated during machining were analyzed to determine
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the relationship between grinding related troubles and characteristics of changes in

signals. Furthermore, a neural network, was applied to the diagnosis system. The

neural network was optimized with a momentum coefficient (m), a learning rate (γ),

and a structure of the hidden layer in the iterative learning process.

Hodge et al [1] developed an adaptive force controller for the grinding process. The

controller was achieved by use of a real-time grinding model, where an adaptive pole-

zero cancelation technique was developed and implemented to reduce the grinding

process variation. Real-time model parameter estimation and controller designs were

implemented to achieve higher bandwidth control capability. However, the controller

developed used an approximation model for the grinding process, which may vary

from the actual grinding process due to the complex nature of the process.

Albizuri et al [29] employed a novel method to reduce chatter vibrations in a center-

less grinding machine, using actively controlled piezoelectric actuators. A simplified

model of the machine was used to simulate the behavior of several commercially avail-

able piezoelectric actuators in two different locations of the machine. Based on these

simulations, a selection of proper actuators and their optimal location was obtained

and the control system was implemented experimentally.

Junkar et al [30] investigated the plunge grinding process by use of power spectrum of

vibration signals. In order to predict the process evolution, certain predefined spec-

tral attributes were extracted and process performance classes were assessed by an

expert. Training examples described in terms of the attribute values and correspond-

ing classes were submitted to an inductive machine learning system. As a result,
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classification rules were synthesized, predicting the grinding wheel performance from

the spectral attributes. Training data was refined severally to increase the accuracy

of the induced rules and reduce the complexity. The controller was used to predict

the grinding wheel performance in real time.

Saravanan et al [31] developed a Genetic Algorithm (GA) based optimization proce-

dure. The algorithm was used to optimize grinding conditions, that is, wheel speed,

workpiece speed, depth of dressing and lead of dressing, using multi-objective func-

tion model with a weighted approach for surface grinding process. The procedure

evaluated the production cost and production rate for the optimum grinding condi-

tion subject to constraints such as thermal damage, wheel wear parameters, machine

tool stiffness and surface finish. The new GA procedure was illustrated with an exam-

ple and optimum results such as production cost, surface finish and material removal

rate were compared with quadratic programming techniques.

Ding [32] used a neural network (NN) and fuzzy logic approach in prediction and

control of workpiece size in the grinding process. Dynamic Elman neural network

was used in the prediction model. The hidden layer structure was modified, and

the first and the second derivative of the actual amount removed from the workpiece

were added into the network input, which greatly improved the prediction accuracy.

A fuzzy control model with flexible factor was used to control workpiece size. Simu-

lation and experiments were done to verify the ability of the proposed algorithm in

workpiece size prediction, and precision control.
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2.5 Conclusion

Previous research studies have used varied approaches to controlling the grinding

process. However there is none that can be said to be fully efficient on its own. Also,

there have been little attempt to control the vibrations during the grinding process.

This could be due to the complex nature of the process, which makes it difficult to

develop analytical models for the process. Therefore, the current work seeks to de-

velop a control system that would optimize the grinding process by controlling the

machining vibrations without the need for an accurate process model. The controller

will minimize process vibrations by selection of the optimum process and input pa-

rameters hence boosting production while at the same time reducing production cost,

and improving the quality of the products as well as improve tool life.
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CHAPTER 3

3 ADAPTIVE NEURAL FUZZY INFERENCE SYSTEMS (ANFIS)

3.1 Background

The design of modern control systems is characterized by stringent performance and

robustness requirements and therefore relies on model-based design methods. This

introduces a strong need for effective modeling techniques. Many systems are not

amenable to conventional modeling approaches due to strongly nonlinear behaviour

and lack of precise knowledge of the process under study. Nonlinear identification is

therefore becoming an important tool which can lead to improved control systems

along with considerable savings of time and cost. Among the different nonlinear

identification techniques, methods based on fuzzy sets are gradually becoming estab-

lished [33].

Adaptive control is a method of designing a controller with some adjustable parame-

ters and an embedded mechanism for adjusting these parameters. Adaptive methods

have been used mainly to improve the controller’s performance online [34]. For each

control cycle, the adaptive algorithm is normally implemented in three basic steps,

namely,

1. Observable data is collected to calculate the controller’s performance.

2. The controller’s performance is used to calculate the adjustment to a set of

controller parameters.
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3. The controller’s parameters are then adjusted to improve the performance of

the controller in the next cycle.

Normally, an adaptive controller is designed based on one of the available techniques.

Each technique is originally designed for a specific class of dynamic systems. The

controller is then adjusted, as data is collected during run time to extend its effec-

tiveness to control a larger class of dynamic systems.

ANFIS, which is derived from the term Adaptive Network Based Fuzzy Inference

System, was first proposed by Jang [35], and later changed to Adaptive Neural Fuzzy

Inference System. This system is designed to allow IF-THEN rules and membership

functions (fuzzy logic) to be constructed based on the historical data and also includes

the adaptive nature for automatic tuning of the membership functions.

3.2 Fuzzy logic

Fuzzy logic has two different meanings. In a narrow sense, fuzzy logic is a logical sys-

tem, which is an extension of multivalued logic. However, in a wider sense fuzzy logic

is almost synonymous with the theory of fuzzy sets, a theory which relates to classes

of objects with unsharp boundaries in which, membership is a matter of degree [36].

The word fuzzy is used to describe terms that may be, are not well-known, or are not

clear enough, or terms whose closer specification depends on subjectivity, estimation,

and even the intuition of the person who is describing these terms. In everyday life,

there are many situations characterized by a certain degree of ambiguity whose de-

scription includes terms and expressions such as majority, many, several, not exactly,
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or quite possible, all of which can be qualified as fuzzy terms. On the other hand,

terms like false, true, possible, necessary, none, or all reflect crisp meanings, and in

such a context, represent exact terms [37].

The mathematics of fuzzy set theory, and by extension fuzzy logic were developed in

1965 by Zadeh [38]. New operations for the calculus of logic were proposed, and were

in principle, a generalization of classical logic [39]. This theory proposed making the

membership function (or the values False and True) operate over the range of real

numbers [0.0, 1.0]. The notion central to fuzzy systems is that truth values in fuzzy

logic or membership values in fuzzy sets are indicated by a value in this range, with

0.0 representing absolute Falseness and 1.0 representing absolute Truth [40].

There is a distinction between fuzzy systems and probability [41]. Although both

operate over the same numeric range, and at first glance, both have similar values:

0.0 representing False (or non- membership), and 1.0 representing True (or member-

ship), there is a difference between the two theories in that the probability theory

indicates the chances of an event happening, while the fuzzy set theory indicates the

extent to which the event will occur.

Fuzzy logic control refers to a technique of embodying human thinking into a control

system. Fuzzy logic controllers are designed to emulate human deductive thinking,

that is, the process people use to infer conclusions from what they know [36].

Fuzzy logic systems are rule-based systems in which an input is first fuzzified, that

is, converted from a crisp number to a fuzzy set, and subsequently processed by an
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inference engine that retrieves knowledge in the form of fuzzy rules contained in a

rule-base. The fuzzy sets that are computed by the fuzzy inference as the output of

each rule are then combined and defuzzified, that is, converted from a fuzzy set to

a crisp number. A fuzzy logic system is a nonlinear mapping from the input to the

output space [42].

3.3 Fuzzy IF-THEN rules and fuzzy inference systems

Fuzzy IF-THEN rules or fuzzy conditional statements are expressions of the form

IF A THEN B, where A and B are labels of fuzzy sets that are characterized by

appropriate membership functions [38]. Due to their concise form, fuzzy IF-THEN

rules are often employed to capture the imprecise modes of reasoning that play an

essential role in the human ability to make decisions in an environment of uncertainty

and imprecision [43]. An example that describes a simple fact is IF pressure is high,

THEN volume is small, where pressure and volume are linguistic variables, high and

small are linguistic values or labels that are characterized by membership functions.

Another form of fuzzy IF-THEN rule, proposed by Takagi and Sugeno [44], has fuzzy

sets involved only in the premise part. By using Takagi and Sugeno’s fuzzy IF-THEN

rule for example, the resistant force on a moving object can be described as follows:

IF velocity is high, THEN force = k(velocity)2

where, again, high in the premise part is a linguistic label characterized by an appro-

priate membership function. However, the consequent part is described by a nonfuzzy

equation of the input variable, velocity. Both types of fuzzy IF-THEN rules have been

used extensively in both modeling and control.

25



 

Fuzzification  

Interface 

Defuzzification 
interface 

Database Rule base 

  Decision making unit 

Crisp 

Input 
Crisp 
output 

(Fuzzy) (Fuzzy) 

Figure 3.1: Fuzzy inference system

Through the use of linguistic labels and membership functions, a fuzzy IF-THEN

rule can easily capture decision making capability of humans [35]. Also, due to the

qualifiers on the premise parts, each fuzzy IF-THEN rule can be viewed as a local

description of the system under consideration. Fuzzy IF-THEN rules form a core

part of a fuzzy inference system.

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy models,

fuzzy associative memories (FAM), or fuzzy controllers when used as controllers. A

fuzzy inference system is composed of five functional blocks as shown in Figure 3.1.

The functional blocks are as follows:

• A rule base containing a number of fuzzy IF-THEN rules.

• A database which defines the membership functions of the fuzzy sets used in

the fuzzy rules.
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• A decision-making unit which performs the inference operations on the rules.

• A fuzzification interface which transforms the crisp inputs into degrees of match

with linguistic values.

• A defuzzification interface which transform the fuzzy results of the inference

into a crisp output.

Usually, the rule base and the database are jointly referred to as the knowledge base.

The steps of fuzzy reasoning (inference operations upon fuzzy IF-THEN rules) per-

formed by fuzzy inference systems are:

1. Compare the input variables with the membership functions on the premise

part to obtain the membership values of each linguistic label. This process is

often called fuzzification.

2. Combine the membership values on the premise part to get firing strength or

weight of each rule through a specific T-norm operator.

3. Generate the qualified consequent of each rule depending on the firing strength.

4. Aggregate the qualified consequents to produce a crisp output.

Several types of fuzzy reasoning have been proposed in the past [45]. Depending on

the types of fuzzy reasoning and fuzzy IF-THEN rules employed, most fuzzy inference

systems (FIS) can be classified into three types as shown in Figures 3.2 through 3.4.
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Figure 3.2: Type 1 FIS

1. Type 1 FIS: The overall output is the weighted average of each rules crisp

output induced by the rule’s firing strength. It is obtained as the product or

minimum of the degrees of match between the premise part and the output

membership functions. The output membership functions used in this scheme

must be monotonic functions [45]. This type of FIS is illustrated in Figure 3.2.

In this figure the output is given by z.

2. Type 2 FIS: The overall fuzzy output is derived by applying ‘max’ operation to

the qualified fuzzy outputs. Various schemes have been proposed to choose the

final crisp output based on the overall fuzzy output; some of them are centroid

of area, bisector of area, mean of maxima, maximum criterion, etc [45]. This

type of FIS is illustrated in Figure 3.3, in which y* represents the crisp output.
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for the r rules would be given by

µB∼
k (y) = max

k
[µA∼

k
1
(input(i)) · µA∼

k
2
(input(j))] k = 1, 2, . . . , r (5.43)

and the resulting graphical equivalent of Eq. (5.43) would be as shown in Fig. 5.11. In
Fig. 5.11 the effect of the max–product implication is shown by the consequent membership
functions remaining as scaled triangles (instead of truncated triangles as in case 1). Again,
Fig. 5.11 shows the aggregated consequent resulting from a disjunctive set of rules (the
outer envelope of the individual scaled consequents) and a defuzzified value, y∗, resulting
from some defuzzification method (see Chapter 4).

Example 5.15. In mechanics, the energy of a moving body is called kinetic energy. If an object
of mass m (kilograms) is moving with a velocity v (meters per second), then the kinetic energy

k (in joules) is given by the equation k = 1

2
mv2. Suppose we model the mass and velocity as

inputs to a system (moving body) and the energy as output, then observe the system for a while
and deduce the following two disjunctive rules of inference based on our observations:

Rule 1 : IF x1 is A∼
1
1 (small mass) and x2 is A∼

1
2 (high velocity),

THEN y is B∼
1 (medium energy).

Rule 2 : IF x1 is A∼
2
1 (large mass) or x2 is A∼

2
2 (medium velocity),

THEN y is B∼
2 (high energy).

µ

Input(i)

µ µ

µµ

µ

y

x1 x2
y

y

x1 x2

Rule 1

Rule 2

A11 A12 B1

A21 A22 B2min

min

Input(j)

Input(i) Input(j)

y*

µ

FIGURE 5.11
Graphical Mamdani (max–product) implication method with crisp inputs.Figure 3.3: Type 2/Mamdani FIS

3. Type 3 FIS: In this type, Takagi and Sugeno’s fuzzy IF-THEN rules are used.

The output of each rule is a linear combination of input variables plus a constant

term, and the final output is the weighted average of the rules’ outputs [46].

Figure 3.4 illustrates this type of FIS, in which p, q and r are constants, and

the output is given by z.

Figures 3.2 through 3.4 utilize a two-rule two-input fuzzy inference system to

show the different types of fuzzy rules and fuzzy reasoning. In these figures, µ is

the universe of discourse, while A, B and C represent the membership functions.

Also, wi represents the i rule’s firing strength. As noted, most of the differ-
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z2 = p2 x + q2y + r2

w1z1 + w2z2z = w1 + w2

Weighted average

Y
μ A2

X

x y

μ B2

w2

Y

Input Input

Figure 3.4: Type 3/Takagi-Sugeno FIS

ences in the fuzzy inference systems are in the specification of the consequent

part, which may be monotonically non-decreasing, bell-shaped, trapezoidal or

triangular membership functions, or crisp function and thus the defuzzification

schemes are also different. However, the inference systems’ outputs are defuzzi-

fied into crisp outputs and the output is always crisp, no matter the inference

system used.

The most widely used inference mechanisms are the Mamdani and Takagi-Sugeno

inference mechanisms. The Mamdani inference mechanism is used where there is

need to capture human knowledge, while Takagi-Sugeno is used in nonlinear control

due to its ability to model nonlinear processes.
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3.4 Structure of ANFIS

An example of a zero-order Takagi Sugeno fuzzy model with two rules represented

as a neural fuzzy network is shown in Figure 3.5. It shows the basic architecture

of ANFIS with two inputs and one output. The ANFIS architecture shown is a

multilayer feed-forward network where each node will perform a particular function

on the incoming input signals. Each node will adapt and be trained by changing its

parameters and/or formulae.

14 Intelligent control systems

the two possible splits are tested. The splitting of the x2 domain gives a better result
and is therefore used for further partitioning. The model performance is tested and the
upper region is found to have the worst local fit to the data. In step 2, it is therefore
further split into smaller subregions, etc.

An advantage of this approach is its effectiveness for high-dimensional data and
the transparency of the obtained partition. A drawback is that the tree building
procedure is suboptimal (greedy) and hence the number of rules obtained can be
quite large [18].

1.4.3.3 Neuro-fuzzy learning

At the computational level, a fuzzy system can be seen as a layered structure (network),
similar to artificial neural networks of the RBF type [19]. In order to optimise param-
eters in a fuzzy system, gradient-descent training algorithms known from the area
of neural networks can be employed. Hence, this approach is usually referred to
as neuro-fuzzy modelling [20–22]. As an example, consider a zero-order TS fuzzy
model with the following two rules:

If x1 is A11 and x2 is A21 then y = b1,

If x1 is A12 and x2 is A22 then y = b2.

Figure 1.4 shows a network representation of these two rules. The nodes in the
first layer compute the membership degree of the inputs in the antecedent fuzzy sets.

Normalised
degree of
fulfilment

A22

A12

A21

A11

b1

b2

b1 g1

b2

N
x1

y

x2

N

P

P

∑

Membership
functions

Antecedent
connectives Weighted sum

g2

Figure 1.4 An example of a zero-order TS fuzzy model with two rules represented
as a neuro-fuzzy networkFigure 3.5: An example of a two rule Takagi-Sugeno ANFIS
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Jang [35] proposed that the functions of the nodes are grouped into five different

layers:

• Layer 1: Here, the membership functions are defined hypothetically and usually

bell-shaped membership function shown in equation 3.1 is chosen [47]. This is

because of the greater ability of this type of membership function to represent

the vagueness associated with non-linear systems, as compared to triangular

and trapezoidal membership functions.

uAi
(x) =

1

1 +

[(
x− ci
ai

)2
]bi (3.1)

where uAi
(x) is the membership function of Ai, and it specifies the degree to

which the given x satisfies the quantifier Ai. uAi
(x) has maximum value of 1

and minimum value of 0 and {ai, bi, ci} is the parameter set, with ai and bi

being the inputs and ci the output.

When the values change, the bell-shaped membership functions will also change

accordingly. In this layer, the parameters involved in the process are known as

the premise parameters.

• Layer 2: In this layer, each output of the node defines the firing strength of the

rules in the fuzzy inference engine.

• Layer 3: This layer calculates the ratio of the ith rule’s firing strength [35]. The

result is the normalized firing strength, α̂i, shown in equation 3.2.

α̂i =
αi

α1 + α2

(3.2)
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where αi is the firing strength of the rule i.

• Layer 4: The parameters of the nodes in this layer are called the consequent

parameters. The nodes in this layer adapt with an output node.

• Layer 5: Nodes in this layer are fixed and they sum all incoming signals from

the previous layers.

3.5 Training of ANFIS

An adaptive network, is a network structure consisting of nodes and directional links

through which the nodes are connected. Moreover, part or all of the nodes are adap-

tive, which means that, their outputs depend on the parameter(s) pertaining to these

nodes, and the learning rule specifies how these parameters should be changed to

minimize a prescribed error measure [35].

The basic learning rule of adaptive networks is based on the gradient descent and

the chain rule [47]. Jang [48] generalized the formulas for the basic learning rule

that were proposed by Werbos [49]. Also, due to the fact that the rule is based on

the gradient method, it has slowness and tendency to become trapped in the local

minima. Jang [40] used this property to develop a hybrid learning rule which can

speed up the learning process substantially. Both the batch learning and the pattern

learning that comprise the hybrid learning rule are discussed below.

The training algorithm for the ANFIS that is developed is based on the hybrid learn-

ing algorithm. In this algorithm, the premise and consequent parameters are to be

updated after each set of data that is presented into the algorithm. This is known as
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pattern learning. The training algorithm consists of a forward pass and a backward

pass. In the forward pass, the signal is moved forward until layer 4, and parameters

are trained using least mean square method. On the other hand, in the backward

pass, errors calculated will be passed back and the premise parameters will be ad-

justed using the gradient descent method.

3.6 Architecture of ANFIS and its basic learning rule

An adaptive neural network (see Figure 3.6) is a multilayer feedforward network in

which each node performs a particular function called node function on incoming

signals as well as a set of parameters pertaining to this node. The formulas for the

node functions may vary from node to node, and the choice of each node function

depends on the overall input-output function which the adaptive network is required

to carry out [35]. The links in an adaptive network only indicate the flow direction of

signals between nodes; no weights are associated with the links. To reflect different

adaptive capabilities, circle and square nodes are used in an adaptive network. A

square node which is an adaptive node has parameters while a circle node which

is a fixed node has none. The parameter set of an adaptive network is the union

of the parameter sets of each adaptive node. In order to achieve a desired input-

output mapping, these parameters are updated according to given training data and

a gradient-based learning procedure.

As an example, suppose that a given adaptive network has L layers and the kth layer

has k nodes. The node in the ith position of the kth layer can be denoted by k, i

and its node function (or node output) by Ok
i . Since a node output depends on its
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Figure 3.6: An Adaptive network

incoming signals and its parameter set, then;

Ok
i = Ok

i (O
k−1
i , ...Ok−1

](k−1), a, b, c, ...) (3.3)

where a, b, c, etc., are the parameters pertaining to this node, and ] represents a

number indicating the position of the node in the layer. Ok
i is used as both the node
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output and node function.

Assuming that the given training data set has P entries, the error measure for the

pth (1 ≤ p≤ P ) entry of training data can be defined as the sum of squared errors:

Ep =

](L)∑
m=1

(Tm,p −OL
m,p)

2 (3.4)

where Tm,p is the mth component of pth target output vector, and OL
m,p is the mth

component of actual output vector produced by the presentation of the pth input

vector. The overall error measure is;

E =
P∑
p=1

Ep (3.5)

In order to develop a learning procedure that implements gradient descent in E over

the parameter space, first the error rate ∂E
∂O

for pth training data and for each node

output O is calculated. The error rate for the output node at (L, i) can be calculated

from [35]:

∂Ep
∂OL

i,p

= −2(Ti,p −OL
i,p) (3.6)

For the internal node at (k, i), the error rate can be derived by the chain rule:

∂Ep
∂Ok

i,p

=

]∑
m=1

(k + 1)
∂Ep
∂Ok+1

m,p

∂Ok+1
m,p

∂Ok
i,p

(3.7)

where 1 ≤ k ≤ L - 1. That is, the error rate of an internal node can be expressed as

a linear combination of the error rates of the nodes in the next layer. Therefore for

all 1 ≤ k ≤ L and 1 ≤ i ≤ ](k), we can find ∂Ep

∂Ok
i,p

by equations 3.6 and 3.7. If α is a

parameter of the given adaptive network, then equation 3.7 becomes;

∂Ep
∂α

=
∑
O∗∈S

∂Ep
∂O∗

∂O∗

∂α
, (3.8)
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where S is the set of nodes whose outputs depend on α. Then the derivative of the

overall error measure E with respect to α is,

∂Ep
∂α

=
P∑
p=1

∂Ep
∂α

(3.9)

Accordingly, the update formula for the generic parameter α is,

∆α = −η∂E
∂α

(3.10)

in which η is a learning rate. The learning rate can be further expressed as [35];

η =
k√∑
α( δE

∂α
)2

(3.11)

where k is the step size, the length of each gradient transition in the parameter space.

Usually, the value of k is changed to vary the speed of convergence.

There are two learning algorithms for adaptive networks. With the batch learning or

off-line learning, the update formula for parameter α is based on equation 3.9 and the

update action takes place only after the whole training data set has been presented,

i.e., only after each epoch or sweep. On the other hand, if the parameters are to

be updated immediately after each input-output pair has been presented, then the

update formula is based on equation 3.8 and is referred to as the pattern learning or

on-line learning.

3.7 Hybrid learning rule: Batch (off-line) learning

Hybrid learning rule combines the gradient method and the least squares estimate

(LSE) to identify parameters [48]. If the adaptive network under consideration has
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only one output, then

output = F (~I, S) (3.12)

where ~I is the set of input variables and S is the set of parameters. If there exists a

function H such that the composite function H ◦F is linear in some of the elements of

S, then these elements can be identified by the least squares method. More formally,

if the parameter set S can be decomposed into two sets

S = S1 ⊕ S2 (3.13)

where ⊕ represents sum such that H ◦ F is linear in the elements of S2, then upon

applying H to equation 3.12, we have;

H(output) = H ◦ F (~I, S) (3.14)

which is linear in the elements of S2. Now given values of elements of S1, training data

which can be denoted by P , can be input into equation 3.14 and a matrix equation

obtained:

AX = B (3.15)

where X is an unknown vector whose elements are parameters in S2. Let |S2| =

M , then the dimensions of A, X and B are P ×M,M × 1 and P × 1, respectively.

Since P , the number of training data pairs is usually greater than M , the number

of linear parameters, this is an overdetermined problem, and generally there is no

exact solution to equation 3.15. Instead, LSE of X and X∗, is sought to minimize

the squared error ‖AX−B‖2. The most well-known formula for X∗ uses the pseudo-

inverse of X [50].

X∗ = (ATA)−1ATB (3.16)
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While equation 3.16 is concise in notation, it is expensive in computation when dealing

with the matrix inverse and, moreover, it becomes ill defined if ATA is singular. As a

result, sequential formulae are employed to compute the LSE of X. This sequential

method of LSE is more efficient, especially when M is small and can be easily modified

to an on-line version i.e., for systems with changing characteristics. Specifically, let

the ith row vector of matrix A defined in equation 3.15 be aTi and the ith element of

B be bTi , then X can be calculated iteratively using the following sequential formulae

in [50,51];

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (3.17)

Si+1 = Si −
Siai + 1aTi+1Si
1 + aTi+aSiai+1

i = 0, 1, ..., (P − 1) (3.18)

where Si is the covariance matrix, and the least squares estimate X∗ is equal to Xp.

The initial conditions to bootstrap equations 3.17 and 3.18 are X0 = 0 and S0 = γI,

where γ is a positive large number and I is the identity matrix of dimension M ×M .

When dealing with multi-output adaptive networks, output in equation 3.12 is a

column vector and equations 3.17 and 3.18 still apply except that bTi is the ith row of

matrix B.

The gradient method and the least squares estimate can be combined to update the

parameters in an adaptive network. Each epoch of this hybrid learning procedure is

composed of a forward pass and a backward pass. In the forward pass, input data is

supplied and functional signals go forward to calculate each node’s output until the

matrices A and B in equation 3.15 are obtained. The parameters in S2 are identified
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by the sequential least squares formulas in equations 3.17 and 3.18. After identifying

parameters in S2, the functional signals keep going forward until the error measure is

obtained. In the backward pass, the error rates or the differential error measure with

respect to each node output, (see equations 3.6 and 3.7) propagate from the output

end toward the input end, and the parameters in S1 are updated by the gradient

descent method in equation 3.10.

For given fixed values of parameters in S1, the parameters in S2 thus found are

guaranteed to be the global optimum point in the S2 parameter space due to the

choice of the squared error measure. Not only does this hybrid learning rule decrease

the dimension of the search space in the gradient method, but, in general, it also cuts

down substantially the convergence time.

Taking an example of one-hidden-layer back-propagation neural network with sigmoid

activation functions. If this neural network has p output units, then the output in

equation 3.12 is a column vector. Let H(◦) be the inverse sigmoid function given by,

H(x) = ln(
x

1− x
) (3.19)

then equation 3.14 becomes a linear function such that each element of H is a linear

combination of the parameters pertaining to layer 2. In other words, S1 and S2

are the thresholds of hidden and output layers, respectively. Therefore, the back-

propagation learning rule can be applied to tune the parameters in the hidden layer,

and the parameters in the output layer can be identified by the least squares method.

However, by using the least squares method on the data transformed by H(◦), the
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parameters that are obtained are optimal in terms of the transformed squared error

measure instead of the original one.

3.8 Hybrid learning rule: Pattern (on-line) learning

If the parameters are updated after each data presentation, then this is referred to

as pattern learning or on-line learning. This learning paradigm is vital to the on-line

parameter identification for systems with changing characteristics. To modify the

batch learning rule to its on-line version, the gradient descent should be based on Ep

(see equation 3.7) instead of E.

For the sequential least squares formula to account for the time-varying characteristics

of the incoming data, there is need to decay the effects of old data pairs as new data

pairs become available. This problem is well studied in the adaptive control and

system identification literature and a number of solutions are available [51]. The

simplest method is to formulate the squared error measure as a weighted version

that gives higher weighting factors to more recent data pairs. This amounts to the

addition of a forgetting factor λ to the original sequential formula:

Xi+1 = Xi + Si+1ai+1(b
T
i+1 − aTi+1Xi) (3.20)

Si+1 =
1

λ
[Si −

Siai + 1aTi+1Si
λ+ aTi+aSiai+1

] i = 0, 1, ..., P − 1 (3.21)

where the value of λ is between 0 and 1. The smaller λ is, the faster the effects of

old data decay.
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3.9 Application of ANFIS in the control of machining processes

Due to their ability to capture human knowledge and predict nonlinear and complex

processes, adaptive neural fuzzy control systems have become an attractive alternative

to conventional control systems in machining processes [47].

However, adaptive neural fuzzy inference systems are a relatively new technique.

Although they have almost an unlimited capability in machining process control

applications, they have mostly been employed in prediction systems.
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CHAPTER 4

3 THEORETICAL ANALYSIS OF CHATTER VIBRATION IN THE

CYLINDRICAL PLUNGE GRINDING PROCESS

4.1 Introduction

In this chapter, a theoretical model for the prediction of chatter vibrations is devel-

oped. First, a static force model is used to estimate the resultant and normal grinding

forces at the initial state of excitation of the system.

An instantaneous dynamic model is used in the calculation of the tangential and

normal components of velocity of the workpiece. These are in turn used for the cal-

culation of normal and tangential forces, and finally the deflections in the respective

directions. The dynamic model is developed based on the dynamic interaction of the

grinding wheel and the workpiece.

4.2 Static model for the cylindrical plunge grinding process

Figure 4.1 shows a schematic representation of the static model for the cylindrical

grinding process. In this figure, the inputs into the process are the grinding wheel sur-

face velocity, vg, workpiece surface velocity, vw, and infeed rate, fr. System stiffness,

Keq, is a process parameter which is a function of the grinding wheel and machine

stiffness, Ks, and, the workpiece stiffness, Kw. The resultant tangential and normal

grinding forces at the point of contact of the grinding wheel and the workpiece are

indicated as Ft and Fn respectively. The grinding wheel and machine stiffness, (Ks),
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Figure 4.1: Schematic of cylindrical grinding

represent a pair of springs connected in series, i.e.,

Ks =
KgKm

Kg +Km

(4.1)

where Km is the machine stiffness and Kg is the grinding wheel stiffness.

The cylindrical plunge grinding process dynamics can be represented as a mass-spring

system, as shown in Figure 4.2. In this figure, M is the system mass, Z is the slide

position, Y is the grinding wheel position and u represents all the input parameters

into the cylindrical grinding process. The equivalent stiffness of the cylindrical grind-

ing set up, denoted as Keq, can be modeled as three springs in series as shown in

equation 4.2.

1

Keq

=
1

Km

+
1

Kg

+
1

Kw

(4.2)

Keq =
(KmKgKw)

(KmKg +KwKg +KmKw)
(4.3)
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where Kw is the stiffness of the workpiece. From Figure 4.2 the resultant workpiece-

grinding wheel deflection / displacement δ can be given as;

δ = Z − Y (4.4)

The material removal rate, Mrr, can be determined as [52];

Mrr = πbsdwf (4.5)

where bs is the width of the grinding wheel, dw is the diameter of the workpiece and

f is the actual infeed, which is different from the control infeed, fr. For a constant

radial feed, the relationship between the control infeed and the actual infeed is given

by the equation;

fr − f =
d

dt
(
Fn
Keq

) (4.6)

The normal force, Fn, can be approximated as [52];

Fn = cπdwbsf (4.7)

where c is the proportionality constant describing the grinding wheel’s dullness (which

ranges between 0.1 and 1).
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Assuming a linear cutting force model, the following relationship can be used to

describe the cylindrical grinding system [53].

Fn = Keqδ (4.8)

where Fn is the normal force, and δ is the resultant deflection. From Figure 4.3 the

normal force can also be approximated as [54];

Fn = kc × a = Kn × δ (4.9)

where a is the instantaneous depth of cut and kc is the grinding coefficient which is

a function of workpiece material properties, grinding wheel formulation, coolant, etc.

Kn is the normalized normal grinding force coefficient. kc can be obtained from the

relationship shown in [54] and [55];

kc = µ× ec ×
Ωw ×Rw

Ωg ×Rg

(4.10)
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where Ωw and Ωg are the rotational speeds for the workpiece and the grinding wheel,

µ is the coefficient of grinding and, Rw and Rg are the radii of the workpiece and the

grinding wheel respectively. The specific grinding energy ec i.e., the energy that must

be expended to remove a unit volume of workpiece material, given by the equation;

ec =

√
vg
vw
.C.r

√
de
ae

(4.11)

In equation 4.11, vg and vw represent wheel and workpiece surface velocities, while

C is the active grit density and r is the grit cutting point shape factor (ratio of grit

thickness to its width), de the equivalent wheel diameter, and ae the equivalent depth

of cut. The equivalent diameter is given by the relationship in [56];

de =
dg × dw
dg + dw

(4.12)

where dg is the diameter of the grinding wheel.

The coefficient of grinding, µ, is a function of the normal and tangential grinding

forces given by [8];

µ =
Ft
Fn

(4.13)

where Ft is the tangential grinding force. The resultant grinding force, F , can be

calculated by the formula shown in [54];

F = ec × a×
Ωw

Ωg

Rw

Rg

(4.14)

4.3 Dynamic model for the cylindrical plunge grinding process

In the dynamic model, chatter vibration is assumed to be a two dimensional problem

as shown in Figure 4.4. In the figure, an arbitrary coordinate system is used with
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X and Y as the two orthogonal axes. The coordinate system depends on the in-

stantaneous positions of the grinding wheel and the workpiece. During the grinding

process, the coordinate system is displaced (rotated) to the X ′ and Y ′ positions for

the X and Y axes respectively. The displacement along the X axis is indicated as

(Xg −Xw), while that along the Y axis is indicated as (Yg − Yw). βw represents the

angular displacement for the workpiece and βg shows the angular displacement for

the grinding wheel. ψ is the angular displacement of the grinding wheel relative to

the fixed workpiece coordinate system, herein referred to as phase shift. After an

infeed f , the following relationship holds for the displacement in the X direction;

(Xg −Xw) = {Rw sin(βw − ψ) +Rg sin(βg − ψ)− ft} cosψ (4.15)

For small β, sin β u β, hence,

(Xg −Xw) = {Rw(βw − ψ) +Rg(βg − ψ)− ft} cosψ (4.16)

Also for the displacement in the y direction, the following relationship holds,

(Yg − Yw) = {Rg(βg − ψ) +Rw(βw − ψ)− ft} sinψ (4.17)

Differentiation of equations 4.16 and 4.17 with respect to time, yields the velocity

terms in both the X and Y directions respectively;

(Ẋg − Ẋw) ={Rg(Ωg − ψ̇) +Rw(Ωw − ψ̇)− f} cosψ

− {Rw(βw − ψ) +Rg(βg − ψ)− ft} sinψ

(4.18)

(Ẏg − Ẏw) ={Rg(Ωg − ψ̇) +Rw(Ωw − ψ̇)− f} sinψ

+ {Rw(βw − ψ) +Rg(βg − ψ)− ft} cosψ

(4.19)
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Figure 4.4: Kinematics of a plunge grinding process

The phase shift ψ can be obtained from the following geometric relation,

Rg +Rw = Rg(βg − ψ) +Rw(βw − ψ) (4.20)

from which the expression for ψ becomes,

ψ =
Rgβg +Rwβw −Rg −Rw

Rg +Rw

(4.21)
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The instantaneous velocity terms vt and vn in the tangential and normal directions

respectively, are,

vt = ΩwRw(βw − ψ) + (ẋg − ẋw) sinψ − (ẏg − ẏw) cosψ (4.22)

and

vn = −(ẋg − ẋw) cosψ + (ẏg − ẏw) sinψ (4.23)

The dynamic model for the cylindrical plunge grinding process assumes distributed

force along the wheel/workpiece contact. The contact length along the wheel is

discretized into segments and each segment subtends an angle ∆βi, at the center of

the wheel, as shown in Figure 4.5. The normalized instantaneous chip thickness, Ct

can be given as [57];

Ct = 2π
vt
Ωg

sin ∆βgi + 2π
vn
Ωg

cos ∆βgi (4.24)

The specific forces per unit width of each contacted segment in radial and tangential

directions can be represented as functions of the normalized chip thickness, Ct in the

form  f ′n

f ′t

 =

 Kn

Kt

Ct(Rg,∆βgi), (4.25)

where

f ′n =
2π

Ωg

Kn{[ΩwRw(βw − ψ)− {Rg(βg − ψ) +Rw(βw − ψ)}+ ft] sin βg

+ [{Rg(Ωg − ψ̇) +Rw(Ωw − ψ̇)− f}(− cos 2ψ) + {Rg(βg − ψ)

+Rw(βw − ψ)} sin 2ψ − 2ft sinψ cosψ] cos βg},

(4.26)
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Figure 4.5: Geometrical interaction between wheel and workpiece

and

f ′t =
2π

Ωg

Kt{[ΩwRw(βw − ψ)− {Rg(βg − ψ) +Rw(βw − ψ)}+ ft] sin βg

+ [{Rg(Ωg − ψ̇) +Rw(Ωw − ψ̇)− f}(− cos 2ψ) + {Rg(βg − ψ)

+Rw(βw − ψ)} sin 2ψ − 2ft sinψ cosψ] cos βg}

(4.27)

The constants Kn and Kt are the normalized force coefficients for the radial and

tangential directions respectively. The total segment forces F ′n and F ′t in the normal

and tangential directions respectively, can be obtained by summing up the segmental

forces in the respective directions, i.e., F ′n

F ′t

 =
N∑
i=1

 Kn

Kt

Ct(Rg∆βgi); where N = int
( βg

∆βgi

)
(4.28)
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The total specific grinding forces Fn and Ft in the X and Y directions can be calcu-

lated by transforming the total segment forces, F ′n and F ′t in the Cartesian coordinate

system;  Fn

Ft

 =

 cos(βg + ψ) − sin(βg + ψ)

sin(βg + ψ) cos(βg + ψ)

×
 F ′n

F ′t

 (4.29)

Therefore, the values of Fn and Ft can be obtained as; Fn

Ft

 =

 F ′n cos(βg + ψ)− F ′t sin(βg + ψ)

F ′n sin(βg + ψ) + F ′t cos(βg + ψ)

 (4.30)

The deflections δn and δt in the normal and tangential directions, respectively, can

be obtained as follows;

δn = Fn/Keq (4.31)

δt = Ft/Keq (4.32)

Where Keq is the dynamic grinding stiffness which was determined experimentally as

detailed in APPENDIX A. The deflection δ can, therefore, be obtained as shown in

the following equation;

δ = δn
√
µ2 + 1 (4.33)

4.3.1 Theoretical results of displacements

A computer program shown in APPENDIX B was used to solve equations 4.31 and

4.32 for the normal and tangential displacements. The flowchart of the program is

shown in Figure 4.6. The values of the parameters that were used are shown in

Table 4.1. The coefficient of grinding, µ, was determined experimentally as detailed
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Table 4.1: Grinding parameters

Parameter Value

Active grit density (C) 9.5

Coefficient of grinding (µ) 0.5

Grit shape factor (r) 1

Grinding wheel diameter (dg) 405 mm

Workpiece diameter (dw) 30 mm

in APPENDIX C, and the grit shape factor assumed to be of uniform grit. The grit

density for B126 CBN grinding wheel is 9.5/mm2.

The grinding wheel speed was taken to vary between 0 rpm and 1430 rpm and work-

piece speed was taken to vary between 55 rpm and 295 rpm. This was done so as to

make them correspond to those of the machine used in the experiments.

Figures 4.7 - 4.8 show the displacements of the grinding wheel in the normal direc-

tion. It can be noted from these figures that, the amplitudes of vibration are in the

order of 10−1 µm. An interesting phenomenon is seen in Figure 4.7 (a), in which

there is growth of amplitudes of vibration (displacement) in every cycle. This can be

attributed to the regenerative effect of chatter vibration, which causes the amplitude

to increase in each consecutive cycle. This occurs due to the fact that, initially, cut-

ting forces excite a vibration of the machine workpiece system.
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(a) displacements: the RMS value is 0.4689

    

(b) power spectrum

Figure 4.7: Vibration at wheel speed of 1430 rpm and workpiece speed of 295 rpm

and infeed of 0.05 mm

This leaves a wavy surface finish on the workpiece. During the next revolution,

another wavy surface is produced in the same way. Depending on the phase shift

between these two waves, the maximum chip thickness can grow and oscillate at a

particular frequency that is close to the natural frequency of the machine workpiece

system [4].

From Figure 4.7 (b), power spectrum shows the frequencies of vibration at 1 Hz and

100 Hz. These multiple modes of vibration are due to the fact that, the waviness

and roughness generated on the workpiece surface vary due to the cutting conditions,

such as, the grinding wheel and workpiece speeds, and infeed. The presence of the

regeneration effect in the grinding process also contributes to the presence of multiple

modes of vibration [17]. Regeneration occurs when the waves generated on the work-
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(a) displacement: the RMS value is 0.2344

   

(b) power spectrum

Figure 4.8: Displacements at wheel and workpiece speeds of 1430 rpm and 55 rpm,

respectively and infeed of 0.05 mm

     

(a) displacements: the RMS value is 0.4123

     

(b) power spectrum

Figure 4.9: Displacements at an infeed of 0.07 mm (wheel speed and workpiece

speed are 1430 rpm and 295 rpm, respectively)
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(a) displacements: the RMS value is 0.0968

    

(b) power spectrum

Figure 4.10: Displacements at an infeed of 0.03 mm (wheel speed and workpiece

speed are 1430 rpm and 295 rpm, respectively)

piece as well as on the grinding wheel surfaces envelop the relative vibration between

them.

Comparing Figures 4.7 and 4.8, and the RMS values for the two cases, it can be seen

that reduction in the workpiece speed causes variation in the vibration amplitudes, in

this case, a decrease. Other results, shown in Figures 4.9 and 4.10 indicate a decrease

in the vibration amplitude with decrease in infeed.

The effectiveness of the model in predicting vibration amplitudes, represented by the

RMS values, and the frequencies of vibration obtained from power spectral analysis,

is validated through a series of experiments described in the next chapter.
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CHAPTER 5

4 MEASUREMENT OF VIBRATIONS IN GRINDING

5.1 Introduction

This chapter describes a series of experiments that were carried out to test the validity

of the theoretical model for cylindrical plunge grinding process, that was presented

in chapter three.

5.2 Apparatus and experimental procedure

The grinding experiments were carried out on a universal HIGH-GLOSS 450-H grind-

ing machine from Kondo Machine Works Co. Ltd., Japan. The machine has a spindle

rotational speed of 1430 rpm and a workpiece rotational speed that can be adjusted

to either 55 rpm, 130 rpm, 215 rpm or 295 rpm. The machine has a provision for

feeding in two orthogonal axes, that is X and Y, and can be automatically fed in the

X direction only. The minimum infeed attainable was 0.01 mm. A B126 Cubic Boron

Nitride (CBN) wheel with a grit density of 9.5/mm2, outer diameter of 405 mm, inner

diameter of 203 mm and thickness of 75 mm was used. A contact type displacement

sensor, DT-10D, with a range of 10 mm and a piezo-electric dynamometer (AST-MH)

were used for displacement and force measurements, respectively.

Before any measurements were made, the displacement sensor and the tool dy-

namometer were calibrated as indicated in APPENDIX D. Measurements of forces

and displacements were taken simultaneously in order to determine the dynamic
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Figure 5.1: Schematic of the experimental setup

grinding stiffness. The displacement and force signals were recorded in a computer

via a Peripheral Component Interconnect (PCI) data acquisition card (NI PCI-6259),

which was connected to a displacement and strain amplifier via a 68-pin shielded con-

nector block (NI SCB-68 pin). LabVIEWr software was used for data acquisition.

A schematic diagram of the experimental apparatus for the measurement of cutting

forces is shown in Figure 5.1.

The displacements in the normal and tangential directions were recorded for different

combinations of grinding wheel and workpiece speeds, and for two different materials.

A photograph of the machine setup is shown in Figure 5.2. Also a screen shot for the

LabVIEW environment used for data collection is shown in figure 5.3.
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Figure 5.3: Screen shot of the LabVIEW environment used for data collection
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5.3 Model validation

Figures 5.4 - 5.6 show waveforms of predicted and measured normal displacements

for two sets of workpiece and grinding wheel speeds. Also, shown in the figures are

the power spectra for the corresponding vibrations. From the power spectral analysis

it can be seen that, there are more vibration modes during the grinding process, than

in the model predictions.

This could be attributed to vibrations from the machine structure. The RMS values

for each of the given cases indicate that the predicted values at lower grinding speeds

are closer to the experimental values than at higher speeds. This is due to the fact

that, while grinding at high speeds, there is generation of higher temperatures which

contribute to higher grit breakage as shown in the relationship 5.1, [8].

Tα
√
ae.vs.C.r (5.1)

where T is the temperature at the contact surface, ae is the depth of cut (the depth

of work material removed per revolution), vs is the surface velocity of the grinding

wheel, C is the active grit density and r is the grit cutting point shape factor. This

effect was not accounted for in the model.
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(a) predicted displacements: the RMS value is 0.4689

               

 
(b) measured displacements: the RMS value is 0.2199

Figure 5.4: Vibrations in grinding (grinding wheel speed, 1430 rpm; workpiece

speed, 295 rpm; infeed 0.05 mm)
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(a) predicted displacements: the RMS value is 0.1039

                (i) displacements

(b) measured displacements: the RMS value is 0.0824

Figure 5.5: Vibrations in grinding (wheel speed, 700 rpm; workpiece speed, 130rpm;

infeed, 0.05 mm)
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(a) predicted displacement: the RMS value is 0.2635

               

(b) measured: the RMS value is 0.2941

Figure 5.6: Vibrations in grinding (wheel speed, 500 rpm; workpiece speed, 295

rpm; infeed, 0.05 mm)
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5.3.1 Effect of variation of workpiece speed on vibration amplitudes

The workpiece speed was varied in order to investigate its effect on the vibration

amplitudes at grinding wheel speed of 1430 rpm and an in-feed of 0.05 mm. The

results are as shown in Figure 5.7. In this figure the variation of the predicted values

of vibration from the measured values is within 15-20 percent. This also shows there is

great correlation between the measured and the predicted values. It can also be seen

that, the lowest values of the vibration amplitudes are obtained at a workpiece speed

of and 55 rpm, while the highest predicted and measured values of the displacement

are at workpiece speeds of 295 rpm and 130 rpm, respectively. This phenomenon

could be explained by the fact that, the model assumed a fully elastic system, while

in actual sense, the system is not fully elastic.
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Figure 5.7: Variation of RMS values of displacements with workpiece speed in

grinding mild steel (wheel speed; 1430 rpm, infeed; 0.05 mm)
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5.3.2 Effect of variation of wheel speed on vibration amplitudes

Analysis on the effect of variation of wheel speed on amplitudes of vibration shows

similar results as for the effect of the variation of workpiece speed for grinding mild

steel, that is, non-linear relationship between the amplitudes of vibration and the

wheel speed as shown in Figure 5.8.

Again from the figure, the variation of the predicted displacements from the measured

displacements is within 15-20 percent range. It is also seen on this figure that, the

lowest values of the vibration amplitudes (displacements) are obtained at grinding

wheel speed of 700 rpm, while the highest predicted and measured values of displace-

ments are at wheel speeds of 1200 rpm and 500 rpm, respectively. As noted, the

grinding process varies randomly, due to the fact that the process parameters change

with time, and there are complex relationships between them [18].
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Figure 5.8: Variation of RMS values of displacements with wheel speed in grinding

mild steel (workpiece speed; 130 rpm, infeed; 0.05 mm)
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5.3.3 Effect of variation of infeed on vibration amplitudes

The in-feed was varied with the workpiece and wheel speed at 295 rpm and 1430 rpm,

respectively, in order to investigate the effect of variation of in-feed on the vibration

amplitudes.

The predicted and measured values of displacement indicate that, vibration ampli-

tudes increase nonlinearly with in-feed and are withn 15-20 percent range. From

Figure 5.9, the highest value of the displacement occur at in-feed of 0.07 mm and the

lowest occur at in-feed of 0.01 mm in grinding mild steel. As is expected, increasing

the feed means increasing the load on the workpiece, and hence, the higher the feed,

the higher the deflections [56]. From the three cases considered above, it can be seen

that, the model predictions vary from the measured values with up to a maximum of

0.05 µm.
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Figure 5.9: Variation of RMS values of displacements with infeed in grinding mild

steel
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It can be seen from Figures 5.7 - 5.9 that,

• a change in either the wheel or the workpiece speed causes change in the vi-

bration amplitudes and the number of vibration modes in an unpredictable

manner. This could be attributed to the variation of the process parameters

associated with the complex nature of the process [18].

• increase in infeed causes increase in amplitudes of vibration and decrease in

infeed causes decrease in amplitudes of vibration [9].

• the vibration amplitudes from model the prediction are within a ±0.03 µm

tolerance from the measured values.

• the model predicted values of vibration follow a similar pattern to those of the

experimental measurement.
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CHAPTER 6

5 DESIGN OF ADAPTIVE NEURAL FUZZY INFERENCE SYSTEM

AND FUZZY LOGIC CONTROLLER

6.1 Introduction

This chapter outlines the procedure for designing, training, testing and implementing

the ANFIS based fuzzy logic controller. The ANFIS based FLC is applied because of

its ability to improve both the system performance and adaptability. A set of training

data is presented to the ANFIS. Then, the membership functions, their number, and

the rule base for the FLC are obtained from the ANFIS, and are used for tuning the

fuzzy logic controller. The fuzzy logic controller works in a closed loop to control the

vibrations resulting from the grinding process by selecting the appropriate grinding

parameters based on the inputs from the displacement sensors.

6.2 Fuzzy logic controller design

The proposed controller has two inputs, namely, the amplitude of vibration in the

normal direction (δn) and in the tangential direction (δt). Figure 6.1 shows the block

diagram for the proposed fuzzy logic controller.

The Fuzzy logic controller design involves the following steps;

• Identification of the inputs, outputs and their ranges.

• Design of the fuzzy membership functions for each input and output by the use

of ANFIS.
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Figure 6.1: Schematic diagram for the control of cylindrical grinding process using

FLC

• Construction of the knowledge base that contains the fuzzy rules which are used

for fuzzy reasoning. The knowledge base is constructed by ANFIS.

• Mapping of the fuzzy logic controller’s output to the corresponding crisp values

by use of center of gravity defuzzification procedure.

6.2.1 Identification of inputs, outputs and their ranges

The inputs into the fuzzy logic controller are the amplitudes of the displacements in

the normal and tangential directions, that is, δn and δt respectively. The displace-

ments were chosen to range from negative 10 µm to positive 10 µm. These values

were arrived at from the experimental work, in which the highest value of displace-

ment was seen to be around 4 µ m. The output of the FLC is the grinding wheel

speed which ranges from 0 rpm to 1430 rpm.
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6.2.2 Design of membership functions and the rule base

The design of membership functions is achieved by use of ANFIS as follows:

• A set of training data, which constitutes the optimum grinding conditions and

the expected output, is presented to the ANFIS. This set of data is generated

from the model for cylindrical plunge grinding process that was presented in

chapter 3.

• The ANFIS is generated by use of grid partitioning, which is a method for

grouping data into clusters based on their similarity. The ANFIS is then trained

by use of hybrid learning rule. The hybrid learning rule combines the gradient

method and the least squares estimate (LSE).

• The ANFIS is then tested against a set of testing data which is also generated

from the model presented in chapter 3.

• Different sets of data are presented to the ANFIS, and based on the input-

output relationship of the ANFIS, the membership functions for the FLC are

constructed.

• The rule base for the FLC is generated based on the execution of the ANFIS.

This is because, ANFIS automatically generates its own rule base depending

on its set of training data.

The ANFIS that is used in the tuning of fuzzy membership functions is explained us-

ing Figures 6.2 through 6.6. The proposed ANFIS uses Sugeno inference mechanism.
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 Figure 6.2: A screen shot of the ANFIS editor for the cylindrical plunge grinding

process

The main reason for the use of Sugeno inference mechanism is the ability of the infer-

ence mechanism to model non-linear problems. In this type of inference mechanism,

the output is a function of the inputs and is a fuzzy singleton. Figure 6.2 is a screen

shot of the ANFIS editor. It shows a plot of the training error after the training

process. As is shown in the Figure, the ANFIS is generated with grid partitioning

fuzzy inference mechanism, where each input is assigned nine membership functions,

and then trained with 20 epochs (number of iterations for training) using hybrid

learning rule. Figure 6.3 shows the block representation of the ANFIS which uses

Sugeno inference system. In this Figure N-deflection and T-deflection are the instan-
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Figure 6.3: Block representation of the ANFIS

taneous normal and tangential deflection at the point of measurement, respectively,

and W-speed is the optimum grinding wheel speed. Figure 6.4 shows the structure of

 

N-deflection

T-deflection

W-speed

Figure 6.4: Structure of the ANFIS
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the ANFIS and the parameters used in its execution process. In this figure, ‘input’

represents the inputs which are T-deflection and N-deflection and ‘inputmf’ repre-

sents the input membership functions. Also in this figure, ‘rule’ represents the rules,

‘outputmf’ represents the output membership functions and ‘output’ the output.

Figure 6.5 represents Gaussian type membership functions for the two inputs, namely,

N-deflection and T-deflection. This type of membership function is used because it

represents the nonlinear nature of the problem in a better way than triangular or

trapezoidal membership functions. In this figure, the membership functions are as

indicated in Table 6.1.

Figure 6.5: Membership functions of the inputs
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Table 6.1: Definition of membership functions

Membership function Definition

nvs negative very small

nms negative medium small

ns negative small

nz negative zero

z zero

pz positive zero

pvs positive very small

pms positive medium small

ps positive small

 

Figure 6.6: Part of the rule base generated by the ANFIS

75



Figure 6.6 shows a screen shot of diagrammatic representation of some of the rules

for the ANFIS. It shows the crisp output (wheel speed) of 888 rpm with inputs as

normal deflection of -1.49 µm and tangential deflection of 0.343 µm. There are 81

(92) rules in total. If one or the two of the input values are changed, then, the output

changes as per the rules to give the optimum grinding wheel speed. The ANFIS

was presented with different input sets so as to simulate a machining situation. The

results were used in the design of the input and output membership functions as well

as in the generation of the rules for the Fuzzy Logic Controller.

6.2.3 Implementation of the fuzzy logic controller

Figure 6.7 shows the block diagram for the proposed controller which was imple-

mented in LabVIEWr software. The experimental setup that has the controller

connected is shown in Figure 6.8. The output from the controller was a voltage that

varied from 0 V to 10 V. The voltage was matched to motor speeds between 0 and

1430 rpm, that is, 0 V for 0 rpm (the lowest speed) and 10 V for 1430 rpm (highest

possible speed). There was a linear relationship between the wheel speed and the

control voltage as shown in Figure 6.9. The rule base for the FLC used OR and AND

conjunctions and the consequents were singletons.

The output from the controller was connected to a variable frequency drive (VFD)

which was used to control the grinding wheel speed. This variable speed drive had a

control terminal whose input voltages were 0 V to 10 V. This enabled the control of

the motor speed. The VFD was connected to a three phase input power, and, gave a

three phase output power to the motor. A photo of the machine setup with controller
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in place is shown in Figure 6.10.
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Figure 6.7: Controller block
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Figure 6.9: Controller calibration curve
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6.2.4 Results and discussion

To test the effectiveness of the controller, measurements of vibrations are taken at

different workpiece speeds and infeeds. These vibrations are then compared with

the vibrations that result, when grinding without controller. This is done for two

materials, namely, mild steel and EN9 steel.

6.2.4.1 Effect of variation of workpiece speed on vibration

To test the effect of workpiece speed on vibrations, the workpiece speed is varied

and measurements of the vibrations taken at an infeed of 0.05 mm. Figures 6.11 -

6.19 show the waveforms and power spectra of vibrations in grinding mild steel, with

and without the ANFIS based fuzzy logic controller. The power spectra for both the
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(a) without controller: the RMS value is 0.2199

                

(b) with FLC controller: the RMS value is 0.0183

Figure 6.11: Vibrations in grinding mild steel (workpiece speed, 295 rpm)

controlled and uncontrolled cases show presence of multiple modes of vibration. The

variation of the vibration amplitudes with either the workpiece speed, the grinding

wheel speed or the infeed when grinding without the controller as can be seen varies

in an unpredictable manner.
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(a) without controller: the RMS value is 0.2121

          

(b) with FLC controller: the RMS value is 0.0184

Figure 6.12: Vibrations in grinding mild steel (workpiece speed, 215 rpm)
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(a) without controller: the RMS value is 0.2462

               

(b) with FLC controller: the RMS value is 0.0159

Figure 6.13: Vibrations in grinding mild steel (workpiece speed, 130 rpm)
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           (i) displacements

(a) without controller: the RMS value is 0.2344

        

(b) with FLC controller: the RMS value is 0.0154

Figure 6.14: Vibrations in grinding mild steel (workpiece speed, 55 rpm)

These figures show that, the vibration amplitudes in grinding mild steel for the FLC

controlled cases are in the order of 10−5 mm, and those ones for non-controlled cases

are in the order of 10−4 mm. This shows a great reduction in the vibration amplitudes

by the FLC.
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Figure 6.15: Variation of RMS values of displacement with workpiece speed in

grinding mild steel

Figure 6.15 shows the relationship between the workpiece speed and the RMS values

when grinding mild steel. It can be seen in this figure that when grinding without

a controller, the RMS values of the vibrations vary between 0.2 µm and 0.25 µm

for the cases considered. However, when grinding under the control of the FLC, the

RMS values are much lower and vary within a narrow range of 0.015 µm and 0.018

µm. This shows that the controller is able to maintain low vibration amplitudes

regardless of the value of the workpiece speed. This is a very desirable characteristic

of the ANFIS based FLC.

Tests similar to those in grinding mild steel were done for EN9 steel. The results

shown in Figures 6.16 - 6.20 present the comparison of the waveforms and power

spectra for two cases; with and without controller.
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(a) without controller: the RMS value is 0.4704

                

(b) with FLC controller: the RMS value is 0.0821

Figure 6.16: Vibrations in grinding EN9 steel (workpiece speed, 295 rpm)
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(a) without controller: the RMS value is 0.4661

        

(b) with FLC controller: the RMS value is 0.0947

Figure 6.17: Vibrations in grinding EN9 steel (workpiece speed, 215 rpm)
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(a) without controller: the RMS value is 0.3042

                

(b) with FLC controller: the RMS value is 0.0180

Figure 6.18: Vibrations in grinding EN9 steel (workpiece speed, 130 rpm)
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(a) without controller: the RMS value is 0.3667

                

(b) with FLC controller: the RMS value is 0.0191

Figure 6.19: Vibrations in grinding EN9 steel (workpiece speed, 55 rpm)

From these figures, it is seen that, the vibration amplitudes in grinding under the

control of FLC are in the order of 10−5 mm. However, the vibration amplitudes in

griding without controller are in the order of 10−3 mm. The relationship between

the RMS values of deflections and the workpiece speed in grinding EN9 steel is

88



0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400

without controller

with controller

workpiece speed (rpm)

rm
s v

al
ue

 (�
m

)
R

M
S

Figure 6.20: Variation of RMS values of displacement with workpiece speed in

grinding EN9 steel

shown in Figure 6.20. In this figure, it can be seen that, the RMS values vary

non-linearly with increase in workpiece speed. This is due to the complex nature of

the relationship between the input and the output parameters, causing unpredictable

process variation [18].

6.2.4.2 Effect of variation of infeed on vibrations

In order to test the effect of infeed on vibrations in grinding mild steel and EN9 steel,

grinding process was carried out with workpiece speed at 295 rpm.

Figures 6.21 - 6.24 show the vibration waveforms and power spectra in grinding mild

steel with different infeed.
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(a) without controller: the RMS value is 0.2250

       

(b) FLC controlled: the RMS value is 0.0138

Figure 6.21: Vibrations in grinding mild steel (infeed, 0.07 mm)
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(a) without controller: the RMS value is 0.2199

                

(b) FLC controlled: the RMS value is 0.0185

Figure 6.22: Vibrations in grinding mild steel (infeed, 0.05 mm)
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(a) without controller: the RMS value is 0.1398

           

      

(b) FLC controlled: the RMS value is 0.0193

Figure 6.23: Vibrations in grinding mild steel (infeed, 0.03 mm)
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(a) without controller: the RMS value is 0.1132

           

(b) FLC controlled: the RMS value is 0.0194

Figure 6.24: Vibrations in grinding mild steel (infeed, 0.01 mm)

From these figures, it can be seen that the amplitudes of vibration in the controlled

grinding process are much lower than in the uncontrolled grinding process. The power

spectra shows presence of multiple modes of vibration.
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Figure 6.25: Variation of RMS values with infeed in grinding mild steel

Figure 6.25 shows the variation of the RMS values with infeed for two cases; when

grinding without controller, and when grinding with the ANFIS based FLC. From

this figure, it can be seen that, when grinding under the control of the ANFIS based

FLC, the RMS values of the vibration are low and remain within a narrow range in

all cases, as compared to the case when grinding without controller.

Tests similar to those for grinding mild steel were done for EN9 and the waveforms

of vibration and power spectra are shown in Figures 6.26 - 6.29.
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(a) without controller: the RMS value is 0.4791

            

(b) FLC controlled: the RMS value is 0.0082

Figure 6.26: Vibrations in grinding EN9 steel (infeed, 0.07 mm)
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(a) without controller: the RMS value is 0.4704

                

(b) FLC controlled: the RMS value is 0.0821

Figure 6.27: Vibrations in grinding EN9 steel (infeed, 0.05 mm)
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(a) without controller: the RMS value is 0.4781

            

(b) FLC controlled: the RMS value is 0.0179

Figure 6.28: Vibrations in grinding EN9 steel (infeed, 0.03 mm)

97



       

(a) without controller: the RMS value is 0.4626

       

(b) FLC controlled: the RMS value is 0.0189

Figure 6.29: Vibrations in grinding EN9 steel (infeed, 0.01 mm)

As in the case of grinding mild steel, it can be seen that the amplitudes of vibration

in the controlled grinding process are much lower than in the uncontrolled grinding

process, and the power spectra show presence of multiple modes of vibration.
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Figure 6.30: Variation of RMS values with infeed in grinding EN9 steel

Figure 6.30 shows the variation of amplitudes of vibration in grinding EN9 steel

with infeed for FLC controlled and uncontrolled grinding processes. A non-linear

relationship exists between the vibration amplitudes and infeed. It can be noted that

the vibration amplitudes are in the order of 10−5 mm for the controlled process while

those of the uncontrolled process are in the order of 10−3 mm. Further tuning and

increase of membership functions could help increase the sensitivity of the controller

hence eliminating the increase in displacement at the infeed of 0.05 mm.

6.3 Summary

Comparing the waveforms of the vibrations for both non-controlled grinding, and the

Fuzzy Logic Controlled grinding processes, it can be observed that;

• the amplitudes of the vibrations when grinding without controller are in the
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order of 10−3mm for EN9 steel and 10−4 mm, for mild steel. When grinding

with ANFIS based FLC the amplitudes of vibration are in the order of 10−5

mm. This shows a great reduction in the vibration amplitudes.

• when grinding under the control of the FLC, the vibration amplitudes remain in

the 10−5 mm range regardless of any changes in the infeed, wheel or workpiece

speeds.

Thus, the proposed ANFIS based fuzzy logic controller has been seen to reduce the

vibration in the grinding process by adaptively adjusting the grinding wheel speed.

This reduction in vibration would lead to less noise while machining, less need for

operator intervention, better quality of surface finish for the ground parts, reduction

in production cost and longer tool and machine life.

The ANFIS based controller, once designed can be used on any cylindrical grinding

machine without the need for retraining the ANFIS. It can be incorporated at the

design stage of the machine. Once the controller is designed, it can be implemented

on multiple machines.
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CHAPTER 7

6 CONCLUSION AND RECOMMENDATIONS

7.1 Conclusion

In this study, a model to predict grinding process vibrations for the cylindrical plunge

grinding process was developed. This model was validated through experimental

work. The effects of variation of workpiece and grinding wheel speeds, as well as infeed

on the grinding process vibrations were investigated. The model that was developed

simulated the workpiece displacements for a given set of grinding parameters. Data

generated from simulation of the model was used to train the ANFIS, which was

implemented by use of a fuzzy logic controller. The proposed ANFIS based fuzzy

logic controller was implemented in LabVIEWr environment. It can be concluded

that;

• the proposed ANFIS based controller was able to effectively reduce the vibration

in cylindrical grinding.

• the model predictions were more accurate at lower grinding wheel and workpiece

speeds.

• the amplitudes of vibration in grinding increase with increase in infeed and

decrease with decrease of infeed.

• the amplitudes of vibration vary non-linearly with change in workpiece speed,

grinding wheel speed and workpiece material.
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• when grinding EN9 and mild steels with the same grinding parameters, it was

found that, the amplitudes of vibration in grinding EN9 steel were higher than

those in grinding mild steel.

7.2 Recommendations

It was demonstrated that, the developed controller can effectively reduce the vi-

brations in cylindrical grinding. This work could be extended to other machining

processes that are susceptible to chatter vibration.

Further research could be carried out to investigate the effect of controlling the speed

of the workpiece on the vibrations. Also, Analysis of the effect of chatter on the

grinding wheel and workpiece properties can be done. Research could also be car-

ried out on the development of a fuzzy logic controller that has a higher number of

membership functions, although this compromises the training speed of the ANFIS.
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APPENDIX A

A DETERMINATION OF GRINDING STIFFNESS

To determine the grinding stiffness, displacements and forces were measured simulta-

neously and recorded as shown in Table A.1. The grinding stiffness was determined

by plotting the measured forces against displacements as shown in Figure A.1. It

can be seen from this figure that, there exists a linear relationship between force

and displacement. This relationship between force and displacement is the grinding

stiffness, Keq, and is obtained as the gradient of the curve.

Table A.1: Simultaneous forces and displacements

 

 

Displacement  (mm) Force (N) 

0 0 

0.0011507 0.040672 

0.00143457 0.048933 

0.00171844 0.057194 

0.00202231 0.065456 

0.00228618 0.073717 

0.00257005 0.081979 

0.00285392 0.09024 

0.00303779 0.098501 

0.00332176 0.106763 

0.00360553 0.115024 

0.0038894 0.123286 

0.00417327 0.131547 

0.00445714 0.139808 

0.00474101 0.14807 

0.00502488 0.157331 

0.0052335 0.164859 

0.0055178 0.173146 
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Displacement (mm) Force (N)
0 0

0.0011507 0.0406715
0.00143457 0.0489329
0.00171844 0.0571943
0.00202231 0.0654557
0.00228618 0.0737171
0.00257005 0.0819785
0.00285392 0.0902399
0.00303779 0.0985013
0.00332176 0.1067627
0.00360553 0.1150241

0.0038894 0.1232855
0.00417327 0.1315469
0.00445714 0.1398083
0.00474101 0.1480697
0.00502488 0.1573311

0.0052335 0.16485917
0.0055178 0.17314557
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Figure A.1: Graph for determining grinding stiffness

The equation for the curve, which gives the stiffness is;

F = 30000δ (A.1)

where F is the applied force, and δ is the deflection in the direction of application of

the force.
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APPENDIX B

B PROGRAM FOR SIMULATION OF VIBRATIONS

c vibration simulation

PROGRAM VIBSIM WRITE(*,*)’ENTER THE

WORK RADIUS IN MM’

READ(*,*)RWORKMM

WRITE(*,*)’ENTER THE GRINDING WHEEL RADIUS IN MM’

READ(*,*)RWHEELMM

WRITE(*,*)’ENTER THE wheel speed in rpm’

READ(*,*)vwheeln

WRITE(*,*)’ENTER THE work speed in rpm’

READ(*,*)vworkn

WRITE(*,*)’ENTER THE INFEED’

READ(*,*)FMM

PI=3.142

F=FMM/1000

RWORK=RWORKMM/1000

RWHEEL=RWHEELMM/1000

C AE=EQUIVALENT(INSTANTANEOUS) DEPTH OF CUT,

DE=EQUIVALENT WHEEL DIAMETER, C DW=WORKPIECE

DIAMETER, DG=WHEEL DIAMETER

DW=2*RWORK
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DG=2*RWHEEL

DE=(DW*DG)/(DW+DG)

AE=F

C GRINDING STIFNESS=CKG

CKG=3000

C COEFFICIENT OF GRINDING CMU

CMU=0.5

C GRIT DENSITY CR (FOR: B126 cBN=9.5/sqmm,

B151 cBN=7/sqmm, B252 cBN=3/sqmm)

C THE PAPER IS SAVED AS ’GRIT DENSITY’ AND IS TITLED

C (ON CUMULATIVE DEPTH OF TOUCH-DRESSING OF

SINGLE LAYER

C BRAZED CBN WHEELS WITH REGULAR GRIT DISTRIBUTION

PATTERN)

CR=9.5

C CALCULATION OF NORMALIZED NORMAL FORCE

COEFFICIENT

C CALCULATION OF SURFACE VELOCITIES

(TST= TIME FOR STATIC MODEL)

C W=RATIO OF SURFACE WHEEL VELOCITY TO

SURFACE WORKPIECE VELOCITY

C WRITE(*,*) ’ENTER TIME TO CALCULATE

NORMALIZED FORCE COEFF. TST’
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C READ(*,*) TST C WRITE(*,*)

’ENTER WHEEL SPEED AT WHICH TO

C CALCULATE Kt AND Kn IN RPM’ C READ(*,*) VWHEELSN

TST=15

VWHEELSN=1500

VWHEELS=2*PI*VWHEELSN/60

VWORKSN=100

VWORKS=2*PI*VWORKSN/60

PSIS=0

VG=RWHEEL*VWHEELS

VW=RWORK*VWORKS

W=VG/VW

V=SQRT(DE/AE)

C CALCULATION OF SPECIFIC ENERGY

EC=SQRT(W*CR*V)

C CALCULATION OF THE COEFFICIENT CKS

(STATIC FORCE COEFFICIENT)

C CKS=(CMU*EC*RWORK*VWORK)/(RWHEEL*VWHEEL),

FR=CKS*AE/CMU

C CALCULATION OF RESULTANT STATIC

GRINDING FORCE=FR

FR=EC*F*W

C VWHEELSN=WHEEL SPEED ON STATIC MODEL
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IN RPM C VWORKSN=WORKPICE

SPEED ON STATIC MODEL IN RPM C

VWHEELS=WHEEL SPEED ON STATIC

MODEL IN RADIANS C VWORKS=WORKPICE SPEED

ON STATIC MODEL IN RADIANS C LETTER S IN THE FOLLOWING

EQUATIONS DENOTES STATIC

BETAWS=VWORKS*TST

BETAGS=VWHEELS*TST

AS=VWORKS*RWORK*(BETAWS)

BS=RWHEEL*(VWHEELS)

DS=RWORK*(VWORKS)

ES=RWHEEL*(BETAGS)

GS=RWORK*(BETAWS)

HS=2*PI/VWHEELS

C CTS=CHIP THICKNESS FOR STATIC MODEL

XS=AS+(BS+DS-F)*(-COS(BETAGS))

YS=((BS+DS)*(SIN(PSIS)))*(SIN(BETAGS)+COS(BETAGS))

ZS=((ES+GS)*(COS(PSIS)))*(SIN(BETAGS))

CTS=HS*(XS+YS+ZS)

CALCULATION OF COEFFICIENTS CKN=Kn, AND CKT=Kt

CKTT=FR/(CTS*(TAN(BETAGS)*SIN(BETAGS)+COS(BETAGS)))

CKNN=FR/(CTS*CTS)

CKN=10*SQRT(CKNN*CKNN)
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CKT=10*SQRT(CKTT*CKTT)

WRITE(*,*)CKT,CKN, FR, CTS

IF(VWHEELN.LT.1431)THEN

DO 1000 K=0,300

VWHEEL=2*PI*VWHEELN/60

VWORK=2*PI*VWORKN/60

T=T+0.01

TI=T*10

BETAG=VWHEEL*T

BETAW=VWORK*T

PSI=((RWHEEL*BETAG)+(RWORK*BETAW)-RWHEEL-RWORK)

A=VWORK*RWORK*(BETAW-PSI)

B=RWHEEL*(VWHEEL-(PSI/T))

D=RWORK*(VWORK-(PSI/T))

E=RWHEEL*(BETAG-PSI)

G=RWORK*(BETAW-PSI)

H=2*PI/VWHEEL

X=A+(B+D-F)*(-COS(BETAG+PSI))

Y=((B+D)*(SIN(PSI)))*(SIN(BETAG)+COS(BETAG))

Z=((E+G)*(COS(PSI)))*(SIN(BETAG+PSI))

CT=H*(X+Y+Z)

RFORCE=CKN*CT*COS(BETAG+PSI)-CKT*CT*SIN(BETAG+PSI)

TFORCE=CKN*CT*SIN(BETAG+PSI)+CKT*CT*COS(BETAG+PSI)
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RAMPL=RFORCE/CKG*1000

TAMPL=TFORCE/CKG*1000

OPEN(1, FILE=’DISPLN.DAT’)

WRITE(1,*)T, RAMPL

OPEN(2, FILE=’DISPLT.DAT’)

WRITE(2,*)TI, TAMPL

1000 continue

ENDIF

STOP

END
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APPENDIX C

C DETERMINATION OF GRINDING COEFFICIENT

The grinding coefficient µ was obtained graphically by plotting the measured tangen-

tial forces against the normal forces as shown in figure C.1. The forces were measured

using tool dynamometer. The tool dynamometer has strain gauges arranged in such

a way that, it can be used for measurement of forces in three orthogonal directions.

From the plot of the tangential and normal forces, the grinding coefficient is obtained

as the gradient of the curve which is 0.5.
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Figure C.1: Graph for the determination of grinding coefficient
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APPENDIX D

D CALIBRATION OF INSTRUMENTS USED

D.1 Calibration of tool dynamometer

The tool dynamometer comprises of strain gauges arranged in such a way that they

can measure forces in different directions. The tool dynamometer that is used gives

analog voltages as the outputs. The voltages are proportional to the forces applied

in the respective directions. Slight changes in the forces during machining can be

detected and recorded in a computer via a digital to analog converter. The voltages

also can be amplified to the desired level. The calibration process for the dynamome-

ter involved applying static loads of known weights on each axis direction, that is,

force in Y-direction (Fy), force in X-direction (Fx), and force in Z-direction, (Fz) as

shown in Figure D.1. The loads were added one at a time and the readings in all 3

components were recorded as shown in the Table D.1.

machine-setup

user 9/29/2010

Designed by Checked by Approved by Date

1 / 1 
Edition Sheet

Date

Grinding wheel

Pillow block

Dynamometer
Charge amplifiers

Data acquisition card
 

Computer

Workpiece motor

Fy

Fz

Fx

Figure D.1: Setup for tool dynamometer calibration
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Table D.1: Dynamometer calibration data

Loading in X-Direction 
  

 

 
 

      
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV) 

       0 0 0 0 
       5 3 0.1 0.2 
       35 21 0.7 2 
       55 33 1 3.4 
       75 45.2 1.4 5 
       95 57 1.7 6.4 
       115 68.7 2.1 7.9 
       135 80 2.5 9.5 
       155 91.8 2.9 11.1 
       175 103 3.3 12.5 
       

Loading in Y-Direction 
  

 

 
 

      
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV) 

       0 0 0 0 
       5 0.1 0.5 0.1 
       35 1.2 12 1.3 
       55 1.8 20 2 
       75 2.5 28.9 2.7 
       95 3.1 38.8 3.6 
       115 3.6 47.5 4.4 
       135 4.1 57 5.3 
       155 4.7 67.3 6.2 
       175 5.2 76.8 7.1 
       

Loading in Z-Direction 
 
 

 
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV) 

0 0 0 0 
30 0.3 0.5 30 
50 0.5 0.7 50 
70 0.7 0.9 70 
90 0.9 1 90 

110 1.1 1.2 110 
130 1.3 1.4 130 
150 1.5 1.8 150 
170 1.7 2 170 
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It was observed that, there was cross sensitivity in all the three axes, i.e., every

load applied in any direction had an effect in each of the 3-components. Calibration

equations for the dynamometer were derived based on the calibration curves plotted

in Figure D.2.

Loading in Y-Direction
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV)

0 0 0 0
5 0.1 0.5 0.1

35 1.2 12 1.3
55 1.8 20 2
75 2.5 28.9 2.7
95 3.1 38.8 3.6

115 3.6 47.5 4.4
135 4.1 57 5.3
155 4.7 67.3 6.2
175 5.2 76.8 7.1

Loading in X-Direction
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV)
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5 3 0.1 0.2

35 21 0.7 2
55 33 1 3.4
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95 57 1.7 6.4

115 68.7 2.1 7.9
135 80 2.5 9.5
155 91.8 2.9 11.1
175 103 3.3 12.5

Loading in Z-Direction
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV)

0 0 0 0
30 0.3 0.5 30
50 0.5 0.7 50
70 0.7 0.9 70
90 0.9 1 90

110 1.1 1.2 110
130 1.3 1.4 130
150 1.5 1.8 150
170 1.7 2 170 0
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(a) plot for loading in X-direction

Loading in Y-Direction
Force (N) X-Reading (mV) Y-Reading(mV) Z-Reading (mV)
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175 5.2 76.8 7.1
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(b) plot for loading in Y-direction
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(c) plot for loading in Z-direction

Figure D.2: Dynamometer calibration curves.

Considering the gradients of the plotted lines, when the tool dynamometer was loaded

122



in all the three axes directions independently, the following simultaneous equations

were obtained.

XR = 0.59Fx + 0.018Fy + 0.075Fz

YR = 0.029Fx + 0.45Fy + 0.04Fz

ZR = 0.01Fx + 0.011Fy + Fz

(D.1)

From equation D.1 the force components in X,Y and Z axes are obtained, taking into

account the effect of sensitivity of the load applied in other component direction;

Fx = 20.953XR − 0.819YR + 1.537ZR, Fy = −1.113XR + 2.267YR + 0.007ZR,

Fz = −0.198XR − 0.017YR + 0.985ZR

D.2 Calibration of displacement sensor

Known displacements δ were applied to the sensor probe, and the output voltages

from the sensor, V , recorded as shown in Table D.2. The output voltages were plotted

against the applied displacements in the calibration curve shown in Figure D.3. From

this figure it is seen that, there exists a linear relationship between the output voltage

and the displacement. The equation for the curve, is

δ = 0.45556V (D.2)
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Table D.2: Displacement sensor calibration data

Displacement (mm) Output voltage (V) 
0 0 

0.3 1.4 
0.5 2.22 
0.6 2.6 

0.75 3.3 
0.8 3.49 

0.95 4.27 
1 4.5 
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Figure D.3: Plot for displacement sensor calibration
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APPENDIX E

E CODE FOR FFT AND RMS OF DISPLACEMENTS

E.1 Code for finding Fast Fourier Transforms of displacements

load DISPLN.dat

amp=DISPLN(:,4);

y=fft(amp,256);

Pyy=y.*conj(y)/256;

f=2000/256*(0:127);

plot(f,Pyy(1:128))

title(’Power spectral density’)

xlabel(’Frequency (Hz)’)

E.2 Code for finding RMS values of the displacements

load DISPLN.dat

a=DISPLN(:,2);

y=sqrt(sum(a.*conj(a))/size(a,1))
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