
 Abstract— Water treatment processes incur relatively long 
transport delays, simply because the process variable is controlled 
by the addition of chemicals where a reaction time is allowed 
before the process variable can be sampled. This process dead time 
makes it difficult to control water treatment plants using standard 
feedback techniques mainly because the control action takes some 
time to affect the controlled variable. The feedforward control 
when used exhibits low performance and instability when the flow 
rates vary rapidly and when there are large changes in other water 
quality variables.  
During the rainy seasons, raw water quality changes frequently and 
widely posing a challenge in the water coagulation process where 
the application of optimum amount of chemicals is required in 
order to meet the laid down standards. The process being 
continuous and with no feedback, the consumers may receive water 
that does not meet the set down quality standards. This paper 
focuses on the application of Model Predictive Control (MPC) to 
control of turbidity in the water treatment plants. The system 
monitors the incoming water quality and prescribes an optimized 
coagulation chemicals dosage for the process before large changes 
in turbidity values can be seen in the outlet.  
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I. INTRODUCTION 
Turbidity is a measure of the degree to which the water loses 
its transparency due to the presence of suspended or 
dissolved particles which are generally invisible to the 
naked eye. These particles scatter light making the water 
appear cloudy or murky. The higher the quantity of 
suspended solids in the water, the murkier it seems and the 
higher the turbidity. Turbidity particles harbor harmful 
contaminants like viruses and bacteria. It is therefore a 
requirement that all drinking water utilities conduct several 
turbidity tests daily. Turbidity is a key water quality 
variable, which is typically measured in Nephelometric 
Turbidity Units (NTU). The World Health Organization, 
establishes that the turbidity of drinking water should not be 
more than 5 NTU, and should ideally be below 1 NTU. 
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Figure 1: Water Treatment Process 
Raw water in a water treatment plant goes through mixing, 
coagulation, sedimentation, filtration, and disinfection 
processes as shown in Figure 1. Coagulation removes 
suspended dirt and other particles from water. Alum, 
Aluminum Sulphate and other chemicals are added to form 
tiny sticky particles called “floc” which attract the dirt 
particles. The combined weight of the dirt and floc become 
heavy enough to sink to the bottom during sedimentation. 
Water turbidity is directly related to the suspended particles 
contents in the raw water and the amount of Alum added. 
During the rainy seasons the raw water quality changes 
frequently and widely posing a challenge in the water 
coagulation process where the application of optimum 
amount of chemicals is required in order to meet the laid 
down standards. In such a case, the control system should 
function effectively to avoid under dosing or over dosing of 
coagulation chemicals in order to meet the required 
standards and save on chemical cost.  
Feed forward or predictive control which involves adjusting 
the levels of coagulation chemicals added to a process 
stream as a result of sensory information from the raw water 
variable(s) has been widely applied to water treatment. 
Basically, this is achieved by changing the feed rate of the 
metering pumps according to the measured flow rate of the 
raw water [1, 2, 3]. This approach however becomes 
inappropriate, when the flow rates vary rapidly and there are 
large changes in other water quality variables. The coagulant 
dosage controller therefore exhibits low performance and 
instability. 
With a feedback controller, the effect of disturbance is not 
neutralized very fast i.e. the control action starts 
immediately for set point change but not for changes in 
disturbance, therefore in case of sudden turbidity changes 
the corrective action will not be timely. The feed forward 
controller uses both set point and amount of disturbance to 
calculate the control action, therefore corrective action can 
be made before large turbidity values can be seen at the 
output. However, for the feed forward to be accurate, then 
the process model must be accurate. If the knowledge of 
how much disturbance must be compensated is unavailable, 
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then this configuration will not work because there could be 
under or over compensation. Including a feedback trim 
along with feed forward will take care of modelling 
inaccuracies. 
Water treatment processes incur relatively long transport 
delays, simply because the process variable is controlled by 
the addition of certain chemicals and a reaction time is 
allowed before the process variable can be sampled. It 
therefore, becomes part of the design requirement to allow 
enough distance between the chemical dosing and sampling 
points, and the time delay is then a function of the water 
flow within this distance as well as the flow in the sample 
line [4]. This process dead time makes it difficult to control 
water treatment plants using standard feedback techniques 
mainly because the control action takes some time to affect 
the controlled variable, and therefore the control action that 
is applied based on the actual error tries to correct a situation 
that originated some time before [5].  
Conventional Proportional-Integral-Derivative (PID) control 
algorithms are the most commonly used and well 
established class of controllers in water treatment processes. 
However, the use of PID control for coagulation has been 
found to have a number of limitations such as an inaccurate 
dynamic system model to describe the behaviour of the 
system, slow response of the PID controller to longer system 
delay or dead time, daily and seasonal variations in water 
quality parameters and loop interaction effects within the 
system. Using ordinary single-loop PID control the dead-
time forces the bandwidth of the control system to be 
relatively low. 
In a paper, [6] proposed a fuzzy model predictive control 
(FMPC) strategy to regulate the output variables of a 
coagulation chemical dosing unit. A multiple-input, 
multiple-output (MIMO) process model in form of a 
linearized Takagi–Sugeno (T–S) fuzzy model was derived 
while the process model was obtained through subtractive 
clustering from the plant’s data set. The simulation results 
showed that the FMPC has good set-point tracking and 
adequate disturbance rejection ability required for efficient 
coagulation control and process optimization in water 
treatment operations. Despite the attractive nature of fuzzy 
logic control, difficulties such as knowledge acquisition 
from experienced operators, and a large set of rules involved 
in developing the rule base, have been identified as 
limitations to this approach. 
The application of linear MPC has been studied on the 
coagulant dosage system for water treatment plants by [7]. 
The authors used a linear model of the system for their 
study. The study focused on a single-input, single-output 
(SISO) model rather than solving nonlinear and 
multivariable control problem.  
This paper therefore examines the application of MPC to 
maintain the treated water turbidity (controlled variable) at 
the specified set point by adjusting the control variables of a 
multiple input, single output (MISO) model of the 
coagulation chamber unit. 
While MPC is suitable for almost any kind of problem, it 
displays its main strength when applied to problems with a 
large number of manipulated and controlled variables; 
constraints imposed on both the manipulated and controlled 
variables; changing control objectives and/or equipment; 
sensor/ actuator) failure and time delays as is the case of the 
water treatment system. The MPC strategy works to keep 
the output variables close to their reference trajectories 

while taking into consideration the operating constraints. 
Moreover, the MPC techniques can consider many process 
constraints in an intrinsic ay, since the control signal is 
computed through an optimization procedure making it a 
powerful tool for this application. 

II. PLANT DESCRIPTION 
The data used for this work was collected from Turasha 
treatment works. Turasha treatment works is fully owned 
and managed by Nakuru Rural Water and Sanitation 
Company (NARUWASCO) under the county government of 
Nakuru. It is located in Langa-Langa area in Gilgil sub-
county of Nakuru county. Construction of the infrastructure 
started in the year 1989 and it was completed and 
commissioned in 1992 having a capacity of 19200m3/day. 
However, it is currently operating below its capacity 
because of increased human activity along the catchment of 
its source River Turasha and siltation of its reservoir dam 
both in Nyandarua county. The water from the treatment 
works serves the entire Gilgil town and parts of Nakuru 
town. It has typical raw water average flow rate of 
730m3/hour and turbidity levels of up to 1000 NTU against 
the recommended below 5 NTU levels.  
It was essential to collect historical water treatment plant 
data that traverses one year so as to cover every one of the 
seasons. From the collected data, the turbidity of the treated 
water depends non-linearly on the amount of coagulant 
added and the turbidity level of the raw water necessitating 
the decomposition of the input-output relationship into 
interacting variables. 

III. METHODOLOGY 

A. Coagulation chamber model 
Using the collected data from Turasha treatment works, the 
coagulation chamber model was developed and simulated in 
the MATLAB R2015b environment system identification 
toolbox. The measurements of several variables of the 
process are taken and a model is constructed by identifying 
a model that matches the dynamics that underlies the 
measured data with minimal loss of accuracy. The steps 
towards system identification is summarized in the figure2 
below. 
Figure 2: The identification procedure by Ljung (1987) 

The basic requirements for the identification procedure are: 
i. Data: Historical/ experimental data 

 
 𝑓𝑓(𝑁𝑁) = {𝑦𝑦(1),𝑢𝑢(1),𝑦𝑦(2),𝑢𝑢(2) … ,𝑦𝑦(𝑁𝑁),𝑢𝑢(𝑁𝑁)}(1) 

This data was collected from the normal operating records 
of the Turasha Treatment works. 
ii. Model Set: a model set M, specifying the class of 

candidate models among which (an) optimal model(s) 
will be selected.  I 

iii. Identification criterion: Having f(N) and M- determines 
which model(s) to select from M. The prediction error 
identification method was used. In prediction error 
identification methods, the model set M is a specified set 
of predictor models and the identification criterion is 
based on prediction errors. 

Consider the data sequence: 
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𝑍𝑍𝑁𝑁 = {𝑦𝑦(1),𝑈𝑈(1),𝑦𝑦(2),𝑢𝑢(2) … , 𝑦𝑦(𝑁𝑁),𝑢𝑢(𝑁𝑁)} 
 (2) 
 

and a parametrized model set M, induced by the 
parametrization 𝑀𝑀�with parameter set ϴ. 
Every model  𝑀𝑀�(𝜃𝜃), θ ∈ ϴ, in the model set M can predict 
the output y(t) based on yt-1, ut, and for every time instant t = 
1, 2, · · · , N and the actual prediction error can be 
determined by comparing prediction and actual 
measurement y(t).As a result, every parameter θ ∈ϴgives 
rise to a prediction error 

 
𝜀𝜀(𝑡𝑡,𝜃𝜃) = 𝑦𝑦(𝑡𝑡) − 𝑦𝑦�(𝑡𝑡|𝑡𝑡 − 1; 𝜃𝜃)        𝑡𝑡 = 1,2, … ,𝑁𝑁(3) 
 

The prediction error that is made serves as a signal that 
indicates how well a model is able to describe the dynamics 
that underlies a measured data sequence. An accurate model 
generates “small” prediction errors.  
From the collected data, the simulation parameters units are 
stated in Table I. 
 
 
 

TABLE I 
UNITS FOR COAGULATION MODEL VARIABLES 

Variable Units  
Raw water turbidity Nephelometric Turbidity 

Units (NTU) 
Raw water flow rate Cubic meters per Hour 

(m3/h) 
Alum concentration Milligram per liter (mg/l) 
Treated water turbidity Nephelometric Turbidity 

Units (NTU) 
 
The response of the simulated models using various 
techniques of system identification is as shown in Figure 2: 
 

 
Figure 3: Comparison of models from system identification 

Where: 
nlhw1: Nonlinear Hammerstein Weiner model 
tf1:Transfer function model 
nlarx1: Nonlinear autoregressive external input model 
ss1: State space model 
From Figure 3, it is clear that the Hammerstein-Wiener 
model has the capability of representing the dynamics of a 
system with the highest fit to estimation data. It achieves 
this bya linear transfer function and capture the 
nonlinearities using nonlinear functions of the inputs and 
outputs of the linear system as shown in Figure 4.   

 
Figure 4: The Hammerstein-Wiener model representation 

Where, 
⇒ f is a nonlinear function that transforms input 

data u(t) as w(t) = f(u(t)) 
⇒ w(t), an internal variable, is the output of the Input 

Nonlinearity block and has the same dimension 
as (u(t) 

⇒ B/F is a linear transfer function that transforms w(t) 
as x(t) = (B/F) w(t) 

⇒ x(t), an internal variable, is the output of the Linear 
block and has the same dimension as y(t) 

For ny outputs and nu inputs, the linear block is a transfer 
function matrix containing entries: 

𝐵𝐵𝑗𝑗 ,𝑖𝑖(𝑞𝑞)

𝐹𝐹𝑗𝑗 ,𝑖𝑖(𝑞𝑞)
         (3) 

where j = 1, 2...,ny and i = 1, 2..., nu. 
⇒ h is a nonlinear function that maps the output of the 

linear block x(t) to the system output y(t) as y(t) 
= h(x(t)) 

Further to the selection of the Hammerstein-Wiener model, 
the wavelet nonlinear estimator/ function gives a better fit 
than its counterparts i.e. sigmoid, polynomial and piecewise 
as shown in Figure 5. 
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Figure 5: Comparison of the nonlinear estimators/functions 
with the measured output dataset 

The time response plot between the identify model and 
collected data having a 95.17% fit is shown in Figure 6 
below clearly indicating the capability of the Hammerster 
Weiner model. 

 
Figure 6: Time Response comparison of nonlinear 
Hammerstein Weiner model and collected data 

B. Model Predictive Control (MPC) 
In predictive control, the prediction of the future values of 
the process outputs and the states from the current time is 
performed. However, the real plant/process cannot be made 
to operate in the future time steps from the current time, but 
the model of the process being controlled can be easily 
simulated to obtain the process outputs and the states for the 
future time steps. 
The process outputs and the states predicted for the future 
time steps by using the process model is used to formulate 
an optimization problem which is an optimal control 
problem. The nature of the optimization problem can vary 
from tracking a set point to more complex economic 
objectives. In this project the set point tracking objective is 
applied to get the optimization problem.  
Model Predictive Control solves an optimization problem – 
specifically, a quadratic program (QP) – at each control 
interval. This QP problem includes the following features: 

• The objective or cost function - A scalar, 
nonnegative measure of controller performance to 
be minimized. 

• Constraints - Conditions the solution must satisfy, 
such as physical bounds on MVs and plant output 
variables. 

• Decision/ solution - The MV adjustments that 
minimizes the cost function while satisfying the 
constraints. 

The solution determines the manipulated variables (MVs) to 
be used in the plant until the next control interval i.e. it uses 
the knowledge of the system model at time k to design an 
input sequence: 
𝑢𝑢(𝑘𝑘)|𝑘𝑘,𝑢𝑢(𝑘𝑘 + 1|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 2|𝑘𝑘),𝑢𝑢(𝑘𝑘 + 3|𝑘𝑘), … ,𝑢𝑢(𝑘𝑘 +
𝑁𝑁|𝑘𝑘)                 (4) 
over a finite horizon N from the current state x(k). It then 
implements a fraction of that input. 
For this applications, the controller must keep the selected 
plant outputs(turbidity) at or near the specified reference 
values. MPC controller uses the following scalar 
performance measure: 

𝐽𝐽𝑦𝑦(𝑧𝑧𝑘𝑘) = ∑ ∑ �
𝑤𝑤𝑖𝑖 ,𝑗𝑗
𝑦𝑦

𝑠𝑠𝑗𝑗
𝑦𝑦 �𝑟𝑟𝑗𝑗 (𝑘𝑘 + 𝑖𝑖|𝑘𝑘) − 𝑦𝑦𝑗𝑗 (𝑘𝑘 + 𝑖𝑖|𝑘𝑘)��𝑝𝑝

𝑖𝑖=1
𝑛𝑛𝑦𝑦
𝑢𝑢=1       

(5) 

 

Where, 

• k — Current control interval. 
• p — Prediction horizon (number of intervals). 
• 𝑛𝑛𝑦𝑦  — Number of plant output variables. 

• 𝑧𝑧𝑘𝑘— QP decision, given by: 
𝑧𝑧𝑘𝑘𝑇𝑇 = [𝑢𝑢(𝑘𝑘|𝑘𝑘)𝑇𝑇𝑢𝑢(𝑘𝑘 + 1|𝑘𝑘)𝑇𝑇𝑢𝑢(𝑘𝑘 + 𝑝𝑝 − 1|𝑘𝑘)𝑇𝑇𝜀𝜀𝑘𝑘] (6) 

• 𝑦𝑦𝑗𝑗 (𝑘𝑘 + 𝑖𝑖|𝑘𝑘) — Predicted value of jth plant output at ith 
prediction horizon step 

• 𝑟𝑟𝑗𝑗 (𝑘𝑘 + 𝑖𝑖|𝑘𝑘) — Reference value for jth plant output at ith 
prediction horizon step 

• 𝑠𝑠𝑗𝑗
𝑦𝑦— Scale factor for jth plant output 

• 𝑤𝑤𝑖𝑖 ,𝑗𝑗
𝑦𝑦 — Tuning weight for jth plant output at ith prediction 

horizon step  
The values 𝑛𝑛𝑦𝑦 , 𝑝𝑝, 𝑠𝑠𝑗𝑗

𝑦𝑦and 𝑤𝑤𝑖𝑖 ,𝑗𝑗
𝑦𝑦  are controller specifications, 

and are constant. The controller receives 𝑟𝑟𝑗𝑗 (𝑘𝑘 + 𝑖𝑖|𝑘𝑘) values 
for the entire prediction horizon. The controller uses the 
state observer to predict the plant outputs. 
Specifying the prediction and control horizons 
For a plant with delays, it is good practice to specify the 
prediction and control horizons such that 

P−M≫td, max/Δt                (7) 

where, 

• P is the prediction horizon (How far ahead the model 
predicts the future). 

• M is the control horizon. 
• td, max is the maximum delay 
• Δt is the controller sample time 

Results 
The coagulation chamber model has three inputs and one 
output 
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Inputs 
• Alum concentration – the concentration of alum in 

the feed stream (mg/L) 
• Turbidity of raw water – feed turbidity (NTU) 
• Raw water flow rate (m3/h) – assumed to be 

constant 
Output  

• Treated water turbidity (NTU) 
 
The control objective is to maintain the turbidity of the 
treated water at its set point (<=5 NTU) by adjusting the 
Alum concentration feed. The control system should meet 
the said objective and also keep the input and output 
variables within safe and acceptable operational limits.  
Linearization was necessary inorder to use the identified 
Nonlinear Hammerstein Weiner model since the standard 
MPC works with linear systems. The resulting model was 
used in MPC design to give the set point tracking response 
shown in figure 7 below. The controller parameterswere: 
Sample time 0.1 
Prediction horizon 17 
Control horizon 3 
 

 
Figure 7: Set point tracking performance 

Figure 7 shows the Controller has oscillations about the set 
point.  

C. CONCLUSION 
This study considers the set point tracking of the standard 
MPC when applied to the coagulation chemical dosing unit 
of drinking water treatment plants. Simulation tests of the 
control system has been examined under the linearized 
Nonlinear Hammerstein Wiener model. The study shows 
that the MPC based control strategy is inadequate for the 
linearized model and ineffective to maintain the output 
variables at constant level. There is need to develop a 
Nonlinear MPC which is capable of handling nonlinear 
models and/or nonlinear inequality constraints and study the 
performance when applied to the Nonlinear Hammerstein 
Wiener model of the coagulation chamber. 
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