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Abstract— The best accuracy of multiclass max-win-voting SVM 

with Gaussian radial basis function (RBF) depends on optimal 

parameter selection; sigma (σ) and box constraint (C). Accuracy is the 

most important measure to evaluate the performance of SVM. There 

are training accuracy and test accuracy which are estimated on the 

training subset and the test subset, respectively. The training accuracy 

is a reference to check over-fitting or under-fitting problems by 

comparing it with the test accuracy. If the training accuracy is high 

while the test accuracy is much lower, it implies that an over-fitting 

problem occurs. If both the test accuracy and the training accuracy are 

very low, an under-fitting problem occurs. The Gaussian radial basis 

function (RBF) is a widely used kernel function in SVM. The kernel 

parameter σ is most crucial to maintain high performance of the 

Gaussian SVM. Most previous studies on this topic are based on 

optimization search algorithms that result in large computation load. 

In this paper, we propose an analytical algorithm to determine the 

optimal σ with the principle of maximizing between- class separability 

and minimizing within-class separability. An attractive advantage of 

the proposed algorithm is that no optimization search process is 

required, and thus the selection process is less complex and more 

computationally efficient. After optimal σ is selected, box constraint 

parameter is easily searched using simple iterative method. 

Experimental results on three real world datasets demonstrate that the 

proposed algorithm give best accuracy when using it for the Gaussian 

multiclass SVM.  

 

Keywords— parameter selection, Gaussian radial basis function, 

class separability, support vector machine, distance similarity 

 

I. INTRODUCTION 
 
Support vector machine (SVM) is an important technique of 

supervised learning in the field of machine learning. By 

introducing the principle of structural risk minimization, SVM 

aims to find an optimized hyper-plane by which training 

instances of different classes are linearly separable. Because of 

its many attractive properties and a promising empirical 

performance [1, 2], SVM quickly collected attentions from 

researchers who have applied SVM to both science and 

engineering, e.g. condition monitoring and fault diagnosis [3,4]. 

Among existed kernels in SVM, the Gaussian radial basis 

function (RBF) kernel is a widely used one due to its attractive 

characteristics [1, 2], e.g. the property of structure-preserving. 

The Gaussian RBF kernel has a form of 𝑘(𝑋𝑖 , 𝑋𝑗) =

 
 

exp (−
‖𝑋𝑖−𝑋𝑗‖

2

2𝜎2
)  where σ is the only parameter named by width 

of features. 

Liu et al [5] and Conar and Chattopadhyay [6] showed that the 

parameter σ is specified by a default value, e.g. σ = 1. However, 

it is reported that σ is crucial to robust performance of SVM 

whereas an arbitrary value of σ cannot guarantee satisfactory 

performance [1]. For example, if the parameter σ is close to 

zero, SVM tends to over-fitting since all training instances are 

used as support vectors in this case. SVM has perfect 

predictions for all data in the training subset but may have poor 

performance on the test subset. If the parameter σ tends to 

infinity, under-fitting occurs in SVM because all training 

instances are considered as one instance. All instances, either 

from the training subset or from the testing subset, are classified 

into one class. These two extreme cases also indicate that 

selecting a proper value of σ is necessary and worth to do in 

practice.  

Exhaustive search for parameter selection of σ is 

intractable since the definition domain of σ ranges from zero to 

infinite. Grid search is an intuitive and simple way. By defining 

a finite set, grid search evaluates every possible solution 

(namely node) in the set by a criterion. The node that has the 

highest score on the criterion is selected as the optimal value of 

σ. The strategy of grid search is adopted in [7], and the 

classification accuracy of SVM is commonly used as the 

selection criterion. Grid search has two drawbacks; (1) It is 

time-consuming because it evaluates all the nodes in the set, and 

CPU time increases exponentially with the number of nodes in 

the set; (2) It cannot find the optimal σ if the set is improperly 

defined. This may happen due to lacking of prior knowledge. 

Intelligent optimization methods such as genetic 

algorithm [8], simulated annealing algorithm [9], particle 

swarm optimization algorithm [10], and gradient descent 

algorithm [11] have been used to select the optimal value of σ. 

Classification accuracy is usually considered the objective 

function. However, classification accuracy of SVM does not 

depends on only σ, while it could be affected by other 

parameters, e.g. the regularization parameter. Li et al. [12] 

proposed a parameter selection method for σ from another 

viewpoint (namely Li’s method). Li’s method searched for the 

optimal value of σ from the perspective of the Gaussian RBF 

kernel space that intrinsically results from the parameter σ. Li’s 

method finds the optimal σ using the gradient search method. 
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The reviewed parameter selection methods by using intelligent 

optimization search algorithms could take less computation 

time than that in grid search. However, they are at the cost of 

increasing the complexity of selection algorithms, the reason of 

why the parameter σ is often specified by a default value in 

many applications.  

To improve efficiency of the selection process, in the 

present work, an analytical algorithm that is simple but efficient 

is proposed to find a good value of σ. We define the objective 

function of class separability by introducing both within-class 

separability and between-class separability. This measure of 

class separability, in fact, is a function with respect to the 

parameter σ. The optimal σ is thus defined as the one 

maximizing the class separability, i.e. the maximizer of the 

objective function. Since the maximizer can be analytically 

derived, the proposed method avoids the optimization search 

process, and thus computation load for parameter selection is 

significantly improved. Experimental results demonstrate that 

the proposed method is fast and robust for the Gaussian SVM. 

The rest of the paper is organized as follows. Section 2 

introduces the theoretical basis of support vector machine, 

multiclass max-win-voting SVM and the Gaussian RBF kernel. 

Li’s method is briefly described in this section. The proposed 

method is presented in Section 3. In Section 4, the proposed 

method and default method are compared with each other on 

three real-world datasets in terms of classification accuracy. 

Pros and cons of these methods are discussed. Finally, 

conclusions are provided in Section 5. 

 

II. REPORTED WORK 

 

A.  Support Vector Machine 
Kernel method is a set of approaches that maps data from the 

feature space into the kernel space without knowing the 

mapping function Φ explicitly. Kernel method enables SVM to 

find a hyper-plane in the kernel space, and thus achieve non-

linear separation in the feature space. Kernel method is 

implemented by kernel functions that define inner product 

spaces as follows: 

 

𝑘(𝑋𝑖 , 𝑋𝑗) = 〈Φ(𝑋𝑖), Φ(𝑋𝑗)〉  

             

Many kernel functions have been developed according to 

Hilbert-Schmidt theory and Mercer condition, such as the linear 

kernel, the polynomial kernel, and the Gaussian RBF kernel. 

Powered by a proper kernel, SVM is enabled to deal with not 

only linearly separable problems (e.g. by the linear kernel), but 

also linearly non-separable problems 

(e.g. by the Gaussian RBF kernel). Next, we introduce SVM 

using a binary classification problem as an example. Given a 

training dataset U containing N instance-label pairs (xi, yi), 

where  represents labels of the two 

classes. SVM seeks an optimally separable hyper-plane f(x) =0 

in the kernel space by maximizing the margin width between 

f(x) = ±1, where f(x) =wTΦ(x) + b, w is a weight vector and b is 

a scalar. 
The margin width equals to 

 

|(𝑓(Φ(𝑥)) − 1) − (𝑓(Φ(𝑥)) + 1)|/‖𝑤‖ =
2

‖𝑤‖
 

            

 

The problem of maximizing the margin width defined in Eq. (2) 

is equivalent to the following optimization problem: 

𝑊∗, 𝑏∗ = arg𝑚𝑖𝑛𝑤,𝑏 (
1

2
‖𝑤‖2) 

Subject to 𝑦𝑖 . 𝑓(Φ(𝑥𝑖)) ≥ 1;𝑤 ∈ ℝ𝑛; 𝑖 = 1,2, … , 𝑁  

            

 

The optimization problem of Eq. (3) is further transformed to 

the following equivalent dual problem by the Lagrange 

multiplier method [13]: 

 

 

 

 

𝛼∗ = argmax 𝐿(𝛼) =∑𝛼𝑖 −
1

2

𝑁

𝑖=1

∑∑[𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗  𝑘(𝑋𝑖 , 𝑋𝑗]

𝑁

𝑗=1

𝑁

𝑖=1

 

Subject to ∑ (𝑦𝑖𝛼𝑖) = 0; 𝛼𝑖 ≥ 0;  𝛼 = {𝛼𝑖}
𝑁; 𝑖 =𝑁

𝑖=1

1,2, … , 𝑁.                                           
 

 

After obtaining α* by solving Eq. (4), solutions of Eq. (3) are 

expressed as 

{
 
 

 
 
𝑤∗ =∑[𝛼𝑖

∗𝑦𝑖Φ(𝑥𝑖)] =∑[𝛼𝑡
∗𝑦𝑡Φ(𝑥𝑡)]

𝑝

𝑡=1

𝑁

𝑖=1

𝑏∗ =
1

𝑝
∑[𝑦𝑡 − 𝛼𝑡

∗𝑦𝑡K(𝑥𝑡 , 𝑥𝑡)]

𝑝

𝑡=1

 

            

Where 𝛼𝑖
∗is the Lagrange multiplier, 𝑡 =∈ {𝑡: 𝛼𝑡

∗ > 0}, and 𝑝 is 

the total number of elements in the set of {𝑡: 𝛼𝑡
∗ > 0}, since 

𝛼𝑖
∗ > 0 for all support vectors and 𝛼𝑖

∗ = 0 for the rest non-

support vectors, 𝑝 is actually the number of support vectors. 

The decision function is formed by 

�̂� = 𝑓(𝑥) = 𝑆𝑖𝑔𝑛 (∑[𝛼𝑡
∗𝑦𝑡K(𝑥𝑡 , 𝑥]

𝑝

𝑡=1

+ 𝑏∗) 

            

In most practical cases, instances in the kernel space may still 

linearly non-separable. No solution could be found in Eq. (4). 

The so-called slack variable ξi is hence introduced into Eq. (3) 

to address this issue. The optimization problem of SVM turns 

to be 

 

𝑤∗, 𝑏∗, 𝜉𝑖
∗ = argmin (

1

2
‖𝑤‖2 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

) 

Subject to 𝑦𝑖 . 𝑓(Φ(𝑋𝑖)) ≥ 1 − 𝜉𝑖 ;  𝜉𝑖 ≥ 0; 𝐶 > 0;𝑤 ∈ ℝ𝑛; 𝑖 =

1,2, … , 𝑁, 
where C is the regularization parameter. 

Technically, the SVM model given in Eq. (3) with no slack 

variables is termed the hard-margin SVM, and the SVM model 

given in Eq. (7) involving slack variables is called the soft-

(7) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 
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margin SVM. The parameter C in the soft-margin SVM is also 

crucial to prediction performance [14], while we simply do a 

line search for the best C in this paper. 

 

B. Max Wins Voting (MWV) SVM 

 
SVMs were initially intended for binary classification. Many 

methods have been proposed for multi-class SVMs and the 

prominent approach is to reduce the single multiclass problem 

into multiple binary classification problems [15]. Three widely 

used types of methods are: Winner-Takes-All (WTA) SVM, 

Max Wins Voting (MWV) SVM and Directed Acyclic Graph 

(DAG) SVM. J.Kamau [16] proved that MWV has the highest 

accuracy in image classification among the three methods and 

we select this method to optimize its accuracy. 

For max wins voting (MWV), classification is done by 

a strategy for the one versus one method. In total one will get 

C(C-1)/2 binary SVMs after constructing a binary SVM for 

each pair of classes. Each SVM gives one vote to the winning 

class when applied to a new test data and the test data is labeled 

with the class having most labels. MWV selects the class with 

the smallest index if there are two identical votes. The 

mathematical formula is shown as follow. The ijth (i = 1,2, …, 

C-1, j = i + 1, …, C) individual binary SVM is trained with all 

data in the ith class with +1 label plus all data of the jth class 

with −1 label, so as to distinguish ith class from jth class. The 

decision function of ijth SVM is: 

 
𝑓𝑖𝑗(𝑥) = ∑ 𝑦𝑛

𝑖𝑗
𝛼𝑛
𝑖𝑗

𝑁1+𝑁𝑗

𝑛=1

𝑘(𝑥𝑛
𝑖𝑗
, 𝑥) − 𝑏𝑖𝑗 , 𝑖

= 1,2, … , 𝐶 − 1, 𝑗
= 𝑖 + 1, 𝑖 + 2,… , 𝐶 

(8) 

 𝑦𝑛
𝑖𝑗
= {

+1     𝑥𝑛
𝑖𝑗
∈ 𝑖𝑡ℎ 𝑐𝑙𝑎𝑠𝑠

−1     𝑥𝑛
𝑖𝑗
∈ 𝑗𝑡ℎ 𝑐𝑙𝑎𝑠𝑠

 (9) 

where 𝑁𝑖 and 𝑁𝑗 denotes the total number of ith class and jth 

class, respectively. 𝑦𝑛
𝑖𝑗
∈ {+1,−1} depends on the class label 

of  𝑥𝑛
𝑖𝑗

. If  𝑥𝑛
𝑖𝑗

 belongs to ith class, 𝑦𝑛
𝑖𝑗
= +1; otherwise  𝑥𝑛

𝑖𝑗
 

belongs to jth class, 𝑦𝑛
𝑖𝑗
= −1. 𝛼𝑛

𝑖𝑗
 is the Lagrange coefficient; 

and 𝑏𝑖𝑗  is the bias term. 𝛼𝑛
𝑖𝑗

 and 𝑏𝑖𝑗  are obtained by training the 

ijth individual SVM. The output of ijth SVM is the sign 

function of its decision function, namely: 

 𝑂𝑖𝑗(𝑥) = 𝑠𝑔𝑛 (𝑓𝑖𝑗(𝑥)) (10) 

if 𝑓𝑖𝑗(𝑥) > 0, then the output 𝑂𝑖𝑗(𝑥) 𝑖𝑠 + 1, denoting 𝑥 belongs 

to ith class; otherwise output is     -1, denoting 𝑥belongs to jth 

class. 

C. The Gaussian RBF Kernel 

 
The previous section indicates that SVM training depends on 

the dot product in Eq. (1). Gramian matrix (also known as 

kernel matrix) is such a matrix that contains all the dot product 

values of a training subset. That is, all information that SVM 

can learn about training instances is included in the Gramian 

matrix together with the label information. Given a dataset U 

and a kernel function, the Gramian matrix is expressed as: 

 

𝐺 =

[
 
 
 
 
 
 
 
 
[

𝑘(𝑋1
(1), 𝑋1

(1)
)…𝑘(𝑋1

(1), 𝑋𝑁1
(1)
)

⋮              ⋱             ⋮

𝑘(𝑋𝑁1
(1), 𝑋1

(1)
)…𝑘(𝑋𝑁1

(1), 𝑋𝑁1
(1)
)

]… [

𝑘(𝑋1
(1), 𝑋1

(𝐿)
)…𝑘(𝑋1

(1), 𝑋𝑁𝐿
(1)
)

⋮              ⋱             ⋮

𝑘(𝑋𝑁𝐿
(1), 𝑋1

(𝐿)
)…𝑘(𝑋𝑁𝐿

(1), 𝑋𝑁𝐿
(1)
)

]

⋮                          ⋱                              ⋮

[

𝑘(𝑋1
(𝐿), 𝑋1

(1)
)…𝑘(𝑋1

(1), 𝑋𝑁1
(1)
)

⋮              ⋱             ⋮

𝑘(𝑋𝑁𝐿
(𝐿), 𝑋1

(1)
)…𝑘(𝑋𝑁𝐿

(𝐿), 𝑋𝑁1
(1)
)

]… [

𝑘(𝑋1
(𝐿), 𝑋1

(𝐿)
)… 𝑘(𝑋1

(1), 𝑋𝑁𝐿
(𝐿)
)

⋮              ⋱             ⋮

𝑘(𝑋𝑁𝐿
(1), 𝑋1

(𝐿)
)… 𝑘(𝑋𝑁𝐿

(1), 𝑋𝑁𝐿
(1)
)

]

]
 
 
 
 
 
 
 
 

 

𝐺 = [
𝐾11…𝐾1𝐿
⋮     ⋱    ⋮
𝐾𝐿1…𝐾𝐿𝐿

]            

  

𝐾𝑖𝑗 = [

𝑘 (𝑋1
(𝑖), 𝑋1

(𝑗)
)…𝑘 (𝑋1

(𝑖), 𝑋𝑁𝑗
(𝑗)
)

⋮              ⋱             ⋮

𝑘 (𝑋𝑁𝑖
(𝑖), 𝑋1

(𝑗)
)…𝑘 (𝑋𝑁𝑖

(𝑖), 𝑋𝑁𝑗
(𝑗)
)

]                                                                                                                                             

 

Where 𝐺𝑇 = 𝐺,𝐾𝑖𝑗
𝑇 = 𝐾𝑖𝑗 , 𝐾𝑖𝑗 = 𝐾𝑗𝑖 , 𝑖 𝑎𝑛𝑑 𝑗 = 1,2, … , 𝐿. 

The Gramian matrix of the Gaussian RBF kernel is expressed 

as 

𝐺 = [
𝐾11…𝐾1𝐿
⋮     ⋱    ⋮
𝐾𝐿1…𝐾𝐿𝐿

] = exp (−
1

2𝜎2
𝐷) 

       

  

𝐷 = [
𝐾11
′ …𝐾1𝐿

′

⋮     ⋱    ⋮
𝐾𝐿1
′ …𝐾𝐿𝐿

′
] , 𝐾𝑖𝑗

′ =

[
 
 
 
 ‖𝑋1

(𝑖) − 𝑋1
(𝑗)
‖
2

…‖𝑋1
(𝑖) − 𝑋𝑁𝑗

(𝑗)
‖
2

⋮              ⋱             ⋮

‖𝑋𝑁𝑖
(𝑖) − 𝑋1

(𝑗)
‖
2

…‖𝑋𝑁𝑖
(𝑖) − 𝑋𝑁𝑗

(𝑗)
‖
2

]
 
 
 
 

 

       

 

Where Kij = exp (−
1

2σ2
Kij
′ ) , Kij

′ T = Kij
′ , Kij

′ = Kji
′ , i and j =

1,2, … , L. D is known as the euclidean distance matrix. The 

Gramian matrix is related to both σ and D. Since D is fixed for 

a dataset, the only adjustable parameter is σ. For two arbitrary 

instances, say xi and xj, the distance and the angle are two 

measures of their relationship. Because in the Gaussian RBF 

kernel space the norm of any instance in the Gaussian RBF 

kernel space is equal to one [17], the two basic metrics of 

distance and angle are computed by 

‖Φ(𝑋𝑖) − Φ(𝑋𝑗)‖
2
= 2 − 2exp (−

‖𝑋𝑖 − 𝑋𝑗‖
2

2𝜎2
) 

            

𝑐𝑜𝑠𝜃 (Φ(𝑋𝑖), Φ(𝑋𝑗)) = exp (−
‖𝑋𝑖 − 𝑋𝑗‖

2

2𝜎2
) 

 

D. Class Separability 

Class separability is a classical concept for describing how 

instances scatter in the feature space. Class separability 

considers the following two principles. Principle I: Instances 

from the same class should be as similar as possible; Principle 

II: Instances from different classes should be as different as 

possible. 

The within-class separability and the between-class 

separability are usually employed to measure how these two 

principles are followed. In Li’s method, the within class 

(16) 

(15) 

(14) 

(13) 

(12) 

(11) 
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separability (W) and the between-class separability (B) are 

respectively estimated by 

𝑊 = 1− 𝐴𝑣𝑔([
𝐾11       
⋱

             𝐾𝐿𝐿

])

= 1 −
1

∑ 𝑁𝑖
2𝐿

𝑖=1

∑∑∑𝐾(𝑋𝑡
(𝑖), 𝑋𝑘

(𝑖))

𝑁𝑖

𝑘=1

𝑁𝑖

𝑡=1

𝐿

𝑖=1

, 

            (17) 

𝐵 = 1 − 𝐴𝑣𝑔

(

 
 

[
 
 
 
 
   𝐾12      ⋯       𝐾1𝐿

⋱
𝐾21                               
⋮   ⋱               𝐾(𝐿−1)𝐿
𝐾𝐿1  ⋯   𝐾𝐿(𝑙−1)      ]

 
 
 
 

)

 
 

= 1 −
1

∑ ∑ 𝑁𝑖𝑁𝑗
𝐿
𝑗=1
𝑗≠𝑖

𝐿
𝑖=1

∑∑∑∑𝐾(𝑋𝑡
(𝑖), 𝑋𝑘

(𝑖))

𝑁𝑗

𝑘=1

𝑁𝑖

𝑡=1

𝐿

𝑗=1
𝑗≠1

𝐿

𝑖=1

 

 

 

The optimization problem of minimizing W and 

simultaneously maximizing B is a multi-objective optimization 

problem. Li’s method combines W and B linearly into a single 

aggregate objective function (AOF) by assigning an equal 

weight to each of them.  

The objective function of class separability becomes 

𝐽(𝜎) = 1 −𝑊 + 𝐵 

By this definition, parameter selection turns to be a one-

dimensional optimization problem. And the optimal σ is found 

by gradient search method. However, the optimization process 

leads the selection process complex and time-consuming. 

 

III. PROPOSED ANALYTICAL METHOD 

 
In this section, we first define two scalars based on distance 

similarity to estimate W and B in the feature space. Eq. (15) 

shows the relationship between the distance similarity in the 

feature space and that in the kernel space. In light of this 

relationship, two corresponding scalars are obtained to estimate 

W and B in the kernel space. The optimal σ is defined as the one 

that can minimize W and maximize B simultaneously in the 

kernel space. In the following derivation, datasets are assumed 

to be Gaussian distributed so that the mean distance can be used 

to estimate the class separability in a right way [18]. 

In the feature space, the within-class mean distance (W’), the 

between-class mean distance (B’), and the total mean distance 

(T’) are respectively defined as follows: 

𝑊 , = 𝐴𝑣𝑔 ([
𝐾11
′             
⋱

             𝐾𝐿𝐿
′
])

=
1

∑ 𝑁𝑖
2𝐿

𝑖=1

∑∑∑‖𝑋𝑡
(𝑖)
− 𝑋𝑘

(𝑖)
‖
2

𝑁𝑖

𝑘=1

𝐿

𝑡=1

𝐿

𝑖=1

 

         

 

𝐵, = 𝐴𝑣𝑔([

𝐾12
′       ⋯      𝐾1𝐿

′

     ⋱            ⋮
                    𝐾(𝐿−1)𝐿

′   
])

=
1

∑ ∑ 𝑁𝑖𝑁𝑗
𝐿
𝑗=𝑖≠1

𝐿
𝑖=1

∑ ∑ ∑∑‖𝑋𝑡
(𝑖)

𝑁𝑗

𝑘=1

𝑁𝑖

𝑡=1

𝐿

𝑗=𝑖≠1

𝐿

𝑖=1

− 𝑋𝑘
(𝑖)
‖
2
 

            (21) 

𝑇′ = 𝐴𝑣𝑔(𝐷) =
1

𝑁2
∑∑∑∑‖𝑋𝑡

(𝑖)
− 𝑋𝑘

(𝑖)
‖
2

𝑁𝑗

𝑘=1

𝑁𝑖

𝑡=1

𝐿

𝑗=1

𝐿

𝑖=1

 

            

𝑊′, 𝐵′ 𝑎𝑛𝑑 𝑇 have the following relationship: 

𝑇′ = (∑𝑁𝑖
2/𝑁2

𝐿

𝑖=1

)𝑊′ + (1 −∑𝑁𝑖
2/𝑁2

𝐿

𝑖=1

)𝐵′ 

            

Distance similarity (usually using Euclidean distance) is a 

popular measure to estimate the within-class separability and 

the between-class separability. Under the Gaussian assumption, 

W’ and B’ are used to estimate the within-class separability and 

the betweenclass separability, respectively. In light of Eq. (15), 

W and B in the kernel space can be respectively estimated by 

𝑊 = 2 − 2exp (−
1

2𝜎2
𝑊′) 

            (24) 

 

𝐵 = 2 − 2exp (−
1

2𝜎2
𝐵′) 

 

The objective function of class separability is established by 

𝐽(𝜎) = 𝜔𝑇 [
−𝑊
𝐵
] = 𝜔𝑤 (2 exp (−

1

2𝜎2
𝑊′) − 2)

+ 𝜔𝐵 (2 − 2𝑒𝑥𝑝 (−
1

2𝜎2
𝐵,)) 

Where ω, ω = [ωW, ωB]T, is the weight vector with a constraint 

of ωW + ωB = 1. The selection of ω is problem-dependent. A 

larger ωW treats the within-class separability as the more 

important separability measure than the between-class 

separability. If the betweenclass separability needs to be 

emphasized, ωB becomes large. 

In this paper, we simply define “separable” by the two 

scalars: W’ and B’. And we consider cases of W’ < B’ to be 

separable and the other case to be non-separable. The proposed 

method considers only the former case. Note that this definition 

does not mean that the separable dataset can be definitely 100% 

correctly classified if W’< B’. 

By the definition in Eq. (26), a large value of the class 

separability means a small within-class separability but a large 

between-class separability. The optimal σ can be defined as the 

one that can maximize the class separability, i.e. the maximizer 

of the twice differentiable objective function. The maximizer is 

obtained if the first derivative of J(σ) is equal to zero and the 

corresponding second derivative of J(σ) is negative. In the 

following, we derive the maximizer of the objective function in 

Eq. (26), i.e. the optimal σ. 

(19) 

(25) 

(26) 

(20) 

(23) 

(22) 

(18) 
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(1) Calculate the first derivative and the second 

derivative of J (σ). 

𝑑𝐽(𝜎)

𝑑𝜎
=
𝑑

𝑑𝜎
[𝜔𝑤 (2𝑒𝑥𝑝 (−

1

2𝜎2
𝑊′) − 2)

+ 𝜔𝐵 (2 − 2𝑒𝑥𝑝 (−
1

2𝜎2
𝐵′))] 

= (2𝜔𝑤𝑊
,𝑒𝑥𝑝 (−

1

2𝜎2
𝑊′) − 2𝜔𝐵𝐵

,𝑒𝑥𝑝 (−
1

2𝜎2
𝐵′))𝜎−3 

             

 

𝑑2𝐽(𝜎)

𝑑𝜎2
=
𝑑

𝑑𝜎
[(2𝜔𝑤𝑊

,𝑒𝑥𝑝 (−
1

2𝜎2
𝑊′)

− 2𝜔𝐵𝐵
,𝑒𝑥𝑝 (−

1

2𝜎2
𝐵′)) 𝜎−3] 

= (2𝜔𝑤𝑊
,2𝑒𝑥𝑝 (−

1

2𝜎2
𝑊′) − 2𝜔𝐵𝐵

,2𝑒𝑥𝑝 (−
1

2𝜎2
𝐵′))𝜎−6 

−(6𝜔𝑤𝑊
,𝑒𝑥𝑝 (−

1

2𝜎2
𝑊′) − 6𝜔𝐵𝐵

,𝑒𝑥𝑝 (−
1

2𝜎2
𝐵′)) 𝜎−4 

             

 

(2) Let the first derivative in Eq. (24) equal to zero, 

and we get all stationary points. 

𝑑𝐽(𝜎)

𝑑𝜎
= 0 ⇔ (2𝜔𝑤𝑊

,𝑒𝑥𝑝 (−
1

2𝜎2
𝑊′)

− 2𝜔𝐵𝐵
,𝑒𝑥𝑝 (−

1

2𝜎2
𝐵′)) 𝜎−3 = 0 

⇔ 𝜎∗ = √
𝐵′ −𝑊′

2 × 𝑙𝑜𝑔(𝜔𝐵𝐵
′/𝜔𝑊𝑊

′)
 

            

 

(3) Substitute σ in Eq. (28) by the stationary point 

obtained in Eq. (29), and test whether the second 

derivative is less than zero. 

𝑑2𝐽(𝜎)

𝑑𝜎2
< 0 ⇔ (2𝜔𝑤𝑊

,2𝑒𝑥𝑝 (−
1

2𝜎2
𝑊′)

− 2𝜔𝐵𝐵
,2𝑒𝑥𝑝 (−

1

2𝜎2
𝐵′)) 𝜎−6 

(6𝜔𝑤𝑊
,𝑒𝑥𝑝 (−

1

2𝜎2
𝑊′) − 6𝜔𝐵𝐵

,𝑒𝑥𝑝 (−
1

2𝜎2
𝐵′))𝜎−4 < 0 

⇔ 𝜔𝑊𝑊
′(𝑊′ − 3𝜎2)𝑒𝑥𝑝 (

𝐵′ −𝑊′

2𝜎2
) < 𝜔𝐵𝐵

′(𝐵′ − 3𝜎2) 

 

Substituting 𝜎 by 𝜎∗ in Eq. (29), we have 

𝑑2𝐽(𝜎)

𝑑𝜎2
|𝜎=𝜎∗ < 0 ⇔ 𝜔𝑊𝑊

′(𝑊′ − 3𝜎∗2)
𝜔𝐵𝐵

′

𝜔𝑊𝑊
′

< 𝜔𝐵𝐵
′(𝐵, − 3𝜎∗2) 

⇔𝑊′ < 𝐵′ 
             

As stated earlier, the datasets are assumed Gaussian 

distributed and separable, that is W’ < B’. It makes Eq. (30) 

hold, and thus the stationary point in Eq. (29) is the maximizer 

and also the optimal σ we are looking for. According to Eq. 

(23), the optimal σ in Eq. (29) can be expressed as any two 

combinations of W’, B’, and T’. 

The proposed method is further interpreted as follows. 

From Eq. (13), the Gramian matrix is obtained from the 

Euclidean matrix with a transformation. The Euclidean matrix 

is fixed for a dataset. The parameter σ is the only factor to 

determine this transformation. The proposed method observes 

the statistical class characteristics from the Euclidean matrix to 

determine the optimal σ. The transformation determined by the 

optimal σ tries to make a proper transformation of the Euclidean 

matrix so that the class characteristics are discriminant in the 

corresponding Gramian matrix. In Eq. (4), SVM training 

depends on the Gramian matrix together and the label 

information. Therefore, we could reach a well-trained model of 

SVM with the optimal σ. 

 
A. Selection of the Weight Vector 

 

As mentioned earlier, selection of ω is problem-dependent. We 

provide two intuitive and simple options for selecting the 

weight vector in this section. First of all, we have to find the 

constraints of ω. In Eq. (29), the denominator in the square root 

must be positive because of the application condition of W’< B’ 

in Eq. (30). 

Together with the constraint of ωW + ωB = 1, the constraints for 

two elements in ω are given below: 

0 < 𝜔𝑤 <
𝐵′

𝐵′ +𝑊′
 

             
𝐵′

𝐵′+𝑊′ < 𝜔𝑏 < 1                  

 

If we choose ωW = ωB = 0.5, it is clear that the two conditions 

Eqs. (31) and (32) hold. Under this selection, the optimal σ is 

calculated by  

𝜎1
∗ = √

𝐵′ −𝑊′

2 × 𝑙𝑜𝑔(𝐵′/𝑊′)
 

             

If we choose ωW = W’/(W’ + B’) and ωB = B’/(W’ + B’), the two 

conditions Eqs. (31) and (32) are also satisfied. This selection 

weights the between-class separability heavier than the within-

class separability. This is very often desirable as we would like 

to see that different classes are clearly separable. The optimal σ 

is calculated by: 

𝜎2
∗ = √

𝐵′ −𝑊′

4 × 𝑙𝑜𝑔(𝐵′/𝑊′)
 

            

 
IV. NUMERICAL VALIDATIONS 

 
The simulation was carried out on a HP 15 laptop with core i7 

1.8GHz base frequency and 8GB memory running under 64-bit 

Microsoft Windows 10 operating system. The algorithm was 

developed in-house on the Matlab 2018a (The Mathworks ©) 

platform. The figure 1 below is the Graphical User Interface 

(GUI) of the experiment. 

 

(27) 

(28) 

(29) 

(30) 

(32) 

(33) 

(34) 

(31) 
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Figure 1: The Experiment GUI 

 
 

 

 

In this section two approaches of σ selection are compared in 

terms of classification accuracy. The two approaches are 

described as follows. In the first approach, σ and C are specified 

by default values, that is, σ = C = 1. The second approach is the 

proposed method. We test the proposed method with two 

specific selections of ω: ω1 = [0.5, 0.5]T; ω2 = [W’/(W’ +B’), 

B’/(W’ + B’)]T. 

SVM is used as the classifier to assess the performance of the 

two approaches. Three real-world datasets used to test the two 

approaches are summarized. 

Table 1: Summary of the three Datasets 

No Dataset Number 

of 

Classes 

Number 

of 

Features 

Number of 

Instances 

1 Ionosphere 2 34 351 

2 Fisheriris 3 4 150 

3 Pineapple 

Slices 

5 79 250 

 

 

 

Classification accuracy is used to evaluate the performance of 

the two approaches. Classification accuracy is defined as 

Nc/(Nc+Nf)×100%, where Nc is the number of instances that 

are correctly classified, and Nf is the number of those falsely 

classified. Accuracy is the most important performance 

measure. Since the parameter C (box constraint) affects 

classification accuracy, selection of C is necessary for a proper 

evaluation of the two approaches. C is specified by a default 

value in the first approach. The second approach utilizes grid 

search for C selection together with σ selection. The selected 

values of σ and C are summarized in Table 2.

 

Table 2: Selected parameters for three datasets 

Dataset Approach 𝜎 C B’ W’ B’/W’ 

Ionosphere Default 1 1 78.1863 55.2614 1.41484 

The proposed 

Method 

𝜔 = 𝜔1 5.74727  10 

𝜔 = 𝜔2 4.06393 10 

Fisheriris Default 1 1 10.8171 2.20571 4.90416 

The proposed 

Method 

𝜔 = 𝜔1 1.64556 1 

𝜔 = 𝜔2 1.16358 1 

Pineapple 

Slices 

Default 1 1 90.0723 67.9907 1.32477 

The proposed 

Method 

𝜔 = 𝜔1 6.26557 7 

𝜔 = 𝜔2 4.43043 10 

Once the optimal values of σ and C are 
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determined, the SVM model is trained on the training subset. 

Twenty independent runs are executed on each dataset using 

each approach. 

In each run, the training accuracy and the test accuracy are 

estimated 

by K-fold cross-validation (K = 5). Results are saved in Table 

3. 

 

Table 3: Experimental results of the three Dataset 

Dataset Method Test Accuracy Training 

Accuracy 

Ionosphere Default 68.5714 77.1429 

The proposed Method 𝜔 = 𝜔1 94.2857 94.4857 

𝜔 = 𝜔2 87.1429 94.8857 

Fisheriris Default 93.3333 95.3333 

The proposed Method 𝜔 = 𝜔1 93.333 96 

𝜔 = 𝜔2 100 96 

Pineapple Slices Default 50 53.6 

The proposed Method 𝜔 = 𝜔1 88 88.6857 

𝜔 = 𝜔2 88 89.08 

 

 

From Table 3, we can see that in terms of classification 

accuracy, the training accuracy is usually higher than the test 

accuracy for two approaches. This means that the two 

approaches perform well on empirical risk minimization in 

SVM. We have to check generalization ability of the two 

approaches from the perspective of test accuracy. The first 

approach using default values of C and σ works worst between 

the two approaches. That is, the first approach usually has low 

test accuracy. Efforts made by the second approaches can 

significantly improve test accuracy for most of the datasets. 

Test accuracy of the first approach varies a lot with datasets, so 

it shows bad generalization ability. The first approach is 

comparable with other approaches only if the optimal σ is close 

to the default value of σ, e.g. the Fisheriris dataset. Otherwise, 

the test accuracy of the first approach suffers severely, and even 

tends to over-fitting, such as the ionosphere dataset. Therefore, 

it is strongly suggested to avoid performing the Gaussian SVM 

with a default value of σ.  

The proposed method has good generalization abilities to reach 

high and robust test accuracy. However, in the pineapple slices 

dataset, the approach works a little bit worse but still better than 

default method. It is mainly because that class separability is 

under estimated with a small training size. 

 

V. CONCLUSIONS 
In this paper, a fast and robust parameter selection method is 

proposed for the Gaussian radial basis function in SVM 

classification. The theoretical basis and interpretation of the 

analytical selection method is provided in this paper. This 

method evaluates σ from the viewpoint of class separability in 

the kernel space. The optimal σ is defined as the one with the 

maximum class separability. An analytical solution of σ is 

found provided that the within-class mean distance (W') is less 

than the between-class mean distance (B’). In this work, two 

formulas are provided corresponding to two specific weight 

vectors: ω1 = [0.5, 0.5]T; ω2 = [W’/(W’+B’), B’/(W’+B’)]T. 

Experimental results on the three real-world datasets 

demonstrate that the proposed method is very fast and robust.  
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