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    Abstract - The incorporation of wind power into the electric 

power grid has seen tremendous growth in many countries across the 

globe. This is because of the many benefits wind energy possesses such 

as its environmental friendliness and declining cost. However, due to 

its intermittent and uncertain nature, its high penetration brings several 

hurdles in the operations and planning of power systems. For instance, 

maintaining balance between demanded power and supplied power, 

which is necessary for secure grid operation, becomes a challenge. To 

mitigate this challenge, several studies have proposed improved wind 

speed forecasting and the application of Battery Energy Storage 

Systems (BESS). Therefore, this paper provides a detailed review of 

various wind energy forecasting techniques, both Artificial 

Intelligence and traditional statistical techniques, and optimal BESS 

sizing considerations and approaches, highlighting their various 

competing advantages and disadvantages. Lastly, the paper identifies 

possible areas in wind forecasting techniques and optimal storage 

sizing that require further exploration. 
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I. INTRODUCTION 

IND power constitutes the renewable generation   

technology which has experienced the fastest growth 

among all types of renewable generation technologies being 

currently investigated. It is considered to be the most mature in 

terms of commercial development in the world for meeting the 

energy demand from various perspectives such as environment, 

energy security and socioeconomic aspects without foregoing 

economic development and thus, a significant portion of 

electrical power can be generated from wind energy [1].   The 

development costs of wind power have decreased dramatically 

in recent years due to more competitive supply chains, 

increasing economies of scale and further technological 

improvements [2]. 

Electricity generated from wind power can be highly 

variable at several different timescales: hourly, daily, or 

seasonally. Though annual variation also exists, it is not so 

notable. Like other electricity sources, wind energy must be 

scheduled. Wind power forecasting methods are used, but 

predictability of wind plant output remains low for short-term 
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operation. Because instantaneous electrical generation and 

consumption must remain in balance to maintain grid stability, 

this variability can present substantial challenges to the power 

system operators/planners, who have to ensure the reliable and 

secure grid operation when large amounts of wind power are 

incorporated into a grid system.  

The forecast for wind-power generation is more 

challenging than that for solar photovoltaic. Large variations 

can occur within minutes. Moreover, previous studies [3],[4] 

have shown that the designing and training of wind forecasting 

(WF) models such as Artificial Neural Networks (ANNs), fuzzy 

and Autoregressive Moving Average (ARMA) are most 

challenging these days. This is because the WF model designed 

for one site is not suitable for another site due to change in 

terrain, distinct wind speed patterns, distinct atmospheric 

parameters such as pressure, temperature or humidity.  

As power generation from wind energy is significantly 

increasing, it is of paramount importance to accurately predict 

the generation output of the wind energy resource as fast as 

possible [3]. This is for the purposes of ensuring better planning 

and reliable operation by the system planners and operators. To 

overcome the various challenges arising from the intermittency 

of wind resources, optimal storage is considered to be a very 

economical solution as depicted by many ongoing studies and 

projects around the globe. Various AI techniques have been 

found to be very efficient in both forecasting the generation 

output of WES [3] and optimizing their storage designs [5]–[7]. 

For this reason, this paper presents an updated review of various 

wind speed and power forecasting techniques with optimal 

BESS sizing considerations and approaches. 

The paper is organized as follows. Section II highlights the 

classification of forecast time horizons depending on the 

requirements of the power systems operation. Next, in section 

III, several wind speed and power forecasting techniques are 

discussed in detail. Section IV deals with BESS sizing 

approaches and considerations. Finally, section V gives the 

conclusion. 
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II. CLASSIFICATION OF FORECAST HORIZONS 

The forecast can be classified into four different time 

horizons depending on the requirements of the power system 

operation, namely: long-term (more than a month ahead), 

medium-term (week, month ahead), short-term (day ahead) [8] 

and very short-term (few seconds to 30 min ahead) [9]. Table I 

highlights the time horizon classification of wind forecasting 

techniques. Different wind power and speed prediction 

approaches have different characteristics and yield better results 

for different forecast locations and time horizons in [9]. Fig. 1 

shows the challenges of integrating Wind Energy Resource 

(WER) into the electrical grid.  

 

III. WIND FORECASTING TECHNIQUES 

A simple time-series based approach for wind power 

prediction was first developed in 1984 by Brown et al [10] by 

utilizing utility's power curve. Thereafter, numerous researches 

have been conducted in the field of predicting wind power or 

the speed produced by wind energy resources (WER) and this 

has led to the development of several different approaches as 

well as reliable and effective tools which have been used with 

different success rates in various wind Farms. The most widely 

used approaches are statistical approaches, AI-based 

approaches, physical approaches or combination approaches.  

 
TABLE I 

TIME HORIZON CLASSIFICATION OF FORECASTING TECHNIQUES. 

Time-scale Applications Time plan 

Very short-term 
[11] (from a few 

seconds to 30-minutes 

ahead) 

- Grid stability 

operations,  

-load tracking 

-turbine control 
- Voltage regulation 

actions 

10-seconds ahead 

Short-term [11] 
(from 30 minutes to 

day-ahead) 

 
 

 

 

-Economic load 
dispatch planning  

-Load increment or 

decrement decisions 
-Power reserve 

management                  

-Operational security in 
day-ahead electricity 

market  
-Generator Online/Offline 

decisions  

1-hour ahead 
 

3-hour ahead 

 
5-hour ahead 

 

6-hour ahead 
 

 
24-hour ahead 

Medium-term 
(from day-ahead to 

month-ahead) 

- Unit commitment 
decisions  

- Maintenance 

scheduling 

72-hour ahead 

Long-term (more 

than month-ahead)  

- Wind farm optimal 

design 

- Restructured 
electricity 

30-days ahead 

markets  

1-year ahead 
4-years ahead 

   

 

A. Statistical Forecasting Approaches 

Statistical forecasting approaches are data-driven models 

and uses large amounts of the recorded wind speed values of 

any site for prediction. They are mainly intended for very short-

term and short-term forecasting. There are several time-series 

based approaches statistical models, namely; autoregressive 

model (AR), moving average model (MA), autoregressive 

moving average model (ARMA), and autoregressive integrated 

moving average model (ARIMA) which gives prediction value 

as a function of past wind speed or power.  

In many instances such as short-term, medium-term, and 

long-term forecasting, the statistical approaches give good 

results. Nevertheless, in the very short-term and short-term 

horizon, the effect of atmospheric dynamics becomes more 

vital, thus the utilization of the physical approaches becomes 

essential [3]. They are also easy to model and inexpensive and 

are capable of providing timely forecasts. However, unlike the 

physical methods, they require huge sets of historical data to 

train the model. Fig. 2 shows the general statistical approach for 

wind power and speed forecast. 

 

  
Fig. 1. Challenges of wind energy resource integration. 
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Fig. 2. The general form of statistical approach to forecast wind 

speed and power [3]. 

B. Physical Forecasting Approaches 

These approaches utilize the detailed physical description 

from the meteorological data of wind farms such as humidity, 

atmospheric pressure, temperature, obstacles, and surface 

coarseness to model the onsite conditions and predict the wind 

speed. However, these physical approaches involve intense 

calculation hence requiring much time. Several physical 

approaches have been developed and used, namely; The 

Prediktor [12], The Previento [13], The LocalPred [14] and the 

eWind [15]. The general form of the model is shown in Fig. 3. 

C. AI-Based forecasting Approaches 

AI-based approaches are also data-driven models. Using 

the recorded historical data from any site and based on the 

various learning algorithms, the network can be trained. For 

instance, ANN can model complex non-linear relationships 

between the inputs and outputs and derive the dependence 

between the inputs and outputs via learning and training while 

Fuzzy logic performs better than others when handling 

reasoning problems, especially where learning and training 

abilities are not important. Unlike the statistical and physical 

approaches, this approach does not need explicit mathematical 

expressions. In addition, it has the ability of self-learning, self-

organizing and self-adaption [3]. Other AI-based approaches 

used include ANN–Fuzzy approach. Fig. 4 shows the general 

ANN approach for wind power and speed forecast. 

 

 
Fig. 3. Flow diagram of physical approaches of wind speed 

forecasting [16]. 

Due to its ability to model a complex non-linear relationship 

and extract the dependence between the input and output via the 

learning process, ANN has been found to be generally a good 

selection for wind speed and power forecasting. Furthermore, it 

is easy to construct and requires only short development 

periods, and it does not need explicit mathematical expressions. 

In most cases, no particular independent method is the best. 

However, most forecasting studies using ANN have offered the 

best performance as compared to other techniques [3]. 

Using historical data and ANN modelling the authors in [17] 

presented a tool that would be used by operators of RES system 

to achieve better monitoring and management of the whole 

system. The development of the prognostic tool was able to give 

adequate and sufficient forecast eight hours ahead of the 

absolute minimum, maximum and the mean hourly wind power 

at a specific location in Tilos Island, Greece. This was generated 

by an E-53 Enercon wind turbine using real-recorded wind 

speed data and the corresponding wind turbine power curve. In 

[18], wind farm prediction models both for short-term and long-

term period are constructed using data mining approach. The 

model generated by an ANN outperformed all other models for 

both short-term and long-term forecast.  

Using the input parameters— generation hours, relative 

humidity and mean wind speed, the neural network model 

developed in [19] offers a reliable indicator of the wind power 

output from wind farms. The authors in [20] used ANN 

approach to approximate the wind speed at a particular site 

utilizing the wind speed at a strong correlation site among 

neighboring sites. 

A wide comparison based on time horizons, performance 

analysis and statistical distribution of normalized errors is 

carried out between the five kinds of ANN models, ARMA 

models, and ANFIS models in [21]. ANN models showed better 

performance. 
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An in-depth comparison study of three types of typical ANN 

approaches, namely; Adaptive Linear Element (ADALINE), 

Radial Basis Function (RBF) and Feed Forward Back 

Propagation (FFBP) approaches is conducted in [22]. Results 

indicated that different model structures, inputs and learning 

rates had a direct influence on the forecast accuracy. In addition, 

even for the same wind dataset, no individual approach 

outperformed others universally based on the evaluation 

criteria. 

 
 

Fig. 4. ANN approach for wind speed and power forecast. 

D. Combination Forecasting Approaches 

The excellent qualities of the prediction approaches 

mentioned above have been merged to obtain hybrid models 

which have not only demonstrated improved accuracy of 

forecasting and wider prediction horizons as demonstrated by 

Feng et al [23], but also minimizes the risk from extreme 

events. For example, the combination of the Fuzzy logic with 

ANN approach produces the hybrid ANN–Fuzzy approach 

which yields excellent performance. However, this approach 

does not always perform better than the best individual 

forecasts [3].  Many combination approaches have been 

reviewed in [3] and [16]. 

The authors in [24] predict wind speed automatically 

employing a hybrid neural network approach, comprising a 

Self-Organizing Map (SOM) and a Radial Basis Function 

(RBF) neural network. The results indicated that the proposed 

method yielded better output of wind speed prediction with less 

error rates. 

An advanced study was performed by the authors in  [25] 

who proposed Bayesian Model Averaging (BMA) approach to 

combine the wind speed forecasts gotten from different ANN 

models, namely, Radial Basis Function (RBF) network, Back-

Propagation (BP) network and Adaptive Linear Element 

(ADALINE) network. Based on their posterior model 

probabilities, the BMA approach weights individual forecast. 

The better performing predictions acquire higher weights than 

the worse. This approached proved to be effective as shown by 

the simulation results. 

The mean of a sorted number of similar wind speed days 

from Similar Days (SD) approach is utilized for the input of 

different Soft Computing Models (SCMs) - Adaptive Neuro-

Fuzzy Inference System (ANFIS), Back-Propagation Neural 

Network (BPNN) and Radial Basis Function Neural Network 

(RBFNN) in [26]. Combination of the SD model with SCMs 

showed some level of improved performance, with the SD–

ANFIS model outperforming all other individual and combined 

models. 

 

E. Other Approaches 

Other approaches include persistence approach. This is the 

widely known benchmark approach. As mentioned by Nielsen 

et al [27], the accuracy of this method is very high for very 

short-term intraday predictions (a few seconds to 6-hour ahead). 

At sites where inadequate information is not available, 

spatial correlation forecasting such as Measure-Correlate-

Predict (MCP) method [28] can be used to estimate the 

characteristics of the WER. This is achieved by evaluating the 

sufficiency of the wind power of the adjacent regions. In 

comparison to the common time-ahead forecasting models, 

these models are more strenuous since they need measurements 

from several spatially correlated sites and the associated 

measurement delay times [3]. 

More approaches for wind power prediction such as 

regional forecasting and probabilistic forecasting (e.g. the 

parametric approach, non-parametric approach, distribution-

free approaches and ensemble forecast) are extensively 

discussed in [3] and gaussian-Process-based method in [29]. 

The frequency domain approach is introduced for 

characterizing the wind speed patterns in [30]. 

As a result, these prediction tools have been found to 

minimize the overall costs of operations and enhance reliability 

linked with the increased penetration of wind power into the 

existing electrical grids [31]–[33]. 

Other various promising approaches for enhancing the 

accuracy of the prediction models includes; Combining 

different forecasting or NWPs models as discussed in [34]–

[38], filtering of systematic errors emanating from NWPs using 

Kalman filtering [39], proper selection of input parameters [40], 

or the combination of the any of the above mentioned promising 

approaches [16], [41]. However, the combined approaches do 

not always outperform the single method for all the forecasting 

time horizons investigated as shown by studies in [35]. Table II 

highlights the various advantages and disadvantages of 

different wind forecasting techniques. 

 

IV. BESS OPTIMAL SIZING: CONSIDERATIONS 

AND APPROACHES 

A. Brief Overview 

According to [5], design and executions of most practical 

RES hybrid system often depend on continuous experience 

including trial and error. However, such methods always lead 

to unexpected problems such as premature battery degradation. 

This may be very expensive due to the required design 

corrections after installation. 

 

B. Techniques and Considerations in BESS Sizing 
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Various strategies have been suggested for obtaining the 

optimal size of BESS. For instance, many classical optimization 

algorithms and metaheuristic techniques such as GA, PSO, 

ABC or a hybrid combination of AI and evolutionary 

computation such as ANN-PSO have been used in the optimal 

design of storage system. 

Classical optimization algorithms employ differential 

calculus to obtain optimum solutions for continuous and 

differentiable functions. These methods of optimization 

techniques have been widely utilized in optimal sizing of 

hybrids systems as reviewed in [5] and are generally 

categorized as: dynamic programming (DP), Linear 

programming model (LPM), and nonlinear programming 

(NLP). However, with the increased integration of intermittent 

Renewable Energy Sources (RES) into the existing grids, the 

optimization problem becomes more complex due to the non-

linear and non-convex nature of the problem with multiple local 

optima. Fig. 5 shows the optimization techniques that have been 

applied in BESS optimal sizing. 

As a result, although the above stated classical methods are 

effective, they are cumbersome and time-consuming rendering 

them inefficient and unsuitable in solving complex optimization 

problem [5]. 

For instance, a life cycle planning methodology of BESS 

in an off-grid was put forward in [42]. Using decomposition-

coordination algorithm, the optimal allocation of DER capacity 

was carried out under multi- 

stage decision framework to meet the demand growth while 

considering dynamic factors such as demand growth, battery 

capacity fading and components’ contingencies. 

Recently, several bio-inspired optimization techniques have 

gained popularity in solving the complex non-linear and non-

convex optimization problems of sizing RES. 

In [43], several evolutionary algorithms, namely, the 

genetic algorithm (GA), moth–flame optimization algorithm 

(MFO), artificial bee colony (ABC), grey wolf optimizer 

(GWO), differential evolution (DE), teaching–learning-based 

optimization (TLBO), particle swarm optimization (PSO) and 

gravitational search algorithm were used to optimize the 

characteristics of the proposed BESS model which was to be 

easily applied to a permanent magnet synchronous generator 

wind turbine in the grid-connected mode. SOC and REL. 

However, the two algorithms had some drawbacks, majorly due 

to the too much programming required, longer run-time and the 

difficulty of setting parameter. 

 

 

 

  

TABLE II 

ADVANTAGES AND DISADVANTAGES OF DIFFERENT WINDFORECASTING TECHNIQUE 

Forecasting approach  Advantages Disadvantages 

Time-series based 
approaches/Statistical 

approaches 

(Example: AR, MA, 
ARMA, ARIMA, 

GARCH, and so on 

- No need of expert skill. 
- Most reliable forecasting approach because it utilizes 

readily available meteorological data. 

- Determination of prediction intervals are very simple, 
accurate for short-term forecasts. 

- Less accurate for long-term forecasts. 
- Intermittent behavior of prediction parameter (wind speed or 

wind power) cannot capture perfectly. 

- These approaches require large number of past input values. 

Persistence method -Highly accurate for very short-term forecasts which are 
ranging from few seconds to 6-hour ahead. 

-Time horizon increases because of overcast and intermittent 
nature of wind speed, forecasting accuracy will be decreased 

for long-term forecasts. 

NWP/Physical 
approaches 

-Best suitable for long-term forecasting. - Not applicable for short-term forecasting due to 
computational complexities. 

- Difficult to get physical input data. 

-Much time required due to intensity of calculations. 
Support Vector 

Machine -based 

approaches  

- Exhibits better generalization capabilities. - Consists of complex optimization structure 

- Accuracy rely on genuine tuning of 

parameters. 

- Requires longer training time. 

ANN-based approaches - Adaptable to wide range of parameters. 

- Highly nonlinear models like wind speeds. 
 - Knowledge-based systems and learns through the 

training process. 

- ANNs will react to even the smallest change in data. 

- Need huge training dataset and optimal training algorithm. 

- difficult to design and needs large amount of computational 
resources. 

Fuzzy-logic approaches - Easy to implement and have the ability to deal with 

uncertainties and nonlinearities. 

- Comparatively less complex approach and acceptable for 
models that are tough to design precisely. 

- Improves the accuracy of forecasts by rule-based learning 

process. 

- Model becomes complex and computational time also 

increases. 

- Exhibits weak learning ability. 
 

Hybrid AI Approaches - These approaches will use best features of the above 

single forecasting approaches in order to minimize the 

effect of drawbacks, computational complexity. 
- These methodologies are implemented for larger systems. 

- Designing and training of these types of forecasting 

approaches are challenging. 

- The input data must be preprocessed for enhanced and 
obtain accurate forecasts generalization capability. 
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Fig. 5. Optimization approaches applied in BESS sizing. 

 

The methods presented indicated the ability to increase the 

final State of Charge (SOC) of the batteries, increase the 

Remaining Expected Life (REL) of the batteries, and minimize 

the number of batteries, hence lowering the costs of the whole 

system. In addition, the results indicated that the GWO and 

TLBO algorithms were the best algorithms in terms of reducing 

the operation time of the standby battery and increasing the final 

Authors in [44] uses an incremental cost approach to obtain 

the optimal values of BESS to achieve the minimum running 

cost for an islanded DC microgrid while in [45], the authors 

employ the grasshopper optimization algorithm to size the 

BESS while considering the efficiency of power supply 

probability end energy cost for an islanded operated microgrid 

penetrated with wind, solar PV and diesel generators. A unit 

commitment problem was minimized using a convex 

optimization technique in [46].  

In [47], optimal sizing of BESS for a wind-penetrated, grid-

connected microgrid and standalone microgrid were studied. 

The optimization was done within 24 hours in every month 

from January to December and the sizes of BESS energy and 

power capacities resulting from the minimum operational costs 

of the microgrid were computed. The study found out that the 

grid-connected BESS was cheaper to operate than the stand-

alone one and it was worth to be considered for efficient 

dispatch of wind power since it was very economical. 

To fully meet demand due to uncertainty of wind and solar 

PV, authors in [48] asserted that capacity sizing was vital. They 

formulated PSO algorithm to determine the optimal capacity for 

hybrid PV-wind with battery storage while considering 

uncertainty in generation of wind energy and solar energy. The 

objective was to minimize the system cost while constrained to 

having a given reliability for a given load.  

The study in [49] used two constraint-based iterative search 

algorithms, namely, source-sizing and battery sizing algorithms 

to determine the optimal sizes of RES and BESS in hybrid wind 

and solar for a grid-connected microgrid system to maximize 

reliability and minimize cost. Besides, authors in [50] used the 

firefly algorithm and considered the BESS’s depth of discharge 

when modeling the real-time battery operation cost. The results 

also showed that the operation cost was well minimized.  

The GA is a heuristic evolutionary algorithm used for hybrid 

search and optimization problems. It mimics the Charles 

Darwin’s theory of natural selection and was developed by John 

Holland in 1960–1970 [51]. Two of the most notable merits of 

GA over the traditional optimization algorithms are its ability 

to handle complex problems and parallelism. GA looks for 

solutions among populations of points, simultaneously works 

from a set of points and in parallel climbs many peaks, which 

leads to reduction in false peak finding probability [7]. It can 

effectively handle different types of optimizations, whether the 

fitness (objective) function is linear or non-linear, stationary or 

nonstationary (changes with time), continuous or 

discontinuous, or with random noise. Nevertheless, GA has few 

drawbacks. The fitness function formulation, the choice of 

critical parameters, namely, cross over and mutation rates and 

the selection criteria of new population must be done carefully, 

otherwise it will be difficult for the algorithm to converge. GA 

still remains one of the most widely used technique in modern 

non-linear optimization despite the above-mentioned 

disadvantages [52]. 

Many researches have employed GA to optimally design and 

size BESS. For instance, authors in [53] and [54] used multi-

objective GA optimization method in hybrid system with 

battery storage to minimize the annualized cost of system 

(ACS), the Loss of Power Supply Probability (LPSP), the 

Levelized Cost of Energy (LCOE) as well as the CO2 emissions. 

In [55], the optimization of an off-grid power system that 

consisted of the PV, WTG, diesel generator and ESS was 

investigated using GA. The proposed algorithm was found 

effective to aid the distribution network operators to minimize 

the total cost that was related to the operation of a microgrid 

system. Authors in [50], [56] considered the battery life of 

BESS in formulating an objective function in a wind-ESS 

penetrated microgrid. In [56], simulations performed by the 

rule-based and genetic algorithm indicated that the operation 

cost was well optimized.  

The ANN is used to validate the forecasted load model with 

historical weather and holidays as input predictors while the 

uncertainties associated with RES are handled by a chance-

constrained model, and solved by a genetic algorithm (GA) in 

[59][7]. The results indicated an increase in percentage of clean 

energy from 13 to 39%, and a sharp drop in CO2 emissions, 

thereby reducing the devastating effect on the environment. The 

study revealed that for the betterment of the environment, the 

storage system plays a very important role to renewable energy 

integration. 

 

V. CONCLUSION 

Numerous researchers and utilities have been conducting 

systematic investigation on many wind forecasting approaches. 

It is worth noting that each approach used has unique 

techniques and has yielded the best test results based on forecast 
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horizons and the size of the datasets. Different models perform 

differently under different situations. It is difficult to say which 

model is the best due to site dependence. The forecasting 

accuracy goes down with increasing forecast time horizon, 

unstable weather regimes and terrain complexity. 

Though several optimal BESS sizing studies have been 

conducted previously, there is still a need to continue to 

investigate various methods or combinations of various 

methods, parameters and constraints that could aid in finding 

optimal BESS size.  
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