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ABSTRACT 

Content-Based Image Retrieval (CBIR) is the main stay of current image retrieval 

systems where a user submits an image based query which is then used by the system 

to extract visual features like shape, color or texture from images. For the 

comparison of rotated images to be more effective these images should be insensitive 

to illumination changes, occlusion changes, pose changes, and less sensitive to noise. 

When the image rotates, its angle position changes, altering its original consistency 

and form and limiting it from generating similar outcomes. Furthermore, the way 

patterns are arranged in an image can distort its appearance, and lighting conditions 

can alter an image's brightness and yield different outcomes, making it challenging to 

find similar images. Color has been utilized previously to improve illumination 

where images were first transformed from RGB to HSV color before they were fed 

as input in the network model. Contrast texture features have also been combined 

with other texture descriptors to compute rotation-invariant representations of 

textures. Gabor Convolutional Neural network methods have also been utilized in 

rotation invariance. Gabor Convolutional Neural Networks are built to capture 

texture and spatial frequency information effectively, but they do not inherently 

account for intensity or lighting shifts. Gabor filters are sensitive to the absolute 

intensity of input images, meaning brightness changes significantly alter filter 

responses. This sensitivity can lead to inconsistent feature extraction under varying 

orientation and lighting conditions, affecting the GCNN's performance in image 

retrieval. When applied to RI-GCN, where the first layer of convolutional neural 

networks was convolved with a Gabor filter, and TI-GCN, where the first and last 

layers were convolved with a Gabor filter, it has shown good results for rotation 

invariance. Nevertheless, when the image is retrieved throughout the Networks, it 

continues to encounter challenges with variations in illumination and rotation. This 

research investigates the effects of integrating these filters into different CNN layers, 

early, middle, late, combined configurations, and all layers to assess their impact on 

rotational and illumination invariance across datasets of varying complexity, 

specifically CIFAR-10 and ImageNet. Experimental results demonstrate that specific 

layer configurations optimize performance, with early and middle layers providing 

fundamental color and texture differentiation for simpler datasets, and deeper layers 

effectively handling complex features in more challenging datasets. The combined 

configurations enhance both rotational and illumination robustness, contributing to 

improved retrieval accuracy, precision, and recall. The findings underscore the 

importance of adaptive, multi-layer filter integration, offering a promising direction 

for developing robust and efficient CBIR systems. Our results show the model is 

applicable in various areas such as medical Imaging to retrieve relevant diagnostic 

images accurately, regardless of how they were captured, facilitating better 

comparisons, diagnostic accuracy, and treatment planning. 

 



 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

Content-based image retrieval (CBIR) is a technique used in computer vision and 

information retrieval to search and retrieve images from a large database based on 

their visual content. Typically, "content" in the context of image processing refers to 

the significant information that an image represents. CBIR, uses the basic visual 

features of an image such as color, shape, texture, and spatial layout to represent and 

index the images. The term "content or features" in this context might refer to color, 

shape, texture, or any other information that can be derived from the image itself 

(Mufarroha et al., 2020). 

Within the computing domain, we can describe an image as a matrix of numbers. 

These numbers are represented as different light intensities which altogether make up 

the image. A pixel is the term representing the numbers within the matrix assorted in 

rows and columns. The pixel values are data dependent and can range from a 

minimum to a maximum value. For simplicity sake, let’s say that the pixel light 

intensity values are represented as an 8-bit number, or a range of 0 to 255. The 

higher the value, the greater the intensity (the pixel appears brighter with a higher 

intensity). Colored images are overlapping matrices with 3 separate channels: red, 

green, and blue. In image processing, handling color images requires more 

processing than grayscale because there are 3 channels to compute on instead of 1. 

Because images are represented in terms of matrices full of intensity values, we can 

use computation to process and analyze an image or an array of images (Garcia et al., 

2020). 

According to Srivastava et al. (2023) refer to "retrieval" as the process of searching 

for and accessing images from a collection or database based on specific criteria or 

queries. Image retrieval involves finding images that are relevant to a given task, 

such as matching a particular visual pattern, identifying objects, or retrieving images 

similar to a query image. Two popular techniques are text-based image retrieval 
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(TBIR), which retrieves images based on related textual annotations or metadata, and 

content-based image retrieval (CBIR), which retrieves images based on their visual 

content. 

 

 

Figure 1.1: Text-Based Image Retrieval System 

Figure 1.1 illustrates how Text-based image retrieval also known as traditional image 

retrieval (TBIR) retrieves images. The text-based image retrieval approach interprets 

image by text and then uses textual information to retrieve images from a text-based 

database management system. The greatest advantage of TBIR is that when images 

are recorded correctly, good search results can be achieved.  

This method has several drawbacks; it uses keywords associated with images to 

retrieve visual information. Keywords due to their subjective natures fail to bridge 

the semantic gap between the retrieval system and the user demands; consequently, 

the accuracy of the retrieval system is questioned (Gasmi et al., 2023). The keyword 

for describing images becomes inadequate in large databases and it is not scalable.  

Text-Based Image Retrieval (TBIR) is non-standardized, as different users often use 

varying keywords for annotation. This process can sometimes be incomplete, and it 

relies on humans to manually describe each image, making it inconsistent and labor-

intensive. Although TBIR is still in use it is cumbersome and labor intensive. Due to 

these disadvantages, CBIR proved to be more promising and efficient than TBIR. 

The main advantage of using CBIR system is that the system uses image features 



3 

 

instead of using the image itself. So, CBIR is cheap, fast, and efficient over image 

search methods. 

CBIR, uses the basic visual features of an image such as color, shape, texture and 

spatial layout to represent and index the images. The term "content or features" in 

this context Goldwasser (2024) might refer to color, shape, texture, or any other 

information that can be derived from the image itself. In typical content-based image 

retrieval systems, the features of every image are extracted and grouped to form the 

feature vector. All the feature vectors are stored in the feature database. Similarity 

matching between the feature vector of the query image and the feature vector 

database is carried out to retrieve similar images. CBIR systems extract features from 

the raw images themselves and calculate an association measure (similarity or 

dissimilarity) between a query image and database images based on these features. 

CBIR is becoming very popular because of the high demand for searching image 

databases of ever-growing size. Figure 1.2 demonstrates how a content-based image 

retrieval system retrieves images. 

 

Figure 1.2: Content-Based Image Retrieval System 
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CBIR basically uses the visual contents of an image. There are two levels for 

extracting features in Content-Based Image Retrieval (CBIR) (Hameed et al., 2021) 

High level feature and Low level feature. 

Levels for Extracting Features in Content-Based Image Retrieval (CBIR) 

To efficiently retrieve images based on their visual content, Content-Based Image 

Retrieval (CBIR) systems use several levels of feature extraction. There are various 

layers to the extraction process, each of which focuses on distinct feature types that 

enhance the system's overall performance. 

High-Level Features 

High-level features (concepts) are keywords, text, and visual features that interpret 

images and find similarities between pixels of images (Chen et al., 2021). The high-

level feature is also known as the semantic feature. There are three conventional 

methods for extracting the image semantic feature.  

1. First, semantic features can be extracted based on image processing and 

domain knowledge. There are three fundamental processes: image 

segmentation, object recognition, and analysis of the object relation.  

2. Secondly, Images' semantics features can be extracted through manual 

tagging or human interaction, but both require arduous human effort.  

3. Third, we can extract the semantics from external information, such as file 

name, URL, image near the text, or metadata information. 
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Low Level Feature  

Low Level feature extraction includes color, texture, shape, spatial information as 

represented in Figure 1.3. 

 

 

 

 

 

Figure 1.3: Representation of Low Level Features 

Color - Color reflects the chromatic attributes of the image (Anowar, 2023). Color is 

one of the most reliable used low level visual features and is invariant to image size 

and orientation. Color features are widely used in CBIR systems as they are 

independent of image size and orientation (Dowerah & Patel, 2024). They are 

usually extracted from different color spaces, e.g., RGB, HSV, YCbCr, by 

computing the color histogram, color moments, or dominant colors. Color is the 

sensation caused by the light as it interacts with our eyes and brain. Color features 

are the fundamental characteristics of the content of images. Human eyes are 

sensitive to colors, and color features enable humans to distinguish between objects 

in the images. Colors are used in image processing because they provide powerful 

descriptors that can be used to identify and extract objects from a scene. Also, it is 

more reliable and easy to implement. Color features provide sometimes powerful 

information about images, and they are very useful for image retrieval (Liu et al., 

2024). 

Color feature is an essential component for image retrieval. For huge image 

databases, image retrieval using the color feature is very successful and effective. 

Although color feature is not a persistent parameter, because it is subjected to many 

Spatial 

Information  

Low Level 

Features 

Color 

Features  

Texture 

Features  

Shape 

Features  
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non-surface characteristics for example, the taking conditions such as illumination 

and characteristics of the device color are still popular in feature extraction (Zhou et 

al., 2024). 

Texture: It is another important property of images. Various texture representations 

have been investigated in pattern recognition and computer vision. Texture refers to 

the surface properties of an object and its relationship to the surrounding 

environment. According to Tamura et al. (1978), texture is a measure of coarseness, 

contrast, directionality, line-likeness, regularity, and roughness. The texture can also 

be seen as a similarity grouping in an image or as natural scenes containing semi-

repetitive arrangements of pixels (Chen et al., 2021). 

Texture in the realm of image processing gives information about the local spatial 

arrangement of colors or intensities in a given image. Images that have similar 

texture properties should therefore have the same spatial arrangements of colors or 

intensities, but not necessarily the same colors. Because of this, the use of texture-

based image indexing and retrieval techniques is quite different than those used 

strictly for color. Texture consists of some basic primitives, and also describes the 

structural arrangement of a region and the relationship of the surrounding regions. 

Texture features can be classified into two categories, firstly spectral features such as 

(the Gabor filter and discrete wavelet transformation) and secondly, statistical 

features such as (the word feature, Tamura feature, and gray-level co-occurrence 

matrix representation).  

Shape: Shape features of objects or regions have been used in many content-based 

image retrieval systems. Compared with color and texture features, shape features are 

usually described after images have been segmented into regions or objects. Since 

robust and accurate image segmentation is difficult to achieve, the use of shape 

features for image retrieval has been limited to special applications where objects or 

regions are readily available. The state-of-art methods for shape description can be 

categorized into either boundary-based or region-based methods. A good shape 

representation feature for an object should be invariant to translation, rotation and 
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scaling. The major problem in the use of shape is how to represent shape 

information. 

Spatial: Regions or objects with similar color and texture properties can be easily 

distinguished by imposing spatial constraints. For instance, regions of blue sky and 

ocean may have similar color histograms, but their spatial locations in images are 

different. Therefore, the spatial location of regions or the spatial relationship between 

multiple regions in an image is very useful for searching images. 

One of the most indispensable problems in image processing and pattern recognition 

is determining how to extract effective features from images. The extraction of 

determining attributes that provide a better description of the images in the database 

usually follows the process of matching the similarity of the appropriate images. As a 

result, retrieving images requires comparing previously acquired images that 

represent the images' important aspects rather than matching them to the whole 

images. In most cases, we can observe and photograph an object from various angles. 

This means that the feature must be invariant to various types of spatial deformations 

caused by imaging geometry, such as two-dimensional translation, rotation, 

illumination, similarity transform, affine transform, and so on. Figure 1.4 illustrates 

the process of querying and retrieving images from a database. 

 

Figure 1.4: Image Retrieval System 

One important aspect of image processing is dealing with rotational and illumination 

invariance. In image processing, rotational invariance refers to a feature or property 
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of an image processing technique that maintains its original form or consistency 

despite rotations of the input image. In other words, a rotationally invariant algorithm 

or feature will produce a similar outcome regardless of the orientation of the image if 

the image is rotated. Illumination variation, on the other hand, refers to differences in 

lighting conditions across an image. These differences have the potential to distort or 

misrepresent the original scene, as well as impair the efficacy of image analysis 

algorithms.  

When an image rotates, the angle position of the image changes, and hence the image 

loses its original form or consistency and fails to produce similar output. Also, the 

appearance of the image changes due to distortion of the arrangement of patterns in 

an image and lighting conditions that affect the brightness of the image and yield 

different outputs thus making it challenging to assess and extrapolate similar images. 

For effective retrieval, these images should maintain the same pattern and color at all 

angles. A solution to the problem is to continuously have images that are insensitive 

to rotational and illumination invariance. However, many of the models only increase 

the model's resistance to rotations and illumination without offering any assurances 

about rotational and illumination invariance (Bagewadi & Veerashetty, 2023). Some 

Gabor filter variants do handle illumination changes (Veerashetty et al., 2022), and 

others handle both rotational and illumination invariance (Hong & Guan, 2021).  

Traditional Convolutional Neural Networks (CNNs) are adept at extracting spatial 

and texture features, but they face limitations when applied to datasets with diverse 

image conditions (Archana & Jeevaraj, 2024). For example, CIFAR-10 and 

ImageNet, two popular datasets, vary significantly in complexity, with CIFAR-10 

generally containing simpler patterns while ImageNet presents a wide range of high-

level features and textures. This diversity in dataset complexity underscores the need 

for enhanced feature extraction techniques that can provide both rotational and 

illumination invariance, which are critical for consistent retrieval performance. 

However, some models combine rotational and illumination invariance, making it 

difficult to retrieve images effectively when rotating them at different angles while 

preserving their color and texture. Salas (2019) created a network architecture that 
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uses CNN layers for classification after preprocessing with Gabor filters to extract 

rotation-invariant information. Yao and Song (2022) presented a model to learn 

Gabor-guided deep convolutional features by first rotating each input image to create 

several rotating image features, which are then fed into a network structure. Zhuang 

et al. (2022) presented transformation-invariant Gabor convolutional networks (TI-

GCNs) by substituting the last layer of traditional convolutional layers with GCL to 

enhance rotation invariance.  

Gabor Convolutional Neural Networks (GCNNs) face challenges in handling 

illumination changes primarily due to their reliance on fixed Gabor filters and 

convolutional operations that assume consistent intensity patterns. Changes in 

illumination alter the intensity distribution of an image, causing the Gabor filters to 

produce inconsistent responses. This sensitivity degrades the network’s ability to 

extract robust features under varying lighting conditions. Identifying the most 

effective CNN layer for rotation and illumination invariance is a complex task. To 

address these challenges, this study proposes a layer-by-layer integration of HSV 

color space, directional texture filters, and Gabor filters within a CNN architecture. 

By evaluating each configuration’s impact on performance whether applied in early, 

middle, late, or across all layers. The research aims to determine an optimal strategy 

for integrating these filters. This adaptive approach intends to enhance CBIR 

accuracy and reliability across datasets of varying complexities, thereby advancing 

the robustness and flexibility of image retrieval systems. 

By incorporating the Gabor filter is a useful tool for feature extraction in image 

representation learning because it can extract images that are similar and reliable 

from all angles (Titrek & Baykan, 2023). The Gabor functions are derived from a 

sinusoidal plane wave of a specific frequency and orientation that describes the 

image's spatial frequency information. The purpose of directional texture filters is to 

extract specific patterns and structures from an image. These local patterns are 

consistent and frequently hold true when an image rotates. The HSV color space on 

the other hand, aims to provide a more natural representation of color compared to 

RGB color space and to divide color information into three independent parts, 

making it simpler to work with and modify color in an image (Rimiru et al., 2022; 
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Dhakshayani & Surendiran, 2023). Due to this division, the system can concentrate 

on the inherent color qualities (Hue), regardless of variations in brightness (Value) or 

intensity (Saturation). The integration of GCNNs, directional texture filters, and HSV 

color space forms a powerful model that addresses rotational and illumination 

invariance, making CBIR systems more reliable and effective across diverse 

conditions. 

1.2 Problem Statement 

One important aspect of image processing is dealing with rotational and illumination 

variation. In image processing, rotational invariance refers to a feature or property of 

an image processing technique that maintains its original form or consistency despite 

rotations of the input image. In other words, a rotationally invariance algorithm or 

feature will produce similar outcome regardless of the orientation of the image if the 

image is rotated. Illumination variation, on the other hand, refers to differences in 

lighting conditions across an image. These differences have the potential to distort or 

misrepresent the original scene, as well as impair the efficacy of image analysis 

algorithms.  

GCNNs are built to capture texture and spatial frequency information effectively, but 

they do not inherently account for intensity or lighting shifts. Gabor filters are 

sensitive to the absolute intensity of input images, meaning brightness changes 

significantly alter filter responses. The reliance on Gabor filters makes them highly 

effective for capturing texture and orientation, but their lack of adaptation to intensity 

and illumination changes in different layers limits their robustness. This sensitivity 

can lead to inconsistent feature extraction under varying orientation and lighting 

conditions, affecting the GCNN's performance in image retrieval. According, 

Bagewadi and Veerashetty (2023), the Gabor filter only increase the model's 

resistance to rotations and illumination without offering any assurances about 

rotational and illumination invariance. Veerashetty et al. (2022) used Gabor filter to 

handle illumination changes, Hong and Guan (2021) used Gabor filter to handle both 

rotational and illumination invariance. Yao and Song (2022) constructed GCNNs that 

are rotationally invariant in the first layer. Additionally, Zhuang et al. (2022) 
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presented transformation-invariant Gabor convolutional networks (TI-GCNs) by 

substituting last layer of traditional convolutional layers with GCL to enhance 

rotation invariance. These techniques have achieved a lot but still fails to retrieve 

images effectively when rotating them at different angles while preserving their color 

and texture.  

Identifying the most effective CNN layer for rotation and illumination invariance is a 

complex task. Applying rotation and illumination invariance within a single layer 

often falls short, as each layer in a CNN is specialized for certain types of feature 

extraction, from simple edges in early layers to complex textures and patterns in later 

layers. To address this, the study proposes an extended Gabor CNN model. The 

extended Gabor CNN model integrates HSV color, directional texture, and Gabor 

filter. The research aims to identify how each layer configuration influences retrieval 

performance of CBIR by testing the impact of each individual layers (early, middle, 

combined, and late). This approach allows a more detailed analysis of how each layer 

configuration contributes to image retrieval accuracy, color robustness, and texture 

orientation invariance, ultimately helping to determine whether a specific 

configuration or combination of layers offers superior performance across different 

datasets, such as CIFAR-10 and ImageNet. The HSV color space maintain 

consistency under lighting changes, Directional texture reinforces rotational 

invariance and Gabor filter provides rotation invariance regardless of angle changes. 

1.3 Research Questions 

The study was guided by the following questions: 

i. What are the design limitations of Gabor Convolutional Neural Networks 

(GCNNs) in extracting color and texture for content-based image retrieval? 

ii. What design techniques are used by Gabor Convolutional Neural Networks 

(GCNNs) to ensure rotational invariance for texture features in content-based 

image retrieval? 

iii. What design techniques of Gabor Convolutional Neural Networks (GCNNs) 

handle illumination invariance for color and texture-based feature? 
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iv. How can integrating both rotational and illumination invariance in Gabor 

Convolutional Neural Networks (GCNNs) improve the performance of 

content-based image retrieval system? 

1.4 Objectives 

1.4.1 General Objective 

The general objective of this study was to design and implement a Gabor 

Convolutional Neural Networks (GCNN) that integrate both rotational and 

illumination invariance to improve the performance of color and texture-based CBIR 

system. 

1.4.2 Specific Objectives 

The specific objectives of the study are  

i. To analyze the design limitations of Gabor Convolutional Neural Networks 

(GCNNs) in extracting color and texture features. 

ii. To analyze the effectiveness of Gabor Convolutional Neural Networks 

(GCNNs) in handling rotational invariance for texture features and identify 

their weakness. 

iii. To investigate the ability of GCNNs to extract illumination invariance 

features and identify their weakness. 

iv. To design and validate GCNNs prototype that integrate both rotational and 

illumination invariance to improve CBIR performance for color and texture-

based features. 

1.5 Practical Implication of Rotation and Illumination Invariance 

CBIR provides a solution for many types of image information management systems 

as follows. 

Medical imaging - In medical imaging (e.g., radiology, histology), images may be 

captured at various angles and under different lighting, depending on the equipment 
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or conditions during examination. The model would help to retrieve relevant 

diagnostic images accurately, regardless of how they were captured, facilitating 

better comparisons, diagnostic accuracy, and treatment planning. 

Forensic and security application - In forensic investigations, CBIR can be used to 

match images (e.g., faces, objects, or scenes) across surveillance footage that may be 

captured from different angles and under various lighting conditions. The model 

identifies suspects, objects, or activities from multiple viewpoints and lighting 

situations, enhancing security and evidence reliability. 

Retail and e-commerce - Retailers often rely on visual search technology for 

product recommendations and similar-item searches, with images submitted by users 

often taken at different angles and under various lighting conditions. The model 

recognizes products accurately, providing customers with consistent 

recommendations and similar-item searches, regardless of how they photograph the 

items. 

1.6 Contribution of the Thesis 

As our first contribution, this research introduces an extended Gabor CNN model. 

The extended model integrates HSV color, directional texture, and Gabor filters into 

the CNN model.  As a second contribution, this research presents the performance 

evaluation for the extended Gabor CNN model. The evaluation results show that the 

HSV color is illumination invariance. Lastly, the results show that the directional 

texture filter and all Gabor CNN layers are rotation invariant. 

1.7 Thesis Organization  

This thesis is divided into five chapters as follows. 

Chapter 2 presents the literature review of feature extraction and retrieval. This 

involves classifying the extracted features from images into three categories: low, 

mid, and high-level features. Then the chapter examines color and texture image 

extraction techniques are examined, followed by similarity matching techniques for 

CBIR. Finally, rotation and illumination invariance techniques. 
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Chapter 3 presents the research methodology. This chapter first, describes system 

development approach followed by conceptual framework and discussion. Secondly, 

the chapter details the workflow which describes how image features were extracted. 

Thirdly, chapter describes how the system architecture and design was applied to 

rotational invariance. Finally, the chapter describes how both rotation and 

illumination prototype was developed and tested.  

Chapter 4 presents the results and discussion of the experiments. The results are 

analyzed and presented in the form of tables and charts. 

Chapter 5 presents the summary of the thesis, the conclusions and gives the 

directions of future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

The chapter presents the literature review. It begins by giving general introduction 

about images. This is followed by techniques for extracting image features such as 

machine learning techniques. The chapter ends by presenting the summary of the 

literature review. 

2.1 Introduction  

An image is represented by its dimensions (height and width) based on the number of 

pixels. For instance, if an image is 500 × 400 (width x height), then 200000 pixels 

make up the entire image. This pixel is a point on the image that assumes a certain 

shade, opacity, or color. Typically, it appears in Grayscale where gray is an integer 

with a value of 0 to 255, or totally black or completely white, is referred to as a pixel, 

RGB (Red, green, and blue) pixels are made up of three integers with values ranging 

from 0 to 255 or RGBA an expansion of RGB that includes an additional alpha field 

that symbolizes the opacity of the image. Thus, each pixel of an image must undergo 

a fixed series of operations during image processing (Mishra et al., 2022). The initial 

series of actions are carried out pixel-by-pixel by the image processor on the image. 

The second operation will start once this is finished in full, and so forth. Any pixel in 

the image can be used to determine the output value of these procedures. Therefore, 

image processing is a technique for taking a physical image and putting it into digital 

form so that you may manipulate it and add to it or take information out of it. It is a 

kind of signal distribution where the input is an image, such as a video frame or a 

photograph, and the output could be another image or information related to that 

image (Schütz et al., 2022).  

Typical image processing systems treat images as two-dimensional signals and 

process them using pre-established signal processing techniques. The purpose of 

image processing is divided into five groups namely visualization, Sharpening and 

restoration, Retrieval, Recognition, and Pattern recognition. The process of retrieving 

images from a database is called content-based image retrieval (CBIR). In CBIR, a 
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user enters a query image to retrieve database images matching the query image. 

CBIR compares the content of the input image to the database images in order to 

determine the images that are the most similar. More specifically, CBIR assesses the 

degree of visual similarity between the query image and the database images in terms 

of elements including forms, colors, texture, and spatial information (Burger & 

Burge, 2022).  

Nowadays, CBIR (Content-based image retrieval) is a hotspot of digital image 

processing techniques. CBIR research started in the early 1990s and is likely to 

continue during the first two decades of the 21st century (Zhou et al., 2024). The 

growing demands for image retrieval in multimedia fields such as crime prevention, 

Fashion, graphic design, and biometrics have pushed application developers to 

search for ways to manage and retrieve images more efficiently. Retrieval focuses on 

developing new techniques that support effective searching and browsing of large 

digital image libraries based on derived image features. Manual browsing of the 

database to search for identical images would be impractical since it takes a lot of 

time and requires human intervention. A more practical way is to use content-based 

image retrieval (CBIR) technology. CBIR has provided an automated way to retrieve 

images based on the content or features of the images themselves. The CBIR system 

simply extracts the content of the query image and matches it to the contents of the 

search image (Hadid et al., 2023).  

CBIR is defined as a process to find similar images or images in the image database 

when a query image is given. Given a picture of a car, the system should be able to 

present all similar images of a car in the database to the users. This is done by 

extracting the features of the images such as color, texture, and shape (Choe et al., 

2022). These image features are used to compare between the query image and 

images in the database. A similarity algorithm is used to calculate the degree of 

similarity between those two images. Images in the database which has similar 

images features to the query image (acquiring the highest similarity measure) is 

presented to the user. 
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Accurate retrieval findings are still a challenge and a current study topic. With 

content-based image retrieval (CBIR), similar images from a big image database are 

found for a given query image based on how closely their contents match. In CBIR, 

feature extraction from images is the initial stage. It is possible to use a variety of 

features, including color, texture, shape, and spatial distribution. Color histograms, 

Gabor filters, Local Binary Patterns (LBP), Scale-Invariant Feature Transform 

(SIFT), and Convolutional Neural Networks (CNN) are examples of frequently used 

feature extraction methods. Following retrieval, a similarity measurement is needed 

to compare the features of the query image with the features of the images in the 

database. Euclidean distance, Manhattan distance, Cosine similarity, correlation 

coefficients, indexing, and relevance feedback are examples of common similarity 

measurements. Relevance feedback is a technique that allows users to provide 

feedback on the retrieved results to improve subsequent searches. Users can mark 

images as relevant or irrelevant, and the system uses this feedback to change its 

retrieval technique. The retrieval system's accuracy can eventually be increased 

through this iterative approach (Wang et al., 2023). With the rise of deep learning, 

convolutional neural networks (CNNs) have become a popular choice for CBIR. 

CNNs can learn complex features directly from the raw image data. 

2.2 Categories of Image Feature Extraction 

Image feature extraction refers to the process of identifying and extracting 

meaningful and distinctive patterns, structures, or characteristics from an image. 

These features can represent various aspects of the image, such as edges, corners, 

textures, colors, or shapes. Finding the most pertinent information in the original data 

and representing it in a lower dimensional space are the fundamental objectives of 

feature extraction. These extracted features work as a condensed representation of 

the image, making it possible to handle tasks like image segmentation, object 

recognition, image retrieval, and classification quickly and effectively. Low-level 

features, mid-level features, and high-level features are three general categories for 

image feature extraction approaches (Lu et al., 2023). 
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These classifications show the various degrees of abstraction and complexity in 

capturing image information. Figure 2.1 shows the summary of image feature 

extraction categories. 

 

 

 

 

 

 

 

 

2.2.1 Low-Level Features 

Low-level features capture basic and primitive visual characteristics of an image, 

such as color, texture, shape, and spatial. Low-level features that are often used 

include the following. 

Color  

In image processing, color is a fundamental attribute that aids in distinguishing 

objects, defining patterns, and enhancing the perception of details within an image. 

Colors are represented as numerical values within a color space, with popular models 

like RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and Lab used to 

quantify colors in ways that align with human perception or computational 

requirements. According to Phuangsaijai et al. (2021) RGB is common in digital 

displays, representing colors through combinations of red, green, and blue intensities. 

HSV, on the other hand, separates the color’s hue (its type), saturation (its intensity), 
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and value (its brightness), making it effective for tasks that need color differentiation 

without being affected by brightness variations. The choice of color model 

significantly impacts how color information is extracted, analyzed, and manipulated 

in image processing applications. 

Color plays a crucial role in applications such as content-based image retrieval 

(CBIR), object recognition, and segmentation, where the ability to distinguish one 

object from another often depends heavily on color consistency (Srivastava et al., 

2023). However, real-world variations in lighting conditions, shadows, and 

reflections can cause colors to appear differently, complicating color-based analysis. 

For instance, an object photographed under sunlight may look different when 

captured under artificial light. This shift can lead to reduced accuracy in color-based 

retrieval or recognition tasks if not addressed properly. Methods like HSV and Lab 

color spaces help mitigate these issues by decoupling color from brightness, allowing 

systems to remain more resilient to such changes. 

To enhance image retrieval or recognition, advanced processing techniques such as 

histogram equalization or color constancy adjustments are used to correct and 

normalize color variations caused by differing illumination (Ebner, 2021). 

Additionally, using color spaces like HSV enables models to focus on hue while 

minimizing sensitivity to brightness, which is especially valuable for applications 

that operate under varied lighting conditions. This approach improves the model’s 

robustness, ensuring more accurate and consistent color-based analysis and retrieval 

even when images are captured in diverse environments. 

Texture 

Texture in image processing refers to the repeated patterns, structures, or spatial 

arrangements of pixels within an image that represent the surface characteristics of 

objects (Chaki & Dey, 2020). Texture conveys essential information about an 

object’s appearance, such as its roughness, smoothness, or granularity, and is often 

crucial in distinguishing between different objects or surfaces. Mathematically, 

texture is characterized by statistical, structural, or spectral features, which capture 

the variation and distribution of pixel intensities across an image region. Common 
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methods to analyze texture include techniques like gray-level co-occurrence matrices 

(GLCM), local binary patterns (LBP), and Gabor filters, each capturing different 

aspects of texture and aiding in effective feature extraction. 

In image processing applications such as content-based image retrieval (CBIR), 

object recognition, and medical imaging, texture analysis plays a vital role in 

identifying and classifying objects based on their surface patterns (Raju et al., 2020). 

For instance, in CBIR, texture features help distinguish between images of similar 

color but different textures, like differentiating between images of sand and water. 

Unlike color, which may change due to lighting variations, texture can provide a 

more stable descriptor for object identity, making it particularly useful in 

environments where lighting and orientation vary. By focusing on patterns rather 

than single-pixel values, texture descriptors help models capture the consistent 

appearance of materials and surfaces across different images. 

To achieve robust texture analysis, advanced filtering techniques such as directional 

filters and Gabor filters are commonly employed. Directional texture filters can 

capture patterns oriented in specific directions, helping models remain invariant to 

rotations, while Gabor filters provide spatial and frequency information, identifying 

patterns across scales and orientations (Ghalati et al., 2021). This ability to capture 

and quantify multi-scale, multi-directional texture patterns enhances the accuracy of 

image processing models, particularly in challenging tasks that require distinguishing 

fine surface details or repeating patterns. With these methods, image processing 

systems can better interpret complex textures, improving performance in diverse 

applications, from industrial inspection to medical diagnostics. 

Shape 

In image processing, shape refers to the geometric outline or silhouette of an object 

within an image, providing essential information about its structure, form, and 

boundary. Raj and Balaji (2023), Shapes are fundamental descriptors in image 

analysis, as they allow for the identification and classification of objects based on 

their contours rather than relying solely on color or texture. Shape features are 

typically extracted by analyzing edges, contours, and boundaries, which highlight the 
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transition points between an object and its background. Techniques such as edge 

detection, contour extraction, and corner detection are commonly used to capture the 

defining boundaries of shapes, making shape analysis a core aspect of image 

segmentation, object recognition, and tracking. 

Shape descriptors in image processing vary in complexity and type, ranging from 

simple geometric properties (like area, perimeter, and circularity) to advanced 

models like Fourier descriptors and shape contexts (Morgenstern et al., 2021). 

Simple descriptors help distinguish basic shapes, such as circles, squares, and 

triangles, based on size or symmetry, while advanced methods allow for the capture 

of intricate and irregular shapes by encoding both boundary information and relative 

positions of points along the shape. Fourier descriptors, for example, analyze shape 

contours in the frequency domain, enabling models to remain invariant to rotation, 

scaling, and translation. This adaptability makes shape descriptors valuable for 

applications like object recognition, where the appearance of an object may change 

due to camera angle, size, or position within the image. 

In real-world applications, shape analysis is crucial in areas like medical imaging, 

robotics, and autonomous driving, where accurate object identification is essential. 

For instance, in medical imaging, shape-based methods help identify abnormalities, 

such as tumors, by comparing detected shapes to known anatomical structures 

(Wijayathunga et al., (2023). In robotics and autonomous systems, shapes allow for 

object detection and environment mapping, where identifying obstacles or paths 

relies on accurate boundary and contour recognition. The ability to effectively 

analyze shapes, combined with other features like color and texture, enhances the 

robustness of image processing systems, enabling them to perform reliably across 

diverse applications where understanding the form 

Spatial 

Spatial information refers to the arrangement and relative positioning of pixels or 

features within an image, providing context for object location, orientation, and 

relationships to other elements. Spatial features are crucial because they help 

maintain the structure and layout of objects in an image, giving insight into both 
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global and local contexts. For example, spatial relationships between various parts of 

an object (like the eyes, nose, and mouth on a face) can help systems recognize faces 

more effectively. By analyzing spatial patterns, image processing algorithms can 

differentiate between objects that have similar textures or colors but differ in 

structure or orientation (Caron et al., 2024). 

Spatial analysis often involves capturing both low-level and high-level spatial 

characteristics. Low-level spatial features focus on pixel neighborhoods, edges, and 

regions, providing basic information about shapes, contours, and boundaries. High-

level spatial features consider the arrangement of larger regions or objects, 

identifying patterns in the overall structure of an image (Yang et al., 2022). 

Techniques such as spatial filtering, feature mapping, and region-based segmentation 

are commonly used to capture spatial information. Convolutional Neural Networks 

(CNNs), for instance, utilize spatial hierarchies by stacking layers that capture 

increasingly complex spatial patterns, making CNNs effective for tasks like object 

detection and scene understanding. 

Spatial information is especially valuable in applications like remote sensing, 

medical imaging, and autonomous navigation, where understanding an image’s 

layout and the relationships between elements is crucial. According to, Pore et al. 

(2023) in medical imaging, spatial patterns can help locate and diagnose 

abnormalities within specific regions of an organ. In autonomous navigation, spatial 

relationships allow a vehicle to understand its environment by mapping out objects, 

roads, and obstacles to itself. The ability to leverage spatial information enhances the 

robustness and accuracy of image processing models, enabling them to interpret 

complex scenes and make decisions based on the spatial structure of objects and their 

surroundings. 

2.2.2 Mid-Level Features 

Mid-level features capture intermediate-level visual data and are more complicated 

than low-level features. These characteristics signify more important regions or 

structures in an image. Mid-level features include Corner features where Corner 

detection algorithms are utilized to identify distinctive points in an image where the 
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intensity gradient changes in multiple directions. These points are often used as key 

points for image matching or object tracking. Others are Blob or region features that 

represent regions of interest in an image that exhibit certain characteristics, such as 

scale-invariant key points or maximally stable external regions (MSER) (Ma et al., 

2021). 

2.2.3 High-Level Features 

High-level features are more abstract and record higher-level ideas or semantic 

information in an image. These features, which reflect intricate visual patterns, are 

frequently acquired using deep learning models. Convolutional neural networks 

(CNNs) may learn hierarchical representations of images, where each layer captures 

ever more abstract and sophisticated characteristics (Sungheetha & Sharma, 2021). 

Others are semantic features that capture the semantic meaning of an image, such as 

the presence of specific objects or scenes. They are typically learned through 

supervised training using annotated datasets (Dey et al., 2021). 

The choice of feature extraction technique depends on the specific task, the 

complexity of the image data, and the level of abstraction required for the analysis. 

Multiple levels of information can be extracted from an image using a variety of 

techniques, either in combination or sequentially, providing a richer representation 

for further analysis or machine learning tasks. If the features extracted are carefully 

chosen it is expected that the features set will extract the relevant information from 

the input data to perform the desired task. The goal of feature extraction, a crucial 

stage in the development of any pattern classification, is to extract the pertinent data 

that distinguishes an image. 

2.3 Color Image Extracting Techniques  

Color is the most important feature visually recognized by humans and humans tend 

to distinguish images based mostly on color features. Color is a powerful descriptor 

that simplifies object identification, and is one of the most frequently used visual 

features for content-based image retrieval (Kim, 2020). To extract the color features 

from the content of an image, a proper color space and an effective color descriptor 
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must to be determined. The purpose of a color space is to facilitate the specification 

of colors. Each color in the color space is a single point represented in a coordinate 

system (Chaki & Dey, 2020). Several color spaces, such as RGB, HSV, and CIELAB 

have been developed for different purposes.  

A color space is a method by which we can specify, create and visualize color. As 

humans, we may define a color by its attributes of brightness, hue, and colorfulness. 

A computer may describe a color using the amounts of red, green, and blue phosphor 

emission required to match a color. A color is thus usually specified using three co-

ordinates, or parameters. These parameters describe the position of the color within 

the color space being used (Fang et al., 2022). Other spaces are confusing for the 

user with parameters with abstract relationships to the perceived color. Some color 

spaces are tied to a specific piece of equipment (device-dependent) while others are 

equally valid on whatever device they are used (Maharana et al., 2022). 

Commonly used color spaces for image retrieval include RGB, CIE L*a*b*, CIE 

L*u*v*, HSV (or HSL, HSB), and opponent color space. There is no agreement on 

which is the best. However, one of the desirable characteristics of an appropriate 

color space for image retrieval is its uniformity. Uniformity means that two color 

pairs that are equal in similarity distance in color space are perceived as equal by 

viewers. In other words, the measured proximity among the colors must be directly 

related to the psychological similarity among them (Alsmadi, 2020). According to 

Vasan et al. (2020), different color spaces are better for different applications, for 

example, some equipment has limiting factors that dictate the size and type of color 

space that can be used. Some color spaces are perceptually linear, i.e., a 10-unit 

change in stimulus will produce the same change in perception wherever it is 

applied. Many color spaces, particularly in computer graphics, are not linear in this 

way. Some color spaces are intuitive to use, i.e., it is easy for the user to navigate 

within them, and creating desired colors is relatively easy.  

Color extraction is susceptible to issues like variable lighting conditions and 

occlusions, therefore it might not be the most reliable technique. To solve these 

issues, in addition to the traditional RGB (Red, Green, Blue), alternative color spaces 
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are employed to extract color information from the image to be recognized, including 

HSV (Hue, Saturation, Value), HIS (Hue, Intensity, Saturation), and L*a*b 

(CIELAB), among others. Other techniques that solve these issues in addition to 

color space transformation are color histogram, color normalization, Color Invariant 

Descriptors, Color Correlogram, and Opponent Color Spaces (Afifi et al., 2021). 

2.3.1 Color Histogram Technique  

Color histograms are statistical depictions of the distribution of colors found in an 

image. They give a quantitative account of how frequently various color values 

appear in an image. The distribution of color values in an image is captured by color 

histograms. Color histograms make it possible to analyze and manipulate images 

based on their color features quickly and effectively since they compactly and 

visually reflect the color distribution (Bhunia et al., 2020). The process of creating a 

color histogram often involves dividing the color space into a predetermined number 

of bins or discrete intervals, counting the number of pixels that fall into each bin, and 

then plotting the results (Bianconi et al., 2020). According to Sethy et al. (2020), the 

color space used can vary, with common choices being the RGB (Red-Green-Blue) 

color space or its variants, such as HSV (Hue-Saturation-Value) or LAB color space. 

Each bin of the histogram represents a range or region of colors, and the value stored 

in each bin corresponds to the frequency or count of pixels that have colors falling 

within that range. The color histogram offers useful details on how colors are 

distributed in an image, including which colors predominate, whether there are color 

variations or gradients, and how the overall color scheme is composed. Color 

histogram is utilized for various purposes such as content-based image retrieval, 

object recognition, image analysis and manipulation, image segmentation, and 

others.  

In content-based image retrieval (CBIR) systems, color histograms, images with 

similar color distributions can be retrieved by comparing the color histograms of 

query images with those in a database, providing effective image searching based on 

color similarity. Color histograms serve as descriptive features for objects in images. 

By comparing the color histograms of an object in a target image with reference 



26 

 

histograms of known objects, it is possible to recognize and classify objects based on 

their color characteristics (Vijayan et al., 2023). 

Color histograms provide insights into the overall color composition of an image. 

They can be used for tasks such as color correction, image enhancement, color-based 

image editing, and artistic image transformations (Gonçalves, 2020). Color 

histograms provide a concise and informative representation of the color distribution 

in an image by capturing the frequency or occurrence of different colors and are 

widely used in various image processing tasks. 

One major challenge of color histograms is the choice of binning method. The choice 

of binning methods, such as equal-width, equal-count, or adaptive binning, for 

creating a color histogram might affect the representation's accuracy and sensitivity 

to changes in color distribution. The discrimination power and perceptual similarity 

represented by the histogram are influenced by the color space used to compute it, 

such as RGB, HSV, or LAB. Different color spaces may be more suitable for specific 

applications or types of images (Sarker & Grift, 2023). Xiang et al. (2024) suggest an 

approach for underwater image improvement that is tailored for histogram 

segmentation and dual-color space color correction to address the issues of poor 

contrast, color distortion, and detail loss. 

Other challenges are sensitive to lighting, and changes in illumination can have an 

impact on how well they operate. These difficulties are reduced using methods like 

histogram normalization and color space transformations. Integrating spatial 

information with color histograms, such as through spatial color histograms or joint 

color-texture histograms, improves the representation's discriminatory power and 

enables more accurate image retrieval, object recognition, and image segmentation 

(Tajjour et al., 2023). 

Moreover, histogram equalization and its variants may not always produce 

satisfactory results when it comes to handling illumination variation. These 

techniques can sometimes lead to over-enhancement of certain regions in an image, 

causing unnatural and unrealistic outcomes. Furthermore, they may not be effective 

in scenarios where the illumination variation is too severe or uneven across the 
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image, making it challenging to achieve a balanced correction (Hu et al., 2020). Luo 

et al. (2023) improved the image with poor light using color histogram. 

Although color histograms are reasonably resilient to variations in lighting and 

insensitive to spatial arrangement, they are not responsive to color order and only 

consider the total distribution of colors, potentially leading to the loss of crucial 

spatial information. Moreover, histogram equalization and its variants may not 

always produce satisfactory results when it comes to handling illumination variation. 

The techniques can sometimes lead to over-enhancement of certain regions in an 

image, causing unnatural and unrealistic outcomes. Furthermore, they may not be 

effective in scenarios where the illumination variation is too severe or uneven across 

the image, making it challenging to achieve a balanced correction (Hu et al., 2020).  

2.3.2 Color Normalization Technique 

Color normalization is a fundamental process in image processing that aims to ensure 

color consistency and remove unwanted variations in images. It plays a crucial role 

in numerous applications, including medical imaging, remote sensing, computer 

vision, and various other fields where accurate and reliable analysis of images is 

required. The following are some of the color normalization techniques. 

Histogram Equalization  

Histogram equalization is a widely used color normalization technique that adjusts 

the intensity distribution of an image, enhancing contrast and distributing pixel 

intensities more evenly. Variants like adaptive histogram equalization can focus on 

local areas, which is helpful in images with varying illumination. This method can be 

particularly beneficial in addressing issues related to illumination variance, as it aims 

to improve the visibility of features in images that may be obscured due to poor 

lighting conditions (Roy et al., 2024). Color Histogram also expands the dynamic 

range of pixel values, which can be particularly useful in medical imaging and other 

applications where detail is crucial. Color Histogram also has drawbacks in that first, 

while histogram equalization works well for grayscale images, its application to 

color images can lead to unnatural color representations (color distortion). This 
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occurs because it does not consider the interdependence of color channels, 

potentially exaggerating certain colors (e.g., blue) and resulting in unrealistic 

appearances. Secondly, traditional histogram equalization applies a global 

transformation across the entire image, which may not be suitable for images with 

varying local illumination (Global adjustment). This can lead to over-enhancement in 

some areas while under-enhancing others and finally, to address these limitations, 

variations such as adaptive histogram equalization (AHE) and contrast-limited 

adaptive histogram equalization (CLAHE) have been developed (Alternative 

techniques). These methods apply histogram equalization locally rather than 

globally, allowing for better preservation of color fidelity and detail in different 

regions of an image (Vijayalakshmi & Nath, 2023). 

Images can be made more aesthetically pleasing by normalizing their colors, and 

subsequently performed analysis activities can be carried out more precisely and 

robustly. Different color spaces are commonly used in color normalization to 

represent and manipulate colors effectively (Swiderska-Chadaj et al., 2020). 

According to Tosta et al. (2023), RGB is the most widely known and used color 

space in digital imaging. It represents colors as combinations of red, green, and blue 

primary colors. Each pixel in an RGB image has three color channels, with values 

ranging from 0 to 255 (8-bit representation) or 0 to 1 (floating-point representation). 

RGB is intuitive and closely aligned with the way colors are displayed on electronic 

devices. However, it is highly sensitive to variations in lighting conditions, making it 

less suitable for color normalization purposes. 

HSV is a color space that separates color information into three components: hue, 

saturation, and value. Hue represents the dominant color information, saturation 

determines the purity or intensity of the color, and value represents the brightness or 

lightness of the color. HSV provides a more intuitive representation of colors, and it 

is commonly used in color normalization tasks to address variations in lighting 

conditions. By manipulating the value component, it is possible to adjust the 

brightness or contrast of an image while preserving the hue and saturation 

information (Ansari & Singh, 2022). 
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The CIELAB color space consists of three components L for lightness, A for green-

red color channel, and B for blue-yellow color channel. It is designed to be 

perceptually uniform, meaning that equal distances in LAB space correspond to 

equal perceptual differences. LAB is often used in color normalization tasks due to 

its ability to separate color information from luminance (brightness) information. By 

normalizing the A and B channels, color variations can be effectively mitigated, 

making it suitable for various applications, including medical imaging and computer 

vision (Phuangsaijai et al., 2021). 

YCbCr is a color space used primarily in digital video and image compression. It 

separates the color information (chrominance) from the luminance (brightness) 

information. The Y component represents the luminance information, while the Cb 

and Cr components represent the blue-difference and red-difference chrominance 

information, respectively. YCbCr is widely used in color normalization techniques, 

particularly in applications involving image and video compression, as it allows for 

efficient compression by allocating more bits to the luminance channel than the 

chrominance channels (Yang et al., 2020).  

Color normalization techniques also face several challenges that impact their 

robustness and effectiveness, especially in the presence of varying lighting 

conditions and complex scenes. Images captured under different lighting conditions 

may exhibit variations in color intensity, brightness, and color temperature. Color 

normalization methods need to be robust to these variations and ensure consistent 

colors across different lighting conditions. Images captured in complex scenes often 

have non-uniform illumination, where different parts of the image are exposed to 

varying lighting intensities. It becomes challenging to normalize colors accurately 

when the illumination across the image is not uniform.  
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2.3.3 Convolutional Neural Networks and Generative Adversarial Networks 

(GANs) 

CNNs have revolutionized the field of computer vision and have been effectively 

employed for color normalization. They learn hierarchical representations of images 

by automatically extracting features at different levels of abstraction. There are 

several techniques to normalize color using CNNs such as transfer learning, and 

supervised learning.  

Generative Adversarial Networks (GANs) consist of a generator and a discriminator 

network that compete against each other. GANs have been utilized for color 

normalization tasks by generating synthetic images with normalized colors. The 

generator network learns to transform images with color variations into color-

normalized images, while the discriminator network tries to distinguish between real 

and generated color-normalized images. GAN-based color normalization methods 

have several advantages in that they can learn complex mappings between color 

variations and normalized colors, capture the underlying statistical properties of the 

color distribution in the training data, and enable the generation of visually appealing 

and realistic color-normalized images (Alqahtani et al., 2021). CNNs and GANs 

require large amounts of labeled training data to learn effective color normalization 

models. However, they have shown remarkable capabilities in capturing complex 

color relationships and generating high-quality color-normalized images. Continued 

research and advancements in deep learning architectures are expected to further 

improve the performance in handling different lighting conditions. 

Color normalization techniques face several challenges that impact their robustness 

and effectiveness, especially in the presence of varying lighting conditions and 

complex scenes. Some of the major challenges are Changes in lighting conditions 

pose a significant challenge for color normalization. Images captured under different 

lighting conditions may exhibit variations in color intensity, brightness, and color 

temperature. Color normalization methods need to be robust to these variations and 

ensure consistent colors across different lighting conditions. Images captured in 

complex scenes often have non-uniform illumination, where different parts of the 
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image are exposed to varying lighting intensities. It becomes challenging to 

normalize colors accurately when the illumination across the image is not uniform. 

Color normalization techniques need to account for local variations in illumination 

and adapt to different regions within an image. Shadows and highlights can cause 

significant color variations in images. Shadows tend to introduce a bluish tint, while 

highlights can appear excessively bright and saturated (Huang et al., 2023).   

2.3.4 Hybrid Approaches Combining Multiple Techniques  

Hybrid approaches that combine multiple techniques can be effective for improving 

the performance of color histogram-based color normalization (Basar et al., 2020). 

By leveraging the strengths of different techniques, these hybrid approaches can 

address limitations and achieve more accurate and robust color normalization.  Some 

examples of hybrid approaches are as follows. 

Histogram Matching followed by Nonlinear Transformation. This hybrid 

approach involves first applying histogram matching to align the color distribution of 

an input image with a reference image or a desired target distribution. According to 

Bottenus et al. (2020) after histogram matching, a nonlinear transformation 

technique, such as gamma correction or histogram equalization, can be applied to 

further enhance the color consistency and contrast.  

Histogram Equalization with Color Space Transformation. In this approach, 

histogram equalization is applied to each color channel individually. According to 

Rao (2020) after equalization, a color space transformation is performed to a color 

space that better separates color information from luminance, such as LAB or HSV. 

The transformed image can then undergo additional normalization steps, such as 

histogram matching or contrast adjustment. Additional hybrid approaches include 

Adaptive Combination and Ensemble of Data-Driven Models. According to Sarker 

(2021), the choice of techniques can be based on predefined rules, statistical analysis, 

or machine learning algorithms that learn the optimal combination for different 

image conditions. 
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A comprehensive survey presents an extensive overview of color normalization 

methods in computational pathology (Liu et al., 2020). It discusses different 

techniques, including histogram matching, stain separation, and deep learning-based 

approaches. The study highlights the significance of color normalization in 

improving the accuracy and reliability of computational pathology analysis. Yang et 

al. (2020) provide a comprehensive review of color normalization techniques for 

histopathological images. The study discusses various methods, including histogram-

based approaches, color constancy, and machine learning-based techniques. The 

study also highlights the challenges of color normalization in histopathology and 

provides insights into the strengths and limitations of different methods. Ghosh and 

Banerjee (2020) provide a comprehensive review of color normalization methods in 

medical imaging. It covers various techniques, such as histogram-based methods, 

statistical approaches, and machine learning-based algorithms. The study discusses 

the challenges and recent advancements in color normalization and emphasizes the 

importance of accurate color representation in medical image analysis. Amiri et al. 

(2020) focus on color normalization techniques for computational pathology image 

analysis. It presents an overview of various methods, including stain normalization, 

color augmentation, and deep learning-based approaches. The study discusses the 

importance of color normalization in improving the performance and reproducibility 

of computational pathology algorithms. A comprehensive survey of color 

normalization techniques specifically for whole slide histopathological images 

(Praveen & Vasu, 2020). The author discusses various methods, including stain 

separation, color transfer, and deep learning-based approaches, and emphasizes the 

need for accurate color normalization in whole slide image analysis to ensure 

consistent and reliable results. 

2.3.5 Color Invariant Descriptors 

Color invariant descriptors are a fundamental component of image processing 

techniques, enabling robust and accurate analysis of images under varying lighting 

conditions and color appearances. According to Lengyel et al. (2021), traditional 

image descriptors, which solely rely on pixel values, are highly sensitive to changes 

in illumination, making them less reliable for tasks such as object recognition, image 
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retrieval, and scene understanding. Color invariant descriptors aim to capture the 

underlying visual information of an image while minimizing the influence of 

illumination and color variations. By extracting features that remain stable across 

different lighting conditions, these descriptors enhance the discriminative power and 

robustness of image analysis algorithms. They provide a more consistent 

representation of objects and scenes, facilitating better matching, retrieval, and 

recognition performance. To extract color properties resistant to changes in light, 

several color-invariant descriptors have been developed (Kayhan & Fekri-Ershad, 

2021).  Two examples are Color SIFT, which extends the SIFT descriptor to encode 

color information, and Color Moment Invariants, which are statistical measurements 

generated from the color distribution. 

2.3.6 Color Correlogram  

The spatial correlation between color values at various distances within an image is 

measured by a color correlogram. Chaki and Dey (2020) color correlograms can 

capture color correlations while being less sensitive to variations in illumination by 

determining the distribution of color co-occurrences. Various approaches can be used 

to increase the robustness of color correlograms to changes in lighting. Shahbaz et al. 

(2021) improved CBIR by converting color space to CIELAB to improve the 

consistency of the representation under different lighting conditions. 

2.3.7 Opponent Color Spaces 

Opponent color spaces divide the color information into perceptually significant 

channels, including the opponent color space and the normalized opponent color 

space. These color spaces can be used to extract illumination-invariant color 

properties since they are made to be more resilient to changes in lighting conditions. 

Marasco and Vurity (2022) enhance lighting situations by combining multiple color 

spaces within CNN. 
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2.3.8 Color Space Transformation 

Color space transformation is a way of reducing the impact of illumination 

fluctuations by converting the color representation from one color space to another. 

The transformation refers to the conversion of an image from one color space to 

another. In image processing, different color spaces are used to represent and 

manipulate color information in images. Each color space has its own set of 

coordinates and characteristics that determine how colors are represented and 

perceived (Burger & Burge, 2022). The purpose of color space transformation is 

multifaceted and depends on the specific requirements of the image processing task. 

RGB Color Space 

RGB color space is a widely used color space for image display. It is composed of 

three color components red, green, and blue. These components are called "additive 

primaries" since a color in RGB space is produced by adding them together. In the 

RGB color space, each color appears as a three-dimensional point in a subspace of 

the standard Cartesian coordinate system (Shamey, 2023). Each axis represents one 

of the three color components (red, green, and blue) from which all colors in the 

system will be represented. These values are often normalized for convenience so 

that all values of red, green, and blue fall within the range [0, 1]. One notable 

drawback of the RGB color space is that it is not perceptually uniform, meaning that 

the calculated distance in RGB space does not truly correspond to the perceptual 

color difference. Figure 2.2 shows the RGB color space representation. 
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Figure 2.2: RGB Color Space Representation  

Among the most frequently employed features in image extraction is color, 

particularly for separating an image from the intricate natural background. This is 

because color provides strong, consistent visual features that are less reliant on the 

image's size. 

CMY and CMYK Color Spaces  

Like the RGB color model, CMY color space is a subspace of standard three-

dimensional Cartesian space, taking the shape of a unit cube. Each axis represents the 

basic secondary colors cyan, magenta, and yellow. According to Shen et al. (2021) 

unlike RGB, CMY is a subtractive color model, meaning that where in RGB the 

origin represents pure black, the origin in CMY represents pure white. In other 

words, increasing values of the CMY coordinates move toward darker colors 

whereas increasing values of the RGB coordinates move towards lighter colors. 

Conversion from RGB to CMY can be done using the simple formula in equation 

(1). 

 

Where it has been assumed that all color values have been normalized to the range 

[0, 1]. This equation reiterates the subtractive nature of the CMY model. Although 

equal parts of cyan, magenta, and yellow should produce black, it has been found 
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that in printing applications this leads to muddy results. Thus, in printing 

applications, a fourth component of true black is added to create the CMYK color 

model. As with the RGB model, point distances in the CMY space do not truly 

correspond to perceptual color differences. 

HSV and HSL Color Spaces  

The HSV (hue, saturation, and value) and HSL (hue, saturation, lightness) color 

spaces are very different from the previously explored RGB and CMY/K color 

models in that both systems separate the overall intensity value of a point from its 

chromaticity (Khalifa et al., 2022). The HSV model, defines a color space in terms of 

three constituent components: Hue, the color type Range from 0 to 360. Saturation, 

the "vibrancy" of the color: Ranges from 0 to 100%, and occasionally is called 

“purity". Value, the brightness of the color: Ranges from 0 to 100%. HSV is 

cylindrical geometries, with hue, their angular dimension, starting at the red primary 

at 0°, passing through the green primary at 120° and the blue primary at 240°, and 

then back to red at 360°. 

The HSV space can be visualized in three dimensions as a downward pointing 

hexacone as illustrated in Figure 2.3 (Chaki & Dey, 2020). The line running down 

the center of the cone’s vertical axis represents the intensity value V. Hue is 

represented as the angle relative to the red axis, which resides on the plane 

perpendicular to the intensity axis. Saturation refers to a point’s perpendicular 

distance from the intensity axis. 
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Figure 2.3: Color Hexacone for HSV Representation 

The HSL color model is very much similar to the HSV system. A double hexacone, 

with two apexes at both pure white and pure black rather than just one at pure black, 

is used to visualize the subspace in three dimensions (Hassan et al., 2023). In HSL, 

the saturation component always goes from a fully saturated color to the 

corresponding gray value; whereas in HSV, with V at its maximum, saturation goes 

from a fully saturated color to white, which may not be considered intuitive to some. 

Additionally, in HSL the intensity component always spans the entire range from 

black through the chosen hue to white. In HSV, the intensity component only goes 

from black to the chosen hue. Because of the separation of chromaticity from 

intensity in both the HSV and HSL color spaces, it is possible to process images 

based on intensity only, leaving the original color information untouched. Because of 

this, HSV and HSL have found widespread use in computer vision research. 

The following formula transforms RGB to HSV (Kamiyama & Taguchi, 2021). 

  

               (2)  
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The R, G, B represent red, green, and blue components respectively with values 

between 0-255. To obtain the value of H from 00 to 3600, the value of S and V from 0 

to 1, we execute the following formula H = (H/255*360) mod 360, V = V/255 and S 

= S/255. 

CIE L*a*b* Color Space  

The CIELAB color space (also known as CIE L*a*b* or sometimes abbreviated as 

simply "Lab" color space) is a color space defined by the International Commission 

on Illumination (CIE) in 1976. Al-Saleem et al. (2020) express color as three values: 

L* for the lightness from black (0) to white (100), a* from green (−) to red (+), and 

b* from blue (−) to yellow (+). CIELAB was designed so that the same amount of 

numerical change in these values corresponds to roughly the same amount of visually 

perceived change. Because three parameters are measured, the space itself is a three-

dimensional real number space, which allows for infinitely many possible colors. In 

practice, the space is usually mapped onto a three-dimensional integer space for 

digital representation, and thus the L*, a*, and b* values are usually absolute, with a 

pre-defined range. The lightness value, L*, represents the darkest black at L* = 0, 

and the brightest white at L* = 100. The color channels, a* and b*, represent true 

neutral gray values at a* = 0 and b* = 0. The* axis represents the green–red 

component, with green in the negative direction and red in the positive direction. The 

b* axis represents the blue–yellow component, with blue in the negative direction 

and yellow in the positive direction.  

The CIE L*a*b* and CIE L*u*v* spaces are device independent and considered to 

be perceptually uniform. They consist of a luminance or lightness component (L) and 

two chromatic components a and b or u and v. CIE L*a*b* is designed to deal with 

subtractive colorant mixtures, while CIE L*u*v* is designed to deal with additive 

colorant mixtures as demonstrated in Figure 2.4 (Sueeprasan, 2023). 

 

https://en.wikipedia.org/wiki/Color_space
https://en.wikipedia.org/wiki/International_Commission_on_Illumination
https://en.wikipedia.org/wiki/International_Commission_on_Illumination
https://en.wikipedia.org/wiki/Real_number
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Figure 2.4: CIE LAB Color Space Model 

Color Space Properties 

The desirable characteristics suitable for color space for image retrieval are the 

following. 

1. Uniformity: The metric proximity between colors indicates the perceived 

similarity of colors. 

2. Completeness: The color space includes all perceptually distinct colors. 

3. Compactness: Each color in the color space is perceptually distinct from the 

other colors. 

4. Naturalness: The color space provides for a natural breakdown of colors into 

the three basic perceptual attributes of color: hue, brightness, and saturation. 

According to Tilley (2020), the most important color space property is its uniformity. 

Uniformity means that two color pairs that are equal in similarity distance in color 

space are perceived as equal by viewers. In other words, the measured proximity 

among the colors must be directly related to the psychological similarity among 

them. 

Several models that use RGB, HSV, HSL, and CIELAB color space have been 

extensively used. CBIR method based on psychophysical and neurobiological 

characteristics to simulate human visual systems was proposed (Anand et al., 2023). 

The author showed that human visual characteristics could be presented effectively 
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and more accurately in the HSV color space than in the L*a*b* color space. The 

results of the experiment indicated the mean average precision as 55.89% and 

56.57% for Lab and HSV respectively. Hassan and Dhimish (2023), on the other 

hand, used a straightforward CNN model comprised of two convolutional layers 

preceded by a max-pooling layer. Then came a dropout layer, two more 

convolutional layers, one more max pooling layer, one more dropout layer, and 

finally a dense layer. The model investigated the significance of color spaces for 

classifying an image. It was evaluated using different databases including CIFAR-10 

and CIFAR-100 and produced different performances. Basak et al. (2022) used RGB, 

HSV, and HSL for sorting strawberries. Nain et al. (2024) used four color spaces, 

i.e., RGB, HSV, HSL and L * a * b *, and support vector machine (SVM) algorithms 

to evaluate the level of ripeness of fruits, and based on the experimental results, it 

was shown that HSV color feature achieved the best accuracy levels in determining 

the ripening stages of fruits. Prabhu and Lakshmi (2021) proposed a Mature Tomato 

Fruit Detection Algorithm based on improved HSV and Watershed Algorithm. 

Improved HSV transform was used to remove background and detect only red 

tomatoes. Tamatjita and Sihite (2022) proposed a mask method by use of HSV color 

space to separate the leaf from the background, where the original image is initially 

passed to the HSV color space. Chang and Mukai (2022) used HSV color space to 

extract ripe banana features. Yee et al. (2023) proposed the use of CIELAB to 

develop an approach to automatically extract dominant colors based on color features 

that are typically considered by human observers when analysing color schemes.  

To reversibly achieve flexible functions that cause hue distortion to the images 

(Sugimoto & Imaizumi, 2023) proposed an image processing technique for color 

images. The suggested method reversibly produces brightness increases or decreases, 

sharpening or smoothing, and contrast enhancement in addition to saturation 

improvement. An extended approach by Liu and Yang (2021) was also developed to 

enhance color brightness performance. Their approach precisely specifies the 

direction to shift the image histogram in each HS sequence to keep the brightness 

mean constant. The technique maintains brightness while avoiding an overly 

pronounced contrast increase. Soni et al. (2024) reported combining the hue 

saturation intensity (HIS) and hue saturation value (HSV) color models ensuring the 
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preservation of the hue component (H) in both and the suggested outcomes 

performed better. Hassan and Saud (2023) in their study reported the effectiveness of 

the HSV color model and logical filter approach in accurately identifying skin pixels 

in images with a precision of 99.14% and an accuracy of 99.59%. Zhao et al. (2023) 

used multi-channel information to correct the image's fluctuating illumination in 

order to get around the issue of illumination changes. To eliminate the intensity 

variation in the image, they employed the Red, Green, and Blue channels of the RGB 

color system and the Intensity channel of the HSI color space. The findings of the 

experiment indicate that the brightness invariant color transformation that has been 

developed can be used successfully in the retrieval task. To get maximum results of 

adequate lighting or bright lighting the converted RGB image into a color space with 

segregated luminance and chromatic components such that the skin color 

identification procedure only has to use chromatic (Jia et al., 2021). 

By transforming the color representation from one color space to another, color space 

transformation is shown to be a useful technique for mitigating the effects of 

variations in illumination. The impacts of illumination variations have been reduced 

using RGB, HSV, and CIELAB color spaces however, the effect of illumination 

invariance is still a challenge that requires to be addressed. 

2.4 Texture Image Extracting Techniques  

The texture of an image can be thought of as the spatial variations in pixel brightness 

intensity in the field of image processing. Some authors proposed to define texture as 

a measure of coarseness, contrast, directionality, line-likeness, regularity, and 

roughness (Tamura et al., 1978). The texture can also be seen as a similarity 

grouping in an image (Kaplan et al., 2020) or as natural scenes containing semi-

repetitive arrangements of pixels (Gautam & Singhai, 2024). There are two different 

types of texture: tactile and optical. We can perceive tactile texture by touching or 

looking at a surface. When we discuss the shape and content of the image, we are 

referring to the optical or visual texture. Images that have a particular pattern of 

texture distribution repeated consecutively throughout them are referred to as textural 

images in image processing (Sato, 2021). Texture feature extraction in image 
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processing refers to the process of identifying and representing patterns and 

structures that characterize the appearance of textures within an image. Texture 

features capture local variations in pixel intensities, such as fine grain, roughness, or 

regular patterns that are present in different regions of an image (Jha et al., 2024). 

The purpose of texture feature extraction is to transform the raw pixel information 

into meaningful and compact representations that can be used for further analysis and 

understanding of images. By extracting texture features, an image can be described 

in a more informative and discriminative manner, allowing algorithms to distinguish 

between different textures and recognize complex patterns. According to Ma et al. 

(2023), the commonly used methods for texture feature description are statistical, 

model-based, and transform-based methods.  

2.4.1 Texture Feature Representation 

Texture feature representation in image classification involves analyzing and 

quantifying the surface patterns or structural variations within an image to 

distinguish between different classes of objects or scenes. 

Classification of Texture Feature Extraction Approaches 

Texture feature extraction is classified into three major functions namely statistical, 

model, and filter-based approach. Figure 2.5 shows three major classes of texture 

feature extraction.  
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Figure 2.5: Classification of Texture Feature Extraction 

2.4.2 Statistical Approach 

A statistical approach to texture feature representation in image processing involves 

analyzing and quantifying the statistical properties of texture patterns within an 

image or a local region. Instead of directly using raw pixel intensities, statistical 

texture features provide a more compact and informative representation of textures, 

capturing characteristics such as homogeneity, contrast, and texture direction 

(Ramola et al., 2020). Statistics like mean, variance, co-occurrence matrices, or 

texture energy metrics like entropy are examples of these measurements. These 

features enable the quantification and separation of textures by capturing the 

statistical distribution of pixel intensities or texture patterns. These features are 

widely used in various image analysis tasks, including texture classification, 

segmentation, and object recognition. The statistical methods can be classified into 

first order (one pixel), second-order (pair of pixels), and higher-order (three or more 

pixels) statistics. The first-order statistics estimate properties (e.g., average and 

variance) of individual pixel values by waiving the spatial interaction between image 

pixels. The second order and higher-order statistics estimate properties of two or 

more pixel values occurring at specific locations relative to each other. The most 

popular second order statistical features for texture analysis are derived from the co-

occurrence matrix. 

Spatial 

Frequency 

domain  

 

Texture Feature Extraction 

Classification 

Statistical 
Based 

Model 

Based 

Filter 

Based 

First 

order  

Second 

order  

Higher 

order  
Fractal 

model 

Autoregressive 

model 

Spatial 

domain 

Frequency 

domain 

Random 

model 



44 

 

2.4.3 A Model-Based Approach 

A model-based approach to texture feature representation in image processing 

involves using mathematical or statistical models to characterize the underlying 

structure and statistical properties of textures in an image. According to Shariaty et 

al. (2022) instead of directly computing local pixel-based features, the methods seek 

to describe textures using a set of parameters that represent the texture's 

characteristics and properties. These parameters can then be used to represent and 

classify textures compactly and efficiently. Model-based approaches are particularly 

useful when dealing with complex and homogeneous textures that are difficult to 

capture with simple pixel-based methods.  

2.4.4 Transform-Based Approach 

A transform-based approach to texture feature representation in image processing 

involves transforming the pixel intensity values of an image into a different domain 

to extract meaningful texture features. These transforms can be applied to localized 

regions or the entire image to analyze the frequency, orientation, or other 

characteristics of textures. Transform-based methods offer powerful tools for 

capturing texture patterns at different scales and orientations, allowing for a 

comprehensive representation of textures. This approach includes three domain 

techniques namely spatial, frequency, and spatial-frequency domain techniques (Wu 

et al., 2023). 

Spatial domain: The spatial domain has a direct impact on image processing 

applications. Images are presented as human eyes realize them in this application 

(Klaib et al., 2021). Spatial domain filters can be classified as the Statistical approach 

due to a similar grouping in Operation-based methods. Texture features are derived 

from filtered texture images, including edge frequency, randomness, directivity, 

linearity, coarseness, and size (Tang et al., 2023).  

Frequency domain: The frequency domain is used due to these two reasons, Kernels 

in the spatial domain are not straightforward, and re-transformation occurs by 
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multiplying images with the filter into the spatial domain. One of the popular 

frequency domain methods is Fourier Transforms. 

Spatial-frequency domain: There are some disadvantages of Fourier analysis for non-

stationary, aperiodic signals (Varanis et al., 2021). Spatial-frequency domain 

techniques localize image texture simultaneously in spatial and frequency domains. 

There are spatial-frequency domain techniques for texture feature extraction in image 

registration such as Wavelet Transforms and Gabor Filters (Keyvanpour et al., 2021). 

2.4.5 Structural Approach 

Structural texture analysis techniques describe a texture as the composition of well-

defined texture elements such as regularly spaced parallel lines. Structural methods 

define the structural features of an object or image (Chaki & Dey, 2020). Structural 

features based on topological and geometric properties. Unlike color or texture 

features, which capture surface details and variations, structural features focus on the 

shape, layout, and connectivity of elements within an image or between objects. The 

advantage of the structural method-based feature extraction is that it provides a good 

symbolic description of the image; however, this feature is more useful for image 

synthesis than analysis tasks. This method is not appropriate for natural textures 

because of the variability of micro-texture and macro-texture. 

2.4.6 Characteristics of Texture Features 

According to Tamura et al. (1978), the author characterized texture features into six 

features of texture (coarseness, contrast, directionality, line-likeness, regularity, and 

roughness). Because Tamura texture attributes were developed through research into 

the spatial and frequency components of textures, they offer a more precise and 

discriminating representation of textures. Tamura features capture significant visual 

qualities that are crucial for comprehending and interpreting texture. Tamura features 

texture approaches by designing texture features that fit the human visual 

perception. Characteristics of texture features according to Tamura is shown in 

Figure 2.6 (Tamura et al., 1978). 
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Figure 2.6: Characteristics of Texture Features 

Coarseness: The term "coarseness" in image processing describes the estimated or 

perceived granularity or roughness of a texture in an image. It describes how major 

features are arranged and sized within the texture. 

   (3) 

Contrast: In image processing, contrast of texture refers to the variation in intensity 

between various areas or features within a texture. It describes how clear or well-

defined the texture's patterns are, usually by comparing changes in pixel intensity. 

     (4) 

Directionality: In image processing, the term "directionality of texture" describes 

how components within a texture are oriented or aligned in a preferred way. It 

describes the prevailing direction of alignment of structures or patterns. 

 (5) 

Line-likeness: The degree to which the texture patterns in an image resemble lines or 

linear structures is referred to as the texture's line-likeness. It is a property that 
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characterizes the direction and existence of linear units in a texture in texture 

analysis. 

  (6) 

Regularity: The degree of consistency, predictability, or periodicity of texture 

patterns within an image is referred to as regularity of texture in image processing. It 

describes the texture elements' appearance of orderliness or repetition, which is 

significant for a variety of image analysis tasks. 

   (7) 

Roughness: In image processing, the term "roughness of texture" describes how 

uneven, grainy, or irregular the texture patterns seem in a picture. It explains the 

texture's degree of richness, diversity, and detail. 

     (8) 

2.4.7 Texture Feature Extraction Techniques 

Texture feature extraction techniques involve analyzing and quantifying the surface 

patterns, spatial arrangements, and frequency characteristics of textures within an 

image. Texture features capture essential information about the appearance of 

objects, which helps distinguish them based on their physical surface qualities, like 

smoothness, roughness, regularity, or randomness. It is widely assumed that a good 

feature extractor must retain discriminant image components while decreasing 

intraclass variability (Anand et al., 2023). 

GLCM: Gray Level Co-occurrence Matrix  

A popular statistical technique for representing texture features is called GLCM. It 

captures the frequency of certain pixel intensity combinations occurring at specific 

spatial relationships within an image. These texture features can be relatively robust 

to rotations, as they describe the general spatial patterns rather than exact pixel 
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alignments. By nature, GLCM is directionally sensitive to pixel pair comparisons. 

This indicates that various GLCM values for the same texture pattern result from 

changing the spatial relationships between pixel pairs when the image is rotated. The 

generated characteristics may vary significantly as a result of this sensitivity, which 

could compromise consistency over different rotations (Iqbal et al., 2021). 

It calculates the frequency of pixel pairings inside an image or a local area occurring 

at a given distance and direction with a particular intensity value (Aggarwal, 2022). 

Many texture properties, including contrast, homogeneity, energy, and correlation, 

can be obtained from the GLCM. 

To calculate the GLCM, the image is first divided into small non-overlapping regions 

(or pixels) called the reference pixels. Then, the frequency of occurrence of pairs of 

pixel intensities with specific displacements and orientations is computed within 

each region (Yang et al., 2023). The result is a symmetric matrix representing the co-

occurrence probabilities between pairs of gray levels as demonstrated in pseudo code 

1. 

Pseudo code 1: 

The mathematical formula to compute the GLCM for a given image I with N gray 

levels (0 to N-1) for a specific displacement vector (dx, dy) is as follows: 

1. Initialize an N x N matrix GLCM, where GLCM(i, j) represents the number of 

times gray level i co-occurs with gray level j within the specified 

displacement vector (dx, dy). 

2. For each pixel in the image (x, y), compute the gray level values I(x, y) and 

I(x + dx, y + dy) of the pixel and its neighbor displaced by (dx, dy). 

3. Increment the corresponding GLCM entry: GLCM(I(x, y), I(x + dx, y + dy)) 

= GLCM(I(x, y), I(x + dx, y + dy)) + 1. 

4. Repeat steps 2-3 for all pixels in the image. 

5. Optionally, the GLCM can be normalized to obtain the probability of co-

occurrence for each gray-level pair. Divide each entry in the GLCM by the 

total number of pixel pairs used to construct it. 
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After calculating the GLCM, several texture features can be derived from it, such as 

contrast, energy, homogeneity, correlation, and entropy, among others. These 

features capture different aspects of texture information and are computed using 

various mathematical formulas based on the elements of the GLCM. 

For example, to compute the contrast feature, the following formula can be used: 

Contrast =     (9) 

Similarly, the energy also known as uniformity or angular second moment is 

calculated as  

Energy =      (10) 

This directional sensitivity, increases computational cost for multi-directional 

analysis, limited rotational invariance, and variability in texture features 

(Barburiceanu et al., 2021). 

Histogram of Intensity Values 

A simple statistical approach involves computing a histogram of pixel intensities 

within a local region or the entire image. According to Najjar et al. (2022) histogram 

provides information about the distribution of pixel intensities, which can be useful 

in capturing texture characteristics, such as the frequency of occurrence of different 

intensity levels. Intensity histograms completely disregard spatial information. This 

means that any spatial patterns or structures in the image are not captured. As a 

result, two very different images can have identical histograms if their pixel intensity 

distributions are similar, which limits the histogram's discriminative power for tasks 

that require spatial context. Combining histograms with other features or using 

advanced methods helps mitigate these drawbacks as described in pseudo code 2. 
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Pseudo code 2: 

The mathematical formula for calculating the Histogram of Intensity Values for a 

given image I is as follows: 

1. Define the number of bins B for the histogram. Each bin will correspond to a 

range of intensity values. For grayscale images, the number of bins is 

typically set to the number of unique gray levels (0 to N-1), where N is the 

maximum intensity value in the image.  

2. Initialize an array or vector H of length B to store the histogram values.  

3. For each pixel in the image (x, y), compute the intensity value I(x, y).  

4. Calculate the corresponding bin index b for the intensity value I(x, y) using 

the following formula: 

 

The floor (.) function rounds the value down to the nearest integer. 

5. Increment the count in the histogram bin corresponding to the index b: 

 

6. Repeat steps 3-5 for all pixels in the image. 

After calculating the Histogram of Intensity Values, various texture features can be 

derived from it. Some common texture features include mean, variance, skewness, 

kurtosis, and higher-order statistical moments. These features provide information 

about the distribution and statistical properties of pixel intensities within the region 

of interest, which can be used to characterize the texture. For example, to compute 

the mean texture feature the following formula is used (Zhang et al., 2021). 

    (11) 
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Where N is the total number of pixels within the region of interest, and H[i] is the 

count in the i-th bin of the Histogram of Intensity Values. The implementation of the 

combined pseudo code is quite a challenge. 

Local Binary Patterns (LBP) 

 LBP is a texture descriptor that encodes the relationship between the central pixel 

and its neighboring pixels by comparing their intensity values. The histogram of LBP 

patterns within a local region is used as the texture feature representation, providing 

information about the texture patterns' spatial distribution. Mustaqim et al. (2022) 

compare the effect of various wavelet transform methods and local binary pattern 

(LBP) on facial recognition as additional data on the CNN architecture and the pre-

trained VGG16 model on the Yale-B facial recognition dataset to extract texture 

features. The binary pattern is computed using a defined neighborhood (such as 3x3 

pixels) in standard LBP. The relationship between the center pixel and its neighbors 

varies when the image or texture pattern rotates, leading to different LBP codes for 

the same texture. Rotation invariance is lost in this fixed structure because it fails to 

take rotations into account (Asma & Brahim, 2022). According to Rasool and Kaur 

(2021) the binary patterns generated by LBP are highly sensitive to the arrangement 

of pixels. Even small rotations can significantly alter the LBP code. For instance, a 

45-degree rotation can result in a completely different binary pattern, making it 

difficult to recognize the same texture under different orientations. 

Kaur (2023) employs the Rotation-Invariant LBP (RI-LBP) technique, which entails 

rotating the binary pattern circularly to reach a minimum value. The LBP descriptor 

becomes rotation-invariant by selecting the shortest binary value after taking into 

account all possible pattern rotations. It leads to more computing complexity even 

though it works well. 

Fourier Transform (FT) 

The Fourier Transform is a widely used transform that converts an image from the 

spatial domain to the frequency domain. By analyzing the amplitudes and phases of 

the frequency components, texture features related to periodic structures and 
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variations can be extracted (Fan et al., 2024). The Fourier Transform is an important 

image-processing tool that is used to decompose an image into its sine and cosine 

components. The output of the transformation represents the image in the Fourier or 

frequency domain, while the input image is the spatial domain equivalent. In the 

Fourier domain image, each point represents a particular frequency contained in the 

spatial domain image.  

When an image is rotated, its Fourier transform also rotates. This means the complex 

coefficients of the Fourier transform change, making direct comparisons between the 

original and rotated images difficult (Hao et al., 2020). According to Jemal et al. 

(2024) to achieve rotation invariance, the Fourier-Mellin transform combines the 

Fourier and Mellin transforms. This method helps to separate the effects of rotation 

by converting the image into log-polar coordinates and then using the Fourier 

transform. This improves the comparison of rotated images as illustrated in pseudo 

code 3.  

Pseudo code 3: 

The mathematical formula for extracting texture features using the Fourier 

Transform can be summarized as follows 

1. Image Preprocessing: Convert the input image I(x, y) from the spatial 

domain to the frequency domain using the 2D Fourier Transform: 

 

Here, F(u, v) represents the complex-valued Fourier Transform of the image, 

and (u, v) are the spatial frequency coordinates in the frequency domain. 

2. Compute the Power Spectrum: The power spectrum P(u, v) represents the 

energy distribution of the image in the frequency domain and is obtained by 

calculating the squared magnitude of the Fourier Transform: 

3.  
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Here, Re(F(u, v)) and Im(F(u, v)) are the real and imaginary components of 

the Fourier Transform at frequency (u, v). 

4. Extract Texture Features: Texture features can be extracted from the power 

spectrum using various methods, such as statistical analysis or other 

frequency-related measurements. Some commonly used features include 

mean, variance, energy, entropy, and the dominant frequency. 

Since the pseudo-code does not specify the locations of these frequencies in the 

image, it becomes difficult to comprehend the directional information from the 

frequency domain and find related images (Veerasingam et al., 2021). 

Wavelet Transform (WT) 

Wavelet Transform is a multi-resolution transform that decomposes an image into 

different frequency bands and orientations. This allows for the analysis of textures at 

various scales, making it useful for capturing both fine and coarse texture details. 

Arfaoui et al. (2021) a wavelet is a mathematical function used to divide a given 

function or continuous-time signal into different scale components. Usually, one can 

assign a frequency range to each scale component. Each scale component can then be 

studied with a resolution that matches its scale. 

The main objective of wavelet transform is to define the powerful wavelet basis 

functions and find efficient methods for their computation. Fourier methods are not 

always good tools to recapture the signal or image, particularly if it is highly non-

smooth. The wavelet transform is done similarly to Short Term Fourier Transform 

(STFT) analysis. The signal to be analysed is multiplied with a wavelet function just 

as it is multiplied with a window function in STFT, and then the transform is 

computed for each segment generated. Wavelet transforms have advantages over 

traditional Fourier methods in analyzing physical situations where the signal contains 

discontinuities and sharp spikes and for accurately deconstructing and reconstructing 

finite, non-periodic, and/or non-stationary signals (Akujuobi, 2022). 
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A wavelet transform is the representation of a function by wavelets. The wavelets are 

scaled and translated copies (known as "daughter wavelets") of a finite-length or fast-

decaying oscillating waveform (known as the "mother wavelet") (Ahmed et al., 

2023). 

   (12) 

Where  is a wavelet function, a, is a scaling parameter that measures the degree of 

compression or scale, and b, is a translation parameter that determines the time 

location of the wavelet. 

There have been several texture classifications using transform domain features in 

the past, such as discrete Fourier transforms, discrete wavelet transforms, and Gabor 

wavelets. Transform methods analyze the frequency content of the image to 

determine texture features. Fourier analysis consists of breaking up a signal into sine 

waves of various frequencies. On the other hand, wavelet analysis breaks up a signal 

into shifted and scaled versions of the original wavelet (mother wavelet), which 

refers to the decomposition of a signal into a family of basic functions obtained 

through the translation and dilation of a special function. The wavelet-based 

methods, e.g., standard wavelet and Gabor wavelet are the most commonly used 

techniques to extract the texture vectors as they provide better spatial information 

(Zitouni et al., 2021). Tabassum et al. (2021) used the Discrete Wavelet Transform 

(DWT) to obtain the (HH) frequency sub band and then applied the Gabor filter bank 

at different scales and orientations. Entropy and uniformity were then calculated and 

stored; this method gives better and more accurate classification results than using 

any of the DWT or the Gabor filter alone for extracting the features. The Wavelet 

Transform can be computed using pseudo code 4. 
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Pseudo code 4: 

The general outline of how to extract texture features using the Wavelet Transform is 

as follows. 

1. Convert the input image I(x, y) from the spatial domain to the wavelet domain 

using the 2D Wavelet Transform: 

 

Where  is the wavelet coefficient at scale  and position , and  is 

the complex conjugate of the wavelet function  at scale  and 

position . The Wavelet Transform produces a set of coefficients at different 

scales and positions. 

2. Analyze the wavelet coefficients to extract texture features where several 

methods can be used such as Wavelet Coefficient Histograms, Energy 

Distribution, Wavelet Coefficient Statistics. 

3. Combine the extracted features from different subbands or scales to create a 

comprehensive texture feature representation. 

The particular texture analysis task at hand as well as the desired balance between 

fine and coarse texture details will determine the wavelet function to use as well as 

the decomposition level (number of scales). According to Guo et al. (2022), wavelet 

filters are designed to capture features in specific directions. Therefore, when an 

image is rotated, these directional features might not align with the predefined 

orientations of the wavelet filters, leading to inconsistent feature extraction. 

Gabor Transform 

The Gabor transform is a mathematical operation that uses Gabor filters to analyze 

the spatial frequency content of an image. It is a representation of an image in the 

frequency domain, where the local frequencies and orientations are captured using a 

set of Gabor filters. The Gabor Transform combines the properties of both the 
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Fourier Transform and the Gaussian function (Yang et al., 2020).  It is particularly 

effective in analyzing textures with varying frequencies and orientations, as it adapts 

to different scales and directions. 

A Gabor filter is a linear filter that can be defined as a harmonic/sinusoidal function 

multiplied by a Gaussian function (Dakshayani et al., 2022). These filters can be 

considered edge, line, and shape detectors. An important characteristic of Gabor 

filters is that they can be tuned with different frequencies and orientations. The 

seminal work on Gabor's elementary functions was conducted in 1946 by Dennis 

Gabor. Gabor based his work on the mechanical wave theory and Heisenberg’s 

uncertainty principle. He proposed the representation of signals as a combination of 

these elementary functions. Subsequent work has analyzed the specific features 

obtained using Gabor filters, global Gabor features, and fundamental frequency 

Gabor features (Zhao et al., 2021). 

One of the main advantages of 2-D Gabor filters is their association with a particular 

location in space. Daugman (2023) has shown that Gabor feature space 

representation minimizes the joint 2-D uncertainty principle in space and frequency. 

Moreover, evidence has been presented that the 2D receptive-field profiles of simple 

cells in the mammalian visual cortex are well described by members of the Gabor 2-

D filter family. The advantage of using Gabor filters appears to stand in the ability of 

such filters to provide some degree of invariance to intensity, translation, and 

orientation. For these reasons, Gabor filters are finding increasing usage in many 

applications, such as image enhancement, texture classification and segmentation, 

image recognition, and motion tracking. Pseudo code 5 illustrates the methods for 

processing the output produced after convolving the Gabor filters with the input 

image in order to extract texture features using the Gabor transform (Danlami et al., 

2020). 
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Pseudo code 5: 

The following are step-by-step process: 

1. Create a bank of Gabor filters with different frequencies and orientations 

. 

2. Convolve the input grayscale image with each Gabor filter 

to obtain the response image  for each combination 

of frequency and orientation. 

 

Where represents the convolution operation, and  the magnitude of the 

complex result. 

Compute statistical measures on the filter responses in local neighborhoods. 

Commonly used statistical features of Mean, Variance, Energy, Entropy, 

standard deviation, Skewness, Kurtosis 

3. Collect the computed statistical features for all combinations of frequency 

and orientation to form a feature vector that represents the texture 

characteristics of the image. 

Transform methods, such as Fourier, Gabor, and wavelet transforms represent an 

image in space whose coordinate system has an interpretation that is closely related 

to the characteristics of a texture. Methods based on Fourier transforms have a 

weakness in spatial localization, so these do not perform well. Gabor filters provide 

means for better spatial localization, but their usefulness is limited in practice 

because there is usually no single filter resolution where one can localize a spatial 

structure in natural textures. These methods involve transforming original images by 

using filters and calculating the energy of the transformed images. These are based 

on the process of the whole image which is not good for some applications which are 

based on one part of the input image. 
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Muzaffar et al. (2023) use texture information for browsing and retrieval of large 

image data by use of Gabor wavelet features for texture analysis and provide a 

comprehensive experimental evaluation. Comparisons with other multiresolution 

texture features using the Brodatz texture database indicate that the Gabor features 

provide the best pattern retrieval accuracy. 

Bhargava et al. (2020) suggest designing a Gabor filter bank with filter selection 

incorporated, which results in a smaller filter bank, less computing complexity, and 

better texture classification performance. The results demonstrated improved 

performance in texture classification through experiment results on benchmark 

datasets and a real application. Wang (2023) presents a technique that combines 

Gabor filter responses with feature extraction techniques to improve texture 

classification accuracy under different lighting conditions. Lei et al. (2022) propose 

an illumination-robust texture classification method that utilizes Gabor features along 

with Gaussian Mixture Models (GMM) to handle variations in lighting conditions. 

Xue et al. (2020) explore different feature transformations based on Gabor filters to 

achieve illumination invariance for texture classification tasks. Huang et al. (2023) 

suggested using quaternion Gabor to extract color texture information while 

successfully preserving directionality, contrast, and coarseness. Experimental results 

demonstrate the superiority of the quaternion Gabor method in retaining Tamura 

texture features compared to traditional Gabor and LBP methods. 

2.5 Similarity Matching in CBIR 

Image retrieval in image processing refers to the process of searching and retrieving 

images from a database based on their visual content rather than relying on textual 

metadata or tags (Tekli, 2022). The main goal of image retrieval is to find images 

that are visually similar or semantically related to a given query image. This 

technology allows users to search for images using other images as queries, making 

it particularly useful for tasks like content-based image search, reverse image search, 

and image recommendation systems. Users can find images that are comparable to a 

query image by using image retrieval. When a user has an image but no descriptive 

tags or keywords, they can utilize this to find images that are comparable to their 



59 

 

own. The system analyzes the visual features of the query image and retrieves 

images with similar content from the database. Figure 2.7 demonstrates how an 

image is retrieved from a database. 

 

 

 

 

 

 

 

Figure 2.7: Image Retrieval System 

One can utilize distance approaches or machine learning techniques to measure 

similarity to get the correct image following the query.  

2.6 Rotational Invariance Techniques 

The invariant (I), in image processing, is a characteristic of the image (in this case, a 

function) that does not change or only slightly changes if the image is transformed 

(e.g., rotated, scaled, blurred, etc.). Mathematically, a function is said to have 

rotational invariance (I) if its value does not change when arbitrary rotations are 

applied to its argument (Ding et al., 2020). 

 Invariant (I) can be expressed as follows. 

    (13) 

Where f(x,y) is the original image (where x and y is a pixel coordinate of the image 

and the output of f is the intensity of pixel) and D is the transformer function of the 
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image (degradation operator). Invariants appear in a variety of forms, and each one 

has a unique set of transformer functions. We all are familiar with the most 

fundamental image transformations, such as rotation, scaling, and translation. 

In image processing, rotational invariance refers to a feature or property of an image 

processing technique that maintains its original form or consistency despite rotations 

of the input image. In other words, a rotationally invariant algorithm or feature will 

yield the same outcome regardless of the orientation of the image if the image is 

rotated. In other words, if an image is rotated by a certain angle, a rotationally 

invariant algorithm would produce the same output as it would for the original image 

(Zheng et al., 2022). Rotational invariance is desirable in many image processing 

applications because objects or patterns in images can appear in several orientations, 

such as object recognition, image classification, or feature extraction. A rotation 

angle, a rotation point, and an image are the inputs of an image rotation routine. The 

goal is to achieve the result shown in Figure 2.8 when the image is rotated at any 

angle. 

 

 

 

 

 

Figure 2.8: Rotation of Cat Image at 450 Angle 

An image rotation model refers to a computational technique used to rotate images 

by certain angles, typically in computer vision or image processing tasks. Although 

this model can be applied in a variety of ways and with different methods, the main 

goal is to change an image's pixels to make it appear to be rotated by a given angle. 

Figure 2.9 is a Network visualization structure of a rotated image (Dhillon & Verma 

2020). 
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Figure 2.9: Network Visualization Structural of Rotated Image 

2.6.1 Techniques for Rotational Invariance in Image Processing 

In image processing, achieving rotational invariance means designing techniques that 

allow a system to recognize objects or patterns regardless of their orientation. 

Feature-Based Methods 

Extraction of rotationally invariant features from the image is a typical strategy. 

These features are made to be rotation-independent. According to, Gupta et al. 

(2021) in object identification tasks, two examples are Scale-Invariant Feature 

Transform (SIFT) and Speeded-Up Robust Features (SURF). Scale-Invariant Feature 

Transform (SIFT) is an approach for local feature detection and description in 

computer vision while Speeded-Up Robust Features (SURF) is a patented local 

feature detector and descriptor. 

Scale-Invariant Feature Transform (SIFT) 

SIFT has high stability for angle transformation, affine transformation, and noise. 

SIFT functions in theory like a multi-scale corner detector, with sub-pixel 
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positioning accuracy and a rotation-invariant feature description affixed to each 

candidate point as illustrated in pseudo code 6 (Burger & Burge, 2022). 

Pseudo code 6:  

The following are the primary steps in the calculation of SIFT features: 

1. Extrema detection in a Laplacian-of-Gaussian (LoG) scale space to locate 

potential interest points. 

2. Key point refinement by fitting a continuous model to determine precise 

location and scale. 

3. Orientation assignment by the dominant orientation of the feature point from 

the directions of the surrounding image gradients. 

4. Formation of the feature descriptor by normalizing the local gradient 

histogram. 

SIFT was used to delete the low contrast extreme value that was used to indicate the 

image's orientation in the area of the key point, the orientation is canceled and the 

object is made rotation-invariant. Localization of the input image, namely the size 

and direction of nearby pixels, is crucial (Selvi & Thilagamani, 2023).  

By noting the primary direction of each feature point to ensure rotation invariance, 

the SIFT operator can handle the rotated images. Utilizing the distance and direction 

relationship between the feature points and the pixel points in its neighboring range, 

the direction of the feature points is established to calculate the gradient information. 

The following formula can be used to get the gradient value of a pixel point (x, y) (Li 

et al., 2022). 

     (14) 

Where L represents the spatial scale value  
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The formula for the calculation of the gradient direction is as follows: 

     (15) 

It is necessary to simplify the expression of feature points in the direction after 

computing the gradient values of numerous pixel points close to the feature point. 

The major direction of the feature points was defined by the interval value of the 

biggest statistical value, which was calculated for a total of 36 intervals using 100 as 

the interval. Figure 2.10 shows the main direction-determining process (the figure 

contains only eight directions for simplification). 

 

Figure 2.10: Determining the Main Direction 

After expressing the direction next is to generate a feature descriptor. The coordinate 

axis is rotated to maintain the direction of the x-axis while maintaining the rotation 

invariance of the feature points. 16 small sections, each measuring 4*4, are chosen as 

the 16*16 sampling area in the feature point neighborhood. The feature points for 

each pixel in the small region are then described with the feature points' gradient 

value and direction. Due to an abundance of direction information, the statistics 45° 

intervals are separated, and each tiny region's histogram distribution is then obtained 

in eight directions, creating 16 small regions. As an illustration, consider the 8*8 

neighborhood, where the production of the feature descriptor is depicted in Figure 

2.11. 
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Figure 2.11: The Generation Process of the Feature Descriptor 

As the figure shows, the center of the left figure is the feature point. A pixel point is 

represented by each tiny square, and the direction of the arrow indicates the 

orientation of the pixel to the feature point. The gradient value is represented by the 

length of the arrow. The circle's area is a range with a Gaussian weight. The small 

square on the right shows the eight directions in which statistics are oriented. As a 

result, the SIFT descriptor is a 128-dimension vector with a total size of 16 * 8 and, 

after being normalized, can adapt to lighting effects. SIFT, on the other hand, has 

poor non-rigid transformation stability, high calculation costs, and no capacity to 

adjust to illumination variance (Hossein-Nejad & Nasri, 2024).  

Speeded-Up Robust Features (SURF) 

For local, similarity invariant representation and comparison of pictures, the SURF 

method (Speeded Up Robust Features) is a quick and reliable algorithm. The primary 

benefit of the SURF technique is the quick computation of operators using box 

filters, allowing for real-time applications like tracking and object recognition. SURF 

is known for high calculated speed and high lighting variation adaptability although 

weak in stability for non-rigid transformations and adaptability to changes in noise 

and grayscale. SURF is comprised of a feature detector based on a Gaussian second 

derivative mask, and a feature descriptor that relies on local Haar wavelet responses 

(Wang et al., 2023). This framework shares many conceptual similarities with the 

most widely used feature detector in the computer vision community, called the 

Scale‐Invariant Feature Transform (SIFT) (Chen et al., 2021).  
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Fourier-Based Methods 

Utilizing the Fourier Transform to examine the frequency content of an image is an 

alternative method. Rotational invariance can be attained by studying the frequency 

components of an image's Fourier Transform, which is rotation-invariant. An 

illustration of a Fourier-based technique for rotation-invariant shape recognition is 

the circular harmonic transform (CHT). 

Circular Harmonic Transform (CHT) 

The Circular Harmonic Transform (CHT) is a mathematical technique used in image 

processing to analyze and represent rotationally invariant features (Mei et al., 2023). 

It is a form of complex transform that decomposes an image into a series of 

components based on its angular or circular characteristics. CHT is particularly 

useful in applications where rotational invariance is crucial, such as object 

recognition, texture analysis, and feature extraction in content-based image retrieval 

(CBIR) systems. One of the primary benefits of CHT is that it naturally provides 

rotational invariance. This means that the features extracted by CHT remain 

consistent even if the object or pattern in the image is rotated. This is essential for 

tasks where the orientation of objects varies, as it allows the system to identify 

objects independently of their rotation (Andrearczyk et al., 2020). Paoletti et al. 

(2020) proposed the use of Circular Harmonic Features for rotation-invariant texture 

classification. The authors extracted circular harmonic coefficients to represent 

texture patterns, achieving robustness to rotation and scale variations. Almakady et 

al. (2020) developed circular harmonic filters to efficiently analyze color textures, 

demonstrating the suitability of CHT for rotation-invariant texture analysis. Anne et 

al. (2024) incorporated the CHT within the framework of sparse representation for 

recognizing faces under different illumination and pose conditions. 

CHFs are inherently rotation-invariant, and compact representations in the frequency 

domain, making them suitable for certain texture classification tasks. However, they 

also come with complexities in parameter tuning, potential loss of spatial 

information, and variability in performance across different datasets and texture 

types. 
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Template Matching 

In the process of "template matching," various elements of an image are compared to 

a reference pattern or template to identify instances of the pattern. The template 

matching technique can be applied in several orientations to provide rotational 

invariance, or the template can be represented by rotationally invariant descriptors. 

Xu et al. (2021) for processing images, template matching is frequently employed. 

Some of its widely used applications include object positioning, image edge 

detection, route planning for mobile robots, and image registration methods. 

Template or area-based approaches and feature-based approaches are the two broad 

categories for template or image-matching approaches. Feature-based approach 

extracts key features from the template and the image and then uses methods such as 

Scale-Invariant Feature Transform (SIFT) or Oriented FAST and Rotated BRIEF 

(ORB) for matching. These feature-based methods are inherently robust to rotation. 

Oriented FAST and Rotated BRIEF (ORB) combine the FAST corner detector with 

the BRIEF descriptor and introduce modifications to achieve rotation invariance. 

ORB is known for its computational efficiency and good performance in feature-

matching tasks (Xie et al., 2022). 

Other techniques used by template matching to solve the challenges of rotation 

invariance are multiple Orientations where multiple templates with different 

orientations of the object of interest are created. By applying template matching with 

all the templates, you can find the best match across different orientations. This 

method works well if the range of possible rotations is limited. Circular Correlation 

involves circularly shifting the template and the region of interest before performing 

cross-correlation. This ensures that the correlation operation considers all possible 

rotations of the template Affine Transformations and others (Wang et al., 2021). 

Wu (2023) proposes a multi-template matching approach to handle different 

orientations of objects in SAR images, improving recognition accuracy. To address 

deformable object recognition with multiple orientations using hierarchical template 

matching. Steinmann et al. (2023) propose a cascaded matching strategy to handle 

different orientations and non-rigid deformations in the target objects. Liu and Yang 
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(2023) propose a method to generate multiple rotated templates and then perform 

matching using Contour SIFT features to achieve rotation invariance. Fan et al. 

(2024) employ a steerable pyramid to generate multiple orientation responses and use 

them to perform rotation-invariant template matching for texture detection. Yang et 

al. (2023) divided the templates into multiple circle sectors and performed matching 

using these sectors to handle various orientations. 

Template matching has limitations, including increased computational complexity, 

sensitivity to template quality, and limited robustness in handling scale and complex 

object structures. Despite its ability to simplify object detection regardless of 

orientation, it may not be appropriate for all image-processing tasks. Even though 

SPP can increase rotational invariance, it can still be difficult to achieve full 

rotational invariance in complex situations. 

Spatial Pyramid Pooling (SPP) 

Spatial pyramid pooling is a technique used in computer vision that allows fixed-size 

feature representations while processing variable-sized input images (Quan et al., 

2023). With this method, the image is divided into various scales or areas, and 

features are computed independently for each scale or region. Rotational invariance 

can be obtained by mixing features from several scales because they each collect 

information at a different level of detail. Distinct orientations of an image may have 

distinct spatial arrangements of information, which makes it challenging for 

conventional convolutional neural networks (CNNs) to recognize them in multiple 

orientations when dealing with rotational invariance. SPP can solve this problem, 

making the model more resistant to object rotations by capturing multi-scale and 

multi-level spatial information. CNNs can be used with photos of various resolutions 

because Tan et al. (2021) demonstrated that SPP can handle variable-sized inputs and 

produce fixed-size feature representations. 

Dewi et al. (2023) used SPP to recognize scenes and introduced Deep Spatial 

Pyramid, which combines SPP with a deep convolutional neural network to gather 

multi-scale data for scene comprehension. The authors showed how well SPP 

handled complicated scenarios with various scales and architecture. As a 
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generalization of SPP, Quach et al. (2024) proposed the idea of Multi-Scale 

Orderless Pooling (MOP). To improve its ability to handle a wide range of input 

scales, MOP includes SPP with additional capabilities. The authors showed that by 

offering higher spatial invariance, MOP can enhance the performance of object 

detection tasks. Even though SPP can increase rotational invariance, it can still be 

difficult to achieve full rotational invariance in complex situations. More advanced 

solutions, such as data augmentation with 3D transformations, employing specialized 

architecture like capsule networks, or explicitly including other types of rotational 

equivariance in the network design, may be necessary for extreme rotations or 

viewpoint shifts. 

Convolutional Neural Networks (CNNs) 

CNNs can be created to be invariant to specific transformations, including rotation, 

and have demonstrated considerable effectiveness in image-processing tasks. One 

common approach is to use pooling layers, such as max pooling, which aggregate 

information from local regions and are insensitive to small translations and rotations 

(Kayhan & Gemert, 2020). 

In typical CNNs, several modules of convolution and max-pooling layers are stacked 

on top of each other (Weng & Zhu 2021). They first extract low, then mid, and 

finally, high-level features of the image before these are fed into a classifier that 

usually consists of one or several fully connected layers followed by a softmax. 

Convolutions with small filter size and stride (compared to the input feature maps) 

followed by max-pooling subsequently reduce the feature dimension. At the same 

time, these feature extraction modules introduce invariance to translations of the 

objects inside the input image and invariance to smaller distortions and scale 

changes. Nevertheless, if the object is rotated by medium or large angles, the 

activations of the filters change in most cases.  

CNNs can also learn rotation-invariant features by using methods like data 

augmentation, which incorporate random rotations during training. According to 

Achouri and Martin (2021), it is difficult to achieve perfect rotational invariance in 

all circumstances, and the strategy adopted varies on the particular task and 
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requirements. Some approaches might increase computational complexity while 

others might trade off some accuracy. Therefore, the trade-offs and limitations of the 

application determine the technique to use. 

Convolutional neural networks (CNN), have been successfully employed in various 

computer vision tasks since 2012 and dramatically exceed the majority of manually 

created image characteristics. Traditional CNN models, on the other hand, are not 

rotation-invariant, and even slight rotations of an input image can significantly harm 

their performance. Prior research has demonstrated that the only invariance to image 

translation that the standard convolutional operation offers is due to local 

connectivity and spatial parameter sharing (Mumuni & Mumuni, 2021). Utilizing 

data augmentation to train CNNs is an easy technique to deal with image rotation. 

Unfortunately, this method wastes computation to learn numerous redundant 

weights, which not only raises the cost of training time (Li et al., 2021). Many of the 

first-layer weights can be seen as rotated copies of one another when they are seen in 

a CNN.  Furthermore, figuring out how many rotation versions should be produced 

for each training image is difficult. Xu et al. (2022) proposed a spatial pyramid 

pooling network model that generates a fixed-length representation regardless of 

image size/scale. The model was considered to be one of the team's top models. The 

choice of structure, however, could either overlook crucial information, resulting in 

loss of discriminative ability, or capture too much data, producing high-dimensional 

feature vectors. Paoletti et al. (2020) provide a rotation-equivariant CNN2D model 

for HSI analysis, with circular harmonic filters (CHFs) in place of conventional 

convolution kernels.  However, the model might not function well on images with 

intricate or irregular rotational patterns. Performance may suffer if the network's 

chosen rotational symmetries do not match the rotational transformations in the data 

well. As a result, the assumptions made on the rotational characteristics of the data 

have a significant impact on the network's performance.  

Currently, the majority of models such as Rotation Invariant Convolutional Neural 

Network Based on Orientation Pooling and Covariance Pooling (Yao et al., 2022), 

Gradient-Aligned convolution neural networks (Hao et al., 2022), Rotation invariant 

Gabor convolutional neural networks for image classification are rotation invariant 
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since most research has concentrated on rotational changes. However, these models 

are still having difficulties with shifting lighting conditions (Yao & Song, 2022). The 

focus of current research has shifted to developing new network architectures to 

incorporate rotation invariance into conventional CNNs, and several modified 

models have been designed. 

2.6.2 Rotational Invariance Algorithms Incorporated into Conventional CNN 

Incorporating rotational invariance algorithms into conventional Convolutional 

Neural Networks (CNNs) enhances the model's ability to recognize patterns 

regardless of their orientation. The following are some approaches. 

Spatial Transformer Networks (STN)  

Spatial Transformer is a new learnable module, which explicitly allows the spatial 

manipulation of data within the network (Yu et al., 2023). The differentiable module 

can be added to current convolutional architectures, enabling neural networks to 

actively modify feature maps' spatial relationships based on the feature map itself 

without changing the optimization procedure or adding additional training 

supervision. According to the findings, the model has acquired general warping 

invariance to translation, scale, and rotation. Figure 2.12 demonstrates how the 

spatial transformer module works (Xu et al., 2020). 
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Figure 2.12: The Architecture of a Spatial Transformer Module 

A localization network receives the input feature map U and regresses the 

transformation parameters.  The sample grid T(G) is applied to U transforming the 

normal spatial grid G over V into the warped output feature map V.  A spatial 

transformer is defined by the localization network and sampling mechanism 

combined. However, the model struggles to capture more complex spatial changes 

found in some tasks or datasets because it lacks End-to-End Training, which makes 

the training process more difficult. 

Transformation-Invariant Pooling (TI-Pooling) 

The model creates transformation-invariant features for convolutional neural 

networks (Quiroga et al., 2020). For the examined transformation set, parallel 

siamese architectures are used, and their outputs are subjected to the TI-POOLING 

operator before the fully connected layers. This architecture limits the duplication in 

learned features by internally locating the most ideal "canonical" instance of the 

input image for training. Convolutional neural network features are created using a 

method influenced by the max pooling operator Gholamalinezhad and Khosravi 

(2020), and multiple instance learning to be transformation-invariant (Zafar et al., 

2022). The original image and its altered counterparts (input instances) are fed into 

the network along the path of neuron activations, much like augmentation. However, 

we pool all of the responses and take the maximum number of them rather than 

considering each occurrence as an independent sample (TI-POOLING operation). 
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Because of the maximum, the response is unaffected by changes and generates 

characteristics that are transformation-invariant, which are then spread across the 

network. Additionally, since it only learns from one instance and that instance 

already provides the maximum response, this enables more effective data usage. 

Parallel layers of a Siamese Chicco (2021) network with shared weights and inputs 

that correspond to various transformations are how this architecture is implemented 

as described in Figure 2.13. 

 

Figure 2.13: Network Topology and Pipeline Description 

First, input image x (a) is transformed according to the considered set of 

transformations Φ to obtain a set of new image instances φ (x), φ ∈ Φ (b). For every 

transformed image, a parallel instance of a partial Siamese network is initialized, 

consisting only of convolutional and subsampling layers (two copies are shown at the 

top and the bottom of the figure). Every instance is then passed through a sequence 

of convolutional (c, e) and subsampling layers (d), until the vector of scalars is not 

achieved (e). This vector of scalars is composed of image features f k (φ (x)) learned 

by the network. Then TI-POOLING (element-wise maximum) (g) is applied to the 

feature vectors to obtain a vector of transformation-invariant features g k (x) (h). 

This vector then serves as an input to a fully connected layer (i), possibly with 

dropout, and further propagates to the network output (j). Because of the weight 

sharing between parallel Siamese layers, the actual model requires the same amount 

of memory as just on convolutional neural network. TI-POOLING ensures that the 

actual training of each feature parameter is performed on the most representative 

instance φ (x). 
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The result of the model shows that incorporating the TI-POOLING operator 

increases the performance over the baselines with a similar number of parameters, 

and also demonstrates the property of TI-POOLING to find canonical 

transformations of the input for more efficient data usage. On the other hand, the 

model usually concentrates on a narrow range of geometric transformations and 

strongly relies on the presumption that the incoming data mostly shows the required 

transformations within the designated range (Nirthika et al., 2022). 

Group Equivariant Convolutional Networks (G-CNN)  

It is a natural generalization of convolutional neural networks that reduces sample 

complexity by exploiting symmetries (Cohen, 2021). It also employs G-

convolutions, a brand-new layer type that offers far more weight sharing than 

conventional convolution layers. G-convolutions allow the network to express itself 

more fully without adding more parameters. For discrete groups produced by 

translations, reflections, and rotations, group convolution layers are simple to create 

and have little computing overhead. As a result, each vector in the representation 

space has a pose that may be altered by the components of a certain group of 

transformations, called G. This extra structure makes it possible for us to model data 

more effectively (Kawano et al., 2021). Through an operation known as G-

convolution, a filter in a G-CNN can match such a feature constellation in every 

global posture by detecting co-occurrences of features that have the desirable relative 

position.  

A representation space that is related to other representation spaces can get its 

structure from them. The network or layer Φ that maps one representation to another 

must be structure-preserving for this to operate (Smets et al., 2023). 

     (16) 

In other words, the same outcome should be obtained by first mapping an input  

through and then changing the representation as opposed to first transforming an 

input  by a transformation  (forming ) and then passing it through the learned 
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map. Equivariance to symmetry transformations constrains the network in a way that 

can help generalization, as well as enhance statistical effectiveness and aid 

geometrical reasoning. According to Mo and Zhao (2024), the outcome demonstrates 

that switching from planar to G-convolutions reliably improves outcomes without 

further adjustment. However, since these three models solely act on data 

representations, these approaches have the advantage of taking advantage of 

traditional CNN implementations. However, they have significant drawbacks in that 

they can only take into account the input images' global transformations. Another 

drawback is as opposed to random image rotations, the majority of them are simply 

invariant to specific rotation angles. Additionally, some techniques need additional 

trainable parameters to accommodate image rotation. In addition, a number of 

procedures lack intuitiveness since they rely on complicated mathematical theories 

and notions. Finally, the majority of researchers continue to train their rotation-

invariant CNN models using image data augmentation. Unfortunately, the group 

representations that are selected for use in the convolutions have a significant impact 

on how well G-CNNs work (Tegin & Duman, 2023). Additionally, determining the 

best group representations that effectively enable equivariance and capture the key 

characteristics of the data can be challenging and may need for specialized 

knowledge or testing. 

Mo and Zhao (2022) created Rotation-Invariant Coordinate Convolution (RIC-C) 

that focuses on convolutional layers with strong rotation invariance using a 

straightforward rotation-invariant coordinate system. A RIC-CNN model was created 

by swapping out every normal convolutional layer in a CNN for its matching RIC-C. 

RIC-C is inherently invariant to arbitrary rotations about the input center without the 

addition of extra trainable parameters and data augmentation. Additionally, the 

rotation invariance of the RIC-CNN is achieved without the inclusion of any 

additional learnable parameters, so it has the same amount of parameters as the 

original CNN. The experimental findings demonstrate that RIC-C is a simple drop-in 

substitute for conventional convolutions and significantly improves the rotation 

invariance of CNN models created for various applications. 
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According to Gao et al. (2022), the Rotation Equivariant Vector Field Networks 

(RotEqNet) used several rotation instances that is, rotations that occur at various 

intervals of a uniform standard filter to accomplish convolution. Even though the 

RotEqNet model is tiny, adding more convolution kernels results in increased 

memory usage and longer computation times. Visualization of how images were 

rotated is illustrated in Figure 2.14. 

 

Figure 2.14: An Illustration of RotEqNet's First Two Levels 

Each layer replicates the same three canonical filters (shown by red squares) over six 

orientations. Three vector field maps are produced as the first block's output, and the 

second block's vector field filters further convolve them. (OP: orientation pooling; 

SP: spatial pooling). According to Zhung et al. (2022) exploiting cyclic symmetry in 

convolutional neural networks used parameter sharing to achieve rotation equivariant 

cyclic symmetry coding in CNNs. Four new operations are introduced: slice, pool, 

stack, and roll. The procedures construct networks that are equivalent to cyclic 

rotations and share parameters across various orientations. They can be viewed as 

layers in a neural network as shown in Figures 2.15 and 2.16. However, the actions 

(slicing, pooling), amount of feature maps (rolling), or both (stacking) alter the size 

of the minibatch. 
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Figure 2.15: The Four Operations that Constitute Framework for Building 

Rotation Equivariant Neural Networks 

 

Figure 2.16: Schematic Representation of the Effect of the Cyclic Slice, Roll and 

Pool Operations on the Feature Maps in a CNN 

Arrows represent network layers. Each square represents a minibatch of feature 

maps. The letter ‘R’ is used to clearly distinguish orientations. Different colors are 

used to indicate that feature maps are qualitatively different, i.e., they are not 

rotations of each other. Feature maps in a column are stacked along the batch 

dimension in practice; feature maps in a row are stacked along the feature dimension. 

While some rotations might be easy to handle, achieving robustness to arbitrary 

rotations (including non-integer degrees) can be difficult and may require extensive 

tuning and validation. Additionally, designing models that are inherently rotation-

invariant is complex and often requires sophisticated mathematical techniques or 

specialized architectures which involve increased computational costs (Graham et al., 

2020). Therefore, current research has shifted to developing new network 

architectures to incorporate Gabor filters into conventional CNNs to overcome the 

challenges of rotation variance, and several modified models have been designed. 
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Recently, Gabor convolutional neural networks have gained popularity due to their 

potent ability to orient images.   

Gabor Convolutional Networks (GCNN)  

Other research has demonstrated that Gabor filter features can enhance and 

complement CNNs (Dhakshayani & Surendiran, 2023). Additionally, to increase 

accuracy and speed up convergence, researchers modified the architecture by 

initializing the first layer of CNNs with Gabor filters (Abdullah et al., 2022).  

To further employ a small number of convolution kernels with extra prior orientation 

and scale information for feature extraction, Gabor filters were introduced to modify 

the grouped separable convolution (GSC) kernels (Zhao et al., 2023). Mehta et al. 

(2023) suggest using the Gabor representation as an input to an ensemble of deep 

neural networks that have already undergone training to address the issues of 

illumination changes, and rotation invariance (which are typically brought on by an 

unconstrained environment). The availability of several robust and discriminating 

characteristics created by Gabor filters allows the models to be trained effectively 

when these Gabor features are used as an input to multiple pre-trained deep neural 

networks.  

Yao and Song (2022) presented a model to learn Gabor-guided deep convolutional 

features by first twist each input image to create several rotating image features, 

which are then fed into a weight-sharing Siamese network structure. Then, in order to 

create a representation of an image that is rotation invariant, computation of the 

maximum and average feature responses from each instance of the same input image 

that has been rotated was done. The result demonstrates the efficiency of RIGCN for 

rotation invariant image classification. By substituting GCLs for traditional 

convolutional layers, Zhuang et al. (2022) presented transformation-invariant Gabor 

convolutional networks (TI-GCNs). The recovered Gabor features are fed into a 

weight-sharing convolution module in their chosen GCL. It is followed by a 

transformation pooling module to provide some invariance (i.e., taking element-wise 

maximum). Although it can result in the loss of some discriminative image 

information and a decrease in the final classification performance, transformation 
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pooling is frequently used in continuous GCLs. The models listed above primarily 

emphasize rotational invariance. The study identifies the necessity to address the 

issue of lighting changes. The response to impulses is defined using a Gaussian 

function with a sinusoidal wave (Liang et al., 2023). 

Complex form of Component   

Real   

                    (18) 

Imaginary  

                     (19) 

Where  

 

 

Here,  

 (Lambda) = wavelength of the sinusoidal factor, 

 (Theta)= orientation of the normal to the parallel stripes of a Gabor 

function, 

 = phase offset, 

 = Sigma/ standard deviation of the Gaussian envelope, 

 (Gamma) = spatial aspect ratio 
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GCNN is a deep convolutionary neural network that uses Gabor-orientation filters 

(GoFs). A GoF is a manageable filter created using Gabor filter banks to manipulate 

the learned filters and then generate the improved functionality maps. GCNNs 

involve fewer learning filters with GoFs thus making them simple to train as well as 

improving the deep models. Qi et al. (2022) demonstrate how Gabor-orientation 

filters were generated according to Figure 2.17. 

 

Figure 2.17: Modulation Process of GoFs (left) and GCN Convolution with Four 

Channels (Right) 

GCN convolution 

In the Gabor Convolution Network, GoF was used in the production of feature maps 

that explicitly improved the orientation in deep features as demonstrated in Figure 

2.18. 
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Figure 2.18: Forward Convolution Procedures of Gabor Convolutional 

Networks with Numerous Feature Maps 

Input and output are divided into 10 and 20 function maps. The filters are split into 

20 groups and 10 re-constructed filters are contained in each group 

In summary, the sub-filter gradient in Gabor Orientation Filters to the respective 

learned filters is as follows (Uyar et al., 2022). 

 

Where  represents the loss function. As indicated in the above equation, the 

Backpropagation process is easily deployed from Gabor kernels. The GCNN's model 

is only compact and efficient by updating the learned , filters and is also more 

robust changes in the scale and direction. 

Convolutional Gabor Orientation Filters (GoFs) 

Gabor filters are of  directions and  scales. To incorporate the steerable properties 

into the GCNs, the orientation information is encoded in the learned filters, and at the 
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same time the scale information is embedded into different layers. Due to the 

orientation and scale information captured by Gabor filters in GoFs, the 

corresponding convolution features are enhanced. 

Before being modulated by Gabor filters, the convolution filters in standard CNNs 

are learned by the backpropagation (BP) algorithm, which is denoted as learned 

filters. Let a learned filter be with size , where  is the size of a 

2D filter and  refers to a channel. 

If the dimensions of the weight per layer in traditional CNNs are expressed as 

, GCNs will represent it as ,  and 

 represent the channel of output and input feature map respectively.  

Where input feature is now integrated Gabor response for each pixel in the modified 

HSV color space  = . 

To keep the channel quantity of the feature map consistent during the forward 

convolution process,  is chosen to be , which is the number of orientations of the 

Gabor filters will be used to modulate this learned filter. A GoF is obtained based on 

a modulated process using  Gabor filters on the learned filters for a given scale . 

The details concerning the filter modulation are illustrated in Figure 2.19. 

 

Figure 2.19: Modulation Process of GoFs 

Left shows modulation process of GoFs. Right illustrates an example of GCN 

convolution with 4 channels. In a GoF, the number of channels is set to be the 

number of Gabor orientations  for implementation convenience. 
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For the  scale, we define: 

 

Where is a learned filter, and  is an element-by-element product operation 

between  and each 2D filter of   ,  is the modulated filter of  by the 

 - scale Gabor filter .   

Gabor Orientation Filter is defined as: 

 

Thus, the  GoF is actually a 3D filter (see Fig. 2, here  = 4). In GoFs, the 

value increases with increasing layers, which means that the scales of Gabor filters in 

GoFs are changed based on layers. At each scale, the size of a GoF is 

. But we only save  sized learned filters, because Gabor 

filters are given. To simplify the description of the learning process,  is omitted. 

GCN convolution 

In GCNs, GoFs are used to produce feature maps, which explicitly enhance the scale 

and orientation information in deep features. An output feature map ( ) in 

GCNs is denoted as follows. 

 

 

Where  is the   GoF and is the input feature map. The channels is 

obtained by the following convolution: 
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Where  refers to the  channel of  and , and  is the  

orientation response of . Let the size of the input feature map 

be . If there are 10 GoFs with 4 Gabor orientations, the size of the 

output feature map is . 

Figure 3 shows the forward convolution process of GCNs when the input feature 

map is extended to multiple channels ( ).  

The majority of research has focused on Gabor CNN in the first and last layer of 

standard CNN to address the issue of rotation invariance. The models were resilient 

to rotations, particularly in the early and last layers where it is important to capture 

fundamental orientation information. However, it has not been able to address 

rotation invariance across all layers of standard CNN and the associated challenges, 

including shifting occlusion, fluctuating illumination conditions, and being 

insensitive to noise. 

2.7 Illumination Invariance 

Illumination invariance in the field of image processing is the ability of an image 

processing algorithm or model to accurately analyze or recognize images despite 

variations in lighting conditions. According to Ren et al. (2022), an illumination 

invariant is a function μ of images that is constant on images of an object taken under 

different illumination conditions. That is, if ,  are two images of an object taken 

under the same viewpoint but different illumination conditions, then . 

Illumination variations can occur due to changes in factors such as the position and 

intensity of light sources, shadows, and reflections, which can significantly impact 

the appearance of an image. 

Illumination invariance is essential because lighting conditions can vary widely in 

real-world scenarios, and images captured under different lighting conditions may 

exhibit significant differences in pixel intensities and contrast (Hu et al., 2024). 

These variations can pose challenges to various image processing tasks, such as 

image recognition. 
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2.7.1 Approaches for Illumination Invariance 

Illumination invariance in image processing refers to techniques and approaches 

designed to make an image analysis system robust to changes in lighting conditions. 

Pre-processing 

Applying pre-processing techniques to normalize or compensate for illumination 

variations. This may involve histogram equalization, contrast enhancement, or 

specific methods designed for illumination normalization. 

Image Normalization  

Image normalization is a pre-processing method used in image processing to modify 

an image's brightness and contrast so that it is more suited for subsequent analysis or 

display. Image normalization aims to improve the visual appeal of the image and 

make information extraction easier. When we normalise we get two benefits with 

normalization. First, if data is not normalized, features with larger numerical values 

dominate features with smaller numerical values and consequently, we will not get 

contributions from features with smaller values. Second, many learning algorithms 

behave well with normalized data. This manifests in higher test accuracy for 

normalized data than with non-normalized data. The purpose of normalization is to 

bring the image, or other types of signal, into a range that is more familiar or normal 

to the senses (Badar et al., 2020).  

Color Space Transformation 

Color space transformation is one of the most widely used methods to achieve 

illumination invariance. Research shows that color spaces like HSV, LAB, and 

YCbCr can effectively separate intensity (brightness) from color, thus minimizing 

the effect of lighting changes on feature extraction. For instance, Marques et al. 

(2022) demonstrated how certain color spaces could be leveraged to separate 

illumination and reflectance, allowing object recognition systems to focus on 

intrinsic colors unaffected by lighting variations. Recent studies have confirmed the 

effectiveness of the HSV color space for CBIR and facial recognition under variable 
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lighting conditions, as it enables models to focus on hue and saturation while 

disregarding changes in brightness Gradient-Based Techniques. 

Gradient-Based Techniques 

Gradient-based methods have been explored extensively due to their relative 

robustness to changes in illumination (Wang et al., 2022). Techniques like edge 

detection and the Histogram of Oriented Gradients (HOG) rely on image gradients, 

which capture local differences in intensity rather than absolute brightness values. 

Bhattarai et al. (2023) suggest popularized HOG for object detection, showing it to 

be effective under diverse lighting because it captures structural and shape-based 

features instead of relying on color or brightness. Other studies have applied 

gradient-based methods in face recognition and object detection, highlighting their 

resilience to illumination changes by focusing on texture and edge features. 

Gabor and Directional Filters 

Research also demonstrates the use of Gabor filters for illumination invariance, 

primarily in texture-based feature extraction. Gabor filters, which capture frequency 

and directional information, are known to be less sensitive to absolute intensity 

variations and are effective for capturing textured patterns even under fluctuating 

lighting. Poloni et al. (2021) applied Gabor filters in face recognition to reduce 

lighting sensitivity, showing that such filters enhance model robustness to shadowing 

and brightness changes. Studies continue to explore Gabor and similar directional 

filters as part of hybrid methods, often combining them with other invariance 

techniques to achieve higher accuracy in CBIR and facial recognition. 

Deep Learning Illumination Invariance 

Deep learning has revolutionized the field by enabling systems to learn illumination-

invariant features directly from data. Convolutional Neural Networks (CNNs) and 

Generative Adversarial Networks (GANs) have been widely studied for their ability 

to simulate or account for lighting variations (Hu et al., 2021). Wang et al. (2022) 

demonstrated how data augmentation and synthetic lighting conditions could train 
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CNNs for robust object detection under various lighting environments. GANs have 

been used to generate normalized images under uniform illumination, enhancing the 

illumination robustness of recognition systems. More recent advances include self-

attention mechanisms and normalization layers designed to reduce sensitivity to 

lighting changes, yielding substantial improvements in object detection and retrieval 

tasks. 

Karanwal and Diwakar (2022) proposed the dynamic morphology quotient image 

(DMQI) pre-processing algorithm based on complex illumination conditions.  

Lu et al. (2023) developed a cross-scale and illumination-invariant detection model 

(CSIM) based on the You Only Look Once (YOLO) architecture to increase the 

tolerance of large-scale deformations and light changes in outdoor situations. An 

adaptive cross-scale feature fusion approach to resolve this problem and guarantee 

the consistency of the built-in feature pyramid was used. Also, the construction of an 

illumination-invariant chromaticity space on the CSIM model, independent of the 

corresponding color temperature, to counteract the effects of uneven lighting was 

used, the model failed to retain the color consistency in the entire image as the image 

convolved in the architecture. Marlow et al. (2022) created a logarithm of a set of 

chromaticity coordinates to create an illumination invariant. The algorithm results in 

an image that is roughly independent of the illuminant at every pixel. Berthier et al., 

(2021) advanced the model by calibrating the camera to determine the optimal 2D 

direction to define illumination changes. Barbero-Álvarez et al. (2023) use 

standardized sRGB color space and sharpening that space, to discover the invariant 

image with enough accuracy. Rodriguez et al. (2020), suggest that input images may 

first be considered to be in nonlinear sRGB color space, then linearized to linear-

sRGB, and then translated to XYZ. The XYZ curves themselves might then be 

sharpened in XYZ. Indeed, the model improved the invariant direction. The findings 

demonstrate that this straightforward approach yields workable results when applied 

to the elimination of shadows and performs better when establishing an illumination 

invariant. The method outlined here is advantageously used in place of a more 

exacting, camera- and image-dependent method for illumination invariant extraction. 

Koscevic et al. (2020) suggested illumination estimation based on the classification 
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of light source to make the distribution of image scenes and illuminations less 

diverse, the input image is classified into images taken in indoor scenes under 

artificial illumination. Soni et al. (2024) introduce an innovative approach to improve 

the color quality of underwater images by employing a swift algorithm and a hue-

preserving-based mechanism. 

The method combines the hue saturation intensity (HIS) and hue saturation value 

(HSV) color models and applies a noncomplex logarithmic function as a 

preprocessing stage to remove immoderate pixel values. The technique applies 

wavelet domain filtering (WDF) and constrained histogram stretching (CHS) 

methods on HIS and HSV color models, respectively, ensuring the preservation of 

the hue component (H) in both processes. The suggested approach yields superior 

outcomes compared to widely recognize underwater enhancement algorithms, as 

evidenced by both visual and quantitative analyses. The novel method effectively 

tackles the issues of color variations and low perceptibility in underwater images, 

leading to successful and dependable image enhancement. 

2.8 Thesis Gap 

After reviewing all the literature we can say that the color feature is an essential 

component for image retrieval. For huge image databases, image retrieval using the 

color feature is very successful and effective. Although the color feature is not a 

persistent parameter, because it is subjected to many non-surface characteristics such 

as illumination and, characteristics of the device (Zhou et al., 2021). Color extraction 

is susceptible to issues like variable lighting conditions and occlusions, therefore it 

might not be the most reliable technique. To solve these issues, in addition to the 

traditional RGB (Red, Green, Blue), alternative color spaces are employed to extract 

color information from the image to be recognized, including HSV (Hue, Saturation, 

Value), HIS (Hue, Intensity, Saturation), and L*a*b (CIELAB), among others.  

By transforming the color representation from one color space to another, color space 

transformation is shown to be a useful technique for mitigating the effects of 

variations in illumination. Burambekova and Shamoi (2024) noted the impacts of 

illumination variations have been reduced using RGB, HSV, and CIELAB color 
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spaces, however, the effects of illumination invariance are still a challenge that 

require to be addressed. 

The HSV color space is commonly applied in CBIR models to separate brightness 

(value) from hue and saturation, helping maintain color consistency under fluctuating 

illumination conditions. Studies by Alrahhal and Supreethi (2024) and Ruby et al. 

(2022) apply HSV transformations within early layers of CNNs, noting 

improvements in color consistency. However, these studies do not explore how 

integrating HSV color across multiple layers either early, middle, or late might 

improve retrieval performance or reduce computational load for more complex 

datasets. Thus, a gap remains in understanding whether HSV transformations benefit 

from selective, layer-specific applications within the CNN hierarchy, especially 

when combined with texture and Gabor filters. 

Secondly, texture feature extraction was reviewed. The texture of an image can be 

thought of as the spatial variations in pixel brightness intensity in the field of image 

processing. Some authors proposed to define texture as a measure of coarseness, 

contrast, directionality, line-likeness, regularity, and roughness (Tamura et al., 1978). 

Directional texture filters are crucial for texture differentiation, capturing patterns 

and orientations that define an image's surface details. Research by Zhuang et al. 

(2022) and Kociołek et al. (2022) highlights that applying directional texture filters 

in CNNs enhances texture-based retrieval. However, these studies often apply these 

filters in a single layer, typically the middle or late layers, assuming that texture 

patterns will automatically propagate to other layers. This approach does not 

examine the layer-by-layer impact of texture filter integration. A selective layer 

approach may allow for more nuanced texture extraction and improve robustness 

across varying textures, filling a significant gap in current methodologies. 

Gabor filters have demonstrated high efficacy in achieving rotation invariance due to 

their orientation sensitivity. Srivastava et al. (2022) and Hadid et al. (2023) discuss 

how Gabor filters enhance CBIR performance by detecting edges and textures that 

remain consistent under rotational transformations. Most research, however, applies 

Gabor filters either in a single layer or uniformly across multiple layers, lacking a 
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systematic analysis of how each layer might contribute differently to rotation 

invariance. By implementing Gabor filters layer-by-layer in this study, it is possible 

to assess how each layer's Gabor integration impacts both rotational resilience and 

computational efficiency, addressing an unexplored dimension in Gabor-based 

CBIR. 

Few studies analyze combined layer configurations, instead often focusing on either 

early, middle, or late applications of HSV, texture, or Gabor filters. Liu & Yang 

(2023) noted that applying texture and rotation filters in later layers benefits complex 

datasets, but they did not examine the potential for combining different 

configurations (e.g., early-middle or middle-late layers) to balance performance and 

resource use across different data complexities. Additionally, no existing study has 

addressed how combining HSV color, texture, and Gabor filters layer-by-layer might 

yield optimal results, potentially allowing for selective layer engagement based on 

dataset characteristics (e.g., simpler vs. complex datasets). Thus, a gap remains in 

understanding the effects of extended GCNN on CBIR performance, particularly to 

different feature complexities. 

The research has proposed to bridge the gap using a layer-by-layer approach in 

integrating HSV color, directional texture, and Gabor filters offering a new pathway 

for optimizing CBIR performance. By addressing the unique role of each CNN layer 

in extracting color, texture, and rotation features, this study fills a gap in existing 

methodologies, which primarily apply these filters in isolated or uniform layers. 

Layer-by-layer integration also enables performance benchmarking at each stage, 

providing a finer understanding of how each feature type contributes to CBIR 

outcomes and how computational resources are allocated across layers. 



90 

 

CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter describes the system’s conceptual design followed by developing the 

new novel extended GCNN model. The extended GCNN model was developed by 

integrating HSV color, directional texture, and Gabor filters to offer a new pathway 

for optimizing CBIR performance.  

The extended GCNN model is the preferred model due to the following reasons. 

Gabor filters are optimized for extracting spatial-frequency features, making them 

ideal for texture and color-based retrieval systems compared to VGG and ResNet 

models that are not inherently optimized for color and texture (Wang et al., 2021). 

Secondly, Gabor filters are designed to capture fine-grained texture and edge 

information more efficiently than traditional CNN that rely on learned filters 

(Muzaffar et al., 2023). 

Figure 3.1 is the general overview of the conceptual framework that illustrates how 

images were extracted and retrieved. First images were acquired from CIFAR-10 and 

ImageNet dataset repository followed by color and texture feature extraction. 

Secondly, the data set is divided into trained and test data sets. Finally, Gabor CNN's 

layer-by-layer approach was used to retrieve the images. 
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Figure 3.1: Conceptual Framework of CBIR 

During the literature review the study reveals color transformation to be a useful 

technique for mitigating the effects of variations in illumination. Secondly, Texture 

features capture local variations in pixel intensities, such as fine grain, roughness, or 

regular patterns that are present in different regions of an image. Thirdly, Gabor 

CNN has been utilized to handle rotation invariance.  

Image Feature Extraction 

First, image features were extracted using three different color spaces namely RGB, 

HSV, and LAB color space. The images were transformed to different color space by 

converting RGB color space which is the default color of the image to HSV color 

space using equation (2) and LAB color space. Secondly, the image features were 

extracted using texture and directional texture filter features using equation (5) 

through the Gabor filter. The model was measured by accuracy and recall rate metric 

through conventional convolutional neural network and Gabor convolutional neural 

network. Thirdly, a layer-by-layer approach was evaluated where Early, Middle, 

Late, and Combined Layers were evaluated. Figure 3.2 presents a detailed workflow 

diagram that describe how the layer-by-layer approach in integrating HSV color, 

Image 

Collection 

 Feature Extraction – Color 

space & Texture  

 

Image classification –

(GCNN ) 

Retrieved 

Images  

Feature Database 

(Test) 

  

Query Image 

Features (Trained) 

  



92 

 

directional texture, and Gabor filters offers a new pathway for optimizing CBIR 

performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Workflow Diagram of Proposed Model 

Output: Retrieved Images 

START INPUT (CIFAR-10 & ImageNet) 

 

HSV Color Transformation (Layer 1) 

Early Layers (1-3) 

Apply Directional Texture Filter & Gabor Filter (Rotation Invariance) 

 
Middle Layers (3-6) 

Apply HSV & Texture Refinement, Gabor Filter (Intermediate Rotation Invariance) 

 

Late Layers (6+) 

Complex Texture & Final Gabor Application (High-Level Rotation Invariance) 

Feature Aggregation 

CBIR Performance Evaluation 
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Extended Gabor Convolution Neural Network 

1. Start – Input Image 

2. The input image is pre-processed (Image resize) and fed into the model 

pipeline. 

3. HSV color Transformation (Early Layer) 

The HSV color space transformation is applied in the first layer. This 

transformation helps separate hue, saturation, and value for improved 

illumination invariance. 

4. Layer 1-3: Early Layers Processing 

Directional Texture Filter Application to capture basic texture 

patterns. Apply Gabor filters to capture initial rotation-invariant 

features. 

Initial color and texture features with enhanced rotation and 

illumination invariance were achieved. 

5. Layer 3-6: Middle Layers Processing 

HSV and Directional Texture Refinement to enhance color and 

texture feature extraction, capturing mid-level image patterns and 

details. Gabor Filter for Intermediate Rotation Invariance to add, 

additional rotation-sensitive filters to capture intermediate level 

rotational consistency. The process ensured Mid-level color and 

texture features with refined rotation invariance. 

6. Layer 6+: Late Layers Processing 

Complex Texture Extraction to enhance complex texture abstraction 

to handle high-detail features. Final Gabor Application to capture 

finer rotation-invariant features. Detailed, high-level features with 

robust rotation and illumination invariance were achieved. 



94 

 

7. Output Stage 

 Feature Aggregation - Combine extracted features from all layers for 

CBIR. 

 Performance Evaluation - Assess CBIR performance metrics 

(Accuracy, Precision, Recall) based on layer configurations. 

 Final Output - Image retrieval results based on layer-by-layer 

integrated feature extraction. 

3.2 Experiments 

The experiments were designed to evaluate the proposed content-based image 

retrieval system's performance in achieving rotational and illumination invariance. 

The primary goal was to test whether integrating rotational and illumination 

invariance into CNNs could improve retrieval accuracy for CBIR. 

3.2.1 Experiment 1: Feature Extraction Using Color  

Color transformation - Convert the input image into different color spaces (e.g., 

HSV, LAB, RGB) before feature extraction. Each color space can emphasize specific 

aspects of the image, such as intensity, saturation, or hue, enhancing the overall 

texture representation. According to Afaq and Rao (2020), the importance of epochs 

during the training of a neural network has an impact on the model's accuracy. 

Consequently, it is essential to choose the best epochs possible without under fitting 

or overfitting. Also, Chi et al. (2022) demonstrated the importance of optimal epochs 

when performing analysis of the three kinds of neural networks in image retrieval 

images. 
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3.2.2 Experiment 2:  Feature Extraction Using Texture 

Texture features through the aspect of directional texture filters were extracted using 

the Gabor filter which is integrated into CNN to form GCNN as described in Figure 

3.3. 

 

 

Figure 3.3: The Architecture of a Gabor Convolutional Layer Used in the First 

Layer of Conventional Convolutional Neural Network 

Texture and directional texture filters, especially when integrated across CNN layers, 

allow for capturing both static and directional textures that enhance CBIR system 

performance. Gabor filters, in particular, are instrumental in extracting complex 

textures and orientations, yielding highly detailed and robust feature maps suitable 

for accurate and reliable image retrieval. 

There are four stages in the CNN architecture. Convolution Layer, RELU Layer, and 

Max Pooling Layer make up the first two phases. The RELU Layer and Convolution 

Layer make up the third step. In the last stage, there is a layer that is completely 

connected. Gabor Kernels are used to initialize the Convolution layer's first stage, 

and CNN's standard design is used for the remaining layers. The first convolution 

layer is designed based on 16 Gabor filters with uniformly distributed θ (orientation) 

values. A Gabor kernel of size 3 × 3 is used as a convolution filter, with Scale (σ) as 

4.1, γ as 5.3, and λ as 0.3. The selection of all the values is based on experimental 

analysis. The first Convolutional layer converts a single input image into 10 output 

images which are passed to the RELU layer. 

The second Convolution Layer and third stage work on kernels initialized with 

random normal distribution values with a standard deviation of 0.0001. Biases are 
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initialized with a normal distribution of mean value 1 and standard deviation 

0.00001. The learning rate factor of the bias is set to 2. A total of 32 and 64 filters are 

used in the first and second Convolution layer respectively. Rectified Linear Unit 

(ReLU) layer performs a threshold operation on each element, where any input value 

less than zero is set to zero. The ReLU Layer is utilized in the initial three stages. 

The Max pooling layer performs max-pooling with a kernel size of 2 × 2 that works 

with a stride of ‘2’ and is used in the first and second Layers. 

A fully connected layer is initialized with Normal distribution with a mean of 0 

(Zero) and a standard deviation of 0.0001 for the weight values. Bias values are 

initialized with normal distribution with a mean of 1 and deviation of 0.0001. The 

learning rate factor of the bias is set to 2. Softmax is used as an activation function in 

the output layer of the fully connected layer. 

3.2.3 Experiment 3: Layer-by-Layer Configuration 

Experiments on CIFAR-10 and ImageNet dataset with integrating HSV color space, 

directional texture filters, and Gabor filters applied to different layer configurations 

(early, middle, combined, last, and all layers) were evaluated. Figure 3.4 

demonstrates layers convolved with HSV color space, directional texture filters, and 

Gabor filters respectively. 
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Figure 3.4: Network Structures of Gabor Filter Used in Different Layers of 

Conventional Neural Network 

 

Convert RGB to HSV image 

, where (x,y) represents the pixel coordinates. 

Convert each RGB pixel to its corresponding HSV values.  

    (24) 

Modify the input representation to use modified HSV representation instead of using 

RGB image to the Gabor Convolutional Network. 

Modified input where  

    (25) 

Adapt the Gabor filters to the HSV color space. 

     (26) 
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Where (x,y) represents the filter’s spatial coordinates,  is the orientation,  is the 

wavelength,  is the standard deviation, and  is the aspect ratio. 

Gabor response for each channel is computed as follows. 

 

  (27) 

 

Where , and are the responses of the hue, saturation, and 

value channels, respectively. 

Convolve each Gabor response with the corresponding modified input channel 

 

  (28) 

 

Where denotes the convolution operation. 

Finally, combine the Gabor responses for each channel to obtain an integrated Gabor 

response for each pixel in the modified HSV color space. 

   (29) 

Convolutional Gabor orientation Filters (GoFs) 

Where input feature is now integrated Gabor response for each pixel in the modified 

HSV color space  = .      (30) 

 

 



99 

 

GCN convolution 

In GCNs, GoFs are used to produce feature maps, which explicitly enhance the scale 

and orientation information in deep features. An output feature map ( ) in 

GCNs is denoted in equation 31. 

 

   (31) 

Where  is the   GoF and is the input feature map. The channels are 

obtained by the following convolution in equation 32. 

    (32) 

Where  refers to the  channel of  and , and  is the  

orientation response of .  

Early Layers – Layers 1-3 

This experiment aimed to test how integrating HSV color, directional texture, and 

Gabor filters could improve the performance of Content-Based Image Retrieval 

(CBIR) systems in the early layers of a CNN. This setup focuses on testing the 

retrieval effectiveness and efficiency of early-layer integration, examining how 

foundational color, texture, and rotation features contribute to CBIR performance 

across different datasets. 

Middle Layers Only – Layers 3-6 

This experiment aimed to evaluate the effects of integrating HSV color space, 

directional texture filters, and Gabor filters exclusively in the middle layers of a 

CNN, balancing basic feature extraction with higher-level feature abstraction. This 

configuration is designed to refine Color and Texture Features using HSV and 

directional filters in middle layers to enhance feature depth. Secondly, to boost 
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Rotational Invariance Mid-Processing by applying Gabor filters mid-network to 

capture rotation-invariant patterns at an intermediate stage. 

Late Layers – Layers 6+ 

This experiment aimed to test how integrating HSV color space, directional texture 

filters, and Gabor filters exclusively in the late layers of a CNN affects CBIR 

performance. Convert images to HSV color space in the input processing layer to 

separate brightness from color information and feed them into the Late Layers to 

reinforce robustness in abstract color differentiation. Apply directional texture filters 

within the Late Layers, allowing the model to capture orientation. Tune the Gabor 

filter to capture orientation. 

Combined Layers – (Early and Middle, Middle and Late, Early and Late) 

Different layers were combined sequentially to evaluate the performance of the 

Content-Based Image Retrieval (CBIR) system. Each layer represented a specific 

feature extraction method contributing unique information about the images' color 

and texture properties. By layering these features, the system was able to capture a 

more comprehensive representation of the images, allowing for a more accurate and 

efficient retrieval process. This multi-layered approach was then tested to assess its 

effectiveness in improving overall CBIR performance. 

Available data are typically split into two sets: a training, and a test set. A training set 

is used to train a network. A test set is ideally used only once at the very end of the 

project to evaluate the performance of the final model. 

The last step is to test the accuracy of the model which is done by compute function. 

The compute function creates the prediction value. A result variable compares the 

predicted data with the actual data and creates a confusion matrix with the table 

function to compare the number of true/false positives and negatives. These were the 

outcomes after the entire process was completed through matching. The retrieval 

output image was a relevant image similar to the query image. To compute the 

retrieval efficiency of relevant images, accuracy, precision, and recall rate were used. 
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Accuracy: The accuracy of a classifier on a given test set is the percentage of test set 

tuples that are correctly classified by the classifier as indicated in equation 33. The 

accuracy of a classifier refers to the ability of a given classifier to correctly predict 

the class label of new or previously unseen data (i.e., tuples without class label 

information). Similarly, the accuracy of a predictor refers to how well a given 

predictor can guess the value of the predicted attribute for new or previously unseen 

data (Deng & Zheng, 2021). 

    (33) 

Precision (specificity) is a measure of the system ability in retrieving only similar 

images to the query image as denoted in equation 34. 

  (34) 

Recall measures the ability of the system to retrieve all the relevant models, while 

precision measures the ability of the system to retrieve only the relevant models. The 

Recall rate which is known as the true positive rate or sensitivity, measures the 

ability of CBIR systems in terms of the number of similar images retrieved with their 

similar images in the database as denoted in equation 36. 

  (36) 

The number of relevant items retrieved is the number of returned images that are 

similar to the query image in this case. The total number of items retrieved is the 

number of images that are returned by the search engine.  

3.3 Model Evaluation 

The model performance was evaluated with accuracy and loss function for the 

training, and test datasets. The characteristics derived from confusion matrices were 

used to compare predicted images. 
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3.4 Model Implementation Environment 

The model was implemented in Google Colab using Python version 3.8, providing an 

accessible and powerful environment for running complex computations. Google 

Colab allowed for the use of GPU acceleration, which significantly improved 

processing speeds, especially for handling image data in the CBIR model. By 

leveraging Python’s extensive libraries, such as OpenCV for image processing, 

NumPy for numerical computations, and SciPy for scientific computing, the model 

could efficiently perform feature extraction and similarity matching. This setup 

facilitated testing, adjustments, and iterative development, ensuring that the CBIR 

model achieved optimal performance. 



103 

 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter presents the results and discussions, detailing the findings from the 

CBIR model’s performance analysis and evaluating how well the extended GCNN 

model met the research objectives. Each result is discussed in terms of its impact on 

retrieval accuracy, precision, and recall, providing insights into the effectiveness of 

each feature extraction layer. The discussions also include comparisons between this 

multi-layered approach and other traditional CBIR techniques, highlighting 

improvements in handling color and texture variations as well as potential limitations 

observed during testing. This comprehensive analysis offers a clearer understanding 

of the model's strengths and areas for further refinement, emphasizing its 

contributions to CBIR optimization. 

4.1.1 Experimental Study 1: Epochs Results 

Figure 4.1 – Figure 4.6 represent the loss, accuracy, and confusion matrix of feature 

extraction and classification using different 50, 100, 150, and 200 epochs. Table 4.1 

also, represents the summary of different epochs in metric. The result shows that the 

150 epochs outperformed the 200 epochs. At 200 epochs, the investigation revealed a 

decline in performance, indicating that the model had essentially overfitted, or 

"memorized," the training examples. This overfitting caused the model to struggle 

with generalization, making it less effective at adapting to new or slightly different 

input data, which reduced its ability to accurately retrieve relevant images outside the 

training set. While increasing the number of epochs initially enhanced performance, 

the rate of improvement significantly diminished after reaching 150 epochs. Beyond 

this point, further training contributed minimal benefits and even led to a slight 

decrease in accuracy as the model became more rigid and specific to the training 

data. Consequently, at 200 epochs, the model's accuracy dropped to 96.4%, 

prompting the decision to limit training to a maximum of 150 epochs to prevent 

overfitting and ensure better generalization across varied image inputs. 
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Figure 4.1: Loss and Accuracy Report for 50 Epochs 

 

 

Figure 4.2: Confusion Matrix for 50 Epochs 
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Figure 4.3: Loss and Accuracy Report for 100 Epochs 

 

 

Figure 4.4: Confusion Matrix for 100 Epochs 

 



106 

 

 

Figure 4.5: Loss and Accuracy Report for 150 Epochs  

 

 

Figure 4.6: Confusion Matrix and Classification for 150 Epochs  

 

Table 4.1 demonstrates a metric summary for different epochs. The accuracy of the 

CNN model at 50, 100, 150, and 200 epochs, respectively, was 96.3%, 96.5%, 

96.6%, and 96.4%. The outcome demonstrates that accuracy and loss are consistent 

throughout 100 epochs due to the CNN model's stability after multiple iterations.  
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Table 4.1: Metric Summary for Different Epochs  

Epochs Accuracy Precision  Recall  

50 96.3 96.4 96.4 

100 96.5 96.5 96.4 

150 96.6 96.5 96.5 

200 96.4 96.4 96.4 

 

4.1.2 Experimental Study 1: Feature Extraction Using Different Color Spaces 

The results of different color spaces are presented in Table 4.2 and Figure 4.7. The 

study found that preprocessing images by transforming them into different color 

spaces yielded different results. Although, the accuracy by itself did not vary too 

much, on closer inspection with the aid of confusion matrices we could see that, 

there was not a 100 percent correlation between the results. For color space, HSV 

yielded the highest accuracy and recall value of 99.41%. The fact that most existing 

feature extraction techniques assume RGB color space as the optimal color space 

because it is the default color space, they forget that HSV is very crucial. 

Table 4.2: Feature Extraction Using Different Color Spaces 

 RGB HSV CIELAB 

Accuracy 99.39 99.41 99.40 

Precision 99.39 99.39 99.39 

Recall 99.38 99.41 99.41 
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Figure 4.7: Graph of Color Space Feature Extraction Comparison 

4.1.3 Experimental Study 2: Gabor Filter Parameters  

Table 4.3 illustrates summary of different kernel size. The system is tested with 

Gabor filters of sizes 3 × 3, 5 × 5, and 7 × 7. The highest efficiency was produced 

when the kernel size is 3 × 3. When the size of the filter is 3 × 3 the efficiency of the 

system is 99.68 and when the kernel size is 5 × 5 the efficiency of the system is 

98.69 and when the size of the kernel is 7 × 7 the efficiency of the system is 98.46. 

Therefore, a kernel size of 3 × 3 is selected. The selection of σ, γ, and λ was also 

carried out based on experimental analysis. It was found that when σ is 4.1, γ is 5.3 

and λ is 0.3 the system produces the highest recognition efficiency. Combinations of 

different values of σ and γ ranging between 1 and 10 are tested for the system and it 

was found that σ values between 4 and 5 and γ values between 5 to 6 produce the 

highest recognition rate. Again, testing of the recognition system was repeated with 

different combinations of σ between 4.1 to 4.9 and γ between 5.1 to 5.9 and the 

highest efficiency was reported when σ was 4.1 and γ was 5.3. Fixing σ as 4.1 and γ 

as 5.3 different λ values ranging from 0 to 0.5 were tested and it was found that 

fixing λ values to 0.3 will increase the efficiency of the system.  
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Table 4.3: Retrieval Results Using Different Kernel Size 

Kernel size Accuracy Precision Recall 

3 × 3 99.68 99.46 99.45 

5 × 5 98.69 98.45 98.44 

7 × 7 98.46 98.12 98.12 

Gabor filters exhibit sensitivity to both spatial frequency and orientation, making 

them suitable for studies focusing on minute details or high-frequency patterns inside 

images. Smaller kernel sizes are suitable for fine details or high-frequency patterns in 

the image while larger kernel sizes are suitable for detecting broader patterns or low-

frequency components. Therefore, smaller kernel sizes were selected to preserve the 

image's orientation and scale. 

4.1.4 Experimental Study 2: Texture Feature Extraction 

Table 4.4 and Figure 4.8 describe the results of texture extraction using texture and 

directional texture filters. The directional texture filter demonstrated a high accuracy 

and recall rate of 99.28%. These results have revealed directional filters offer a 

powerful approach to extracting texture features due to their ability to encode both 

frequency and orientation information. 

Table 4.4: Texture Feature Extraction Results 

 Texture Directional Texture filter 

Accuracy 99.23 99.28 

Precision  99.25 99.28 

Recall  99.24 99.28 
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Figure 4.8: Graph for Texture Feature Extraction Comparison 

4.2.5 Experimental Study 3:  Comparative Analysis of Layer Configurations 

Table 4.5 and Figure 4.9 represent the comparative analysis of layer configurations 

involving evaluating different combinations and sequences of the HSV color, 

directional texture, and Gabor filter layers CIFAR-10 and ImageNet dataset to 

determine the optimal structure for enhancing Content-Based Image Retrieval 

(CBIR) performance. Each configuration was tested to see how the order and 

presence of these layers influenced the model’s ability to capture diverse image 

features and improve retrieval accuracy. 
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Table 4.5: Comparative Analysis of Layer Configurations 

Layer Configuration Dataset Accuracy  Precision Recall % 

Early Layers Layers 1-3 CIFAR 10 99.38 99.37 99.38 

ImageNet 99.35 99.34 99.33 

Middle Layers Layers 3-6 CIFAR 10 99.45 99.44 99.43 

ImageNet 99.42 99.40 99.41 

Late Layers  Layers 6+ CIFAR 10 99.50 99.49 99.48 

ImageNet 99.55 99.54 99.53 

Combined Early and Middle 

Layers 

CIFAR 10 99.47 99.46 99.45 

ImageNet 99.48 99.47 99.46 

Combined Middle & Late 

Layers 

CIFAR 10 99.52 99.51 99.50 

ImageNet 99.56 55.55 99.54 

Combined Early & Late 

Layers 

CIFAR 10 99.49 99.48 99.47 

ImageNet 99.51 99.50 99.49 

All Layers CIFAR 10 99.61 99.60 99.59 

ImageNet 99.63 99.62 99.61 

 

 

Figure 4.9: Layer Configurations vs CBIR Performance for CIFAR-10 and 

ImageNet 
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Table 4.6 and Figure 4.10 represent time complexity to assess whether the model is 

efficient and how it scales with larger datasets. The graph shows that complexity is 

not exponential, suggesting that further investigations could be valuable as part of 

future work. 

Table 4.6: Layers Configuration vs Time Taken for CIFAR-10 and ImageNet 

Layer Configuration Time Taken (Seconds)  

(CIFAR-10) 

Time Taken (Seconds) 

(ImageNet) 

Early Layers (1-3) 12.3 20.8 

Middle Layers (3-6) 18.4 30.5 

Late Layers ( 6+) 24.9 40.7 

Combined Early & Middle 

Layers 

20.1 35.3 

Combined Middle & Late Layers 27.5 48.2 

Combined Early & Late Layers 23.8 43.9 

All Layers 35.6 60.4 

 

 

Figure 4.10: Layer Configurations vs Time Taken for CIFAR-10 and ImageNet 
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In the Early Layers (Layers 1-3), applying HSV color space, directional texture, and 

Gabor filters demonstrated significant improvements in illumination invariance and 

initial texture capture, leading to strong performance on CIFAR-10. However, early 

integration struggled to meet the demands of ImageNet’s more complex patterns, 

achieving modest rotation and texture differentiation without fully capturing high-

level features. 

Middle Layers (Layers 3-6) further refined color separation and enhanced texture 

capture, improving robustness for texture-rich datasets like ImageNet. Middle layers 

offered increased resilience to moderate rotations and lighting variations, boosting 

retrieval rates for both datasets. Nonetheless, the configuration was still limited for 

intricate rotations and fine-grained textures required by complex images, especially 

on ImageNet. 

The Combined Early and Middle Layers configuration (Layers 1-6) provided a 

balanced approach by integrating foundational and refined feature extraction 

capabilities. This combination improved color, texture, and moderate rotational 

invariance for CIFAR-10, outperforming either early or middle layer integration 

alone. For ImageNet, this combination captured a broader range of textures and 

lighting variations but faced limitations with extensive rotations and high-level 

abstractions. 

Late Layers (Layers 6+) integration offered the most precise feature abstraction, 

handling complex rotations, illumination variance, and fine-grained textures 

effectively. This approach yielded the highest accuracy and recall for both datasets, 

making it the optimal configuration for high precision tasks. However, the deeper 

layers also increased computational demands, highlighting a trade-off between 

performance and efficiency. 

Finally, applying all filters across All Layers resulted in the highest precision and 

recall rates across configurations, particularly beneficial for complex datasets like 

ImageNet. This comprehensive integration allowed the model to handle intricate 

variations in color, texture, and orientation. While effective, the all-layer approach 

was computationally intensive, suggesting it is best suited for high-stakes retrieval 
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tasks where resource availability supports robust feature extraction across the 

network. 

Table 4.7 concisely captures the qualitative findings and the discussion points for 

CIFAR-10 and ImageNet, offering insights into how each layer configuration 

impacts the CBIR performance. 
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Table 4.7: Comparative Analysis of Layer Configurations 

Configuration - 

Layer Position 

CIFAR-10 ImageNet  Strengths Limitations 

Early Layers - 

Layers 1-3 

Shows solid 

initial feature 

extraction with 

strong color and 

texture 

differentiation. 

Benefits from 

early edge and 

color capture but 

lacks high-level 

feature extraction 

for complex 

textures, limiting 

performance in 

multi-object, 

multi-texture 

recognition. 

Captures basic 

color and texture 

features; 

enhances initial 

illumination 

invariance; stable 

under minor 

rotation 

Limited feature depth 

affects complex textures 

and rotated objects, 

especially on complex 

datasets 

Middle Layers - 

Layers 3-6 

Benefits from 

enhanced 

rotation and 

texture 

robustness, 

yielding higher 

retrieval rates. 

Gains better 

pattern 

recognition but 

still faces 

limitations with 

complex rotations 

and high-detail 

images, affecting 

consistency in 

precision and 

recall. 

Strengthens color 

separation and 

mid-level texture; 

improves rotation 

invariance and 

robustness 

Still struggles with 

complex rotations and 

lighting variations, 

particularly for intricate 

ImageNet images 

Combined Early 

and Middle Layers 
- Layers 1 - 3 & 

 3 -6 

Achieves a 

balanced 

performance 

with improved 

texture 

recognition and 

moderate 

rotation 

variance 

handling. 

Achieves higher 

precision, 

handling 

moderate 

illumination and 

texture changes 

better but still 

faces challenges 

with high-level 

feature 

complexity. 

Combines 

foundational and 

refined features, 

yielding better 

color and texture 

invariance 

Lacks high-level 

abstractions needed for 

more extensive rotations 

and lighting adjustments 

Late Layers - 

Layers 6+ 

Achieves 

optimal fine-

grained detail 

and illumination 

invariance, 

yielding the 

highest 

performance 

metrics in 

precision and 

recall. 

Shows the best 

retrieval results, 

robustly handling 

diverse textures 

and orientations, 

though the 

computational 

demand is higher. 

High precision 

and recall for 

rotation and 

illumination 

invariance; 

effective fine-

grained texture 

capture 

High computational cost 

and resource-intensive 

All Layers - Layers 

1+ 

Benefits from 

robust color and 

moderate 

rotation 

handling but at 

a high 

computational 

cost. 

achieves the most 

comprehensive 

performance, 

effectively 

handling 

illumination and 

complex texture 

variations, 

suitable for high-

demand 

applications 

through 

computationally 

intensive 

Comprehensive 

feature extraction 

across all layers, 

maximizing 

retrieval 

performance on 

complex datasets 

Computationally 

intensive, requiring 

significant resources 
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Previous works e.g., Li et al. (2021); Singh et al. (2024)), demonstrated that applying 

HSV color transformation in early CNN layers helps stabilize color consistency 

under varying lighting. Similar to these studies, our results confirmed that applying 

HSV in the early layers improves illumination invariance, especially in simpler 

datasets like CIFAR-10, with a significant boost in precision and recall. However, 

unlike their findings, we observed that combining HSV applications in both early and 

middle layers did not yield additional improvements, suggesting that illumination 

invariance is largely influenced by the initial stages of feature extraction. 

Directional texture filters have been widely used for texture feature extraction in 

CBIR, as seen in the works of Pradhan et al. (2022) and Srivastava et al. (2023). 

These studies emphasize the importance of integrating directional texture in the 

middle or later layers for more detailed pattern recognition. Our findings, particularly 

on the ImageNet dataset, align with these studies, as middle-layer integration 

enhanced texture detail extraction. Additionally, integrating directional filters in the 

late layers achieved higher precision in complex image retrieval for ImageNet. 

However, in contrast to some prior work, our experiments indicate that early layer 

directional filtering alone may not be sufficient for high texture robustness. 

Gabor filters have been extensively studied for their rotation-invariant properties in 

CBIR. Zhu et al. (2020) concluded that Gabor filters are effective when used across 

multiple layers. Our study, however, highlights that early and middle-layer 

integration of Gabor filters achieved better rotation invariance for CIFAR-10 without 

the computational burden observed with all-layer integration. Specifically, the 

middle and late-layer combination proved optimal for ImageNet, supporting findings 

that deeper-layer Gabor filtering is crucial for complex datasets with high rotational 

variation. 

While individual layers (early, middle, or late) have been explored independently in 

prior research, few studies evaluated combined layer configurations. Our findings 

indicate that combining early and middle layers effectively balances performance 

and computational efficiency, especially for datasets like CIFAR-10. Similarly, 

combining middle and late layers for ImageNet aligns with Wang et al. (2023), who 
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observed that mid-to-late integration maximizes feature extraction and dataset 

adaptability. This combined approach yielded competitive results in recall and 

precision while optimizing computational resources, providing a more flexible 

solution for mixed-complexity CBIR applications. 

In summary, this study expands on existing work by systematically analysing layer 

configurations and validating that combining specific layers yields distinct 

advantages across dataset complexities. The integration of HSV color space, 

directional texture filters, and Gabor filters across targeted layer combinations 

demonstrated performance gains that are both dataset-sensitive and computationally 

efficient, providing a comprehensive approach to CBIR that is adaptable to both 

simple and complex image datasets. 
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CHAPTER FIVE 

CONCLUSION AND FURTHER WORK 

5.1 Introduction  

This chapter provides an overview of the key findings of this research on improving 

content-based image retrieval systems through rotational and illumination invariance. 

It also outlines potential directions for future studies to build on this work. 

Research questions revisited 

There were four research questions as presented in chapter one. In this section, we 

revisit each research question as follows. 

i. What are the design limitations of Gabor Convolutional Neural Networks 

(GCNNs) in extracting color and texture for content-based image retrieval? 

The study examined the design limitations of Gabor Convolutional Neural Networks 

(GCNNs) in extracting color and texture features for content-based image retrieval 

(CBIR). HSV color space has been demonstrated to be illumination invariance. This 

is due to its value component, which separates color information from brightness and 

makes it more resistant to changes in lighting conditions thus retrieving images that 

are consistence regardless of lighting condition changes. More details are listed in 

chapter two. 

ii. What design techniques are used by Gabor Convolutional Neural Networks 

(GCNNs) to ensure rotational invariance for texture features in content-based 

image retrieval? 

Gabor Convolutional Neural Networks (GCNNs) employ a directional filter 

technique to ensure rotational invariance for texture features in content-based image 

retrieval (CBIR). By integrating these filters into convolutional layers, GCNNs 

extract rotation-independent texture features effectively. The research observed 

directional texture filters capture the texture patterns and structures present in an 
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image which remain relatively stable and unchanged due to orientation. More details 

are found in chapter two. 

iii. What design techniques of Gabor Convolutional Neural Networks (GCNNs) 

handle illumination invariance for color and texture-based features? 

Integrating HSV color space, directional texture filters, and Gabor filters at different 

CNN layer configurations handles illumination invariance for color and texture-

based features. More details are listed in chapter three. 

Finally, chapter four reveals integrating both rotational and illumination invariance in 

Gabor Convolutional Neural Networks (GCNNs) improves the performance of a 

content-based image retrieval system. Early layers improve basic color and texture 

differentiation but struggle with complex patterns, while middle layers enhance 

texture robustness and moderate rotation handling. The combined early and middle 

layer configuration balances foundational and refined feature extraction, enhancing 

performance without extreme computational demands. Late layers provide the 

highest retrieval accuracy, capturing fine-grained details and showing strong 

resilience to complex rotations and illumination changes, especially effective for 

complex datasets like ImageNet. Although applying these filters across all layers 

maximizes color, texture, and rotational invariance, it comes at a high computational 

cost, making layer-specific integration a promising approach for optimizing CBIR 

performance based on dataset complexity. More details are listed in chapter four. 

In conclusion, the study demonstrated that integrating HSV color, texture filter, and 

GCNN in all layers offers both rotation and illumination invariance and a robust 

CBIR performance.  

5.2 Future Work 

In this study rotation and illumination invariance were investigated to improve the 

performance of CBIR. However, we would recommend further research on 

experimenting with occlusion, and complexity to improve the performance. 
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The phenomenon known as "occlusion" occurs when an image or a portion of an 

image is entirely or partially obscured by another image or the surrounding 

environment. Occlusion poses challenges in image retrieval because it obscures parts 

of the scene as the image rotates, hence leading to incomplete or misleading images. 

The Extended GCNN model demonstrates that its complexity is not exponential. 

However, we recommend further investigations as part of future work. 
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