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Abstract—With the ever-growing energy demand and 
coupled with the issues of reliability. Microgrids powered 
by distributed conventional and renewable energy sources 
can be utilized to address this problem. Hybrid energy 
sources offers better reliability and cost effectiveness than a 
single energy source. Determining the right size of Hybrid 
Energy Systems is of great importance in order to avoid 
over-sizing or under-sizing which could greatly affect the 
cost and reliability of the system. Optimal sizing becomes 
highly complex when considering multiple hybrid mix and 
also considering various objectives such as cost, emission, 
reliability etc. This paper aims at critically evaluating the 
various cost objectives, reliability indices, mathematical 
models, and optimization techniques used in optimal sizing 
of various of hybrid energy mix. It has been found that 
meta-heuristic techniques are well suited for optimal sizing 
with Genetic Algorithm and Particle Swarm Optimization 
techniques being the most commonly used Algorithms. 
Also, the Hybrid Optimization for Multiple Energy 
Resources (HOMER) stands out as the widely accepted and 
used optimization software tool. 
 
Keywords—Distributed Generation, Hybrid Energy 
Systems, Microgrids, Optimization, Renewable Energy. 

1. INTRODUCTION 

Electric Power is one important basic amenity 

needed in our day to day activities, and has been 
described as the lifeblood of all modern societies[1], 
with the recent increase in population, technology, 
urbanization and industrialization, the world energy 
demand is estimated to increase up to 53% by 
2035[2]. This creates a challenge on how to 
efficiently meet this energy need. Apart from the  
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insufficient supply to meet the growing energy 
demand, the electric power system in most 
developing African countries are plagued by poor 
power reliability leading to regular power outages, 
load shedding and ageing equipment in the network. 
In a bid to improve the power situation, various 
researchers have proposed the use of distributed 
generation coupled with various renewable energy 
sources to form a microgrid as a viable option[3], as 
opposed to the use of conventional large-scale 
centralized  power generation. An incentive of 
renewable energy is that they are eco-friendly with 
little to zero greenhouse gas and CO2 emission. One 
problem with the use of renewable energy such as 
wind, solar etc., is that they are stochastic and 
intermittent in nature. 
And the usage of an individual renewable energy 
source cannot guarantee continuous supply of power. 
One way to better utilize renewable energy sources 
considering their intermittency is through 
hybridization, which means the combination two or 
more renewable/non-renewable energy sources [4]. 
Hybrid Energy System (HES) consist of a 
combination of various energy sources, and 
determining the right size of each of the energy 
combination is of great importance, as over-sizing 
could lead to unnecessary increase in cost, and under-
sizing could lead to poor reliability and availability of 
power.  So therefore, determining the optimal size of 
an hybrid energy system creates an optimization 
problem which increases in complexity as the number 
of energy source and constraints increase. From Fig 
1, we can see that Hybrid Energy Systems are 
characterized into Stand Alone (Islanded, off-grid) 
Hybrid Energy System (HES) or Grid Connected 
Hybrid Energy System (HES)[4]. Grid connected 
Hybrid Energy Systems can be further characterized 
to consist of grid systems with storage and grid 
connected energy systems without storage. 
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Fig.1 Block Diagram showing the breakdown of Hybrid Energy Systems 

The basic schematic and components of a Hybrid Energy Systems consists of renewable/non-renewable energy 
sources, converters, storage and load. 

 
Fig 2. Block Diagram showing schematic of Hybrid Energy Systems in a Microgrid 

 
Fig.2 shows a possible hybrid energy system 
configuration with various components and load 
types with an option for grid connection. From the 
literatures surveyed, the most common Hybrid 
renewable energy system has been the solar-wind 
hybrid energy system. The procedure for optimal 
sizing involves gathering weather data, mathematical 
modelling of the energy output and finally the 
application of an optimization technique to optimally 
size. As, shown in fig.3, in order to effectively size a 
hybrid energy system, three important data set are 
required which are mainly; 

1. Meteorological Date Set 
2. Load Demand 
3. System Specification Data 

This paper presents a review on the various 
techniques for optimal sizing of hybrid energy 

systems in a microgrid, while discussing the various 
data required, mathematical models and reliability 
considerations. 

II. METEOROLOGICAL YEAR DATA 
The first step to sizing, is the gathering of a Typical 
Meteorological Year’s (TMY) data. Which in essence 
is the hourly time series weather (solar irradiation, 
temperature and wind) data for a year (12 months). 
This leads to 8760 data points. The common weather 
data are the solar irradiation and wind speed data. 
The best way to determine the hourly solar irradiation 
and wind speed is by physically measuring the 
irradiation and wind speed at the select location. But 
unfortunately, this process is quite tedious and 
expensive, in order to circumvent this, there exist 
various meteorological databases that provide 
averaged monthly solar irradiation, wind speed and 
temperature data for various locations across the 

Hybrid Energy System

Stand Alone (Off-
Grid/Islanded) Grid Connected

Grid Connected with 
Energy Storage

Grid Connected 
without Storage
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world. The most common of such database is the 
Power Access Data Viewer by the National 
Aeronautics and Space Administration (NASA)which 
provides a 22 year monthly averaged solar irradiation 
data[5].The Power Access Data viewer provides 
afreeuser-friendly interface for researchers to access 
the meteorological data set for virtually any location. 
Some other meteorological database include PV-GIS 
[6], Solar GIS[7], Helioclim1 [8], Helioclim3 [9]. 
These databases generally provide the average 
monthly irradiation and wind speed data, but in order 
to get the hourly time series data, various synthetic 
hourly estimation techniques are employed. 

A. Solar Irradiation Hourly Data and Synthesis 
Different index of solar irradiance exist which 
include 

• Direct Normal Irradiance (DNI): Is the 
amount of solar radiation received per unit 
area by a surface that is always held 
perpendicular (or normal) to the rays that 
come in a straight line from the direction of 
the sun at its current position in the sky [10]. 
DNI is used to calculate Concentrating PV 
output. Concentrating PV uses optics to 
concentrate the solar radiation in a way that 
captures only the DNI and not the diffuse or 
reflected components of the incident solar 
radiation.[11] 

• Global Horizontal Irradiance (DHI): Global 
Horizontal Irradiance (GHI) is the total solar 
radiation incident on a horizontal surface. It 
is the sum of Direct Normal Irradiance 
(DNI), Diffuse Horizontal Irradiance, and 
ground-reflected radiation. Solar GHI is 
usually used to compute flat-panel PV 
output [12]. 

• Diffused Horizontal Irradiance: is the 
amount of radiation received per unit area 
by a surface (not subject to any shade or 
shadow) that does not arrive on a direct path 
from the sun, but has been scattered by 
molecules and particles in the atmosphere 
and comes equally from all directions [10]. 

 For sizing which require hourly solar irradiation 
readings, various estimation algorithms can be used 
to synthesis the hourly solar irradiation. Liu and 
Jordan [13] developed a theoretical hourly prediction 

model which synthesizes the average hourly solar 
radiation from the daily global radiation. This is 
given by  

𝐼𝐼𝐼𝐼
𝐻𝐻𝐼𝐼

=
𝜋𝜋

24 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑐𝑐)

�𝑐𝑐𝑠𝑠𝑠𝑠(𝑤𝑤𝑐𝑐) −  𝜋𝜋𝑤𝑤𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐
(𝑤𝑤𝑐𝑐)

180
�

#(1)  

  

𝐼𝐼
𝐻𝐻

=
𝜋𝜋

24 
𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤) − 𝑐𝑐𝑐𝑐𝑐𝑐(𝑤𝑤𝑐𝑐)

�𝑐𝑐𝑠𝑠𝑠𝑠(𝑤𝑤𝑐𝑐) −  𝜋𝜋𝑤𝑤𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐 (𝑤𝑤𝑐𝑐)
180

�
#(2)  

 

Where I and Id are the average hourly and diffuse 
solar radiation on a horizontal surface expressed in 
KW/m2 while w and ws are the hour angle and sunset 
hour angle expressed in degrees. V.A Graham [14] 
provided an estimation algorithm which has been 
used by some optimization tools like HOMER [15] to 
synthesis hourly solar irradiation from the average 
monthly irradiation. The algorithm requires the 
latitude and the twelve-monthly average values.Once 
the data set has been gathered either manually or 
synthesized, it is then inputted to various 
mathematical output models. 

B. Wind Speed Hourly Data Synthesis 
An accurate time series data of the weed speed is 
needed to accurately model the output power of a 
wind turbine. Physical methods of acquiring this time 
series data can be quite tedious as opposed to 
statistical methods which provides a fairly simpler 
and accurate estimate of the wind speed data [16]. 
These statistical methods are based on probabilistic 
and stochastic models. The common probabilistic 
models involve the use of Weibull distribution model 
or normal distribution model 

1. Normal Distribution: This simply uses a 
sequence of random independent numbers from a 
normal distribution. It can be expressed as [17] 

𝑓𝑓(𝑣𝑣) =  1
𝜎𝜎√2𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒[(𝑣𝑣−𝜇𝜇)2

2𝜎𝜎2 ]  (3) 

Where v represents the hourly average wind speed (in 
m/s), 𝜎𝜎 represents the standard deviation of the wind 
speed (in m/s) and 𝜇𝜇 is the average value of the wind 
speed (in m/s). 
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2. Weibull Distribution: Aksoy in [17] 
described the Weibull distribution by the equation 
below; 

𝑓𝑓(𝑣𝑣) =  𝑘𝑘
𝑙𝑙𝑘𝑘
∗ 𝑉𝑉𝑘𝑘−1𝑒𝑒𝑒𝑒𝑒𝑒[−1

𝑙𝑙𝑘𝑘
𝑉𝑉𝑘𝑘]          (4) 

    

Here V is the hourly average wind speed (in m/s), k 
is the shape factor while l is the scale factor. 
Stochastic models include autoregressive moving 
average (ARMA), wavelet based approach and 
Markov chain [17] 

3.Autoregressive Moving Average (ARMA): It 
consists of three linear stochastic models namely 
autoregressive (AR models), moving average (MA) 
models and mixed (ARMA) models that combine 
autoregressive and moving average processes. 

ARMA models account for the fact that hourly wind 
speeds are independent of each other, meaning they 
incorporate the chronological nature of the actual 
wind speed but with a degree of persistence [18].The 
ARMA series model is described below [19],

 

𝑣𝑣𝑡𝑡 = 𝑢𝑢1𝑣𝑣𝑡𝑡−1 +  𝑢𝑢2𝑣𝑣𝑡𝑡−2 + ⋯+ 𝑢𝑢𝑠𝑠𝑣𝑣𝑡𝑡−𝑠𝑠 + 𝜀𝜀𝑡𝑡 −
𝑐𝑐1𝜀𝜀𝑡𝑡−1 − 𝑐𝑐2𝜀𝜀𝑡𝑡−2 − … 𝑐𝑐𝑚𝑚𝜀𝜀𝑡𝑡−𝑚𝑚#(5)  

Where 𝑢𝑢𝑠𝑠(i = 1,2,…n) = auto-regressive parameter, 𝑐𝑐𝑗𝑗  
(i = 1,2,…m) = moving average parameter, 𝜀𝜀𝑡𝑡  
represents white noise process with an average of 
zero and variance of 𝜎𝜎2 

4. Markov Chain: Here Stochastic processes 
are discretized into a number of states and the 
definitions of the probabilities for the inter-state 
transition. The transition probability matrix of a first-
order Markov chain with n states is defined by [17] 

𝑃𝑃𝑘𝑘 =  

⎣
⎢
⎢
⎢
⎡
𝑃𝑃𝑘𝑘11                      𝑃𝑃𝑘𝑘12 … … … … 𝑃𝑃𝑘𝑘1𝑠𝑠
𝑃𝑃𝑘𝑘21                      𝑃𝑃𝑘𝑘22 … … … … 𝑃𝑃𝑘𝑘2𝑠𝑠

.                        .                         .

.                    𝑃𝑃𝑘𝑘𝑠𝑠𝑗𝑗                       .
𝑃𝑃𝑘𝑘𝑠𝑠1                      𝑃𝑃𝑘𝑘𝑠𝑠2 … … … … 𝑃𝑃𝑘𝑘𝑠𝑠𝑠𝑠⎦

⎥
⎥
⎥
⎤

#(6)  

Where 𝑃𝑃𝑘𝑘𝑠𝑠𝑗𝑗  is the probability of transition from state I 
to state j. If 𝑚𝑚𝑠𝑠𝑗𝑗  is the total number of hours of 
observation in state j with the previous state I, the 
probabilities of transition from state I to state j is [17] 

𝑃𝑃𝑘𝑘𝑠𝑠𝑗𝑗 =  
𝑚𝑚𝑠𝑠𝑗𝑗

∑ 𝑚𝑚𝑠𝑠𝑗𝑗𝑗𝑗
i,j = 1,2,….n    

          (7) 

Other methods used to generate time series wind 
speed data  include the use of Fuzzy logic [20], 
Artificial Neural Network[21].

 

III. LOAD DEMAND DATA 
Optimal sizing is done with the goal of meeting the 
energy demand of a particular area, and as such an 
idea of the load profile is very important. In order to 
get the load profile, the hourly load or energy 
demand is required. This can be gotten directly from 
the distribution transformer feeding the area of 
interest. In cases where the yearly hourly load 
demand is not available, the load demand of another 
location that shares similar characteristics as the 
location of interest could be used. From the load 
profile, the base load, peak load, average and max 
load can be determined.  

IV. SYSTEM SPECIFICATIONS: 
Depending on the component configuration of the 
hybrid energy system (HES), various specification 
data are needed such as efficiency of PV module, 
converters, wind turbine, fuel cost of generator, per 
unit cost of various equipment etc. Fig.3 shows the 
basic input data needed for optimal sizing.

 
Fig 3 Required Data Needed for Optimal Sizing 

 

Input Data

Meteorological 
Data Load Demand System 

Specificaton
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V. MODELLING OF HYBRID ENERGY SOURCES 
Various Energy sources such as solar PV, wind 
turbine, diesel generators, biomass etc can be 
hybridized Some of the most common renewable 
hybrid energy resources used are the photovoltaic and 
wind energy sources. And based on their wide spread 
usage, the various methods of modelling their outputs 
shall be discussed. It is very important to have an 
accurate result of the output power of each of the 
energy sources, and as such accurate modelling is 
necessary. 

A. Solar-Photovoltaic Energy System  
In order to model the output of a solar PV for a 
particular location, various data are needed such as 
the location’s solar irradiation and temperature, 
depending on the model being used. Manually 
measuring solar irradiation and temperature data for a 
particular location is one of the best and accurate 
ways to get solar data, but due to how tedious and 
expensive the process is, especially for developing 
nations, other means of acquiring reliable data are 
commonly used. One reliable data source is Power 
Access Data Viewer by the U.S National Aeronautic 
Space Agency(NASA).A common mathematical 
model used by researchers in [22] and commercial 
sizing simulation tools like HOMER to calculate the 
output Photovoltaic (PV) power based on solar 
radiation and temperature is described below; 

𝑃𝑃𝑒𝑒𝑣𝑣 = 𝑌𝑌𝑒𝑒𝑣𝑣 ∗ 𝐹𝐹𝑒𝑒𝑣𝑣 ∗ � 𝐺𝐺𝑡𝑡
𝐺𝐺𝑐𝑐𝑡𝑡𝑐𝑐

� ∗ (1+ ∝ (𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑐𝑐𝑡𝑡𝑐𝑐)) 
            (8) 

Where 𝑃𝑃𝑒𝑒𝑣𝑣 is the Rated Capacity of PV array (in 
KW), 𝐹𝐹𝑒𝑒𝑣𝑣 accounts for the derating factor (in %), Gt 
is the solar radiation incident on the PV panel (in 
KW/m2) , Gstc is the incident radiation at standard 
test condition (1 KW/m2) , ∝ is the temperature 
coefficient of power in (%/oC) while Tc and Tstc 
represent the PV cell temperature and PV cell 
temperature at standard test conditions. 

In order to account for the surface area Apv (in m2) 
we have  

𝑃𝑃𝑒𝑒𝑣𝑣 = 𝑌𝑌𝑒𝑒𝑣𝑣 ∗ 𝐹𝐹𝑒𝑒𝑣𝑣 ∗ 𝐴𝐴𝑒𝑒𝑣𝑣 � 𝐺𝐺𝑡𝑡
𝐺𝐺𝑐𝑐𝑡𝑡𝑐𝑐

� ∗ (1+ ∝ (𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑐𝑐𝑡𝑡𝑐𝑐) 
     (9) 

And when considering the efficiency of the reference 
efficiency of the PV cell Ƞ𝑐𝑐𝑡𝑡𝑐𝑐 and efficiency of 
maximum power tracker Ƞ𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 if applicable we 
have [23],[24],[25]; 

  

𝑃𝑃𝑒𝑒𝑣𝑣 = 𝑌𝑌𝑒𝑒𝑣𝑣 ∗ 𝐹𝐹𝑒𝑒𝑣𝑣 ∗ Ƞ𝑚𝑚𝑒𝑒𝑒𝑒𝑡𝑡 ∗ 𝐴𝐴𝑒𝑒𝑣𝑣 � 𝐺𝐺𝑡𝑡
𝐺𝐺𝑐𝑐𝑡𝑡𝑐𝑐

� ∗

�1+ ∝ (𝑇𝑇𝑐𝑐 − 𝑇𝑇𝑐𝑐𝑡𝑡𝑐𝑐)�(10) 

Another Solar-PV model used in modelling the 
output power of a PV is given by[26][27] 

𝑃𝑃𝑒𝑒𝑣𝑣(𝑡𝑡) =  𝑉𝑉𝑒𝑒𝑣𝑣(𝑡𝑡) ∗  𝐼𝐼𝑎𝑎𝑣𝑣𝑒𝑒𝑣𝑣(𝑡𝑡)#(11)  

Where  

𝐼𝐼𝑎𝑎𝑣𝑣𝑒𝑒𝑣𝑣(𝑡𝑡) =  𝑠𝑠𝑒𝑒𝐼𝐼𝑟𝑟𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑒𝑒𝑒𝑒�𝑞𝑞(𝑉𝑉𝑒𝑒𝑣𝑣(𝑡𝑡) +  𝐼𝐼𝑒𝑒𝑣𝑣(𝑡𝑡)𝑅𝑅𝑐𝑐� − 1�#(12)  

𝐼𝐼𝑒𝑒ℎ(𝑡𝑡) = (𝐼𝐼𝑐𝑐𝑐𝑐 + 𝐾𝐾𝑡𝑡�𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑟𝑟� ∗
𝜆𝜆(𝑡𝑡)

1000
  (13) 

𝐼𝐼𝑟𝑟𝑐𝑐(𝑡𝑡) =  𝐼𝐼𝑐𝑐𝑟𝑟 �
𝑇𝑇(𝑡𝑡)

𝑇𝑇𝑟𝑟𝑒𝑒𝑓𝑓
�

3

𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑞𝑞𝐸𝐸𝑔𝑔𝑐𝑐 �

1

𝑇𝑇𝑟𝑟
− 1

𝑇𝑇𝑡𝑡
�

𝐾𝐾𝑇𝑇(𝑡𝑡)
�#(14)  

𝐼𝐼𝑒𝑒𝑣𝑣(𝑡𝑡) =  𝐼𝐼𝑒𝑒ℎ(𝑡𝑡) − 𝐼𝐼𝑟𝑟𝑐𝑐(𝑡𝑡) �𝑒𝑒𝑒𝑒𝑒𝑒 �
𝑞𝑞(𝑉𝑉𝑒𝑒𝑣𝑣(𝑡𝑡) + 𝐼𝐼𝑒𝑒𝑣𝑣(𝑡𝑡)𝑅𝑅𝑐𝑐)

𝐴𝐴𝑐𝑐𝐾𝐾𝑇𝑇(𝑡𝑡)
� − 1�#(15)  

𝐼𝐼𝑒𝑒𝑣𝑣  represents the current source, 𝐼𝐼𝑒𝑒ℎ  represents the 
generated current under a given insolation.𝐼𝐼𝑟𝑟𝑐𝑐  is the 
reverse saturation current, 𝑉𝑉𝑒𝑒𝑣𝑣  is the PV panel array 
voltage level, q is the electron charges, 𝑅𝑅𝑐𝑐is the PV 
cell intrinsic resistance, 𝐴𝐴𝑐𝑐  is the deviation of the cell 
from the ideal p-n junction, while K is the Boltzmann 
constant and T represents the cell temperature.𝐼𝐼𝑐𝑐𝑟𝑟  is 
the reverse saturation current, 𝑇𝑇𝑟𝑟 is the reference 
temperature, 𝐸𝐸𝑔𝑔𝑐𝑐 is the bandgap energy of the 
semiconductor cell used.𝐼𝐼𝑐𝑐𝑐𝑐 is the short-circuit current 
at 𝑇𝑇𝑟𝑟  while 𝐾𝐾𝑡𝑡  and 𝜆𝜆 represent the short circuit current 
of temperature and insolation in mW/𝑐𝑐𝑚𝑚2 

B. Wind Energy System 
Modelling the output power from a wind turbine 
generator requires accurate estimate of the wind 
speed at hub height. Once the time series wind speed 
data has been generated either physically or through 
probabilistic, statistic and artificial intelligent means, 
it is inputted into the wind turbine power output 
model. 
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Quite often, the wind speed data at a particular tower 
height is needed. One method used to determine this 
is the power law. The power law converts the wind 
speed at a particular hub height to the wind speed at 
tower height. The power law is given by [28]; 

𝑉𝑉(𝑡𝑡) =  𝑉𝑉𝑟𝑟𝑒𝑒𝑓𝑓(𝑡𝑡) ∗ �
ℎ
ℎ𝑟𝑟𝑒𝑒𝑓𝑓

�
𝛾𝛾

#(16)  

Where 𝑉𝑉(𝑡𝑡) is the wind speed at the projected tower 
height h, and 𝑉𝑉𝑟𝑟𝑒𝑒𝑓𝑓 (𝑡𝑡)is the wind speed at the reference 
height ℎ𝑟𝑟𝑒𝑒𝑓𝑓  .The output of a wind turbine WT can be 
modelled according to [29] 

𝑃𝑃𝑤𝑤𝑡𝑡(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ 0                                   𝑉𝑉(𝑡𝑡) < 𝑉𝑉𝑐𝑐𝑠𝑠
𝑎𝑎.𝑉𝑉(𝑡𝑡)

3 − 𝑏𝑏.𝑃𝑃𝑤𝑤𝑡𝑡𝑟𝑟𝑉𝑉𝑐𝑐𝑠𝑠 ≤  𝑉𝑉(𝑡𝑡) < 𝑉𝑉𝑟𝑟
𝑃𝑃𝑤𝑤𝑡𝑡𝑟𝑟𝑉𝑉𝑟𝑟 ≤  𝑉𝑉(𝑡𝑡) < 𝑉𝑉𝑐𝑐𝑐𝑐

0                              𝑉𝑉(𝑡𝑡) > 𝑉𝑉𝑐𝑐𝑐𝑐

�#(17)  

 

Where𝑎𝑎 =  𝑃𝑃𝑤𝑤𝑡𝑡 𝑟𝑟

(𝑉𝑉𝑟𝑟3−𝑉𝑉𝑐𝑐𝑠𝑠 3)
 and 𝑏𝑏 = 𝑉𝑉𝑐𝑐𝑠𝑠 3

(𝑉𝑉𝑟𝑟3−𝑉𝑉𝑐𝑐𝑠𝑠 3)
 

Where 𝑉𝑉(𝑡𝑡)is the wind speed at time t (in m/s), 𝑃𝑃𝑤𝑤𝑡𝑡𝑟𝑟  
represents the rated power of the wind turbinein( W), 
𝑉𝑉𝑟𝑟  is the rated speed (in m/s), 𝑉𝑉𝑐𝑐𝑠𝑠  represents the cut-in 
speed (in m/s) and 𝑉𝑉𝑐𝑐𝑐𝑐  is the cut-out speed of the WT 
in (m/s). This model has been used by authors in 
[23][25][24]. 

Another model which has been used to model the 
output power of a wind turbine is given by[30] 

𝐸𝐸𝑤𝑤𝑔𝑔 (𝑡𝑡)= 𝑧𝑧𝑓𝑓 ∗  𝑃𝑃𝑤𝑤𝑡𝑡−𝑐𝑐𝑢𝑢𝑡𝑡 �1 − ∝𝑓𝑓𝑐𝑐𝑟𝑟 � ∆𝑡𝑡#(18)  

Where 𝑧𝑧𝑓𝑓  represents the altitude factor,𝑃𝑃𝑤𝑤𝑡𝑡−𝑐𝑐𝑢𝑢𝑡𝑡  is the 
power output of the wind turbine generator and ∝𝑓𝑓𝑐𝑐𝑟𝑟  
is the forced outage rate. �1 − ∝𝑓𝑓𝑐𝑐𝑟𝑟 � represents the 
probability of the wind turbine being operational. 

C. Battery Storage Model 
Most hybrid energy systems usually consist of one 
form of energy storage or the other. The Battery 
energy storage is the most common energy storage 
method used in literature by researchers. One 
important parameter to consider when modelling 
battery energy storage is the depth of discharge DOD. 
A  battery’s capacity with respect to the DOD is 
given by [31]; 

𝐶𝐶𝑏𝑏𝑎𝑎𝑡𝑡 =  
𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝐼𝐼 ∗  𝐷𝐷𝑐𝑐

𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑎𝑎𝑒𝑒  ∗  𝛾𝛾𝑐𝑐
#(19)  

𝐶𝐶𝑏𝑏𝑎𝑎𝑡𝑡  represents the battery capacity in Ampere-hours, 
𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝐼𝐼  is the load, 𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑎𝑎𝑒𝑒 is the maximum depth of 
discharge. 

[32] used the following model to the charge and 
discharge capacity of a battery at any time t. 

During the charge mode 

𝐸𝐸𝐵𝐵(𝑡𝑡) = 𝐸𝐸𝐵𝐵(𝑡𝑡−1)(𝑡𝑡 − 𝜎𝜎) + �𝐸𝐸𝐺𝐺𝐴𝐴(𝑡𝑡) −  
𝐸𝐸𝑙𝑙(𝑡𝑡)

𝛾𝛾𝑠𝑠𝑠𝑠𝑣𝑣
� 𝛾𝛾𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 #(20) 

During the discharge mode 

𝐸𝐸𝐵𝐵(𝑡𝑡) = 𝐸𝐸𝐵𝐵(𝑡𝑡−1)(𝑡𝑡 − 𝜎𝜎) − �
𝐸𝐸𝑙𝑙(𝑡𝑡)

𝛾𝛾𝑠𝑠𝑠𝑠𝑣𝑣
− 𝐸𝐸𝐺𝐺𝐴𝐴(𝑡𝑡)� 𝛾𝛾𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡 #(21) 

Where 𝐸𝐸𝐵𝐵(𝑡𝑡) and 𝐸𝐸𝐵𝐵(𝑡𝑡−1) represent the battery charge 
at time t and (t-1), 𝜎𝜎 is the hourly self-discharge rate, 
𝐸𝐸𝐺𝐺𝐴𝐴(𝑡𝑡) represents the total energy generated by the 
hybrid energy system. 𝐸𝐸𝑙𝑙  is the load while 𝛾𝛾𝑏𝑏𝑎𝑎𝑡𝑡𝑡𝑡  and 
𝛾𝛾𝑠𝑠𝑠𝑠𝑣𝑣  are the battery bank and inverter efficiency 
respectively. 

 

D. Diesel Generator Model 

The most common non-renewable power source used 
in hybrid energy systems is the diesel generator. Its 
use however is gradually reducing due to 
environmental concerns, based on the fact that it is 
powered by fossil fuel-based energy source. 
Regardless, of this, the diesel generator can be used 
as a useful back-up system. In the design of hybrid 
energy systems that include diesel generator (or any 
other fossil-fuel based generator), the diesel generator 
is usually given the lowest priority, meaning the 
generator is only used after all energy from all the 
renewable energy source and storage have been 
depleted. The fuel consumption rate F of the 
generator, with its output power is given as[33]; 

𝐹𝐹 =  𝐹𝐹0 ∗ 𝑃𝑃𝑟𝑟𝐼𝐼𝑔𝑔 + 𝐹𝐹1 ∗ 𝑃𝑃𝐼𝐼𝑔𝑔#(22)  

 

Where 𝐹𝐹0 is the fuel curve intercept coefficient, 𝐹𝐹1 is 
the fuel curve slope, 𝑃𝑃𝑟𝑟𝐼𝐼𝑔𝑔  is the rated capacity of the 
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generator and 𝑃𝑃𝐼𝐼𝑔𝑔  is the electrical power output of 
the diesel generator. 

VI. OPTIMAL SIZING OBJECTIVES AND INDEX FOR 
HYBRID ENERGY SYSTEMS 

The major objective for sizing of HES, has been to 
minimize the cost while maximizing the reliability 
index. Over the years, various forms of cost objective 
function and reliability index have been considered. 
Some of which are discussed here. 

A. Reliability Index: 
Hybrid Energy system usually consist of some 
renewable energy components. Some Hybrid Energy 
Systems are purely renewable. The presence of 
renewable energy brings about the problem of 
intermittency, since the primary energy sources are 
not always available and as such, the reliability of the 
of such system is of high importance. Reliability here 
is the guarantee that the hybrid energy system would 
adequately supply power to meet the load demand. 
Reliability is usually considered either as a constraint 
in the problem or an objective to be achieved. 
Various reliability indices have been used in several 
literatures involving sizing of Hybrid Energy System 
(HES). Some of these reliability indexes shall be 
discussed; 

1. Loss of Power Supply Probability: Loss 
of power supply probability (LPSP), is the 
probability that a loss of power occurs, meaning the 
combined energy system is not able to supply the 
load demand. It is a good measure of performance of 
the system for an assumed or known load distribution 
and other system parameters [34].It is expressed as 
[23] 

𝐿𝐿𝑃𝑃𝐿𝐿𝑃𝑃 =  
∑ 𝐿𝐿𝑃𝑃𝐿𝐿(𝑡𝑡)
𝑇𝑇
𝑡𝑡=0

∑ 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝐼𝐼𝑇𝑇
𝑡𝑡=0

=  
∑ 𝑃𝑃𝑐𝑐𝑤𝑤𝑒𝑒𝑟𝑟 𝐹𝐹𝑎𝑎𝑠𝑠𝑙𝑙𝑢𝑢𝑟𝑟𝑒𝑒 𝑇𝑇𝑠𝑠𝑚𝑚𝑒𝑒𝑇𝑇
𝑡𝑡=0

𝑇𝑇 #(23) 

Where LPS is the loss of power supply and it is given 
by; 

𝐿𝐿𝑃𝑃𝐿𝐿(𝑡𝑡) = 𝑃𝑃𝑙𝑙𝑐𝑐𝑎𝑎𝐼𝐼 (𝑡𝑡) −�𝑃𝑃ℎ𝑦𝑦𝑏𝑏𝑟𝑟𝑠𝑠𝐼𝐼 (𝑡𝑡) #(24)  

LPSP is by far the most common reliability index 
used by researchers. Several authors have considered 
LPSP when designing their systems. [35] considered 
the probability of power loss when carrying out the 
technical feasibility (which involved optimal sizing) 

on a stand-alone hybrid wind-solar system with 
pumped hydro storage for a remote island in Hong 
Kong. He was able to achieve a LPSP of 0.4% when 
the upper reservoir of the pumped hydro decreases by 
4000m3.  [36] carried out optimal sizing of an hybrid 
solar-wind-battery system to supply power to a 
telecommunication relay station and one important 
constraint was to achieve a certain required loss of 
power supply probability. The Loss of power supply 
probability was also considered as a performance 
constrain by [37], where optimal sizing of a wind-
solar-battery hybrid system was considered. 

2. Expected Energy Not Served: The 
Expected Energy Not Served (EENS) is defined 
by[38]as the expected amount of energy not being 
served to consumers by the system during the period 
considered due to system capacity shortage or 
unexpected severe power outages.[39] carried out a 
stochastic performance assessment, involving sizing 
and reliability analysis of a hybrid power system 
including renewable sources and energy storage, 
while considering the Expected Energy Not Served.  
EENS is expressed as[39] 

𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 =  
∑ 𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸
𝑠𝑠=1

𝐸𝐸
#(25)  

Where ENS is the Energy Not served expressed as; 
𝐸𝐸𝐸𝐸𝐿𝐿 =  ∑ 𝐿𝐿𝑡𝑡𝑇𝑇

𝑡𝑡=1 , 𝐿𝐿𝑡𝑡  is the load not met. 

3. Loss of Load Probability (LLP): This is 
expressed as [40] 

𝐿𝐿𝐿𝐿𝑃𝑃 =  
∑ 𝐸𝐸𝐿𝐿(𝑡𝑡)
𝑇𝑇
𝑠𝑠=1

∑ 𝐿𝐿𝐷𝐷(𝑡𝑡)
𝑇𝑇
𝑠𝑠=1

#(26)  

Where ES is the Power shortage at time t and LD is 
the load demand. 

B. Cost Objective Function: 
In optimal sizing problems, the objective is to meet 
the energy demand at a minimized cost while 
considering several constraints. And as such, the cost 
is very important. Different cost objective function to 
be minimized have been developed in the past such 
as the levelized cost of energy (LCOE), Lifecycle or 
Net Present cost and the annualized cost. 

1. Levelized Cost of Energy: Levelized cost 
of energy (LCOE) measures lifetime costs divided by 
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energy production. It calculates the present value of 
the total cost of building and operating a power plant 
over an assumed lifetime and allows the comparison 
of different technologies (E.g. wind, solar, natural 
gas) of unequal life span, project size, different 
capital cost, risk, return and capacities [41]. 
Researchers in  [42][43] considered the levelized cost 
of energy when tackling the optimal sizing problem. 
It can be expressed as[44] 

𝐿𝐿𝐶𝐶𝐷𝐷𝐸𝐸 =  
𝑇𝑇𝑐𝑐𝑡𝑡𝑎𝑎𝑙𝑙 𝐸𝐸𝑒𝑒𝑡𝑡 𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑒𝑒𝑠𝑠𝑡𝑡 𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡

∑ 𝑷𝑷𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍(𝒕𝒕)
𝑻𝑻
𝒕𝒕=𝟏𝟏

∗ 𝐶𝐶𝑅𝑅𝐹𝐹#(𝟐𝟐𝟐𝟐)  

CRF is the capital recovery factor, and it is given 
below; 

𝐶𝐶𝑅𝑅𝐹𝐹 =  
𝑠𝑠(1 + 𝑠𝑠)𝑠𝑠

𝑠𝑠(1 + 𝑠𝑠)𝑠𝑠 − 1
#(28)  

Where I isthe interest rate and n is the system life 
period. 

From the equations above we can see that the 
levelized cost of energy is related to the net present 
cost. 

 

2.Net Present Cost: The Net present cost 
(NPC) is also known as the Life-cycle cost. It is the 
 present value of all the costs of installing and 
operating the Component over the project lifetime, 
minus the present value of all the revenues that it 
earns over the project lifetime [45]. Some of the 
literatures which employed the Net Present cost are 
[46]–[50]. It is expressed as [51]; 

Total NPC = Cinvestment+ OMnpv+ Rnpv-Snpv  

     

 (29) 

Where Cinvestment is the capital cost of investment, 
OMnpv is the operations and maintenance cost, Rnpv 
represents the replacement cost while Snpv is the 
salvage value. “npv” denotes the net present value of 
each factor. 

VII. SIZING OPTIMIZATION ALGORITHMS AND 
METHODS 

Various optimization methods/techniques have been 
used over the years to tackle the optimal sizing 

problem. From the various literature reviewed we can 
classify the methods as; 

• Artificial Intelligence (and Meta-Heuristic) 
Optimization Algorithms 

• Commercially Available Optimization Tools 
 

A. Artificial Intelligence (and Meta-Heuristic) 
Optimization Algorithms 

Of all the Artificial Intelligence (AI) available, the 
use of meta-heuristic algorithms has been a common 
trend in optimal sizing. Although it is expected that 
in future, Machine Learning would be extensively 
used to carry out optimal sizing of hybrid energy 
systems[52]. The prospect for machine learning are 
enormous and it is currently being used in estimation 
of time series solar irradiation and wind 
speed[53][54] . Various types of meta-heuristic 
optimization techniques have been used in the past to 
solve the optimal sizing problem and at the same time 
there exist algorithms such as cultural algorithm, 
shark-smell algorithm which have not yet been tested 
in solving the optimal sizing problem. It can be 
observed that the most common meta-heuristic 
method used in past literature has been the genetic 
algorithm and the particles warm optimization 
algorithm and their variants. Some of these meta-
heuristic techniques would be discussed further. 

1. Genetic Algorithms 
Genetic Algorithms (GA) are an evolutionary based 
computational optimization technique which was first 
introduced by John Holland in 1970. GAs code the 
candidate solutions of an optimization algorithm as a 
string of characters which are usually binary digits. 
GAs are theoretically and empirically proven 
algorithms that provide a robust search in complex 
spaces, thereby offering a valid approach to problems 
requiring efficient and effective searches. Any GA 
starts with a population of randomly generated 
solutions (chromosomes) and advances toward better 
solutions by applying genetic operators, modeled on 
the genetic processes occurring in nature[55]. Genetic 
Algorithms and its variants have been used 
extensively for optimal sizing. The modelling, 
simulation and optimal sizing of an hybrid energy 
system consisting of wind, solar PV and battery was 
carried out by [56], he used a parallel multi-deme 
implementation of genetic algorithm to carry out the 
optimization and the work was applied in Northern 
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Kenya. Genetic Algorithm was also used by [36] to 
optimally size a standalone hybrid solar wind system 
using the loss of power supply probability as the 
reliability index. The hybrid system was applied to 
supply power to a telecommunication relay station. 
[56] also used genetic algorithm for optimal sizing of 
hybrid power system containing wind farm, 
Photovoltaic (PV), diesel generator and battery bank. 
Here the author looked at minimizing the cost 
including inflation, capital recovery factor and 
sinking found factor. Binary genetic algorithm was 
applied by [48] in solving the optimal sizing problem 
for a small autonomous hybrid power systems. [57] 
also used genetic algorithm in optimal sizing and 
energy management for a hybrid of PV and wind. 
General Parallel Genetic Algorithm (GPGA) was 
used by [58] in determining an optimal sizing and 
operations strategy of energy storage system. Here 
GPGA was used to estimate the optimal ratings of 
multiple energy storage units and photovoltaic (PV) 
generators in order to minimize distribution energy 
losses, annual energy and peak power supplied by the 
substation transformer. 

2.Particle Swarm Optimization 
Particle Swarm Optimization (PSO) is a swarm based 
stochastic optimization technique proposed by 
Eberhart and Kennedy in 1995. It mimics swarm 
behaviors of animals such as a flock of birds or 
school of fishes[59]. Just like GA, PSO has been 
extensively applied to optimal sizing and it is one of 
the most common algorithms used in optimization of 
hybrid energy systems.[60], carried out the optimal 
sizing and control strategy of a hybrid energy mix 
consisting of Photovoltaic (PV), diesel and battery 
using the Particle Swarm Optimization technique. 
Here the objective was to minimize the cost 
associated with CO2 emissions and customer damage 
cost function for the compensation cost due to the 
electricity shortages. [61] achieved efficient optimal 
sizing of a standalone wind/photovoltaic hybrid 
energy mix using Particle Swarm Optimization 
(PSO), the objective here was to minimize the overall 
cost of the generation scheme over 20 years of 
operation. A multi objective PSO was used by [62] in  
determining the optimal component size. The work 
also applied energy management in addition to 
optimally sizing and Sweden was used as a case 
study. In [44] optimal sizing and power management 
was carried out with the aid of a Multi-Objective 
Particle Swarm Optimization technique (MOPSO) for 
a micro grid. Also, particle swarm optimization was 
applied by [50] in optimally sizing of hybrid 
renewable energy system, and the study was 

performed for Kahnouj area in south-east iran. The 
system also consisted of fuel cells, wind units, 
electrolyzers, reformer, anaerobic reactor and 
hydrogen tanks. It also used biomass energy sources. 
 
3. Grey Wolf Optimization 
Grey wolf optimization is a recent swarm 
intelligence-based algorithm. It is inspired by grey 
wolves in nature when in search of the optimal way 
to hunt their preys [63]. The grey wolf optimization 
technique has not been used as extensively as the 
genetic and particle swarm optimization technique in 
solving sizing problems. From literature, grey would 
has been used majorly in sizing of energy storage 
systems and for energy management. [64] used grey 
wolf optimization to determine the optimum energy 
management and battery sizing method for a grid 
connected micro grid. Also [65] used grey wolf for 
optimal sizing of battery energy storage to minimize 
the cost of operation of micro grid. 

4. Firefly Optimization 
The Firefly Algorithm has two important variables 
which are the light intensity and attractiveness [66]. 
Authors [67] used the firefly meta-heuristic algorithm 
optimization technique in carrying out the optimal 
sizing of a hybrid power system (HPS) consisting of 
wind, solar PV and battery. With the objective of 
minimizing the total annual cost and supplying 
annual load demand. The Firefly (FA) algorithm was 
also used by [68] for minimizing the generation cost 
of a microgrid. The microgrid considered here 
consisted of both renewable and conventional 
generating units. [69] minimized the cost of operation 
in a microgrid using the firefly algorithm. The energy 
sources considered here included fuel cells, 
photovoltaic (PV), micro turbine and wind. 

5. Artificial Bee Colony 
The Artificial bee colony (ABC) is a population-
based swarm intelligence technique proposed by 
karaboga in 2005. This meta-heuristic algorithm is 
based on the spontaneous food foraging behavior of 
the honey bee. [70] .ABC optimization technique was 
used by [71] to optimally size the various microgrid 
components which includes solar PV, wind turbines, 
and energy storage. The objective here was profit 
maximization. [72] also used the artificial bee colony 
optimization technique for sizing hybrid energy 
sources consisting of PV and biomass. 
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6. Using Hybrid Algorithms 
Several researchers over the years have also used 
various hybrids of meta-heuristic algorithms in order 
to achieve more accurate results. Researchers 
[42]used a hybrid of genetic algorithm and particle 
swarm optimization GA-PSO for optimal sizing of 
the hybrid energy mix consisting of PV, wind, and 
battery banks. The authors also performed the same 
study using a multi-objective particle swarm 
optimization algorithm and validated the results using 
the Hybrid optimization for multiple energy 
resources (HOMER).Also a hybrid algorithm of 
fuzzy-adaptive genetic algorithms have been used by 
authors in [22], [73]. 

B. Commercially Available Optimization Tools 
In addition to the use of artificial intelligence backed 
meta-heuristic optimization algorithms, several 
optimization tools have been developed to design, 
analyze and optimize hybrid energy system on 
economic and technical basis. The Hybrid 
Optimization of Multiple Energy Resource 
(HOMER) is a very common tool used in sizing of 
hybrid energy systems for micro-grid. HOMER 
performs a techno-economic analysis[74], with the 
Net Present Cost (NPC) being the main economic 
cost objective to be minimized. Basically, HOMER 
ranks its configuration based on the NPC. One 
advantage that HOMER has is that it offers a free-
month trial to its users and this has helped increase its 
usage and popularity amongst researchers and 
engineers. Latest version of HOMER have improved 
features of considering the unreliability of grid 
systems when optimally sizing a grid connected HES. 
HOMER was developed by Dr. Lilienthal at the 
National Renewable Energy Lab (NREL)[45]. 
HOMER can also be used to synthetically generate 
hourly solar, wind and temperature time series data.  

Another Tool to note is the Improved Hybrid 
Optimization by Genetic Algorithm (iHOGA)which 
was developed at the Universidad Zaragoza by Dr. 
Rodolfo Lopez.iHOGA was developed based on C++ 
and can perform simulation and optimization of both 
stand-alone and grid connected Hybrid Energy 
Systems (HES)[75].iHOGA is capable of performing 
both single and multi-objective optimization using 
Genetic Algorithm[76].iHOGA also has a free (EDU) 
version but with limited features, as it cannot 

simulate a system with load greater that 10kWh. 
Some iHOGA based research include[77][78]. 

HYBRID 2, is an optimization tool programmed in 
Microsoft Visual BASIC and uses Microsoft Access 
Data base. It was developed at the University of 
Massachusetts with suppor from the National 
Renewable Energy Laboratory in 1996. HYBRID 2 
allows systems based on three buses containing wind 
turbines, PV array, diesel, battery storage, power 
converters and a dump load[76].Other Notable tools 
of mention include SOMES developed at Utrecht 
University Netherlands, SOLSIM developed by 
Fachhochschule Konstanz, INSEL developed at 
University of Oldenburg and TRNSYS[51]. Although 
the HOMER and iHOGA software are the most 
common tools which have been extensively used and 
widely accepted. 

Fig 4 shows a top-down flowchart showing the 
process of optimal sizing from data acquisition to 
obtaining results.. 

 
Fig 4 Flow Chart Showing the General Optimal Sizing 
Methodology 

Proceedings of the Sustainable Research and Innovation Conference, 
JKUAT Main Campus, Kenya 

  8- 10 May, 2019

97



VIII. CONCLUSION 
Hybrid Energy System provide a reliable means of 
supplying power, especially to (developing) areas 
that suffer from erratic power supply or that are not 
connected to the grid. Hybrid Energy Systems with 
purely renewable energy system offer an extra 
advantage over conventional grid supply in terms of 
offering clean reliable energy. Hybridizing energy 
sources helps in providing emission-free power 
supply, and in cases where non-renewable sources 
are considered, hybridizing helps to reduce the 
amount of fossil fuel that would have been used. 
Conventional grid supply still offers cheaper power 
compared to Hybrid Energy Systems, and as such 
optimal sizing of hybrid energy system for minimized 
cost is quite important while considering reliability. 
Also, the current improvement in battery, solar and 
wind technology makes a good case for hybrid 
renewable energy systems (HRES). 

In this work, the various mathematical models of the 
commonly used hybrid energy sources have been 
reviewed, also methods of gathering and synthetically 
generating meteorological weather data has been 
discussed. The various methods for optimizing hybrid 
energy systems has also been discussed, we can 
notice a trend where various meta-heuristic 
algorithms are being tested to solve the optimal 
sizing problem, regardless, the genetic algorithm 
(GA) and particle swarm optimization (PSO) are the 
most common meta-heuristic optimization used for 
optimally sizing of hybrid energy systems due to 
their fast convergence rate and short computational 
time, and they have proven to be quite effective and 
accurate. HOMER is the most commonly used 
optimization tool for sizing, closely followed by 
iHOGA due to their ease of access, free trial feature, 
and robustness. Also, we see that very little work has 
been done using machine learning methods for 
optimal sizing. It is recommended that in future 
machine learning algorithms be tested for optimal 
sizing. This review is relevant to researchers, 
engineers and all those involved in the design of 
micro-grids, as it presents an overview of the recent 
trends and methods involved in optimally sizing 
hybrid energy sources for microgrid applications.  
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