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Abstract
Anovel computationalmodel is presented for predictingwaxdeposition in crude oil pipelines,
accounting for the complex interplay of multiphase flow scenarios involving water-in-oil
emulsions, wax precipitation kinetics, molecular diffusion, and shear dispersion. The gov-
erning equations are solved numerically by the bivariate spectral collocation method using
Chebyshev-Gauss-Lobatto grid points. The model’s predictive capabilities are evaluated
by investigating the impact of various flow parameters, including Reynolds number (Re),
Grashof number (Gr), Schmidt number (Sc), and Weber number (We), on the flow variables,
wall shear stress, and heat and mass fluxes. The key findings reveal that wax deposition is
significantly influenced by the intricate interplay of flow conditions, wax precipitation kinet-
ics, and heat and mass transfer phenomena. Notably, increasing Reynolds number from 2
to 6.5 leads to at most 5% increase in wax deposition, while increasing mass Grashof num-
ber from 4 to 16 results in at most 10% reduction in wax accumulation. Similarly, higher
Schmidt numbers (Sc > 1) and Weber numbers (We > 1) tend to mitigate wax deposition
by at most 15% and 6%, respectively. These insights offer valuable guidance for optimiz-
ing pipeline operations, designing effective wax control strategies, and enhancing pipeline
integrity management in field-scale crude oil transportation systems.

Keywords Wax deposition prediction · Oil pipelines · Heat and mass transfer · Multiphase
flow · Water-in-oil emulsion · Computational modeling and simulation
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Roman Symbols
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Dd Molecular diffusion coefficient of wax, [m2/s]
d̄ Dimensionless diameter of water droplet
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g Gravitational acceleration, [m/s2]
k Thermal conductivity, [W/m K]
K1 Smooth and positive function of fluid temperature, [1/s]
K2 Smooth and positive function of fluid temperature, [1/Pa]
P Dimensionless pressure
Q Volume flow rate, [m3/s]
R Radius of clean pipe, [m]
(r̄ , z̄) Dimensionless cylindrical co-ordinate variables
t̄ Dimensionless time
(u, v) Dimensionless velocity components
Da Darcy number
Ec Eckert number
GrT Thermal Grashof number
GrC Mass Grashof number
Pr Prandtl number
Pe Peclet number
Re Reynolds number
St Stanton number
Sc Schmidt number
We Weber number

Greek Symbols
αavg Average aspect ratio of the wax crystals
α Angle of elevation of pipeline from the horizontal
βT Thermal volume expansion coefficient, [1/K]
βC Concentration volume expansion coefficient, [m3/kg]
μ Coefficient of dynamic viscosity, [Nsm−2]
φ Dimensionless concentration of non-aggregated wax
φi Proportion of volume occupied by the i-th phase.
ρ Fluid density, [Kg/m3]
σ Surface tension coefficient, [N/m]
� Dimensionless temperature

Subscripts
f Fluid phase
water Water droplets
oil Crude oil
gel Deposit or gel-like layer
mix Mixture fluid
wall Condition at the solid–liquid interface
∞ Condition at the free-stream

Introduction

Wax deposition is a significant challenge in the transportation of waxy crude oils through
pipelines [1, 2]. As the crude oil cools, wax crystals precipitate and adhere to the pipe wall,
forming a gel-like deposit that can reduce flow rate, increase pressure drop, and eventually
lead to potential pipeline blockage and even pipeline rapture [1, 3]. This can cause signif-
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icant operational and economic losses, disruptions to the energy supply chain, as well as
environmental damage due to potential spills [4–7].

Wax deposition is a complex process that is influenced by a number of factors, including
the composition of the crude oil, the flow conditions, and the temperature profile of the
pipeline [8, 9]. Accurately predicting wax deposition is essential for designing and operating
pipelines that are safe and reliable [2].

Several models have been developed for predicting wax deposition in oil pipelines. In
particular, Kim et al. [10] modeled the consolidation of wax deposition for progressive cavity
pump using computational fluid dynamics. Mrinal et al. [11] investigated a transient three-
dimensional computational fluid dynamics model of a progressive cavity pump. Waheed and
Megahed [12] studied the heat transfermechanism to the non-Newtonianmicropolar slip fluid
flow over a stretching sheet in the presence of the melting heat transfer with heat generation
or absorption in the slip flow regime. Singh et al. [13] studied the formation and aging of
the wax deposit by performing a series of laboratory flow loop experiments and considering
externally cooled pipeline walls.

Stubsjoen [14] studied both the numerical and analyticalmodeling of paraffinwax in crude
oil pipelines. Fusi [15] studied the unsteady flow of waxy crude oil in a laboratory test loop.
Banki et al. [16] investigated the numerical modeling of wax deposition in oil pipelines for
the laminar flow regime based on the enthalpy-porosity approach. Zhang et al. [17] developed
a wax deposition model to predict the temperature field and location of wax deposition based
on a heat-fluid coupling process for a typical rod-tubing-casing-cement-formation with the
borehole axis as the center. Ying et al. [18] studied heat transfer analysis of oil phase-change
during overhead pipeline shutdown. Magnini and Matar [19] investigated the deposition of
wax in crude oil pipelines through interface-resolved numerical simulations.

In their work on numerical investigations of wax deposition under laminar flow condi-
tions, Boucetta et al. [20] introduced a novel numerical approach for predicting the temporal
and spatial evolution of wax deposits. Their method is firmly grounded in theoretical prin-
ciples, incorporating energy and momentum balance equations along with Fick’s law-based
molecular diffusion modeling. The study’s findings indicate that extending deposition time
and porosity significantly increases wax deposit content and pressure drop while reducing
fluid temperature, heat transfer coefficient, and flow rate. Additionally, it was demonstrated
that wax deposits tend to concentrate over a short axial length.

Previous studies have primarily focused on wax deposition in single-phase waxy crude oil
pipelines. However, the issue also arises in multiphase flows, including water-oil or gas-oil

Fig. 1 A pipeline cross-section depicting wax deposition in oil pipelines
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two-phase flows and water-gas-oil three-phase flows, which are prevalent in the oil and gas
industry. Oil–water two-phase flows have garnered significant attention due to the increasing
water content of oil-bearing rocks during crude oil extraction. Existingwax depositionmodels
are incompatible with real-world oil pipelines due to numerous research gaps. Therefore,
further research on the computational modeling of wax deposition in oil pipelines with heat
and mass transfer is crucial. Conventional wax deposition models often employ simplified
assumptions and fail to capture the complex interplay of multiphase flow of oil, water, and
wax, the kinetics of wax precipitation, molecular diffusion, shear dispersion, and heat and
mass transfer phenomena that govern wax precipitation and deposition.

To address these limitations, we present a novel computational model for predicting wax
deposition in oil pipelines. This model incorporates complex phenomena, providing a more
comprehensive and accurate prediction of wax deposition behavior under a wide range of
operating conditions. Based on the bivariate spectral collocation method, the model can
simulate wax deposition in pipelines transporting waxy crude oil. This study stands out for
its incorporation of several novel aspects, including: (i) a detailed description of multiphase
flow of oil, water, and wax, including water-in-oil emulsions, (ii) a consideration of wax
precipitation kinetics, and (iii) the inclusion of molecular diffusion and shear dispersion as
the mechanisms responsible for wax deposition.

The remaining sections of the paper are structured in the followingmanner: Sect. 3 presents
the formulation of the mathematical model for the flow of waxy crude oil in pipeline systems,
Sect. 4 presents the numerical techniques used to solve the model equations, Sect. 5 presents
the study results and a comprehensive discussion of the results. The results are validated in
Sect. 6. Finally, the summary and conclusions drawn from this study are outlined in Sect. 7.

Mathematical Formulation

In this study, we examine the two-dimensional unsteady flow of waxy crude oil in a model
of a pipeline with a semi-infinite length, circular cross-section, and an inner radius denoted
as R, as depicted in Fig. 2. The pipeline is inclined at an angle denoted as α with respect
to the horizontal. We employ a cylindrical coordinate system denoted as (r , θ, z), where
r represents the radial distance measured from the center of the pipeline, θ represents the
tangential direction, and z indicates the axial direction. Initially, at time t ≤ 0, we introduce
waxy crude oil at a uniform temperature T∞ at the pipeline inlet. The inner pipeline surface,
assumed to be smooth, impermeable, and rigid, is maintained at a uniform temperature Twall.
The temperature Twall can either be higher or lower than T∞.

The boundary between the discrete solid phase and the continuous fluid phase is a
sharp interface. The outwardly drawn unit normal vector to this interface is given by

n̂ = �∇φoil/

∣
∣
∣ �∇φoil

∣
∣
∣. The fluid phase consists of three pseudo-components: oil, wax, and

emulsions.
We employ the Pseudo-Single Phase (PSP) approach, which treats the water-oil-gel three-

phase fluid mixture as a single-phase fluid. This assumption is valid when the phases are
well-mixed and there is minimal interaction between them. The physical properties of the
fluid mixture, such as viscosity and thermal conductivity, are determined by averaging the
corresponding properties of water, oil, and gel, weighted by their respective volume fractions,
as presented in the studies by Yang [21], Zheng et al. [22], and Ochieng et al. [23]. This
averaging technique, known as the principle of volume averaging, is commonly used to
estimate the effective properties of heterogeneous mixtures. For thermal conductivity, the
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Fig. 2 Schematic diagram for the flow of waxy crude oil in the pipeline

averaging is based on the Maxwell-Garnett model [24], which assumes that the phases are
embedded within a continuous matrix. The thermal conductivity of the mixture depends on
the thermal conductivities of the phases, the volume fraction of the dispersed phase, and
the shape of the dispersed phase particles. Applying these averaging techniques yields the
following equations:

ρf = (1 − φwater) ρoil + φwaterρwater (1)

ρmix = (

1 − φgel
)

ρf + φgelρgel (2)

μf = (1 − φwater) μoil + φwaterμwater (3)

μmix = (

1 − φgel
)

μf + φgelμgel (4)

(βT)f = (1 − φwater) (βT)oil + φwater (βT)water (5)

(βT)mix = (

1 − φgel
)

(βT)f + φgel (βT)gel (6)

(βC)f = (1 − φwater) (βC)oil + φwater (βC)water (7)

(βC)mix = (

1 − φgel
)

(βC)f + φgel (βC)gel (8)

(Cp)f = (1 − φwater) ρoil (Cp)oil + φwaterρwater (Cp)water
ρf

(9)

(Cp)mix =
(

1 − φgel
)

ρf (Cp)f + φgelρgel (Cp)gel
ρmix

(10)

kf =
[
kwater + 2koil + 2φwater (kwater − koil)

kwater + 2koil − φwater (kwater − koil)

]

koil (11)

kmix =
[

kgel + 2kf + 2φgel
(

kgel − kf
)

kgel + 2kf − φgel
(

kgel − kf
)

]

kf, (12)

where the subscript mix denotes “mixture fluid" and f denotes “fluid phase".
The following assumptions are made in this study: no gas is present in the pipeline, the

flow is axisymmetric, molecular diffusion and shear dispersion are the only wax deposition
mechanisms, the fluid particles do not slip at the boundary of the fluid-solid phase, the
thermophysical properties are constants except the variation of density with temperature
and concentration in the body force term. Hence, Boussinesq’s approximation is utilized in
modeling the flow in the boundary layer.

Using the assumptions above, we obtain the following dimensionless equations [23]:
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Equation of continuity

∂ (r̄u)

∂ r̄
+ ∂ (r̄ v)

∂ z̄
= 0. (13)

Equations of conservation of linear momentum

∂u

∂ t̄
+ u

∂u

∂ r̄
+ v

∂u

∂ z̄
= −∂P

∂ r̄
− χ2

(Re · Da)u + χ1

We
RK̄

∂φoil

∂ r̄

+ χ2

Re

(

2
∂2u

∂ r̄2
+ ∂2u

∂ z̄2
+ ∂2v

∂ r̄∂ z̄
+ 2

r̄

∂u

∂ r̄
− 2

r̄2
u

)

+χ3
GrT
Re2

cos(α)� + χ4
GrC
Re2

cos(α)φ (14)

∂v

∂ t̄
+ u

∂v

∂ r̄
+ v

∂v

∂ z̄
= −∂P

∂ z̄
− χ2

(Re · Da)v + χ1

We
RK̄

∂φoil

∂ z̄

+ χ2

Re

(
∂2v

∂ r̄2
+ 2

∂2v

∂ z̄2
+ ∂2u

∂ r̄∂ z̄
+ 1

r̄

∂u

∂ z̄
+ 1

r̄

∂v

∂ r̄

)

+χ3
GrT
Re2

sin(α)� + χ4
GrC
Re2

sin(α)φ (15)

Equation of energy

∂�

∂ t̄
+ u

∂�

∂ r̄
+ v

∂�

∂ z̄
= χ5

Pe

(
∂2�

∂ r̄2
+ 1

r̄

∂�

∂ r̄
+ ∂2�

∂ z̄2

)

−St
χ6

d̄
� + χ7

Ec

Re

[

2

(
∂u

∂ r̄

)2

+ 2
(u

r̄

)2

+2

(
∂v

∂ z̄

)2

+
(

∂v

∂ r̄
+ ∂u

∂ z̄

)2 ]

(16)

Equation of wax concentration

∂φ

∂ t̄
+ u

∂φ

∂ r̄
+ v

∂φ

∂ z̄

= εp

[

(1 − αm)
(

φ − C̄d
)
(

∂2v

∂ r̄2
+ 1

r̄

∂v

∂ r̄

)

+
{

(1 − αm)

(
∂φ

∂ r̄
− dC̄d

d�

∂�

∂ r̄

)

− (

φ − C̄d
) ∂αm

∂ r̄

}

∗ ∂v

∂ r̄

]

+ 1

Re · Sc
[
dC̄d

d�

(
∂2�

∂ r̄2
+ 1

r̄

∂�

∂ r̄
+ ∂2�

∂ z̄2

)

+d2C̄d

d�2

{(
∂�

∂ r̄

)2

+
(

∂�

∂ z̄

)2
} ]

(17)

Equation of wax precipitation kinetics

∂αm

∂ t̄
+ u

∂αm

∂ r̄
+ v

∂αm

∂ z̄
= [1 − αm] K̄1 (�)

−αm
Re

χ2

(
∂v

∂ r̄

)2

K̄2 (�) (18)
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Equation of oil volume fraction

∂φoil

∂ t̄
+ u

∂φoil

∂ r̄
+ v

∂φoil

∂ z̄
= 0 (19)

Equation of deposit growth

d δ̄

dt̄
= φ1

(1 − f (x))

x

(

1

Re · Sc
dC̄d

d�

∂�

∂ r̄

∣
∣
∣
∣
r̄=R̄eff

)

(20)

Equation of deposit aging

dx

dt̄
= φ1 f (x)

2
(

1 − δ̄
)

δ̄
(

2 − δ̄
)

[
1

Re · Sc
dC̄d

d�

∂�

∂ r̄

+εp (1 − αm)
(

φ − C̄d
) ∂v

∂ r̄

]

r̄=R̄eff

. (21)

The following dimensionless numbers and parameters are utilized in the model equations
(13)−(21):

χ1 = ρf

ρmix
, χ2 = μmix

μf

ρf

ρmix
, χ3 = (βT)mix

(βT)f
, (22)

χ4 = (βC)mix

(βC)f
, χ5 = αmix

αf
= kmix

kf

ρf

ρmix

(Cp)f
(Cp)mix

, (23)

χ6 = ρf

ρmix

(Cp)f
(Cp)mix

, χ7 = μmix

μf
χ6, εp = Dp

R
, (24)

φ0 =
(

C∞ − ρgel
)

(Cwall − C∞)
, φ1 = (Cwall − C∞)

ρgel
, (25)

αavg = 1.684 − 0.323 ln Q, (26)

Re = ρfU∞R

μf
, GrT = ρ2

f g (βT)f (T )R3

μ2
f

, (27)

GrC = ρ2
f g (βC)f (C)R3

μ2
f

, Ec = U 2∞
(Cp)f T

, (28)

Pr = μf

ρfαf
, Pe = U∞R

αf
, St = hr

ρfU∞ (Cp)f
, (29)

Sc = μf

ρfDd
, We = ρfU 2∞R

σ
, Da = κ

R2 , (30)

f (x) = 1 − x

α2
avgx

2 − x + 1
. (31)

The following thermodynamic model, presented in Cragoe [25] and Al-Ahmad et al. [26], is
adopted in this study:

C̄d = 1

Sf

(
0.981 + 0.0677�

1 − 0.0208�

)

, (32)

where Sf = (0.0077MWoil − 1.737) denotes the shift factor while MWoil = 6084
oAPI − 5.9

denotes the molecular weight of waxy crude oil. In this study, the heavy waxy crude oil with
API gravity of 18 oAPI is considered.
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The corresponding initial and boundary conditions for the flow are formulated as follows:
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂ r̄
= 0,

∂v

∂ r̄
= 0,

∂�

∂ r̄
= 0,

∂φ

∂ r̄
= 0,

∂αm

∂ r̄
= 0,

∂φoil

∂ r̄
= 0

at r̄ = 0

u = 0, v = 0, � = 1, φ = 1 at r̄ = 1

u = 0, v = 1, � = 0, φ = 0

αm = 0, φoil = 1 − φwater
at z̄ = 0

∂u

∂ z̄
= 0,

∂v

∂ z̄
= 0,

∂�

∂ z̄
= 0,

∂φ

∂ z̄
= 0,

∂αm

∂ z̄
= 0,

∂φoil

∂ z̄
= 0

at z̄ = L

u = 0, v = 0, � = 0, φ = 0, αm = 0

δ̄ = 0, x = 0, φoil = 1 − φwater
at t̄ = 0.

(33)

In this study, the physical parameters of engineering interest are the skin friction coeffi-
cient (C f ), the local Nusselt number (Nuz), and the local Sherwood number (Shz). These
parameters are given in the dimensionless form:

C f Re = 2

(
∂v

∂ r̄

)

r̄=1
, Nuz = −

(
∂�

∂ r̄

)

r̄=1
, (34)

Shz = −
(

∂φ

∂ r̄

)

r̄=1
. (35)

The skin friction coefficient, the local Nusselt number, and the local Sherwood number
describe the shear stress, the heat flux rate, and the mass flux rate at the wall of the crude oil
pipeline, respectively.

Numerical Solution

The governing equations given by (13)−(21) subject to the boundary and initial conditions
(33) are solved numerically using the spectral collocation method. The model equations
are discretized in two different ways: temporal discretization and spatial discretization as
illustrated below.

Temporal Discretization

Thenon-linear terms are discretized in timeusing theAdams-Bashforth second-ordermethod,
which is an explicit scheme of second-order accuracy. The linear terms involving spatial
derivatives are discretized in time using the Crank-Nicolson method (an implicit numerical
scheme of second-order accuracy) while decoupling the governing PDEs to save on computer
memory. Finally, the forward Euler method is used to discretize the time derivatives. Hence,
the time-discretized numerical schemes are as follows (for k = 1, 2, 3, · · · ):
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uk+1 − uk

t̄
+ 1

2

(

3uk
∂uk

∂ r̄
− uk−1 ∂uk−1

∂ r̄

)

+ 1

2

(

3vk
∂uk

∂ z̄
− vk−1 ∂uk−1

∂ z̄

)

+ ∂Pk

∂ r̄

= χ2

Re

[
1

2

(

2
∂2uk+1

∂ r̄2
+ 2

∂2uk

∂ r̄2

)

+ 1

2

(
∂2uk+1

∂ z̄2
+ ∂2uk

∂ z̄2

)

+ ∂2vk

∂ r̄∂ z̄

+1

2

(
2

r̄

∂uk+1

∂ r̄
+ 2

r̄

∂uk

∂ r̄

)

− 1

2

(
2

r̄2
uk+1 + 2

r̄2
uk

) ]

− χ2

(Re · Da)
1

2

(

uk+1 + uk
)

+ χ3
GrT
Re2

cos(α)�k + χ4
GrC
Re2

cos(α)φk

+ χ1

We

1

2

[

3
(

RK̄
)k ∂(φoil)

k

∂ r̄
− (

RK̄
)k−1 ∂(φoil)

k−1

∂ r̄

]

(36)

vk+1 − vk

t̄
+ 1

2

(

3uk
∂vk

∂ r̄
− uk−1 ∂vk−1

∂ r̄

)

+ 1

2

(

3vk
∂vk

∂ z̄
− vk−1 ∂vk−1

∂ z̄

)

+ ∂Pk

∂ z̄

= χ2

Re

[
1

2

(
∂2vk+1

∂ r̄2
+ ∂2vk

∂ r̄2

)

+ 1

2

(

2
∂2vk+1

∂ z̄2
+ 2

∂2vk

∂ z̄2

)

+ ∂2uk

∂ r̄∂ z̄
+ 1

r̄

∂uk

∂ z̄

+1

2

(
1

r̄

∂vk+1

∂ r̄
+ 1

r̄

∂vk

∂ r̄

)]

− χ2

(Re · Da)
1

2

(

vk+1 + vk
)

+ χ3
GrT
Re2

sin(α)�k

+χ4
GrC
Re2

sin(α)φk + χ1

We

1

2

[

3(RK̄ )k
∂(φoil)

k

∂ z̄
− (RK̄ )k−1 ∂(φoil)

k−1

∂ z̄

]

(37)

�k+1 − �k

t̄
+ 1

2

(

3uk
∂�k

∂ r̄
− uk−1 ∂�k−1

∂ r̄

)

+ 1

2

(

3vk
∂�k

∂ z̄
− vk−1 ∂�k−1

∂ z̄

)

= χ5

Pe

[
1

2

(
∂2�k+1

∂ r̄2
+ ∂2�k

∂ r̄2

)

+ 1

r̄

1

2

(
∂�k+1

∂ r̄
+ ∂�k

∂ r̄

)

+1

2

(
∂2�k+1

∂ z̄2
+ ∂2�k

∂ z̄2

)]

+ χ7
Ec

Re

1

2

{

3

[

2

(
∂uk

∂ r̄

)2

+ 2

(
uk

r̄

)2

+ 2

(
∂vk

∂ z̄

)2

+
(

∂vk

∂ r̄
+ ∂uk

∂ z̄

)2
]

−
[

2

(
∂uk−1

∂ r̄

)2

+ 2

(
uk−1

r̄

)2

+ 2

(
∂vk−1

∂ z̄

)2

+
(

∂vk−1

∂ r̄
+ ∂uk−1

∂ z̄

)2
]}

− St
χ6

d̄

1

2

(

�k+1 + �k
)

(38)

φk+1 − φk

t̄
+ 1

2

(

3uk
∂φk

∂ r̄
− uk−1 ∂φk−1

∂ r̄

)

+ 1

2

(

3vk
∂φk

∂ z̄
− vk−1 ∂φk−1

∂ z̄

)

= εp

{
3

2

[ [

1 − (αm)k
] (

φk − (

C̄d
)k

)(
∂2vk

∂ r̄2
+1

r̄

∂vk

∂ r̄

)

+
{ [

1 − (αm)k
](

∂φk

∂ r̄

−
(
dC̄d

d�

)k
∂�k

∂ r̄

)

−
(

φk − (

C̄d
)k

) ∂ (αm)k

∂ r̄

}
∂vk

∂ r̄

]

−1

2

[ (

1 − (αm)k−1
) (

φk−1 − (

C̄d
)k−1

)

(
∂2vk−1

∂ r̄2
+ 1

r̄

∂vk−1

∂ r̄

)

+
{(

1 − (αm)k−1
) (

∂φk−1

∂ r̄
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−
(
dC̄d

d�

)k−1
∂�k−1

∂ r̄

)

−
(

φk−1 − (

C̄d
)k−1

) ∂ (αm)k−1

∂ r̄

}
∂vk−1

∂ r̄

]}

+ 1

Re · Sc
{
3

2

[(
dC̄d

d�

)k (
∂2�k

∂ r̄2
+1

r̄

∂�k

∂ r̄
+ ∂2�k

∂ z̄2

)

+
(
d2C̄d

d�2

)k
{(

∂�k

∂ r̄

)2

+
(

∂�k

∂ z̄

)2
}]

−1

2

[(
dC̄d

d�

)k−1 (
∂2�k−1

∂ r̄2
+ 1

r̄

∂�k−1

∂ r̄
+ ∂2�k−1

∂ z̄2

)

+
(
d2C̄d

d�2

)k−1 {(
∂�k−1

∂ r̄

)2

+
(

∂�k−1

∂ z̄

)2
} ]}

(39)

(αm)k+1 − (αm)k

t̄
+ 1

2

(

3uk
∂ (αm)k

∂ r̄

−uk−1 ∂ (αm)k−1

∂ r̄

)

+ 1

2

(

3vk
∂ (αm)k

∂ z̄
− vk−1 ∂ (αm)k−1

∂ z̄

)

= −Re

χ2

1

2

[

3 (αm)k
(

∂vk

∂ r̄

)2
(

K̄2
)k − (αm)k−1

(
∂vk−1

∂ r̄

)2
(

K̄2
)k−1

]

+1

2

[

3
[

1 − (αm)k
] (

K̄1
)k −

(

1 − (αm)k−1
) (

K̄1
)k−1

]

(40)

(φoil)
k+1 − (φoil)

k

t̄
+ 1

2

(

3uk
∂(φoil)

k

∂ r̄
− uk−1 ∂(φoil)

k−1

∂ r̄

)

+1

2

(

3vk
∂(φoil)

k

∂ z̄
− vk−1 ∂(φoil)

k−1

∂ z̄

)

= 0 (41)

δ̄k+1 − δ̄k

t̄
= 3

2
φ1

(

1 − f (xk)
)

xk

(

1

Re · Sc
(
dC̄d

d�

)k
∂�k

∂ r̄

∣
∣
∣
∣
r̄=R̄eff

)

−1

2
φ1

(

1 − f (xk−1)
)

xk−1

(

1

Re · Sc
(
dC̄d

d�

)k−1
∂�k−1

∂ r̄

∣
∣
∣
∣
r̄=R̄eff

)

(42)

xk+1 − xk

t̄
= 3

2
φ1 f (x

k)
2

(

1 − δ̄k
)

δ̄k
(

2 − δ̄k
)

[
1

Re · Sc
(
dC̄d

d�

)k

∂�k

∂ r̄
+ εp

[

1 − (αm)k
] (

φk − (

C̄d
)k

) ∂vk

∂ r̄

]

r̄=R̄eff

−1

2
φ1 f (x

k−1)
2

(

1 − δ̄k−1
)

δ̄k−1
(

2 − δ̄k−1
)

[
1

Re · Sc
(
dC̄d

d�

)k−1
∂�k−1

∂ r̄
+ εp

(

1 − (αm)k−1
)

(

φk−1 − (

C̄d
)k−1

) ∂vk−1

∂ r̄

]

r̄=R̄eff

. (43)
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The arbitrary functions f (xk−1) and f (xk) are given by

f (xk−1) = 1 − xk−1

α2
avg(x

k−1)2 − xk−1 + 1
(44)

f (xk) = 1 − xk

α2
avg(x

k)2 − xk + 1
(45)

The intermediate functions uk , vk , Pk , �k , φk , (αm)k , (φoil)
k , δ̄k and xk are expanded using

first-order Taylor series about the point (r̄ , z̄, t̄k−1) to get:

uk = uk−1 + t̄

{

− uk−1 ∂uk−1

∂ r̄
− vk−1 ∂uk−1

∂ z̄

−∂Pk−1

∂ r̄
− χ2

(Re · Da)u
k−1 + χ2

Re

(

2
∂2uk−1

∂ r̄2

+∂2uk−1

∂ z̄2
+ ∂2vk−1

∂ r̄∂ z̄
+ 2

r̄

∂uk−1

∂ r̄
− 2

r̄2
uk−1

)

+χ3
GrT
Re2

cos(α)�k−1 + χ4
GrC
Re2

cos(α)φk−1

+ χ1

We
(RK̄ )k−1 ∂(φoil)

k−1

∂ r̄

}

(46)

vk = vk−1 + t̄

{

− uk−1 ∂vk−1

∂ r̄
− vk−1 ∂vk−1

∂ z̄

−∂Pk−1

∂ z̄
− χ2

(Re · Da)v
k−1 + χ2

Re

(
∂2vk−1

∂ r̄2

+2
∂2vk−1

∂ z̄2
+ ∂2uk−1

∂ r̄∂ z̄
+ 1

r̄

∂uk−1

∂ z̄
+ 1

r̄

∂vk−1

∂ r̄

)

+χ3
GrT
Re2

sin(α)�k−1 + χ4
GrC
Re2

sin(α)φk−1

+ χ1

We
(RK̄ )k−1 ∂(φoil)

k−1

∂ z̄

}

(47)

�k = �k−1 + t̄

{

− uk−1 ∂�k−1

∂ r̄
− vk−1 ∂�k−1

∂ z̄

+χ5

Pe

(
∂2�k−1

∂ r̄2
+ 1

r̄

∂�k−1

∂ r̄
+ ∂2�k−1

∂ z̄2

)

−St
χ6

d̄
�k−1 + χ7

Ec

Re

[

2

(
∂uk−1

∂ r̄

)2

+ 2

(
uk−1

r̄

)2

+2

(
∂vk−1

∂ z̄

)2

+
(

∂vk−1

∂ r̄
+ ∂uk−1

∂ z̄

)2 ]}

(48)

φk = φk−1 + t̄

{

− uk−1 ∂φk−1

∂ r̄
− vk−1 ∂φk−1

∂ z̄

+εp

[ [

1 − (αm)k−1
] [

φk−1 − (C̄d)
k−1

]
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∗
(

∂2vk−1

∂ r̄2
+ 1

r̄

∂vk−1

∂ r̄

)

+
{ [

1 − (αm)k−1
]

∗
(

∂φk−1

∂ r̄
−

(
dC̄d

d�

)k−1
∂�k−1

∂ r̄

)

−
(

φk−1 − (C̄d)
k−1

) ∂ (αm)k−1

∂ r̄

}
∂vk−1

∂ r̄

]

+ 1

Re · Sc
[ (

dC̄d

d�

)k−1 (
∂2�k−1

∂ r̄2
+ 1

r̄

∂�k−1

∂ r̄

+∂2�k−1

∂ z̄2

)

+
(
d2C̄d

d�2

)k−1

∗
{(

∂�k−1

∂ r̄

)2

+
(

∂�k−1

∂ z̄

)2
} ]}

(49)

(αm)k = (αm)k−1 + t̄

{

− uk−1 ∂ (αm)k−1

∂ r̄

−vk−1 ∂ (αm)k−1

∂ z̄
+

[

1 − (αm)k−1
]

(K̄1)
k−1

−Re

χ2
(αm)k−1

(
∂vk−1

∂ r̄

)2

(K̄2)
k−1

}

(50)

(φoil)
k = (φoil)

k−1 + t̄

{

− uk−1 ∂ (φoil)
k−1

∂ r̄

−vk−1 ∂ (φoil)
k−1

∂ z̄

}

(51)

δ̄k = δ̄k−1 + t̄

{

φ1

(

1 − f (xk−1)
)

xk−1

∗
(

1

Re · Sc
(
dC̄d

d�

)k−1
∂�k−1

∂ r̄

∣
∣
∣
∣
r̄=R̄eff

) }

(52)

xk = xk−1 + t̄

{

φ1 f (x
k−1)

2
(

1 − δ̄k−1
)

δ̄k−1
(

2 − δ̄k−1
)

∗
[

1

Re · Sc
(
dC̄d

d�

)k−1
∂�k−1

∂ r̄
+ εp

(

1 − (αm)k−1
)

∗
(

φk−1 − (C̄d)
k−1

) ∂vk−1

∂ r̄

]

r̄=R̄eff

}

(53)

The time-discretized initial and boundary conditions are given as follows:

uk+1
r̄ (0, z̄) = 0, vk+1

r̄ (0, z̄) = 0, �k+1
r̄ (0, z̄) = 0,

φk+1
r̄ (0, z̄) = 0, αm

k+1
r̄ (0, z̄) = 0, φoil

k+1
r̄ (0, z̄) = 0

(54)

uk+1(1, z̄) = 0, vk+1(1, z̄) = 0, �k+1(1, z̄) = 1,
φk+1(1, z̄) = 1.

(55)
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uk+1(r̄ , 0) = 0, vk+1(r̄ , 0) = 1, �k+1(r̄ , 0) = 0,
φk+1(r̄ , 0) = 0, (αm)k+1 (r̄ , 0) = 0,
(φoil)

k+1(r̄ , 0) = 1 − φwater

(56)

uk+1
z̄ (r̄ , L) = 0, vk+1

z̄ (r̄ , L) = 0, �k+1
z̄ (r̄ , L) = 0,

φk+1
z̄ (r̄ , L) = 0, αm

k+1
z̄ (r̄ , L) = 0, φoil

k+1
z̄ (r̄ , L) = 0

(57)

u0(r̄ , z̄) = 0, v0(r̄ , z̄) = 0, P0(r̄ , z̄) = 0,
�0(r̄ , z̄) = 0, φ0(r̄ , z̄) = 0, α0

m(r̄ , z̄) = 0,
φ0
oil(r̄ , z̄) = 1 − φwater, δ̄0 = 0, x0 = 0

(58)

The linear iterative schemes (36)−(53) and the corresponding initial boundary conditions
(54)−(58) are discrete-in-time and continuous-in-space.

Spatial Discretization

The linear iterative schemes (36)−(53) are discretized in space using the bivariate Chebyshev
spectral collocation method [27]. The domain r̄ ∈ [r̄0, r̄∞] is transformed to the new domain
r̂ ∈ [−1, 1] using the linear transformation

r̄ = 1

2
(r̄∞ − r̄0) r̂ + 1

2
(r̄∞ + r̄0) (59)

The domain z̄ ∈ [z̄0, z̄∞] is transformed to the new domain ẑ ∈ [−1, 1] using the linear
transformation

z̄ = 1

2
(z̄∞ − z̄0) ẑ + 1

2
(z̄∞ + z̄0) . (60)

Lagrange fundamentals (or Lagrange coefficients) are chosen as the basis functions. We
use the bivariate Lagrange interpolating polynomials to approximate the unknown functions
u(r̄ , z̄, t̄k+1), v(r̄ , z̄, t̄k+1), �(r̄ , z̄, t̄k+1), φ(r̄ , z̄, t̄k+1), αm(r̄ , z̄, t̄k+1), and φoil(r̄ , z̄, t̄k+1):

u(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (61)

v(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

v(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (62)

�(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

�(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (63)

φ(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

φ(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (64)

αm(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

αm(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (65)

φoil(r̄ , z̄, t̄k+1) ≈
M

∑

m=0

N
∑

n=0

φoil(r̂m, ẑn, t̄k+1)Lm(r̂)Ln(ẑ) (66)
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The Lagrange cardinal polynomials are defined by

Lm (r̂) =
M
∏

i=0
i 	=m

(r̂ − r̂i )

(r̂m − r̂i )
; Lm (r̂i ) = δmi =

{

1, if i = m

0, if i 	= m
(67)

Ln(ẑ) =
N
∏

j=0
j 	=n

(ẑ − ẑ j )

(ẑn − ẑ j )
; Ln(ẑ j ) = δnj =

{

1, if j = n

0, if j 	= n.
(68)

The above interpolations utilize symmetrically distributed Chebyshev-Gauss-Lobatto grid
points (r̂i , ẑ j ) defined on the domain [−1, 1] × [−1, 1] by:

r̂i = cos

(
π i

M

)

and ẑ j = cos

(
π j

N

)

(69)

for i = 0, 1, · · · , M; j = 0, 1, · · · , N where M and N denote the number of collocation
(or grid) points in r̄ and z̄ direction, respectively.

The Chebyshev-Gauss-Lobatto grid points are chosen to transform the continuous spatial
derivatives (in both r̄ and z̄) to discrete matrix form at the collocation points using standard
Chebyshev derivative matrices [Di,m] and [d j,n] [28], as illustrated below:

∂u

∂ r̄

∣
∣
∣
∣
(r̄i ,z̄ j )

≈
M

∑

m=0

N
∑

n=0

u(r̂m, ẑn, t̄k+1)Ln(ẑ j )

(
dLm(r̂)

dr̂

dr̂

dr̄

) ∣
∣
∣
∣
r̂=r̂i

= DU(k+1)
j , at z̄ = z̄ j and t̄ = t̄k+1 (70)

∂u

∂ ẑ

∣
∣
∣
(r̄i ,z̄ j )

≈
M

∑

m=0

N
∑

n=0

u(r̂m, ẑn, t̄k+1)Lm(r̂i )

(
dLn(ẑ)

dẑ

dẑ

dz̄

) ∣
∣
∣
∣
ẑ=ẑ j

=
N

∑

n=0

d j,nU(k+1)
n (71)

∂2u

∂ r̄2

∣
∣
∣
∣
(r̄i ,z̄ j )

≈ D2U(k+1)
j , (72)

∂2u

∂ z̄2

∣
∣
∣
(r̄i ,z̄ j )

≈
N

∑

n=0

d2j,nU
(k+1)
n (73)

∂2u

∂ r̄∂ z̄

∣
∣
∣
(r̄i ,z̄ j )

≈
N

∑

n=0

d j,nDU(k+1)
n , (74)

where

D = [2/(r̄∞ − r̄0)][Di,m], for i,m = 0, 1, 2, · · · , M

U(k+1)
j = [u(r̄0, z̄ j , t̄k+1), u(r̄1, z̄ j , t̄k+1), · · · , u(r̄ M , z̄ j , t̄k+1)]T

d = [2/(z̄∞ − z̄0)][d j,n], for j, n = 0, 1, 2, · · · , N .

The partial derivatives of the other dependent variables, i.e., v(r̄ , z̄, t̄k+1), �(r̄ , z̄, t̄k+1),
φ(r̄ , z̄, t̄k+1), αm(r̄ , z̄, t̄k+1), and φoil(r̄ , z̄, t̄k+1), with respect to r̄ and z̄ are similarly trans-
formed to discrete matrix form. We remark that the grid points are indexed from right to left
in the r̄ and z̄ domain. So z̄ = 0 corresponds to the collocation point ẑN .

123



Int. J. Appl. Comput. Math            (2024) 10:24 Page 15 of 34    24 

Fig. 3 Temporal evolution of the
axial velocity
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Substituting the respective discrete derivative matrices into the temporal schemes above
yields matrix systems of the form

AU = R, (75)

where A is the coefficient matrix, U is the unknown column vector, and R is the solution
matrix. The corresponding boundary conditions are imposed on the main diagonal of the
subblock matrices of A.

The system (75) is solved starting from suitable initial guesses. The iteration is repeated for
k = 1, 2, 3, · · · , until the prescribed absolute error tolerance is reached. MATLAB® software
is utilized for the computer simulations.

Results and Discussion

The flow variables investigated in this study are axial (streamwise) velocity, radial velocity,
fluid temperature, total wax concentration, wax aggregation degree, oil volume fraction, wax
deposit thickness, and weight fraction of wax molecules in the gel layer.

Temporal Evolution of the FlowVariables

In this section, the flow variables are plotted against time to analyze their temporal evolution.
The results are presented in the form of graphs, which are carefully examined and discussed.

It is observed in Fig. 3 that the axial velocity profile of waxy crude oil decreases with an
increase in time. This is attributed to the gradual accumulation of wax crystals on the pipe
walls, which constricts the flow path and reduces the effective cross-sectional area of the
pipeline. This constriction effectively reduces the overall flow velocity, contributing to the
decrease in axial velocity. Over time, detached wax particles may settle towards the bottom
of the pipeline, further reducing the effective flow area and hindering fluid movement. Addi-
tionally, the presence of wax deposit can create a temperature gradient along the pipeline.
As wax crystals accumulate, they absorb heat from the flowing crude oil, causing a tempera-
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Fig. 4 Temporal evolution of the
temperature
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ture decrease near the wall. This temperature gradient affects the wax precipitation kinetics,
potentially accelerating the deposition process and exacerbating the velocity reduction.

It is observed in Fig. 4 that the temperature profile of waxy crude oil increases sharply at
first and then decreases thereafter with an increase in time. This behavior is attributed to the
interplay between the heat transfer process and wax deposition. Initially, as the waxy crude
oil is transported through the pipeline, heat transfer from the flowing fluid to the pipe wall
occurs, causing the temperature of the waxy crude oil to increase. However, as wax crystals
precipitate and accumulate on the pipe walls, they act as insulators, hindering further heat
transfer from the fluid to the pipe wall. This reduced heat transfer slows down the temperature
increase, and eventually, the temperature starts to decrease due to the ongoing heat losses to
the environment. The wax deposition process also affects the temperature distribution within
the waxy crude oil. As wax crystals form, they can trap pockets of warmer fluid, creating a
temperature gradient along the pipeline. This temperature gradient can further influence the
wax precipitation kinetics, potentially accelerating the deposition process and exacerbating
the temperature decrease.

It is observed in Fig. 5 that the concentration profile of wax molecules in waxy crude
oil increases steadily with an increase in time. This increase is attributed to the ongoing
precipitation of wax crystals as the oil temperature decreases. As the temperature falls below
thewax appearance temperature (WAT), the solubility of waxmolecules in the oil diminishes,
causing them to precipitate out of solution and form wax crystals. These newly formed
wax crystals then disperse throughout the oil, leading to a gradual increase in the overall
concentration of wax molecules.

It is observed in Fig. 6 that the oil volume fraction profile for waxy crude oil decreases
steadily with an increase in time. This reduction is attributed to the progressive accumulation
of wax crystals on the pipe walls. As wax crystals precipitate and grow, they occupy a larger
volume, effectively displacing the oil and gradually reducing the overall oil volume fraction.
This displacement of oil is particularly pronounced near the pipe walls, where the wax
crystals preferentially accumulate due to the lower temperatures and enhanced shear rates.
The reduction in oil volume fraction can have several implications for the flow behavior of
waxy crude oil. For example, it can lead to the formation of unstable oil-wax interfaces.
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Fig. 5 Temporal evolution of the
total concentration of wax
molecules
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Fig. 6 Temporal evolution of the oil volume fraction

These unstable interfaces can become sites for further wax precipitation and deposition,
further contributing to the potential blockage of the pipeline.

It is observed in Fig. 7 that the wax deposition thickness profile for waxy crude oil in
a pipeline increases initially and then plateaus, reaching a steady-state. This behavior is
attributed to the interplay between wax deposition and removal processes. Initially, as the
waxy crude oil flows through the pipeline and its temperature falls below the wax appear-
ance temperature (WAT), waxmolecules precipitate from the solution and formwax crystals.
These crystals accumulate on the pipe walls, leading to a gradual increase in the wax deposit
thickness. The wax deposition rate is initially high due to the substantial concentration gra-
dient between the bulk oil and the pipe wall, creating a favorable environment for crystal
nucleation and growth. However, as the wax deposit thickness increases, the wax deposit
acts as an insulator, impeding heat transfer from the bulk oil to the pipe wall. This reduced
heat transfer slows down the wax precipitation kinetics, causing the deposition rate to decline
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Fig. 7 Temporal evolution of the
wax deposit thickness
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Fig. 8 Temporal evolution of the
weight fraction of wax in the gel
layer

0 0.02 0.04 0.06 0.08 0.1 0.12
0

2

4

6

8

10

10-3

over time. Eventually, a steady-state is reached when the deposition rate is balanced by the
removal rate, resulting in a stable wax deposit thickness profile.

It is observed in Fig. 8 that the weight fraction of wax crystals in the gel layer for the
flow of waxy crude oil in a pipeline increases with an increase in time and then reaches a
steady-state. This behavior is attributed to the interplay between wax deposition and gelation
processes. Initially, as waxy crude oil flows through the pipeline, wax crystals precipitate and
accumulate on the pipe walls, forming a gel layer. This gel layer gradually increases in weight
fraction as more wax crystals deposit and integrate into the gel structure. However, as the
weight fraction of wax crystals in the gel layer increases, the growing gel layer augments the
viscosity of the oil near the pipe walls, diminishing the shear forces that can disrupt the gel
structures. This reduced shear force decelerates the gelation process and impedes the further
incorporation of wax crystals into the gel layer. Eventually, a steady-state is attained when the
rate of wax deposition and gelation is balanced by the reduced rate of crystal incorporation
and gel growth, resulting in a stable weight fraction of wax crystals in the gel layer.
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Fig. 9 Effects of varying
Reynolds number on the wax
deposit thickness

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25 Re =2
Re =3.5
Re =5
Re =6.5

Fig. 10 Effects of varying mass
Grashof number on the wax
deposit thickness
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Effects of Varying Flow Parameters on the FlowVariables

In this section, the flow variables are plotted against the axial distance from the pipe inlet. The
flow parameters are systematically varied one at a time within a computational framework to
assess their individual effects on the flow behavior. The various flow parameters investigated
include the Reynolds number (Re), mass Grashof number (GrC), Schmidt number (Sc), and
Weber number (We). The results obtained from the parametric variations are presented in the
form of graphs, and their implications are thoroughly discussed.

Wax Deposition

It is observed in Fig. 9 that an increase in the Reynolds number causes an increase in the wax
deposit thickness for flow of waxy crude oil in a pipeline within the laminar flow regime.
Increasing the Reynolds number implies that the inertial forces become more dominant than
the viscous forces. This observed trend is attributed to the increase in shear stress at the pipe
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Fig. 11 Effects of varying
Schmidt number on the wax
deposit thickness
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wall as the Reynolds number increases. This shear stress enhances the rate of diffusion of
wax molecules from the bulk of the oil to the pipe wall. This enhancement occurs because the
shear stress causes the wax molecules to move faster, which then leads to their precipitation
and deposition on the pipe, consequently increasing the deposit thickness.

It is observed in Fig. 10 that an increase in the mass Grashof number causes a decrease in
the thickness of wax deposit profiles for flow of waxy crude oil in a pipeline. An increase in
themass Grashof number signifies that buoyancy forces, which arise from density differences
due to temperature variations, become more dominant than viscous forces, which govern the
flow behavior in laminar conditions in the pipeline. The enhanced buoyancy forces lead to
a more buoyant flow pattern, disrupting the diffusion of wax molecules from the bulk oil
towards the pipe wall. This diffusion process is crucial for wax deposition to occur. The
increased turbulence caused by buoyancy forces can re-entrain wax molecules that have
already deposited on the pipe wall, preventing them from forming a thick deposit layer. The
dominant buoyancy forces promote a stratified flowpattern,where the oilwith the highestwax
concentration is located closer to the pipewall. This reduces the concentrationgradient driving
wax diffusion, further hindering deposition. The combined effects of disrupted diffusion, wax
re-entrainment, and stratified flow lead to a decrease in the rate of wax deposition, resulting
in thinner deposit profiles.

It is observed in Fig. 11 that an increase in the Schmidt number causes a decrease in the
thickness of wax deposit profiles for flow of waxy crude oil in a pipeline. Increasing the
Schmidt number implies that momentum diffusivity, which describes the rate at which wax
molecules are transported by fluid motion, becomes more dominant than mass diffusivity,
which describes the rate of transport of wax molecules by molecular diffusion. Thus, the
observed trend is attributed to the interplay between mass transfer and wax deposition pro-
cesses. As the Schmidt number increases, the mass transfer rate of wax molecules from the
bulk oil to the pipe wall decreases. This reduced mass transfer rate slows down the wax
deposition process, leading to a slower growth of the wax deposit layer.

It is observed in Fig. 12 that an increase in the Weber number causes a decrease in the
thickness ofwax deposit profiles for flowofwaxy crude oil in a pipeline. Increasing theWeber
number implies that inertial forces, which represent the flow stresses, becomemore dominant
than surface tension forces, which represent the cohesive forces between wax crystals. Thus,
the observed trend is attributed to the interplay between flow stresses and wax deposition
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Fig. 12 Effects of varying Weber
number on the wax deposit
thickness
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Fig. 13 Effects of varying
Reynolds number on the axial
velocity profiles
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processes. As the Weber number increases, the flow stresses near the pipe wall intensify,
leading to a more dispersed distribution of wax crystals throughout the flow cross-section.
This dispersion diminishes the concentration gradient between the bulk oil and the pipe wall,
making it more challenging for wax crystals to adhere to the pipe surface. Furthermore, the
elevated flow stresses can act to remove wax crystals that have already deposited on the pipe
walls. This mechanical removal process contributes to limiting the overall thickness of the
wax deposit.

Axial Velocity of Waxy Crude Oil

It is observed in Fig. 13 that an increase in the Reynolds number causes a decrease in the axial
velocity profiles for flow of waxy crude oil in a pipeline within the laminar flow regime. As
the Reynolds number increases, the inertial forces acting on the fluid particles become more
dominant than the viscous forces. This causes the fluid particles to move more randomly, and
the axial velocity profile becomes flatter, hence leading to a decrease in axial velocity.
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Fig. 14 Effects of varying mass
Grashof number on the axial
velocity profiles
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Fig. 15 Effects of varying
Schmidt number on the axial
velocity profiles
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It is observed in Fig. 14 that an increase in the mass Grashof number leads to an increase in
the axial velocity profiles for the flow of waxy crude oil in a pipeline. A higher mass Grashof
number indicates that the buoyancy force acting on the fluid element is stronger relative to the
viscous force opposing the fluid flow. This stronger buoyancy force causes the fluid element
to accelerate more rapidly in the axial direction.

It is observed in Fig. 15 that an increase in the Schmidt number leads to a decrease in
the axial velocity profiles for the flow of waxy crude oil in a pipeline. A higher Schmidt
number indicates that the wax molecules can diffuse through the fluid more quickly. This
enhanced diffusion allows the wax molecules to reach the pipe walls more easily, where they
can deposit and form a gel-like layer. This gel-like layer grows and reduces the available flow
area within the pipe, which eventually slows down the flow of the fluid in the axial direction.

It is observed in Fig. 16 that an increase in the Weber number leads to an increase in the
axial velocity profiles for the flow of waxy crude oil in a pipeline. A higher Weber number
indicates that the surface tension forces acting on the fluid element are weaker relative to
the inertial forces. This implies that surface tension forces have a reduced ability to keep the

123



Int. J. Appl. Comput. Math            (2024) 10:24 Page 23 of 34    24 

Fig. 16 Effects of varying Weber
number on the axial velocity
profiles
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Fig. 17 Effects of varying
Reynolds number on the
temperature profiles
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fluid element intact, making it more prone to breaking up into smaller droplets. This results
in a more rapid flow of the fluid in the axial direction.

Temperature of Waxy Crude Oil

In Fig. 17, it is observed that an increase in the Reynolds number results in a decrease in the
temperature profiles for theflowofwaxy crude oil in a pipelinewithin the laminar flow regime.
This phenomenon is attributed to the enhanced heat transfer due to an increase in shear stress.
As the Reynolds number increases, the shear stress acting on the fluid intensifies, leading
to more efficient mixing and heat transfer between the bulk of the flow and the colder pipe
walls. The enhanced heat transfer due to increased shear stress leads to a flatter temperature
profile, with a more uniform distribution of temperature across the pipe.

It is observed in Fig. 18 that an increase in the mass Grashof number results in an increase
in the temperature profiles for the flow of waxy crude oil in a pipeline. This phenomenon
is attributed to buoyancy-induced convection. As the mass Grashof number increases, the
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Fig. 18 Effects of varying mass
Grashof number on the
temperature profiles
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Fig. 19 Effects of varying
Schmidt number on the
temperature profiles
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buoyancy forces acting on the denser, waxy crude oil near the pipe walls become more
pronounced than the viscous forces, prompting the oil to rise towards the center of the pipe.
This upward movement of the oil disrupts the flow pattern, generating swirling motions that
enhance heat transfer between the fluid and the colder pipe walls. The enhanced heat transfer
due to buoyancy-induced convection leads to a rise in the temperature profile near the pipe
walls. This is because the swirling motions bring the colder fluid from the pipe walls into
contact with the warmer fluid in the bulk of the flow, promoting heat exchange and thereby
reducing the overall temperature gradient.

In Fig. 19, it is observed that an increase in the Schmidt number results in a decrease in the
temperature profiles for the flowofwaxy crude oil in a pipeline. This phenomenon is attributed
to the suppression of buoyancy-induced convection. As the Schmidt number increases, the
rate of mass transfer between the waxy crude oil and the surrounding fluid reduces. This
reduced mass transfer hinders the formation of density gradients that are crucial for driving
buoyancy-induced convection. Consequently, the decrease in buoyancy-induced convection
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Fig. 20 Effects of varying Weber
number on the temperature
profiles
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with increasing Schmidt number leads to a reduction in the overall heat transfer rate and a
flattening of the temperature profile.

In Fig. 20, it is observed that an increase in the Weber number results in a decrease in
the temperature profiles for the flow of waxy crude oil in a pipeline. This phenomenon is
attributed to the formation of smaller oil droplets and a more dispersed flow pattern. As
the Weber number increases, the inertial forces acting on the waxy crude oil become more
dominant relative to surface tension forces. These enhanced inertial forces lead to the creation
of smaller oil droplets and a more dispersed flow pattern. Smaller oil droplets possess a larger
surface area to volume ratio, enabling them to transfer heatmore efficiently to the surrounding
environment. This can result in a decrease in the overall temperature of the waxy crude oil
flowing in the pipeline. Additionally, a more dispersed flow pattern can reduce the amount of
heat transferred from the pipeline walls to the oil. This is because the dispersed oil droplets
have a lower probability of being in direct contact with the pipeline walls. This can further
contribute to a decrease in the overall temperature of the waxy crude oil flowing in the
pipeline.

Total Wax Concentration

It is observed in Fig. 21 that an increase in the Reynolds number results in a decrease in
the total wax concentration profiles for the flow of waxy crude oil in a pipeline within the
laminar flow regime. As the Reynolds number increases, the shear stresses acting on the waxy
crude oil intensify, causing the elongated wax crystals to break up into smaller particles.
These smaller particles have a reduced tendency to adhere to the pipe wall and are more
easily entrained by the flow. As a consequence, the total wax concentration in the pipeline
decreases. Additionally, increased shear stresses associated with higher Reynolds numbers
enhance the mixing of the oil and wax crystals. This augmented mixing can facilitate the
dissolution of more wax into the oil, further reducing the overall wax concentration. This
can have advantageous implications for pipeline operations, as it can mitigate the risk of wax
deposition and gelation.

In Fig. 22, it is observed that an increase in the mass Grashof number results in a decrease
in the total wax concentration profiles for the flow of waxy crude oil in a pipeline. This
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Fig. 21 Effects of varying
Reynolds number on the total
wax concentration profiles
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Fig. 22 Effects of varying mass
Grashof number on the total wax
concentration profiles
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Fig. 23 Effects of varying
Schmidt number on the total wax
concentration profiles
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Fig. 24 Effects of varying Weber
number on the total wax
concentration profiles
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phenomenon is attributed to the thinning of the hydrodynamic boundary layer. As the mass
Grashof number increases, the buoyancy forces acting on the waxy crude oil become more
pronounced than the viscous forces. This leads to a reduction in the thickness of the hydro-
dynamic boundary layer near the pipe wall. A thinner hydrodynamic boundary layer reduces
the likelihood of wax crystals depositing on the pipe wall. This is because the wax crystals
have a shorter time window to interact with the pipe wall before being swept away by the
flow. Consequently, the overall wax concentration in the pipeline decreases.

In Fig. 23, it is observed that an increase in the Schmidt number results in a decrease in
the total wax concentration profiles for the flow of waxy crude oil in a pipeline. An increase
in the Schmidt number indicates that the momentum diffusivity is becoming relatively more
pronounced than the mass diffusivity. This implies that the flow of the oil is becoming
more efficient at transporting wax crystals away from the pipe wall, facilitating enhanced
mixing between the oil and wax crystals. As a consequence of this increased mixing, the wax
crystals become more uniformly distributed throughout the pipeline. This results in a lower
concentration of wax crystals near the pipe wall.

In Fig. 24, it is observed that an increase in the Weber number results in an increase in the
total wax concentration profiles for the flow ofwaxy crude oil in a pipeline. This phenomenon
is attributed to the increased dominance of inertial forces over surface tension forces. As the
Weber number increases, flow velocities are enhanced, leading to the fragmentation of larger
wax droplets into smaller ones. This increased surface area of wax droplets facilitates more
efficient wax adsorption onto the pipeline walls.

Aggregation Degree of Wax

In Fig. 25, it is observed that an increase in the Reynolds number results in a decrease in the
wax aggregation degree profiles for the flow of waxy crude oil in a pipeline within the lami-
nar flow regime. This phenomenon is attributed to the increased dominance of inertial forces
over viscous forces. As the Reynolds number increases, flow velocities are enhanced, leading
to more effective mixing between the wax crystals and the surrounding oil. This improved
mixing promotes a more uniform distribution of wax crystals throughout the pipeline. Con-
sequently, the concentration gradient of wax crystals near the pipeline walls is reduced,
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Fig. 25 Effects of varying
Reynolds number on the wax
aggregation degree profiles
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Fig. 26 Effects of varying
Schmidt number on the wax
aggregation degree profiles
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Fig. 27 Effects of varying Weber
number on the wax aggregation
degree profiles
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hindering their accumulation and preventing the formation of large aggregates near the pipe
wall.

In Fig. 26, it is observed that an increase in the Schmidt number results in a decrease in the
wax aggregation degree profiles for the flowofwaxy crude oil in a pipeline. This phenomenon
is attributed to the enhanced dominance of momentum diffusivity over mass diffusivity. As
the Schmidt number increases, the oil becomes more efficient at transporting wax crystals
away from the pipe wall, hindering their accumulation and preventing the formation of large
aggregates. This can help to mitigate wax deposition and gelation in crude oil pipelines.

In Fig. 27, it is observed that an increase in the Weber number results in an increase in the
wax aggregate degree profiles for the flow of waxy crude oil in a pipeline. This phenomenon
is attributed to the enhanced dominance of inertial forces over surface tension forces. The
increased inertial forces cause thewax crystals to break up, leading to the formation of smaller
wax droplets. Smaller wax droplets possess a larger surface area to volume ratio compared to
their larger counterparts. This increased surface area facilitates the adhesion of wax crystals
to each other, promoting the formation of aggregates. Additionally, the smaller wax droplets
are more easily entrained by the flow, bringing them into closer contact and further enhancing
aggregation.

Skin Friction Coefficient and Rates of Heat andMass Transfer

The local skin friction coefficient (C f Re), the local Nusselt number (Nuz), and the local
Sherwood number (Shz) are computed. The skin friction coefficient represents the drag force
exerted by the fluid on the pipeline wall. The Nusselt number quantifies the rate of heat
transfer between the fluid and the pipeline wall. The Sherwood number measures the rate of
mass transfer between the fluid and the pipeline wall.

The flow parameters which are investigated are Reynolds number (Re), thermal Grashof
number (GrT), mass Grashof number (GrC), Eckert number (Ec), Schmidt number (Sc), and
Weber number (We). These parameters are varied on the local coefficient of skin friction,
local Nusselt number and local Sherwood number and their numerical values are presented
in Table 1.

From the table, the following observations are noted:

i) An increase in the Reynolds number causes an increase in the skin friction coefficient
but leads to a decrease in the Nusselt number and Sherwood number. The skin friction
coefficient increases due to increased turbulence, which enhances the interaction between
the fluid and thewall. However, the enhancement of turbulence also leads to the formation
of a thicker boundary layer, which acts like an insulating barrier and reduces the heat and
mass transfer rates, resulting in a decrease in the Nusselt number and Sherwood number.

ii) An increase in the thermal Grashof number increases the skin friction coefficient and
Sherwood number, but has aminimal effect on theNusselt number. The skin friction coef-
ficient and Sherwood number increase due to enhanced turbulence and mixing. However,
the formation of a wax layer on the pipe wall can degrade the increase in heat transfer
caused by turbulence.

iii) An increase in the mass Grashof number has a positive effect on the skin friction
coefficient, Nusselt number, and Sherwood number. This positive effect is attributed
to enhanced turbulence and mixing, which are caused by the stronger buoyancy force
arising from the density difference between the oil and the wax crystals. The enhanced
turbulence facilitates friction between fluid layers, promotes mixing of hot and cold fluid
layers, and facilitates mass transfer between the bulk flow and the pipe wall.
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Table 1 Skin friction coefficient
and rates of heat and mass
transfer for various values of the
parameters Re, GrT, GrC, Ec, Sc,
and We

Re GrT GrC Ec Sc We C f Re Nuz Shz

2.24 5 5 1.2 1.5 1.0 0.1230 1.9907 1.3916

3.24 5 5 1.2 1.5 1.0 0.1874 1.9912 1.3206

4.24 5 5 1.2 1.5 1.0 0.2926 1.9911 1.2494

5.24 5 5 1.2 1.5 1.0 0.4022 1.9908 1.1864

2.24 10 5 1.2 1.5 1.0 0.1246 1.9907 1.3926

2.24 15 5 1.2 1.5 1.0 0.1262 1.9907 1.3935

2.24 20 5 1.2 1.5 1.0 0.1277 1.9907 1.3944

2.24 5 10 1.2 1.5 1.0 0.2038 1.9915 1.4182

2.24 5 15 1.2 1.5 1.0 0.2793 1.9921 1.4438

2.24 5 20 1.2 1.5 1.0 0.3495 1.9925 1.4683

2.24 5 5 2.7 1.5 1.0 0.1233 1.9890 1.3922

2.24 5 5 4.2 1.5 1.0 0.1236 1.9874 1.3928

2.24 5 5 5.7 1.5 1.0 0.1238 1.9857 1.3933

2.24 5 5 1.2 3.0 1.0 0.1098 1.9906 1.4851

2.24 5 5 1.2 4.5 1.0 0.1055 1.9905 1.5162

2.24 5 5 1.2 6.0 1.0 0.1033 1.9905 1.5318

2.24 5 5 1.2 1.5 1.5 0.1113 1.9919 1.5007

2.24 5 5 1.2 1.5 2.0 0.1047 1.9925 1.5614

2.24 5 5 1.2 1.5 2.5 0.1004 1.9929 1.6002

iv) An increase in the Eckert number causes an increase in the skin friction coefficient and
Sherwood number but decreases theNusselt number. This is because the increased kinetic
energy to enthalpy ratio leads to a higher fluid velocity, which enhances turbulence and
mass transfer.However, the formation of awax layer on the pipewall acts like an insulator,
reducing heat transfer between the oil and the pipe wall, therefore decreasing the Nusselt
number.

v) An increase in the Schmidt number causes a decrease in the skin friction coefficient
and Nusselt number but increases the Sherwood number. This is because the increased
momentum transfer rate relative to mass diffusivity reduces the shear stress between the
fluid and the pipe wall, reduces the thickness of the thermal boundary layer (which in
turn reduces the rate of heat transfer and decreases the Nusselt number), and increases the
rate of mass transfer between the bulk flow and the pipe wall, so increasing the Sherwood
number.

vi) An increase in the Weber number decreases the skin friction coefficient but it increases
the Nusselt number and Sherwood number. This is because an increase in the Weber
number decreases the contact area between the fluid and the pipe wall (which leads to a
decrease in the shear stress between the fluid and the pipe wall, hence reducing the skin
friction coefficient), enhances turbulence (which promotes the heat transfer between the
oil and the pipe wall, hence leading to an increase in the Nusselt number), and enhances
the mass transfer rate between the bulk flow and the pipe wall, hence increasing the
Sherwood number.
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Fig. 28 Deposit thickness profile
(Present study)
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Fig. 29 Average wax deposit
thickness profile (Magnini and
Matar [19])

Validation

The model’s predictive capabilities in this research are validated against experimental data
from Magnini and Matar [19]. In particular, the wax deposit thickness is compared in both
studies, as shown in Figs. 28 and 29. It is observed that the deposit thickness profiles follow a
similar trend as time increases. This validation demonstrates the model’s ability to accurately
predict wax deposition under various flow conditions.

Summary and Conclusions

This study presents a novel computational model for predicting wax deposition in crude oil
pipelines, accounting for the complex interplay ofmultiphase flow scenarios involvingwater-
in-oil emulsions, wax precipitation kinetics, molecular diffusion, and shear dispersion. The
model equations, in the form of coupled nonlinear partial differential equations governing
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the flow, are discretized in time using a second-order semi-implicit scheme and in space
using the bivariate spectral collocation method. The model’s predictive capabilities have
been thoroughly evaluated by investigating the impact of various flow parameters, including
the Reynolds number (Re), Grashof number (Gr), Schmidt number (Sc), and Weber number
(We), on the flow variables, wall shear stress, and heat and mass fluxes. The following
conclusions can be drawn from the results of this research:

• Wax deposit thickness and weight fraction of wax crystals in the gel layer reach steady-
state values of 0.4 and 0.012, respectively. These steady-state values indicate that a
balance has been reached between the deposition and removal processes of wax crystals.

• Wax deposit thickness increases by at most 5.0% with increasing Reynolds number from
2.0 to 6.5, but decreases by at most 10.0% with increasing mass Grashof number from 4
to 16. Similarly, higher Schmidt numbers (Sc > 1) and Weber numbers (We > 1) tend
to mitigate wax deposition by at most 15.0% and 6.0%, respectively.

• The axial velocity of waxy crude oil decreases by at most 25% with increasing Reynolds
number from 2.2361 to 3.7361, increases by at most 10% with increasing mass Grashof
number from 5 to 6.5, decreases by at most 10% with increasing Schmidt number from
1.5 to 1.8, and increases by at most 8% with increasing Weber number from 1.0 to 2.5.

• Skin friction coefficient increases from 0.1230 to 0.4022 with increasing Reynolds num-
ber from 2.24 to 5.24, but increases from 0.1230 to 0.1277 with increasing mass Grashof
number from 5 to 20, and decreases from 0.1230 to 0.1004with increasingWeber number
from 1.0 to 2.5.

• The Nusselt number decreases from 1.9907 to 1.1864 with increasing Reynolds number
from 2.24 to 5.24, but increases from 1.9907 to 1.9925 with increasing mass Grashof
number from 5 to 20, and decreases from 1.9907 to 1.9929with increasingWeber number
from 1.0 to 2.5.

• The Sherwood number increases from 1.3916 to 1.3944 with increasing mass Grashof
number from 5 to 20, but increases from 1.3916 to 1.6002 with increasingWeber number
from 1.0 to 2.5.

These insights offer valuable guidance for optimizing pipeline operations, designing effective
wax control strategies, and enhancing pipeline integrity management in field-scale crude oil
transportation systems. Specifically, pipeline operators can use the model to identify critical
flowparameters that influencewax deposition and optimize these parameters tominimizewax
accumulation. Additionally, the model can be used to evaluate the effectiveness of various
wax control strategies, such as the use of chemical additives and pipeline pigging, and select
the most appropriate strategy for a given pipeline configuration and crude oil composition.

The inclusion of wax deposition modeling in pipeline design and operation will help to
ensure the reliable and efficient transportation of crude oil.
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