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ABSTRACT 

Transfer learning is an in-depth learning approach that uses an existing model to 

classify a new task. The approach involves using some target data on a fine-tuned 

model. Fine-tuning involves freezing and tuning layers within the network to reduce 

the model's poor adaptation to the target task. Poor domain adaptation is a significant 

issue in transfer learning due to differences in the distributions between the source 

and the target domains. There have been various approaches to tackling the problem 

using fine-tuning approaches, the most common being instance and feature-based 

approaches. Despite many documented fine-tuning approaches in transfer learning, 

achieving higher accuracy performance due to poor domain adaptation is still 

challenging. This research looks at a feature-instance-based approach where a subset 

of data objects with similar low-level characteristics is selected as the target dataset. 

The signed weight instances are used as a routing decision network to determine the 

filtering layers that must be frozen during training. The approach leads to developing 

a model that confers textural features in selecting target samples and the convolutional 

layers with the most positive number of feature map elements in the transfer learning 

process. The study uses image datasets from nine datasets: ChestX-ray8, CIFAR-10, 

MNIST, CIFAR-100, Fashion-MNIST, Stanford Dogs 120, Caltech 256, ISIC 2016 

and MIT Indoor Scenes on five pre-trained models: VGG16, DenseNet169, 

MobileNetV2, InceptionV3 and ResNet50. The experimental approach provides better 

convolutional networks in the transfer learning process, with improvements of 

between 3.12% and 7.69% in selecting quality data points and 0.24% to 13.04% for 

selecting suitable layers. These improvements perform well compared to the standard 

accuracies and some previous studies. 

Keywords: Transfer Learning, Domain Adaptation, Distance Measures, Features 

Conflation, and Layer Selection. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Transfer learning (TL) is a deep learning technique that involves reusing learned 

knowledge in a pre-trained model in a new related task (Hung & Chang, 2021). The 

reused model is the source model, while the applied model is the target model. By 

default, both domains, target and source, are somehow similar. A domain 𝐷 consists of 

two components: 𝑌 and 𝑃(𝑋 ), where 𝑌 refers to the feature space, 𝑋 refers to a random 

variable that could take any value of x and 𝑃(𝑋 ) refers to the marginal probability 

distribution where x belongs to the set 𝑥𝑖 , . . . , 𝑥𝑛 . The element 𝑥𝑖 is the feature instance 

at position i. 

Task T consists of two components: 𝑍 and 𝑓 (. ), where 𝑍 is the label space, and 𝑓 (. ) 

is the conditional probability 𝑃(𝑍|𝑋 ). The X is still a random variable, taking the value 

of x. By formal notation, transfer learning aims to improve the predictive function 𝑓 (. ) 

in the target domain (𝐷𝑇 ) by using the learned knowledge in the source domain (𝐷𝑆) 

where the ≠ 𝐷𝑇, or source task (𝑇𝑆) ≠ target task (𝑇𝑇), and therefore, the marginal 

probability distribution between the domain data is different. 

The technology behind transfer learning streams from psychology (psychologist CH 

Judd) suggests human beings can transfer previously known skills to new tasks that 

need similar or closely related acquired skills. It is a domain generalisation technique 

alongside multi-task learning, domain adaptation, zero-shot learning, life-long 

learning, meta-learning, and multiple-domain learning (Jiang et al., 2024). A practical, 

real-life example is riding a motorcycle, having acquired skills in riding a bicycle, or 

playing baseball, having played softball: it is much easier to master a new skill based 

on the previous experience, although a negative transfer is also possible. However, in 

situations with few settings (combination of task, domain, and language) and 

similarities in the domains, the transfer may be unsuccessful; for example, learning 

how to drive a car may not extend to playing the piano. As shown in Figure 1.1 below, 

knowledge acquired through a learning task in the pre-trained domain is usable by the 

application domain’s learning task. 
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Figure 1.1: Transfer Learning Process 

Transfer learning has been used in many fields, especially in image recognition tasks, 

since it allows faster training (no need to retrain the model fully), requires fewer data 

points in the target domain, and low computational power for use in the data labelling 

(fraction of the source domain). For example, the enabling factor in convolutional 

neural networks (CNNs) is that the low-level features, e.g., colour blobs and Gabor 

filters, apply to many datasets and tasks; hence, they can be reused or extended to new 

tasks. The problems transfer learning addresses have been noted in large datasets such 

as the MSCOCO (Liu et al., 2024) and ImageNet (Nayman et al., 2024), which are 

often unfeasible. Furthermore, using traditional classifiers with insufficient data leads 

to model overfitting due to their large number of hyperparameters instead of transfer 

learning (Mecheter et al., 2024). 

With advancements in deep learning, CNNs have been at the forefront of model 

extensions, enabling working with smaller datasets (Abdulazeez et al., 2024). Some of 

the notable pre-trained models include Inception utilising the inception blocks 

(Srinivas et al., 2024), ResNets utilising the ResNet blocks (Xu et al., 2023), 

MobileNets and VGG models (Kandhro et al., 2024). 

Transfer learning is broadly classified based on features and labels based on shareable 

features and labels in both source and target domains. The methods can also be 

classified based on instances, features, parameters and even the relationship between 
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the domains, as Zhuang et al. (2021) noted. This study will address two of the four 

approaches: instance-based transfer learning by looking at the shareable weights 

between two tasks – thereby picking the layers that would fit well in a given task and 

feature-based transfer learning that addresses the shareable features between the two 

domains. The methods in the two broad approaches suffer from poor adaptability in 

the target domain due to unique features that may not be in the source domain, high 

dimensionality between the domain spaces and the assumption of feature spaces 

similarity (Yang et al., 2020) as a result of task mismatch which leads to poor transfer 

of relevant knowledge in the downstream tasks and may also erase some of the learned 

knowledge during pre-training (Han et al., 2021). The introduced methods will be 

introducing improvements to the existing methods:  

a) Feature-based transfer learning provides a confident approach to selecting 

closely related features in the target domain using feature conflation. The 

process uses Kullback-Leibler divergence (DKL) to compare the conflated 

feature distributions. 

b) Instance-based transfer learning allows dynamic selection of suitable layers for 

fine-tuning. The process compares the layers using Kullback-Leibler 

divergence on signed weights.  

1.2 Transfer Learning Process 

The transfer learning process occurs in a feed-forward network where a subset of layers 

is selected and fine-tuned. A threshold moves away from the output and towards the 

input layers as more data becomes available in the target domain. The process also 

involves the fine-tuning or the adjustment of hyperparameters until the best fit 

characterizes the model. Transfer learning tasks in CNNs initially utilized pre-trained 

CNN ImageNet models. Computer vision models don’t necessarily train from scratch 

(Hong et al., 2024).  

The most adapted practice by practitioners is to download an open-source model and 

either use it to initialize a similar architecture before learning on limited labelled data, 

a process involving fine-tuning a subset of the layers or use it in feature extraction. 

The process reuses the pre-trained model weights used in the source domain (specific 
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task) to address another closely related task (Vrbanč ič & Podgorelec, 2020). These 

weights are used partly or entirely in model initialization (Bhatia et al., 2020). The 

transfer learning process works on defining data point features, labels, and the 

sampling distribution of data points, as well as the dependency between labels and 

features (Zhang et al., 2020). 

1.3 Image Data Features 

In image data processing, features are extracted and analyzed for general purposes for 

specific applications (Archana & Jeevaraj, 2024). The image features belong to three 

levels: low-level (explores the pixels), mid-level (explores the image descriptors) and 

high-level features that look at the image interpretation. This research work 

investigates the domain datasets’ low-level textural features. The dataset’s detection 

of low-level feature properties makes other tasks, such as image analysis and 

classification, possible. Low-level features can be explored from colour, texture and 

shape properties (Dewan & Thepade, 2020). The pixel analysis looks into the 

geometric design of grey levels (Sferrazza, 2023).  

Texture refers to the pixel’s spatial brightness variations (Kim & Lee, 2024). Texture 

affects human visual perception (Okada & Motoyoshi, 2021) and classification 

accuracy (Zhang et al., 2024). It also gives the pixel’s illumination dispersion in the 

image and is essential in measuring the pixel’s neighborhood spatial grey tones 

arrangement (Haq et al., 2022; Wei et al., 2024).  

Textural analysis has been used in many applications, including image classification 

and content-based image retrieval (CBIR) systems (Bu et al., 2023). The analysis 

involves extracting the features using methods in seven categories: model-based, 

structural, transform-based, learning-based and entropy-based (Cote et al., 2023). 

The textural analysis methods are further categorized into structural, statistical, 

transform and model-based. In textural features analysis, the extracted features are 

quantified through descriptors depending on the statistics: first-order (entropy, 

standard deviation), second-order statistics (correlation, sum entropy) and high-order 

(mean, variance). These values are then subjected to statistic-relevant indices such as 

information gain for selection. 
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1.4 Problem Statement 

Transfer learning suffers from poor domain adaptation due to the differences in the 

distributions between the source and target models: data points and fine-tunable layer 

selection. Poor domain adaptation results from the distribution divergence between the 

source and target domains (Li et al., (2022); H. Xu et al. (2021); Z. Xu et al. (2021)) 

and failure to address the divergence in local information (Peng et al., 2022). Various 

methods have been introduced to reduce this divergence, including discriminative 

adversarial domain adaptation (Tang, 2020), structural risk minimisation (Cherkassky 

& Lee, 2024) and manifold dynamic distribution adaptation (Wang et al., 2020), with 

most methods addressing class imbalances, marginal and or conditional distributions 

between the domains. However, the methods assume the data is balanced in both 

domains and do not address dataset imbalances in real-life scenarios. Moreover, it 

becomes more unrealistic in unsupervised cases. It is, therefore, important to introduce 

or embed sample target samples in the source classifier to create more dense 

neighbourhoods in the feature space (Saito et al., 2021). 

In the standard fine-tuning process, the last few layers of the network undergo fine-

tuning while the parameters in the initial layers of the source model become frozen. 

However, this does not mean that features in the latent layers would adapt to the target 

task (Vandikas et al., 2024). Some layers influence the number of data samples and 

training time in the target domain, and it is vital to use a dynamic, fine-tunable layer 

selection method.  

Dynamic layer selection has increasingly gained attention among researchers to 

traditional manual selection (Vrbančič & Podgorelec, 2020; Ismail et al., 2024) but has 

not focused on using signed weights. Many previously used manual methods assume 

that the models' initial or last layers are the main ones that can participate in fine-

tuning. The manual layer selection methods involve many trials and errors, as noted 

by Nagae et al. (2020); they are time-consuming since there are no standard procedures 

for fine-tunable layer selection (Guo et al., 2020). Therefore, the dynamic fine-tunable 

layer selection methodology becomes reliable in addressing this optimisation problem. 

This research utilises a subset of data points similar in low-level characteristics 
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(textural features) in both the source and the target domains in addressing conditional 

distribution and divergence in local information and the signed weights in the latent 

layers to fine-tune the pre-trained models. It aims to develop new target models with 

reduced domain distribution divergence and dynamic layer selection for faster 

convergence during the transfer learning process. 

1.5 Justification  

Fine-tuning involves the selection of a pre-trained model’s layers that are used to 

transfer the acquired knowledge to a new task. The various fine-tuning methods, 

including standard fine-tuning, last-k layers, feature extraction, and target layers, are 

in different positions of a pre-trained model. The most suitable layers must be used for 

a good positive transfer, and dynamic layer selection has recently become an active 

research area. Many methods have been proposed, including differential algorithms 

(Vrbančič & Podgorelec, 2020), AdaFilter (Guo et al., 2020), and even genetic 

algorithms (Nagae et al., 2020). However, the methods do not address the weights – a 

key component alongside the inputs in a network’s learning process (DeepAI, 2020). 

In fine-tuning, dynamic layer selection is needed to replace the manual trial and error 

experimentation layer selection for optimal positive transfer learning. 

It is also important to use quality datasets if a model is to perform well. In the transfer 

learning process, as much as the domains are considered similar, there is a divergence 

in their marginal or conditional distributions, often leading to poor domain adaptation. 

Some methods have been introduced to address these divergences, including using 

sample target data points in the source model (Luo et al., 2017). For convolutional 

neural networks, which are used in tasks such as image classification, low-level 

features such as texture are essential since they affect visual perception (Okada & 

Motoyoshi, 2021), and their descriptors can be used as a divergence measure in both 

domains. Since reducing domain divergence and selecting suitable layers are important 

in the transfer learning process, this research focuses on using the least textural 

features, divergent data points and the least divergent layers with positively signed 

weights. These allow better domain adaptation and faster convergence, improving 

positive transfer. 
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1.6 Research Objectives 

1.6.1 General Objective 

The general objective of this research was to develop a new model that uses conflated 

textural features from the target dataset that closely matches the source dataset and 

dynamic fine-tunable layer selection to enhance the transfer learning model's 

performance.  

1.6.2 Specific Objectives 

The specific objectives of this research were to: 

1) Analyze the existing feature and instance-based transfer learning approaches 

using various pre-trained models, models’ parameters, and datasets. 

2) Determine a suitable distance metric for comparison of suitable textural 

features and fine-tuning layers. 

3) Develop a fine-tuneable transfer learning model that utilises conflated textural 

features, data points, and source model weights: a feature-instance-based 

transfer learning model. 

4) Assess the effectiveness of using the developed model with various datasets and 

pre-trained CNN models, comparing it with several standard transfer learning 

baselines.  

 1.7 Research Questions 

1) What are the various existing feature and instance-based transfer learning 

approaches, and what pre-trained models, models’ parameters and datasets did 

they use? 

2) When selecting a suitable distance metric to compare textural features and fine-

tunable layers, what factors do we consider? 

3) Which parameters should we consider when developing the fine-tuned transfer 

learning model? 

4) How does the developed fine-tuned transfer learning model perform on various 

image datasets, baselines and pre-trained CNN models? 
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1.8 Proposed Solutions 

This research study has developed a dynamically fine-tuned model to address the 

challenge of poor domain adaptation, which often leads to poor transfer learning 

performance. This model, which facilitates the comparison of the existing textural 

features analysis and layer selection strategies, has been validated using existing 

transfer learning baselines. The promising results show that the newly introduced 

methods lead to improved domain data adaptation and layer selection in the transfer 

learning process, offering an alternative process for conducting transfer learning. 

1.9 Research Contributions 

In addressing the selection of closely related transferable features in the source domain 

to the target domain and the dynamic choice of fine-tunable layers, the study 

introduces the following knowledge contributions: Firstly, the conflation of image 

feature probability distributions contributes to an extension of methods used in the 

overall image feature description using the conflation process (primarily used in 

geographic information systems (GIS)). Conflation allows users to derive positive 

transfer by selecting quality data points, which leads to a better adaptation of the pre-

trained learning models, providing a simple technique for advancing feature selection, 

a key component in transfer learning.  

Secondly, The Kullback-Leibler divergence method for comparing layers based on 

signed weights introduces a novel approach to layer selection, deviating from the 

conventional manual selection process. This innovative method empowers users of 

pre-trained models by providing a quantified assessment of each layer’s contribution 

to the model’s convergence, enabling more confident and informed layer selections. 

This approach represents a significant advancement in research, underlining the 

pivotal role of this concept.  

Thirdly, a new method in pipelining the transfer learning process has been introduced 

by developing the two-step approach (the conflation of features and dynamic layer 

selection). While used in CNNs, this approach applies to other deep neural network-

developed pre-trained models, such as recurrent neural networks (RNNs). The 

simplicity of this approach allows the application of this method to new transfer 
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learning application cases, reassuring users that it can be easily implemented since 

their models use features in their input data and their layers contain weights. 

Finally, Introducing new methods that use the various pre-trained models and datasets 

plays a crucial role in building user confidence in using transfer learning. This 

confidence significantly shifts from the previous trial-and-error process in selecting 

suitable layers and models for a target dataset. The new approach encourages users to 

apply pre-trained models, knowing it will achieve good results with minimal negative 

transfer due to selecting quality data points and suitable fine-tunable layers. 

1.10 Research Scope 

This research focused on transfer learning, addressing the adaptation of domain 

textural data features and fine-tuning involving dynamic layer selection. The study 

proposed developing a model for domain data adaptation and dynamic layer selection 

methods to improve accuracy performance. The adaptation process involved transfer 

learning methods that involved fine-tuning parameters, divergence measures and data 

adaptation procedures. The study used CNN pre-trained models and image data with 

data acquired from public repositories and pre-trained models from the TensorFlow 

Hub. This acquisition process reduced proprietary and time challenges. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Artificial neural networks can model non-linear relationships, which can model 

complex relationships (Zhang et al., 2024). For a neural network to classify data 

correctly, the inputs go through the layers until the network gives an output. However, 

the output may differ from the expected output due to errors, and the output has to be 

taken through a backward propagation process, updating each weight in the layers. The 

process then reiterates until the output is satisfying.  

This chapter addresses the literature on transfer learning and the distance metrics 

considered in the research. 

2.2 Convolutional Process 

Convolutional neural networks have been on the frontline in advancing deep learning; 

therefore, more transfer learning work has been done in this area. The CNN pre-trained 

model filters will be used to evaluate the weights in this research. Figure 2.1 illustrates 

a CNN. The convolution layer receives the input image and convolves on it, extracting 

features using the kernel matrix (filter). Low-level features are extracted from the 

receptive field (area or matrix under the filter’s focus). This convolutional process 

produces filters, mostly stacked depending on the channels in the image forwarded to 

the pooling layer after applying the activation function. The process ends by classifying 

the samples in the fully connected (FC) layer, which will be followed to identify the 

knowledge learned in the pre-trained models. 
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Figure 2.1: Convolutional Neural Network 

Given a Kernel matrix (weight filter) 𝐻 with 2𝑥2 dimensions and an input image 𝐺 of 

3𝑥3, 𝐻 extracts the low-level features on 𝐺 and the extraction process, and the weight 

sharing introduced by 𝐻 reduces the parameters in the convolutional process. 𝐺 and 𝐻 

are illustrated in Figure 2.2. The output 𝑂 is an array (map) of filters with lower 

dimensions than the original input image pixels. The output 𝑂 can be expressed as 

follows:                  

   𝑂(1,1) = 𝐻(1,1)𝐺(1,1) + 𝐻(1,2)𝐺(1,2) + 𝐻(2,1)𝐺(2,1) + 𝐻(2,2)𝐺(2,2)   (2.1)  

 

Figure 2.2: Convolutional Layer Filtering Components 

𝑂(1, 1) then becomes the weighted average of the filters in 𝐺 (receptive field); the 

convolutional process is a multiplicative operation of the weight filter and the input. 

  



 

12 

2.3 Transfer Learning Methods 

The transfer learning process can be broadly classified based on the label and feature 

space settings. The methods address the label or feature knowledge transfer from the 

source to the target task. These methods have been described in detail in sections 2.3.1 

and 2.3.2. 

2.3.1 Label-based Categorization 

This category uses label information and is classified into transductive, inductive, and 

unsupervised. Transductive transfer learning uses label information from the source 

domain, inductive transfer learning uses label information from the target domain, and 

unsupervised transfer learning uses unknown label information for source and target 

domains. 

2.3.1.1 Transductive 

This category uses label information from the source domain. The source and the 

target tasks are similar. The target data does not have labels and has different domains, 

as illustrated in Figure 2.3. Transductive learning learns a specific function, while 

inductive learning addresses a general function (Lavine et al., 2024). An example of a 

Transductive learning algorithm is the k-nearest neighbour algorithm since it uses the 

training data directly each time when conducting prediction.  

Transductive transfer learning has been employed in various domain adaptations, such 

as brain magnetic resonance imaging (MRI) segmentation, to mitigate the impact of 

domain shift (Kushibar et al., 2021). Rezaei et al. (2018) developed an unsupervised 

transductive transfer learning method that finds the shared and specific features across 

the source and target domains. The technique maps both domains into sub-spaces with 

minimal conditional and marginal distribution divergence. Chen et al. (2023) used the 

Transductive method (incremental learning algorithm) using a Support Vector 

Machine (SVM) and gave the fastest method in training transductive SVM. 
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2.3.1.2 Inductive 

The label information comes from the target domain for inducing an objective model 

for the training, as illustrated in Figure 2.3. The source task is also different from the 

target task. However, the target data could have been labelled data despite the 

relationship status in the domains. An example of inductive transfer learning is a team 

of robots in a competitive game where they need to keep the ball away from the 

opponents, with the need to pass the ball to their teammates and maintain a safe distance 

from their opponents. The main goal of inductive learning is to create a model using 

training examples. These examples can be used for classification or modelling the 

probability distributions between interconnected variables. When creating model 

algorithms, this type of learning relies on assumptions about the actual distribution of 

the training data. These assumptions, also known as bias, are based on a space 

encompassing possible models. The inductive bias for the target task is derived from 

knowledge obtained from the source task. Some methods narrow this space, eliminating 

specific search steps, while others expand. 

The learning method has been used to tackle the issue of drug response prediction by 

utilising pharmacogenomics data (from a single or multiple sources). Sharifi-Noghabi 

et al. (2020) employed inductive transfer learning in multitask learning, gene 

expression analysis and adversarial domain adaptation. In a further application of the 

method, Myung et al. (2022) used the PAC Net (Prune, Allocate and Calibrate) to 

prune model weights and enhance transfer learning using inductive transfer learning, 

while Meli et al. (2021) researched encoding and reasoning task knowledge in surgery 

using inductive transfer learning - a challenging yet crucial aspect by using logic 

programming and a set of answers for a limited number of basic surgical tasks.  

Inductive transfer learning can optimize learning performance in computing while 

minimizing the need for user training samples. This approach tailors user training 

examples by combining them with training examples. It can be considered an all-round 

development learning system that involves using the samples as training data and 

evaluating the hypothesis. At the same time, the transductive method is observed as an 

examination-oriented education system that uses both the learning data and the 

unlabeled samples in the learning algorithm. These differences are clearly illustrated 
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in Figure 2.3, adapted from Yones et al. (2017). 

 

Figure 2.3: Transductive vs Inductive Learning 

2.3.1.3 Unsupervised transfer learning 

In this label transfer learning, the label information is unknown for both domains. 

However, the target task is somehow related to the source task. Michau and Fink 

(2021) presented unsupervised transfer learning (UTL) for anomaly detection. They 

suggested incorporating UTL into learning to preserve the natural variations within 

datasets by aligning the distribution and loss functions of different units using a class-

based approach. This method distinguishes itself from UTL methods that typically 

identify dataset structures through clustering or dimensionality reduction techniques.  

Yin et al. (2024) used Unsupervised Transfer Learning (UTL) in question answering and 

has also been applied alongside k-means clustering to classify material image data 

(Cohn, 2021) that was tested on a VGG16-trained model and reducing feature 

dimensionality through principal component analysis (PCA). The method gained over 

99% accuracy.  

Further works on UTL has been done in spoken language understanding (SLU) tasks 

using the Embeddings from the Language Model (ELMO) to obtain word 

representations of unlabeled data using a simplified ELMO Light method (Siddhant et 
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al., 2018) while Jahanian et al. (2024) conducted a study exploring the use of 

unsupervised transfer learning in biomedicine for image clustering in chest 

radiography. The method has also been used to enhance person re-identification tasks, 

as Chen et al. (2023) noted, addressing the challenges of poor domain adaptation.  

2.3.2 Feature Space Categorization 

This category looks at the feature space knowledge transfer between the source and the 

target domains in transfer learning. The various feature-space transfer learning 

methods can be further classified into either homogeneous or heterogeneous; 

2.3.2.1 Homogeneous 

This feature space classification assumes the source and target datasets are in the same 

domain or differ in marginal distributions. The method aims to bridge the gap in data 

distributions between domains in cross-domain transfer (Guo et al., 2024). 

In their study, Kirielle et al. (2022) suggested incorporating structured attributes from 

personal data into entity resolution tasks. The researchers used a label generator for 

target instances and a classifier that assigned pseudo labels to improve precision by 

13% and recall by 50% across seven datasets. In another study, Du et al. (2019) 

focused on online transfer learning methods that effectively handle situations where 

target data arrives online using a Hedge strategy that leveraged knowledge from both 

domains and aimed at reducing distribution and conditional distribution disparities 

through feature representations. In a further study, an asymmetric homogeneous 

feature-based transfer learning technique was used in convolutional neural networks to 

address the need for the large amounts of data required in training neural networks for 

functional Near Infrared Spectroscopy (fNIRS) – for recognizing brain activities and 

their translation (Chen et al., 2020). This approach achieved a higher accuracy of over 

25% compared to the traditional CNNs. 

2.3.2.2 Heterogeneous 

This feature space classification assumes that the source and target domains are 

different. A good task example is the text-image classification. They can be symmetric 
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or asymmetric. For symmetric, feature transformations are learnt from the source and 

target spaces onto a joint subspace for adaptation in the target domain. The common 

representation of the two in the common subspace can then be utilized by a traditional 

algorithm such as the SVM. For the asymmetric, the source space features are aligned 

with the target space features, bridging the space gap and reducing the transfer 

problem, but it works well when both spaces have the same class label space.  

Heterogeneous feature augmentation refers to using features and dimensions and 

applying transformations to both the source and limited target features (Bao et al., 

2023). In a study by M ozafari and Jamzad (2016), the Heterogeneous Max margin 

Classifier Adaptation (HMCA) technique was introduced. The HMCA applies domain 

adaptation methods to the target domain while utilizing the parameters of a classifier 

trained on the source samples, enabling the learning of a margin classifier for the target 

domain by adapting it from the source classifier.  

Wu et al. (2019) introduced the Heterogeneous Online Transfer Learning (HetOTLMS) 

algorithm for online transfer learning with sources tested on a fashion dataset. This 

algorithm divides instances into two groups: one that shares feature space with a source 

domain and another for training new learners in the target space. Weights are adjusted 

in both domains to adapt to the target domain effectively. More HTL studies include 

Chui et al. (2023), which introduced multiple incremental transfer learning. The 

method gave an accuracy improvement of 4.35% compared to the previous studies; 

Moon and Carbonell (2017) introduced the Attention heterogeneous transfer learning 

that learns from both domains by selecting an optimized subset of datasets. The 

objective is to minimize the differences between datasets and determine which 

elements should be prioritized for transfer.  

In the transfer learning process, four main approaches are introduced (Zhuang et al., 

2021): 

a) Instance-based transfer learning 

This approach supposes some parts of the source model’s data are reusable in an 

instance weighting strategy. This process is done due to reduced marginal distribution. 

The samples that are likely to lower the adaptation are removed. The model is then fine-
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tuned, or a new model uses the remaining data points (Zhang et al., 2023). This process 

can be symmetric or asymmetric.  This transfer-learning approach has been applied in 

various studies, including to improve Soil Organic Carbon (SOC) value estimations – 

from soil and geochemical factors (Bursac et al.,2022). The SOC values in areas used 

for croplands are derived from source domains, including cropland and grassland 

areas.  

Lam et al. (2022) developed a speech synthesis system using 45 target datasets that 

differed from the source voice using the text-to-speech (DC TTS) model. In automating 

vision-based quality identification of Longjing tea, Zhang et al. (2023) used a 

MobileNetV2 to extract features from both the source and target datasets using the 

TrAdaBoost algorithm. 

b) Feature-based 

This approach involves transferring knowledge from the feature level to create new 

ones. A "good" feature represents the target domain. Unseen network attacks can be 

detected using feature-based transfer learning since the machine learning approaches 

used in these detections rely on the features identified (Jung et al., 2021) with network 

intrusion detection. The feature-based approach has further been used by Sevani et al. 

(2023) through the weight-based feature transfer learning (WbFTL) technique to 

address the class imbalance between transfer learning domains. The approach involves 

creating a representation of features using class feature distance and selecting relevant 

features through Analysis of Variance (ANOVA) and Support Vector Machines (SVM) 

as the features classifier. In a study by Karim and Van Zyl (2021), a method for 

establishing a feature space for transfer learning was introduced, aiming at reducing the 

disparity between the source and target domains while preserving data features. 

c) Parameter-based 

This transfer learning approach involves transferring knowledge from shareable 

parameters in both target and source tasks. The learning approach transfers knowledge 

across the tasks via the shareable parameters. In a study by Pinto et al. (2022), 

parameter-based transfer learning was used to predict a building’s behaviour, and they 

proposed a data-driven model that captures physical processes in high dimensions. The 
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researchers used over 250 data points, showing similar climate patterns across different 

schedules even with limited data availability and efficiency.  

Zheng et al. (2023) proposed deep parameter-based transfer learning to tackle 

disruptions in tokamaks. They utilized a J-TEXT tokamak model and 20 discharges 

to predict disruptions in tokamaks by leveraging knowledge gained from existing ones. 

This approach enabled the prevention of plasma confinement termination and device 

damage.  The approach has further been used to enhance the parameter selection in 

extreme learning machines (ELM), as noted by Wang et al. (2022), where they 

introduced a parameter projection framework.  

d) Relational-based 

This transfer learning approach focuses on the problems in the relational domain, 

defining the relationship between the two domains. In a study by Li et al. (2020), a 

proposed relational feature transfer algorithm directs the transfer procedure that uses 

relations and causality knowledge to tackle the challenge of practical transfer learning 

in relational-based transfer learning. Strömfelt et al. (2020) introduced a further study 

addressing domain relationships, which addresses relations systems to maintain 

coherence across properties and domains when addressing relational transfer learning.  

Other categorizations of transfer learning methods are quickly gaining attention, 

including instance, network, adversarial and mapping-based. Furthermore, these 

categorizations can be viewed by combining the data, model approaches, and properties. 

With the new methods, four have been shown to deliver great potential in transfer 

learning (Liang et al., 2019): 

(a)   Transitive transfer learning 

This type of transfer learning uses domain datasets with an intermediary dataset when 

there is a weak similarity between domains. An et al. (2021) introduced a transitive 

transfer learning model that assists in detecting SAR (aperture radar) targets when there 

is a scarcity of labelled data in SAR images. This scarcity poses challenges for 

improving deep convolutional neural network (DCNN) detection methods. The model 

allows for generalizing features and specific variations in the target domain. The results 
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show that transitive transfer learning is an approach that helps achieve state-of-the-art 

results in SAR.  

In a further study by Sineglazov et al. (2022), transitive transfer learning was proposed 

for tuberculosis (TB) diagnosis using ImageNet and LIDC IDRI as the source domain 

and tuberculoma TB as the target dataset.  

(b) Lifelong transfer learning 

This type of transfer learning involves new learning methods that use intelligent agents, 

thereby learning new knowledge in a new environment. In the field of agents, lifelong 

transfer has been employed to enable teams of agents to adapt to new tasks by utilising 

autonomous instructions. This adaptation involves controlling and coordinating 

policies. It has been successfully applied in both simulated (using sequential decision-

making (SDM)) and physical robot settings (Zhu et al., 2024). Furthermore, lifelong 

transfer has been used in Autonomous systems operating in environments that need to 

learn and enhance their existing knowledge. For example,  Irfan et al. (2021) developed 

an autoencoder that leveraged convolution filters for extracting image features.  

(c) Transfer reinforcement learning 

This type of transfer learning involves using reinforcement agents capable of 

transferring knowledge and behaviours across many tasks and domains. The approach 

has successfully addressed Markov decision problems (MDPs), enhancing the learning 

process for reinforcement learning agents by leveraging the knowledge acquired by 

MDPs. One strategy of using transfer reinforcement learning involves using auto-

pruned decision trees to extract knowledge - the trees are retrained using data samples 

generated by the policies of trained models. The knowledge-based transfer learning 

algorithm works with discrete and continuous action spaces (Lan et al., 2022).  

This approach has been used by Li et al. (2022) through kernel discrepancies (kMMDs) 

to construct multiple deep transfer learning networks that facilitate single-source target 

transfers in addressing fault diagnosis in scenarios with multiple source domains. The 

differences in these kernel functions helped identify features between the domain 

spaces, aiding the DLTNs in their identification tasks. It also has promising capabilities 
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in dealing with differential power grid rescheduling, especially considering security 

constraints. The process occurs in two situations; one deals with security-constrained 

scheduling for power grid configurations, and the other involves domain transfer 

learning, which is compared to the pre-trained model (Wang & Tang, 2022). 

(d) Adversarial transfer learning 

This transfer learning type involves generative adversarial networks (GANs) to exploit 

its networks. Examples include image-to-image translation (Wang et al., 2021) and 

focusing on the input data by Zhao et al. (2022) to develop the MFAT NER (Multi-head 

attention Feature fusion Adversarial Transfer NER) model. The model addresses the 

problem of insufficient labelled data in Named Entity Recognition (NER) tasks. The 

model uses the head attention to capture relevant information from various sentence 

subspaces for semantic interaction. Furthermore, the model effectively represented 

both characters and words.  

Another application of adversarial transfer learning is seen in COVID-19 diagnosis, 

as Alhares et al. (2023) noted. In their research, a model named AMTLDC successfully 

leveraged similar features from different sources despite the inherent and natural 

differences in datasets when predicting COVID-19 from images using a CNN event 

with limited data available. 

According to Zhuang et al. (2021), transfer learning can use semi-supervised learning 

(instances), multiview learning (features) and multitask learning (tasks). Further 

categorization is based on data adaptation: 1) Feature-based focusing on methods that 

reshape the data feature spaces. 2) sample-based, focusing on correcting the bias in 

the data sample procedures, and 3) inference-based, focusing on incorporating data 

adaptation into the parameter estimation procedures (Kouw & Loog, 2021). However, 

despite the many methods that have been developed and categorized in transfer 

learning, classifier adaptation (Shi et al., 2023), instance re-weighing (Molina-

Cabanillas et al., 2022), deep adaptation (Xu et al., 2020; Xu et al., 2023), universal 

representation (Zhang et al., 2020) and adversarial adaptation methods are the recent 

transfer learning methods frontiers.  

In the transfer learning process, the source model (pre-trained) undergoes fine-tuning. 
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Fine-tuning is adjusting the source model’s parameters to allow knowledge transfer to 

the target model (Han et al., 2024). The method is a primary deep-learning transfer 

technique that can utilize various strategies: optimization of all the pre-trained model 

parameters, fine-tuning the last few layers while freezing some retrained models 

(usually initial layers), and optimizing the last layers. Two main approaches have 

recently been adopted for standard fine-tuning (Li et al., 2022): good data points or 

regularization with source-task-related parameters. 

2.4 Feature-Based Transfer learning 

Feature-based transfer learning optimizes feature representation in both domains (Iman 

et al., 2023). The initial step involves extracting features from the data, after which 

the new feature representation occurs from both domains before being fed into a 

classifier. This approach to transfer learning ensures that the distance between the 

source and the target feature mapping reduces the maximum transferability of 

knowledge (Priyatikanto et al., 2023). For example, in convolutional neural networks, 

low-level features like edges and curves are extracted to provide better abstraction and 

better represent new data sets (Zhao et al., 2024). The transfer learning in this method 

is conditional on two events: selecting data with similar features in the source and the 

target domains and using data from the source domain, which would improve learning 

when the acquired knowledge is used in the target task. In this study, the samples with 

similar textural features in both domains were selected to reduce the knowledge 

divergence, which improved new domain adaptability. Furthermore, this learning 

method reduces the probability distribution differences between the two domains. 

2.4.1 Label Efficient Learning of Transferable Representations across Domains 

and Tasks 

Luo et al. (2017) used a Generative Adversarial Network (GAN) to extract the 

Kullback-Leibler divergence comparable features from the target and source domain 

images utilising two CNNs, one for each domain. The researchers also used a softmax 

function with a temperature variable that regulated the semantic loss and the usable 

source domain samples: high temperature meant samples were closely related to 

multiple classes and one class when it was low. The researchers only used a ResNet 
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architecture. Their research differed from this work in that 1) They used only one 

architecture while ResNet50, InceptionV3, DenseNet169, DenseNet121, MobileNet, 

MobileNetV2 and VGG16 were used. The one architecture used utilized the residual 

blocks, while this work considered architectures that did not use residual blocks - and 

used convolutional layers. 2) The researchers used images and extended the work in 

video action recognition in per-frame prediction. In contrast, this work used images 

only. 3) The feature extraction used convolutional layers, unlike the researchers who 

used GAN capabilities. 

2.4.2 Training SVMs Using Deep Features 

In this study, Nanni et al. (2021) aimed to identify and use high-quality textural 

features from pre-trained models’ middle and upper layers of the models. Principal 

component analysis (PCA) and discrete cosine transform (DCT) were used for 

dimensionality reduction, but poor PCA performance restricted the researchers from 

using DCT. Feature analysis used the local binary pattern (LBP) with ranking utilising 

the Chi-square. The DCT helped select features for each image channel. Due to its good 

results and short training time, the support vector machine algorithm was added as the 

classifier on the pre-trained models: ResNet50, GoogleNet and DenseNet201.  

In the researchers’ study, the pre-trained models utilized layers in the middle, one layer 

in every ten and the last four layers. Their research differed from this study: For 

example, 1) The selection of layers utilized the model’s middle and last layers 

compared to this work’s utilization of dynamically selected layers. 2) The analysis of 

the textural features relied on the linear binary pattern (LBP) algorithm, while this work 

utilized both the LBP and the grey-level co-occurrence matrix (GLCM) algorithms. 3) 

The ranking of the features in the researchers’ work involved using Chi-square. In 

contrast, this work utilized the Kullback-Leibler divergence measure to identify the 

images with the below-average DKL value of the extracted features in an image and low 

DKL values when comparing the weights in the layers.  4) The researchers used three 

pre-trained models, while this work had additional models and even evaluated the 

algorithm’s performance on MobileNets. However, the researchers’ work gave a 

consistent performance on thirteen virus test datasets. 
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2.4.3 Borrowing Treasures from the Wealthy (Selective Fine-Tuning) 

Ge and Yu (2017) utilized images in the target domain whose low-level characteristics 

with high probability match the source domain images to reduce data insufficiency in 

the target domain. The study used Gabor filters that returned response filters and CNN 

layer kernels through histograms. The features in the domains were compared using the 

k-nearest neighbour approach. Moreover, the domain data was used simultaneously to 

identify the required subset to bridge the data insufficiency. Their study used three pre-

trained models: GoogleNet, VGG-19 and AlexNet. It used four publicly available 

datasets: Stanford Dogs120, Oxford Flowers 102, MIT Indoor 67 and Caltech 256.  

This study differed from the researchers’ work: 1) This work used pre-trained CNN 

layers to extract the features, unlike the ones that used the Gabor Filters. Although these 

filters have been known to behave like CNN layers, this work used the exact layers 

used in the final fine-tuning, giving better assurance and confidence - the filter behaved 

similarly to the layers but is not the same. 2) The researchers used only four datasets 

and three pre-trained models, while this work used six pre-trained models and nine 

datasets. 3) The researchers only focused on the features, but this work further 

explored the use of layers in improving the accuracy performance when performing 

transfer learning. These works also had similarities: they had three standard datasets 

- MIT Indoor 67, Caltech 256, and Stanford Dogs 120. Both explored extracting 

features from the CNN layers, although utilising different techniques. 

2.4.4 CNNs Texture Classification Using Filter Banks 

This study used filter banks to explore textural features in a simple Texture CNN 

architecture (Andrearczyk & Whelan, 2016). The AlexNet layer output provided the 

textural descriptors: two CNN layers with an energy-pooling layer were used in this 

process and connected to a softmax function for the classification process. The 

researchers used one pre-trained model - AlexNet but tested the technique on three 

datasets: ImageNet-S1, ImageNet-S2 and ImageNet-T. These three datasets were 

subsets of the larger ImageNet dataset.  

The researchers’ approach differed from this work in the following ways. 1) It used 

the filter banks to extract the needed textural features with descriptors provided by the 
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output layer of the pre-trained model. This extraction and description of the features 

varied from this work, which involved the CNN layer extracting the features with 

description using the GLCM and LBP descriptors. 2) The researchers employed three 

datasets and one pre-trained model, which could be argued as insufficient, unlike this 

work that utilized nine datasets and six pre-trained models. 3) The datasets used are 

subsets of ImageNet with no new datasets, while this work introduced other datasets to 

identify the similarities of the ImageNet pre-trained models. This work also combined 

dynamically selected layers to the pipeline, which improved the transfer learning 

process. However, the two also had similarities: they identified similarities between 

the target and source domain datasets (which comprised ImageNet samples). The 

researchers also used the softmax function, like in this work, for classification during 

fine-tuning. The researchers’ use of the energy-pooling layer was essential in 

improving the descriptors, and the use of middle layers allowed weight sharing, 

allowing efficient yet straightforward integration. 

2.4.5 Maximum-Likelihood Principle and DCNNs in Approximate Nearest 

Neighbour Search 

Savchenko (2017) introduced the Gaussian Mixture Model (GMM) to extract intensity 

features from images with efforts to identify the dissimilarities between them, 

normalizing intensity values across the voxels of the image. The nearest neighbour 

rules and probability dissimilarity measures were used in the ranking. This study used 

two pre-trained models - VGG13 and ResNet50 with the random forest as a classifier. 

This approach differed from this work in the following ways: 1) It relied on the 

Gaussian function to reduce image noise and extract the features. In contrast, this work 

depended on the convolutional layers to extract the images’ features. 2) The researcher 

used two pre-trained models, while this work used nine datasets and six pre-trained 

models to validate the introduced approach. However, similarities exist: 

a) Both tested the concepts on ResNet and VGG pre-trained models. 

b) Both utilized dissimilarity measures - the researcher used the probability 

dissimilarity measure, while this work used the Kullback-Leibler divergence 

measure based on probability distributions. 
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2.4.6 EEG-Based Human Intention Recognition Using Spatio-Temporal Pre-

Serving Representations 

During the transfer learning process, knowledge loss can happen, and Zhang et al. 

(2020) used a deep neural network approach that used two recurrent neural networks 

(RNNs) for time and space dimensions in the transformation of a 1-D vector to a 2-D 

vector for Mesh Electroencephalography (EEG). The approach extracted the spatial 

features from the data meshes using the RNNs, where zero padding was applied on the 

convolutional layers to prevent information loss. This new approach addressed the 

complex pre-processing issues in a standard neural network as the meshes classified 

the segments as k-categories. Their work used an EEG dataset (PhysioNet) and data 

from an actual case study.  

The researchers’ work differed from this study in the following ways: 1) The feature 

extraction was done using RNNs, while this study used convolutional layers of the pre-

trained models. 2) The researchers aimed to reduce the information loss between 

samples in both domains, while this study focused on the divergence of the samples 

between the source and target domains. 3) The researchers cited the inapplicability of 

their approach to mobile pre-trained models due to the large number of parameters 

introduced in their approach. In contrast, this study introduced new parameters and 

worked well with MobileNets. However, the two approaches utilized artificial neural 

networks to detect and extract patterns from the data points. 

2.4.7 Video Semantic Recognition Using Adaptive Semi-Supervised Feature 

Analysis 

Luo et al. (2017) introduced an optimal similarity graph with semi-supervised learning 

in joint feature selection to address the curse of dimensionality in selecting low-level 

visual features. This approach factored in the lack of labels in video semantic 

recognition, making the process expensive and time-consuming. Semi-supervised 

learning facilitates the discriminative knowledge of the original features in the labelled 

and non-labelled subsets. The researchers assumed that the close labels had a higher 

similarity that made the joint feature selection easier to learn the optimal similarity 

simultaneously in the local structure.  
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The use of optimal similarity graphs helped to reduce the curse of dimensionality while 

still capturing the features in the local structures of the video. The graph was updated 

when two video pairs were compared based on their labels. The researchers used their 

approach on five datasets. This work introduced an excellent approach that compared 

the source and target domain data points based on labels while evaluating the intrinsic 

local features, unlike this study’s method looked at the textural elements and compared 

them based on informational divergence. The researchers also introduced semi-

supervised learning, unlike the study approach that relied on convolutional neural 

network learning and still extracted features using the convolutions. 

2.4.8 Human Activity Recognition Using Semi-Supervised Recurrent 

Convolutional Attention Model 

Chen et al. (2020) introduced a pattern-balanced RNN attention model to address 

human activity recognition (HAR) labelling in semi-supervised learning. This method 

extracted the salient features from the data while addressing the inter-class variability 

and similarities, which are significant challenges in HAR processes. The attention 

mechanism in this approach was used to balance the less-balanced dataset from the 

multi-modal sensory data. It ensured that only salient features were used while limiting 

the irrelevant signals from the data. The approach learned the patterns through 

reinforcement learning and used the partially observable Markov Decision Process 

(POMDP) in the training and optimisation phases. The researchers’ approach used two 

datasets to evaluate the concept.  

This study’s approach differed from the researchers’ in the following views: 1) The 

researchers addressed the imbalance in the domain datasets. In contrast, this study 

looked at the divergence in information between the data points in the domains to 

determine the best-suited data points based on the textural features. 2) The researchers 

introduced attention and reinforcement learning into their model in balancing the 

dataset, while this study considered the use of CNNs and their default learning process. 

However, the two approaches looked into using features in the domains to identify the 

required features: the researchers balanced the datasets, and this study found similar 

low-level features for use in creating quality target datasets for fine-tuning. 
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2.5 Instance-based Transfer learning 

Instance-based transfer learning focuses on adjusting the weight values for the source 

domain data with similar samples in the target domain (Iman et al., 2023). The main aim 

of changing the source value weights is to improve the target model’s chances of using 

relevant information from the source in the transfer learning process. Typical 

approaches used in this learning involve mean weight assignment to the source samples 

of the source and the target domains and the use of a binary classifier in estimating the 

source sample weights. The label-attribute relationship ensures that the deterministic 

list of attributes and the label space’s joint probabilities come from the class and the 

attributes. In this work, the weights were not adjusted but used to determine the layers 

used in the transfer learning process. The various methods of selecting layers for fine-

tuning are documented in the following research findings: 

2.5.1 Adaptive Fine-Tuning 

Guo et al. (2019) presented the SpotTune technique to improve dynamic global fine-

tuning strategies by selecting dynamic layers’ in a network. The researchers used a 

light network with a discrete probability distribution that evaluated suitable layers: It 

used a Gumbel softmax sampling. The method used ten datasets and was evaluated on 

the ResNet50 and ResNet26 architectures with last k-layers, stochastic fine-tuning, 

feature extractor, and standard fine-tuning as the baselines. This study differed from 

the researchers’ work in the following ways: 1) The selection of layers utilized weight 

divergence. In contrast, the researchers used a decision policy based on the Gumbel 

softmax sampling. 2) The selection of layers was evaluated on six pre-trained models 

to the two used by the researchers. 3) It used nine to ten datasets in the researchers’ 

approach, and 4) The researchers used stochastic fine-tuning as a baseline, while this 

study utilized the other three baselines. However, the researchers noted that introducing 

the method reduced the parameters required for fine-tuning. 

2.5.2 Adaptive Filter Fine-Tuning for Deep Transfer Learning (AdaFilter) 

In this approach, Guo et al. (2020) proposed the AdaFilter, which wisely decided the 

filters to use in pre-trained model layers: it addressed the reusability of filters in a pre-

trained model, reducing the number of parameters and reducing overfitting. The 
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recurrent neural network was responsible for selecting the filters, which determined 

the fine-tuneable layers using the dataset’s low-level features, as Tagnamas et al. 

(2024) explained. In this approach, the researchers utilized seven datasets: Aircraft 

(Chen et al., 2024), MIT Indoors 67, Omniglot (Lulu et al., 2024), UCF-101 (Ji & 

Tekalp, 2024), Caltech 256-60, Stanford Dogs, and Caltech 256-30. The approach 

used a ResNet50 model with fine-tuning half, standard fine-tuning, L2-SP (Feng et al., 

2024), and random policy as the baselines. The researchers’ work was different from 

this study in the following ways: 1) Only one type of pre-trained model was used: 

ResNet50, which used residual blocks; this work evaluated other pre-trained models, 

including MobileNets to evaluate the performance of the introduced approach in low-

resource settings. 2) The approach was based on an RNN that selected the filters, while 

this study’s layers were selected based on the weight filters but from the Convolutional 

layers. The two approaches were evaluated on similar datasets: Stanford Dogs, MIT 

Indoor 67 and Caltech 256. 

2.5.3 Flex-Tuning 

Royer and Lampert (2020) introduced the Flex-tuning method. In the technique, each 

layer was analyzed while ignoring the rest. Early stopping was used to avoid 

overfitting and monitoring the validation dataset. The layer units were tested iteratively 

until the best layers were selected to participate in the transfer learning process. The 

Flex-tuning approach was evaluated on three architectures: five-layered CNN, three-

layered CNN and one large Inception2 pre-trained model that utilises four datasets: 

PACS, MNIST, ILSVRC2012 and CIFAR. The results were baselined on last-k layers, 

scaling and shifting operations (Lian et al., 2024). The researchers’ approach differed 

from this study in the following ways: 1) The layers were selected by evaluating each 

model’s layer at a time. In contrast, this study’s approach considered all the layers 

simultaneously. 2) The approach used one pre-trained and two custom models, while 

this study tested its approach on six pre-trained models with varying architectures. 3) 

The approach used four datasets, while the introduced method used nine. The two 

approaches also shared datasets and one architecture - The inception model.  
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2.5.4 Using Genetic Algorithm in Transfer Learning Layer Selection 

The researchers’ study introduced the PathNet algorithm using genetic algorithms 

(Nagae et al., 2020). The genotypes represented the layers’ weights, with the layers of 

the highest validation accuracies being used in the transfer learning process. In 

selecting the layers, the layers were assigned binary numbers, with one assigned to a 

candidate layer and a zero to a non-selected layer frozen during the transfer learning 

process. This approach evaluated the method on the CIFAR-100 dataset and the 

InceptionV3 pre-trained model. Furthermore, two baselines were used: training from 

scratch and the standard fine-tuning process.  

The study’s approach differed from the introduced method in various ways. For 

example,1) Divergence of signed weights was used in selecting weights, unlike the 

researchers’ work that focused on the validation accuracies. 2) The introduced method 

focused on the divergence of the weights, while the researchers’ work focused on the 

genetic concepts applying binary values to the model’s layers. 3) The study also used 

only one pre-trained model and dataset. In contrast, the introduced approach used nine 

datasets and six pre-trained models. 4) The introduced method used the last k layers 

and feature extractor to the researchers’ baselines. The researchers extended these 

layers’ selection methods using the Stepwise PathNet that utilized the tournament 

genetic selection algorithm (Imai et al., 2020). The new approach was tested on the 

SVHN21, Food-101 and CIFAR-100 datasets. 

2.5.5 Adaptive Fine-Tuning in Transfer Learning 

Vrbančič and Podgorelec (2020) presented the DEFT algorithm for dynamically 

choosing fine-tunable layers. This algorithm decides the suitable layers using a 

differential evolution algorithm. The layers were assigned binary values, and the 

algorithm gave their predictive performance - the process of selecting, binary 

assignment and evaluation iterates until an optimal desired performance is achieved. 

The process only considered layers with the least cross-entropy. The researchers tested 

the approach using the Osteosarcoma dataset on a VGG architecture.  

The researchers’ approach differs from this study’s approach in several ways. 1) The 

approach utilized a differential algorithm in the selection and evaluation of the pre-
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trained model layers, while this study selected and evaluated the layers based on 

weights in the pre-trained model layers, and 2) The approach was evaluated on one 

dataset and one pre-trained model while this study considered nine datasets and six 

pre-trained models. The researchers’ approach was similar to this study’s approach by 

evaluating the difference between probability distributions (cross-entropy), and the 

study used probability distribution to measure divergence between the layers and the 

domain samples. 

2.6 Distance Measures Literature 

This section examines the literature on distance and divergence measures used in fine-

tuning the new approach methods. The measures are further reviewed at the new 

approach's two stages: layer selection, where similarity distance is used, and conflation 

of features, which uses divergence measures. 

2.6.1 Similarity Distance Measures 

A similarity measure refers to the likeness of two objects or variables based on their 

features (Wang, 2020). Similarity distance measure expresses the likeness using the 

dimensions of the features. Using cosine similarity, the study evaluated weight 

features in the layers filters for their likeness. Other measures that could have been 

used included Euclidean distance, Jaccard similarity, Manhattan distance and 

Minkowski distance. 

2.6.1.1 Euclidean Distance 

This metric calculates the distance between two points by measuring their length. It 

has been used in network applications like clustering (Wang et al., 2022), image 

classification and object detection. The metric calculates the distance in space by 

taking the root of the sum of the squared differences between corresponding elements 

of the two points. Several recent studies have explored the application of distance in 

networks, including improving learning about structural information in fine-grained 

classification tasks by Lu et al. (2022) and in content-based image retrieval by Majhi 

et al. (2021).  
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2.6.1.2 Jaccard Similarity 

The metric returns a quotient of the cardinality of the intersection and the union of the 

sets. As Yuan et al. (2022) noted, it could also measure sets’ dissimilarity. Jaccard 

similarity has gained popularity in clustering, recommendation systems, and natural 

language processing (NLP) applications. Several recent studies have explored using 

Jaccard similarity in neural networks, including the attention U-Net model for multi-

label segmentation and detecting COVID-19 abnormalities (Arora et al., 2021) and 

NodeSim for network embedding (Saxena et al., 2022). 

2.6.1.3 Manhattan distance 

This distance metric gives the sum of absolute differences between points in a set. It 

is also known as the L1 norm. It measures the absolute differences between the 

coordinates of two points, calculated as the sum of the fundamental differences of their 

corresponding coordinates. Various studies have explored using Manhattan distance 

in various AI applications, including image retrieval (Tian et al., 2024), memory 

recommender system (Uyanik & Orman, 2023), and embedding dimensions 

identification for financial time series (Zhu & Huang, 2022). 

2.6.1.4 Minkowski Distance 

This distance metric measures the similarity between two points in a vector space. 

Minkowski distance is a hybrid of Euclidean distance and Manhattan distance. It can be 

defined as the pth root of the sum of the pth power of the absolute differences between 

the coordinates of two points. Minkowski distance is an adequate distance measure in 

various applications due to its flexibility and adaptability. These studies include 

improving EEG feature selection in EEG clustering by Al-Shammary et al. (2024) and 

content-based image retrieval systems (Hameed et al.,  2021). 

2.6.1.5 Cosine Similarity 

This work also looked at the similarity distance between weights using cosine similarity 

and then evaluated the layers using Kullback-Leibler divergence. Cosine similarity 

evaluates the cosine angle between any two vectors: a higher cosine similarity is given 
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by a lower angle. Given two vectors, 𝑢 and 𝑣, the cosine similarity (𝐶𝑜𝑠(𝑢, 𝑣)) can 

be expressed as shown in equation 2.2: 

   

                                      Cos(𝑢, 𝑣) =
|𝑢||𝑣|

∥ 𝑢||||𝑣||
                                                                 (2.2)  

 

The cosine similarity has been documented in the literature, specifically in artificial 

neural networks. In a study investigating footprint image retrieval, cosine similarity has 

been used on closely related images given their picture vectors (Chen et al., 2021). 

                                              Cos(𝑢, 𝑣) = ∥∥𝑢 − 𝑣𝑖∥∥, 𝑖 ∈ [1, 𝑁]                                       (2.3)  

where 𝑢 is the searched image, and 𝑣𝑖 is the footprint in the picture library for the 𝑁 

features. Further work has been done by Jin et al. (2020) to evaluate the effects of 

weight correlation in neural networks and their impact on the generalisation ability of 

the probably approximately correct (PAC) Bayesian framework. In a CNN model, the 

correlation can be expressed as: 
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               (2.4)  

where Cos (𝑤𝑙) is the cosine similarity value between the model layers filters, and 𝑤 

is the weight filter. The 𝑤𝑙𝑖𝑧

′  and 𝑤𝑙𝑗𝑧

′  are the reshaped 𝑧𝑡ℎ columns of the 𝑖 and 𝑗 filters. 

Karat et al. (2023) have done more work using cosine similarity to evaluate neurite 

density and dispersion in hippocampus microstructural distributions. Pieterse and 

Mocanu (2019) used the distance measure to assess the similarity between any two 

neurons in a model’s layer with a cosine similarity value close to zero. This value 

indicates a closer similarity between the neurons and, therefore, a meaningful 

relationship. This method predicted the next neuron’s importance in the model 

learning pattern. 
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2.6.2 Divergence Distance Measures 

Divergence refers to a function that measures the difference between two probability 

distributions. This study utilized the probability distributions of the weights, precisely 

the Kullback-Leibler divergence. However, other divergence measures were also 

considered in this work comparison. These include Hellinger distance, Wasserstein 

(Earth Mover) distance, Bhattacharyya distance and Jensen-Shannon distance. 

2.6.2.1 Hellinger Distance 

This divergence measure evaluates the distance between two probability distributions 

that share a probability space. The distance value ranges are 0 and 1, with 0 giving the 

least distance (Lee et al., 2024). The measure has been used in various studies: in 

modelling certification frameworks to ensure distribution robustness for bounded loss 

functions and black box models (Weber et al., 2022) and in word embeddings for 

sentiment analysis (Agrawal & Moparthi, 2023). 

2.6.2.2 Wasserstein Distance 

This divergence measure is based on the optimal transport theory, aiming to identify 

the optimal resource allocation and transportation (Okano & Imaizumi, 2022). It also 

measures the divergence between two probability distributions. Compared to the 

Kullback-Leibler divergence, this measure performs similarly but has a higher 

computational cost due to its iterative optimisation process (Bazán et al., 2019). 

Wasserstein distance has gained much attention recently, especially in neural networks 

and transfer learning. Unlike other distance measures, Wasserstein distance provides a 

more meaningful and intuitive measure of the difference between two distributions.  

One of the benefits of Wasserstein distance is its ability to ensure a gradient flow 

throughout the training process. This gradient flow contributes to the stability and 

convergence of the network, which proves vital for tasks like image recognition and 

natural language processing. Furthermore, Wasserstein distance facilitates learning the 

transport map between two distributions, which proves valuable in transfer learning 

applications. Some of the applications include training of GANS (Chen et al., 2021), 

analysis of unsupervised domain adaptation (Si et al.,  2024), domain image retrieval 
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(Zhou et al., 2022) and domain sentiment classification (Du et al., 2020). 

2.6.2.3 Bhattacharyya Distance 

This divergence measure is related to the Bhattacharyya coefficient. It measures the 

overlapping degree between two given probability distributions (Begum et al., 2022). 

This asymmetrical divergence has a faster pace to saturation and sticks to the 

maximum value. It performs worse than the Kullback-Leibler divergence with higher 

source and target mean values. (Bazán et al., 2019). One of the advantages of the 

Bhattacharyya distance is its symmetry - it yields the result regardless of the order in 

which input distributions are considered. Researchers have been exploring the 

integration of Bhattacharyya distance into networks and transfer learning methods for 

years. For example, Van Molle et al. (2021) used it for image classification and 

uncertainty quantification, while Liang and Zhang (2023) used it in L1-norm 

discriminant analysis. 

2.6.2.4 Jensen-Shannon divergence 

This divergence measure gives a total bounded symmetrized Kullback-Leibler 

divergence to the average mixture distribution (Zunino, 2024). Jensen-Shannon 

divergence (JSD) is a popular similarity measure between two probability distributions. 

It is widely used in neural networks and transfer learning applications due to its ability 

to measure the distance between distributions symmetrically. JSD is a modification of 

Kullback-Leibler divergence, which is asymmetric and does not satisfy the triangle 

inequality. JSD overcomes these issues and provides a reliable similarity measure 

between probability distributions.  

The measure has been used in various studies, including automatic fabric inspection 

tasks (Asha, 2022), speech recognition, and sentiment analysis in transfer learning tasks 

(Su & Kabala, 2023). These divergences have suitable measures, but their 

shortcomings were the basis of using Kullback-Leibler divergence in this study: 

The Hellinger gave almost similar results to the Kullback-Leibler divergence with a 

higher time computation complexity; Jensen-Shannon had a higher computational cost 

(Toledo et al., 2022); Bhattacharyya had a higher saturation than Kullback-Leibler 

divergence, and Wasserstein had the iterative optimisation processing. This lower 
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saturation improved the Kullback-Leibler divergence in balancing the computational 

complexity and its performance. 

2.6.2.5 Kullback-Leibler Divergence 

This divergence calculates the dissimilarity between two probability distributions 

(Theodoridis, 2020). Given two probability distributions, 𝑄 and 𝑅, the Kullback-

Leibler divergence (DKL) can be expressed as shown in equation 2.5: 

                             𝐷𝐾𝐿(𝑄 ∥ 𝑅) = ∫  
+∞

−∞

 𝑄(𝑥) log
𝑄(𝑥)

𝑅(𝑥)
𝑑𝑥                                       (2.5)  

 

where 𝐷𝐾𝐿(𝑄 ∥ 𝑅) ≥ 0, with the identity if and only if 𝑄 = 𝑅 almost everywhere for 

𝑅; since 𝑄 and 𝑅 measures are similar. 

The Kullback-Leibler divergence has been used in measuring divergence and is well-

documented in the literature. Liu et al. (2023) used DKL to evaluate the divergence 

between the training and target probability distributions in a medical image 

segmentation model that used diverse image training data. The DKL assessed the 

differences between training and target images using the weights. However, the 

comparison was based on a target’s probability density functions (PDFs) for joint 

image weights. Pimentel and Oranfal (2021) proposed using DKL to address 

procedural data assimilation constraints, and they believe that they work better than 

Kalman filter approaches.  

DKL has also evaluated probabilistic output signals in separating multi-channel speech 

sources in deep neural networks (Togami et al., 2019). The probabilistic signs came 

from deep neural network signals (supervised) in a teleconferencing system. More 

work has been done by Sharvan and Farshad, where DKL compared extracted features 

in an impulse-noise-resistant version of LBP. The researchers aimed to address 

combining LBP features with impulse noise-sensitivity and colour combinations 

(Fekri-Ershad & Tajeripour, 2017). Researchers used the DKL to identify the 

difference in feature distributions between source and target domains in the 
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Bidirectional Encoder Representations from Transformers (BERT) model. The BERT 

mapped the source domain features to the shared feature space in the target domain 

(Cao et al., 2021). Using the DKL, researchers calculated the divergence between 

probability distributions between Pix2pix-generated and authentic images. The 

Pix2pix images were generated by a GAN (deep convolutional) and a cycle-GAN (Lee 

et al., 2021). 

2.7 Summary 

This chapter has highlighted the different types of transfer learning and then narrowed 

it down into feature-based and instance-based transfer learning. The main focus has 

been addressing the literature that uses selecting the most suitable features and the 

proper layers for effective transfer. The review in this chapter shows that choosing the 

most convenient features and suitable layers is essential to many researchers and, most 

importantly, to the transfer learning process. The researchers have used various 

methods, including binary values, freezing layers, GANs, and genetic algorithms. 

However, most methods differed by using one to four models and datasets. They did 

not evaluate the effects of signed weights and feature divergence in the domains 

using conflation for better domain adaptation.  

This study differs from the existing literature by developing a new model that utilises the 

following elements: 

a) The most suitable transferrable features in the source and target domains. 

b) The suitable layers for use in the fine-tuning process and 

c) Using Kullback-Leibler divergence in textural features and fine-tunable layer 

selection improves the transfer learning process performance. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter explains the methodology used in this study. Section one discusses the 

methodology overview, section two discusses the datasets used in the experiments, 

section three addresses the experimental setups, and section four looks at the proposed 

and baseline methods. 

3.2 Methodology 

This study follows the Cross Industry Process Model for Data Mining (CRISP-DM) 

methodology, adopted as the de facto approach in data mining, machine learning, and 

artificial intelligence projects (Solano et al., 2022). The approach is illustrated in 

Figure 3.1, and it has six stages: business understanding, data understanding, data 

preparation, modelling, evaluation, and deployment.  

 

Figure 3.1: CRISP-DM Illustration 

In the business understanding stage, the project's objectives are listed to underscore 

the value of the project. In this research, the following objectives are key: 
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a) To analyze the existing feature and instance-based transfer learning approaches 

using various pre-trained models, models’ parameters, and datasets. The multiple 

datasets, pre-trained models and setups have been explained in sections 3.3, 

section 3.4 and section 3.8  

b) To determine a suitable distance metric for comparison of suitable textural 

features and fine-tuning layers. The study’s metrics have been addressed in section 

3.6. 

c) To develop a fine-tuneable model that utilises textural features, data points, and 

source model weights: a feature-instance-based transfer learning model. The new 

model has been conceptualized in section 3.5 and addressed in section 3.6.  

d) To evaluate the effectiveness of using the developed model with various datasets 

and pre-trained CNN models, comparing it with several standard transfer learning 

baselines. The various baselines for evaluation have been discussed in section 

3.7.3. 

The second stage examines data understanding through the following tasks: data 

collection, data description, data exploration, and data quality verification. In this 

study, we adopted nine secondary datasets discussed in section 3.3. 

The third stage addressed data preparation. The stage has the following activities: data 

selection,  cleaning, transformation, and integration. In this work, the conflation 

approach allowed the selection of quality data points needed in the modelling, and data 

transformation was done by converting pixels to greyscale for easier feature extraction 

and scaling to 224×224 pixels. These steps were necessary to accommodate the inputs 

of the study’s pre-trained models. 

The fourth stage involves modelling – selecting suitable techniques that use the ready 

dataset to meet the study's objectives, generating test designs, building models, and 

assessing. This study evaluated various pre-trained models to fit the developed 

algorithm. A new model was proposed and developed, as discussed in sections 3.5 and 

3.6. 

The fifth stage involves model evaluation, which looks at results evaluation to check 

if the new model meets the business value criteria, process review to address any 
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overlooked procedures and findings and determine the next steps. In this research, 

experiments were carried out to address the objectives, as documented in Chapter 4. 

In the last stage, the approach addresses the deployment of the new model. It contains 

the following tasks: deployment planning, monitoring and maintenance, final report 

development and other reviews. This study's coded new model is deployed in a cloud 

environment (PaperSpace), addressed in section 3.8. Its effectiveness is compared 

using the baseline methods in section 3.7 with unseen data to conclude if the model 

meets the study's objectives.  

3.3 Data Collection 

The study’s data was categorized into source and target datasets. The source dataset 

was used in the conflation process to reduce the poor adaptation to the target domain 

using the closely-related target data points. The target dataset was used in the 

conflation process, training and evaluation of the model. 

3.3.1 Source Dataset 

The dataset utilized for training the trained models was ImageNet. For this purpose, a 

smaller subset called TinyImageNet (Mnmoustafa, 2017), consisting of 100,000 

images, was employed. ImageNet is a widely-used dataset in computer vision that 

offers a collection of labelled images spanning 200 categories, each containing 500 

images. The dataset has over one million labelled images categorized into one 

thousand classes and is considered one of the most comprehensive public datasets. 

The ImageNet dataset offers various advantages, including diversity and size, ensuring 

trained models can effectively identify and classify objects and scenes. This dataset, 

therefore, becomes vital in transfer learning, where models are initially trained on 

datasets and adjusted for more specific tasks.  The dataset has been used in many 

studies, including improving the performance of learning models trained by Yun et al. 

(2021) and addressing label-related issues. Fukuyama et al. (2024) used GANs 

leveraging the ImageNet dataset. Furthermore, Raffel et al. (2020) used it in natural 

language processing in specific tasks. 
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3.3.2 Target datasets  

Nine datasets, described in Table 3.1, were used in the conflation process to select the 

quality images for transfer learning. 

Table 3.1: Distribution of Samples for the Experimental Datasets 

Dataset Training Validation Classes 

CIFAR-10 50000 10000 10 

CIFAR-100 50000 10000 100 

MNIST 60000 10000 10 

Fashion-MNIST 60000 10000 10 

Caltech 256 21425 9182 257 

Stanford Dogs 120 12000 8580 120 

MIT Indoor Scenes 5360 1340 67 

ISIC 2016 900 379 2 

ChestX-ray8 3200 800 4 

3.3.2.1 CIFAR-10 

The CIFAR-10 dataset is an image dataset widely used in computer vision research. 

The dataset has 60,000 images categorized into ten classes. Each class contains 6,000 

images. The dataset has aero planes, deer, dogs, frogs, horses, cars, birds, ships, cats, 

and trucks, with images of 32 × 32 pixels. The CIFAR-10 dataset has been used in 

many studies, such as evaluating image classification on different architectures 

(Antonio et al., 2023), where they found that combining convolutional and dense 

layers produced the best results. In another study, Dosovitskiy et al. (2020) used the 

dataset in image recognition tasks, demonstrating that reliance on CNNs is no longer 

necessary, and a pure transformer applied to sequences of image patches could be used 

for classification tasks. 

3.3.2.2 CIFAR-100 

The CIFAR-100 dataset is more complex compared to CIFAR-10. It has 60000 images 

with up to 100 classes with image dimensions of 32 × 32 pixels. The dataset is an 

essential benchmarking dataset owing to its range of classes. Several researchers have 

used the dataset, including Su et al. (2022), in developing the tensor train network 

architecture Meir et al. (2024) in applying depth networks, where they achieved better 

performance compared to traditional transfer learning approaches. 
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3.3.2.3 MNIST 

This widely-known public image dataset is used in computer vision and machine 

learning tasks. The dataset has 70,000 hand-drawn digits images: 60,000 training 

images and 10,000 testing images. The dataset has been used in various character 

recognition and object detection applications and is often used to evaluate and compare 

machine learning algorithms. Abo-Zahhad et al. (2023) introduced the Fast Embedded 

Capsule Network and Deep Fast Embedded Capsule Network using the MNIST 

dataset, leading to a 58% reduction in trainable parameters. Additionally, Kadam et 

al. (2020) examined the benefits of transfer learning on this dataset and showcased how 

it improves the performance of learning models. 

3.3.2.4 Fashion-MNIST 

The Fashion MNIST dataset is a public computer vision created in 2017 to replace the 

MNIST dataset and, just like the MNIST, contains 70,000 fashion images: 60,000 

training images and 10,000 testing images. The Fashion-MNIST dataset has been used 

in various applications, including image classification, object detection, and generative 

modelling. Meng et al. (2021) used the dataset in their Parallel selective Kernel 

Attention-based Network. Vijayara et al. (2022) used the Fashion-MNIST dataset for 

apparel manufacturers to improve clothing recognition, suggestions, and searches on 

their e-commerce platforms. Additionally, the Fashion MNIST dataset is beneficial in 

applications, including the development of generative models (Wang et al., 2024), 

where their model produced high-quality fashion images using the Fashion-MNIST 

dataset.   

3.3.2.5 Caltech 256 

The Caltech 256 dataset is another public benchmarking dataset. It contains 30,607 

images in 256 object categories encompassing animals, vehicles and various household 

items. The dataset has found applications in object recognition, image classification and 

retrieval. Over the years, this dataset has increased interest, with multiple studies 

showcasing its ongoing significance and value in machine learning research. For 

example, Wang and Sun (2022) introduced a deep neural network structure that showed 

superior performance in image classification compared to existing models on the 



 

42 

Caltech 256 dataset – achieving an accuracy of 95.4%, surpassing other study’s 

benchmarks. In a further study, Luo and Hu (2023) explored the attention mechanisms 

with feature extraction in image classification using the Caltech 256 dataset. 

3.3.2.6 Stanford Dogs 120 

The Stanford Dogs 120 dataset consists of 20,580 dog images representing 120 breeds 

and is used in image recognition, classification, and retrieval systems. Sun et al. (2023) 

proposed a novel graph-based discriminative features learning network to mine more 

discriminative features in fine-grained image retrieval. Borwarnginn et al. (2021) used 

it in a study addressing identifying dog breeds from images. They introduced a 

technique that employs neural networks with transfer learning to improve the accuracy 

of recognizing dog breeds using the Stanford Dogs 120 and Columbia Dogs datasets. 

In addition, Minami et al. (2021) introduced an approach to image retrieval that 

combines neural networks with graph-based representations. Their method effectively 

matched dog images with content. 

3.3.2.7 MIT Indoor Scenes 

This dataset contains images depicting scenes and is used in object detection, image 

classification, and scene recognition. It contains 67 categories and uses images of 3504 

× 2336 pixels. The dataset comprises images captured in various indoor scenes, such 

as bedrooms, offices, kitchens, and living rooms. MIT Indoor Scenes dataset has been 

used in several studies: Afif et al. (2020) introduced an approach to scene recognition 

by leveraging various learning techniques using the MIT Indoor Scenes dataset and 

achieved results emphasizing its importance in scene recognition research; Heikel and 

Espinosa-Leal (2022) introduced a method for identifying objects in environments 

using this dataset and achieved state of the art results. 

3.3.2.8 ISIC 2016 

The dataset known as ISIC 2016 is a collection of skin lesion images frequently used 

in skin lesion classification tasks and as a reference point for developing cutting-edge 

machine learning algorithms and models.  Xu et al. (2024) presented a method for 

segmenting skin lesions with the help of the ISIC 2016 dataset, while Debelee (2023) 
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used the dataset in skin lesion classification using DNN techniques, further cementing its 

importance in skin cancer detection and classification.  

3.3.2.9 ChestX-Ray8 

ChestX ray8 is a collection of chest X-ray images that has become increasingly 

popular among medical image analysis researchers and practitioners. It comprises 

108,948 frontal view chest X-ray images from 32,717 patients. It has been labelled for 

up to 14 thoracic diseases. These diseases include pneumonia, tuberculosis, lung 

nodules and pleural effusions. For this study, we focused on four classes with a subset 

of 4,000 images to mimic scenarios where data is available for transfer learning. The 

dataset has been used in Pneumonia diagnosis (Kundu et al.,  2021), while Ḃadawi and 

Elgazzar (2021) used transfer learning to detect COVID-19 from ChestX-ray8 images, 

achieving an accuracy rate of 99.62%. Furthermore, the dataset has helped identify lung 

nodules and diagnose tuberculosis (Rea et al.,  2021).  

3.4 Modelling Architectures 

The following pre-trained convolutional neural network models were used in this 

research to develop the new models that apply the proposed algorithm. Pre-trained 

models in this study are already developed CNN models whose weights are used to 

develop the new models through fine-tuning of the models’ parameters: 

3.4.1 VGG16 

The VGG16 pre-trained model is one of the VGG (Visual Geometry Group 16) models 

used in various computer vision tasks (Sikha & Bharath, 2022). The VGG16 pre-

trained model architecture has 16 layers - 13 convolutional layers and three fully 

connected layers. The network has 138 million parameters, making it one of the largest 

neural networks. The layers comprise 3× 3 filters stacked one after the other. These 

stacked filters allow the network to learn more complex features while reducing the 

number of parameters. The model accepts input sizes of 224 × 224 pixels.  

The VGG16 pre-trained model can adapt effectively to various public datasets, enabling 

it to grasp high-level features from images. Moreover, using filters helps tackle the 



 

44 

issue of overfitting, which is quite common in deep neural networks. Numerous 

research studies have investigated the application of VGG16 in transfer learning 

scenarios. For instance, Wu (2021) in expression recognition, Sitaula and Hossain 

(2021) classify chest X-ray images and Lim et al. (2023) in recognizing traffic signs in 

a transfer learning experiment. 

3.4.2 DenseNet169 

The DenseNet169 pre-trained model, commonly used as a DNN architecture, is highly 

connected, with each layer having connections to all other layers (Dalvi et al., 2023). 

This unique characteristic enables DenseNet169 to learn features from scales and 

makes it more parameter-efficient than other architectures. The model accepts 224 × 

224 pixels input sizes and was trained on over 1000 ImageNet classes. The model 

consists of four dense blocks, each containing several convolutional layers with batch 

normalization and rectified linear unit (ReLU) activation. The blocks are connected by 

transition layers, reducing the feature maps’ spatial dimensions. The final layer of the 

network comprises a global average pooling layer with a fully connected layer for 

classification. The model has over 14 million parameters and uses dense connections 

between its layers. The extracted features usually are concatenated to improve 

performance before passing through the layers.  

The pre-trained model can address the vanishing gradient problem through the dense 

connections, enabling gradients to propagate efficiently throughout the network. 

Several studies have used DenseNet169 in transfer learning scenarios, including Anand 

et al. (2024) in grading diabetic retinopathy; Wakili et al. (2022) in classifying breast 

cancer; Kundu et al. (2021) in pneumonia detection in chest X-ray images and Kong 

and Cheng (2022) to classify COVID-19 in chest X-ray images reporting an improved 

performance to the ResNet and InceptionV3 pre-trained models. 

3.4.3 MobileNetV2 

The MobileNetV2 architecture is known for its efficiency, design and fast performance, 

making it a preferred option for small devices and embedded systems. The model uses 

depthwise convolutions, effectively decreasing the number of parameters and 

computations needed compared to regular convolutions of CNNs (Zhu et al., 2024). 
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The MobileNetV2 consists of several blocks containing depthwise separable and 

pointwise convolutions with batch normalization and ReLU activation. The blocks are 

connected by bottleneck layers, which reduce the feature maps’ spatial dimensions. The 

final layer of the network comprises a global average pooling layer with a fully 

connected layer for classification. 

The architecture has over 3.5 million parameters and convolutional filters of 3 × 3, 224 

× 224 pixels input sizes. Using depthwise separable convolutions significantly reduces 

the required computations, resulting in a smaller model size and faster inference times.  

The pre-trained model has been used in several studies, including plant disease 

classification (Alirezazadeh et al., 2023); Ahsan et al. (2021) to classify COVID-19 in 

chest X-ray images and Mutawa et al. (2023) in detecting retinopathy. 

3.4.4 InceptionV3 

InceptionV3 is a convolutional neural network (CNN) architecture that can improve 

the accuracy of image recognition tasks while maintaining a reasonable model size 

(Bhardwaj et al., 2021). InceptionV3’s architecture comprises inception modules 

consisting of multiple convolutional layers with varying filter sizes and max pooling. 

These modules allow the network to capture features at different scales and reduce the 

required parameters. This pre-trained model uses label smoothing along with 7 × 7 

filters. It requires an input size of 79 × 79 pixels. The model was also trained on the 

ImageNet dataset. Several studies have applied InceptionV3 in transfer learning 

scenarios. The pre-trained model has been used in different applications by various 

researchers, including Jain et al. (2021) to classify skin lesions; Manokaran et al. 

(2021) to detect COVID-19 in chest X-ray images; Mutawa et al. (2023) to identify 

retinopathy and Shankar et al. (2022) to classify breast cancer.  

3.4.5 ResNet50 

ResNet50 is a popular convolutional neural network (CNN) architecture widely used in 

transfer learning applications (Wightman et al., 2021). The architecture is based on 

residual blocks, which makes the network understand more complex features by 

adding shortcut connections that bypass one or more layers. This approach has 
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been shown to improve the accuracy of image recognition tasks while reducing the 

required number of parameters. 

This architecture was trained on the ImageNet dataset. The model can handle input 

sizes of 224 × 224 pixels and can train deeper networks without experiencing the 

problem of vanishing gradients, just like the DenseNet169. By incorporating 

connections, the gradients can flow smoothly through the network, making it easier to 

train and allowing the network to understand intricate features. Consequently, 

ResNet50 has achieved benchmark performance, including the widely recognized 

ImageNet dataset. The pre-trained model has been used in several studies, including 

Alwakid et al. (2023) to classify cases of retinopathy; El Lel (2023) to classify COVID-

19 in chest X-ray images and Al-Haija and Adebanjo (2020) to classify breast cancer as 

either malignant or benign on the BreakHis dataset. 

3.5 Conceptual New Model 

A well-defined conceptual model of the dynamically fine-tuned transfer learning 

process is crucial for gaining a high-level understanding of the process (Swaen & 

George, 2024). The conceptual model effectively illustrates the interaction of various 

elements and defines critical components, such as the conflation of features and layer 

selection, which are essential for achieving the objectives of this study. Figure 3.2 

illustrates the study’s conceptual model. In this process, the target domain images 

search for images with similar textural features (low-level characteristics) in the source 

domain, and the returned images subset is used in the source model’s training. The new 

model dynamically selected layers are then used in the fine-tuning process. Kullback-

Leibler divergence is used in both model steps to decide the data points and the layers 

specified in the transfer learning process. 
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Figure 3.2: Transfer Learning Conceptual Model 

3.6 Proposed Methods 

This research used several experimental methods based on the two approaches 

introduced in the transfer learning approach. These methods utilized the textural 

features analysis or the filter weights. 

3.6.1 Features conflation Approach 

This approach was used in the first of the two stages of the new model: feature extraction 

and comparison to select the best data points with the best features for use in the pre-

trained models. The features conflation approach was based on the merging of 

probability distributions, which minimizes the information loss during the 

consolidation of distributions and provides optimal consolidation regarding the 

likelihood-ratio criteria (Hernán-Caballero et al., 2024).  

The approach design comprised the feature extraction and the selected dataset. Within 

the features extraction was a CNN with only one convolutional layer for extracting the 

features. This process was extended with a pooling layer that reduced the 

dimensionality of the extracted features, effectively addressing the computational 

complexities of the many extracted features. This first convolutional layer behaves like 

the Gabor filters used in edge extraction in the filter banks or the spatial filters 

commonly used in textural analysis (Varghese et al., 2023). CNN was used in this work 
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due to its discriminative feature extraction ability. Once the first layer of the CNN had 

extracted the features, their dimensionality was reshaped into a one-dimensional vector 

to create a probability distribution for each feature map from the pooling layer. A 

softmax function with a temperature was used in this conversion. The following 

assumptions were considered when using the softmax function: 

a) Each one-dimensional vector element was between 0 and 1, 𝑤𝑖 ∈  [0, 1]. 

b) The sum value of the elements in the one-dimensional vector 𝑤𝑖, … , 𝑤𝑛 was 1. 

For the element 𝑤𝑖, its softmax value 𝑝(𝑤𝑖)was then represented as shown below: 

𝑝(𝑤𝑖) =
exp (𝑤𝑖)

∑  𝑛  exp (𝑤𝑛)
(3.1)  

We then expressed the above equation using the temperature in the softmax function, 

which controlled the probability distribution's entropy levels. The equation becomes: 

                                                    𝑝(𝑤𝑖) =
exp (

𝑤𝑖

𝑇 )

∑  𝑛  exp (
𝑤𝑛

𝑇 )
                                              (3.2)  

The result was a set of probability distributions that could be merged into one probability 

distribution for a given image sample in either the source or target domain dataset. The 

merged probability distributions between the target and source domains could then be 

compared. In the comparison phase, the filter banks of merged probability distributions 

were used to determine which images could appear in the final dataset for use in the 

transfer learning process. This proposed approach ensured that only quality dataset 

samples were used in the transfer learning process, filtering low-quality samples. 

Figure 3.3 below illustrates this process where the features are extracted from both the 

target and source datasets, and they are compared using Kullback-Leibler divergence 

with the samples below the average Kullback-Leibler divergence selected as the final 

source target images by the dynamically fine-tuned model. 
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Figure 3.3: Conflation Approach Conceptual Diagram 

The probability distribution conflation was defined as follows: 

Definition 1 (Discrete probability distribution Conflation). Given a set of 

probability distributions 𝑝1, . . . , 𝑝𝑛, a conflated probability distribution 𝑄 could be ex- 

pressed as shown in the equation below: 

                                                  𝑄 = (𝑃1, … , 𝑃𝑛)                                                     (3.3)  

The equation can be rewritten using probability density functions (probability mass 

function as referred to discrete probability distribution) 𝑓1, . . . , 𝑓𝑛,  as shown below: 

                                            (𝑃1, … , 𝑃𝑛) =
𝑓1(𝑘), … , 𝑓𝑛(𝑘)

∑  𝑙  𝑓1(𝑙), … , 𝑓𝑛(𝑙)
                                      (3.4)  

where k and l are dataset samples 

Definition 2 (Continuous probability distribution Conflation). Given a set of 

probability distributions 𝑝1, . . . , 𝑝𝑛, a conflated probability distribution 𝑄 could be 

expressed as shown in the equation below: 
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                                                          𝑄 = (𝑃1, … , 𝑃𝑛)                                                          (3.5)  

The equation can be rewritten using probability density functions 𝑓1, . . . , 𝑓𝑛 as shown 

below: 

Definition 3 (Feature vectors’ continuous probability distributions Conflation). 

Given an image with probability density functions 𝑝𝑖
𝑓
,…, 𝑝𝑛

𝑓
  and continuous 

probability distributions 𝑝𝑖, . . . , 𝑝𝑗, we could express equation 3.5 as follows; 

  

                                                  (𝑃𝑖, … , 𝑃𝑗) =
∏  𝑓  𝑃𝑖𝑗

𝑓

∫  ∏  𝑓  𝑃𝑖𝑗
𝑓

                                                 (3.6)  

When using a specific label 𝑙𝑖, a set of images 𝑋𝑠𝑙 =  (𝑥𝑖1, . . . , 𝑥𝑖𝑛) each with its own 

conflated probability distribution, a further merged probability distribution can be 

expressed as follows; 

                                                       𝑙𝑖(𝑃𝑙𝑖 , … , 𝑃𝑙𝑗) =
∏  𝑥  𝑃𝑙𝑖𝑙𝑗

𝑓𝑥

∫  ∏  𝑥  𝑃𝑙𝑖𝑙𝑗
𝑓𝑥

                                       (3.7) 

the &𝑙𝑖 represents a specific image label, while the &𝑙𝑠 represent the feature classes for 

the source images. The target domain image conflations can, therefore, be expressed 

as follows: 

 

                                                                        (𝑃𝑡𝑖 , … , 𝑃𝑡𝑗) =
∏  𝑡𝑓  𝑃𝑡𝑖𝑡𝑗

𝑡𝑓

∫  ∏  𝑡𝑓  𝑃
𝑡𝑖𝑡𝑗
𝑡𝑓                            (3.8)  

The 𝑡 in the above expression indicates the target domain. The & for the target image 

sample can then be compared with the source domain using the DKL. These DKL 

values are banked in a set of DKLs as expressed below; 

                                                                  𝑘 = {DKLli, … , DKLlj}                            (3.9)

where 𝑘 is the list of DKLs. The mean of 𝑘 is expressed as; 
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                                                                                𝑋‾ = mean(𝑘)                         (3.10)

Algorithmic steps for features conflation Approach 

The conflation approach was described stepwise as follows: 

i) Input the source image and extract the feature vectors. 

ii) Reshape the feature vectors into one-dimensional vectors. 

iii) Using the softmax function, create the set of probability distributions, 𝑃(𝑥𝑛). 

𝑃(𝑥𝑛) is from the features extracted using the linear-binary patterns (LBP) 

properties and the grey-level co-occurrence matrix (GLCM). The probability 

distributions and their densities have been expressed in Equations 3.3 to 3.8. 

iv) Create a conflated probability distribution of the set of probability distributions 

created in step iii.  

v) Repeat steps i-iv for all the source domain images. 

vi) Using an image from the target domain dataset, repeat steps i-iv. This step is 

expressed in Equations 3.7 and 3.8. 

vii) Using DKL, compare a conflated probability distribution of an image in step vi with 

the set of conflated probability distributions in step v as expressed in Equation 3.9. 

viii) From step vii, calculate the mean DKL for the images in the target domain dataset 

as expressed in Equation 3.10. 

ix) Select the target images lower than the mean DKL value in Step vii and add them 

to the final target domain dataset. 

In figure 3.4, the extraction of features and their comparison after conflation is done 

to illustrate the algorithmic steps presented in section 3.6.1.1. Step 1 extracts the source 

and target image low-level features, creating their respective feature probability 

distributions in step 2. The distributions are conflated in step 3 and compared using 

Kullback-Leibler divergence in step 4. The average Kullback-Leibler divergence is 

calculated in step 5, with step 6 identifying all the images below the average Kullback-

Leibler divergence selected as part of the final target dataset. 
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Figure 3.4: Example of the Conflation Process. (a) Source Images Conflation 

Steps and (b) Target Images Conflation with Selected Samples 

Merging the probability distributions using the conflation approach minimizes the loss 
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of Shannon information (Sayantan et al., 2020). The above algorithm (in section 

3.6.1.1) can be further presented using pseudocodes 1 to 3. 

Pseudocode 1 illustrates how the source image features are conflated with the function 

sourceDomainConflation, returning an image features conflated distribution. 

#source conflation 

def sourceDomainConflation(image): 

 domain_image_conflation_distribution = []   

 #outer loop   

 for GLCM/LBP(feature) in image: 

  features_distributions = []  

  #inner loop  

  for feature_map in feature: 

   dimensioned_feature_map = feature_map.reshape(1 Dimension) 

   feature_map_distribution = softmax(dimensioned_feature_map) 

   features_distributions.append(feature_map_distribution) 

    

  conflated_feature_distribution = &(features_distributions) 

  domain_image_conflation_distribution.append(conflated_feature_distributio

n) 

   

 return domain_image_conflation_distribution 

Pseudocode 1:  Source Conflation process function 

Pseudocode 2 shows how the target image features are defined by the 

targetDomainConflation function that returns a target’s image features conflated 

distribution. 
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#target conflation 

def targetDomainConflation(image): 

 domain_image_conflation_distribution = []   

 #outer loop   

 for GLCM/LBP(feature) in image: 

  features_distributions = []  

  #inner loop  

  for feature_map in feature: 

   dimensioned_feature_map = feature_map.reshape(1 Dimension) 

   feature_map_distribution = softmax(dimensioned_feature_map) 

   features_distributions.append(feature_map_distribution) 

    

  conflated_feature_distribution = &(features_distributions) 

  domain_image_conflation_distribution.append(conflated_feature_distribution

) 

   

 return domain_image_conflation_distribution 

Pseudocode 2:  Target conflation process function 

In pseudocode 3, the distributions returned by the two functions are compared using 

the DKL, with the images with lower than average DKL being added to the dataset to 

be used in the transfer learning process. 
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#adding images to dataset 

for image in source_domain or target_domain: 

 DKL = DKL(sourceDomainConflation(image), 

targetDomainConflation(image)) 

 mean_DKL = DKL/DKL_distribution_items 

 below_DKL = DKL_distribution_items 

 dataset = [] 

 dataset.append(below_DKL) 

Pseudocode 3: Selection and addition of selected samples to the final dataset. 

3.6.2 Dynamic Layer Selection Approach 

This approach was based on the correlation and divergence of weights in the 

convolutional neural network layers, specifically the convolutional layers.  

Definition 1 (Convolutional layers weight correlation). Given the weight filter 

tensor 𝑤𝑓𝑙 in ℝ𝑠×𝑠 of the 𝑙𝑡ℎ layer, where 𝑠 × 𝑠 is the size of the kernel. The 𝑤𝑓𝑙𝑛 ∈ 

ℝ𝑠×𝑠 and 𝑤𝑓𝑙𝑛−1 ∈ ℝ𝑠×𝑠 are the 𝑛 and 𝑛 − 1 filters in the tensor. Reshaping the 𝑤𝑓𝑙𝑛 ∈

ℝ𝑠×𝑠 and 𝑤𝑓𝑙𝑛−1 ∈ ℝ𝑠×𝑠 as 𝑤𝑓𝑙𝑛
′

 and 𝑤𝑓𝑙𝑛−1
′

 into single-dimensional tensor filters 

respectively; the weight cosine correlation of the layer filters is expressed as; 

                                    Cos (𝑤𝑙
𝑓

) = ∑  

𝑁𝑙

𝑛=1

 (
|𝑤𝑙𝑛,𝑧

𝑓′

| |𝑤𝑙𝑛−1,z
𝑓′

|

∥ 𝑤𝑙𝑛,𝑧
𝑓′

||||𝑤𝑙𝑛−1,𝑧
𝑓′

∣
)                                  (3.11)  

where 𝑧 is the 𝑧𝑡ℎ column of the filters and 𝑁𝑙 is the number of filters in the 𝑙𝑡ℎ   layer. 

𝑤 refers to a weight, 𝑓𝑙 represents the filter in the layer, 𝑤𝑓𝑙 refers to a weighting filter 

in the layer while 𝑤𝑓𝑙𝑛 represents a weighting filter in a layer at position 𝑛. 

Definition 2 (Signed convolutional layers’ weight correlation). Given the 𝑙th  layer 

with reshaped filters 𝑤𝑙1
𝑓′

∈ ℝ𝑠×𝑠, 𝑤𝑙2
𝑓′

∈ ℝ𝑠×𝑠, 𝑤𝑙3
𝑓′

∈ ℝ𝑠×𝑠, … , 𝑤𝑙𝑛
𝑓′

∈ ℝ𝑠×𝑠. If 

𝑤𝑙𝑛
𝑓′+𝑣𝑒

∈ ℝ𝑠×𝑠 and 𝑤𝑙𝑛
𝑓′−𝑣𝑒

∈ ℝ𝑠×𝑠 are single-dimensional tensor filters with positive 

and negative weights, respectively; the signed weight cosine correlation of the layer 

filters is defined as follows: 
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                                              Cos(𝑤𝑙
𝑓±

) = ∑  

𝑁𝑙

𝑛=1

 (
|𝑤𝑙𝑛,𝑧

𝑓′+𝑣𝑒
| |𝑤𝑙𝑛−1,z

𝑓′−𝑣𝑒
|

∥ 𝑤𝑙𝑛,𝑧
𝑓′+𝑣𝑒

||||𝑤𝑙𝑛−1,𝑧
𝑓′−𝑣𝑒

||
)                  (3.12) 

where +ve, −ve, and ± refer to the positive, negative and positive-negative filter 

weights. The 𝑁𝑙 is the number of filters in the 𝑙𝑡ℎ layer,  𝑤 refers to a weight, 𝑤𝑙
𝑓′

refers 

to a single-dimensional weight vector in the layer while 𝑤𝑙𝑛
𝑓′

 represents a single-

dimensional vector of a weight filter in a layer at position 𝑛. 𝑧 is the 𝑧𝑡ℎ column of the 

filters. 

Definition 3 (Cosine similarity DKL). Given the 𝑙th  layer with reshaped filters 

𝑤𝑙1
𝑓′

∈ ℝ𝑠×𝑠, 𝑤𝑙2
𝑓′

∈ ℝ𝑠×𝑠, 𝑤𝑙3
𝑓′

∈ ℝ𝑠×𝑠, … , 𝑤𝑙𝑛
𝑓′

∈ ℝ𝑠×𝑠, whose weight cosine 

similarities are represented as Cos (𝑤𝑙1
𝑓′

) , Cos (𝑤𝑙2
𝑓′

) , Cos (𝑤𝑙3
𝑓′

) , … , Cos (𝑤𝑙𝑛
𝑓′

), the 

𝐷𝐾𝐿 of any two filters in the layer can be defined in terms of filters' cosine similarities 

as expressed below.  

                  DKL(𝑤𝑙𝑛
𝑓

∥ 𝑤𝑙𝑛−1
𝑓

) = ∑  𝑃 (Cos 𝑤𝑙𝑛
𝑓′

) log
𝑃 (𝐶𝑜𝑠 (𝑤𝑙𝑛,𝑧

𝑓′

))

𝑃 (𝐶𝑜𝑠 (𝑤𝑙𝑛−1,𝑧
𝑓′

))
          (3.13)  

where P refers to the probability distribution, 𝑤 refers to the weight, 𝑤𝑙
𝑓′

refers to a 

single-dimensional weight vector in the layer while 𝑤𝑙𝑛
𝑓′

 represents a single-

dimensional vector of a weight filter in a layer at position 𝑛. 𝑧 is the 𝑧𝑡ℎ column of the 

filters. 

A softmax function was then used to convert the cosine similarity vectors of filters into 

probability distributions. The softmax function relied on two assumptions: 

a) A weight 𝑝(𝑤𝑛−1) is in the range of 0 and 1 such that 𝑝(𝑤𝑛−1) ∈ [0,1]. 

b) The sum of probabilities 𝑝(𝑤1), … , 𝑝(𝑤𝑛) is 1, such that ∑1
𝑛  𝑝(𝑤) = 1. 

where 𝑝 refers to the probability of weight value between 1 and 𝑛. Given 

 𝑟 ∈ [0,1], the softmax 𝑝(𝑟) for the item 𝑟 is expressed as; 
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                                                      𝑝(𝑟) =
exp(𝑟)

∑  𝑛   exp(𝑟𝑛)
                                                    (3.14) 

where the value of 𝑟 belongs to the probability distribution P where 𝑝(𝑟) is the 

probability of 𝑟 . The equation 3.14 can then be re-expressed as; 

                                  DKL(𝑤𝑙𝑛
𝑓

∥ 𝑤𝑙𝑛−1
𝑓

) = ∑  𝑃 (𝑤𝑙𝑛
𝑓′

) 𝑃 (𝑤𝑙𝑛
𝑓′

− 𝑤𝑙𝑛−1
𝑓′

)            (3.15) 

where 𝑤 refers to a weight, 𝑤𝑙
𝑓′

refers to a single-dimensional weight filter in the layer, 

𝑤𝑙𝑛
𝑓

 represents a weighting filter in a layer at position 𝑛, while 𝑤𝑙𝑛
𝑓′

 represents a single-

dimensional vector of a weight filter in a layer at position 𝑛.  

The DKL gave differences between the signed weight filter distributions and weight 

filters of the convolutional layers. The layers with lower DKL values were then used 

in the transfer learning process. 

3.4.1.1 Algorithmic steps for dynamic layer selection Approach 

The following algorithmic steps were used in the dynamic layer selection step in the 

convolutional neural networks: 

(i) Identify a convolutional layer lc in a pre-trained model M. Any convolutional 

layer has a prefix conv. The lc can, therefore, be expressed as; 

                                                                    𝑙𝑐 = {
𝑀𝑙 ,  if  𝑙𝑛 = "𝑐𝑜𝑛𝑣"

 otherwise 
                     (3.16)  

where n refers to the number of layers in the pre-trained model. 

(ii) Identify the ImageNet filter weight(s) w in lc. 

(iii) Identify the positive and negative weights in equation 3.12. 

(iv) Create a list llc of lcs identified in (i). 

                                                                 𝑙𝑙𝑐 = (𝑙1
𝑐, 𝑙2

𝑐, 𝑙3
𝑐, … , 𝑙𝑛

𝑐 )                                     (3.17)          

(v) Calculate the filter(s) weights correlations as expressed in equations 3.11 to 3.15. 
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(vi) Select the lcs with the lowest DKL values as the selected fine-tunable layers for use 

in the transfer learning process. 

This process is illustrated in figure 3.5, showing the three main stages of the process. The 

first stage (a) identifies the weights in the filters and their sign, and the second stage (b) 

checks the correlation and divergence of the layer weights to select suitable layers. Finally, 

the dynamically fine-tuned model transfers learning using the selected layers in stage (c). 

 

Figure 3.5: Pipeline of the Dynamic Layer Selection Approach: (a) Layer(s) and 

Its Filter Weights Identification, (b) Correlation and Ranking of the Layers Using 

DKL and (c) Use of the Selected Layers in the Fine-Tuning Process 

The two approaches can be illustrated in Figure 3.6, and where they appear in the 

methodology steps. The conflation approach takes place in the preprocessing phase of 

the methodology. In contrast, dynamic layer selection occurs before the modelling, 

with the fine-tuned model used in the modelling phase. 
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Figure 3.6: A Flowchart of the New Approach 

3.7 Experimental Methods 

This section addresses the methods used in the algorithm stages: phase 1: feature 

extraction and analysis in the conflation process and phase 2 – weights comparison 

methods in the dynamic layer selection. The section also discusses the various baseline 

methods used in results comparisons. 

3.7.1 Phase 1: Textural Features Extraction and Analysis Methods 

The textural feature analysis methods used in this work are GLCM and LBP. In feature 
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extraction, precisely texture, many methods use grayscale and colour levels, exploiting 

their first and second-order properties. The first-order properties include variance and 

mean, and they are derived from individual image pixels. In the second-order 

properties, the properties, which include correlation and homogeneity, are derived 

through a comparison between two pixels of an image. The GLCM and LBP utilize the 

second-order properties in their analysis. 

The GLCM has been shown as a more straightforward algorithm to implement while 

giving outstanding results in applying large systems such as satellite imagery systems 

that apply textural analysis (Anusha et al., 2024). It has also been recorded to give 

outstanding results in non-complicated textural analysis tasks (Ramola et al., 2020). 

Its performance (high accuracy and low complexity) has also been recorded while 

processing real-time scenarios in object recognition processes (Kurniati et al., 2024). 

In the case of LBP, it has been recorded as an easy algorithm to implement, with low 

computational complexity and does not change (invariance) to the monotonic 

illumination changes. 

3.7.1.1 Grey-Level Co-Occurrence Matrix (GLCM) 

This matrix analyses texture in an image utilising the grayscale levels. It represents 

different combinations of grey levels or brightness of pixels in an image and shows a 

spatial window of interest of two parameters (Alibabaei et al., 2023). The algorithm 

utilises second-order statistics (Barburiceanu et al., 2021) and can analyse features 

showing the spatial shape attributes on interval and amplitude changes and the grey 

level directions. It has been used in various applications, including behavioral 

analysis, image retrieval, image segmentation, biometrics applications and image 

motif recognition. The initial algorithm groups the 14 features into four categories: 

correlation, entropy, statistical and textural visual measures. However, orientation and 

distance are the most critical features when determining an image’s GLCM (Varghese 

et al., 2023; Kurniati et al., 2024). The two determine relationships between pixels 

that form the textural description. In this work, four features: energy, correlation, 

dissimilarity, and homogeneity, are explored. 
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3.7.1.1.1 Energy 

Energy is a widely used statistical feature in GLCM (Gray-Level Co-occurrence 

Matrix) textural analysis, characterizing an image’s uniformity and homogeneity. This 

attribute measures the grey levels intensity of an image, returning the GLCM’s sum of 

the squared elements. Energy has proven to be an essential feature in GLCM textural 

analysis because it captures the overall image intensity and texture information. The 

property has been used in various studies, including the examination of textural 

characteristics that can help distinguish between malignant thyroid nodules (Hristu et 

al., 2020), a study by Al-Hasani et al. (2022) on the use of GLCM texture analysis to 

help detect liver fibrosis at a stage and Anand et al. (2023) in the diagnosis of patients 

with prostate cancer. In these studies, the higher the energy values, the more the disease 

is likely. 

3.7.1.1.2 Correlation 

Correlation plays a role in GLCM (Gray Level Co-occurrence Matrix) textural 

analysis. The property describes the relationship between pairs of pixels in an image. It 

measures the connection between the grey level values of two pixels at a specific 

distance and direction. The connection between the two pixels allows essential insights 

into the texture directionality and regularity within the image. It is, therefore, an 

important property when differentiating textures through GLCM textural analysis. 

Several studies have revealed that correlation is vital in several medical imaging 

applications. Hristu et al. (2020) discovered that correlation is a factor in distinguishing 

between malignant thyroid nodules; Ramadan (2020) emphasized the importance of 

correlation in identifying benign lesions in mammogram images for detecting breast 

cancer, and Mujeeb et al. (2022) found correlation to be an indispensable feature in 

identifying different stages of diabetic retinopathy. 

3.7.1.1.3 Dissimilarity 

In GLCM textural analysis, dissimilarity plays a role by describing the connection 

between pairs of pixels in an image. It quantifies the variances in patterns in texture 

analysis. The property has been used in several applications, including the medical 
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imaging application by Nguyen et al. (2021), which was used to distinguish benign 

breast tumors in ultrasound images. Similarly, Al-Hasani et al. (2022) used the 

property as a factor in detecting early-stage liver fibrosis through ultrasound images. 

3.7.1.1.4 Homogeneity 

Homogeneity measures the similarity in grey-level values between two pixels at a 

specific distance and direction, providing essential information about an image’s 

texture homogeneity. Homogeneity is preferred in GLCM textural analysis as it 

captures the consistency in texture patterns, making it a necessary feature for texture 

analysis. The property has been used by Park et al. (2021) in ultrasound images in 

diagnosing liver fibrosis, while Arun et al. (2023) discovered that detecting breast 

cancer through mammography images heavily relies on homogeneity. 

3.7.1.2 Linear Binary Pattern (LBP) 

This textural-visual descriptor is an alternative to the GLCM and uses second-order 

statistics. However, it compares the pixels’ neighbours by assigning binary values 0 

and 1 (Simon & V, 2020). In its textural analysis, block sizes of 3 × 3 are used, although 

more block sizes have been added since its discovery (Zhuang et al., 2021). 

The center pixel in an image is used as the thresholding, and the LBP can show the 

correlation between the pixels with the selected blocks, detecting the edges in the 

image based on the pixel intensities (Dharma et al., 2022). Once the LBPs have been 

identified in the image, the description is done using histograms, illustrating the 

distribution of the feature signals in the image. With its encoding capabilities of the 

image features, it is possible to detect edges, corners and other properties in an image. 

This algorithm is an excellent unsupervised learning method widely used in textural 

and edge detection (Zeebaree et al., 2021). 

LBP has been used in different studies, including emotion recognition (Niu et al., 

2021), brain tumor classification (Kaplan et al., 2020) and fabric defect detection 

(Pourkaramdel et al., 2022). Due to the algorithm’s low complexity, easier local 

structure description, faster computational speed, robustness in illumination variations 

and simplicity (Barburiceanu et al., 2021), it has been applied in computer vision 
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applications. Other studies have noted that it can withstand monotonic illumination 

changes (Wu & Liu, 2021) and has computational efficiency. An example of LBP 

analysis is shown in Figure 3.7 below. The pixel values on the left matrix are compared 

to the center pixel (54). Any pixel whose value is below the center pixel is assigned 0 

and a 1 if above it, resulting in binary values matrix on the right. The final descriptive 

LBP value is then read clockwise from the top-left binary number, giving a decimal 

value 106. 

 

Figure 3.7: LBP Decimal Value Extraction on an Image 

This research used the uniform LBP method to acquire the probability density functions 

(PDFs) regardless of the orientation. These consistent patterns detect edges, spots and 

corners (Kaplan et al., 2020) since LBP has the structural information for the corners 

and edges (Niu et al., 2021), similar to the Gabor filters. In the LBP usage of this work, 

the images were first converted into grayscale to reduce the dimensionalities, focusing 

on luminance and binarisation (Qiao et al., 2022). The following algorithmic steps are 

applied to LBP: 

Step 1: Choose an image pixel i(x, y) and choose the neighbouring pixels (p) within the 

radius R. 

Step 2: Calculate the difference between i(x, y) intensity and of its neighbours (p). 

Step 3: Assign a value of 1 or 0 to neighbours whose value is higher than i(x, y) or 

lower, respectively. 

Step 4: Create a vector of binary values assigned in step 1. 
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Step 5: Convert all vector elements into decimal values (0-255), creating a new vector 

of decimal values. 

Step 6: Read the values clockwise, as seen in the figure above. 

The following equation expresses the LBP calculation: 

                                              𝐿𝐵𝑃(𝑃, 𝑅) = ∑  

𝑝−1

𝑝=0

 𝑓(𝑔𝑝 − 𝑔𝑐)2𝑝                                   (3.18)  

where gp and gc refer to the center and neighbouring pixel’s intensities, respectively. 

Six LBP classes can be used on the extracted features: thresholding and quantization, 

combining complementary features, traditional LBP encoding and regrouping, 

sampling neighbouring and topology and other inspired methods (Chen et al., 2021). 

However, different variants still exist (Nanni et al., 2021). 

3.7.2 Phase 2: Weights Comparison methods in Dynamic layer selection  

The methods for identifying the layers were based on weight correlation and 

divergence in selecting suitable dynamic layers for transfer learning. 

There were six methods used in this research: 

a) Positive weights cosine similarity: This method compared the cosine similarity 

between two positive filter weights. 

b) Negative weights cosine similarity: This method compared two cosine similarity 

values of negative weight elements of a filter. 

c) Positive–negative weights cosine similarity: This method compared the cosine 

similarity between positive and negative weights elements in a convolutional 

neural network layer filter. 

d) Positive weights cosine similarity DKL: This method compared the divergence 

between two positive weight elements in a filter. 

e) Negative weights cosine similarity DKL: This method compared two negatively 

signed weights cosine similarity divergence in a CNN layer’s filter. 

f) Positive–negative weights cosine similarity DKL: This method evaluated the 
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divergence between a positive and negatively signed weight’s cosine similarity 

divergence in a CNN layer. 

3.7.3 Baseline (Conventional) Methods 

Domain adaptability performance in this study was evaluated using three baselines. 

The baselines were adopted based on the previous research on conflation, dynamic 

layer selection and transfer learning. The three were: 

3.7.3.1 Standard Fine-Tuning 

Standard fine-tuning is a technique in transfer learning that enables the model to adjust 

for a task. This process involves replacing the model’s layer with a classification layer 

tailored to fit the categories of the new task. To accomplish this, we choose a trained 

model, like a convolutional neural network (CNN), and fine-tune it precisely for the 

new task. One of the benefits of standard fine-tuning is its ability to use pre-trained 

models effectively. Pre-training models demand large amounts of data in their initial 

training, which can be expensive. However, we can still obtain excellent outcomes by 

fine-tuning these models for a task using a smaller dataset without investing extensive 

resources in training entirely new models. The method has been used in several studies, 

including vision transformers (ViT) model performance improvements by Chen et al. 

(2021) and tuning the BERT model for medical image protocol classification tasks 

(Talebi et al., 2024). 

3.7.3.2 Fine-Tuning Last−K Layers 

This baseline involves the removal of the few last layers in the pre-trained model. 

Typically, the last layer, k − 1, the second previous layer, k − 2 and the third last layer, 

k − 3, are used in this process. This method utilises the k layers of a trained model to 

extract features and then trains a new classification layer on these extracted features. 

The value of k can be adjusted depending on the problem’s complexity and the dataset’s 

size. The last k layers serve as an approach for transfer learning across domains. 

3.7.3.3 Feature Extraction 

Feature extraction is a transfer learning method in deep neural networks, and it should 
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always be seen as a starting point. This approach is simple and effective, using pre-

trained models from CNNs or transformers. We generate a feature representation of the 

input data by removing the classification layer and utilising the output from the 

preceding layer. Subsequently, this representation is passed through a trained 

classification layer using the desired dataset. 

The method is simple and efficient when working with limited computational resources, 

including datasets.  The technique has been used by several researchers, including Ugail 

et al. (2023) in visual analysis and attribution of paintings by fine-tuning a trained 

ResNet50 model using feature extraction and Wu et al. (2022) in their Feature 

Transferring Autonomous machine learning pipeline (FTAP), which outperforms the 

state-of-the-art autonomous Tree-based pipeline optimisation tools (TPOT) in the 

transfer learning tasks. 

3.8 Experimental Setups 

The experiments performed in this research were implemented on the Paperspace 

Cloud platform (Quadro P4000, 30GB RAM with GPU) using TensorFlow 2.4.1. The 

following experimental settings were observed: 

3.8.1 Epochs 

The training used 50-150 epochs with samples batched in 8 images. An epoch refers to 

the number of times the model goes through the training data. The number of epochs 

is a significant factor in training an AI model, and it can affect how well the model 

performs since the learnt features come from the data points. One approach to 

determining the number of epochs is early stopping. The process involves monitoring 

the model’s performance on a validation set during training and stopping when the 

performance levels off or starts to decline. The number of epochs helps prevent 

overfitting to the training data, enabling generalisation of the entire dataset. Several 

studies have explored how the number of epochs affects model performance. For 

instance, in a study focused on diagnosing breast cancer using images, Sadeghi et al. 

(2024) discovered that a few epochs resulted in good performance when using the six 

different transfer learning models for slide analysis. Finding the right number of 

epochs is a hyper parameter that requires careful consideration when training AI 
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models. 

3.8.2 Feature Extraction Settings 

In the feature extraction phase of the research, one convolutional layer (first 

convolutional layer) in the CNN was used to extract the input features. The features 

were then analyzed using two methods: GLCM and LBP. The images were scaled to 

224 × 224 pixels in the input phase. This size ensured uniformity in selecting the 

quality dataset and a size match for the final environment, reducing any differences that 

could have resulted from input sizes. The probability distribution softmax temperature 

was set to 0.5. 

3.8.3 Optimizer 

The stochastic gradient descent was used as the optimizer with a learning rate 0.0001. 

The optimizer plays a role in training AI models by updating the model weights during 

training. Consequently, choosing the optimizer can significantly affect how well the 

model performs for a task and dataset, ultimately aiming for optimal performance. 

Optimizers in training AI models include stochastic gradient descent (SGD) Adam and 

RMSprop. Stochastic gradient descent is the commonly preferred optimizer because 

of its simplicity and task effectiveness. 

The SGD iteratively updates the model weights by calculating the loss function’s 

gradient to the weights and then adjusting the weights in the opposite direction of the 

gradient until convergence. The SGD can improve the training performance by adding 

momentum, which smoothens the updates and allows faster convergence. 

The choice of optimizer relies on the task and dataset. It’s crucial to experiment with 

optimizers to determine the most effective one. Kandel et al. (2020) examined how 

various optimizers impact the performance of a network in image classification. Their 

study reported that the SGD with momentum yielded higher accuracy and faster 

convergence than the other optimizers. 

3.8.4 Loss Function 

The model training used categorical cross-entropy as the loss function. Choosing the loss 
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function is of significance in AI model training. This parameter determines how well 

the predicted output matches the output after each training iteration. Each loss function 

plays an essential role in evaluating the model’s performance, and it is crucial to 

identify the appropriate loss function for a given task and dataset. 

Various loss functions can be used for training AI models, such as mean squared error 

(MSE) binary cross entropy and categorical cross-entropy. Out of these options, 

categorical cross entropy is the utilized loss function in this study. The loss function 

was preferred because of its effectiveness in a wide range of tasks, and it yields 

gradients, making convergence faster and enhancing overall generalisation 

performance. For class classification tasks, we utilized categorical cross-entropy. This 

method helps to determine the variation between the actual probability distribution and 

the predicted probability distribution. The choice of which loss function to use in a 

model relies on the task and dataset. It’s important to experiment with loss functions 

to identify the effective ones. Xie et al. (2021) explored the influence of loss 

functions on bioacoustics signal classification. Their findings revealed that focal loss 

outperformed tested loss functions, exhibiting accuracy and faster convergence. 

3.8.5 Other settings 

In the fine-tuning process, other settings were considered to improve the model's 

performance to faster convergence. These settings included the flattening layer for 

dimensionality reduction of the neurons, dropout layer for model independence, batch 

normalization and softmax classifier for categorical classification. 

3.8.5.1 Flattening Layer  

This particular layer takes the feature map values from the pooled layer, converting 

them into vectors in a one-dimensional format. Flattening layers are critical in the 

architecture of networks. They transform the output from the layer into one array 

output, enabling it to be quickly passed on to the next layer for further processing. 

Flattening layers play a role in training AI models as they help reduce parameter count, 

enhance model efficiency and accelerate training speed. Furthermore, flattening 

mitigates the possibility of overfitting a challenge encountered in learning models. 

Flattening the layers also has the added benefit of enhancing the model’s efficiency. By 
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obtaining one input from the flattened layers, it becomes much more straightforward to 

feed it into layers, ultimately reducing the computational complexity of the model. 

Consequently, this speeds up the training process and minimizes the cost associated 

with the model. Flattening layers also facilitate the implementation of the model on 

hardware platforms with limited resources. 

Various studies have documented flattening. Garg et al. (2023) investigated the impact 

of deep learning using VGG16 in real-world applications in Yoga pose classification, 

where flattening was used. Flattening layers significantly improved the model’s 

accuracy and reduced the computational cost. The study highlighted the importance of 

flattening layers in deep neural network architecture for a real-world application. 

3.8.5.2 Dropout Layer 

The layers’ neuron drop had a probability index of 0.5. Dropout is a DNN optimisation 

technique used in AI model training (Salehin et al., 2023). The method helps to improve 

the model’s generalisation ability by reducing overfitting and has become one of the 

preferred model regularization techniques. The dropout technique randomly 

deactivates a percentage of neurons during each training iteration. This technique helps 

to ensure that the model doesn’t overly rely on any neuron or group of neurons, making 

it more resistant to noise and overfitting. This approach creates an ensemble of models 

that collaborate to make predictions, ultimately enhancing the accuracy and 

generalisation capabilities of the model. To understand the importance of dropout 

when training AI models, Salehin et al. (2023) used its impact on network 

performance. The findings demonstrated that incorporating dropout can address 

overfitting problems and improve model accuracy. This study emphasized the value of 

utilising dropout as a regularization technique during a model’s training phase. 

3.8.5.3 Batch Normalization Layer 

Batch normalization is a DNN optimisation method that normalizes the input data 

within each network layer to improve model performance and address overfitting 

problems. It has since become an accepted approach for training AI models (Peng et 

al., 2024). The method adjusts the values of the dataset’s mini-batch by subtracting its 

mean and dividing it by its deviation - ensuring the input data has one deviation and is 
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centered on zero. The approach can counteract any fluctuations in input data distribution 

during model training, significantly impacting the model’s performance. By 

implementing batch normalization, the model’s training stabilizes and improves 

accuracy while addressing overfitting problems. 

During the normalization process, each layer’s dependence on the layer’s output enables 

the model to converge quickly. Furthermore, this technique reduces sensitivity to the 

parameter values, leading to the generalisation and robustness of the model when faced 

with unseen data. Huang et al. (2023) investigated how normalization techniques 

affect network performance. The results showed that batch normalization improves 

model accuracy and helps mitigate overfitting, further cementing the theoretical 

concepts of batch normalization. 

3.8.5.4 Softmax Classifier 

This hyperparameter was used in the fine-tuning process for all the pre-trained models. 

The softmax function transforms the model’s output into a probability distribution over 

multiple classes. The softmax function is preferred over other activation functions 

because it provides better gradients, allowing faster convergence and better 

generalisation performance. The softmax function is commonly used in tasks 

involving class classification. It helps to determine the likelihood of each class and 

selects the one with the probability as the predicted outcome. Compared to activation 

functions, like tanh and sigmoid, the softmax function is favored due to its reliable 

gradients. This process leads to convergence and an improved overall performance in 

terms of generalisation. 

Recent studies have emphasized the significance of the softmax function when training 

AI models. In a study conducted by Nanni et al. (2021), the effect of activation 

functions on the performance of a learning model for image classification was 

examined.  The results indicated that the softmax function performed better than tested 

activation functions, exhibiting higher accuracy and faster convergence. This 

performance underscores its effectiveness as an activation function in AI models. 

Among the activation functions, the softmax function is the most commonly used and 

preferred one due to its effectiveness in handling multiple tasks. However, it is essential 
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to note that selecting the activation function should be based on experimenting with 

alternatives specific to the task and dataset.  

We can significantly enhance our AI model’s performance and convergence speed by 

employing the optimal activation function with the following: 

a) 4096 neurons- the VGG16 architecture uses 4096 neurons in the last dense layer. 

b) 64 neurons - the MobileNetv2 uses 64 neurons in the last dense layer of the pre-

trained model. 

3.9 Summary 

This chapter addresses the methodology used to realise the objectives of this research: 

the CRISP-DM approach. It also discusses the various datasets and pre-trained models. 

The study’s approaches are also discussed in detail, outlining the feature analysis 

methods, the weight comparison methods, and even the conventional methods used to 

evaluate our results. 
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CHAPTER FOUR 

RESEARCH RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter presents the results and research findings of the methods used to develop 

the new model. The results provide the behaviour of the two approaches used in the 

new model pipeline and the combined performance of the two sections.  

The results are presented in an order that addresses the study's objectives in tables and 

figures. Section 4.2 addresses the new model and how a pre-trained model changes to 

the new model, which addresses objective 3. Sections 4.3 to 4.5 assess the 

effectiveness of the new model on various datasets addressing objective 4, while 

section 4.6 addresses the new model complexities and objective 2 of the study. 

4.2 Investigation of Parameter Changes in the Dynamically Fine-Tuned Model 

Figure 3.2 introduces the conceptual model, illustrating the selection of closely 

matching source - target images to reduce the marginal distribution between the 

spaces. The concept further shows the selection of fine-tunable layers in the new model 

to perform the target task. These two stages of the introduced approach are further 

expressed by equations 3.3 to 3.10 and 3.12 to 3.15, respectively.  In the first step 

(whose algorithmic steps are presented in section 3.6.1.1), pre-trained models are used 

to identify the textural features without altering them. However, assessing the 

performance of the selected samples involves fine-tuning with the new models, as 

labelled in Figure 3.3. The fine-tuning process uses standard fine-tuning, which adds 

a softmax classification layer. The results of this step are presented in tables 4.1 to 4.3. 

The selected samples were fed into the new model input layer shown in figures 4.1 to 

4.3. 

For the second step, which involves a dynamic selection of layers, the various pre-

trained models introduced in section 3.4 are used in the experiments (from section 4.4) 

to implement the algorithm discussed in 3.6.2.1. The resultant model after these 

changes is the new model, which inherits the weights of the pre-trained models and 
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the fine-tuned parameters. The names of the new models bear the prefix “New” to 

indicate our new models, as labelled in figures 3.2, 3.8 and 3.9. Figures 4.1 and 4.2 

show how the parameters change after fine-tuning. The two pre-trained models used 

in figures 4.1 and 4.2 can transfer the learned knowledge using the layers “resnet 50 

(functional)” and “vgg16 (functional)” layers to the New ResNet50 and New VGG16 

models, respectively. This process further informs Figure 1.1 in section 1.1 to show 

where the knowledge is and how it is transferred to the new model. 

 

Figure 4.1: Illustration of Parameter Changes of the ResNet50 Pre-Trained 

Model and the New ResNet50 Model 
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Figure 4.2: Illustration of Parameter Changes of VGG16 Pre-Trained Model and 

the New VGG16 Model 

In Figure 4.3, the pre-trained VGG16 model has all its layers in the training mode and 

would use all the layers' weights in a transfer learning task. The layers in the training 

mode are represented by the “T” and the non-trainable ones by “NT”. 
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Figure 4.3: An Illustration of the Pre-Trained VGG16 Model and the New 

VGG16 Model Showing the ‘T’ (Trainable) and ‘NT’ (Non-Trainable) Layers 

However, the trainable layers change after selecting and freezing the non-trainable 

ones. This new architecture is the new model that performs the classification tasks in 

the study. The same process happens for all the other selected pre-trained models.  
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4.3 Investigation of Textural Features Conflation on the Dynamically Fine-Tuned 

Model 

This section presents the results of the conflation approach using the GLCM and LBP 

properties performance (accuracy, recall, and precision), comparison to baselines, 

comparison between samples, probability distance measures, and computational 

complexities. 

4.3.1 Performance on GLCM and LBP Properties 

The GLCM and LBP properties were evaluated based on their accuracy, precision, and 

recall to determine the best or quality samples to use as target dataset samples. 

4.3.1.1 Accuracy 

Accuracy refers to the ratio of correct predictions to total predictions (Machine 

Learning Glossary, 2024). Accuracy can be expressed using the equation below: 

 

                                      Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              (4.1)  

where TN refers to true negative predictions, TP refers to true positive predictions, FP 

refers to false positive predictions, and FN refers to false negative predictions. 

In Table 4.1, the accuracy results of the new VGG16 model have been presented when 

using the various datasets for the conflation process. The results consider both the 

GLCM and LBP methods. 
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Table 4.1: Comparison of Accuracy Performance (%) on Selected Datasets on 

New VGG16 

Datase

t 

Methods 

GLCM 
LBP 

Correlation Homogeneity Energy Dissimilarity 

BLW ABV BLW ABV BLW ABV BLW ABV BLW ABV 

Caltech 

256 

98.69 96.93 97.73 96.01 98.45 95.65 96.32 96.03 97.77 96.84 

MIT 

Indoor 

97.25 95.37 90.81 88.90 90.76 89.11 91.99 88.04 90.62 90.40 

Stanford 

Dogs 

98.64 98.11 94.26 91.43 94.29 89.74 92.07 90.77 93.27 92.22 

*BLW; ABV represent Below-average and Above-average DKL  

From the table, the Caltech256 dataset gave a good accuracy performance on the 

GLCM’s correlation property and performed the least with the dissimilarity property. 

BLW stands for below-average DKL, while ABV stands for above-average DKL. 

Similar results were achieved with the MIT indoor and Stanford dogs’ datasets. The 

accuracy of the LBP properties was lower in Caltech 256 GLCM properties and better 

in the Stanford dogs’ dataset. In the new MobileNetV2, the highest performance was 

noted in Correlation, Energy and Homogeneity. Like in the new VGG16 accuracy 

performance, correlation performed well in the new MobileNetV2; although the LBP 

performed well for the Caltech256, the GLCM properties dominated the other datasets. 

The selected samples in the Caltech256 dataset showed that images with overall 

conflation above the mean DKL (green) gave lower accuracy performance than those 

with lower DKL (red), as seen in Figure 4.4. The “DKL_Below” samples gave an 

accuracy performance of 98.69% compared to the 96.93% for the “DKL_Above” 

samples after the 140 epochs. 

 



 

78 

 

Figure 4.4: GLCM Correlation Using Caltech256 on the New VGG Model 

In Figure 4.5, the LBP conflated features with higher than mean DKL also gave a lower 

performance in the new MobileNetV2 model, further illustrating the importance of the 

lower informational difference noted in, the lower than mean DKL samples. The 

“DKL_Below” samples gave an accuracy performance of 95.41% compared to the 

93.05% for the “DKL_Above” samples. 

 

Figure 4.5: LBP Using MIT Indoor on the New MobileNetV2 Model 

4.3.1.2 Precision 

Precision is the identification of the correct samples in data (Machine Learning 

Glossary, 2024) as expressed below; 
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                                            Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                    (4.2) 

where TP refers to true positive predictions, and FP refers to false positive 

predictions. Precision is typically used alongside accuracy performance metrics. The 

new VGG16 model precision performance is shown in the table below using the selected 

datasets. 

Table 4.2 presents the precision results of the new VGG16 model when using the 

various datasets for the conflation process considering the GLCM and LBP methods. 

Table 4.2: New VGG16 Precision Performance (%) on Selected Datasets 

Dataset 

Methods 

GLCM 
LBP 

Correlation Homogeneity Energy Dissimilarity 

BLW ABV BLW ABV BLW ABV BLW ABV BLW ABV 

Caltech 256 98.83 97.87 98.38 97.31 98.81 97.07 98.00 97.46 98.69 97.92 

MIT Indoor 97.36 96.04 93.23 91.19 92.85 91.40 93.81 90.68 93.03 91.05 

Stanford 

Dogs 

99.69 97.56 95.37 93.31 96.94 91.74 93.19 92.78 96.19 93.07 

*BLW; ABV represent Below-average and Above-average DKL 

The conflated lower DKL indicated that BLW gave the highest precision. In the case 

of GLCM, the correlation and energy properties had higher precision than the other 

properties. The Stanford Dogs and Caltech256 datasets gave the least precision for the 

dissimilarity property. Furthermore, the GLCM properties gave higher Caltech256 and 

MIT Indoor datasets scores. 

Similarly to Table 4.2, the GLCM’s energy continued to give good precision 

performance compared to the other GLCM properties. Still, the LBP performed better 

in the MIT Indoor dataset in the new MobileNetV2 model. However, the GLCM 

dominated the other two datasets. Figure 4.6 shows the performance of the Caltech256 

LBP precision on the new MobileNetV2. The “DKL_Below” samples gave a precision 

of 99.54% compared to the “DKL_Above” of 97.26%. The “DKL_Below” also 

showed a better training curve, as noted in the figure, which could result from using 

better-quality data points.  
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Figure 4.6: LBP Precision Plot of the New MobileNetV2 on the Caltech256 

Dataset 

As illustrated in the Figures above, the samples with lower DKL values had higher 

precision performance. 

4.3.1.3 Recall 

The recall is a function of the correctly identified samples of actual positives (Machine 

Learning Glossary, 2024) to the total predictions expressed in Equation 4.3: 

                                                        Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                           (4.3)  

where TP refers to true positive predictions, and FN refers to false negative 

predictions. 

Table 4.3 presents the new MobileNetV2 model's accuracy results for the various 

datasets and methods used in the conflation process.  

  



 

81 

Table 4.3: New MobileNetV2 Recall Performance (%) on Selected Datasets 

Dataset 

Methods 

GLCM 
LBP 

Correlation Homogeneity Energy Dissimilarity 

BLW ABV BLW ABV BLW ABV BLW ABV BLW ABV 

Caltech 256 87.34 71.00 73.64 73.07 90.04 85.62 76.87 76.00 95.68 88.72 

MIT Indoor 92.10 90.38 90.35 86.58 92.06 90.00 89.46 89.22 92.54 89.38 

Stanford 

Dogs 

96.47 96.26 97.11 93.68 96.78 95.09 97.51 95.08 95.80 94.99 

*BLW; ABV represent Below-average and Above-average DKL 

As recorded in Table 4.3, the correlation and energy properties performed well with 

the other GLCM properties. The LBP still outperformed the GLCMs in the Caltech256 

and MIT Indoor datasets. The same trend of energy and correlation GLCM properties 

to give the best recall values among the GLCM properties was observed in the new 

VGG16. In contrast, dissimilarity gave the least recall performance. Figure 4.7 

illustrates the new VGG16 correlation recall performance on the Caltech256 dataset. 

In the figure, the training curve when using the “DKL_Below” looks more stable and 

gives the highest recall of 97.39% compared to the use of “DKL_Above” samples that 

gave 96.38%. 

 

Figure 4.7: Correlation Recall Plot on Caltech256 Dataset Using New VGG16 

In Figure 4.8, a similar trend of recall performance is noted on the new MobileNet 

when using the Stanford dogs’ dataset. The samples with lower DKL outperform those 

with DKL above the mean. The “DKL_Above” samples gave a recall rate of 93.68% 

compared to the 97.11% for the “DKL_Below” samples. 
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Figure 4.8: Homogeneity Recall Plot on New MobileNetV2 on Stanford Dogs’ 

Dataset 

4.4 Investigation of Dynamic Layer selection Approach on the New Model 

This section presents the results of the dynamic selection of fine-tunable layers. The 

results are shown in the following subsections: accuracy performance comparison 

based on probability distance and divergence metrics, accuracy performance 

comparison using the weights methods (cosine similarity-positive weights, cosine 

similarity-negative weights, cosine similarity-positive-negative weights and their 

respective Kullback-Leibler divergence methods (on signed weights - positive, negative, 

and positive-negative). The other comparisons are on the standard baselines and the 

computational complexities. 

4.4.1 Comparison between Distance Measures 

This section looks at the accuracy performance of the five new models used in the 

dynamic selection of layers approach. The positive and negative weight methods are 

presented and compared. Table 4.4 presents the results of the Fashion-MNIST dataset 

accuracy performance on the various new models. 
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Table 4.4: Comparison of Fashion-MNIST Dataset Accuracy Performance (%) 

of Selected New Models 

Model 

Fashion-MNIST 

Cosine Similarity Kullback-Leibler Divergence 

Positive Negative 
Positive-

Negative 
Positive Negative 

Positive-

Negative 

H L H L H L H L H L H L 

ResNet50 90.15 90.30 89.87 89.92 90.02 90.21 90.07 90.08 89.97 89.91 91.89 91.35 

VGG16 90.88 90.21 90.75 90.77 90.20 90.46 90.62 90.19 90.34 90.55 91.58 90.78 

Inception 

V3 

91.46 90.78 90.59 90.65 90.45 90.31 90.60 90.29 90.42 90.16 91.03 90.40 

DenseNet 

169 

90.56 90.28 90.13 90.63 90.55 90.70 90.52 90.46 90.25 90.03 92.19 91.36 

*H; L represent Higher than Average and Lower than Average 

From the presented results, the positive and the Positive-Negative methods in Cosine 

Similarity and Kullback-Leibler divergence perform better than the Negative methods. 

Table 4.5 further presents the MNIST accuracy performance for the various models. 

Table 4.5: Comparison of MNIST Dataset Accuracy Performance (%) of Selected 

Models 

Model MNIST 

Cosine Similarity Kullback-Leibler Divergence 

Positive Negative 
Positive-

Negative 
Positive Negative 

Positive-

Negative 

H L H L H L H L H L H L 

ResNet50 98.98 99.01 98.76 98.90 98.85 98.83 98.72 99.03 98.96 98.99 99.45 99.25 

VGG 

16 

99.34 98.29 99.28 99.27 99.25 99.24 99.26 99.28 99.20 99.28 99.31 99.18 

Inception 

V3 

98.80 98.78 99.28 99.27 99.63 99.35 98.10 98.06 98.04 98.03 93.68 91.70 

DenseNet 

169 

88.45 89.20 88.56 89.69 99.14 99.04 91.09 90.29 90.24 90.15 90.40 89.70 

*H; L represent Higher than Average and Lower than Average 

The accuracy performance in Table 4.5 was lower than the accuracy values in Table 4.4 

for the negative weights methods. However, the performance of the Positive and 

Positive-Negative methods in the Cosine Similarity and Kullback-Leibler divergence 

continued over the Negative methods. This performance is further noted in Table 4.6, 

which presents the results of the CIFAR-10 dataset. 
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Table 4.6: Comparison of CIFAR-10 Dataset Accuracy Performance (%) of 

Selected New Models 

Model 

CIFAR-10 

Cosine Similarity Kullback-Leibler Divergence 

Positive Negative Positive-Negative Positive Negative Positive-Negative 

H L H L H L H L H L H L 

ResNet50 68.08 67.25 67.68 66.94 67.98 67.30 67.72 67.65 67.50 67.04 68.58 68.21 

VGG16 80.13 80.01 79.73 80.00 80.35 80.15 80.46 80.18 80.50 79.88 82.45 80.12 

InceptionV3 86.31 84.23 85.76 85.70 85.43 86.01 81.98 80.19 82.27 81.65 73.56 69.55 

DenseNet 169 77.23 75.36 76.78 76.44 76.90 76.84 77.46 77.32 76.88 77.37 78.13 77.10 

*H; L represent Higher than Average and Lower than Average 

From the table, the performance of the CIFAR-10 dataset in the various models for the 

Cosine Similarity and Kullback-Leibler divergence is lower compared to the Fashion-

MNIST and MNIST results presented in Tables 4.4 and 4.5. The results of the CIFARs 

are further presented in Table 4.7 for the CIFAR-100.  

Table 4.7: Comparison of CIFAR-100 Dataset Accuracy Performance (%) of 

Selected New Models 

Model CIFAR-100 

Cosine Similarity Kullback-Leibler Divergence 

Positive Negative Positive-

Negative 

Positive Negative Positive-

Negative 

H L H L H L H L H L H L 

ResNet50 18.92 16.89 18.82 17.91 18.08 18.00 19.03 18.61 18.68 18.73 19.52 19.98 

VGG 

16 

38.49 36.24 36.56 38.11 38.64 36.28 37.21 37.13 37.49 36.58 20.77 13.53 

Inception 

V3 

57.16 54.56 54.01 54.16 58.23 57.25 30.24 29.45 29.36 26.47 35.22 30.55 

DenseNet  

169 

34.31 33.08 35.00 34.15 34.25 34.17 34.68 34.32 35.25 35.02 57.16 54.56 

*H; L represent Higher than Average and Lower than Average 

In Table 4.7, the performance of the new models on various datasets still showed that 

the positive-negative weights and the positive weights outweighed the negatives. This 

pattern was very consistent with the previous performances. In Tables 4.4-4.7, the 

positives and the positive-negatives gave the best accuracy performance compared to 

the negatives. 
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From the result presented: 

a) Positive cosine methods gave 14 out of 16 best accuracies compared to negative 

ones.   

b) The method accuracy margins were between 1.01% to 3.15% 

c) Positive-negative cosine methods gave 10 out of 16 best accuracies compared to 

the negative cosine methods. The methods’ accuracy margins were 9.69% to 

10.58% over the negative cosine methods. 

d) Negative cosine methods gave only two best accuracies compared to the positive-

negative or positive ones. 

e) The negative-weighted methods did not perform better in DKL comparisons than 

the positive-negative and positive-weighted DKL methods. 

f) The positive-negative DKL methods performed better than the positive and the 

negative DKL methods. Their accuracy margins were between 16.44% to 

16.72%. 

The cosine similarity methods targeted the higher layers, while the DKL methods 

utilized the lower and middle layers in the networks. This layer selection affected their 

performance, with the DKL methods improving performance. Figure 4.9 shows that 

high Cosine similarity among the layers influences the training and validation datasets 

without overfitting the new VGG16 model. The “Hcos_Train” gave 26.58%, while the 

“Hcos_Validation” gave a 38.64%. The low Cosine similarity validation 

(Lcos_Validation) dataset also gave a higher value of 36.28% to the 25.21% for the low 

Cosine similarity training set. 
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Figure 4.9: New VGG16 Accuracy Plot on CIFAR-100  

"Hcos" refers to higher positive-negative cosine similarity, and "Lcos" refers to lower 

positive-negative cosine similarity 

When comparing the performance of the new models based on the datasets, the 

following was noted: 

a) The MNIST performed better than the CIFAR datasets. This performance was 

evident, with the CIFAR-100 performing poorly in all four new models. The poor 

performance in the models has also been reported by i) Bastidas Rodriguez et al. 

(2020), who noted that CIFAR-10 performed better than CIFAR-100 in new 

ResNet50 and new InceptionV3 models with standard deviations of 0.306 and 

9.95, respectively. ii) In a study by Nagae et al. (2020), the CIFAR-100 still gave 

lower values than the other datasets. However, in this case, their models did not 

overfit. 

b) Similar to the previous studies reported in (i), CIFAR-10 performed better than 

CIFAR-100, which gave very low performance, as shown in Figure 4.9. However, 

a higher performance was noted when the epochs were increased. 

4.4.2 Comparison between the Selected Methods and Conventional Baseline 

Methods 

The baseline (commonly used) methods refer to those techniques that have or are being 

used in transfer learning tasks to evaluate the performance of the new models when 

used in new target tasks. The methods are essential in assisting researchers in assessing 
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the performance of their newly designed methods. The DKL methods were used in 

this section due to their superiority, reported in the previous section, over the cosine 

similarity methods. In Table 4.8, a comparison of the various baselines and the 

presented methods' accuracy (Acc) and loss is made on the new InceptionV3 model. 

Table 4.8: Comparison of DKL Accuracy (%) and Loss Using Selected Fine-

Tuning Methods on the New InceptionV3 Model 

Method Datasets 

CIFAR-10 CIFAR-100 MNIST Fashion-MNIST 

Acc Loss Acc Loss Acc Loss Acc Loss 

DKL 

Positive 

77.28 0.65 22.68 3.48 98.18 0.06 87.90 0.33 

DKL 

Negative 

78.67 0.62 23.17 3.52 98.16 0.06 87.95 0.33 

DKL 

Positive-

Negative 

77.73 0.64 23.16 3.47 98.1 0.06 87.81 0.33 

1st Layer 

Fine-tuning 

66.26 0.99 12.06 4.01 91.66 0.29 80.71 0.54 

2nd Layer 

Fine-tuning 

67.22 0.99 11.95 4.07 91.78 0.28 80.87 0.55 

3rd Layer 

Fine-tuning 

66.62 0.99 10.85 4.14 92.12 0.27 79.94 0.57 

Feature 

Extraction 

66.93 0.98 13.12 3.98 91.97 0.28 80.67 0.55 

* Acc represent Accuracy 

From the presented results, the new InceptionV3 model gave a higher accuracy margin 

of at least 5% for the selected datasets with the proposed methods. The MNIST 

performed better than the Fashion-MNIST. Table 4.9 further shows the accuracy (Acc) 

and loss performance of the new techniques to the baselines in the new VGG16 model 

on the CIFARs and MNISTs datasets. 
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Table 4.9: Comparison of DKL Accuracy (%) and Loss Using Selected Fine-

Tuning Methods on the New VGG16 Model 

Method Datasets 

CIFAR-10 CIFAR-100 MNIST Fashion-MNIST 

Acc Loss Acc Loss Acc Loss Acc Loss 

DKL Positive 73.65 1.52 74.66 0.76 99.55 0.02 88.25 0.31 

DKL Negative 73.94 1.55 74.96 0.77 99.30 0.02 88.10 0.32 

DKL Positive-

Negative 

72.45 1.65 75.42 0.76 99.70 0.01 87.65 0.31 

1st Layer Fine-

tuning 

53.31 2.58 57.45 1.27 82.70 0.64 75.45 0.69 

2nd Layer Fine-

tuning 

58.04 2.34 61.35 1.16 89.75 0.36 77.60 0.58 

3rd Layer Fine-

tuning 

61.44 2.18 64.63 1.06 95.65 0.15 81.40 0.48 

Feature 

Extraction 

24.76 3.84 66.97 0.99 68.70 1.32 69.55 1.07 

* Acc represent Accuracy 

In Table 4.9, the MNISTs performed better than the CIFARs for the new VGG16 pre-

trained model. Furthermore, the CIFAR-100 was noted to adapt to the new VGG16 and 

even performed better than the CIFAR-10, which had been dominant in the other new 

models.  Table 4.10 further shows the accuracy (Acc) and loss performance of the new 

DenseNet169 model. 

Table 4.10: Comparison of DKL Accuracy (%) and Loss Using Selected Fine-

Tuning Methods on the DenseNet169 Model 

Method Datasets 

CIFAR-10 CIFAR-100 MNIST Fashion-MNIST 

Acc Loss Acc Loss Acc Loss Acc Loss 

DKL Positive 69.19 1.81 21.60 3.82 99.05 0.02 87.75 0.32 

DKL Negative 69.02 1.84 22.17 4.02 99.01 0.02 88.20 0.32 

DKL Positive-

Negative 

69.20 1.87 5.86 4.61 98.78 0.04 87.50 0.33 

1st Layer Fine-

tuning 

39.61 3.36 5.82 4.62 98.65 0.05 79.30 0.58 

2nd Layer Fine-

tuning 

40.74 3.17 6.60 4.59 98.60 0.05 79.20 0.58 

3rd Layer Fine-

tuning 

45.20 3.07 3.95 4.70 98.65 0.05 79.45 0.56 

Feature 

Extraction 

35.55 3.41 5.96 4.35 91.85 0.30 75.30 0.71 

* Acc represent Accuracy 

In Table 4.10, the CIFAR-100 did not adapt well to this sizeable new model (new 

DenseNet169) and required an adjustment of the hyperparameters, for example, 
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additional epochs. However, the MNISTs (presented in Tables 4.8 – 4.10) adapted 

well to the new model, giving a 99.05% on the MNIST dataset. Again, the introduced 

methods provided better performance than the conventional methods. Among the 

traditional baseline methods, the k-3 method performed better, while feature extraction 

gave the least accuracy performance. 

The conventional baselines and the introduced methods’ accuracy performance can 

further be illustrated using Figures 4.10-4.12 below, with the positive-negative DKL 

that gave an excellent accuracy performance and a substantial loss of up to 0.985, as 

noted in Figure 4.10. Although the negative DKL (NDKL) showed the most negligible 

loss, the positive-negative gave the best accuracy of 56.34% compared to the NDKL’s 

53.89%. Among the baseline methods, the feature extraction gave the least loss of 

2.345, while the best-performing 3rd_Layer gave 1.789. 

 

Figure 4.10: Loss on New ResNet50 on CIFAR-10 Dataset  

The word “PDKL” refers to positive DKL, “NDKL” refers to negative DKL and 

“PNDKL” refers to positive- negative DKL 

In figure 4.11, the three introduced methods show good model learning as the number 

of epochs increases. The baseline methods, especially the 2nd_Layer and 3rd _Layer, 

show a fast decline in the learning rate from the 20th epoch, resulting in a loss value of 

0.869 and 0.729, respectively. However, the introduced methods still gave lower loss 

values, with the PNDKL giving the most negligible loss, 0.358, for the Fashion-
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MNIST dataset.  

 

Figure 4.11: Loss of the New ResNet50 on the Fashion-MNIST Dataset 

In comparing the introduced methods and the conventional baselines, the approach 

selected the best-suited layers for fine-tuning. It is also evident that the traditional 

baselines gave the lowest results – as illustrated by Figure 4.12, where the PNDKL 

gave the best loss at 0.248 while the best baseline gave a loss of 0.943. This observation 

was presented in previous studies: Royer and Lampert (2020) used the Flex-tuning 

technique, which fine-tuned a network’s layers and its fully connected units; Guo et al. 

(2019) used the standard transfer learning method that only replaced the classification 

layer of the model, the L2-SP and random policy methods. In this study, the three 

methods gained accuracy margins of 15.52%-16.89% in the new ResNet50, 10.8%-

11.74% for the new InceptionV3, 23.82%-24% for the new DenseNet169 and 11.01%-

12.5% for the new VGG16 models. 
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Figure 4.12: Loss of the New ResNet50 on the MNIST Dataset 

When comparing the conventional baselines, the feature extractor performed less 

accurately for the study’s new models. This performance supports the study by Guo 

et al. (2019). In further efforts to understand the impacts of weights in selecting the 

layers, regularization was added to the new models, and similar margins were 

observed. However, the regularization improved the new models’ performance, 

reduced the chances of overfitting, improved the model’s domain adaptation and gave 

stable model training (Vrbanč ič & Podgorelec, 2020). 

4.4.3 Evaluation of Dynamic Layer Selection Approach on New MobileNets 

Understanding the dynamic layer selection method in the transfer learning process was 

vital to observe its effects on various architectures, including new mobile nets. 

MobileNets are relatively small compared to pre-trained models such as DenseNet169. 

In this study, two mobile nets, MobileNet and MobileNetV2, were considered. Table 

4.11 shows the accuracy (Acc) and loss performance of the new MobileNet model on 

the various datasets using various methods. 
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Table 4.11: Comparison of DKL Accuracy (%) and Loss Using Selected Fine-

Tuning Methods on the New MobileNet Model 

Method Datasets 

CIFAR-10 CIFAR-100 MNIST Fashion-MNIST 

Acc Loss Acc Loss Acc Loss Acc Loss 

DKL 

Positive 

70.26 1.72 29.67 3.95 99.24 0.03 90.24 0.45 

DKL 

Negative 

70.01 1.81 30.58 3.87 99.03 0.03 89.47 0.44 

DKL 

Positive-

Negative 

71.21 1.79 19.27 4.01 99.70 0.06 89.36 0.39 

1st Layer 

Fine-tuning 

45.29 3.21 18.74 4.52 97.63 0.07 81.29 0.55 

2nd Layer 

Fine-tuning 

47.89 3.06 20.49 4.43 97.34 0.07 81.04 0.54 

3rd Layer 

Fine-tuning 

50.45 3.23 14.96 4.97 97.56 0.08 80.98 0.52 

Feature 

Extraction 

39.18 3.26 15.10 4.18 93.45 0.25 78.36 0.89 

* Acc represent Accuracy 

In Table 4.11, the baselines gave lower values compared to the introduced methods, 

indicating more suitability and effectiveness in choosing suitable fine-tuneable layers. 

The comparison of these approaches is also illustrated in Figure 4.13, where the 

accuracy of the introduced methods continues to increase during the learning process. 

The PNDKL gave the highest accuracy of 64.67%, while the best-performing baseline 

(3rd_Layer) gave an accuracy of 54.12%.  
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Figure 4.13: CIFAR-10 on the New MobileNetV2 

In the two illustrated Mobilenets instances, the new MobileNet gave an improved 

accuracy range between 7.2% for the MNIST dataset and 33.65% for the CIFAR 

dataset. The new MobileNetV2 also maintained high accuracy while utilising fewer 

parameters, facilitating its use in low-resource settings like mobile devices. These 

mobile nets are reliable, just like the new ResNets and the new VGGs, despite fewer 

parameters, as Praveen et al. (2021) noted. 

4.5 Investigation of New Model Pipeline (Textural Features Conflation and 

Dynamic Layer Selection) 

This section presents the pre-trained models’ performance results using the selected 

samples and the dynamically selected layers. Additionally, non-selected samples were 

compared with the selected samples to validate the results of these models. Figure 4.14 

below compares two feature maps to show a layer’s weight behaviour when using 

samples with lower and higher DKL values. As seen in the illustration, layer 1 of the 

new model had lighter colours representing excitatory weights in the first channel of 

the layer. In comparison, darker colours representing inhibitory weights are noted in 

layer 9 of the new model. The learning difference is a clear indicator of improved 

learning in the first layer of the new model compared to the later layers, which are 

primarily concerned with classification purposes. 
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a) VGG16 - Layer 1, Channel 1 Weights 

 

b) VGG16 - Layer 9, Channel 1 Weights 

Figure 4.14: New VGG16’s Layers 1 and 9 Weights Visualization 

The tables (Tables 4.12 – 4.16) onwards show the performance of the various new 

models with and without the selected samples and the DKL methods. Table 4.12 shows 

the performance of the selected DKL methods on samples before and after conflation 

for the various datasets on the new ResNet50 model. 
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Table 4.12: New ResNet50 Accuracy Performance (%) Using Selected DKL 

Methods 

Dataset ResNet50 

Positive Negative 

Before Samples After Samples Before Samples After Samples 

Caltech 256 97.04 98.15 96.23 96.25 

MIT Indoor 96.64 97.24 95.98 96.12 

Stanford Dogs 92.16 93.01 91.06 91.77 

CIFAR10 54.18 55.29 53.58 53.89 

CIFAR100 19.10 31.24 19.01 32.05 

MNIST 98.20 99.27 98.25 98.69 

Fashion MNIST 88.12 89.06 88.14 88.42 

CRX8 82.96 83.46 80.20 81.11 

Melanoma 78.68 79.36 77.23 77.85 

From Table 4.12, selected conflated samples gave better results regardless of using 

both the positive and the negative-weighted Kullback-Leibler divergence methods. It 

is also worth noting that the positive-weighted Kullback-Leibler divergence methods 

performed better than the negative ones. The MNIST datasets gave the best results with 

the dynamic layers, while the CIFAR-100 gave the least performance. When the 

conflated data points were used, there was an improvement in the CIFAR-100. The 

new VGG’s performance in Figure 4.15 further illustrates the performance of the 

ISIC2016 dataset, with and without the conflated images (selected) and the 

dynamically chosen layers. Using conflated data points (with below) and dynamically 

selected layers gave an accuracy rate of 87.34% compared to just “Below_conflation” 

without the selected layers, which gave the highest accuracy of 82.69%. A similar 

trend applies to “Above_conflation,” only giving an accuracy of 78.34% for the 

combined method with 85.12%. 
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Figure 4.15: New VGG16 Accuracy Comparison Plots between Conflated 

Samples Methods and Conflated Samples with Dynamically Selected Layers 

Methods 

As seen in Figure 4.15, the new VGG16 pre-trained model improved drastically for 

samples with below-average DKL and more when the dynamically selected layers 

were used in the fine-tuning. The results of the new InceptionV3 pre-trained model are 

presented in Table 4.13. 

Table 4.13: New InceptionV3 Accuracy Performance (%) Using Selected DKL 

Methods 

Dataset InceptionV3 

Positive Negative 

Before 

Samples 

After Samples Before Samples After Samples 

Caltech 256 93.24 94.02 92.14 92.34 

MIT Indoor 89.42 90.23 87.24 88.34 

Stanford Dogs 88.36 91.05 88.09 89.02 

CIFAR10 77.58 78.29 78.47 79.11 

CIFAR100 30.59 34.12 28.98 32.21 

MNIST 98.09 99.08 98.01 98.78 

Fashion MNIST 87.53 88.24 87.45 88.03 

CRX8 80.48 81.45 78.32 79.38 

Melanoma 85.36 85.98 81.39 82.35 

From Table 4.13, the fine-tuned dynamically selected layers improved the new model’s 

performance when the below-average samples were used, with the MNIST performing 
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better than the CIFARs. It is also noted that the smaller datasets - ISIC2016 and 

ChestX-ray8 performed very well. Table 4.14 further presents the performance of 

these methods and samples on the new DenseNet169 model. 

Table 4.14: New DenseNet169 Accuracy Performance (%) Using Selected DKL 

Methods 

Dataset Kullback-Leibler Divergence Methods 

Positive Negative 

Before 

Samples 

After Samples Before Samples After Samples 

Caltech 256 91.54 92.69 90.47 90.65 

MIT Indoor 87.28 88.90 86.88 86.82 

Stanford Dogs 86.65 87.35 84.07 84.98 

CIFAR10 69.18 72.49 69.05 71.56 

CIFAR100 34.58 42.15 32.15 41.49 

MNIST 99.02 99.52 98.89 98.94 

Fashion MNIST 87.69 88.14 87.12 88.01 

CRX8 78.24 79.61 77.36 77.58 

Melanoma 81.36 82.35 79.35 81.44 

From Table 4.14, the new DenseNet169 pre-trained model showed a similar trend, with 

CIFAR-100 giving the least accuracy among the datasets. The MNISTs still had the 

best adaptation, as seen in their previously recorded accuracy performance in Table 

4.13. Table 4.15 further presents the performance of the selected methods and samples 

for the new MobileNetV2. 
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Table 4.15: New MobileNetV2 Accuracy Performance (%) Using Selected DKL 

Methods 

Dataset Kullback-Leibler Divergence Methods 

Positive Negative 

Before Samples After Samples Before Samples After Samples 

Caltech 256 91.45 92.34 93.65 94.04 

MIT Indoor 86.24 87.95 86.02 86.39 

Stanford Dogs 88.56 88.96 87.34 87.58 

CIFAR10 64.21 66.20 64.11 65.14 

CIFAR100 29.99 32.41 29.38 30.04 

MNIST 97.98 98.56 97.90 97.87 

Fashion MNIST 87.35 88.69 87.04 88.96 

CRX8 77.53 79.34 67.08 70.12 

Melanoma 76.40 78.15 73.24 73.69 

In using the new MobileNetV2 pre-trained model, the evaluated datasets behaviour was 

similar to the already reported pre-trained models for the CIFARs and the MNISTs - 

this was possible as a result of using the below-average DKL samples and the 

dynamically selected layers of the new MobileNetV2. The precision performance of 

the new MobileNetV2 was used to validate the accuracy performance, as shown in 

Table 4.16. 

Table 4.16: New MobileNetV2 Precision Performance (%) Using Selected DKL 

Methods 

Dataset Kullback-Leibler Divergence Methods 

Positive Negative 

Before 

Samples 

After Samples Before Samples After Samples 

Caltech 256 90.34 91.85 93.15 93.88 

MIT Indoor 86.02 87.36 85.85 85.74 

Stanford Dogs 89.01 90.37 86.48 86.95 

CIFAR10 65.23 67.92 64.06 66.24 

CIFAR100 30.08 33.74 29.04 29.51 

MNIST 98.36 98.87 96.47 96.94 

Fashion MNIST 88.41 90.21 88.14 89.38 

CRX8 78.1 80.39 66.47 69.54 

Melanoma 77.63 79.54 73.12 74.85 

The precision performance of the models was used to indicate the repeatability of 

obtaining good performance for pre-trained models. In Table 4.16, the precision 

values were not very far off the accuracy values, validating the accuracy performance 
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from the samples on the pre-trained model. In Figure 4.16, a confusion matrix further 

illustrates the validity of the results on the ISIC2016 testing dataset. The model can 

correctly classify the positive class data points (124) and the negative ones (31). 

 

Figure 4.16: New MobileNetV2 Confusion Matrix on ISIC 2016 

4.5.1 Evaluation of the Proposed Methods against Conventional Baseline 

Methods 

Combining the two methods was compared to the conventional methods: standard fine-

tuning, k-1, k-2, and k-3. The use of conflated data points and dynamically selected 

layers in a new model allowed the average accuracy performance to improve by 0.87%, 

with the new DenseNet169 giving the most improved accuracy of 1.57% and the new 

VGG16 giving a slight improvement of 0.06% compared to the standard fine-tuning 

for the ChestX-ray8 dataset. Figure 4.17 illustrates the accuracy performance of 

samples without transfer learning and with transfer learning. The model gives an 

accuracy value of 85.27% when the transfer learning is done with the selected layers 

and when using the chosen samples, compared to 84.63% when using all the samples 

in the dataset. The performance is even lower when using the standard transfer learning 

in either case, but the selected samples still perform better at 77.78% to 75.56% when 

using all the samples. 
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Figure 4.17: New VGG16 Accuracy Comparison between Methods with and 

without Transfer Learning (TL) on ISIC 2016  

BW Refers to Below-Average DKL, and ABV Refers to Above-Average DKL 

From the results illustrated in Figure 4.17, the below-average DKL not only performed 

better than the above-average method but also took less time (50 seconds) to train on 

ISIC2016 samples than a typical convolutional neural network that was used to 

ascertain the improvements from the use of pre-trained models. The typical 

convolutional neural network was a 12-layer CNN. Table 4.17 presents the 

performance of the ChestX-ray8 samples on the various methods and new models. 

Table 4.17: Proposed Methods and Commonly Used Methods Accuracy 

Performance (%) on ChestX-Ray8 (Homogeneity) 

Method New Models 

ResNet50 VGG16 InceptionV3 DenseNet169 MobileNetV2 

Below DKL 84.34 72.14 84.15 81.26 77.25 

Above DKL 83.97 68.90 81.20 78.50 72.45 

Positive DKL 82.96 85.38 80.48 78.24 77.53 

Negative 

DKL 

80.20 82.30 78.32 77.36 67.08 

Positive + 

Above DKL 

83.46 86.44 81.45 79.61 79.34 

Standard 

fine-tuning 

83.08 86.38 80.05 78.04 78.40 

Last k-1 80.14 82.54 78.98 77.39 78.18 

Last k-2 82.26 84.03 79.59 77.65 79.04 

Last k-3 82.98 84.84 79.56 77.84 79.12 

From Table 4.17, the combined methods of the dynamically selected layers positive 

DKL methods and the use of conflated below-average DKL gave an average 

improvement of 0.87%, with the new VGG16 pre-trained model giving the slightest 
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improvement of 0.06%. 

The k-3 method was the most improved among the conventional techniques, with its 

starting training accuracy of 68.46%, as shown in Figure 4.18. Combining these two 

methods seemed to work well across all the baseline methods. It is also important to 

note that the below-average methods using the conflated samples only were the second 

best methods after the combined methods, highlighting the importance of selecting the 

quality samples in the datasets. The model gives an accuracy value of 85.27% with the 

selected layers (Below-conflation-Layer) and when using the chosen samples 

compared to 84.63% when using all the samples in the dataset. This performance is 

lower for the baseline methods with the standard fine-tuning, which gives the best 

accuracy of 84.75%. 

 

Figure 4.18: New VGG16 Accuracy Comparison between Proposed Methods and 

Commonly Used Methods on ISIC 2016 

4.6 Investigations on Computational Complexities of the New Model 

The computational complexity in the proposed approach was evaluated from two 

views: the selection of samples and the dynamic selection of the layers. The complexity 

looked at the time taken to complete a computational process and the memory taken. 

4.6.1 Evaluation of Conflation Approach Computational Complexity 

In the computation of the conflation of textural features, the time taken in the process 
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and memory used in the process were measured in milliseconds and bits, respectively. 

Table 4.18 shows the computation complexity of the conflation process on a new 

VGG16 pre-trained model using the LBP method.  

Table 4.18: Comparison of Complexity Distances on New VGG16 Using LBP 

Dataset Divergence Measures 

DKL Wasserstein Hellinger Jensen-Shannon Bhattacharya 

T Mem T Mem T Mem T Mem T Mem 

Caltech256 6.02 12262 6.18 12262 6.16 12262 6.18 12262 6.20 12262 

MIT 

Indoor67 

6.08 12262 6.15 12262 6.22 12262 6.31 12262 6.36 12262 

Stanford 

Dogs 

6.24 12262 6.29 12262 6.29 12262 6.28 12262 6.34 12262 

*T; Mem represents Time (s) and Memory (bits) 

As noted in the table, the Bhattacharya divergence metric gave the highest complexity 

compared to the other divergences. The complexity was based on the conflation of 

features of one target sample and its comparison to the source samples. The Jensen-

Shannon came second, while the DKL was the least computationally complex 

divergence measure. From the table, it can also be noted that the memory complexity 

was similar for all the divergence measures. The computational complexity was also 

evaluated using a single target data sample using the new MobileNet pre-trained model, 

as shown in Table 4.19. 

Table 4.19: Comparison of Complexity Distances on New MobileNet Using 

GLCM Correlation 

Dataset Divergence Measures 
DKL Wasserstein Hellinger Jensen-Shannon Bhattacharya 

T Mem T Mem T Mem T Mem T Mem 

Caltech 

256 

6.81 12262 6.97 12262 6.93 12262 7.01 12262 7.10 12262 

MIT 

Indoor 

67 

7.02 12262 7.04 12262 7.22 12262 7.22 12262 7.16 12262 

Stanford 

Dogs 

6.91 12262 7.09 12262 7.11 12262 7.20 12262 7.21 12262 

*T; Mem represents Time (s) and Memory (bits) 
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In the new MobileNet pre-trained model, the same trend of Bhattacharya gave the 

highest computational complexity. It is worth noting that DKL did not provide a very 

significant time complexity margin over the other divergences per sample, but this scale 

increases as the samples increase. 

4.6.2 Evaluation of Dynamic selection Approach Computational Complexity 

In the dynamic selection of the pre-trained model’s layers, the computational 

complexity between DKL and other divergence measures was compared to understand 

the reason behind the choice of DKL in this study. Table 4.20 shows the various 

divergences when using a CIFAR-10 dataset sample. 

Table 4.20: DKL Complexity Comparison to Other Divergence Measures 

Model Divergence Measures 
DKL Hellinger Jensen-Shannon Bhattacharya Wasserstein 

T Mem T Mem T Mem T Mem T Mem 

MobileNet 3.33 40102 4.29 141018 1.20 76520 11.94 49537828 2.05 618209 

MobileNetV2 1.92 40323 2.68 193214 0.51 129121 6.20 716486 0.84 916694 

ResNet50 32.89 85444 48.47 370086 5.25 232424 120.36 1450276 15.86 1811638 

VGG16 0.11 13106 0.18 51806 0.05 32183 0.22 176199 0.08 255810 

Inception 

V3 

33.84 90332 66.91 656161 5.35 406236 194.11 1627010 17.89 3224079 

DenseNet 

169 

56.25 125025 96.24 4212014 110.69 797576 219.56 3501420 508.47 6202006 

*T; Mem represents Time (s) and Memory (bits) 

As shown in Table 4.20, the DKL could balance the time and memory computational 

complexities over the other divergences. It was also noted that the new DenseNet169 

took 143 seconds, while the new VGG16 took 34 seconds to use CIFAR-10 when 

selecting the trainable layers. This time difference signified a higher computational 

complexity in the large pre-trained models. 

4.6.3 Evaluation of New Model’s Pipeline (Merged Proposed Methods) 

Computational Complexities  

This section looks into the combined computational complexity of the conflation 

process and the dynamic selection. In Tables 4.21 and 4.22, a sample was taken 

through the conflation and dynamic processes in a classification task for the Cal- 

tech256 dataset. Table 4.21 shows the computational complexities of a Caltech256 

data point on various divergences and new models during conflation. 
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Table 4.21: Divergence Measures Computational Complexity Using Conflation 

Approach on a Sample Caltech256 Data Point 

Model Divergence Measures 

DKL Wasserstein Hellinger Jensen-Shannon Bhattacharya 

T Mem T Mem T Mem T Mem T Mem 

ResNet50 37.48 104137 13.96 30297 51.16 376325 6.51 238501 118.78 1159044 
InceptionV3 36.83 28151 18.35 44451 67.74 672025 7.10 414769 164.84 1639686 
MobileNet V2 14.57 40900 3.65 39695 4.67 40527 4.12 40475 3.66 37805 
VGG16 5.34 25315 3.75 269011 3.98 384880 3.66 187836 3.88 187836 
DenseNet169 908.15 320543 1174.06 632111 1768.06 1262959 78.93 787334 1836.14 1862471 

*T; Mem represents Time (s) and Memory (bits) 

Table 4.21 shows the DKL performed lower than the Wasserstein but better than the 

other methods. However, it also gave a good balance when working with large models 

such as the DenseNet169. Table 4.22 further shows the complexity results of a sample 

Caltech256 data point in the dynamic layer selection method. 

Table 4.22: Divergence Measures Computational Complexity Using Dynamically 

Selected Layers Approach on a Sample Caltech 256 Data Point 

Model 
Divergence Measures 

DKL Wasserstein Hellinger Jensen-Shannon Bhattacharya 

T Mem T Mem T Mem T Mem T Mem 

ResNet50 32.89 85444 15.86 1811638 48.47 370086 5.25 232424 120.36 1450276 

Inception 

V3 

33.84 90332 17.89 3224079 66.91 656161 5.35 406236 194.11 1627010 

MobileNetV2 1.92 40323 0.84 916694 2.68 193214 0.51 129121 6.20 716486 

VGG16 0.11 13106 0.08 255810 0.18 51806 0.05 32183 0.22 176199 

DenseNet 

169 

56.25 125025 508.47 6202006 96.24 4212014 110.69 797576 219.56 3501420 

*T; Mem represents Time (s) and Memory (bits) 

In the dynamic selection of layers, the DKL maintained a better balance than 

Wasserstein in all the new models with lower memory complexities. From Tables 4.21 

and 4.22, the DKL complexities were much lower than Bhattacharyya and Hellinger, 

which took 239.14ms and 99.63ms on the new ResNet50 model, respectively. The 

Jensen-Shannon and Wasserstein took less computational time when DKL took 

70.37ms. However, they took more computational resources, making DKL ideal 

among the divergence measures; it had a better balance of time and memory. 
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4.7 Discussion on the Selection of Target Samples using Textural Features 

Conflation 

The first phase of the model introduced the use of conflation of features. The method 

involved merging features probability distributions and comparing them using the 

Kullback-Leibler divergence, described and illustrated in section 3.3. From the two 

features analysis methods, LBP and GLCM, it was clear that samples with lower 

Kullback-Leibler divergence performed better than samples with high Kullback-

Leibler divergence. The homogeneity and correlation of GLCM’s properties gave the 

best performance in Table 4.1. This performance was due to similar grey levels in the 

neighbouring pixels and the GLCM elements in the pixel’s diagonals. From the results, 

these varied between 1.96% and 6.18%. The homogeneity values were noted to be 

better in the edges where the density and the distances between the textural patches were 

lower. As Chaves (2022) noted, this trend of elements in the main diagonal changes 

smoothly. The elements away from the main diagonal are less critical, so their 

homogeneity is lower. Tables 4.1 and 4.2 present correlation performance that aids in 

determining better sensitivity and validates the classifier’s accuracy. 

As noted in Table 4.2, the GLCMs performed better than the LBP property of the 

sample’s textural features. The homogeneity was reported to match the energy property 

values (Kurniati et al., 2024) in matching the simplicity and uniformity of the textural 

features. The performance of GLCM properties is also noted in Table 4.3, where better 

values for energy and correlations were achieved. The recall values show the 

identification of relevant data points in the dataset by the model (Al-Abboodi et al., 

2024). Other works have also reported such performance (Changwei et al., 2020; Kabir 

et al., 2024). The GLCM properties were also shown to perform better than the CNN-

based descriptors since they are less discriminating in selecting features in the grey 

levels (Iqbal et al., 2021). In the reported instance, the GLCM performed very well, 

improving a CNN’s model performance when using a limited dataset, a common 

occurrence when performing transfer learning. 

The GLCM’s properties helped the model to learn the data patterns much better (Iqbal 

et al., 2021) by selecting the samples with suitable features - those with lower 

Kullback-Leibler divergence. The chosen samples had lower informational differences 
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than those with higher Kullback-Leibler divergence. The GLCM properties were better 

in the selection process than the LBP features descriptor. Among the GLCM properties, 

the dissimilarity provided the least values due to the sharp changes of the grey levels 

in the pixels’ diagonals; when there were abrupt grey level changes, the contrast 

(dissimilarity) was considered to be high, and the features change was higher 

compared to the slant diagonals. 

Apart from the comparison in performance between the GLCM and LBP described 

features used in the pre-trained model, the divergence measures used in the conflation 

approach showed that the Bhattacharya and the Wasserstein performed better than the 

Kullback-Leibler divergence. However, they also gave very high computational 

complexities, presented in tables 4.21 and 4.22, with the Bhattacharya taking 0.244 

milliseconds for new MobileNetV2 with the GLCM properties forming the basis of 

using the DKL in selecting the target samples. When the conflation approach was used 

with the baseline transfer learning methods for the selected new models, it was noted 

that an improvement ranging from 2.51% and 9.15% was achieved for the standard 

method and the other methods, respectively. The feature extraction method improved 

the least among the baseline methods due to freezing parameters, which hindered the 

new model from learning new patterns in the data and could not suit the features’ 

domain shift. 

4.8 Discussion on the Dynamic Selection of New Model Layers for Fine-Tuning 

The dynamic layer selection process aimed to select the most suitable layers for 

participation in fine-tuning and, consequently, good new model performance. This 

study looked at the layers based on the similarity and the divergence measures and 

picked the divergence measures as the best methods to use in the selection process. 

The divergence was based on the weights in the layers, which was compared using the 

Kullback-Leibler divergence, and the process is described in section 3.4. The layers 

whose weights presented low Kullback-Leibler divergence were selected and were 

mainly at the higher end of the models since the bottom layers are primarily used in the 

feature extraction of the given samples and involve freezing of parameters, which often 

leads to poor adaptation. The performance of these selections is presented in Tables 

4.8 to 4.11, and feature extraction gave the least performance. 
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Additionally, the improved adaptation with the dynamic selection of fine-tunable layers 

gave better model stability, as evident in figures 4.13 to 4.15, with gradual loss without 

overfitting. The positive weights in the layers were considered excitatory, a property 

that made the selection of features much better (with improved stimuli) (Montesinos 

López et al., 2022). The positive weights in the filters converged the gradient descent 

in the training process much faster, ensuring better learning of the sample features 

(Wang et al., 2023).  

Furthermore, apart from other factors such as the learning rate, momentum, and error 

surface, the weights have been shown to significantly affect the gradient descent process 

(Hassan et al., 2023). The gradient descent was updated through a reduction or increase 

of the direction of the weights when the previous and the current derivates had opposite 

weight signs - typically, the positive weight indicates a similar direction of the learning 

parameters (learning rate, momentum, error surface) for convergence. The weight 

signs change due to the learning process’s temporal behaviours to the minimum. The 

negative weights in the learning process are inhibitory and aim to diverge and correct 

the gradient descent and control the effects of the model learning rate (Hassan et al., 

2023). The gradient can affect the magnitude and the weight sign. The negative 

weights are predominant or consecutive when a layer’s nodes do not contribute much 

to the learning process. This negligible contribution happens as the minor weight 

adjustments during the learning process result in small gradient changes and error 

curves, necessitating minor modifications to the learning rate (Lamjiak et al., 2024). 

During a model’s learning process, the positive weights are used when the current 

derivative and the previous derivatives are in the same direction; otherwise, the 

weights are decreased (with a negative sign) to ensure the model’s stability and to 

prevent further divergence from the global minima (convergence) (Zhang et al., 2023) 

This behaviour explains the influence of the negatively signed weights in this study 

and the slow or lower performance compared to the positively signed weights. 

Combining the positive and the negative weights ensures a balance in the performance, 

creating stability. However, the performance is not the best due to taking too long to 

reach the model’s convergence (minima), but with better results than the inhibitory 

weights. 
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Even for the new MobileNets, the models’ dynamic choice of suitable layers gave good 

performance irrespective of their small number of parameters. The new MobileNetV2 

facilitates transfer learning in low-resource environments like mobile devices while 

maintaining good pre-trained model performance. These mobile nets comprise 

convolutional layers broken into depthwise separable and pointwise convolutional 

layers. The mobile nets also have linear bottlenecks in inverted residuals. The 

depthwise part of the convolutional layer can perform light filtering using single 

convolutional filters in the channels. In contrast, the pointwise part creates features for 

the input channels using linear combinations. This part helps reduce the input channels 

required (Zhu et al., 2024). 

4.9 Comparison to Existing Methods 

The new model’s performance was compared against state-of-the-art methods on the 

MNIST, MITIndoor 67, Stanford Dogs 120, Caltech256, CIFAR10 and CIFAR100 

datasets. The performances are shown in figures 4.19 to 4.23 below. In Figure 4.19, 

the new approach has an average accuracy of 98.1%, while the Flex-tuning and Label-

Efficient methods have an average accuracy of 90.8% and 81%, respectively. The 

introduced method outperformed both methods by up to 7.3% improvement over the 

Flex-Tuning, which could result from the positive learning process introduced by the 

positive weights in the selected layers.  

 

Figure 4.19: MNIST Dataset Accuracy Performance in Various Methods 

Compared to the methods in the CIFAR10 dataset, the introduced method gave an 
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average accuracy of 68.07% compared to 62.4% for the Flex-Tuning, as illustrated in 

Figure 4.20 for the various models. The 5.67% average difference can be attributed to 

positive weights that lead to faster model convergence. 

 

 

Figure 4.20: CIFAR10 Dataset Accuracy Performance in Various Methods 

For the CIFAR100, the new approach gave an average accuracy performance of 

34.98% compared to 93.7%, 90.9% and 92.9% for the PathNet Elite, Roulette and 

Tournament algorithms, respectively. The introduced method was performed dismally 

compared to the three PathNet genetic algorithm variants, as noted in Figure 4.21. 

However, this was due to using small data samples and only five epochs in three 

genetic algorithms compared to the introduced method, which needed more epochs for 

the data points to fit the new models. 
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Figure 4.21: CIFAR100 Dataset Accuracy Performance in Various Methods 

In Figure 4.22, the new approach is compared with the AdaFilter method, which shows 

a similar trend in good performance. The new approach gave an average accuracy 

performance of 89.88% compared to an average accuracy of 82.44% for the AdaFilter 

method in the Caltech256 dataset. This average accuracy represents an average 

improvement of 7.44%. The difference could result from using RNNs in the AdaFilter, 

which could not be adopted very well with the CNN, and the added advantage of 

selecting the filters with the most positive weights for the introduced approach. 

 

 

Figure 4.22: Caltech256 Dataset Accuracy Performance in Various Methods 

In comparing the new approach with the other methods in the MITIndoor 67 and 

Stanford Dogs 120, the new approach was better by up to 4.18% and 7.44%, 
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respectively, for the AdaFilter. The new approach gave an average accuracy of 

89.88%, while the SpotTune and AdaFilter gave 90.2% and 82.44%, respectively, in 

the Stanford Dogs 120. For the MIT dataset, the new approach gave 91.08%, while 

SpotTune and AdaFilter gave 86.9% and 77.53% respectively. However, SpotTune 

performed better than the new approach for the Stanford Dogs 120, as noted in Figure 

4.23, due to its image-specific fine-tuning method (Guo et al., 2020). The excellent 

performance was the use of the positive weights compared to the use of softmax 

sampling (for SpotTune) and the RNN (for AdaFilter), which does not address the low-

level features targeted in the new approach  

 

Figure 4.23: MITIndoor 67 and Stanford Dogs 120 dataset Accuracy 

Performance in Various Methods 

From figures 4.19 to 4.23, the new approach performs better than the other approaches 

apart from the CIFAR10 dataset since it had broken down into smaller datasets and 

therefore required more epochs in our study to get closer to their results and the 

SpotTune method.  

4.10 Discussion on the Computational Complexity of the New Model 

Apart from the comparison in performance between the GLCM and LBP described 

features used in the new models, the divergence measures used in the conflation 

approach showed that the Bhattacharya and the Wasserstein performed better than the 

Kullback-Leibler divergence. However, they also gave very high computational 

complexities, presented in tables 4.21 and 4.22, with the Bhattacharya taking 0.244 

milliseconds for new MobileNetV2 with the GLCM properties and 0.192 milliseconds 
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when using the LBP described samples in the new VGG16 model. The complexity may 

not seem high for one sample, but it is complex when the number increases, which 

makes DKL suitable for selecting the samples used in the fine-tuning process. The 

conflation algorithm has O(nlog(n)) complexity, which is higher when the number of 

samples is high. For example, for a Stanford Dogs 120 images, the conflation process 

takes 4.906 milliseconds on top of 78780 milliseconds for one image, which can 

quickly compound for a large dataset. However, the complexity is also subject to other 

factors, such as hardware specifications (memory and processing speed) (Sarker, 2021) 

When the conflation approach is used with the baseline transfer learning methods for 

the selected new models. 

The heavy models in this study for the dynamic selection of new model layers were 

noted to give lower accuracy performance than the other models due to their 

complexities (large number of parameters and layers). The DenseNet169 is an 

example of a pre-trained model with 169 layers compared to the VGG16, which has just 

16 layers. Larger datasets such as the CIFAR-100 also recorded lower performance 

compared to smaller datasets; CIFAR-100 gave lower accuracies when trained for 50 

epochs, but an increase in this number gave better results, but this came with higher 

computational complexity for the model to identify the right features in the data. The 

DEFT researchers also noted these issues (Vrbanč ič & Podgorelec, 2020). 

4.11 Summary 

This chapter has presented the results of the new approach:  results on the conflation 

of textural features and dynamic selection of fine-tunable layers. In the new approach, 

it is clear that informational divergence is a crucial element that could result in lower 

domain adaptation in the transfer learning process. The new approach was tested on 

various datasets and pre-trained models as source domain models, as evident in tables 

4.12 to 4.16, and was effective in improving domain adaptation. It effectively 

improved domain adaptation and performed well against baselines and state-of-the-art 

methods. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

5.1 Dynamically Fine-Tuned Model Summary 

This study aimed to develop a dynamically fine-tuned model that addresses the 

conflation of data samples used in the transfer learning tasks and the fine-tuning layers. 

The model was developed based on the conflation of feature distribution and 

comparison of signed weights in fine-tunable layers. The concept of conflation (a 

method primarily used in GIS mapping) is introduced in section 3.6, while the idea of 

signed weights is derived from Equation 2.4, with more discussion in section 3.6. 

When feature distributions are conflated, they give a uniform representation, making 

comparisons with other features easier. The weight signs in a model’s learning process 

significantly affect how fast it can learn patterns in data and consequent use in the 

neural network tasks. 

The model was informed by experiments conducted in chapter four that validated the 

mathematical model defined and expressed in sections 3.6 and 3.7. From the 

experimental results in Tables 4.1 to 4.11, it is clear that conflated feature distributions 

with lower Kullback-Leibler divergence give closely related source-target domain 

images and dynamically selected layers whose Kullback-Leibler divergence is lower 

for the positively signed weights. 

Furthermore, the model was tested on various datasets, as presented in Chapter Four, 

indicating the effects of the conflated distributions and signed weights on the transfer 

learning process at the feature adaptation and fine-tuning stages. The testing was done 

on the nine datasets presented in chapter three, section 3.3, on pre-trained models 

described in section 3.4.  

5.2 Objectives Review 

This study’s main objective was to investigate using similar textural features from the 

target and source models on selectable data subsets in CNN models with a dynamic 

layer selection mechanism on suitable fine-tunable new models to enhance 
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performance accuracy. Combining the two elements - closely related textural features 

(feature-based transfer learning) and weight instances (instance-based transfer 

learning) - was expected to improve the transfer learning process in classification tasks. 

The objectives are outlined in Chapter One, section 1.6.2. The first objective was to 

review existing studies that have addressed the use of features and transfer learning 

approaches with parameters in optimizing the transfer learning process. These have 

been discussed in section 2.4, addressing the aspect of labels, low-textural features, and 

the various methods used in extracting these features. The section also highlights some 

real-life applications of extracting these features, as noted in sections 2.4.6 to 2.4.8.  

Furthermore, the review of various studies in section 2.4 shows a clear context of the 

applicability of low-level textural features in different architectures. Like in this study, 

the features are extracted and compared using various methods. These methods have 

used different parameters, including GANs, dimensionality reduction techniques such 

as DCT, Gabor filters with histograms, approximation methods with Gaussian Mixture 

models, and optimal similarity graphs. Some of these methods are similar to those 

used in extracting features (convolutional neural network) and comparing them 

(dissimilarity of the features). The uniqueness of this objective is found in the 

introduction of the conflation that merges the distribution of textural features, creating 

better uniformity of features in a given sample for improved comparison between the 

domains.  

The second objective was to determine the most suitable distance metric for comparing 

the samples and layers in the new model. This determination has been addressed in 

sections 2.4, 4.4.1, and 4.6, where the best measures were selected based on the least 

complexity. 

The third objective was to develop a new model using the selected conflated samples 

and dynamically selected layers participating in fine-tuning. The choice of dynamic 

layers in the new models has been discussed in section 2.5. The literature outlines 

various methods for pre-trained models’ layers based on filters, weights, binary 

numbers, and evolution algorithms. These methods differ from those that look at the 

weights in the pre-trained model filters based on the signs. The second objective 
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follows a methodology addressed in section 3.6. The section clearly outlines how the 

features are conflated and how the layers are selected, creating a pipeline for fine-

tuning. The methods used in each subprocess, the datasets and the architectures are 

also discussed in sections 3.3 and 3.4, respectively. 

Furthermore, the third objective also includes integrating the algorithmic steps in the 

various new models. The algorithm was implemented in new models discussed in 

section 3.4. The necessary setups required to achieve this objective are discussed in 

section 3.8, which outlines the various parameters and even optimisation techniques 

such as dropout and batch normalization. Within this implementation phase, all the 

architectures and techniques are justified in their selection, with architectures such as 

MobileNets influenced by evaluating the models in low-resource architectures. Others, 

such as DenseNet169, have been used to identify the algorithm’s behaviour in large 

new models. 

The fourth objective evaluates the effectiveness of the developed algorithm in fine-

tuning by comparing the various datasets and commonly used transfer learning 

methods. First, this objective is addressed by selecting the standard techniques used in 

the transfer learning process described in section 3.7.3. These methods’ performance 

(accuracy, recall and precision) are compared with those introduced by the conflation-

dynamic layer selection method. The results of the new techniques are extensively 

presented in sections 4.3 and 4.4, while their comparisons to the baselines are presented 

in section 4.5. The validation of the model is also done using a confusion matrix on 

the validation dataset samples presented in Table 3.1. This validation is further 

illustrated in Figure 4.16 on the new MobileNetV2 model using the ISIC 2016 dataset. 

5.3 Knowledge Contributions 

This study’s main contribution was developing a new model that facilitates the selection 

of source-closely related samples from the target dataset and fine-tunable layers for 

practical transfer learning tasks. The model uses the conflation of features and weights 

probability distributions using Kullback-Leibler divergence. The model presents a 

new approach in pipelining transfer learning to the conventional methods, allowing the 

users to select quality data points in the target datasets and suitable fine-tuning layers, 
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an advancement in transfer learning methods that highlights the importance of features 

and weights in the transfer learning process with applications to different types of data 

and models. 

The study’s contributions come from the two parts of the model: the target samples and 

suitable fine-tunable layer selection. In the first part, the target samples are selected 

based on closeness in textural features with the source domain dataset. In the second 

part, fine-tunable layers are chosen based on the signed weights within a layer, 

selecting the layers with the most positive weights. The selection of the closely source-

related featured samples in the target domain and the chosen dynamic layers gave a 

good performance compared to the samples with higher average Kullback-Leibler 

divergence. A comparison was made of the features of the samples extracted using the 

first layer of the pre-trained model, which was then converted into textural features 

probability distributions. The total probability distributions were then conflated 

(merged) into one probability distribution and compared to the merged probability 

distributions of each source image feature. Divergence measures were used to compare 

the extracted LBP or matrix features. The introduced evaluation of features using 

conflation presents a simple way of representing the overall look of an image’s features, 

making the comparison much more effortless. This method allows users to select 

quality data points with surety of positive transfer. 

In the second part of the model, the fine-tuning layers are selected dynamically based 

on the weights. The layers whose Kullback-Leibler divergence measures are below 

average are chosen in the fine-tuning process. For a layer to be selected, the weights for 

the layer’s features are selected (positive or negative), creating a probability 

distribution of positive and negative weights. The created distribution is then 

compared to distributions of other layers using Kullback-Leibler divergence. The 

layers are then compared based on the average divergence, and the layers with the lower 

values to the average divergence become good candidates for fine-tuning. This new 

dynamic approach in the selection of fine-tuneable layers presents a quantified approach 

to the traditional manual methods that rely on the layer’s position, providing further 

research into the role of weights in effective transfer learning. 

For the conflation of features in the dataset samples, the new model has shown that 
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selecting samples closely related to the dataset used in training the pre-trained model 

allows the consolidation of textural features in an image sample, allowing easier 

comparison between images. This process allows the selection of better-quality images 

or samples when performing fine-tuning, leading to a reliable method for selecting target 

images. This process also increases confidence when working with sensitive data such 

as medical images whose correctness is key in diagnosis. It reduces trial and error 

chances in the current methods. 

Additionally, the second part of the new model proved that hyperparameters such as 

weight play a critical factor in the adaptability of pre-trained models in transfer 

learning tasks: transfer learning is affected by signed weights. The layers with the 

highest number of positive weights performed better than the negative weights due to 

their influence towards faster convergence when training a model. 

Finally, by merging the two parts of the new model, it is clear that selecting closely 

domain-related data samples is an essential factor that determines the target domain 

data adaptation in classification tasks. Furthermore, selecting least-weight divergent 

layers is another important factor influencing fine-tuning: choosing the suitable layers 

ensures the model converges much faster and aids in the pre-trained model adaptation 

process. When these two are in the new model’s pipeline, there is confidence in the 

data and the fine-tuning process. 

5.4 Conclusion 

This research aimed to develop a new classification model (dynamically fine-tuned 

model) that uses Kullback-Leibler divergence to improve the target data selection 

process and fine-tunable layers for an effective transfer learning process. The new 

model uses the conflation of features and dynamic layer selection utilising the 

Kullback-Leibler divergence measure. The conflation process uses the textural 

features of the images or data samples to create probability distributions for each 

image, merging them to form one feature probability distribution. The conflated 

probability distribution is then compared to other probability distributions with the 

below-average Kullback-Leibler divergence of the selected samples for the target task. 

The dynamic selection of layers uses Kullback-Leibler divergence to select layers 
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whose signed weights comparison divergence is below the average of the total compared 

layers. Both parts of the new model use Kullback-Leibler divergence methods in their 

selection process, creating the model’s pipeline. The new model was evaluated on five 

model architectures, including the new MobileNetV2, to cater to the resource-

constrained environment and nine datasets. The standard transfer learning baselines 

were used to validate the model’s performance, with the introduced methods aiding 

the new models in performing better when using the standard transfer learning method. 

The results demonstrate that divergence measures such as the Kullback-Leibler 

between the target data points and the new model’s layers (weights) can influence the 

target domain’s adaptation. However, these two additional steps in using the new CNN 

models introduce a higher computational complexity than the commonly used transfer 

learning methods but significantly reduce the trial and error instances and better model 

selection confidence for the users. 

5.5 Future Work 

This study has introduced an enhanced transfer learning method involving conflated 

target data features in selecting the best-fit target data points for transfer learning. It 

has also introduced a dynamic process of layer selection using signed weights 

divergence in new model layers. The two pipeline items used a divergence measure 

(Kullback-Leibler divergence) and improved the transfer learning process. The 

conflation of features can be used in other datasets since they can be conflated, 

allowing uniform comparison of these target data points with the source data points’ 

features. The dynamic selection of layers could also be extended to other models apart 

from the convolutional neural networks by determining which layers participate in the 

learning process. This enhanced model’s pipeline creates an avenue for strengthening 

many pre-trained models irrespective of their domain and application since all data has 

features and all models have weights. 

The use of divergence measures has shown a significant method in addressing these two 

issues, and it would be worth exploring other dissimilarities (hamming distance, total 

variation and Mahalanobis distance) and similarity measures (Kendall rank, Canberra 

distance and centered kernel alignment) to understand their effects on the feature and 

layer differences and similarities. Applying this study’s method will help developers 
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gain confidence when selecting pre-trained models and solidify the research insights of 

transfer learning, consequently reducing the time and cost of developing pre-trained 

models. 

Finally, the introduced methods can be used in small and large tasks depending on the 

available resources - in areas with low resources (data or computing power), the new 

MobileNets have been shown to work well, and in a resourced environment, large tasks 

can still be performed well as evident with the new DenseNet169. 
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