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Abstract 

Ultrasound technology has become an important aspect in material handling and machining. Standing and traveling 

ultrasonic waves have been applied in powder transportation, feeding, dosing and supply of small amounts of 

powder with high quantitative accuracy and precision. Piezoelectric actuators are the most commonly used to 

generate the ultrasonic waves in various devices. Hence, these devices have presented a unique, economic and 

simple means of accurate handling of powder. This paper describes the determination of the resonant frequency of a 

piezoelectric ring that can be applied for generation of the ultrasonic waves. The resonant frequency is important in 

determining the highest amplitude of the vibration of the ring. 
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When mechanical stresses are applied to a piezoelectric solid, voltage is produced between its surfaces. This is the 

piezoelectric effect. Conversely, when a voltage is applied across certain surfaces of the solid, the solid undergoes a 

mechanical distortion. This is the inverse piezoelectric effect. The effect is exhibited by certain crystals whose 

charge symmetry is disturbed, and the charge asymmetry generates a voltage across the material. Examples include 

quartz, Rochelle Salt and many synthetic polycrystalline ceramics, such as bariumtitanate and lead zirconate 

titanates (PZT) (Vishal and Fernandes, 2010). Inverse piezoelectricity can be used to generate mechanical vibrations 

in ultrasonic range which can be used in handling of small particles like powder in industrial processes with more 

accuracy and precision (Mracek and Wallaschek, 2005) (Yamada, Nakagawa and Nakamura, 1993) (Kozuka, 

Tuziuti and Mitome, 1998) (Nyborg, 1967). 

1.1 Piezoelectric relations 

The electrical behavior of an unstressed medium under the influence of an electric field is defined by the electric 

field strength, E and the dielectric displacement, D. Their relationship is shown in Equation 1. 

      (1)  

Where ε is the permittivity of the medium. The mechanical behavior of the same medium at zero electric field 

strength is defined by two mechanical quantities namely; the stress applied, T and the strain, S. whose relationship is 

shown in Equation 2 

 S = sT (2)  

where s denotes the compliance of the medium (Mason, 1950). 

Piezoelectricity involves the interaction between the electrical and the mechanical behavior of the medium. This 

interaction can be closely approximated by linear relations (Equation 3) between electrical and mechanical variables 

(Kocbach, 2000). 

         
        

} (3)  

1.2 Vibration modes of a piezoelectric ring 

Considering the ring shown in Figure 1, there are three possible fundamental modes of when an electric field parallel 

to the poling direction is applied (Hueter and Bolt, 1955). 

1) The thickness (axial) mode vibration occurs when the applied frequency is coincident with the thickness 

resonant frequency, fthk which induces a change in thickness, τ ± Δ τ r. 

2) The radial mode vibration occurs when the applied frequency is coincident with the radial resonant 

frequency, fr−rad which induces a change in the mean diameter dmr± Δ dmr. The radial mode always appears 

as the lowest frequency as the diameter is the largest dimension. 

3) The wall thickness mode fr-wd occurs when the frequency is coincident with the resonant frequency along 

the wall thickness direction, causing a change in the wall thickness wr ± Δ wr (Cheng and Chan, 2001). 

The thickness resonant frequency, fr−thk, radial resonant frequency, fr−rad and wall thickness resonant frequency, fr−wall 

are given in Equations 4, 5 and 6 respectively. 

 
       

 

   √     
 

 (4)  

 
       

 

    √     
 

 (5)  

 
        

 

   √     
 

 (6)  

Where                       is the mean diameter,                      is the mean wall thickness, ρ 

is the density, τr is the thickness of the ring, s
E

11 is the elastic compliance at constant electric field and s
D

33 is the 

elastic compliance at constant charge density (IECstandard, 1976). 
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The radial mode vibration has three vibrations modes. Figure 2a is the first radial mode vibrating in its direction 

symmetrically, called the (R,1) mode and Figure 2b is one of the non-axisymmetric modes vibrating in its radial 

direction asymmetrically, called the (1,1) mode. A non-axisymmetric mode has an orthogonal mode with the same 

form as the degenerated mode as shown in Figures 3a and 3b. 

When the degenerated modes are excited by two electric signals with a phase difference of 90
o
 as shown in Figure 

3c, a mode rotation occurs at the inner and outer circumference of the annular plate (Takano and Tomikawa, 1997). 

1.3 Radial vibration of a piezoelectric ring 

Axisymmetric radial vibration can be set up in a thin ceramic ring with radial poling and electrodes connected on its 

inner and outer surfaces (Yang, 2005), (Yang, 2006) as shown in Figure 4. 

By taking R, w and h as the mean radius, width and thickness of the ring respectively and making the assumption 

that R >> w >> h. Furthermore, in cylindrical coordinates and the boundary conditions, Equation 7 is approximated 

as true throughout the ring: 

      
             

 𝜃   𝑧   
} (7)  

Let (θ, z, r) correspond to (1, 2, 3). The radial electric field and the tangential strain are given by 

 
     𝜃𝜃  

  

 

       
 

 

} (8)  

The relevant constitutive relations are 

      𝜃𝜃      𝜃𝜃       

          𝜃𝜃       
} (9)  

Which on solving give, 

 

 𝜃𝜃  
 

   

  

 
 

   

   
  

   
   

   

  

 
   ̅   }

 

 

 (10)  

where  

   ̅         
      (11)  

 

The equation of motion takes the following form (Portelles et al., 2011); 

 
 

 𝜃𝜃

 
   ̈  (12)  

Substitution of Equation 10 into Equation 12 yields; 

 
 

 

   

  

  
 

   

    
     ̈  (13)  

substituting Equation 8 in Equation 13 gives; 

 
 

 

   

  

  
 

   

    

 

 
   ̈  (14)  
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which can be written in the form 

 
  ̈  

 

   

  

  
  

   

    

 

 
 (15)  

Equation 15 can be compared with the differential equation of a spring-mass system (Equation 16) with a forcing 

function, F (Kelly, 2000). 

 
  ̈      

                           
 

 

} (16)  

Similarly, the natural frequency of vibration of the piezoelectric ring is given as (Kirekawa, Ito and Asano, 1992), 

 
   

 

     
 
 (17)  

2. METHODOLOGY 

2.1 Modeling 

Finite Element Analysis is used for modeling purposes. First, the modal analysis was done in order to determine the 

vibration characteristics (natural frequencies and mode shapes) of the piezoelectric ring during free vibrations. It 

was then meshed using automatic meshes as shown in Figure 5a, and later refined using mapped face meshing and 

body sizing so as to arrange the elements in a regular manner as shown in 

Figure 5b. The modal shape was obtained as shown in Figure 6. 

2.2 Experiments 

The schematic diagram for the study is shown in Figure 7. The piezoelectric ring had the electrodes connected to its 

faces as shown in Figure 8. Thereafter, the ring was subjected to 10V alternating current and then the deformation 

graph was viewed using a digital oscilloscope. The frequency of the voltage was then varied until the deformation 

and the voltage curves were in phase. This state indicated that the piezoelectric ring was vibrating at the resonant 

frequency. Two rings were used, and the velocity of vibration of the inner and the outer faces were compared. 

3. RESULTS 

From the modal analysis, the piezoelectric ring was found to have a natural frequency of 47.9 kHz. Additionally, 

from the harmonic analysis, the ratio of deformation of the inner ring edges was obtained as shown in Table I. This 

showed that the ratio of the deformation of the inner edges was approximately 1 at the various exciting frequencies 

considered implying that there was no significant variation to the deformation of the inner edges of the ring. As a 

result, the whole of the inner face was used during the modeling of the deformation of the whole set-up. An analysis 

around the resonant frequency of the piezoelectric ring was done in order to obtain the maximum velocity of 

vibration of the inner and outer diameter faces. Tables II and III show the results of the face displacements. From the 

frequency, f, of excitation and the Amplitude, A, the velocity, V, was calculated using Equation 18. 

        (18)  

The resonant frequency of the ring was also obtained numerically using Equation 5, whereby Equation 19 gave the 

mean radius of the ring in Figure 1. 

 
  

             

   

 
     

 
         

                 }
 
 

 
 

 (19)  

From Equation 17, the natural frequency in radial mode for the ring was obtained as; 
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            }
 
 

 
 

 (20)  

Hence  

   √           

                
} (21)  

The resonant frequency in radial mode, fr−rad was given by 

 
       

 

  

 
          

  
 

              }
 
 

 
 

 (22)  

From the experiment, the resonant frequency of the two rings was measured as 47.96 kHz and 47.99 kHz. 

4. CONCLUSION 

The resonant frequency of a piezoelectric ring was obtained through various methods which gave a consistent value 

of the resonant frequency. Finite element analysis is therefore a suitable method for modeling the ultrasonic 

vibrations of a piezoelectric ring. In addition, it is possible to use a piezoelectric ring under the low voltage region to 

produce ultrasonic waves. Therefore, the ring is a suitable method of producing ultrasonic waves economically. 
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Figure 1: Schematic diagram of a piezoceramic ring. 

 

(a) (R,1) MODE    (b) (1,1) MODE 
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(a) Automatic meshes     (b) Refined meshes 

Figure 5: Mesh for the piezoelectric ring model 

 

Figure 6: Modal shape for the piezoelectric ring 

 

Figure 7: Schematic diagram for the experimental set-up. 

Figure 8: Electrodes connection on the piezoelectric ring. 
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Table 1: Deformation of the piezoelectrc inner face and edges 

Offset 

(mm)  

Amplitude at 

Edge 1 (m)  

Amplitude at 

Edge 2 (m)  

Amplitude 

Ratio  

0.1  1.05E-008  1.06E-008  0.9858  

1  1.05E-008  1.07E-008  0.9868  

2  1.06E-008  1.07E-008  0.9894  

3  1.03E-008  1.05E-008  0.9896  

4  9.93E-009  9.87E-009  1.0060  

5  9.97E-009  9.97E-009  1.0000  

6  1.02E-008  1.01E-008  1.0124  

7  1.03E-008  1.02E-008  1.0102  

8  9.51E-009  9.11E-009  1.0438  

9  9.39E-009  8.99E-009  1.0446  

10  8.45E-009  8.22E-009  1.0282  

11  9.59E-009  9.66E-009  0.9925  

12  9.82E-009  9.62E-009  1.0204  

13  9.91E-009  9.73E-009  1.0184  

14  9.76E-009  9.50E-009  1.0274  

15  9.31E-009  9.15E-009  1.0185  

16  9.35E-009  9.17E-009  1.0186  

17  9.66E-009  9.70E-009  0.9957  

18  9.55E-009  9.58E-009  0.9971  

19  9.80E-009  9.86E-009  0.9942  

20  9.95E-009  9.87E-009  1.0082  

 
Table 2: Velocity for the deformation of the 

inner face of the ring 

Frequency 

(Hz)  

Amplitude 

(m)  

Velocity 

(mm/s)  

47000  9.02E-08  2.66E+01  

47200  1.02E-07  3.03E+01  

47400  1.18E-07  3.51E+01  

47600  1.33E-07  3.99E+01  

47800  1.44E-07  4.32E+01  

48000  1.45E-07  4.37E+01  

48200  1.36E-07  4.11E+01  

48400  1.21E-07  3.68E+01  

48600  1.06E-07  3.23E+01  

48800  9.22E-08  2.83E+01  

49000  8.08E-08  2.49E+01  

 

 

Table 3: Velocity for the deformation of the 

outer face of the ring 

 

Frequency 

(Hz)  

Amplitude 

(m)  

Velocity 

(mm/s)  

47000  6.99E-08  2.06E+01  

47200  7.82E-08  2.32E+01  

47400  8.93E-08  2.66E+01  

47600  1.00E-07  3.00E+01  

47800  1.74E-07  5.23E+01  

48000  1.07E-07  3.23E+01  

48200  9.95E-08  3.01E+01  

48400  8.80E-08  2.68E+01  

48600  7.62E-08  2.33E+01  

48800  6.58E-08  2.02E+01  

49000  5.72E-08  1.76E+01  
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