
  
 Abstract - Autonomous vehicles are equipped with an increasing number 
of actuators to actively control the longitudinal and lateral dynamics of the 
vehicle. Amidst difference in terrains and roads that an autonomous vehicle 
drives through, precise coordination of the available actuators and effectors 
is needed to ensure an Autonomous Ground Vehicle (AGV) has improved 
manoeuvrability, accuracy and controllability. The increased number of 
actuators in a four-wheel steer and four-wheel drive (4WS4WD) architecture 
renders the control of the vehicle a challenge as the system becomes highly 
nonlinear. The control of an over-actuated, nonlinear and highly coupled 
system demands a superior control strategy. The controller should steer and 
drive the AGV to accurately track a path. The research proposes an adaptive 
MPC uses a linearized and a plant model updated at every instant. 
Preliminary results of the controller show that it bears potential to guide the 
4WS4WD AGV to track a pre-defined path with minimal errors.  
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I. INTRODUCTION 

 
ODEL Predictive Controller (MPC) is best suited for 
multiple-input and multiple-output system such as the 

AGV. Moreover, the predictive nature of the control approach 
enhances the computation of the control command hence 
accurate drive and steer of the vehicle. The AGV model is 
highly nonlinear which demands the use of a nonlinear MPC. 
However, the complexity of designing the nonlinear MPC and 
its computational load sets it aside compared to using an 
adaptive MPC. The adaptive MPC uses an updated and a 
linearized plant model at every instant to solve an optimization 
problem. The approach is superior due to the concept that the 
AGV model is updated at every time step hence bear the 
potential to generate an accurate control command.  
 

II. SYSTEM MODEL 
This section covers the derivation of the model that 

represent the vehicle dynamics.  
 

A. OVERVIEW  

The dynamics of motion for an AGV can be described using 
the well-developed Newton-Euler formalism. Considering 
input 𝑢𝑢 and state𝜓𝜓, the systems can be expressed by 
 

( , )f uψ ψ=                   (1) 
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The AGV architecture brings together submodules that make 
up a vehicle include vehicle body dynamic model, driving unit 
dynamic model and tire model [1]. Based on SAE j670e [2], 
SAE j3016 [3] and ISO 8855 [2] vehicle dynamics 
terminology and guidelines are used in the derivation of the 
subsystems considered in the next section.  
 

B. EQUATIONS OF MOTION 

Four-wheel notation for the body dynamic in the driving 
task is governed by 
 

( ) ( ) ( )( )4 , wt f t u tψ ψ=
            (2) 

 
where𝜓𝜓(𝑡𝑡) ∈ ℝ𝑛𝑛  is the state of the system and 𝑢𝑢(𝑡𝑡) ∈ ℝ𝑚𝑚𝑟𝑟  is 
the input, 𝑛𝑛 = 4 is the number of states and 𝑚𝑚𝑟𝑟 = 6 is the 
number of inputs. The state space representation is the system 
under study is expressed by 

( )( ) ( )( )1 1 32 2 / / (2 / )Cf Cr mVx Vx mVx Cf mGψ ψ ψ δ= − + + − − +

2 3ψ ψ=  

( )( ) ( )( )2 2
3 1 3/ / 2 2 / (2 / )Iz Vx Vx Cflf Crlr mVx Cflf IzGψ ψ ψ δ= − + − − − +

( )4 1 2Vxψ ψ ψ= +                (3) 
whereψ1,𝜓𝜓2,𝜓𝜓3,𝜓𝜓4  represents lateral position, lateral 
velocity, yaw angle and yaw rate and 𝐺𝐺 is 2𝐶𝐶𝑓𝑓𝑙𝑙𝑓𝑓 − 2𝐶𝐶𝑟𝑟𝑙𝑙𝑟𝑟 . 
The state space representation of the system based on both 
dynamic and kinematic equation is summarized into 
 

[ ]TPos x y θ=
               (4) 

T

lng rdl angVel V V V =               (5) 
T

lng rdl angAcc a a a =  

           (6) 
where𝑎𝑎𝑙𝑙𝑛𝑛𝑙𝑙 , 𝑎𝑎𝑟𝑟𝑟𝑟𝑙𝑙 , 𝑎𝑎𝑎𝑎𝑛𝑛𝑙𝑙  represent longitudinal, radial and 
angular acceleration, 𝑉𝑉𝑙𝑙𝑛𝑛𝑙𝑙 ,𝑉𝑉𝑟𝑟𝑟𝑟𝑙𝑙 ,𝑉𝑉𝑎𝑎𝑛𝑛𝑙𝑙  represent longitudinal, 
radial and angular acceleration and 𝑥𝑥,𝑦𝑦,𝜃𝜃 represents 
longitudinal and lateral positions and yaw angle respectively.  
 

III. AGV CONTROLLER DESIGN 
This section informs system states, input, outputs, problem 

formulation, control policy and control algorithm.  
 

A. STATES, INPUTS AND OUTPUTS 
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From the vehicle model designed above, it is notable that 
the vehicle is coupled and highly nonlinear. The vehicle takes 
6 inputs i.e. 4 torque inputs (𝑇𝑇1,𝑇𝑇2,𝑇𝑇3 𝑎𝑎𝑛𝑛𝑟𝑟 𝑇𝑇4) and 2 steering 
angle inputs (𝛿𝛿𝑓𝑓  𝑎𝑎𝑛𝑛𝑟𝑟 𝛿𝛿𝑟𝑟). Considering vehicle motion as the 
output, three acceleration measurement accomplish the output 
variables (6).   

In view of the 3 outputs and 6 inputs, the design is rendered 
an over-actuated system which complicates maintaining 
accuracy and robustness. Wheel slip leads to lateral and 
longitudinal forces at individual wheels and is determined by 
kinematic states (5). 

In a real-life scenario, the AGV’s four wheels are subjected 
to varied external disturbances as ground forces. Independent 
force control for the AGV’s four wheels is a solution that 
enhances dynamic states stability [4]. Moreover, a superior 
controller design enhances manoeuvrability and stability 
without regard to complex terrain conditions. The adaptive 
MPC design considers the system of equation (3-5) 
represented by  
 

( ) ( ) ( ) ( ) ( )t A t t B t u tψ ψ= +           (7) 
 
and output governed by 
 

( ) ( ) ( )( ),y t H t f tψ=               (8) 
 
The system (7) is discretized so as to form discrete state-
vector defined by 
 

( ) ( ) ( )d d d d dk 1  A k   B u kψ ψ+ = +        (9) 
( ) ( )d d dy k  kH ψ=               (10) 

 
B. PROBLEM FORMULATION 

In controlling an AGV, the path planner generates reference 
paths and a velocity profile. The parameters then serve as a 
reference for the control problem. The need to steer and drive 
an e-vehicle to track the reference paths and velocity, known 
as a servo system, needs a controller that can achieve the set 
path and velocity within the shortest time, with minimal errors 
while ensuring system stability. The AGV problem under 
study is a tracking problem and is well expressed using an 
error model (13). Controlling an AGV involves regulating 
deviations from steady-state trajectory from the road curvature 
and velocity profile.  

Remark 1: the system of matrix (𝐴𝐴𝑟𝑟 ,𝐵𝐵𝑟𝑟 ) in (9) is 
controllable and there exists a feedback stabilizing matrix of 
gain 𝐾𝐾. 
 

( ) ( ) ( )d d d d dk 1  (A k  B)  u kBKψ ψ +−+ =     (11) 
 
The gain matrix 𝐾𝐾 system can thus be obtained based on well 
documented approaches [5]–[8] such as pole placement. The 
approach of remark 1 are considered in the control problem of 
a system with an infinite response. Due to the limitation in 
computation time, infinite suboptimal solutions that repeatedly 
solve a finite time optimal control problem are handy.  

Remark 2: with consideration of system(9), remark 1 and 
time constraints, a feedback control law ∆𝑢𝑢 asymptotically 
stabilizes a closed-loop system. 
 

( ) *K vu ψ ψ∆ = − ∆ +∆             (12) 
 
With the computation of control input ∆𝑢𝑢(𝑘𝑘) that determine 
system trajectory 𝜓𝜓(𝑘𝑘)while satisfying design requirement, an 
auxiliary control command 𝑣𝑣∗can be determined as the result 
of an optimal control problem. Optimal control problem can 
effectively be solved through [9]–[11]. 
Adaptation allows a recursive and refined vehicle model 
estimate which ultimately offer comfort and safety. 
Considering the nonlinear system expressed by (3-5), steering 
control was considered by Bujarbaruah et al.[8] where a 
steering offset estimation was defined. The steady-state 
trajectory error model as 
 

21 tt t t a tA B wB Eρδ θψ ψ + ∆= ∆ + ∆ + +∆     (13) 
 
where∆𝜓𝜓, 𝑡𝑡 ≥ 0 represents the realized error trajectory for a 
closed-loop system and 𝑤𝑤𝑡𝑡  takes care of unmeasured 
disturbance to the system that is of an additive nature.  

Remark 3: with the knowledge of 𝜃𝜃𝑎𝑎 , the domain 𝛩𝛩 
regarded as the feasible parameter set, can be defined.  
 

1

1

21 1

Θ ....
... t

t t t

t tEB
A

B
ψ

θρ
ψ

δ −

−

− −
= ∆ − ∆

∆ ∆
−

− −


      (14) 

 
and 
 
Θ , 0t t∈ ≥W                    (15) 

: p
tθ ∈R                    (16) 

 
where the parameter 𝜃𝜃𝑎𝑎 is composed of the steering offset 𝜃𝜃𝛿𝛿  
and driving offset𝜃𝜃𝜌𝜌 . In that regard, the parameter set is 
estimated from other previous vehicle data. The feasible 
parameter set at time 𝑡𝑡 undergoes an update every time step as 
data on the input-output state is gathered. The steady state 
trajectory and inputs reveals the ability to progressively update 
the knowledge of Θ with consideration of all other information 
from previous time instants. 
 

C. CONTROL POLICY 

From remark 1 and 2, the control law to steer and drive the 
AGV of system (8-9) can thus be design considering an affine 
feedback policy 𝜋𝜋(. ) for control approximation.  
 

( ) ( ) *. :t t t t tK vπ δ ψ ψ∆ ∆ = − ∆ +         (17) 
 

( ) ( ) *. :t t t t tK vπ ψ ψρ∆ ∆ = − ∆ +         (18) 
 
where 𝐾𝐾 ∈ ℝ𝑚𝑚×𝑛𝑛  is the fixed stabilizing state feedback gain 
chosen by Bujarbaruahet al. [8] as optimal LQR while the 
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auxiliary control  𝑣𝑣𝑡𝑡  is computed from (20) as directed by [11], 
[12]. Constraints are then imposed in the form (13), (19),(21) 
and (22) noting that the control objective is to keep 

ψ∆
𝑡𝑡
small.  

 
1 2 tt tC D bDψ δ ρ+∆ + ∆ ≤∆         (19) 

 
The control problem computed in finite time is depicted by 

solving a finite receding horizon optimal control problem 
based on squared Euclidean norm consistent with guide by 
[11] 
 

1

0

0

min ( ) ( ) .....

..... [( ) ( ) ]
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−

=

=

∆ ∆ +

+ ∆ ∆ +

∑

∑
    (20) 

s.t  
(13) 
(19) 
𝑙𝑙(𝜓𝜓) = 0                   (21) 
ℎ(𝜓𝜓) ≤ 0                   (22) 
 
where𝐻𝐻𝑝𝑝  is the desired prediction horizon that then determines 
the control horizon. With the consideration that the system 
(13) is updated through criteria (14), thus computation of 
control law by conventional MPC consistent with (20) is 
dependent on a model that is updated at every sampling time. 
This renders adaptive MPC able to generate a current control 
command based on a true model representation[13]–[15].  
 

D. ADAPTIVE MPC ALGORITHM 

Bujarbaruahet al. [8] showed how an MPC is able to 
achieve a recursively feasible control policy. The adaptive 
control algorithm considered is;  
 

1. While 𝜃𝜃𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡𝑎𝑎𝑛𝑛𝑡𝑡do 
2. Obtain road curvature 𝐶𝐶(𝑐𝑐) and 

velocity 𝑉𝑉𝑙𝑙𝑛𝑛𝑙𝑙𝑟𝑟𝑙𝑙𝑓𝑓 (𝑐𝑐). Compute corresponding 
steady state trajectory 𝜓𝜓𝑐𝑐𝑐𝑐(𝑐𝑐)drive force input 
𝜌𝜌𝑐𝑐𝑐𝑐(𝑐𝑐)and steering angle input 𝛿𝛿𝑐𝑐𝑐𝑐(𝑐𝑐). Set 𝑡𝑡 = 0; 
initialize feasible parameter set Θ0 

3. While𝑉𝑉𝑙𝑙𝑛𝑛𝑙𝑙𝑟𝑟𝑙𝑙𝑓𝑓 (𝑐𝑐)and 𝐶𝐶(𝑐𝑐)unchanged w.r.t step 2 
do 

4. Compute the terminal invariant set 𝑋𝑋𝑡𝑡𝑁𝑁 . 
Compute 𝑣𝑣𝑡𝑡∗ from (20) and simultaneously 
apply steering command 

( ) ( )( ) *
t ss t ss ts K s vδ δ ψ ψ= − − +

    (23) 
And drive command 

( ) ( )( ) *
t ss t ss ts K s vρ ρ ψ ψ= − − +

    (24) 
5. Update Θ(𝑡𝑡+1)using (14). Set 𝑡𝑡 = 𝑡𝑡 + 1  
6.   End while 
7.   SetΘ0 = Θt . return to step 2 
8. End while  

 
E. MPC DESIGN PARAMETERS 

The selection of MPC parameters affects controller 
performance and the computation complexity. The design of 
sample time, prediction horizon, control horizon, constraints 
and optimization weights informs the process.  

Computationally, an MPC algorithm ought to solve an 
online optimization problem at every time step. The controller 
sample time determines the rate of executing the control 
algorithm. Intuitively, by selecting a big sample time, 
controller will not react fast enough. By selecting a small 
sample time, controller reacts faster to disturbances and set-
point changes. While causing an excessive computational 
load. Sample time should in that regard, fit 10 − 20 samples 
within the rise time of the open-loop system response. 
Vehicles should have a response time of 0.83 𝑐𝑐 as stated by 
[16]. Based on the sampling time criteria above, the AGV 
should be sample at 𝑇𝑇𝑐𝑐 = 0.83

18
= 0.046 𝑐𝑐 = 46 𝑚𝑚𝑐𝑐.  

The MPC prediction horizon shows how far the controller 
predicts into the future and be able to cover the AGV 
dynamics. The Prediction horizon should be within 20-30 
samples of the system response. As established above, system 
response at 0.83 𝑐𝑐 means the design of the AGV prediction 
horizon is within0.83

25
= 0.033 𝑐𝑐 = 33 𝑚𝑚𝑐𝑐.  

The control horizon informs the time into the future that 
the control action can be predicted. Since instantaneous 
control achieves better control of the system, rule of thumb 
requires that the control horizon be within 10% − 30% of 
prediction horizon i.e. 33 × 0.15 = 4.95 𝑚𝑚𝑐𝑐 

From design specifications as presented above, and during 
simulation, it was notable that adjusting sampling time to 0.1𝑐𝑐 
led to better control than 0.83𝑐𝑐 as shown in Fig. in section IV. 
Moreover, adjustment to prediction horizon to 15 and control 
horizon to 5 yielded better results.  
Constraints should include actuation saturation, MV rates 
constraints and manipulated variables (drive torque 𝑇𝑇 and 
steering angle 𝛿𝛿). The associated input constraints in table 1 
cannot be relaxed as they are physical necessities and may put 
system in jeopardy. On the other hand, state and output 
constraints can be relaxed as they are merely operational 
desirables. The design used output weights 
as [2.8292  0.2829]. Weights ratio between output weights 
and input and input rates.  

For the finite time, discrete model (discretization time𝑡𝑡𝑟𝑟 =
100 𝑚𝑚𝑐𝑐). Linearized system state equation (29) and 
computation of an optimal control as in (20) 
s.t 

30 30δ− ≤ ≤                  (25) 
2500 2500 dF− ≤ ≤               (26) 

8δ∆ ≤                     (27) 
25 dF∆ ≤                    (28) 

A Buψ ψ+ = +                 (29) 

( )1 , , 0, 1k k k pe f e u k H+ = ∆ = … −         (30) 
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where 𝐻𝐻𝑝𝑝  is the prediction horizon and the matrix 𝑄𝑄 is 
determined to be positive definite while 𝑅𝑅 is chosen to be 
positive semi-definite to avoid introduction of offset in the 
controlled variable [17]. Noted that 𝑙𝑙𝑘𝑘 = 𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑟𝑟𝑙𝑙𝑓𝑓 , value of 
𝑦𝑦𝑟𝑟𝑙𝑙𝑓𝑓 is provided by the path planner and 𝑦𝑦𝑘𝑘  is the measured 
output.  

The adaptive MPC then implement 𝑢𝑢(𝑡𝑡) = 𝑢𝑢0
∗  at every 

iteration.   
Table 1 Input and rate constraints 

I/O 
Variable 

max min ∆ 

Steering 
angle, 𝜹𝜹 

300 −300 80 

Drive 
forces, 𝑭𝑭𝒅𝒅 

2500 𝑁𝑁 −2500 𝑁𝑁 25 𝑁𝑁 

 
 

IV. SIMULATION RESULTS 

The system used was a 5-seater salon e-vehicle whose 
parameters are presented in table 2.  

 
Table 2 e-vehicle Parameters 

Parameter Quantity Units 
𝐿𝐿𝑓𝑓  2.1 𝑚𝑚 
𝐿𝐿𝑟𝑟  2.2 𝑚𝑚 
𝑐𝑐 1.8 𝑚𝑚 
ℎ 1.5 𝑚𝑚 

𝑀𝑀𝑎𝑎𝑐𝑐𝑐𝑐,𝑚𝑚 1036  𝑘𝑘𝑙𝑙 
Wheel radius 0.24 𝑚𝑚 
 

Holding longitudinal velocity constant and testing how the 
system lateral position and yaw angle trajectory evolves 
against reference is shown in Fig 3 and Fig 4 respectively. For 
velocity of 15m/s the steady state lateral position error 
was 𝑙𝑙𝜃𝜃 = 4.014 − 4.011, 𝑙𝑙𝜃𝜃 = 0.003 𝑚𝑚. 
 

 
Fig. 1 Lateral position trajectory of the vehicle 

 

Considering the yaw angle reference and the trajectory taken 
by the vehicle, a yaw error of 0.0014 − 0.0010 =
 0.0004 which is an error of0.230.  
 

 
Fig. 2 Yaw angle trajectory of the vehicle 

 
The system under consideration was subjected to sudden 

slip in its course and the recovery of the vehicle back to its 
track is shown in Fig. 5 and Fig. 6. At 4 𝑐𝑐 the vehicle 
undergoes a slip that results in a maximum lateral error of 2.7 
m. In response to the slip that occurs, the vehicle is steered 
back and recovers to its right path within 2𝑐𝑐. 
 

 
Fig. 3 Trajectory of vehicle recovery after slip 

 

 
Fig. 4 Yaw angle response to vehicle slip 
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V. CONCLUSION 

Results of the adaptive MPC in the steering of the AGV 
shows improvement in tracking the reference path. This is 
however achieved while holding a constant longitudinal 
velocity. The variations of control horizon in the simulation is 
better at a scaling of 30% in comparison to the prediction 
horizon. The sampling times for the adaptive section is a 
critical parameter to meet to avoid deteriorating MPC 
performance. Future work would involve introducing variation 
in drive velocity according to velocity reference. In addition, 
varied road terrains (cornering and tire stiffness) will be varied 
and the performance of the adaptive MPC assessed.  
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