
2024  

PREDICTIVE TOOL CONDITION MONITORING 

IN COMPUTER NUMERICALLY CONTROLLED 

MILLING 

 

 

 

 

 

 

JOANES AGUNG’ OROKO 

 

 

 

 

 

 

 

DOCTOR OF PHILOSOPHY 

(Mechanical Engineering) 

 

 

 

JOMO KENYATTA UNIVERSITY OF 

AGRICULTURE AND TECHNOLOGY 



2024  

Predictive Tool Condition Monitoring in Computer Numerically 

Controlled Milling 

 

 

 

 

 

 

 

 

 

 

Joanes Agung’ Oroko 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfilment of the Requirements for the 

Degree of Doctor of Philosophy in Mechanical Engineering of the Jomo 

Kenyatta University of Agriculture and Technology 



ii  

DECLARATION 

 

This thesis is my original work and has not been presented for a degree in any other 

university 

 

 

Signature:.................................................. Date...................................... 

 

Joanes Agung’ Oroko 

 

 

This thesis has been submitted for examination with our approval as the university 

supervisors 

 

 

Signature:.................................................. Date...................................... 

 

Dr. -Ing. James K. Kimotho, PhD  

JKUAT, Kenya 

 

Signature:.................................................. Date...................................... 

 

Dr. Eng. Samuel K. Kabini, PhD  

JKUAT, Kenya 

 

Signature:.................................................. Date...................................... 

 

Dr. Eng. Evan M. Wanjiru, PhD  

JKUAT, Kenya 



iii  

DEDICATION 

 

To my family, much love. 



iv  

ACKNOWLEDGEMENT 

 

First, I would like to thank the Almighty God for giving me the chance to pursue this course 

successfully. I would then wish to sincerely thank my supervisors, Dr. -Ing. James K. 

Kimotho, Dr. Eng. Samuel K. Kabini and Dr. Eng. Evan M. Wanjiru for their patience, 

valuable insights and support throughout this study. Appreciation for the financial and 

resource support offered by Jomo Kenyatta University of Agri- culture and Technology 

(JKUAT), African Development Bank (AfDB) and Google corporation, cannot be 

quantified. Finally, I would like to thank my family and all those who helped me out in 

providing valuable insight and a different point of view in my work. Much appreciated. 



v  

TABLE OF CONTENTS 

DECLARATION .............................................................................................................. ii 

DEDICATION ................................................................................................................. iii 

ACKNOWLEDGEMENTS ............................................................................................ iv 

TABLE OF CONTENTS ............................................................................................... v 

LIST OF TABLES ......................................................................................................... ix 

LIST OF FIGURES ........................................................................................................ x 

LIST OF APPENDICES ............................................................................................. xiii 

ABBREVIATIONS AND ACRONYMS .................................................................. xiii 

ABSTRACT .................................................................................................................... xv 

CHAPTER ONE 

INTRODUCTION 1 

1.1 Background ............................................................................................................... 1 

1.2 Problem Statement ..................................................................................................... 3 



vi  

1.3 Objectives .................................................................................................................. 5 

1.4 Justification of Study .................................................................................................. 6 

1.5 Outline of Thesis ....................................................................................................... 6 

CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 7 

2.1 Temporal and Spatial Analysis .................................................................................. 7 

2.2 Generative Modeling ............................................................................................... 11 

2.3 Self-Supervised Learning ........................................................................................... 14 

2.4 Ensemble Modeling .................................................................................................. 15 

2.5 Tool Condition Monitoring Review .......................................................................... 15 

2.6 Review of Data Pre-processing in Conventional Machine Learning .......................... 18 

2.7 Review of Data Pre-processing in Deep Learning .................................................... 20 

2.8 Review of Deep Model Architectures in TCM ......................................................... 21 

2.9 Review of Deep Models Development in Low Data Regime ................................... 26 



vii  

2.10 Summary of Gaps Identified from Literature Review ............................................... 30 

CHAPTER THREE 

METHODOLOGY 32 

3.1 Overview ................................................................................................................. 32 

3.2 Models Development in High Data Regime ............................................................. 33 

3.3 Models Development in Low Data Regime .............................................................. 38 

3.4 Models Performance Analysis Methodology ............................................................. 49 

3.5 Data Description...................................................................................................... 50 

3.5.1 PHM Milling Data Set ......................................................................................... 50 

3.5.2 UC Berkeley-NASA Ames Milling Data Set....................................................... 51 

3.6 Data Preparation and Models Training .................................................................... 55 

3.6.1 Data Preparation and Models Training Using PHM Milling Data ........................ 55 

3.6.2 Data Preparation and Models Training Using NASA Ames Data ........................ 57 

CHAPTER FOUR 

RESULTS AND DISCUSSION 63 



viii  

4.1 Performance Analysis of Developed Models ............................................................ 63 

4.1.1 Performance Analysis in High Data Regime......................................................... 63 

4.1.2 Performance Analysis of Data Generative Model ................................................. 67 

4.1.3 Performance Analysis in Low Data Regime ......................................................... 70 

CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 81 

5.1 Conclusions ............................................................................................................. 81 

5.2 Recommendations ................................................................................................... 83 

REFERENCES ............................................................................................................... 84 

APPENDICES ................................................................................................................ 94 



ix  

LIST OF TABLES 
 

 

Table 3.1: Proposed Model Hyper-parameters . . . . . . . . . . . . . . 37 

Table 3.2: VAE Model Hyper-parameters . . . . . . . . . . . . . . . . 42 

Table 3.3: Ensemble Cases Summary . . . . . . . . . . . . . . . . . . 46 

Table 3.4: Base Learner Models Hyper-parameters . . . . . . . . . . . 48 

Table 3.5: Machining Parameters . . . . . . . . . . . . . . . . . . . . . 52 

Table 3.6: Experimental Conditions . . . . . . . . . . . . . . . . . . . 53 

Table 3.7: Training/Testing Domain . . . . . . . . . . . . . . . . . . . 57 

Table 4.1: Model Performance Evaluation on Different Indices . . . . 63 

Table 4.2: Performance Metrics on Tool State Classification Based on 

Estimated Wear . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

66 

Table 4.3: Classification Report on Clustering Task . . . . . . . . . . 71 

Table 4.4: Models Performance Evaluation Using Single Hold-out Test Set  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

72 

Table 4.5: Base Learners Averaged Performance Evaluation on Differ- ent 

Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

76 

Table 4.6: 15-fold Cross-Validation Models Performance Evaluation on 

Different Indices . . . . . . . . . . . . . . . . . . . . . . . . 

 

 
79 



x  

LIST OF FIGURES 
 

 

Figure 1.1: Schematic Illustration of Tool Flank Wear Measurement . . 1 

Figure 1.2: Schematic Plot of Tool Flank Wear as a Function of Cutting Time 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

2 

Figure 2.1: Schematic Illustration of a TCN with its Strided Receptive Field 

Previewed . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

8 

Figure 2.2: Schematic Representation of an LSTM Cell . . . . . . . . . 9 

Figure 2.3: Scaled Dot Product Attention Representation . . . . . . . . 11 

Figure 2.4: Schematic Representation of the Transformer Architecture 12 

Figure 3.1: Schematic Block Illustration of Overview of Study Method- ology 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

32 

Figure 3.2: Schematic Illustration of Developed Model’s Architecture . 34 

Figure 3.3: Schematic Representation of Transformer Encoder Archi- tecture 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

 

36 

Figure 3.4: Schematic Block Illustration of Methodology Approach for 

Model Development in a Low Data Regime Under Varying 

Cutting Conditions  . . . . . . . . . . . . . . . . . . . . . . 

 

 

 

 

39 

Figure 3.5: Schematic Illustration of Developed VAE Architecture . . . 40 

Figure 3.6: Schematic Illustration of Utilized LSTM Network . . . . . 45 



xi  

Figure 3.7: Schematic Illustration of Utilized TCN Network ............................. 45 

Figure 3.8: Schematic Illustration of Tool Wear Model Structure for 

Processing Varying Cutting Conditions and Monitoring Sen- 

sor Data ............................................................................................ 47 

Figure 3.9: Schematic Representation of Experimental Setup Used in 

Data Collection ................................................................................ 52 

Figure 3.10: Block Representation of Experimental Setup Used in Data Collection

 ......................................................................................................... 54 

Figure 3.11: Sampled Force Signals at Start of Cutter Life ..................................... 55 

Figure 3.12: Sampled Force Signals at Mid of Cutter Life ....................................... 56 

Figure 3.13: Sampled Force Signals at End of Cutter Life ....................................... 56 

Figure 3.14: Graphical Representation of an Experimental Sensory Signal 58 

Figure 3.15: Signal Captured for Cut 17 .................................................................. 58 

Figure 3.16: Signal Captured for Cut 94 .................................................................. 59 

Figure 3.17: Signal Captured for Cut 105 ................................................................ 59 

Figure 4.1: Regressive Wear Plots; Predicted vs Truth Data .............................. 63 

Figure 4.2: Classification Performance on Cutter 1 Based on Predicted 

Wear Values ..................................................................................... 65 



xii  

Figure 4.3: Classification Performance on Cutter 4 Based on Predicted 

Wear Values ..................................................................................... 65 

Figure 4.4: Classification Performance on Cutter 6 Based on Predicted 

Wear Values ..................................................................................... 66 

Figure 4.5: Generated Normalized Sample .......................................................... 67 

Figure 4.6: Re-scaled Generated Sample ............................................................. 68 

Figure 4.7: Experimental Sample ........................................................................ 68 

Figure 4.8: Generated Samples Cluster Distribution ........................................... 70 

Figure 4.9: Regressive Wear Plots; Truth Versus Predicted, Simplified . 73 Figure 

4.10: Regressive Wear Plots; Truth Versus Predicted, All Cases . 74 Figure 4.11: 

Models Performance Comparison on MAE Metric ..................................................... 75 

Figure 4.12: Evaluated MAE Comparison on Different Models ............................... 77 



xiii  

LIST OF APPENDICES 

Appendix I: A Transformer-Based End-to-End Data-Driven Model . . . 95 

Appendix II: A Generative and Self-Supervised Ensemble Model ...................... 109 

Appendix III: A Multi-Domain Tool State Classifier Model ................................ 130 



xiv  

ABBREVIATIONS AND ACRONYMS 
 

 

AI Artificial Intelligence 

CNC Computer Numerical Control 

CNN Convolutional Neural Network 

DAE Deep Auto Encoder 

DBN Deep Belief Network 

DL Deep Learning 

GAN Generative Adversarial Network 

GPT Generative Pre-Trained 

LSTM Long Short Term Memory 

MAE Mean Absolute Error 

MAPE Mean Absolute Percentage Error 

MHM Machine Health Monitoring 

ML Machine Learning 

MLP Multi Layer Perceptron 

MMD Maximum Mean Discrepancy 

MSE Mean Square Error 

NLP Natural Language Processing 

RMSE Root Mean Square Error 

RNN Recurrent Neural Network 

SL Supervised Learning 

SSL Self Supervised Learning 

TCM Tool Condition Monitoring 

TCN Temporal Convolution Network 

VAE Variational Auto Encoder 



xv  

ABSTRACT 

 

The surface integrity and dimensional accuracy of a computer numerically controlled (CNC) 

milled part is greatly affected by the wear condition of the cutting tool. An effective tool 

condition monitoring scheme is thus necessary to allow for a timely tool change to safeguard 

the aforementioned. Even though visual-based techniques, such as optical imaging, capable 

of providing an outright measure of a tool’s in-process wear condition are available, the 

impracticalities associated with the measurements in an uncontrolled practical environment 

inhibits their usage. As such, data-based modeling of monitoring sensory data offers the more 

viable option, with artificial in- telligence (AI) based techniques of processing this data 

showing significant promise. However, several challenges associated with the modeling 

approach inhibit their suc- cessful development and deployment. These are; redundancy and 

noise in captured data, varying wear distributions of different cutters even on same cutting 

conditions, data scarcity, complex associations caused by presence of several contributing 

fac- tors, and uncertainty in predictions from slight variations in model weights. This study 

thus sought alternative approaches to address these challenges while devel- oping data-

based models under both constant and varying machining conditions in case scenarios of 

ample and insufficient model training data availability. In a high data regime of sufficient 

model training data, machine learning based deep model- ing was utilized to develop a 

transformer based wear model architecture capable of processing complex associations from 

combined sensory data and cutting parameters while automatically eliminating the negative 

influences of redundancy and noise in captured data. A gated residual network in a parallel 

processing structure was devel- oped for this task with the consequent results showing its 

ability in processing raw data automatically irrespective of scale. This resulted in a data 

model that does not require initial data pre-processing unlike those reported in literature. 

This model structure was re-used for a case point of insufficient training data availability. In 

or- der to facilitate model development for this case point, a helper model was developed for 

generating synthetic data that is statistically similar to collected experimental data. The 

synthetic data was then utilized in model pre-training, with the generative model used as an 

alternate inexpensive tool to tackle the data scarcity problem in data based modeling. The 

end result has been the development of end-to-end re- gressive and classifier wear models 

capable of processing raw data directly to provide an accurate prediction of a tool’s flank wear 

and state. Analysis of the performance of the developed models on experimental CNC 

milling data sourced from public do- main, coupled with comparison of results with other 

models reported in literature on the same data sets was also carried out. For an experiment 

under constant cut- ting conditions in a high data regime, the developed wear model 

attained an MAE of 5.7, 7.3 and 8.5 µm for three cutters under consideration, with a 

resultant over- all prediction accuracy of 93% which was above the minimum acceptable 

accuracy threshold of 90%, all without data pre-processing. Under varying cutting conditions 

in a low training data scenario and with 15 cutters under consideration, an averaged 



xvi  

cross-validated MAPE of 12.5% was attained, with an overall accuracy enhancement of over 

25% on a base comparison model only trained on few experimental data samples. The 

knowledge learnt from the synthetic data enabled this performance enhancement qualifying 

the adoption of this approach in model development. These 

results were well within an acceptable wear boundary of ±20% error variation as 
those of other reported models on same data, qualifying the adopted development 

approaches. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

 

Tool condition monitoring (TCM) involves tracking a measure of a cutting tool’s health 

indicator as machining progresses, with the measure of wear generally being an acceptable 

good indicator (Zhou and Xue, 2018; Ambhore et al., 2015). Tool wear is the gradual 

degradation of the cutter due to frictional interaction with a workpiece. Tool wear though 

presents itself in various forms; with crater wear on the rake face due to abrasion by chip 

sliding, flank wear due to frictional erosion of the sides from workpiece interaction, and 

even boundary rounding of the cutting edges (Sarıkaya et al., 2021; B. Li, 2012). Flank 

wear is the most significant of the wear forms. Tool flank wear is typically measured as 

the width of wear land (VB) from the cutting edge to the end of the abrasive wear on the 

flank face of a tool, as is illustrated in Figure 1.1 (B. Li, 2012). 

Figure 1.1: Schematic Illustration of Tool Flank Wear Measurement 

 

Despite recent advances in additive and formative manufacturing, subtractive ma- chining 

processes, such as CNC milling, account for vast production of many rota- tional and 

prismatic products. The milling process generally involves advancing a rotating multi-edge 

cutter into a non-rotational work piece, with the axis of tool ro- tation being perpendicular to 

feed direction. The rate of tool wear in such a process is influenced by cutting conditions 

(speed, feed, depth of cut), tool geometry, work 

Abrasive wear 

VB 

Flank face of insert 
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piece material, cutting fluid and even tool material (Iswanto et al., 2020; Thamizh- manii et 

al., 2019; Ibrahim et al., 2017). Tool wear is thus a complex phenomenon of many 

contributing factors, with a typical cutter generally undergoing three main wear phases in a 

continuous machining operation (X. Zhang et al., 2018). These phases are as depicted in 

Figure 1.2 (X. Zhang et al., 2018) as a function of cutting time. In the initial phase, the 

cutting tool exhibits rapid wear from the frictional interaction. This is followed by a region 

of minimal wear i.e. uniform wear phase. Finally in the failure phase, the tool exhibits 

accelerated wear, with the transition in wear rates in a continuous process clearly indicative 

of the different phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Schematic Plot of Tool Flank Wear as a Function of Cutting Time 

 

Thus, using wear as a health index, the TCM task is the in-process quantification of the 

prominent wear form. Upon wear determination, the broader condition status of a tool (i.e. 

whether good or worn out) can be infered based on an acceptable wear limit. Additionally, 

the remaining useful life of a tool can easily be calculated thereon. Tool condition 

monitoring for the milling process is particularly critical 
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in applications involving machining of hard-to-machine materials which result in a 

considerably high tool wear rate. The benefits of TCM are such that by monitoring a cutter’s 

condition in-process, a machined part’s surface roughness and dimensional accuracy can be 

contained within desired bounds allowing for automated quality assurance (Niaki and 

Laine, 2017; Dutta et al., 2013). Moreover, maximization of tool life, minimization of 

down time, and prevention of workpiece and machine damage can be attained. However, 

automated TCM is not a trivial task, and as such is still a problem area. 

 

1.2 Problem Statement 

 

Continuous tool-work interaction in a typical CNC machining process necessitates periodic 

stoppages by a human operator in order to take relevant measurements for tool condition 

determination. This is not only laborious but prone to miss-timings with adverse 

consequences. The solution is thus an automated alternative without involving the human 

operator. One such approach is the utilization of direct visual- based sensing and 

determination techniques. However, these approaches have not found practical use due to 

challenges such as obstruction by cutting fluid, high tem- perature in the cutting zones, 

inaccessibility of the machining area, among many others. This has necessitated 

employment of TCM based on process modeling from indirect sensory data and cutting 

parameters. However, many shortcomings and challenges associated with the data based 

modeling approach need to be addressed in order to provide a viable practical alternative in 

the TCM process. This is because, the accuracy of a data based model is dependent on the 

quality and quantity of the data utilized in its development. Data quality problems present in 

the form of noise and redundancy as a result of high frequency capture from multiple sensor 

chan- nels. These have a direct negative influence on the accuracy of the developed model. 
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Additionally, model bias is realized in the utilization of data only from particular 

monitoring channels as opposed to others, completely negating a multi-channel TCM system 

adoption. Moreover, the captured sensory data has complex time dependent and spatial 

associations which is compounded by varying wear distributions from different cutters 

even from same manufactured batch. This presents a problem in that it calls for a processing 

algorithm that would result in development of a model architecture that generalizes 

adequately to varying wear distributions and machining conditions. 

 

As for quantity problems, data scarcity leads to development of a model that is not fully 

representative of the wear condition of a tool. Prediction uncertainties also easily abound 

in this case from slight variations in the data. Moreover, cutting pa- rameters, such as feed 

rate, speed, depth of cut, among others, are typically ignored in the wear trending process. 

This is because, they generally remain constant for a particular machining run and thus their 

influence cannot be captured in a continuous trending process. However, the cutting 

parameters directly influence the tool wear rate and as such its critical to capture their 

influence. Due to the multiple inter- twined challenges, currently developed automated 

TCM solutions based on indirect data based modeling have not been fully adopted in a 

practical machining setup due to lack of provision of a total encompassing solution. This thus 

provides an avenue to develop alternative techniques and approaches in tackling the 

aforementioned chal- lenges for the full realization of an accurate data-based model for 

automated TCM. 

 

This was carried out under two case scenarios of high and low data regimes. High data 

regime defines a case point of sufficient data availability for model training to provide an 

accurate representation of a tool’s wear condition. The cutting parame- 
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ters were kept constant for this case point in order to provide a baseline for model 

development. On the other hand, low data regime defines a case point of insuffi- cient 

data availability for accurate model development. Cutting parameters were varied for this 

case point in order to capture their influence in wear trending. This case point provided a 

complex model development scenario which encompasses the intermediate cases of high 

data-varying cutting conditions, and low data-constant cutting conditions. The 

aforementioned data-based modeling challenges were ad- dressed by developing a model 

architecture capable of automatically filtering noise and redundancies in data without need 

for pre-processing. The relations in the data were captured via a feature extractor algorithm 

capable of processing comparatively long sequences. In order to augment experimental 

samples in a low data scenario, a generative tool was developed for synthetic data production 

to be used in model pre- training. A stacked ensemble of multiple models was then formed 

for performance enhancement while allowing for the adoption of cutting parameters in wear 

trending process. 

 

1.3 Objectives 

 

The main objective of the study is to develop and evaluate performance of data-based predictive 

models for tool condition monitoring during CNC milling. To achieve this, the specific 

objectives are to: 

1. Develop tool health model under constant machining conditions in high data regime. 

2. Develop tool health model under varying machining conditions in low data regime. 

 

3. Verify developed models through performance analysis. 
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1.4 Justification of Study 

 

Tool condition monitoring plays a vital role in CNC milling and is necessary for the next 

frontier of industry automation by enabling automated tool change based on a cutter’s 

health condition. This is especially significant for applications involving machining of hard-

to-machine materials which result in a considerably high tool wear rate or in processes involving 

relatively long part machining time during which period the tool is guaranteed to be 

sufficiently worn necessitating change(s). 

 

1.5 Outline of Thesis 

 

The thesis is organized into five chapters. Chapter 1 introduces and provides the 

motivation for the study. Chapter 2 provides a theoretical background of the prin- ciples of 

deep learning and reviews literature as related to the reported work and summarizes on the 

research gaps addressed. Chapter 3 explores the methodological approaches applied for the 

study objectives and introduces the experimental data sets utilized. Chapter 4 analyzes the 

developed models and discusses the results obtained from performance evaluation of the 

same. Chapter 5 offers a summary conclusion of the work and recommendations on 

directions for future work. 



7  

X 
X Xn 

n 

CHAPTER TWO 

THEORETICAL BACKGROUND AND LITERATURE REVIEW 

2.1 Temporal and Spatial Analysis 

 

In machine learning based deep modeling, temporal and spatial associations in data are 

generally extracted either via convolution, recurrent, attention-based networks, or hybrid 

network variants (Aureilien, 2019), all based on neural networks. A neural network 

convolutional layer operates by sliding multiple filters across a block of data input to produce 

one feature map per utilized filter. The sliding operation is carried out along the dimensions 

of the data. For a 2D data block, the output of a neuron in a 2D convolutional layer is the 

weighted sum of all inputs plus a bias term as provided in equation 2.1 (Aureilien, 2019). 

 

 

zk = 

fh−1 fw−1 f
′ −1  

wuvkxijk + bk (2.1) 

u=0 u=0 v=0 

where fh is the filter height, fw denotes the filter width, f′ is the number of feature 

maps in the previous layer, x is the input vector, bk is the bias term for feature map 

k, wuvk is the connection weight between neurons in feature map k and input vector. 

 

 

For temporal analysis, the 1D-convolutional layer is used and operates much the same way as 

the 2D layer with the only difference being that the strided sliding shift from one receptive 

field to next is only along one direction, the time dimension. This is the main basis of the 

temporal convolutional network (TCN) (Gan et al., 2021; Carreras et al., 2020) as depicted 

Figure 2.1. Unlike the conventional convolutional neural network (CNN), the TCN has a 

broader receptive field through the use of dilated convolutions thus allowing for longer 

sequence processing. The additional use of causal padding implies the network cannot peek 

into the future thus its outputs at 
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any time step is a function of past time step values as up to the current time. The dilated 

causal convolution layers are indicated as dilated causal conv1D in the Figure 

2.1. An additional critical feature of the TCN is the use of residual blocks (Carreras et al., 

2020), with ReLU being the rectified linear unit activation function used for data non-

linearity, and dropout being a regularization technique useful in network 

training. The residual block configuration allows for network stability at train time 

providing for better convergence. 

 

Figure 2.1: Schematic Illustration of a TCN with its Strided Receptive Field 

Previewed 

 

For recurrence option, the output yt of a cell is a function of its input xt and the output at 

its previous time step ht. The LSTM cell extends this simple functionality by addition of 

long-term memory. Figure 2.2 shows a representation of a typical LSTM cell (Sak et al., 

2014). For a single instance of input data, the cell’s long-term state, short-term state and 

output at each time step is given by equations 2.2 (Sak et al., 2014). 

Input 

Dilated causal Conv1D 

ReLU 

Dropout 

1 x 1 Conv1D 

ReLU 

Dropout 

 

Dilated causal Conv1D 
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Figure 2.2: Schematic Representation of an LSTM Cell 

 

 

it = σ(WxiXt + Whiht−1 + bi) ft = 

σ(Wxf Xt + Whf ht−1 + bf ) 

ot = σ(WxoXt + Whoht−1 + bo) 

gt = tanh(WxgXt + WT ht−1 + bg) 

ct = ft ⊗ ct−1 + it ⊗ gt yt 

= ht = ot ⊗ tanh (ct) 

 

(2.2) 

where W is the weight matrices of each of the four layers, xt is the input vector, b is the bias 

term for each of the four layers, and tanh is the hyperbolic tangent function. The input gate it 

controls which parts of the main output gt should be added to the long-term state, whereas 

the forget gate ft controls which parts are to be erased, with the output gate ot controlling 

which parts of the long-term state should be read 

and output at this time step. The main layer gt analyzes current inputs xt and the previous 

short-term state ht−1. 

 

On the other hand, attention mechanism permits a network to focus only on a 

∩
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L 

portion of presented input at each time step. Attention weights are calculated by 

normalizing the output score of a feed-forward neural network described by the function 

that captures the alignment between input and output element at each time step. Equation 

2.3 (Vaswani et al., 2017) describes the attention operation. 

 

ht = αt,iyi (2.3) 

i 

with αt,i = fsoftmax(et,i) and et,i = a (si−1, hj), where fsoftmax is the softmax activation function 

and a (si−1, hj) is a mapping of the similarity scores from a softmax function activation to 

obtain attention weights. 

 

Self-attention permits an input sequence to attend to itself thereby learning global 

dependencies between elements in the sequence without regard to position or order of time 

steps. Multi-head runs multiple attention computations in parallel allowing for focus to be 

applied to same parts of a sequence differently learning different rep- resentations. The output 

of these parallel attention calculations are then combined to produce a final score. Multi-

head attention is based on scaled dot product at- tention, as described in equation 2.4 

(Vaswani et al., 2017) with a schematic block representation of the same in Figure 2.3, 

which uses a key, value and search query 

parameters.  

 
 

 

 

fattention (Q, K, V ) = fsoftmax 

 

 

 
QKT 
✓  

dkey

s 

 

 

 

V (2.4) 

where, Q, K and V are the query, key and value matrices, respectively and dkeys is the 

dimension of the key and value matrices. The query is used to search over keys of all 

context representations of the input elements. Each key is related to a particular value 

that encodes the specific input element. All the aforementioned 

  \ 
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output 

Figure 2.3: Scaled Dot Product Attention Representation 

 

building blocks are utilized in the transformer architecture, which is an attention- only 

processing network. The full transformer architecture consists of an encoder and decoder 

networks having multi-head attention blocks as the key data features processing networks 

and is as illustrated in Figure 2.4 (Vaswani et al., 2017). The key data processing blocks in 

the structure are the multi-head attention layers. The data is fed in parallel with one input 

vector shifted one position off to the right for time dependency association. This is coupled 

with positional encodings for value location stamps. 

 

2.2 Generative Modeling 

 

A generative model estimates the probability p(x) of observing observation x, and requires 

no labels. The most prominent deep generative models are the generative adversarial 

network (GAN), variational auto-encoder (VAE), and the transformer- based models e.g. 

generative pre-trained (GPT) models. 

 

The training process of a GAN is modeled as a game between two competing neural 

networks; a generator G(z) and a discriminator D(x) (Aureilien, 2019). The two 
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nets play a dynamic minimum-maximum (minimax) game against each other. The 

discriminator tries to classify the samples from the generator as either coming from 

the true distribution p(x) or from the model’s generated distribution pˆ(x). The 

goal at every step is to adjust the generator’s parameters to minimize the difference between 

the two distributions until the generator exactly reproduces the true data distribution and the 

discriminator is guessing at random, unable to find a difference. The parameters search for the 

two nets optimize the minimax objective in equation 
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2.5 (Cheng et al., 2020): 

 

G∗ ∈ V (G, D) 

= Ex ∼ p [log(D(x))] + Ez ∼ pz [log(1 − D(G(z)))] 

 

(2.5) 

 

where p is the true data distribution, pz is the distribution of the input code vector z, D is a 

function that tries to distinguish between true data and generated samples, G is the mapping 

from the latent space to the data space, and log is the logarithmic function. Each net can be 

updated individually by back-propagating the gradient of the loss function to each network’s 

parameters. The global optimum of equation 2.5 is achieved if and only if P = Q, where Q 

is the generated distribution of G(z). 

Variational auto encoder (VAE), on the other hand, comprises of an encoder-decoder 

architecture to encode input x into a latent representation or coding h followed by decoding 

of the hidden representations into reconstructions x′ of the input. However, instead of directly 

producing a coding for a given input, the encoder produces a mean coding µ and a standard 

deviation σ. The actual latent representation is then sampled randomly from a Gaussian 

distribution with mean µ and standard deviation σ. Thus, the VAE provides a probabilistic 

approach to latent vectors representation and hence its generative capacity by simply sampling 

a random coding and decoding it to produce a new instance but that looks similar to the 

training samples. The loss function in VAE training is a summation of the reconstruction 

and latent losses achieved through Kullback-Liebler (KL) divergence as provided in equation 

2.6 (Zemouri et al., 2022): 

 

L(x, x′) = ||x − x′||2 + 
β L (

σ − log(σ ) − 1 + µ2
) 

(2.6) 

i=1 
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where, K is the number of latent variables and β is an adjustable hyper-parameter. 

 

 

As for the transformer-based generative models, they also utilize the encoder-decoder 

architecture to extract features from an input sequence and convert them into latent vectors 

before being passed to the decoder. However, transformers utilize sequence- to-sequence 

learning and self-attention mechanisms to learn subtle global relations between distant data 

elements in a sequence. This technique provides context around items in the input sequence 

allowing for processing of very long sequences efficiently. The transformers also run multiple 

sequence processing in parallel allowing for speedy training. 

 

2.3 Self-Supervised Learning 

 

Self supervised learning (SSL) involves pre-training a model on pretext tasks formu- lated for 

unlabeled data (Tung et al., 2017). This seeks to provide a model with a capacity to 

generalize to test data yet unseen by the model. This is advantageous in a case scenario 

where unlabeled data is available in abundance but only limited experimental data is, as is 

in one of the case points in this study. The general for- mulation of the SSL framework 

comprises of three contiguous steps (Tung et al., 2017). First, is pretext task formulation, 

that involves generating artificial labels for the input data based on understanding of the 

data’s structure. Next is supervised pre-training, in which a model is pre-trained with data-

labels from previous step. Finally, transfer learning is utilized to re-use the pre-trained model 

as initial weights to train for a specific downstream task of interest. 
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2.4 Ensemble Modeling 

 

Ensemble modeling involves use of multiple models and aggregating the predictions from the 

different predictors on the same input data set in order to improve ac- curacy on the 

particular prediction task (Ganaie et al., 2022; Dong et al., 2020). Various approaches are 

utilized, with the simplified methods involving either sim- ple or weighted averaging, or max 

voting, whereas advanced methods might involve stacking, in which the predictions from each 

estimator are stacked together and used as input to a final estimator that computes the final 

prediction. Training of the final estimator is accomplished via cross-validation. 

 

2.5 Tool Condition Monitoring Review 

 

During continuous machining, visual-based determinant techniques, such as optical imaging, 

microscopy or machine vision, can be utilized to directly estimate the mea- sure of a cutting 

tool’s wear. However, these systems have not found practical use due to the difficulties 

associated with the measurements, such as obstruction due to presence of cutting fluid, high 

temperatures, inaccessibility of cutting zone, among other factors, with some techniques still 

requiring periodic stoppage of the machine and hence not suited for real-time monitoring 

(Dai and Zhu, 2018; Miko-lajczyk et al., 2017; C. Zhang and Zhang, 2013). In the work by 

Dai and Zhu (2018), a camera coupled with a telecentric lens with a light source are used for 

tool imaging in a con- dition monitoring setting, with the setup aimed at minimizing 

associated imaging errors. Miko-lajczyk et al. (2017) and C. Zhang and Zhang (2013) utilize 

optical and charge coupled device cameras to provide a machine vision system for capturing 

tool images for processing via neural networks in order to determine wear. However, all these 

reported settings are carried out in controlled lab environments and suffer the 
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aforementioned vision-based systems challenges. 

 

 

The earlier conventional alternative was thus to develop mathematical models of tool wear and 

in extension tool life by relating to machining conditions of cutting speed, feed rate, depth of 

cut, and even material type, leading to such models as Taylor’s tool life model and its 

various variants (Johansson et al., 2017). The accuracy of these models is within a limited 

boundary of application due to non-factoring of vari- ation of some machining conditions and 

assumptions thereof made. The limitations of mathematical modeling approach is further 

compounded by the static nature of cutting parameters during a typical machining 

operation, making the models not flexible to change or adaptation and generally not useful 

in real-time wear trending and tracking. 

 

The practical tool condition monitoring (TCM) approach is thus currently provided by 

indirect sensing techniques coupled with modeling of captured data in relation to wear 

(Zhou and Xue, 2018; Ambhore et al., 2015). The data modeling process is carried out offline 

and involves relating periodically measured wear values to sensory signals of cutting force, tool 

and machine vibrations, acoustic emission, motors’ cur- rent consumption, among many other 

signal options (Lauro et al., 2014; Pimenov et al., 2022; J. Wang et al., 2017). 

 

In most machining applications, the cutting force signal or a quantity related to cutting 

force such as motor current, torque or displacement, has been found to well reflect the tool 

wear state (Lauro et al., 2014). However, the reliability of a single- sensor system is a great 

challenge especially due to loss of sensitivity in certain regions which impacts on the 

accuracy of the system. Thus, as an alternative, sev- eral sensors are usually used in the 

multi-sensor approach (J. Wang et al., 2017). 
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The loss in sensitivity of one sensor is offset by the increased sensitivity of another over the 

same region, improving the resolution and accuracy of the system. The indirect sensing 

approach is premised on the fact that, during tool-work interaction, energy release occurs 

which results in heat radiation, cutting forces, vibration, and acoustic emission, and these 

vary with tool degradation. By relating these indirect machining variables to tool wear, the 

problems of direct visual-based measurement techniques are thus alleviated with this 

approach. 

 

In machine learning terms, the data modeling process is referred to as model training, and is an 

iterative process aimed at reducing the error between an actual measured output value and 

the prediction provided by the model, for the same input data instance. This constitutes the 

supervised learning data-based modeling approach on labeled data (Aureilien, 2019). The 

data used in modeling is usually divided into a train and test set, with only train data 

utilized in model training process. Once developed or trained, the model can then be 

deployed in actual practical machining for real-time wear trending from sensory signals. In 

general, upon data collection, the typical data-driven frame work consists of the following 

steps: feature extraction and reduction, data modeling or training, and then model prediction 

(Hassan et al., 2018). 

 

The information captured in a single monitoring sensory channel is a time series of temporal 

associations. In order to improve TCM system resolution and accuracy, multi-sensor 

channels are usually utilized for signals sensitivity complementation (Zhou and Xue, 2018; 

Ambhore et al., 2015). The side-by-side arrangement of data from multiple channels provides 

important cross-channel spatial relations. However, though useful, the periodic profiles of 

most sensor signals in relation to tool wear 
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follow closely similar patterns, and thus a multi-sensor system has a high amount of redundant 

information. The data capture from sensory channels is generally carried out at high 

frequencies in order not to miss any slight variation in corresponding tool degradation 

measure. However, the high frequency rates utilized in data collection contributes to 

significantly elevated noise in the data. 

 

2.6 Review of Data Pre-processing in Conventional Machine Learning 

 

Due to data redundancies in a multi-sensor TCM system, the conventional data- driven 

modeling approach involves model training on specially hand crafted data features for use 

as model inputs, such as mean, kurtosis, variance, standard devia- tion, among other 

statistical variations (Hassan et al., 2018). The model is thus not trained directly on raw time 

series data. Signal processing techniques are thus first employed to extract data features 

sensitive to tool wear, with statistical analyses carried out in time, frequency and time-

frequency domains. The advantage of this conventional approach is the significant reduction 

in training computational load or time, and if provided with reasonably discriminative 

features, it leads to enhanced model performance. In addition, the sequential steps in the 

data-driven framework are treated as independent of each other allowing for the use of different 

optimization algorithms at the relevant stages. 

 

Studies by Hesser and Markert (2019), Yang et al. (2019), Ravikumar and Ramachan- dran 

(2018) utilize shallow artificial neural networks (ANNs) with the back propa- gation 

algorithm for tool state classification in a condition monitoring setup. Neural networks, with 

their neurons and weighted connections, are able to successfully cap- ture complex non-linear 

relationships between the measured sensor signals and tool wear. For dynamic modeling, 

Hidden Markov models (HMM) use as classifiers is 
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reported by Yu et al. (2017), to capture changes in feature states over time, a stark contrast 

to ANNs. 

 

The support vector machine (SVM), on the other hand, has been shown to produce superior 

classification results of tool wear states from relatively smaller sample sizes of training data, 

using a kernel function and statistical learning theory as reported by G. Xu et al. (2018). In 

order to improve the SVM’s prediction accuracy and address the problem of complex 

parameter setting, the study by Yang et al. (2019) proposes a hybrid model based on a 

generalized model of SVM i.e. differential evolu- tion support vector regression (DE-SVR) 

algorithm and trajectory similarity based prediction (TSBP), for the on-line prediction of 

tool wear and its remaining useful life (RUL) from cutting force sensor signal during a 

milling process. The prediction results obtained were better in comparison to four other 

single algorithms. 

 

A further improvement on the SVM is the use of the relevance vector machine (RVM) which, 

though having similar functional form as SVM, can provide probabilistic pre- dictions 

unattainable using SVM. Studies by Kong et al. (2019) and G. Wang et al. (2014) have 

shown that, in comparison to SVM, RVM can produce more accurate results quickly and 

from smaller training samples. 

 

Other probabilistic and deterministic based methods for tool wear prediction are us- ing a 

dynamic bayesian neatwork (DBN) (Hassan et al., 2018), using multi-regression models 

(Hassan et al., 2018), using a particle filter (J. Zhang et al., 2017), using a Gaussian process 

regression (GPR) (Kong et al., 2018) and using an extended kalman filter (EKF) (Akhavan 

Niaki et al., 2016), with the EKF outperforming the deter- ministic methods in most cases 

for tool wear area estimation. 
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However, the chief limitation of all the aforementioned approaches is the reliance on expert 

human knowledge for data pre-processing, which not only provides an avenue for information 

loss but is also tedious owing to the huge volume of data usually involved, with no defined 

way of determining which data features are best to use. Even though feature selection tools 

have recently been developed to aid with the process, expert knowledge is still required in 

determining which tool best suits a particular case point, adding extra tasks in the modeling 

process (Aureilien, 2019). Information loss from this conventional approach impacts 

negatively on models gen- eralization capability and performance. Moreover, the model 

development process cannot be jointly optimized due to the independent stages. This study 

sought to ad- dress this information loss challenge from data pre-processing via automated 

feature processing and selection of raw data through deep learning. 

 

2.7 Review of Data Pre-processing in Deep Learning 

 

Artificial intelligence based deep learning approach offers a solution to the limi- tations of 

the conventional data-driven framework, through building of end-to-end models based on 

neural networks (Khan and Yairi, 2018; Zhao et al., 2019). The deep models automate the 

feature extraction and reduction stage, enabling useful information preservation leading to 

comparatively better models’ performance. This consequently permits a model to 

automatically handle redundancies in a way best suited to the particular data structure. 

 

Redundancies in data reduce the quantity of useful information a deep model is ex- posed to 

during training which easily leads to data over-fitting, whereby a model’s predictions error 

rate on train data is low but is significantly higher on test data the model has not been exposed 

to (Aureilien, 2019; Hassan et al., 2018). This implies 
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that the model does not generalize well to unseen data which essentially makes it useless 

for deployment in a practical setup. 

 

Even though deep models automate the feature extraction and selection step, the typical 

approach is to first pre-process data for scaling purposes to enable conver- gence during the 

iterative training process. Feature scaling is a data pre-processing step in which the variables 

or features from multiple sensors are transformed to be in a similar bounded range or 

normalized to have a zero mean. This enables gradi- ents flow during the back propagation 

training allowing for convergence and accurate model representation. This forms a critical 

step in the deep modeling process and is generally adopted in multiple references. The key 

element being addressed in the scaling is data outliers which results from noise from the high 

frequency data capture (Hassan et al., 2018). 

 

Thus in general, in deep modeling, noise is usually handled via scaling pre-processing whereas 

redundancies in the multiple sensor channels is left to a particular model architecture to best 

handle automatically. The two features of noise and redundan- cies were targeted to be 

addressed concurrently in this study via an effective parallel processing architecture. 

 

2.8 Review of Deep Model Architectures in TCM 

 

Various deep architectures or algorithms have been employed in extraction of data relations 

for different condition monitoring tasks. These are: the deep belief network (DBN), deep auto-

encoder (DAE), deep convolutional neural networks (DCNN), and deep recurrent networks 

(R. Liu et al., 2018; Khan and Yairi, 2018; Gouarir et al., 2018). 
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The DAE and DBN allow a deep fully connected neural network structure to be trained 

on a small data sample size due to utilization of layer wise unsupervised pre-training. 

However, these models easily experience data over-fitting due to the significantly huge 

number of model parameters, and as such are not favored for the TCM task (Khan and Yairi, 

2018; Zhao et al., 2019). 

 

The favored architecture for spatial relations extraction is the DCNN, which oper- ates by 

passing a number of filters across sequential data in order to learn important information at 

different sections (Khan and Yairi, 2018). Model over-fitting in this architecture is 

minimized through adoption of pooling layers in a cascaded structure. The weights sharing of 

convolutional layers lowers parameters count which eases the train time computational load. 

However, CNN treats the data as a static spatial arrangement thus the time dependency 

relation is ignored. Thus, in order to learn temporal dependencies, deep recurrent neural 

network (RNN) architecture is usually utilized. 

 

The long short-term memory (LSTM) cell is the most preferred option due to its superior 

performance over the basic RNN cell (Zhao et al., 2019; Wielgosz et al., 2017; Zhao et al., 

2018, 2016). The output of an LSTM cell, like all recurrent cells, is a function of its input 

and its output at the previous time step. The time depen- dency in sequential time-series 

data can thus be established. However, LSTM cells have limited short-term memory, thus 

cannot learn relations in very long sequences without experiencing a performance drop 

(Wielgosz et al., 2017). They also lose information on spatial associations in a multi-

sensory system due to exclusive focus on establishing temporal relations. 

 

In order to address this dual challenge, different hybrid architectures have been de- 
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veloped to utilize the complementary power of CNN and LSTM while minimizing their 

individual shortcomings. This has led to development of different CNN-LSTM layer 

pairings architectures (R. Liu et al., 2018; Shi et al., 2015). In this setup, the CNN is utilized 

to extract spatial associations in the data while concurrently short- ening sequences for use 

by the subsequent LSTM layers. This architecture allows for processing of long sequential 

data through stepwise shortening. However, the short- ened sequences may not be 

discriminative enough. The overall model’s performance can thus be negatively impacted as 

opposed to when trained on comparatively longer sequences. 

 

In order to harness the power of convolutional and recurrent cells in one step though, a 

convolutional-lstm (ConvLSTM) can be used (Qiao et al., 2018; Hall et al., 2022). The 

ConvLSTM is simply an LSTM cell with the usual matrix multiplications re- placed with 

the convolution operation. The consequence of this is a neural layer capable of learning 

both spatial and temporal information in one go. This minimizes the chances of information 

loss across different stages in the model. As an alternative though, temporal convolutional 

networks (TCN) have also been developed utilizing dilated causal convolutions thus 

dispensing with the recurrent architectures (Gan et al., 2021). The problem of processing 

significantly longer data sequences still exists though even for this architecture. 

 

For the challenge of establishing temporal relations in a long sequence, attention 

mechanisms have been developed. This is especially for networks utilizing encoder- decoder 

architectures, specifically for natural language processing (NLP) tasks (Luong et al., 2015). An 

attention mechanism is a neural network that learns to select only a valuable portion of the 

provided input that the model should focus on at each time 
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step (Q. Chen et al., 2019; Zeng et al., 2021). The processing is achieved by differ- entially 

weighting each part of the input and paying focus on the aggregated score. These 

mechanisms have led to marked improvement in performance on NLP tasks. However, they 

were initially used in conjunction with LSTMs for complementation. 

 

A novel improvement on the attention mechanisms that dispenses off with the LSTMs is the 

transformer architecture (Vaswani et al., 2017). The transformer uses multi- head attention 

which consists of several attention layers running in parallel, allowing for joint attendance to 

information from different representation subspaces at differ- ent time steps. Its full typical 

structure comprises of an encoder-decoder architecture with positional encodings incorporated 

for enhanced processing of sequential data. The transformer is thus able to learn 

comparatively long range associations in se- quential data, completely outperforming all 

previously aforementioned architectures (K. Xu et al., 2015; H. Liu et al., 2020). However, the 

transformer is computationally expensive in terms of training time required owing to the huge 

volume of associated parameters. Due to its superior performance over other architectures, 

this study sought to utilize it to harness its power. However, the structure would be modified 

to reduce on its computational load by restructuring and utilizing only the encoder without 

positional encodings in order to attain a generalized global representation of the data. 

 

In general, various deep modeling based architectures have been adopted for the wear 

estimation task in a high data regime where train data is sufficiently available. In such 

case, the accuracy of models’ predictions is anchored on the architecture used. Variance in 

predictions is though obtained from different models on similar tasks. 

 

The work by Qiao et al. (2018), Mathias et al. (2020) and Zhao et al. (2017) utilize 
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dry surface milling data, from the 2010 data challenge by the Prognostics and Health 

Management (PHM) society, for flank wear estimation of three cutters from force, vibration 

and acoustic emission sensor signals under constant cutting conditions of speed, feed rate 

and depth of cut. Qiao et al. (2018) utilized a time distributed convolutional LSTM 

(TDConvLSTM) using hybrid convolutional-LSTM layers for processing both spatial and 

temporal dependencies in the data in one layer rather than using two separate steps. Mathias 

et al. (2020) utilized a TCN with dilated con- volutional layers utilizing causal padding to 

extract the time dependencies without peeping into the future. On the other hand, Zhao et al. 

(2017) adopted bi-directional LSTM (CBLSTM) layers to learn time dependencies in 

sequences from both direc- tions. The cutting conditions of speed, feed rate and depth of cut 

were ignored in the wear trending due to their static nature. All the three models used similar 

train-test data distribution and pre-processing techniques, but different input sequence lengths. 

The performance of the models as evaluated on the MAE metric showed variance in their 

predictions. The TDConvLSTM outperformed the TCN which was marginally better than 

the BiLSTM, with the TDConvLSTM processing a comparatively longer sequence than the 

others (Qiao et al., 2018). The choice of the model algorithm or architecture in data 

processing is thus crucial. However, the TDConvLSTM first utilizes the separate step of 

data pre-processing, an aspect that this current study sought to eliminate by developing a 

model structure capable of automatically han- dling this. 

 

On the other hand, the work by Kumar et al. (2022) reports on performance evalu- ation of 

three different architectures of the LSTM as used for flank wear estimation on cutters from 

acoustic emission, vibrations, and current sensors under varying cutting conditions of feed 

rate, depth of cut and material type. The UC Berkeley- 
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NASA Ames milling dataset was utilized for modeling and performance evaluation. The 

three model architectures under review were; a bi-directional LSTM network, an encoder-

decoder structure, and a hybrid convolutional LSTM network. Variance obtained from the 

models’ predictions clearly evidenced further the importance of model architecture choice, 

even for a case of varying cutting conditions. However, the cutting parameters were also 

ignored in the deep wear trending, as is the case in most reported similar real-time 

monitoring tasks. 

 

Even though the cutting parameters generally remain constant during a typical ma- chining 

run, they play a significant role in tool degradation with cutting speed espe- cially having the 

most significant influence. The work by Weili et al. (2020) proposes a hybrid information flow 

system that would allow adoption of static cutting param- eters in online wear trending. The 

results of model performance with the parameters adopted were significantly better as 

opposed to the contrary. However, the conven- tional approach to data modeling of manual 

features extraction and then combining with the cutting parameters was adopted, which is 

not entirely in line with the deep modeling framework. The current study sought to 

incorporate the cutting pa- rameters in the wear trending process in line with the automated 

deep modeling framework. 

 

2.9 Review of Deep Models Development in Low Data Regime 

 

Even though deep models have resulted in significant comparative performance en- 

hancement when developed using sufficient training data, in a low labeled data regime where 

there exists significantly few labeled experimental data instances, their deploy- ment is 

inhibited (Nandy et al., 2022). This is because, their accurate performance relies on usage of 

a comparatively huge volume of varied historical training data sam- 
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ples as compared to the conventional shallow data-based models (Aureilien, 2019). One 

solution to address this challenge is to collect and annotate more experimen- tal data. 

However, this is an onerous and expensive option. An alternative viable solution would 

thus be to instead increase the data samples artificially through gen- erative modeling. 

 

A trained generative model produces new varied data samples similar or statistically relatable 

to the original training dataset (Aureilien, 2019). They typically utilize an encoder-decoder 

architecture, with the encoder learning useful representations of the data trained on whereas the 

trained decoder can be used for the generative pur- poses. Generative models have been 

developed successfully for different applications in the fields of computer vision and natural 

language processing (NLP), such as in the studies by Aäron et al. (2016), Donahue et al. 

(2018), X. Chen et al. (2016), Odena et al. (2017), and Ni et al. (2020) for audio generation 

and image synthesis by utilizing dilated causal convolution networks and variations of 

generative adversarial networks (GANs). 

 

For the tool condition monitoring task, studies by Y. Wang et al. (2021), Shah et al. (2022), 

Shah et al. (2023), and Zhu et al. (2021), have reported the utilization of GAN in synthetic 

data generation for samples augmentation especially in low-labeled data scenarios, deploying 

such architectures as singular GAN (SinGAN), DCGAN, among other classical variants. 

Reported experimental results showed significant improvement in tool condition 

monitoring metrics as a result of augmenting exper- imental data with the synthetic data in 

model training. On the other hand, other studies utilize the restricted Boltzmann machine 

(RBM) (Karakus and Kose, 2020) and variational auto-encoder (VAE) (Guo et al., 2022; 

B. Liu et al., 2022) for uni- 
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variate and multivariate time-series modeling and generation. 

 

 

The GAN is favored for most generative modeling tasks and especially in computer vision 

where it generates realistic images as though sampled from the true dataset. However, the 

major short coming in practice is the tendency to produce samples with little diversity even 

when trained on a broad dataset, a feature known as mode collapse (Aureilien, 2019). Most 

approaches proposed to address the challenge re- volve around modifying model 

architectures, optimization algorithms and training loss functions, with current research 

aimed at providing explainability to the resul- tant performance enhancement. 

 

Even though generated synthetic data would augment the available dataset, it’s un- labeled 

and as such cannot be used directly for a supervised task such as tool wear trending. 

Unsupervised learning techniques would thus need to be deployed on it in order to be useful. 

 

Unsupervised learning involves extraction of valuable information from unlabeled data to 

learn a representation that best exposes useful semantic features that can be easily decoded in 

a downstream task, such as regression or classification (Jesper and Hoos, 2020). The combined 

successive usage of unsupervised pre-training of a model on unlabeled data followed by re-

using a portion of the model for the supervised learning stage constitutes the semi-

supervised learning approach. This pre-training scheme is useful for when a large volume of 

unlabeled data is available but limited annotated data is. 

 

Studies utilizing this paradigm for different condition monitoring tasks are as re- ported 

by T. Wang et al. (2022), and Yoon et al. (2017). T. Wang et al. (2022) 
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trained a semi-supervised model and used it in remaining useful life prediction for a turbofan 

engine, whereas Yoon et al. (2017) utilized semi-supervised learning in deep model 

development for use in asset failure prediction. However, this conventional scheme is not 

flexible to downstream supervised task changes as the knowledge learnt on the unlabeled data 

is specific for the associated task. 

 

A different alternative approach that would make use of generated synthetic data to produce 

a better disentangled generalized model is the self-supervised learning (SSL) paradigm. In 

SSL, the representation of the structure of unlabeled data is learned through a pretext task, 

essentially turning an unsupervised learning problem into a supervised one (X. Liu et al., 

2023). A pretext task is a supervised learning problem formulated based on artificial pseudo-

labels for the unlabeled data. The knowledge derived from this pretext learning is then re-

used for the main supervised learning problem. The SSL paradigm has gained significant 

popularity especially in NLP due to the success of the generative pre-trained (GPT) 

language models such as Bi- directional Encoder Representations from Transformers (BERT) 

(Devlin et al., 2019) and GPT-3 (Brown et al., 2020). These models were pre-trained on 

pretext tasks of predicting missing words in sentences sampled from a vast word dataset. 

The models are then able to produce state-of-the-art results on various downstream tasks by 

simply training a single layer on top of the pre-trained network for the specific task. 

Attempts at usage of the paradigm for different time series condition-based tasks are as 

reported by Guo et al. (2022), Akrim et al. (2023), and Krokotsch et al. (2021). In the study 

by Guo et al. (2022), the pretext task aims to reconstruct data upon masking of some 

portions using an auto-encoder, before eventual usage for remaining useful life prediction of 

a machine tool. In the studies by Krokotsch et al. (2021) 
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and Ding et al. (2022), contrastive approaches are used for the pretext task whereby similar 

data samples are grouped closer together whereas diverse ones further apart with the aid of a 

similarity metric for distance measurement. The eventual super- vised tasks are for bearings 

fault detection, time series classification, and even change point detection. 

 

In all the aforementioned studies, the SSL pre-trained models outperformed purely 

supervised approach ones in low data regimes and in certain cases had competitive results 

even in high data scenarios. This clearly points to the promising direction of the approach. 

However, adoption of the paradigm to enable eventual tool wear trending upon pre-training 

on generated synthetic data is yet unexplored, a task sought to be addressed in this study. 

 

2.10 Summary of Gaps Identified from Literature Review 

 

The data-based wear estimation task in a multi-sensor TCM system is faced with a couple 

of challenges that have to be addressed in order to develop an accurate repre- sentation for use 

in automated tool wear determination. The key gaps summarized from literature are: first, 

the use of data pre-processing for scaling and filtering as a separate initial step in data 

modeling. This step has then to be adopted with similar scales at deployment in a practical 

machining setting even though the test signals from sensors at such time may vary 

significantly than at modeling stage. Secondly, the advanced data features processing 

structures as at reporting are based on the transformer network but only in natural language 

processing and computer vision domains. Moreover, the architecture is computationally 

expensive to train owing to the volume of parameters. A simplified structure based on the 

same would thus be necessary for real time tool wear trending. Thirdly, the self supervised 

pre-training 
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of data models for tool wear trending based on generated synthetic data has not yet been 

adopted. Tool condition monitoring being a complex process of varied contributing 

factors presents a challenge in formulation of pretext tasks which are relatable and useful 

for model pre-training. Finally, cutting parameters such as feed rate and cutting speed among 

others, are generally ignored in wear trending utilizing deep data based models. However, their 

significant effect on tool wear rate has been proven and as such need to be captured in the deep 

modeling wear trending process. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Overview 

 

In order to develop data-based models for tool wear monitoring in CNC milling, the main 

study objective was divided into two key task blocks i.e. models development and 

performance analysis of the developed models, as summarized in the functional block of 

Figure 3.1. 

Figure 3.1: Schematic Block Illustration of Overview of Study Methodology 

 

The models development was carried out on experimental data already available in public 

domain. Data sourcing provided an inexpensive option to experimental data collection 

considering a similar setup was to be used for the same. Moreover, by utilizing data in 

public domain that has been utilized in developing other models, a direct baseline 

comparison could then be carried out to verify the developed model’s performance. The 

models development stage consisted of two functional objectives. First, an end-to-end wear 

model was developed under constant machining conditions 

Performance 
analysis 

Models 
development 

Development under varying 
machining, low data 

Development under constant 
machining, high data 
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and in a high data regime of adequately available data. This developed architecture would 

then be re-used by forming the foundational basis upon which a wear model under varying 

machining conditions would be developed, in a case environment of low data availability. 

Once developed, performance analysis of the tool wear models on the sourced experimental 

test data was then carried out. This constituted the model verification step, with a further 

comparison of their performance with those of other models reported in literature based on 

the same experimental data. In cases where this direct comparison was not feasible, the 

universally accepted k-fold cross- validation (Bergmeir and Ben´ıtez, 2012; Bergmeir et al., 

2018; Arlot and Celisse, 2010) technique was used instead. 

 

3.2 Models Development in High Data Regime 

 

The deep modeling framework was chosen as the tool for models development. This is 

because, its capacity to produce models capable of processing raw sensors data directly 

protects against information loss associated with pre-processing steps. More- over, the 

framework has been shown in literature to result in models with compar- atively superior 

performance as compared to other data based frameworks and as such is the current 

standard in data-based modeling. 

 

Developing an effective tool wear monitor under constant cutting conditions in a high data 

regime required that the previously outlined associated data-based model- ing challenges be 

addressed. This would result in, one, a model capable of preserving input channels 

independence ensuring that complementary information from all sen- sors is fully utilized. 

Additionally, it could effectively filter elevated noise in the data resulting from high 

sampling rate in data capture. Moreover, it could smooth out outliers and scaling 

disproportions while concurrently capturing temporal and 
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spatial relations in the sensory signals in order to provide an accurate prediction of a tool’s 

flank wear. Since the cutting conditions remain constant in this case, they are ignored in 

model development as their is no relation to be captured. 

 

A transformer-based end-to-end model having three tier functional blocks was de- veloped. 

These three parts are; a data denoising and feature selection block, feature extractor network, 

and a supervised learning layer block. The overall model’s archi- tecture is as shown in 

Figure 3.2, illustrating all the key functional blocks. 
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Figure 3.2: Schematic Illustration of Developed Model’s Architecture 

 

Raw data from multiple sensors is first segmented automatically along the channels 

dimension preserving independence of each. This data is then passed to a linear encoding 

layer to provide for higher dimensionality in feature extraction, with the 
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encoding size being a tunable hyper-parameter. The main processing unit in the data 

denoising and feature selection block is the gated residual network (GRN). It comprises of 

a stack of time-distributed fully connected neural layers, exponential linear unit activation, 

dropout, gated layer and a skip connection. The GRN permits the model to only apply data 

non-linearization only where necessary. This enables the learning of both simple and 

complex data associations. The encoded data from the embedding layer is then fed to a 

feature selection network (FSN) which par- allel processes this data by independently 

applying GRN to each encoded channel while simultaneously doing the same to the 

concatenated combination followed by softmax weighting. The two outputs of the parallel 

processing are then differen- tially weighted to provide resultant abstract features best 

sensitive to wear and are a better representation of input data due to minimized redundancies. 

The FSN thus allows the model to remove any unnecessary noisy inputs. The exponential 

linear unit (ELU) activation function used in the GRN and the softmax function in the 

FSN are provided by equations 3.1 and 3.2 (Aureilien, 2019), respectively; 

 

α (ex − 1) if x < 0 
ELUα(x)  = 

x if x ≥ 0 

ex 

 

 

 

(3.1) 

fsoftmax (x)k = 
k 

j=1 

 

exj 
(3.2) 

 

where x is the input vector, and α a tunable hyper-parameter. 

 

 

The denoised weighted output of the first block is then fed into a feature extractor network, 

a transformer encoder. The architecture of the transformer encoder is as illustrated in Figure 

3.3. The main purpose of this processing block is to determine global dependencies in the 

provided feature sequence. Multi-head self attention is 
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utilized for sequence representation with no positional encoding utilized, thus the 

associations determined are irrespective of the sequence time step order. 

Output vector 

Figure 3.3: Schematic Representation of Transformer Encoder Architecture 

 

The tunable hyper-parameters of choice for the transformer block are the; number of heads, 

head size for the multi-head attention layer and the number of transformer blocks. Finally, the 

features generated by transformer encoder are fed to a multi- layer perceptron (MLP) 

predictor which comprises of a fully connected neural layer, dropout layer and a final 

regression layer utilizing linear activation function. Dropout is used to introduce randomness 

at train time to prevent data over-fitting. The output of the model is the corresponding 

wear value for each input data sample. 

 

In the model’s development, values of data sequence length below 500 resulted in data samples 

with insufficient discriminative information whereas higher values produced better results but 

at a price of enhanced computational load. The median value 500 was thus adopted. A 

summary of the main hyper-parameters, per functional block, for the developed model are 

as indicated in Table 3.1. Experimentation on different 

Abstract features 
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values and data sets for sensitivity and performance for the main hyper-parameters was 

carried out with encoding size values of 16, 32, 64 and 128, transformer head size of 64, 

128, 256 and 512, number of transformer heads of 1, 2, 4, and 8, and supervised layer 

nodes of 16, 32, 64, and 128. Higher value choices for each of the hyper-parameters 

significantly leads to models parameters count explosion which inadvertently risks data 

over-fitting and increases computational processing load for model training and testing. 

Performance of value variations on different experimental runs aided in selection. No joint 

model hyper-parameter optimization was performed, so the selection of optimal values is still 

an open avenue for this study. The low count of hyper-parameters required for model tuning 

simplifies the proposed model in operation. 

Table 3.1: Proposed Model Hyper-parameters 

 

Model block Hyper-parameter Value 

De-noising/feature selection encoding size 16 

 dropout rate 0.4 

Transformer encoder head size 128 

 number of heads 4 

 Conv1D filters 1 × 1 

Supervised layer FC nodes 32 

 Output nodes 3 

 dropout rate 0.4 

 

Thus, under constant cutting conditions, the tool wear prediction task is on input data of 

time-series real values from N different sensor channels, and is denoted X = {xi, ..., xL}; 

where i is the data sample number, L is the total number of data 
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samples. Each sensory input data sample is a 2D tensor xi ∈ Rl×d where l is the number of 

time steps and d is the sensor channels. At each time step j there are d 

different values. For each input sample, there is a corresponding output wear value yi ∈ R of 

real values of flank wear width for each cutter. The wear monitoring task is thus formulated 

as a time-series regression prediction task of output value yi for 

each input data sample xi. 

 

 

fwear : xi ∈ Rl×d → yi ∈ R (3.3) 

 

 

3.3 Models Development in Low Data Regime 

 

In a low labeled data regime, the previously aforementioned developed model ar- 

chitecture is guaranteed to perform poorly on a wear estimation task. This is due to the 

problems of data scarcity and aleatoric uncertainty arising from heightened sensitivity to 

model weights variation. Moreover, useful information also needs to be captured from 

variation of cutting parameters such as feed rate, depth of cut, among others. This was not 

previously captured in the earlier model development. This thus required adoption of a varied 

model development approach that would still allow the previously constructed model 

architecture to be re-used while building a wear monitor effective in a low data regime 

under varying cutting conditions. To this end then, a contiguous methodology approach of 

generative modeling followed up by self-supervised pre-training and final supervised 

ensemble learning, for devel- opment of an end-to-end tool wear monitor on sensory data 

and cutting variables, was adopted. Figure 3.4 summarizes this adopted approach of model 

development in a block representation. 

The available experimental sensory data is first used to train a generative model, with the 

subsequent trained model utilized to generate copious amounts of un-annotated 
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Figure 3.4: Schematic Block Illustration of Methodology Approach for Model 

Development in a Low Data Regime Under Varying Cutting Conditions 

 

data relatable to the experimental sensory data. The generated synthetic data is then used in 

the next stage for self-supervised pre-training. A pre-task is formulated to this end for a 

generalized data structure representation, thus forming a pre-training framework for the 

downstream wear determination task. The pre-trained model’s weights from this stage is re-

used as initial parameter weights for the succeeding su- pervised model fine-tuning using the 

few labeled experimental sensory data available. A single supervised-fine-tuned model 

constitutes one base learner. Using different variations of pre-tasks, model algorithm types 

and varying initial random model weights, several base learners are trained. A stacked 

ensemble of several base learn- ers is then created and to which a top level meta learner is 

affixed to learn how best to combine the predictions of the individual learners. 

Additionally, static cutting variables of tool feed rate, depth of cut and encoded material 

type are fed into the meta learner for association derivation with tool wear. The meta learner 

thus takes two blocks of input; the predictions of the individual base learners and the static 
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machining variables. 

 

 

Variational auto encoder (VAE) was utilized for the generative modeling stage be- cause it 

allows for efficient Bayesian inference in probabilistic models. Moreover, it does not suffer 

from mode collapse allowing for varied data to be generated. Data variability is essential 

for generalized learning in model pre-training. The architec- ture of the VAE developed for 

this study is as shown in Figure 3.5. An input data instance to the VAE is first passed 

through a temporal convolution network (TCN) block followed by batch normalization 

layer and then max-pooling. 

𝑋𝑖𝑛𝑝𝑢𝑡 𝑋𝑟𝑒𝑐𝑜𝑛 

 

Figure 3.5: Schematic Illustration of Developed VAE Architecture 

 

The TCN block is used for determining time dependencies between data elements in the time-

series sensory samples whereas batch normalization is applied to ensure sta- bility during 

training by re-centering and re-scaling the layer’s inputs. Max pooling scales down the 

sequence length and introduces scaling variance for better generaliza- tion. Scaled exponential 

linear units (SELU) are used as activation functions in the 

encoder decoder 
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α (ex − 1)

 if x < 0 

layers due to its superior convergence performance as compared to other activation 

functions. Equation 3.4 (Aureilien, 2019) describes the SELU function operation, 

 

 

SELUα(x) = λ 

x if x ≥ 0 

(3.4) 

 

with α and λ as hyper-parameters of choice. 

 

 

Further data processing is carried out through two fully connected neural layers to 

complete the encoder block. The output of the encoder is sent through a fully connected 

sampling layer to produce mean and standard deviation codings. The decoder block then 

reverses the encoder processes. This involves data reshaping, up- sampling, before final 

processing through a TCN and a 1-dimensional convolution layer to provide the 

reconstructions. The generative model is trained on the experi- mental sensory data Xexp as 

input and output, with produced reconstructions aimed at having minimal error loss with real 

inputs. The trained VAE model’s decoder is then re-used to produce copious quantities of 

varied synthetic data Xsynth resembling the experimental sensory data, by simply providing 

codings, sampled from a random Gaussian distribution, to its decoder. 

 

The computation time required in the generative VAE model training/testing is de- pendent 

on; the utilized computer resource, training samples count and time-step length of each time 

series sample. A comparatively high data sample count with an equally longer sample series 

length results in significantly longer training/testing computation time. Generally, this 

computational time is in the order of minutes- to-hour, all factors considered. However, 

once the model is trained, the sampling time of synthetic data generation is a fraction of 

the training/testing time of the 
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order seconds-to-minute, depending on synthetic data count required. In the present study, a 

comparative computation time factor of 15:1 minutes in relation to train- ing/testing time 

vis-a-vis synthetic data generation time, was obtained for 40, 000 generated samples versus 

a windowed training data count of 25, 000. 

 

The selection of the generative VAE model’s hyper-parameters was via a random search 

as it was found to be computationally effective than a grid search, with 200 such iterations 

carried out. Initial parameter value ranges was guided by previously reported work on 

closely similar architecture. The hyper-parameters in question were the number of filters 

used in the convolutions, codings size, dilations sequence and the kernel size of the 

convolutions. The sample data sequence length of 64 was adopted for the significant 

comparative accuracy obtained in reconstruction. Table 

3.2 summarizes the hyper-parameter selected for the VAE as discussed. 

 

Table 3.2: VAE Model Hyper-parameters 

 

Model Block Hyper-parameter Value 

VAE TCN filter count 32, 64 

  kernel size 2 

  dilations [1,2,4] 

 MaxPool1D pool size 2 

 Sampling codings size 21 

 UpSampling1D filter count 32, 64 

 Conv1D kernel size 2 

  filter count 64 
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  n 

The development of the tool wear model involved first SSL pre-training on synthetic data 

before then fine-tuning using the limited available experimental data. The SSL stage 

utilized generated synthetic data Xsynth from VAE model in the pre- training step, but by 

first generating pseudo-labels ysynth for the data, based on pretext tasks formulation. Two 

pretext tasks were formulated to this end. The first task (task 1) was designed as a multi-

classification problem of predicting the cluster identification of a data sample as provided 

after clustering the synthetic data Xsynth using a time series k-Means classifier, which was 

chosen for its scalability and fast response. The second task (task 2) on the other hand was 

formulated as a forecasting task of predicting the masked final values of each sample 

instance. The tasks formulation was informed by the prior knowledge that, a typical tool 

undergoes various distinctive wear progression stages during its life cycle. By having a 

model learn to agglomerate data samples into respective categorizations and or learn masked 

sequence values as upstream tasks can prove to be useful pre-training knowledge for time 

dependent sequencing in the eventual tool wear prediction task. For the cluster identification 

task, the clusters as determined by a time series k-Means classifier were adopted for ysynth, 

whereas the last six channel values per sample were adopted in the forecasting task. Upon 

annotation, training was then carried out in a supervised manner. The evaluation metrics for 

pretext task 1 were the accuracy, precision and recall as provided for in equations 3.5, 3.6 

and 3.7(Aureilien, 2019); 

tp + tn 
accuracy = 

i=1 tp + tn + fp + fn 
(3.5) 

precision 
  tp  

= (3.6) 

tp + fp 

recall 
  tp  

= (3.7) 

tp + fn 

 

where tp is the cluster true positive count, tn the true negative count, fp the false 

i 

i 
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positive count, and fn the false negative count respectively. Accuracy provides a measure 

of how often the classification model is correct overall, while precision is a measure of the 

model’s ability to predict the positive target class, whereas recall is a measure of the model 

to find all positive targets in the data. 

 

In order to eliminate classification bias, same sample size per cluster was picked, with the 

new balanced set then used in model pre-training. The softmax function was used for layer 

output in task 1, with its definition as defined in equation 3.2. Evaluation of pretext task 2 

was based on minimizing the mean square error between the model predictions and assigned 

pseudo-labels per data instance as provided for in equation 3.14. The SSL pre-training step 

is thus a fitting of synthetic input Xsynth to artificial labels ysynth in a supervised manner. 

 

fpretraining : Xsynthi 
→ ysynthi 

(3.8) 
 

 

The trained model from the SSL stage was re-used for the supervised learning stage to trend tool 

wear from the experimental time-series sensory data {Xexp, yweartruth }. The model architecture 

for the tool wear base learners used in the SSL stage is as already previously described from 

section 5.1 as depicted in Figure 3.2, and is thus just a re- use of already developed 

architecture. However, for the features extractor network, two other model algorithms were 

explored and developed, i.e. LSTM and TCN based feature extractors, on top of the already 

developed attention-based transformer encoder. Their choices were informed by usage in 

multiple reported literature for temporal and sequential analysis. The additional feature 

extractor choices are as shown in Figure 3.6 and Figure 3.7, comprising of an LSTM and 

TCN networks respectively. 
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Figure 3.6: Schematic Illustration of Utilized LSTM Network 
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Figure 3.7: Schematic Illustration of Utilized TCN Network 

 

The fine-tuning process of the SL stage was a fitting of experimental sensory inputs Xexp to 

experimental truth wear values yweartruth , with training basically involving the top layer MLP. 

Multiple models (base learners) were trained with different variations on the initial random seed 

generator, temporal feature extractor and SSL pre-training task, with these different 

permutations constituting the various ensemble cases. The different permutations led to the 

development of three ensemblies summarized in Table 3.3. Ensemble 1 had similar base 

models structures but with varying weights instantiation. Ensemble 2 had varying base model 

architectures, whereas ensemble 3 

LSTM layer 

LSTM layer 
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had similar base model model strutures but were pre-trained on different pre-tasks. 

 

Table 3.3: Ensemble Cases Summary 

 

Stack Base model 

name 

Feature 

extractor 

Weights 

generator 

Pre-training 

task 

ensemble 1 model 1 (m1c1) attention rand n task 1 

 model 2 (m2c1) attention rand 2*n task 1 

 model 3 (m3c1) attention rand 3*n task 1 

ensemble 2 model 1 (m1c2) attention rand n task 1 

 model 2 (m2c2) TCN rand n task 1 

 model 3 (m3c2) LSTM rand n task 1 

ensemble 3 model 1 (m1c3) attention rand n task 1 

 model 2 (m2c3) attention rand n task 2 

 

 

The ensembling technique used in this study involved stacking multiple trained pre- dictors 

from the SL stage in a parallel configuration and adding a meta learner at the top of the 

structure to learn how best to agglomerate the wear predictions from the individual base 

learners. Additionally, the static machining scalars of feed rate, depth of cut and encoded 

material type are also fed to the meta learner to develop associations with tool wear. 

Ensembling was utilized to minimize prediction vari- ances due to aleatoric uncertainty 

associated with deep models sensitivity to random weights initializations, and also model 

algorithm type used in sequential data analy- sis. This allowed for comparatively better 

generalized models which is essential for a tool wear monitor considering the varying wear 

distributions exhibited by different tools. The meta learner is simply a two layer MLP of 

fully connected neural layers. In the ensembling stage, the already trained base learners are 

not re-trained, only 
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the meta learner is. Training of the meta learner is thus a fitting of the concatenated inputs of 

predictions from individual base learners ypredi 
and the static machining variables Xstatic, to 

the experimental ground truth wear values yweartruth . The final 

tool wear monitor is thus an end-to-end stacked ensemble of multiple base learners with a top 

level meta learner that takes in as inputs the monitoring sensory data coupled with static 

cutting variables, and outputs a wear prediction ypred, as depicted in Figure 3.8. 

 

 

 

 

 

 

Sensors data: 

Acoustic 

emission, spindle 

motor current, 

spindle and table 

vibrations 

 

 

 

 

 

 

 

 

 

Cutting conditions 

(feed, depth of cut, 

encoded material 

type) 

Pred 1 

 

… 

 
Pred n 

 

 

 

 

Meta 

learner 

 

 

 

 

 

 

Ywear 

 

 

Figure 3.8: Schematic Illustration of Tool Wear Model Structure for Processing 

Varying Cutting Conditions and Monitoring Sensor Data 

 

Hyper-parameters selection for a base learner in the model structure followed a sim- ilar 

process as already discussed from section 5.1. Table 3.4 summarizes the hyper- parameter 

selections for a single base learner. In stacking up the base learners into an ensemble, for a 

case point where the feature extractor network was to be the same, the attention-based learner 

was chosen to this end for its superior performance, with details of its configuration as 

previously described in section 3.2. 

… 

   

Base learner n 
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Table 3.4: Base Learner Models Hyper-parameters 

 

Model Block Hyper-parameter Value 

Base learner De-noising encoding size 16 

  dropout 0.4 

 Attention extractor head size 128 

  head count 4 

  Conv1D filters 1 × 1 

 LSTM extractor units 16, 32 

  dropout 0.2 

 TCN extractor start filter count 16 

  dilations [1,2,4] 

  kernel size 2 

 MLP units 128 

  dropout 0.4 

 

Thus, under varying cutting conditions, the tool wear prediction task is on input data 

comprising of static scalars of cutting variables si ∈ Rm, and time-series of real values from 

N different sensor channels, {xi, ..., xL}; where m is the number of cutting parameters, i is 

the data sample number, and L is the total count of data samples. Each time series input 

data sample is a 2D tensor xi ∈ Rl×N of l, the number of time steps, by N , the sensor 

channels. An input sample denoted Xi is thus a concatenation of the scalars and time series 

samples i.e. Xi = [xi, si]. For each input sample, there is a corresponding real valued scalar 

target yi ∈ R of flank wear width. The wear monitoring task is thus formulated as a regression 

prediction 
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1 L 

1
 

n 

n 
i=1 

 i i  × 100% (3.11) 
ytruthi 

  
n

 
1ytruthi − ypredi 

1 

task of output value yi for each input data sample Xi. 

 

 

fwear : Xi ∈ [xi, si] → yi ∈ R (3.9) 

 

 

3.4 Models Performance Analysis Methodology 

 

The evaluation metrices adopted for tool wear model performance were the mean ab- solute 

error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE), 

between the truth and predicted wear values, as provided by equations 3.10, 3.11 and 3.12 

respectively. 

n 

MAE  =  y 
n 

i=1 

 

 
truthi 

 

− ypredi 

 

1 (3.10) 

1 L 1ytruth − ypred 
1 

v

u 1 L
n  1 12 

 

 

where ytruth is the real target wear value and ypred is the corresponding model’s pre- diction. 

Mean absolute error (MAE) was chosen because it provides the average difference 

between actual and predicted values, RMSE gives a measure of standard deviation of the 

error, whereas MAPE provides the averaged variance. The lower the comparative error 

value the better the model performance is. 

 

For the data generative model, evaluation was based on its generated samples with two 

metrics used i.e. the maximum mean discrepancy (MMD) between the generated and 

experimental distributions, and the data usefulness metric. The MMD metric seeks to 

ascertain the relation between two distributions by checking whether any two sets of 

samples from different data sets were generated by the same distribution 

MAPE = 

RMSE = (3.12) 
i=1 
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(Tolstikhin et al., 2016). The relation is done by comparing their statistics. The MMD 

represents distances between two distributions as distances of mean embed- dings of their 

features. Given two distributions P and Q over a set X, the MMD is 

defined by a feature map ψ : x → H where H is a reproducing kernel Hilbert space. 

Thus, in general, the MMD is given by equation 3.13 (Tolstikhin et al., 2016); 

 

 

MMD(P, Q) = ||Ex∼P[ψ(x)] − Ey∼Q[ψ(y)]||H (3.13) 

 

 

which translates to the distance between the feature means of P and Q based on a kernel 

function. The MMD = 0 if and only if P = Q. The MMD is a value between 0 and 1 with 

a value close to zero indicating statistical closeness of the distributions. The MMD has found 

wide usage in applications, such as detecting the distributional discrepancy in datasets, 

checking whether two distributions are the same, as a loss function in ML model training, 

among other functions. The second metric of data usefulness is based on the train-on-

synthetic test-on-real (TSTR) paradigm. The generated synthetic data should be as useful 

as the real data when used for model training on a predictive purpose. Evaluation of 

generated data, and in extension the generative model, on the usefulness metric is based on 

its successful use in the downstream main task of tool wear prediction. 

 

3.5 Data Description 

 

3.5.1 PHM Milling Data Set 

 

For study objective one, data from a CNC dry surface milling process was used. The data is 

from the 2010 data challenge by the Prognostics and Health Management (PHM) society, 

and is available in public domain (X. Li et al., 2009). The workpiece material used in the 

machining test was stainless steel (HRC52), with the tests 
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carried out in a down milling operation. The monitoring signals are from force, vibration 

and acoustic emission sensors, with the first two having three channels each, to provide a 

total of seven input channels. A Kistler quartz 3-component platform dynamometer was 

used for force measurements, with three Kistler piezo accelerometers and a Kistler acoustic 

emission sensor used for vibrations and acoustic emissions measurements respectively. The 

offline measured output is the flank wear width of three-flute ball nose tungsten carbide 

cutters, obtained through a LEICA MZ12 microscope after each milling cut run. 

 

A total of six cutters were used in the experiments, but only three cutter histories, labeled 

c1, c4 and c6, have both monitoring data and associated measured wear. A total of 315 

cutting tests using each cutter, on a 3-axis high-speed CNC machine, were conducted. The 

experimental setup (X. Li et al., 2009) used in data collection is as shown in Figure 3.9. 

The data was acquired through a DAQ NI PCI1200 data acquisition card at a sam- pling 

frequency of 50 kHz/channel, with time series measurements corresponding to different 

data samples varying in length, with some having over two hundred thousand time steps. 

The experimental measurements were obtained under constant machining conditions indicated 

in Table 3.5, with the values as recommended from literature on optimal cutting parameters. 

 

 

 

3.5.2 UC Berkeley-NASA Ames Milling Data Set 

 

For study objective two, data used was from the University of California, Berkeley CNC 

milling data set, acquired from the NASA Ames prognostics data repository (Agogino and 

Goebel, 2007). It comprises of 16 cases of milling tools’ use to cut 



52  

off-line tool flank 

wear measurement 

 

cutter 

 

 

 

accelerometers 
 

acoustic 
emission 
sensor 

dynamometer 

 

 

Data storage 

 

work piece 

Multi-channel data 

acquisition 

Figure 3.9: Schematic Representation of Experimental Setup Used in Data Collection 

 

Table 3.5: Machining Parameters  

Parameter Value Units 

spindle speed, n 10,400 rpm 

feed rate, vf 1,555 mm/min 

radial depth of cut, ae 0.125 mm 

axial depth of cut, ap 0.2 mm 

 

in metal in order to investigate tool wear under varying operating conditions of feed rate, 

depth of cut and material type. Table 3.6 summarizes the experimental conditions utilized 

for all the machining cases. 

 

Monitoring data was from three sensors, i.e. acoustic emission, vibration and cur- rent 

sensors, stationed either at the machine table or spindle. The three cutting parameters were 

varied over two levels each to provide for 8 case scenarios: feed rate 
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Table 3.6: Experimental Conditions 

 

Cases Depth of cut (mm) Feed rate (mm/rev) Material 

1, 9 1.5 0.5 1 

2, 12 0.75 0.5 1 

3, 11 0.75 0.25 1 

4, 10 1.5 0.25 1 

5, 16 1.5 0.5 2 

6, 15 1.5 0.25 2 

7, 13 0.75 0.25 2 

8, 14 0.75 0.5 2 

Material: 

: 

1 → cast iron 

2 → J45 steel 

  

 

of either 0.25 or 0.5 mm/rev, depth of cut of either 0.75 or 1.5 mm, and material type either 

cast iron or stainless steel J45. The choice of the levels for parameter variation was guided 

by industrial applicability and recommended manufacturer’s settings (Agogino and 

Goebel, 2007). 

 

The experiments were repeated a second time with the same cutting parameters but different 

tools to provide the total 16 cases. The monitoring sensor signals were captured at 250 Hz 

with each cut having 9000 sampling points or time steps. There are varying number of runs 

for each of the 16 cases at which points the degree of flank wear was measured upto a wear 

limit and sometimes beyond, but not always. There are a total of only 167 cuts for all the 

cases combined. Additionally, the flank wear values were not always recorded at the end of 

each run leading to missing wear values. This reduces further the number of data samples 

available for analysis. The 
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dataset is thus not only significantly unbalanced but also fits in perfectly into the low 

labeled data regime scenario, providing a basis for its usage in this study. 

The experimental set up used for data collection is as illustrated in Figure 3.10, with the data 

collected on the Matsuura machining center MC-510V. The cutting tools used inserts of 

type KC710 with the size of the work pieces being 483 × 178 × 51 mm. A MIO-16 (National 

Instruments) high speed data acquisition board with a max- imal sampling rate of 100 KHz 

was utilized for sampling output sensory data via LabVIEW® software. The acoustic 

emission sensor used was model WD 925 with a frequency range of up to 2 MHz, whereas 

the accelerometer was model 7201-50 ENDEVCO with a frequency range of up to 13 

KHz. For current measurements, model CTA 213 current sensor was utilized. 

 

Figure 3.10: Block Representation of Experimental Setup Used in Data Collection 
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3.6 Data Preparation and Models Training 

 

3.6.1 Data Preparation and Models Training Using PHM Milling Data 

 

For the PHM dataset, the original data sequence length was down-sampled to a 

representative twenty thousand time steps for each data sample before further ap- plying a 

sliding window for attaining a shorter sequence length while concurrently increasing the 

training samples count. The mid stable cutting portion of captured signals was utilized for 

modeling, with analysis of sample signals aiding in this initial phase. This was based on the 

fact that the monitoring signatures in initial tool entry vary wildly from the stable region 

characteristics as evidenced in sample force signals captured for the three cutters at different 

cutter life stages as shown in Figures 3.11, 

3.12 and 3.13, with significantly varying profiles at different stages. 
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Figure 3.11: Sampled Force Signals at Start of Cutter Life 

 

The sliding window was adopted due to the high frequency capture of the signals thus minimal 

wear exists across windowed cut samples. The sliding window size adopted determines the 

length and number of data samples down-sampled from original data set and serves as an initial 

crucial hyper-parameter. Too short a sequence and not 
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Figure 3.12: Sampled Force Signals at Mid of Cutter Life 
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Figure 3.13: Sampled Force Signals at End of Cutter Life 

 

much discriminative information can be derived whereas too long a sequence increases the 

computational processing load without much additional information captured. Experimental 

Values of 100, 200, 500, 1000 and 2000 sequential time-stamps were trialed with results of 

cross-validated experiments used in window size selection. The increased training data 

samples was additionally utilized in minimizing model parameter uncertainty at train time. 
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1 L 

1
 2 

The training and testing regime adopted a three-fold setting whereby two sets, from histories 

C1, C4 and C6, are used for training with the third for testing. The history definitions C1, 

C4 and C6 are representative of cutter 1, 4 and 6 respectively. The adopted training/testing 

setup is as illustrated in Table 3.7. The loss function utilized in model training is the mean 

squared error between ground truth and predicted values, as provided by equation 3.14. 

 

n 

loss =  y 
n 

i=1 

 

 

truthi 

 

− ypredi 1 (3.14) 

 

 

Table 3.7: Training/Testing Domain 

 

Train set Test set Notation 
 

C4, C6 C1 C4C6/C1 

C1, C6 C4 C1C6/C4 

C1, C4 C6 C1C4/C6 
 

 

The adaptive momentum estimation (Adam) optimization function was used for model 

weight updates at train time, with an exponentially decaying learning rate from an initial 

value of 0.01. The choice of initial learning rate value was from experimentation. 

 

3.6.2 Data Preparation and Models Training Using NASA Ames Data 

 

For the UC Berkeley-NASA Ames dataset, a representative monitoring signal sample of a cut 

is as shown in Figure 3.14 for cut number 100 in the dataset, and clearly captures the tool 

entry, constant cutting and exit phases. 

The notation smcAC is the alternating spindle motor current, smcDC, the direct 

spindle motor current, vib-table is the machining table vibrations, vib-spindle is the 
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Figure 3.14: Graphical Representation of an Experimental Sensory Signal 
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Figure 3.15: Signal Captured for Cut 17 
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Figure 3.16: Signal Captured for Cut 94 
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Figure 3.17: Signal Captured for Cut 105 

 

spindle vibrations, AE-table is is the acoustic emissions from the table, whereas AE- spindle 

is the acoustic emissions from the spindle. 
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train train 

n 

n 

However, certain captured signals such as corresponding to runs 17, 94 and 105 have 

significant anomalies and have to be excluded from the dataset usage. These distorted 

signals as shown in Figures 3.15, 3.16, and 3.17 either have abnormally high signal 

amplitudes (Figure 3.15 and Figure 3.16) or signature unrepresentative of a typical 

machining cycle (Figure 3.17), and are thus anomalies whose utilization would negatively 

impact convergence during model training. 

Data analysis aided in initial processing of the experimental sensory data by selecting only the 

stable cutting region for use in models training. For the generative model, training was 

carried out on experimental sensory inputs only without labels as the aim is to generate new 

synthetic dataset statistically resembling the experimental set. The data was pre-processed by 

scale normalization to be in the boundary [0 − 1], as provided by equation 3.15: 

 

xz = 
xn − xmintrain (3.15) 

xmaxtrain 
− xmintrain 

 

where, xn is the time series of the nth sensor channel, xmax and xmin are the 

maximum and minimum channel values as determined on the train set, and xz is 

the normalized time series input data. The scale normalization used on the train set is 

applied to the test set as referred to equation 3.15. Input data normalization was done to 

ensure convergence and stable models’ training which would otherwise be difficult by 

training on data sequences on different scales as captured from the multiple sensor 

channels. The scaling also allowed for the adoption of the binary cross-entropy loss as the 

reconstruction loss function as opposed to the mean square error, for faster and better 

convergence. The binary cross-entropy log loss is as 
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L   

described in equation 3.16 (Aureilien, 2019); 

 

1 
L = − 

m 

m 

yi log(p̂i) + (1 − yi) log(1 − p̂i )  (3.16) 
i=1 

 

where yi is the instance truth value, pˆi the corresponding model prediction, and m the mini-

batch samples count. The generative model’s reconstruction training was thus modeled as a 

multi-label binary classification problem. A sample’s time series length choice was based on 

experimentation using sample lengths of 64, 128 and 256 time steps. The computational cost 

exponentially increases with increase in sample length to be produced and with decreasing 

accuracy in reproduced samples. Once de- termined, all successive methodology stages adopt 

the same sample sequence length. The SSL pre-training stage utilizes only generated synthetic 

data. The pseudo-labels generation is based on the pretext task. 

 

For the tool wear model training, experimental data from case samples 1 to 8 were used 

with the exception of case 6 which only has one data instance. Due to the unbalanced 

nature of data as a result of uneven runs per experimental case, samples corresponding to 

cases 15 and 16 were additionally added to the train set for aug- mentation. The remaining 

case samples, 9 through to 14, were used as the test set. This resulted in 73 case samples 

used in training while 70 being utilized for testing. This data split selection was informed 

by two facts: first, each experimental case was repeated a second time using similar 

machining conditions but with different tools, thus by using one case for model training, 

the repeated case can be used for model testing. Secondly, at practical test time, a trained 

model is exposed to data on tools yet unseen to it thus the data-split formulation chosen 

allows for better generalizability for model deployment. 
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The loss function utilized in the supervised model training was the mean squared error 

between ground truth wear values and corresponding predictions, with the gen- eral formulation 

as provided in equation 3.14. The adaptive momentum estimation (Adam) optimization 

function was used for model weight updates at train time, with an exponentially decaying 

learning rate from an initial value of 0.01. The choice of initial learning rate value was from 

experimentation on model sensitivity to different values with guidance provided by commonly 

utilized values as reported in literature. 

 

The performance of the developed ensemblies was compared against a model purely 

supervised trained on experimental data only. In order to ensure competitive compar- ison, the 

architecture of this model was chosen to be same as of the best performing architecture of the 

base learners in the ensemblies. 
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CHAPTER FOUR RESULTS 

AND DISCUSSION 

4.1 Performance Analysis of Developed Models 

 

4.1.1 Performance Analysis in High Data Regime 

 

Evaluation of the performance of the developed model was carried out on regressive wear 

prediction and tool condition classification tasks. The performance on the wear prediction task 

is captured in the regressive wear plots of Figure 4.1 for the three associated cutter 

histories, with a summary of the developed model’s performance on various indices is as 

provided in Table 4.1. 
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Figure 4.1: Regressive Wear Plots; Predicted vs Truth Data 

 

 

 

Table 4.1: Model Performance Evaluation on Different Indices 

 

Index C1 C4 C6 Units 

MSE 8.0 10.9 16.1 ×10−5mm2 

RMSE 8.9 10.4 12.6 µm 

MAE 5.7 7.3 8.5 µm 
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It is seen that, the model is able to track the wear trends closely for the three cutters, within 

an average MAPE boundary of 6%. Even though not universally agreed on, the 

accepatable wear boundary as reported in most work in literature is 

±20% (Hassan et al., 2018; Qiao et al., 2018; Mathias et al., 2020; Zhao et al., 2017). 

The universally accepted criterion though is the lower-the-better. The absolute error variation 

is slightly elevated during the initial rapid wear phase as compared to the constant and final 

failure phases. This is attributable to the significant variations in the actual wear 

distributions of the three cutters during the rapid wear phase. The wear plots variations 

results from the model attempting to generalize the wear distributions for all cutters which 

inadvertently leads to the absolute error variation obtained. However, this does not penalize 

the model negatively though as crucial diagnostic and prognostic decision information such 

as condition-based tool change is undertaken in the final wear phase. 

 

Upon prediction of a cutter’s wear value, its overall generalized condition can be 

determined by comparing with a wear limit. As a proof of concept, the predicted 

regressive wear values were used as input to a classifier layer to predict whether a tool is 

in a good condition or not. A wear threshold of 140 µm was adopted as a concept proof, 

with values below the limit threshold used to classify the tool as being in a good state, 

otherwise the tool is considered to be in a worn state. This results in a simple binary 

classification task. The data used in model development in this study did not provide 

specific details on the cutters for ascertaining a clear wear threshold for use. The adopted 

threshold was thus to provide for sufficient worn and good samples for the concept proof, 

with a different value able to be adopted without impacting the concept. In practice, the 

allowable wear limit used can be as either recommended by the manufacturer or from expert 

knowledge derived from 
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machining particular materials. The performance on a tool state classification task is as shown 

in the confusion matrices in Figures 4.2, 4.3, and 4.4, with the classification report summarized 

in Table 4.2. 
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Figure 4.2: Classification Performance on Cutter 1 Based on Predicted Wear Values 
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Figure 4.3: Classification Performance on Cutter 4 Based on Predicted Wear Values 

 

 

 

It is observed that, the overall classification accuracy attained is 99% for the three cutters, 

with few instances of miss-classification being for when the tool is in a good 
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Confusion matrix Cutter 
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Figure 4.4: Classification Performance on Cutter 6 Based on Predicted Wear Values 

Table 4.2: Performance Metrics on Tool State Classification Based on Estimated Wear 

 

Cutter Class Precision Recall F1-score Samples 

Cutter 1 worn 0.93 1.00 0.96 52 

 good 1.00 0.98 0.99 263 

 accuracy 0.99   315 

Cutter 4 worn 0.98 1.00 0.99 54 

 good 1.00 1.00 1.00 261 

 accuracy 1.00   315 

Cutter 6 worn 0.98 0.99 0.99 103 

 good 1.00 0.99 0.99 212 

 accuracy 0.99   315 

 

state but it’s wrongly labeled as worn. This happens near the defined tool wear limit 

i.e. at transition point. For a tool state monitoring system, this miss-classification falls in 

the no penalty boundary case, as the contrary is a worse case scenario i.e. 

  

  

Tr
ue

 l
ab

el
 



67  

if the tool were worn but it’s constantly classified as good. Attainment of 100% accuracy 

can simply be by broadening the tool wear limit definition instead of using a single set value. 

 

4.1.2 Performance Analysis of Data Generative Model 

 

Visual-based evaluation of a time-series generative model’s samples vis-a-vis the orig- inal 

experimental data is difficult as compared to the case usage in computer vision and NLP. 

This is because, as an example illustration, for image generation in com- puter vision, simple 

visualization of the generator’s output would provide feedback on a model’s realistic or 

otherwise generated images. This does not apply for syn- thetic time series data, with the 

longer a series the greater the problem dimension. This can easily be evidenced by sample 

comparisons as illustrated in Figures 4.5, 4.6 and 4.7. 
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Figure 4.5: Generated Normalized Sample 
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Figure 4.6: Re-scaled Generated Sample 
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Figure 4.7: Experimental Sample 

 

Figure 4.5 is a visualization of a normalized generated data sample with the same re- scaled 

in Figure 4.6 for comparison with the experimental samples such as depicted 
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in Figure 4.7. Visual comparison of the generated versus the experimental sample is 

impractical thus averaged statistical metrics are required. Performance evaluation of the 

generated data samples using the VAE’s decoder were thus based on two quantifiable 

metrics i.e. the maximum mean discrepancy (MMD) and the usefulness metric, as previously 

described in the methodology section. By taking a fixed set of M generated samples and a 

similar number of experimental data, the MMD between the two distributions using a 

Gaussian filter evaluated to 0.145, indicating a statistical closeness between the generated 

samples and the original experimental monitoring signals data. A score of 0 is indicative that 

the generated and experimental samples are a perfect match. For a generative model, this 

would simply imply the model has learnt to merely copy the experimental data, which is 

counterproductive and indicative of poor performance. This is because, the aim in data 

generation is to provide variability in the generated set while maintaining a statistical closeness 

to the experimental data. Thus, an MMD score greater than 0 but less than the median of 

0.5 is indicative of sufficiency (Tolstikhin et al., 2016). Evaluation on the generated data 

usefulness metric was based on the performance of a subsequent model trained on this 

synthetic dataset. If a model trained on the generated samples is then tested on actual real data 

and its performance is comparatively good and acceptable, then the dataset is considered 

useful. Analysis of this metric on the VAE’s generated samples is captured in the subsequent 

sub-section when evaluating the final produced models on the wear prediction task. The 

variability of the synthetic set is important for useful adaptation downstream. An indication of 

the generated samples variability can be infered from their cluster distribution as produced by 

the k-Means classifier for use in the cluster determination pre-task. The clusters distribution for 

the generated samples is as shown in Figure 4.8. Variability in obtained samples is indicated 

the multiple clusters to which the generated samples are classified. There is no ideal 
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distribution with the aim being variability, thus a lower threshold of cluster count greater 

than two is sufficient. 
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Figure 4.8: Generated Samples Cluster Distribution 

 

 

 

4.1.3 Performance Analysis in Low Data Regime 

 

In evaluating the performance of the wear model under varying machining conditions, the 

influence of SSL pre-training needed to be assessed first. The two pretext tasks formulated 

for the SSL stage, on the synthetic dataset obtained from the generative model, translated to 

time series clustering and forecasting tasks, respectively. The successful performance of the 

subsequent model pre-trained on either of these tasks required the best performance on the 

associated metrics for each task in order to maximize the learnt knowledge in the 

downstream wear prediction task. For the series cluster identification task, this meant 

attainment of a high score on each of the class specific metrics of precision and recall, with 

the maximum attainable score of 1.00 indicative of 100% accurate classification. The obtained 

metric scores for the clustering pre-training task on a hold out test set are as summarized in 

Table 4.3, with an averaged classification accuracy of 94% attained. 
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Table 4.3: Classification Report on Clustering Task 

 

Cluster Precision Recall Samples 

0 0.91 1.00 1390 

1 0.97 0.98 1390 

2 0.77 0.85 1390 

3 0.87 0.80 1390 

4 0.82 0.98 1390 

5 0.92 0.85 1390 

6 0.96 0.99 1390 

7 0.82 0.92 1390 

8 0.83 0.83 1390 

9 0.99 0.82 1390 

10 0.86 0.86 1390 

11 0.89 0.95 1390 

12 0.86 0.81 1390 

13 0.90 0.87 1390 

14 0.89 0.99 1390 

accuracy  0.94 20850 

 

 

On the other hand, for the series forecasting task, attainment of a low mean squared error loss 

between predictions and pseudo labels was the aim. With no set lower limit or guarantee 

of attainment of the same, repeated experimentation on hyper- parameters to achieve lowest 

possible error metric sufficed for this case. 

 

The performance on regressive wear prediction for the three developed model en- 



72  

semblies, on the single exclusive hold-out test, versus the base comparison model on the 

different evaluation metrics is as summarized in Table 4.4. It is observed that, all the three 

SSL pre-trained ensemble models completely outperformed the base comparison model, 

that was only supervised trained on the few labeled experimental data only, on all evaluation 

metrices. 

Table 4.4: Models Performance Evaluation Using Single Hold-out Test Set 

 

SL only model Ensemble 1 Ensemble 2 Ensemble 3 

 

case MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

 
(mm) (mm) % (mm) (mm) % (mm) (mm) % (mm) (mm) % 

9 0.083 0.094 24.60 0.041 0.045 18.40 0.041 0.045 18.88 0.042 0.051 16.77 

10 0.092 0.113 72.42 0.017 0.023 6.51 0.015 0.023 8.05 0.022 0.028 8.36 

11 0.114 0.152 48.37 0.029 0.045 14.29 0.025 0.038 12.20 0.030 0.043 13.55 

12 0.074 0.080 45.50 0.027 0.029 12.84 0.015 0.017 8.75 0.018 0.023 9.89 

13 0.358 0.476 45.44 0.022 0.026 6.62 0.025 0.029 6.18 0.026 0.036 6.40 

14 0.173 0.237 41.14 0.027 0.032 9.98 0.028 0.030 10.76 0.040 0.048 13.34 

 

 

The influence of knowledge learnt from the copious amounts of varied synthetic data is seen 

in the eventual performance enhancement obtained by the SSL pre-training approach as 

evidenced by reduced mean absolute errors and percentage errors for all experimental test 

cases. This shows that the model was able to learn useful information from the pre-training 

on generated synthetic data to enable it achieve performance improvement as compared to a 

model only trained on the available few experimental data samples only. This is evidenced in 

the prediction error reductions across all test samples as illustrated in the wear trends of 

Figure 4.9 and Figure 
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4.10, with the wear trends in Figure 4.9 comparing the truth plots versus prediction plots of 

the supurvised-only trained model and ensemble 1 only for simplicity in comparative 

analysis. The wear plots of all the models compared as in Table 4.4 are captured in Figure 

4.10. The predicted wear trends of all the stacked ensemblies closely trace the truth plots for 

all experimental test cases. The significant variation in MAE was attained for the supervised 

only trained model in test cases 11 and 13, due to the unbalanced nature of the data set 

causing irregular exposure. The comparatively best predictive results were obtained for 

stacked ensemble 1. 
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Figure 4.9: Regressive Wear Plots; Truth Versus Predicted, Simplified 
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The influence of ensembling is best captured by analyzing the performance of the 
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Figure 4.10: Regressive Wear Plots; Truth Versus Predicted, All Cases 

 

individual base learners making up a stacked ensemble. The averaged performance on all test 

data of the constituent base models in each ensemble case versus the stacked ensemble on the 

MAE metric is as shown in Figure 4.11, with extra evaluation indices summarized in Table 

4.5, with model name notations as referenced in Table 3.3. 

 

In analyzing ensemble case 1, the effect of different random weight initialization is seen in 

the varying MAE and MAPE values obtained, clearly evidencing aleatoric uncertainty. 

The stacked ensemble though smoothes out this variance and results in an even lower MAE 

and MAPE, partly also due to the additional information gained 
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Figure 4.11: Models Performance Comparison on MAE Metric 

 

from the static cutting variables of feed rate, depth of cut and material type. For ensemble 

case 2, the influence of different base learners in terms of algorithm (archi- tecture) is captured 

in the completely varied results. The attention-based learner and the LSTM appear to perform 

relatively better compared to the TCN base learner. This is attributable to memory capacity 

of the two in temporal analysis as compared to the TCN. The stacked ensemble of the three 

with a meta learner though offsets the significant performance variation allowing for different 

model architectures utilizing varying strengths to be adopted. Analysis of ensemble case 3 

provides an insight into the effect of the choice of pretext task for the SSL stage. The 

cluster determi- nation pretext appears to produce a better generalized model for the 

downstream wear determination task as compared to the model pre-trained on forecasting. 

This is attributable to the fact that pretext task 2 essentially constituted multi-variate 

m
o
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Table 4.5: Base Learners Averaged Performance Evaluation on Different Indices 
 

Ensemble 1 Ensemble 2 Ensemble 3 

 

 m1c1 m2c1 m3c1 stk1 m1c2 m2c2 m3c2 stk2 m1c3 m2c3 stk3 

MAE (mm) 0.029 0.025 0.027 0.027 0.029 0.15 0.041 0.024 0.029 0.16 0.028 

RMSE (mm) 0.039 0.035 0.037 0.035 0.039 0.252 0.057 0.032 0.039 0.244 0.039 

MAPE (%) 14.87 11.81 11.47 11.36 14.87 54.15 21.18 10.56 14.87 56.57 11.23 

 

forecasting on a mean absolute loss in which its difficult to attain best convergence as 

compared to pretext 1 of multi-classification. Moreover, the forecasting feature may not be 

generalizing well for the wear determination task as it does not constitute fully in trending. 

The cluster identification task on the other hand though appears to correlate different series 

to wear phases and the varying experimental cases. The performance of an SSL pre-trained 

model is thus heavily influenced by the formu- lated pretext task. However, for real valued 

time series data, there is no guideline on how to best achieve an effective formulation and is 

thus dependent on the task at hand. The performance of ensemble 3 model though shows that 

multiple tasks can be combined to leverage on different information learnt thus minimizing the 

associated variance due to pretext task choice. Conversely, unhelpful pretext task choice 

could significantly lower overall model performance. All the developed ensemblies though 

provide enhanced model performance allowing a deep model to be trained on only a few 

labeled data samples. Based on the best ensemble results, the averaged per- formance 

enhancement on the supervised-only trained model constituted an MAE, RMSE and MAPE 

error reduction of 0.08 mm, 0.13 mm and 27.5% respectively. 

 

As a further verification step, for the model developed under constant machining con- ditions, 

the model’s performance on the MAE metric was compared to three other 
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models reported in literature, utilizing the same PHM monitoring data. The models are; a 

time distributed convolutional-LSTM (TDConvLSTM) (Qiao et al., 2018), temporal 

convolutional network (TCN) (Mathias et al., 2020), and bi-directional LSTM (BiLSTM) 

(Zhao et al., 2017). The aforementioned models reported signif- icant state-of-art results 

on the same data set while utilizing a similar train/test regime as used in this study. This 

allows for a baseline validation comparison. The data set used for training all the 

aforementioned baseline models was first pre- processed though before input to the model. 

The model developed in this study in comparison works directly on raw noisy data as 

input. The performance of the developed model versus the comparison models on the MAE 

metric is summarized using bar charts provided in Figure 4.12. 

 

 

10 

 

8 

 

6 

 

4 

 

2 

 

0 
TCN TDConvLSTM CBLSTM Our model 

models 

Figure 4.12: Evaluated MAE Comparison on Different Models 

 

Comparative analysis shows the model’s performance being well comparable to other reported 

work. The developed model attained the lowest MAE for cutter 1 with the averaged 

performance across all cutters only marginally bettered by the TDCon- vLSTM. However, 

the developed model processes raw data without need for pre- processing unlike the 

TDConvLSTM. The elimination and minimization of noise and 
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redundancies in raw sensory data coupled with parallel processing of all monitoring data for 

extraction of long range global dependencies enabled the model’s compar- atively good 

performance. It was thus observed that, a gated residual network in a parallel processing 

architecture can thus be utilized effectively to eliminate the need for data pre-processing as 

it enables smoothing of redundancies and bounded re-scaling of input data to eliminate 

outliers. Model hyper-parameters’ optimization as regards the optimal number of layers was 

not carried out in order to provide a non- optimized baseline for comparison with other 

developed models on same data, thus enhanced performance is to be expected with parameter 

optimization. Even though the transformer encoder of the developed model does not utilize 

positional encodings for time stamp mapping, the model’s performance proves that the 

extracted global dependencies are a good abstract mapping of the input monitoring sensor 

signals, as compared to the favored LSTM or TCN networks, without the overhead 

computa- tional costs. The processing of global relations as opposed to the short term memory 

deficient recurrent approaches allows for automatic handling of comparatively long input 

sequences. Additionally, prior inputs pre-processing is eliminated as evidenced by the 

denoising and scaling capabilities of the initial feature processing block. The developed 

model’s latency in prediction from a single input data sample is in the order of 

microseconds, with approximately 15µs recorded. The model can thus be effectively 

utilized in real-time tool wear monitoring. 

 

For the ensemble tool wear models developed under varying machining conditions, 

performance comparison with other work as reported in literature on the same ex- 

perimental data set was not feasible. This is because different reported work utilize varying 

experimental data train/test distributions and other variations thus making it difficult to realize 

a direct inference. Thus, in order to additionally provide an unbi- 
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ased evaluation of the developed models on the experimental data, a stratified 15-fold cross-

validation was carried out. The exclusion of case 6, with only one data sample, left 15 cases 

providing for the choice of hyper-parameter k in the cross-validation, 

with the stratified fold approach ensuring preservation of class distribution due to the 

unbalanced nature of the experimental data. The 15-fold stratified cross-validation thus 

involved splitting the dataset into 15 folds, corresponding to experimental cases. In the first 

instance, the first 14 folds are used to train the model, while the 15th is used as the hold-

out test set. The training/testing process is then repeated with a different hold-out test set 

fold until all the folds have been given the opportunity to be used as the test set, providing for 

a total of 15 model evaluation runs. The averaged performance from these runs provides the 

final overall prediction results. Table 4.6 summarizes the results of the 15-fold cross-

validation on the different experimental cases. 

Table 4.6: 15-fold Cross-Validation Models Performance Evaluation on Different 

Indices 

 

SL only model Ensemble 1 Ensemble 2 Ensemble 3 

 

case MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

9 0.091 0.096 19.54 0.057 0.052 14.74 0.049 0.043 17.11 0.062 0.063 14.98 

10 0.071 0.096 74.40 0.022 0.029 10.27 0.035 0.042 22.76 0.026 0.031 11.1

0 

11 0.116 0.156 55.20 0.029 0.045 15.92 0.044 0.036 12.82 0.048 0.053 12.10 

12 0.079 0.088 53.56 0.027 0.031 15.84 0.028 0.033 18.16 0.020 0.027 10.78 

13 0.314 0.482 36.02 0.042 0.083 6.45 0.047 0.084 7.01 0.056 0.098 7.74 

14 0.191 0.295 43.30 0.044 0.056 9.28 0.032 0.037 12.10 0.068 0.055 14.74 
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It is observed that, the results obtained from the 15-fold cross-validation exhibits 

comparatively higher prediction errors as compared to the single hold-out test set 

results, but with general closeness in valuation, a deviation approximately ±20% with 

each of the individualized metric results contained in Table 4.4. The comparatively higher 

errors is attributable to increased variance from exposure to a wider data set, which though 

provides for lowered bias and hence more reliable results. The closeness in prediction values of 

the two validation approaches is attributable to lack of data leakage, with a respective test 

case never being used in model training, providing a good estimate of the model’s 

performance on yet unseen data. The averaged 15-fold cross-validated performance on the 

data set provided an MAE of 0.035 mm, RMSE of 0.045 mm, and MAPE of 12.5%, as 

compared to the supervised-only trained model with an averaged MAE of 0.115 mm, RMSE 

of 0.175 mm and MAPE of 40%. 
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CHAPTER FIVE CONCLUSIONS 

AND RECOMMENDATIONS 

5.1 Conclusions 

 

This study has led to the development of end-to-end data-based models for tracking of the 

wear condition of a cutter during CNC milling. Different machining environ- ments were 

considered to cater for varying practical cases, with currently existing challenges in data-

based modeling addressed. Under constant cutting conditions with sufficiently varied 

experimental data used in the model’s training, the accuracy of the model’s predictions is 

impacted by the quality of the data used in its development. The same applies at test time 

when deployed for a wear trending task. This thus re- quires that the key elements of noise 

and redundancies in the data be eliminated. It was shown that, by utilizing a gated residual 

network in a parallel processing struc- ture, the aforementioned can be eliminated by a deep 

model without need for the initial extra step of data pre-processing. Moreover, the parallel 

processing structure minimizes a deep model’s bias to the most dominant signals from 

multiple sensor channels. This allows for complementary information from multiple sensor 

channels to be fully utilized. Additionally, the choice of data features’ extraction algorithm 

and the data sequence length processed plays a role in the eventual model’s predic- tions 

accuracy. The longer the sequence length the additional information contained for accurate 

representation of a tool’s wear condition. It was shown that, a trans- former encoder can 

capture information in a time-series data sequence of a length factor greater than 10 as 

compared to the widely used long short term memory cell. Even though computationally 

expensive to train in comparison, the latency of the model in prediction from a single input 

data sample is in the order of microseconds, with approximately 15µs recorded for model 

developed in this study. Performance evaluation of the model on data sourced from the 

Prognostics and Health Manage- 
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ment society provided tool flank wear tracking with an average MAE of 5.7, 7.3, and 

8.5 µm for the three cutters under consideration, and an averaged overall prediction accuracy 

of 93% across the cutters. This accuracy is within an acceptable lower limit of 90%, and 

compares favorably with those of other reported models on the same data set reporting 

values ranging from 90 − 94%, but with the added advantage of not requiring input data 

pre-processing. 

 

Under varying cutting conditions and with limited experimental data collected, a 

contiguous approach of artificial data generation followed up by self-supervised pre- training 

before supervised model fine tuning and final stacked generalized ensem- bling, was 

adopted in order to develop a tool wear monitor. It was observed that, a generative model 

can be utilized as an inexpensive tool to produce statistically use- ful and varied synthetic 

data to augment available experimental data in a low data scenario. The adoption of self 

supervised pre-training provides a model that gen- eralizes on information learning allowing 

for its application in different downstream tasks. However, the choice of pre-training tasks 

utilized in the process are crucial and needs proper formulation. For the tool wear trending 

task, the data clustering pre-task was observed to provide a comparatively better 

disentangled pre-training representation and can be adopted for such other related 

applications. Addition- ally, a stacked ensembly of models smoothens prediction variances 

associated with different algorithms use, random weights instantiation and pre-training tasks 

used. The ensemble structure thus allows for use of varied model types and the adoption of 

cutting parameters, such as speed, feed rate among others, in the wear trending process. This 

was observed to provide comparatively better results than the use of a single model structure 

in predictions. The performance of the best case ensemble on an experimental data set of few 

labeled samples, sourced from the NASA repository, 
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attained an averaged MAE of 0.035 mm, RMSE of 0.045 mm and MAPE of 12.5%, which 

was comparatively superior to a purely supervised-only trained deep model on the same data 

set, with an overall accuracy enhancement of over 25% attained. The accuracy enhancement 

qualifies the methodology approach adopted for the low data case scenario, in allowing a 

deep model to be trained on only a few experimental data samples upon pre-training on 

comparatively vast generated synthetic data. 

 

The key contributions of this study is in the development of a model architecture that 

eliminates the need to pre-process the monitoring sensory data. The latency of the model 

on a single input sample is in the order of microseconds which would enable its adoption in 

a tool wear monitoring task where sensor signals are typically sampled at high frequencies 

in the order of kHz. The study’s overall findings and contributions are contained in the 

resultant publications captured in section 5.3. 

 

5.2 Recommendations 

 

Further research options and possible action pathways in relation to this study are: 

 

1. Research on model interpretability as related to determination of the influence of different 

cutting parameters on tool wear as provided by a deep neural net, which is still a black box 

in terms of its explainability. 

2. Exploration of more pretext tasks formulation for self-supervised pre-training of time-

series based models. Self supervised pre-training aims to produce a gener- alized model 

that is adaptable for downstream task fine tuning. The choice of pretext tasks is crucial 

to this realization. The pretext tasks need to be relatable to wear determination while 

concurrently providing generalized information that would allow a model to be able to 

map relations in data yet unseen by it. 
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Aäron, v. d. O., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., . . . 

Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. CoRR, 

abs/1609.03499 . 

Agogino, A., and Goebel, K. (2007). Mill data set (Tech. Rep.). UC Berkeley BEST 

lab CA USA, NASA Ames Prognostics Data Repository. 

Akhavan Niaki, F., Michel, M., and Mears, L. (2016). State of health monitoring in 

machining: Extended kalman filter for tool wear assessment in turning of in718 hard-to-

machine alloy. Journal of Manufacturing Processes, 24 , 361-369. (SI: NAMRC) 

Akrim, A., Gogu, C., Vingerhoeds, R., and Salaün, M. (2023). Self-supervised learning 

for data scarcity in a fatigue damage prognostic problem. Engineering Applications of 

Artificial Intelligence, 120 , 105837. 

Ambhore, N., Kamble, D., Chinchanikar, S., and Wayal, V. (2015). Tool condi- tion 

monitoring system: A review. Materials Today: Proceedings, 2 (4), 3419- 3428. 

Arlot, S., and Celisse, A. (2010). A survey of cross-validation procedures for model 

selection. Statistics Surveys, 4 . 

Aureilien, G. (2019). Hands-on machine learning with scikit-learn, keras and ten- 

sorflow: Concepts, tools, and techniques to build intelligent systems (2nd ed.; 

O’Reilly, Ed.). CA 95472: O’Reilly. 

Bergmeir, C., and Ben´ıtez, J. M. (2012). On the use of cross-validation for time series 

predictor evaluation. Information Sciences, 191 , 192-213. 

Bergmeir, C., Hyndman, R., and Koo, B. (2018). A note on the validity of cross- 

validation for evaluating autoregressive time series prediction. Computational 

Statistics & Data Analysis, 120 , 70-83. 



86  

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., . . . Amodei, D. 

(2020). Language models are few-shot learners. In H. Larochelle, 

M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.), Advances in neural 

information processing systems (Vol. 33, pp. 1877–1901). Curran Associates, Inc. 

Carreras, M., Deriu, G., Raffo, L., Benini, L., and Meloni, P. (2020). Optimizing temporal 

convolutional network inference on fpga-based accelerators. IEEE Journal on 

Emerging and Selected Topics in Circuits and Systems, 10 (3), 348– 361. 

Chen, Q., Xie, Q., Yuan, Q., Huang, H., and Li, Y. (2019). Research on a real- time 

monitoring method for the wear state of a tool based on a convolutional bidirectional 

lstm model. Symmetry , 11 (10). 

Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and Abbeel, P. 

(2016). Infogan: Interpretable representation learning by information maxi- mizing 

generative adversarial nets. CoRR, abs/1606.03657 . 

Cheng, J., Yang, Y., Tang, X., Xiong, N., Zhang, Y., and Lei, F. (2020). Generative 

adversarial networks: A literature review. KSII Transactions on Internet & 

Information Systems, 14 (12). 

Dai, Y., and Zhu, K. (2018). A machine vision system for micro-milling tool condition 

monitoring. Precision Engineering , 52 , 183-191. 

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre- 

training of deep bidirectional transformers for language understanding. ArXiv , 

abs/1810.04805 . 

Ding, Y., Zhuang, J., Ding, P., and Jia, M. (2022). Self-supervised pretraining via contrast 

learning for intelligent incipient fault detection of bearings. Reliability Engineering and 

System Safety, 218 (PA). 



87  

Donahue, C., McAuley, J., and Puckette, M. (2018). Adversarial audio synthesis. In 

International conference on learning representations. 

Dong, X., Yu, Z., Cao, W., Shi, Y., and Ma, Q. (2020). A survey on ensemble learning. 

Frontiers of Computer Science, 14 , 241–258. 

Dutta, S., Kanwat, A., Pal, S., and Sen, R. (2013). Correlation study of tool flank 

wear with machined surface texture in end milling. Measurement , 46 (10), 4249-

4260. 

Gan, Z., Li, C., Zhou, J., and Tang, G. (2021). Temporal convolutional networks interval 

prediction model for wind speed forecasting. Electric Power Systems Research, 191 

, 106865. 

Ganaie, M. A., Hu, M., Malik, A., Tanveer, M., and Suganthan, P. (2022). Ensemble deep 

learning: A review. Engineering Applications of Artificial Intelligence, 115 , 

105151. 

Gouarir, A., Mart´ınez-Arellano, G., Terrazas, G., Benardos, P., and Ratchev, S. (2018). 

In-process tool wear prediction system based on machine learning tech- niques and force 

analysis. Procedia CIRP , 77 , 501-504. (8th CIRP Conference 

on High Performance Cutting (HPC 2018)) 

Guo, H., Zhu, H., Wang, J., Vadakkepat, P., Ho, W. K., and Lee, T. H. (2022). Masked 

self-supervision for remaining useful lifetime prediction in machine tools. 2022 

IEEE 20th International Conference on Industrial Informatics (IN- DIN), 353-358. 

Hall, S., Newman, S. T., Loukaides, E., and Shokrani, A. (2022). Convlstm deep learning 

signal prediction for forecasting bending moment for tool condition monitoring. 

Procedia CIRP , 107 , 1071-1076. (Leading manufacturing systems 

transformation – Proceedings of the 55th CIRP Conference on Manufacturing 

Systems 2022) 



88  

Hassan, M., Damir, A., Attia, H., and Thomson, V. (2018). Benchmarking of pattern 

recognition techniques for online tool wear detection. Procedia CIRP , 72 , 1451-

1456. (51st CIRP Conference on Manufacturing Systems) 

Hesser, D. F., and Markert, B. (2019). Tool wear monitoring of a retrofitted cnc milling 

machine using artificial neural networks. Manufacturing Letters, 19 , 1-4. 

Ibrahim, M. R., Sreedharan, T., Fadhlul Hadi, N. A., Mustapa, M. S., Ismail, A. E., Hassan, 

M. F., and Tajul Arifin, A. M. (2017, 12). The effect of cutting speed and feed rate 

on surface roughness and tool wear when machining d2 steel. In 5th asia conference 

on mechanical and materials engineering (Vol. 909, pp. 

80–85). Trans Tech Publications Ltd. 

Iswanto, I., Firmansyah, M. F., and Mulyadi, M. (2020). Effect of the cutting angle and the 

depth of cut toward wear of carbide tool on the lathe. Journal of Physics: 

Conference Series, 1594 (1), 012-027. 

Jesper, v. E., and Hoos, H. (2020). A survey on semi-supervised learning. Machine 

Learning , 109 (2), 373–440. 
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Abstract 

Online determination of a cutter’s health status is crucial for the attainment 

of condition-based automated tool change in computer numerically controlled 

(CNC) machining. Due to the impracticalities associated with direct condition 

measurements, data-based modeling of monitoring signals provides a viable 

practical route. However, the highly noisy and redundant nature of the associ- 

ated data impacts negatively on model’s accuracy and typically calls for addi- 

tional initial preprocessing before modeling. Additionally, the long sequential 

data entails widely varying condition distributions exhibited by different cutters, 

even from the same batch on similar machining parameters, posing a challenge 

to model generalization. An end-to-end model has thus been developed to work 

directly on unprocessed data to establish global sensitive features from varying 

distributions for online tool wear estimation in CNC machining. The model uti- 

lizes three main functional blocks. First, a data denoising and feature selection 

block automatically processes raw multisensor data directly, dispensing with 

scaling or preprocessing of inputs as conventionally done. Each sensor chan- 

nel’s independence is preserved at initial processing ensuring complementary 

information from different sensors is utilized while simultaneously minimizing 

existing redundancies. The weighted denoised data is then processed through 

a transformer encoder block for determination of global dependencies in the 

time-series sequence, regardless of the time-step position. The learned features 

are then fed to an upper supervised learning block for association with the mon- 

itored wear condition. The developed model works directly on raw noisy data 

irrespective of scaling differences, saving on preprocessing computational cost. 

The global associations extracted on long sequences by the transformer-encoder 

allow for model generalization to varying wear distributions. The parallel pro- 

cessing structure of all channels ensures complementary information is utilized 

minimizing unforeseen model bias. The model’s performance as evaluated on 
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1 INTRODUCTION  

The health condition of a machine cutter directly impacts the dimensional and surface integrity of the machined part.1,2 Thus, in order 
to limit the overhead costs associated with part discarding and machine repair due to damaged cutters, tool condition monitoring is 
essential. Moreover, future planning on automated tool change based on health condi- tion requires this process. This is especially 
critical for machining applications involving hard-to-machine materials or extended machining periods. 

Direct measurement of a tool’s wear condition during machining is not practical due to the constant tool–work interaction 
which would necessitate continuous intermittent stoppages for relevant measurements to be under- taken. Moreover, the 
presence of cutting fluid, inaccessibilty of the cutting zone, among many other factors, make it impossible to deploy direct 
visual-based measuring techniques. The studies reported in References 3-6 utilize visual systems for tool wear image processing 
in controlled settings but cannot be deployed in practical machin- ing setups due to the aforementioned challenges. Tool 
condition monitoring (TCM) via modeling of in-direct sen- sory data and machining parameters provides the practical 

alternative.7,8 Traditional physics-based models which relate tool condition to machining conditions, such as cutting speed and 

feed, have been developed.9 These mod- els though cannot be used for online TCM as they assume static conditions based on 
domain knowledge, making them inflexible to update. Moreover, such machining parameters as feed and speed do not change 
continuously dur- ing machining. Thus, data-driven models on sensor signals, independent of cutting parameters, provide a more 
viable option. The popularity of these models has also been driven by the advancement in storage, sensor and computing 
technologies. 

The monitoring signals used by the data-based models is derived from such sensors as cutting force, vibration, acoustic emission, power, 

temperature, among many others. Upon data collection, the typical data-driven frame work10 consists of the steps: feature extraction and 
reduction, data modeling, and then model prediction. The modeling step involves offline training of the model on historically collected 
monitoring signals, after which it can then be deployed for predictions on current sampled data. The information contained in a 
single monitoring sensor channel has temporal associations between the captured data. In order to develop a robust system, 

complementary redundant information from multiple sensors, that are sensitive to varying faults are utilized.11-13 The side by side 
arrangement of the sensor data from multiple channels provides for spatial associations. The conventional data-driven approach utilizes 
human expert knowledge to manually extract features from the monitoring data for use in model training. The model is thus not trained 
directly on raw data. This significantly reduces the computational load at train time, and provided with discriminative relevant fea- 
tures, leads to enhanced model performance. Additionally, the sequential steps in the data-driven framework are treated as independent 
of each other which allows for the use of different optimization algorithms at the relevant stages. The studies in References 14-18 
utilize this conventional approach employing tools such as artificial neural networks, sup- port vector regression, hidden Markov 
models, relevance vector machines, among others. However, the reliance on expert knowledge not only provides an avenue for 
information loss but is also tedious owing to the huge volume of data usually involved, with no defined way of determining which data 
features to use. This generally impacts negatively on the mod- els generalization capability and performance. Moreover, the model 
cannot be jointly optimized as a whole due to the independent stages. 

Deep learning approach offers a solution to the weaknesses of the conventional data-driven framework through building of 

end-to-end models capable of working on raw data directly to provide the monitored condition.19,20 These models automate the 
feature extraction and reduction stage, preserving information and generally leading to com- paratively better model 
performance. Different deep architectures such as the deep auto-encoder (DAE), deep belief network (DBN), deep convolutional 
neural networks (DCNN), and deep recurrent networks have been employed for 
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condition monitoring tasks.19,21,22 The DAE and DBN can utilize layerwise unsupervised pretraining allowing for train- ing of a very 
deep fully connected structure on even a small data sample. However, owing to the large number of associated parameters the 
problem of model overfitting is easily experienced with such architectures and as such are not favored for the TCM task. The 
favored deep learning architecture for spatial information extraction is the DCNN, which works by passing a number of kernels 
across sequential data in order to learn important information at different parts in the data. In order to prevent model overfitting, 
pooling layers are usually utilized in conjuction in a cascaded structure. The weights sharing of convolutional layers reduces model 
parameters which eases the computational load at train time. However, CNN treats the data as static spatial arrangement thus the 
time dependency information is ignored. Thus, in order to learn temporal relations, the deep recurrent neural network (RNN) 
architecture is applied with the long short-term memory (LSTM) cell preferred due to its superior performance over the basic 

RNN cell.20 The output of an LSTM cell is a function of its input and the output at the previous time step. The time dependency 
in sequential time-series data can thus be learned. However, LSTM cells have limited short-term memory thus cannot learn relations 
in very long sequences without performance drop while they also consequently lose spatial associa- tions in a multisensory 
system. Different hybrid architectures have thus been developed to utilize the complementary power of CNN and LSTM while 

attempting to address the individual shortcomings. These involve various variations of CNN-LSTM layer pairings.21 The CNN is 
generally used to extract spatial associations in the data while concurrently shortening sequences for use by the subsequent LSTM 
layers. This architecture allows for processing of long sequen- tial data through stepwise shortening. However, the shortened 
sequences may not be discriminative enough thus the model’s performance is negatively impacted as opposed to learning on 
comparatively longer sequences. Additionally, temporal convolutional networks (TCN) have also been developed utilizing dilated 

causal convolutions thus dispens- ing with the recurrent architectures.19 The long-range temporal dependency problems still exist 
though even for this architecture. 

In order to address the long-range dependency short comings, attention mechanisms were developed especially for networks 

utilizing encoder–decoder architectures specifically for natural language processing (NLP) tasks.23 An attention mechanism is a 
neural network that learns to select only a valuable portion of the provided input that the model should focus on at each time 
step. This is achieved by differentially weighting each part of the input and paying attention on aggregated score. These 
mechanisms led to marked improvement on NLP tasks. However, they were initially used in conjunction with LSTMs and not 
a replacement. A novel improvement on the atten- tion mechanisms which allows for dispensing off with the LSTMs is the 

transformer architecture.24 The transformer uses multihead attention which consists of several attention layers running in 
parallel, which allows the model to jointly attend to information from different representation subspaces at different time steps. 
Its full typical struc- ture comprises of an encoder–decoder architecture with positional encodings incorporated for enhanced 
process- ing of sequential data. The transformer is thus able to learn comparatively long range associations in sequential data 
completely outperforming the previously aforementioned preferred architectures. It is currently the state-of-art in NLP especially 
for machine translation tasks. Even though performance-wise superior in the reported tasks its been deployed, the transformer 
is computationally expensive owing to the huge volume of associated parameters. However, depending on the particular task at 
hand, different part-elements of its structure can be adopted for utilization. 

The wear estimation task in a multi-sensor TCM system is thus faced with a couple of challenges. First, is the huge volume of 
data with high redundancy and noise. The complementary information provided from multiple sensor chan- nels inexplicably contains 
redundancies while the significantly high sampling rates of data capture contributes to the elevated noise. These features have to be 
eliminated or minimized before or at model training as they negatively impact the accuracy of the trained model. Thus, the typical 
approach to deep modeling is to first preprocess the raw data by either standardization or normalization before use in model training to 
minimize impact of noise and redundant information. Secondly, different cutters, even from the same batch, exhibit varying wear 
distributions even on similar work pieces and machining parameters which poses a problem at modeling time as it provides for 
varying train-test distributions. Deep models provide enhanced performance results but require train-test data to be from similar or 
close distributions for this to be attained. This thus calls for a processing architecture capable of learning global associations in long 
sequen- tial data as opposed to the relations in the particular ordering of time stamps which gets easily forgotten as the sequence gets 
longer. This allows for better model generalization capacity and provides an alternate processing technique for com- paratively longer 
sequences. Finally, deep models preferential bias toward the more dominant signals in a multichannel input system negates the 
multisensory approach need in the first place as information from less dominant channels 
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are ignored. This results from the manner of backpropagation training in which the optimization algorithm penalizes the associated 
nodes of the less dominant input data more. Thus it calls for a data processing architecture that incor- porates information flow 
from all input channels deep into the model. The work reported in this study addresses these challenges. 

The developed model consists of three main parts based on functionality; data denoising and feature selection, transformer 
encoder, and supervised learning layer. Raw data from multiple sensors is first segmented automatically along the sensor channels 
preserving independence of each. This data is then passed to a linear encoding layer to provide for higher dimensionality in 
feature extraction. The output is then passed to a feature selection network (FSN) which utilizes gated residual networks (GRN) 
to permit the model to apply nonlinearity only where neces- sary. Data are processed through the GRN in parallel, both as 
individual independent channels and as a combined block. The result from the parallel processing is then differentially weighted, 
with the result being weighted denoised data. This output is then fed to a transformer encoder network which consists of a multihead 
attention block followed by a feed-forward network. The utilization of only the encoder structure without positional encodings 
incorporation significantly lowers the associated computational cost while preventing data overfitting by deploying a simplified struc- 
ture. A global pooling layer is then utilized to obtain global features of the data which are then passed along to the final 
supervised learning layer block to provide the association between the global features and the monitored variable. 

The main contributions in this paper include the use of the denoising network which enables the model to operate on raw data 
directly. This eliminates the conventional need to always first preprocess the input data before feeding to a deep model. The model 
can thus work directly on noisy redundant sensor data irrespective of difference in scale. Addi- tionally, the transformer encoder block 
is able to learn global dependencies in time-series data without regard to position of time-stamp. This provides an alternative route for 
processing spatiotemporal associations in time-series data devoid of the challenges of gradient explosion and vanishing, and the short-
term memory deficiencies associated with LSTMs. The weighted global association of relations should allow for better generalization 
at test time to cater for different train–test data distributions. Moreover, the parallel processing structure utilized for input data analysis 
deep into the model ensures information from all monitoring sensor channels is used and weighted appropriately minimizing bias. 
The rest of this paper is organized into the following sections; related work, theory, methodology, experiments and discussion, conclusion  
and finally references. 

 

2 RELATED WORK  

2.1 CNN, LSTM use in condition monitoring 

The use of two-dimensional (2D) CNN to process raw time-series sensory information requires that the data either first be 

encoded into 2D spatial images or transformed to a time-invariant domain.25-27 These approaches however add an extra 
computational overhead into the model. Alternatively instead, one-dimensional (1D) convolutional lay- ers can be used to process 

raw time-series data directly.28 They work by sliding multiple filters across 1D sensor channel data to generate relevant feature 
maps. Moreover, in order to capture time dependency, temporal convolu- tion networks have been used, with the performance 
closely comparable to the more favored LSTM networks. LSTM networks provide comparative superior performance for 

temporal relations tasks.29-31 However, the LSTM suffers long range dependency problems due to its small short-term memory. 

Thus, the use of hybrid CNN-LSTM architec- ture is favored.32 The CNN is used for spatial information extraction while 
consequently shortening the sequences via pooling layers in a stacked configuration. This then allows the LSTM to process 
shorter sequences significantly improving model performance. In order to harness the power of convolutional and recurrent 

cells in one step, a convolutional-LSTM (ConvLSTM) can be used.33,34 The ConvLSTM is simply an LSTM cell with the usual 
matrix mul- tiplications replaced with the convolution operation. The consequence of this is a neural layer capable of learning both 
spatial and temporal information in one go. This minimizes the chances of information loss across different stages in the model. 

In general, irrespective of the configuration, the aforementioned models require the data first be preprocessed for 

scaling purposes to enable gradients flow during back propagation at train time. Moreover, long-range dependency issues is still a 
problem that limits the model’s ability to process long input sequences. 
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2.2 Attention mechanisms use in condition monitoring 

Attention mechanisms were originally developed to address limitations of context representations and long-range depen- dency 
deficiencies of LSTM-based encoder–decoder networks. This was specifically for machine translation and related NLP tasks. 
Although faced with a widely different data domain, these mechanisms have started finding limited use in the TCM task. In 
Reference 35, an attention layer is used in a hybrid CNN-Bidirectional LSTM model network to assign weights to each time step 
output of the BiLSTM layer in order to selectively filter and focus on critical infor- mation from a large number of output 
features before being fed to the upper supervised layer. Other recent works reporting use of attention for condition monitoring 
tasks is in Reference 36. On the other hand, the attention-only based transformer architecture has led to attainment of state-of-

art accurate results in machine translation tasks and even in computer vision.37 The use of this architecture in TCM is not widely 
reported to the best knowledge of this author, though one recent such work is in Reference 38. However, although performance-wise 
superior to other preced- ing architectures reported to date, the transformer is computationally expensive owing to the large number of 
parameters and structure. 

The work reported in this paper uses a variation of only the encoder portion of the transformer architecture without positional 
encodings encompassment in order to harness the global attention prowess while minimizing the computational load. 

 

3 THEORY 

3.1 Convolution 

The CNN is typically made up of a stack of convolutional, activation, and optional pooling layers in sequence. Each neuron in an 
upper convolutional layer is only connected to a small number of neurons in the previous layer, making up the receptive field. The 
convolutional layer operates by sliding multiple filters across an input and outputs one feature map per filter. The neurons in a feature 
map share the same parameters reducing the number of parameters in the model. The output of a neuron in a 2D convolutional layer 

is the weighted sum of all inputs plus a bias term as provided in Equation (1).39
 

 
fh−1fw−1f ′−1 

z = 

n

 

u=0 u=0 v=0 

xijk + 

bk, 

(1) 

where fh and fw are the filter height and width, respectively, f ′ is the number of feature maps in the previous layer, x is the input 
vector, bk is the bias term for feature map k, wuvk is the connection weight between neurons in feature map k and input vector. 

The 1D-convolutional layer operates much the same way as the 2D layer with the critical difference being in that the strided sliding 
shift from one receptive field to next is only along one direction. For time-series signal analysis, this is equivalent to processing 
only along the time dimension. The output of the convolutional layer is then usually nonlin- earized through an activation function, 
the choice of which is one of rectified linear unit (ReLU) or its variants, hyperbolic tangent (tanh), or logistic function. If the dimension 
of the input sequence to a 1D-convolutional layer is n × l × d, where n is the number of data samples, l is the number of time steps, 
and d is the number of input channels, then the out- 

put dimension is given by n × l−p+f + 1 × k, where p is the padding used, s is the stride and k is the number of filters used. Padding 

allows for preservation of sequence length dimension. This new representation of the data captures better abstract and informative 

knowledge than the original input representation. The pooling layer is optionally used to apply a sliding maximum or average window 

for sequence dimensionality reduction. 

 

3.2 Recurrence 

The output yt of a typical recurrent cell, such as an LSTM, is a function of its input xt and the output at its previous time step ht. The 

LSTM cell extends this simple functionality by addition of long-term memory. Figure 140 shows a typical 
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F I G U R E  1  Schematic of an long short-term memory cell 

 

 

LSTM cell. For a single instance of input data, the cell’s long-term state, short-term state, and output at each time step are given by 

Equations (2).40
 

 

it = 𝜎(WxiXt + Whiht−1 + bi) ft 

= 𝜎(Wxf Xt + Whf ht−1 + bf ) ot 

= 𝜎(WxoXt + Whoht−1 + bo) 

gt = tanh(WxgXt + Whg(rt ⊗ ht−1) + bg) 

ct = ft ⊗ ct−1 + it ⊗ gt 

yt = ht = ot ⊗ tanh (ct) (2) 

where W is the weight matrices of each of the four layers, xt is the input vector, b is the bias term for each of the four layers. The 
status of the long-term memory cell ct is controlled via three gates. The input gate it controls which parts of the main output gt 
should be added to the long-term state, whereas the forget gate ft controls which parts are to be erased, with the output gate ot 
controlling which parts of the long-term state should be read and output at this time step. The main layer gt analyzes current 
inputs xt and the previous short-term state ht−1. An LSTM cell can learn to recognize an important input, store it in the long-term 
state, preserve it for as long as it needed, and retrieve it whenever needed. 

 

3.3 Attention 

The attention mechanism permits a network to focus only on a portion of presented input representation at each time step. This is 
achieved via weighting the combination of all encoded input representations with the most significant vectors assigned the highest scores. 
This introduces an element of memory storage in the network as represented by the attention weights through time. Attention weights are 
calculated by normalizing the output score of a feed-forward neural network described by the function that captures the alignment between 

input and output element at each time step. Equation (3)24 describes the attention operation. 

ht = 𝛼t,iyi, (3) 
i 

with 𝛼t,i = softmax(et,i) and et,i = a 
(
si−1, hj

)
. 

Initially, attention mechanisms were introduced to operate in conjunction with RNN and CNN. How- ever, attention-
only networks, such as the transformer, have been shown capable of capturing dependencies in sequential data dispensing 

with the aforementioned networks. The transformer architecture is as shown in Figure 2.24
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F I G U R E  2 Schematic representation of the transformer architecture 

 

 

The transformer utilizes separate multihead self attention in the encoder and decoder blocks as well as an encoder–decoder 
attention. Self-attention permits an input sequence to attend to itself thereby learning global depen- dencies between elements in 
the sequence without regard to position or order of time steps. Multihead runs multiple attention computations in parallel allowing for 
focus to be applied to same parts of a sequence differently learning different representations. The output of these parallel attention 
calculations are then combined to produce a final score. 

Multihead attention is based on scaled dot product attention as described in Equation (4),24 which uses a key, value and search 
query parameters. 

Attention(Q, K, V ) = softmax 

( 
QKT 

) 

V , (4) 

 
where Q, K, and V are the query, key and value matrices respectively. The query is used to search over keys of all context 
representations of the input elements. Each key is related to a particular value that encodes the specific input element. 

The work in this paper utilizes only the transformer encoder portion of the architecture for determination of long-range 
global dependencies in time-series signals for the tool wear prediction task. 

 

4 METHODOLOGY 

4.1 Notation 

The monitoring data for the tool wear prediction task is a time-series of real values from N different sensor channels, and is denoted X = 

{xi, ..., xL}, where L is the number of data samples. Each input data sample is a 2D tensor xi ∈ Rl×d where l is the number of time 
steps and d is the sensor channels. At each time step j there are d different values. For each input sample, there is a corresponding 

output wear value y ∈ R3 of three real values of flank wear width for each flute of the cutter. The wear monitoring task is thus 
formulated as a time-series regression prediction task of output value y for each input data sample xi. 
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4.2 Proposed model 

The proposed model architecture is as shown in Figure 3. It comprises of three main blocks based on functionality, that is, data denoising 
and feature selection, transformer encoder, and supervised learning layer block. In a multisensor monitor- ing system, each independent 
channel provides useful information which is complementary to the others. The combined data though possesses significant 
redundancies. Additionally, the data capture is done at a high frequency for real-time monitoring success but this inadvertently results 
in elevated noise in the data. Moreover, different sensor channels are var- iedly scaled which leads to data outliers and scaling 
disproportionality. These elements need to be addressed as they not only make model training unstable, they also negatively impact 
performance. The initial denoising and feature selection block of the proposed model addresses these challenges, with additional 
benefits provided. 

The main processing unit in this block is a GRN, whose configuration is as shown in Figure 3. It comprises of a stack of 
time-distributed fully connected neural layers, exponential linear unit activation, dropout, gated layer and a skip connection. The 
GRN permits the model to only apply data nonlinearization only where necessary. This enables the learning of both simple and 
complex data associations. The input data to this block is first segmented along the sensors channel in order to preserve each 
channels independence at initial processing. Each channel is then linearly encoded to increase data dimensionality for features 
determination. The encoded data is then fed to the FSN. The FSN parallel processes this data by independently applying GRN to 
each encoded channel while simultaneously doing the same to the concatenated combination followed by softmax weighting. The two 
outputs of the parallel processing are then differentially weighted to provide final result. The FSN allows the model to remove any 
unnecessary noisy inputs. The weighted output provides for a better representation of input data by minimizing redundancies. 

The denoised weighted output of the first block is then fed into a transformer encoder block. The main purpose of this block is 
to determine global dependencies in the provided sequence. Multi-head self attention is utilized for sequence 
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representation. No positional encoding is used thus the associations determined are irrespective of the sequence time step order. 
Finally, the features generated from the transformer encoder are fed to a supervised learning layer which comprises of two fully 

connected layers and a dropout layer. The output of the model is the corresponding wear value for each input data sample. Dropout is 
utilized to introduce randomness at train time to prevent data over-fitting. 

 

4.2.1 Data denoising and feature selection 

The input data sample xi of dimension l × d is first segmented along the d domain resulting in d tensors of shape l × 1. Each l × 1 input is 
linearly encoded with encoding size e a hyper-parameter for the encoding layer. The resulting encodings are d tensors of shape l × e. 
These are fed in parallel to the FSN. The weighted output of FSN is a single dimension of size e for each instance of input data 
sample. The input data samples are fed into the model as batches thus weighted output of FSN is b × e regardless of the number of 
input features, where b is the batch size. The ELU activation function used in the GRN and the softmax in the FSN are provided by 

Equations (5)39 and (6),39 respectively; 

 

ELU (x) = 
𝛼(exp(x) − 1) if x < 0 

, (5)
 

x if x ≥ 0 

softmax(x)k = 
  exp(x) 

, (6) 

 

 

where x is the input vector. 

k 
j=1 exp(xj) 

 

4.2.2 Transformer encoder 

Due to limited computational resources available for model training in this work, the input sequence to the trans- former encoder 
is first passed through a 1D convolutional layer for dimensionality reduction with the resultant sequence dimension being b × nl × e, 
where nl is the new sequence length. Data propagation through the transformer encoder results in features sequence of same 
dimension as input sequence. The hyper-parameters of choice for the trans- former block are the number of heads, head size 
for the multihead attention layer and the number of transformer blocks. 

 

4.2.3 Supervised learning 

The features tensor fed into this layer block passes through two fully connected layers to output three real values corre- sponding to 

predicted tool flank wear width. Linear activation function described by Equation (7)39 is used in the output regression layer. 

y = Wv + b, (7) 

where W is the connection weight, b the bias term associated with the layer and v the input features. The mean of the square of the 
error between the predicted values and the ground truth wear values is back propagated during model training for parameters 
adjustments. 

 

5 EXPERIMENTS AND DISCUSSION  

In order to determine the effectiveness of the proposed model for the tool wear prediction task, its performance was tested on publicly 
available milling wear data from three monitoring sensors. 
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5.1 Data description 

The data used for the tool wear prediction task in this study is for a dry surface milling process, from the 2010 data chal- lenge by the 
Prognostics and Health Management society. The monitoring signals are from force, vibration and acoustic emission sensors, with the 
first two having three channels each, for x, y, and z axes measurements. The input data thus comprise of seven channels. A Kistler 
quartz 3-component platform dynamometer was used for force measurements, with three Kistler piezo accelerometers and a Kistler 
acoustic emission sensor used for vibrations and acoustic emissions measurements respectively. The offline measured output is the 
flank wear width of three-flute ball nose tungsten car- bide cutters, obtained through a LEICA MZ12 microscope after each milling 
cut run. A total of six cutters were used in the experiments, but only three cutter histories, labeled c1, c4, and c6, have both 
monitoring data and associated mea- sured wear. A total of 315 cutting tests using each cutter, on a three-axis high-speed CNC 
machine, were conducted. The experimental setup used as described in Reference 41 is as shown in Figure 4. 

The input data corresponding to one cut is considered a data sample. The time series measurements corresponding to different 
data samples vary in length, with some having over two hundred thousand time steps. In this study, the original data sequence length 
was down-sampled to a representative 20,000 time steps for each data sample before further applying a sliding window for attaining a 
shorter sequence length while concurrently increasing the training samples count. The sliding window was adopted due to the high 
frequency capture of the signals thus minimal wear exists across windowed cut samples. The data was acquired through a DAQ NI 
PCI1200 data acquisition card at a sampling frequency of 50 kHz/channel. The experimental measurements were obtained under 
constant machining conditions indicated in Table 1. 

Due to the machining parameters being constant in the experiments, they were not considered for use in modeling in this study, since 
the model would be unable to capture any correlation with tool wear. 

 

5.2 Model settings 

The sliding window size adopted determines the length and number of data samples downsampled from original data set and serves 
as an initial crucial hyperparameter. Too short a sequence and not much discriminative information can 
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F I G U R E  4 Schematic representation of experimental setup used in data collection 

 

T AB LE  1 Machining parameters 
 

Parameter Value Units 

Spindle speed, n 10,400 rpm 

Feed rate, vf 1555 mm/min 

Radial depth of cut, ae 0.125 mm 

Axial depth of cut, ap 0.2 mm 
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TABLE 2 Proposed model hyper-parameters 

  

Model block Hyper-parameter Value 

Denoising/feature selection Encoding size 16 

 Dropout rate 0.4 

Transformer encoder Head size 128 

 Number of heads 

Conv1D filters 

4 

1 × 1 

Supervised layer FC nodes 32 

 Output nodes 3 

 Dropout rate 0.4 

 

T AB LE  3 Training/testing domain  

Train set  Test set Notation 

C4, C6  C1 C4C6/C1 

C1, C6  C4 C1C6/C4 

C1, C4  C6 C1C4/C6 

 

 
be derived whereas too long a sequence increases the computational processing load without much additional infor- mation 
captured. Values of 100, 200, 500, 1000, and 2000 sequential time-stamps were experimented on with results of cross-validated 
experiments used in window size selection. Values below 500 resulted in data samples with insufficient dicriminative information 
whereas higher values produced better results but at a price of enhanced computational load. The median value 500 was thus adopted. 
The increased training data samples was additionally utilized in minimizing model parameter uncertainty at train time. The 
summary of the main hyper-parameters, per functional block, for the proposed model are as indicated in Table 2. 

Random experimentation on different values and datasets for sensitivity and performance for the main hyper-
parameters was carried out with encoding size values of 16, 32, 64, and 128, transformer head size of 64, 128, 256, and 512, 
number of transformer heads of 1, 2, 4, and 8, and supervised layer nodes of 16, 32, 64, and 128. Higher value choices 
for each of the hyper-parameters significantly leads to models parameters count explosion which inadvertently risks data 
overfitting and increases computational processing load for model train- ing and testing. Performance of value variations on 
different experimentations aided in selection. No joint model hyper-parameter optimization was performed, so the selection of 
optimal values is still an open avenue for this study. The low count of hyper-parameters required for model tuning simplifies 
the proposed model in oper- ation. The training and testing regime adopted a three-fold setting whereby two sets, from 
histories C1, C4, and C6, are used for training with the third for testing. The adopted training/testing setup is as 
illustrated in Table 3. 

The loss function utilized in model training is the mean squared error between ground truth and predicted values, as given by 

Equation (8).39
 

loss = 
1 ∑

|ytruth − ypred |
2
. (8) 

 
The adaptive momentum estimation (Adam) optimization function was used for model weight updates at train time, with an exponentially 
decaying learning rate from an initial value of 0.01. The choice of initial learning rate value was from random experimentation. The 
adopted indices for evaluating model performance were the mean absolute error (MAE) and mean absolute percentage error (MAPE) 
between the truth and predicted wear values, as given by Equations (9) and (10), respectively. 



 

n 
i=1 

n 

MAE = 
1 ∑ 

|ytruth − ypred | . (9) 

n 
i=1 

ytruthi 

 
 

 

MAPE = 
1 ∑ ytruthi 

− ypredi 
× 100%. (10) 

 
The model was developed using Tensorflow Keras® deep learning library in Python® environment. The computing resource 
utilized was an Intel® Core i5 3GHz 4GB RAM CPU, with additional hardware acceleration provided via a GPU through the Google® 
Colab platform. 

 

5.3  RESULTS AND DISCUSSION 

The performance of the proposed model under the three train/test regimes was evaluated. Its performance on wear progression 
determination for the three cutter histories as compared to the ground truth data is as shown in the wear progression plots of Figure 
5. 

It can be seen that the model is able to track the wear trends closely for the three cutter histories, to within an average MAPE 
boundary of 6%. The model’s performance shows that the absolute error variation is comparatively slightly elevated during the initial rapid 
wear phase as compared to the constant and final failure phases. This however does not penalize the model negatively as crucial 
diagnostic and prognostic decision information such as condition-based tool change is taken in the final wear phase. The model’s 
performance on different indices is as summarized in Table 4. 

The model’s performance on the MAE metric was further compared to three other reported models utilizing the same 

monitoring data. The models are the time distributed convolutional-LSTM (TDConvLSTM),33 temporal convo- lutional network 

(TCN),42 and bi-directional LSTM (BiLSTM).43 The TDConvLSTM uses convolutional-LSTM layers for processing both spatial 
and temporal dependencies in the data in one layer rather than using two separate steps. The TCN on the other hand uses dilated 
convolutional layers utilizing causal padding to extract the time dependen- cies without peeping into the future. The BiLSTM on 
the other hand uses BiLSTM layers to learn time dependencies in sequences from both directions. The aforementioned models 
reported significant state-of-art results on the same 

 
 

 

 

F I G U R E  5 Regressive wear plots; predicted versus truth data 

 

TABLE 4 Model performance evaluation on different indices 
 

Index C1 C4 C6 Units 

MSE 8.0 10.9 16.1 ×10−5mm2
 

RMSE 8.9 10.4 12.6 𝜇m 

MAE 5.7 7.3 8.5 𝜇m 

Abbreviations: MAE, mean absolute error; MSE, mean squared error; RMSE, root mean squared error. 
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FIGURE 6  Evaluated mean absolute error comparison on different models 

 

 

dataset while utilizing a similar train/test regime as used in this paper. This allows for a baseline validation compari- son. The 
dataset used for training all the aforementioned baseline models was first preprocessed though before feeding to the model. The 
model developed in this study works directly on raw noisy data as input. The performance of the developed model versus the 
comparison models on the MAE metric is summarized using bar charts in Figure 6. It is seen that the model’s performance is 
well comparable to other reported work. The elimination and minimization of noise and redundancies in raw sensory data coupled 
with parallel processing of all monitoring data for extraction of long-range global dependencies enabled the model’s comparatively 
good performance. The attained results is with- out model hyper-parameters optimization being carried out, thus enhanced 
performance is expected with parameter optimization. 

Even though the transformer encoder of the developed model does not utilize positional encodings for time stamp mapping, the 
model’s performance proves that the extracted global dependencies of the processed time series feature vectors are a good abstract 
mapping of the input monitoring sensor signals, as compared to the favored LSTM or TCN networks, without the overhead 
computational costs. The processing of global relations as opposed to the short-term memory deficient recurrent approaches allows 
for automatic handling of comparatively long input sequences. More- over, additional benefits of transformer use such as model 
interpretability, though not explored in this study, can now be harnessed. Additionally, prior inputs preprocessing is eliminated as 
evidenced by the denoising and scaling capa- bilities of the initial feature processing block. The model can thus be used for the 
real-time tool wear monitoring task. 

 

6 CONCLUSION  

An end-to-end deep model has been developed for the tool wear monitoring task. The model has three main func- tional blocks, 
that is, data denoising and feature selection, transformer encoder, and supervised learning. The denoising and feature selection block 
enables the model to process raw multisensor data directly without need for preprocess- ing or scaling, as is conventional with 
deep models. On the other hand, the transformer encoder allows learning of global dependencies in a time-series sequence 
without regard to positional or time steps order. This provides a good alternative to the conventionally used recurrent networks. 
The supervised learning block is used to relate learned features to the monitored tool condition. The models’ performance was 
evaluated on experimental data from a CNC milling process, with further validation involving results comparison with other reported 
models utilizing same data-set. The model is able to track tool flank wear within an average MAE of 5.7, 7.3, and 8.5𝜇m for the 
three cut- ters under evaluation. The overall prediction accuracy derived from the MAPE metric translates to an average 93% 
across all the cutters considered. The performance attained is well comparable to other state-of-art results on the same dataset. 

Future work will involve performing model hyper-parameters optimization and introduction of positional encod- ing for the 
transformer encoder in order to further associate sequential time stamp inputs, as well as model interpretability. 
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1 INTRODUCTION  

1.1 Background and literature review 

Tool wear monitoring plays a vital role in CNC machining by keeping track of a measure of cutting tool degradation as machining 
progresses. This is critical for safeguarding the dimensional and quality integrity of the machined part while concurrently being 
necessary for the next frontier of condition-based machine automation. The information used in a typical wear monitoring task is 
derived from two sources; the dynamic monitoring sensors signals and the static cut- ting parameters, such as cutting speed, feed, 
depth of cut, among others. The static cutting variables generally remain constant throughout a typical machining operation but 

several studies have shown their significant role in tool wear dynamics.1-3 Despite the options in information usage, TCM is not 
a trivial task due to the challenge posed by con- tinuous tool-work interaction, making the on-line wear determination task onerous. 
Artificial intelligence techniques, 
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Abstract 

Development of an effective tool wear monitor requires maximum utilization of 

information from associated data, especially in machine learning based model- 

ing. However, vastly varied annotated training data is required, which is not only 

expensive but impractical to obtain. In the present work, a contiguous approach 

of artificial data generation followed up by self-supervised pre-training before 

supervised model fine tuning and final stacked generalized ensembling, has 

been adopted to develop an effective tool wear monitor in a low data regime. 

Cross-validated results of proposed methodology adoption in tool wear predic- 

tion on an experimental data set of few labeled samples attained an averaged 

MAE of 0.035, RMSE of 0.045 and MAPE of 12.5% on the best case ensem- 

ble, which was comparatively superior to a purely supervised-only trained 

deep model on the same data set, with an overall accuracy enhancement of 

over 25%. The proposed approach provides an effective experimental data aug- 

mentation technique while simultaneously minimizing aleatoric uncertainty 

and allowing for utilization of information from often ignored static cutting 

parameters. 
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such as data-based machine learning (ML), has provided an avenue to tackle this challenge, by relating a cutter’s wear measure to 

indirect data features of sensor signals and cutting parameters.4,5 This data-based approach, utilizing algo- rithms such as artificial 

neural networks (ANNs)6,7 among many others,8-10 has resulted in superior performance on different wear diagnostic and 

prognostic tasks as compared to previously used inflexible mathematical physics-based models.11 The ML-based deep modeling 
has extended this performance further by enabling on-line wear determina- tion without need for hand-crafted data features 

engineering.12 Different deep modeling based algorithms have been adopted for the wear estimation task, such as convolutional 

neural networks (CNNs),13,14 recurrent cells15,16 and even varying combinations of the two,17,18 among other algorithms.19,20 The 
accuracy of these models’ predictions is generally anchored on the architecture used and optimized development. Variance in 
predictions obtained from different models on similar tasks can thus be attributed to algorithm (architecture) type, optimization, and 
even neural networks sensi- tivity to different random initial weights at start of train time. Even though the deep models have resulted 
in significant comparative performance enhancement, in a low labeled data regime where there exists significantly few experimen- 
tal data instances having corresponding output indicators or labels, their deployment is inhibited. This is because, their accurate 
performance relies on usage of a comparatively huge volume of varied historical training data samples as com- pared to the 
conventional shallow data-based machine learning models. One solution to this data scarcity problem is to collect and annotate 
more experimental data. However, this is not only expensive but time and labor intensive. An alternative viable solution would thus 
be to instead increase the data samples artificially. Generative modeling provides this avenue. 

A trained generative model produces new varied data samples similar or relatable to the original training data 

set.21 They typically use an encoder-decoder architecture with the encoder learning useful representations of the data trained on 
whereas the decoder can be used for the generative purposes. Generative models have been developed suc- cessfully for different 
applications in the fields of computer vision and natural language processing (NLP), such as in References 22,23, for audio 
generation and synthesis, by utilizing dilated causal convolution networks and various variations of generative adversarial networks 
(GANs). Studies in References 24,25 also use GAN variants, such as the information-theoretic extension, to learn generalized data 
representations for varying computer vision applications. For the tool wear monitoring task, the nature of the input data is usually 
a multivariate time-series from several sensor channels and exhibits complex temporal relations. Attempts at generating synthetic 

time-series data for such fields as medical26 and finance,27 are reported in literature. The work in Reference 28 utilizes the 
conditional sig-Wasserstein GAN for time-series generation based on explicit approximation of the signature of a path, and the usage 
of conditional GANs is widely reported for synthetic time-series data generation for various fields as captured in References 29,30. 
For the tool condition monitoring task, studies such as in References 31-34 have reported the utilization of GAN in syn- thetic 
data generation for samples augmentation especially in low-labeled data scenarios, deploying such architectures as singular GAN 
(SinGAN), DCGAN, among other classical variants. Reported experimental results showed significant improvement in tool condition 
monitoring metrics as a result of augmenting experimental data with the synthetic data in model training. On the other hand, other 

studies utilize the comparatively simpler to train restricted Boltzmann machine (RBM)35 and variational auto-encoder (VAE)36,37 

for uni-variate and multivariate time-series modeling and generation in tool condition monitoring. The GAN is favored for most 
generative modeling tasks and especially in com- puter vision where it generates realistic images as though sampled from the true 
data set. However, the major short coming in practice is the tendency to produce samples with little diversity even when trained 
on a broad data set, a feature known as mode collapse. Most approaches proposed to address the challenge revolve around modifying 
model architectures, optimization algorithms and training loss functions, with very little understanding as yet of how they fix the 
problem. 

Even though generated synthetic data would augment the available data set, it’s unlabeled and as such cannot be used directly 
for a supervised task such as tool wear trending. Unsupervised learning techniques would thus need to be deployed on it in order to be 
useful. Unsupervised learning concerns extracting valuable information from unlabeled data to learn a representation that best exposes 
useful semantic features that can be easily decoded in a downstream task, such as regression or classification. The combined successive 
usage of unsupervised pre-training of a model on unlabeled data followed by re-using a portion of the model for the supervised learning 

stage constitutes the semi-supervised learning approach.38,39 This pre-training scheme is useful for when a large volume of unlabeled 
data is available but limited anno- tated data. Studies utilizing this paradigm for different condition monitoring tasks are as reported 
in References 40,41. However, this conventional scheme is inflexible to downstream supervised task changes as the knowledge 
learnt on the unlabeled data is specific for the associated task. A different alternative approach that would make use of gener- ated 
synthetic data to produce better disentangled generalized model is the self-supervised learning (SSL) paradigm. In 
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SSL, the representation of the structure of unlabeled data is learned through a pretext task, essentially turning an unsu- pervised 

learning problem into a supervised one.42,43 A pretext task is a supervised learning problem formulated based on pseudo-labels 
generated artificially for the unlabeled data. The knowledge derived from this pretext learning is then re-used for the main supervised 
learning problem. The SSL paradigm has gained significant popularity especially in NLP due to the success of the generative pre-trained 

(GPT) language models such as Bidriectional Encoder Representations from Transformers (BERT)44 and GPT-3.45 These models 
were pre-trained on pretext tasks of predicting missing words in sentences sampled from a vast word dataset. The models are then able to 
produce state-of-the-art results on various down- stream tasks by simply training a single layer on top of the pre-trained network for the 
specific task. Attempts at usage of the paradigm for different time series condition-based tasks are as reported in References 
36,46,47. In Reference 36, the pretext task aims to reconstruct data upon masking of some portions using an auto-encoder, before 
eventual usage for remaining useful life prediction of a machine tool. In References 47,48, contrastive approaches are used for the 
pre- text task whereby similar data samples are grouped closer together whereas diverse ones further apart with the aid of a similarity 
metric for distance measurement. The eventual tasks are for bearings’ fault detection, time series classifica- tion, and even change 
point detection. For a tool condition monitoring task, the work reported in Reference 49 utilizes comparative learning in model pre-
training for useful features extraction from colour images of cutting force signals. Development of the colour images was achieved 
by expanding each individual signal channel into grey scale images via grammian angular field (GAF) technique and then stacking 
into a colour image. The extracted features are then used together with only a few labeled data samples to train a deep residual 
convolutional network, ResNet18, leading to attaine- ment of an enhanced classification precision. In all the aforementioned studies, the 
SSL pre-trained models outperformed purely supervised approach ones in low data regimes and in certain cases had competitive results 
even in high data sce- narios. This clearly points to the promising direction of the approach. However, the challenge is formulation of 
a pretext task which is relatable and useful for a specific downstream problem, with no clear guidelines available for the pretext 
formulation. 

 

1.2 Problem definition and contributions 

Successful deployment of a data-based tool condition monitor in a practical machining environment requires the model to have been 
exposed to varied train data. Tool wear being a complex phenomena with many intertwined variables would thus require collection of 
copious amounts of run-to-failure data for varied tools’ distributions. This is impractical for most cases. The availability of only 
limited annotated data with concurrent unavailability of unlabeled data presents a low labeled data scenario. Training and 
deployment of deep models in such common cases is inhibited as they require quantity and quality in train data variability. 
Additionally, static cutting parameters, such as feed rate among others, are generally ignored in deep wear modeling for on-line TCM 
despite the role they play in tool wear rate. This is because they typically remain unchanged in a continuous machining operation 
and their usage easily risks model overfitting at train time and poor generalization at test time. Moreover, variance in predictions by 
deep models is easily attributable to sensitivity to initial random model weights and model’s algorithm type. The methodology reported 
in this study seeks to address these problem scenarios. 

This work proposes a contiguous methodology approach of generative modeling followed up by self-supervised pre-training 
and final supervised ensemble learning, for development of an end-to-end tool wear monitor on sensory data and cutting variables, 
in a low annotated data regime. The available experimental sensory data is first used to train a generative model, with the subsequent 
trained model utilized to generate copious amounts of un-annotated data relat- able to the experimental sensory data. The generated 
synthetic data is then used in the next methodology stage for self-supervised pre-training. A pre-task is formulated to this end for 
a generalized data structure representation, thus forming a pre-training framework for the downstream wear determination task. The 
pre-trained model’s weights from this methodology stage is re-used as initial parameter weights for the succeeding supervised model 
fine-tuning using the few labeled experimental sensory data available. A single supervised-fine-tuned model constitutes one base learner. 
Using different variations of pretasks, model algorithm types and varying initial random model weights, several base learners are 
trained. A stacked ensemble of several base learners is then created and to which a top level meta learner is affixed to learn how best to 
combine the predictions of the individual learners. Additionally, static cutting variables of tool feed rate, depth of cut and encoded 
material type are fed into the meta learner for association derivation with tool wear. The meta learner thus takes two blocks of input; 
the predictions of the individual base learners and the static machining variables. 
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| 

L(x, x′) = ||x − x′||2 + 
𝛽 ∑(

𝜎i − log(𝜎i) − 1 + 𝜇2
) 

(1) 

 

The main contributions of this work is, firstly, in adoption of the successive three-tier approach to enable deep model training for 
a tool wear monitoring task in a low data regime. Generative modeling allows for data augmentation by increasing training 
instances, though synthetic. This alleviates the associated high experimental costs of significant data collection, with additionally no 
extra computational costs involved. Self-supervised pre-training on the other hand leads to not only utilization of the produced 
synthetic data but also a generalized model for successful tool wear monitoring. The SSL pre-training also allows for the successful 
development of a supervised deep model on only a few labeled data samples. Additionally, the utilization of ensembling minimizes the 
propensity of deep models to be sensitive to parameter variation which results in vastly different predictions. This provides for better 
generalization and accuracy. Moreover, the stacked generalization approach adopted allows for utilization of static cutting variables in 
wear modeling in a simplified final block reducing the risk of model data overfitting while simultaneously making use of contained useful 
information. The rest of this paper is organized into the following sections: theory, methodology, experiments, results and discussion, 
conclusion and finally references. 

 

2 THEORY 

2.1 Generative modeling 

A generative model is trained in an unsupervised environment to extract implicit abstractions from a dataset and use the learned 

knowledge to generate new data samples relatable to the original training set.21 It thus estimates the probability p(x) of observing 
observation x, and requires no labels. However, if the data is labeled, it estimates the joint distribution p(x y), where y is the label. The 
training dataset comprises of examples x1, … , xn, which are samples from a true data distribution p(x). At start of training, the 
generative model outputs a random distribution such as from a unit Gaussian distribution. The goal is then to find the model’s 
parameters 𝜃 that produce a distribution that closely matches the true data distribution. The most prominent deep generative models 
are the generative adversarial network (GAN), variational auto-encoder (VAE), and the transformer-based models, for example, 
generative pre-trained (GPT) models. 

The VAE comprises of an encoder-decoder architecture to encode input x into a latent representation or coding h followed by 

decoding of the hidden representations into reconstructions x′ of the input.50 However, instead of directly producing a coding for a 
given input, the encoder produces a mean coding 𝜇 and a standard deviation 𝜎. The actual latent representation is then sampled 
randomly from a Gaussian distribution with mean 𝜇 and standard deviation 𝜎. Thus, the VAE provides a probabilistic approach to 
latent vectors representation and hence its generative capacity by simply sampling a random coding from a Gaussian distribution and 
decoding it to produce a new instance but that looks similar to the training samples. The goal in VAE training is two-part but done 
concurrently. On one hand is to find the parameters for the encoder and decoder that minimize the loss between the original input x and 

reconstructions x′, while concurrently determining latent representations that look as though they were sampled from a simple Gaussian 
distribution. The loss function in VAE training is a summation of the reconstruction and latent losses achieved through Kullback-
Liebler (KL) divergence as provided in Equation (1): 

 

2 
i=1 

i
 

 

where, K is the number of latent variables and 𝛽 is an adjustable hyper-parameter. 

 

2.2 Self-supervised learning 

The general formulation of the SSL framework comprises:51
 

1. Pretext task definition: generating artificial labels for the input data from the unlabeled data, based on understanding of the data’s 
structure. 

2. Supervised pre-training: model pre-training with data-labels from previous step. 

3. Transfer learning: re-using the pre-trained model as initial weights to train for specific downstream task of interest. 
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Various approaches have been adopted for the SSL pretext task formulation. One such is the generative approach which 
involves recovery of the original information such as by masking a token and trying to predict the masked token. Alternatively, 
there is the predictive approach in which the artificial labels are designed based on the cluster- ing or augmentation of data. A 
different approach is by contrastive learning in which a binary classification problem is set up based on positive and negative 
sample pairs generated by augmentation. Additionally, a different approach is by use of bootstrapping whereby two similar but 
different networks are used to learn the same representation from the augmented pairs of the same sample. However, there is no 
set framework for pretext task formulation that fits all schemes. 

 

2.3 Ensemble modeling 

Ensemble modeling involves the use of multiple models and aggregating the predictions from the different predictors on the same input 

data set in order to improve accuracy on the particular prediction task.52,53 Ensemble methods produce optimal results when the 
predictors are as independent from one another as possible with one way of achieving this is by using different algorithms. This increases 
the probability of the different models making varying errors thus enhancing the ensemble’s accuracy. Various approaches are utilized 
for ensemble modeling with the simple methods involving either max voting, simple averaging or weighted averaging. Generally for the 
simplified approaches, the final output prediction is taken as the best of the rest or simply aggregated by some form of averaging. 
Alternatively, advanced ensemble methods are utilized such as stacking, in which the predictions from each estimator are stacked 
together and used as input to a final estimator that computes the final prediction, with training of the final estimator accomplished via 
cross-validation. Alternatively, blending approach is used whereby a holdout set from the training set is used to make predictions. 
The predictions and holdout set are used to build a final model that makes predictions on the test set, with other advanced options as 
bagging or boosting being an option. The choice of the ensembling method thus depends on the accuracy and or complexity desired. 

 

2.4 Temporal analysis 

In deep modeling, temporal associations in data are generally extracted either via recurrent units, temporal convolu- tion or 

attention-based networks, among other variants. A temporal convolution network (TCN)54,55 for sequential data processing is 
premised on the 1D-convolution neural network (CNN), which applies multiple kernels across a sequence strided along the time 
dimension to output one feature map per kernel. Unlike the conventional CNN though, the TCN has a broader receptive field 
through the use of dilated convolutions thus allowing for longer sequence process- ing. A recurrent unit, on the other hand, such 

as a long short term memory (LSTM) cell,56,57 processes a sequence by outputting a value at each time step which is a function 
of cell’s input xt and value at previous time step ht. By incorporating both a short and long term state in its configuration, the 
LSTM can process a sequence and store rel- evant information in respective states as need determines. As for the attention 

network,58 it processes a sequence by developing focus on only a learned useful portion of the presented input, via weighted scoring 
based on normalizing the output score of a feed-forward network at each time step, with global associations determined across 
elements in a sequence. 

 

3 METHODOLOGY 

3.1 Notation 

The input data for the tool wear prediction task comprises of static scalars of cutting variables si ∈ Rm, and time-series of real values 
from N different sensor channels, {xi, ..., xL}; where m is the number of machining parameters, i is the data sample number, and L 

is the total count of data samples. Each time series input data sample is a 2D tensor xi ∈ Rl×N of l, the number of time steps, by N, the 
sensor channels. An input sample denoted Xi is thus a concatenation of the scalars and time series samples, that is, Xi = [xi, si]. For each 
input sample, there is a corresponding real valued scalar target yi ∈ R of 
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flank wear width. The wear monitoring task is thus formulated as a regression prediction task of output value yi for each input data 
sample Xi. 

fwear ∶ Xi ∈ [xi, si] → yi ∈ R 

 

3.2 Proposed methodology 

The proposed methodology for building an effective tool wear monitor in a low data regime framework is as illustrated in Figure 1 
and comprises of successive stages of generative modeling, followed up by SSL pre-training, then super- vised fine-tuning and 
final generalized ensemble stacking via a meta learner. VAE is utilized for the generative modeling stage because it allows for efficient 
Bayesian inference in probabilistic models, and is simpler in structure and training comparable to the GAN or transformer-based 
models. The architecture of the VAE used in this study is as shown in Figure 2. 

An input data instance is first passed through a temporal convolution network (TCN) block followed by batch normal- ization layer 
and then max-pooling. The TCN block is used for determining time dependencies between data elements in the time-series sensory 
samples whereas batch normalization is applied to ensure stability during training by re-centering and re-scaling the layer’s inputs. Max 
pooling scales down the sequence length and introduces scaling variance for better 

 

 

F I G U R E  1 Schematic block of proposed methodology approach. SL, supervised learning; SSL, self supervised learning. Xexp is 

experimental sensory data while Xsynth is generated synthetic data. 

 

 

F I G U R E  2 Schematic illustration of developed VAE architecture. Xinput is the sensory input data whereas Xrecon are the reconstructions of Xinput . 
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generalization. Scaled exponential linear units (SELU) are used as activation functions in the layers due to its superior convergence 
performance as compared to other activation functions. Equation (2) describes the SELU function operation, 

 

SELU (x) = 𝜆 
𝛼(exp(x) − 1) if x < 0 

x if x ≥ 0 
(2) 

with 𝛼 and 𝜆 as hyper-parameters of choice. 

Further processing is done through two fully connected neural layers to complete the encoder block. The out- put of the 
encoder is sent through a fully connected sampling layer to produce mean and standard deviation cod- ings. The decoder block 
then reverses the encoder processes. This involves data reshaping, up-sampling, before final processing through a TCN and a 1-
dimensional convolution layer to provide the reconstructions. The generative model is trained on the experimental sensory data 
Xexp as input and output, with produced reconstructions aimed at having minimal error loss with real inputs. The trained VAE 
model’s decoder is then re-used to produce copi- ous quantities of varied synthetic data Xsynth resembling the experimental sensory 
data, by simply providing codings, sampled from a random Gaussian distribution, to its decoder. The computation time required 
in the generative VAE model training/testing is dependent on; the utilized computer resource, training samples count and time-
step length of each time series sample. A comparatively high data sample count with an equally longer sample series length 
results in significantly longer training/testing computation time. Generally, this computational time is in the order of minutes-to-
hour, all factors considered. However, once the model is trained, the sampling time of synthetic data gen- eration is a fraction of 
the training/testing time of the order seconds-to-minute, depending on synthetic data count required. 

The SSL stage utilizes Xsynth from the generative model in the pre-training step but by first generating pseudo-labels ysynth for the 
data, based on pretext tasks formulation. Two pretext tasks were formulated to this end. The first task was designed as a multi-
classification problem of predicting the cluster id of a data sample as provided after clus- tering the synthetic data Xsynth using 
a time series k-Means classifier, which was chosen for its scalability and fast response. The second task on the other hand was 
formulated as a forecasting task of predicting the masked final values of each sample instance. The tasks formulation was 
informed by the prior knowledge that, a typical tool undergoes various distinctive wear progression stages during its life cycle. 
By having a model learn to agglomer- ate data samples into respective categorizations and or learn masked sequence values as 
upstream tasks can prove to be useful pre-training knowledge for temporal sequencing in the eventual tool wear prediction task. 
The model architecture chosen for the base learners used in the SSL stage comprises of three levels, that is, data de-noising and 
feature selection, temporal features extractor, and a top multi-percetron predictor layer, with the selection guided by previous 

reported work.59 The generalized base model configuration is as captured in the block diagram of Figure 3. 

The base network in the de-noising and feature selection block is the Gated Residual Unit (GRU) which parallel processes 
each input data stream individually in order to not only maximize information from all monitoring sensor streams but importantly, 
also minimize the variance associated with varying scaling and noise in the input data. The softmax activation function is used for 
output processing of the concatenated channel with its definition as represented in Equation (3); 

softmax(x)k = 
  exp(x) 

 
 

(3) 

k 
j=1 exp(xj) 

For the temporal features extractor, three model algorithms were explored and developed i.e. attention, LSTM and TCN based feature 
extractors, with their choices informed by usage in multiple reported literature for temporal and sequential analysis. The feature 
extractor choices are as shown in Figure 4. 

The top layer MLP is simply a single fully connected layer followed up by dropout layer, which guards against data over-fitting 
by introducing randomness principle in the training process. The final output predictor layer has varying nodes based on pretext 
task in question. The SSL pre-training step is thus a fitting of synthetic input Xsynth to artificial labels ysynth in a supervised manner. 

 

fpret ∶ Xsynthi → ysynthi 
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F I G U R E  3 Schematic illustration of a base learner’s architecture. Three main functional blocks are the denoising and feature selection block, feature 

extractor network, and the top level multi-layer perceptron (MLP) block. 

 

The trained model from the SSL stage is re-used for the supervised learning stage to trend tool wear from the experimental time-series 
sensory data Xexp, yweartruth 

. The fine-tuning process of the SL stage is a fitting of experimental sensory inputs Xexp to experimental 

truth wear values yweartruth 
, with training basically involving the top layer MLP. Multiple models (base learners) are trained with different 

variations on the initial random seed generator, temporal feature extractor and SSL pre-training task, with these different 
permutations constituting the various ensemble cases as will be discussed in the subsequent experiments section. The ensembling 
technique used in this study involves stacking multiple trained predic- tors from the SL stage in a parallel configuration and adding a meta 
learner at the top of the structure to learn how best to agglomerate the wear predictions from the individual base learners. Additionally, 
the static machining scalars of feed rate, depth of cut and encoded material type are also fed to the meta learner to develop associations 
with tool wear. Ensembling is utilized to minimize prediction variances due to aleatoric uncertainty associated with deep models 
sensitivity to ran- dom weights initializations, and also model algorithm type used in sequential data analysis. This allows for comparatively 
better generalized models which is essential for a tool wear monitor considering the varying wear distributions exhibited by different 
tools. The meta learner is simply a two layer MLP of fully connected neural layers. In the ensembling stage, the already trained base 
learners are not re-trained, only the meta learner is. Training of the meta learner is thus a fitting of the concatenated inputs of 
predictions from individual base learners ypredi 

and the static machining variables Xstatic, to the experimental ground truth wear values 

yweartruth 
. The final tool wear monitor is thus an end-to-end stacked ensemble of multiple base learners with a top level meta learner that 

takes in as inputs the monitoring sensory data coupled with static cutting variables, and outputs a wear prediction ypred. 

 

4 EXPERIMENTS  

4.1 Data description 

Evaluation of the study methodology was carried out on the UC Berkeley milling data set acquired from the NASA Ames prognostics 

data repository.60 It comprises of 16 cases of milling tools’ use to cut in metal in order to investigate tool wear 
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(A)  (B)  (C)  

 

F I G U R E  4 Schematic illustration of model choices utilized for feature extractor network, (A) is an attention-based network, (B) is an LSTM 

network, while (C) is a temporal convolution network (TCN). Abstract features input is derived as output of denoising and feature selection block. 

 

T AB LE  1 Experimental conditions.  

Cases  Depth of cut Feed Material 

1, 9  1.5 0.5 1 

2, 12  0.75 0.5 1 

3, 11  0.75 0.25 1 

4, 10  1.5 0.25 1 

5, 16  1.5 0.5 2 

6, 15  1.5 0.25 2 

7, 13  0.75 0.25 2 

8, 14  0.75 0.5 2 

Note: Material: 1 → cast iron; 2 → J45 steel. 

 

 

under varying operating conditions of feed rate, depth of cut and material type. Monitoring sampling data was obtained from three 
sensors, that is, acoustic emission, vibration and current sensors, stationed either at the machine table or spindle. The three cutting 
parameters were varied over two levels each to provide for eight case scenarios: feed rate of either 0.25 or 0.5 mm/rev, depth of cut 
of either 0.75 or 1.5 mm, and material type either cast iron or stainless steel J45. The choice of the levels for parameter variation was 
guided by industrial applicability and recommended manufacturer’s settings. The experiments were repeated a second time with the 
same cutting parameters but different tools to provide the total 16 cases. Table 1 summarizes the experimental conditions utilized 
for all the machining cases. 

The monitoring sensor signals were captured at 250 Hz with each cut having 9000 sampling points or time steps. A representative 
monitoring signal sample of a cut is as shown in Figure 5 for cut number 100 in the data set, and clearly captures the tool entry, 
constant cutting and exit phases. However, certain captured signals such as corresponding to runs 17, 94 and 105 have significant 
anomalies and have to be excluded from the dataset usage. These distorted signals as shown in Figure 6, either have abnormally high 
signal amplitudes (Figure 6A,B) or signature unrepresentative of a typical machining cycle (Figure 6C), and are thus outliers whose 
utilization would negatively impact convergence during model training. There are varying number of runs for each of the 16 cases at 
which points the degree of flank wear was measured up to a wear limit and sometimes beyond, but not always. There are a total of 
only 167 cuts for all the cases combined. Additionally, the flank wear values were not always recorded at the end of each run leading 
to missing wear values. This 
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n 

L = − 
m

 y log(p̂ ) + (1 − y )log(1 − p̂ ) 

 

reduces further the number of data samples available for analysis. The dataset is thus not only significantly unbalanced but also fits in 
perfectly into the low labeled data regime scenario, providing a basis for its usage in this study. 

The experimental set up used for data collection is as illustrated in Figure 7, with the data collected on the Matsuura machining 

center MC-510V. The cutting tools used inserts of type KC710 with the size of the work pieces being 483 × 178 × 51 mm3. A 
MIO-16 (National Instruments) high speed data acquisition board with a maximal sampling rate of 100 KHz was utilized for 
sampling output sensory data via LabVIEW® software. The acoustic emission sensor used was model WD 925 with a frequency range 
of up to 2 MHz, whereas the accelerometer was model 7201-50 ENDEVCO with a frequency range of up to 13 KHz. For current 
measurements, model CTA 213 current sensor was utilized. 

 

4.2 Data preparation, models settings and experimental cases 

The data sets used in models training for the various methodology stages varies and are thus handled differently. A typical monitoring signal, 
as depicted in Figure 5, captures three distinct cutting phases of tool entry, constant contact machining and tool exit. Visual inspection 
aided in initial processing of the experimental sensory data by selecting only the stable cutting region for use in models training. For 
the generative model, training is carried out on experimental sensory inputs only without labels as the aim is to generate new synthetic 
dataset statistically resembling the experimental set. The data was pre-processed by scale normalization to be in the boundary [0 − 
1], as provided by Equation (4): 

 

xz = 
xn − xmintrain 

 
(4) 

 

xmaxtrain 
− xmintrain 

where, xn is the time series of the nth sensor channel, xmaxtrain 
and xmintrain 

are the maximum and minimum channel values as determined 

on the train set, and xz is the normalized time series input data. The scale normalization used on the train set is applied to the test set as 
referred to Equation (4). Input data normalization was done to ensure convergence and stable models’ training which would otherwise 
be difficult by training on data sequences on different scales as captured from the multiple sensor channels. The scaling also allowed for 
the adoption of the binary cross-entropy loss for the reconstruction loss function as opposed to the mean square error for faster and better 
convergence. The binary cross-entropy log loss is as described in Equation (5); 

 1 ∑
m [ 

i i i i 
]
 

 

where yi is the instance truth value, p̂i  the corresponding model prediction, and m the mini-batch samples count. The generative 
model’s reconstruction training is thus modeled as a multi-label binary classification problem. A sample’s time series length choice 
was based on experimentation using sample lengths of 64, 128 and 256. The computational cost exponentially increases with 
increase in sample length to be produced and with decreasing accuracy in reproduced samples. The sample length of 64 was adopted 
for the significant comparative accuracy obtained in reconstruction. All successive methodology stages thus adopt the same sample 
sequence length. In the present study, a comparative compu- tation time factor of 15:1 min in relation to training/testing time vis-a-vis 
synthetic data generation time, was obtained for 40,000 generated samples versus a windowed training data count of 25,000. The 
selection of the generative VAE model’s hyper-parameters was via a random search as it was found to be computationally effective 
than a grid search, with 200 such iterations carried out. Initial parameter value ranges was guided by previously reported work on 
closely similar architecture. The hyper-parameters in question were the number of filters used in the convolutions, codings size, dila- 
tions sequence and the kernel size of the convolutions. Evaluation of the generative model was based on its generated samples with 
two metrics used in this study for evaluation purposes, that is, the maximum mean discrepancy (MMD) between the generated and 
experimental distributions, and the data usefulness metric. The MMD metric seeks to ascer- tain the relation between two distributions 

by checking whether any two sets of samples from different data sets were generated by the same distribution.61 The relation is done 
by comparing there statistics. The MMD represents distances between two distributions as distances of mean embeddings of their 
features. Given two distributions P and Q over a set X, the MMD is defined by a feature map 𝜓 ∶ x → H where H is a reproducing 
kernel Hilbert space. Thus, in general, the MMD is given by Equation (6); 
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(5) 

n 

i=1 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F I G U R E  5 Schematic illustration of an experimental sensory signal. AE-spindle, spindle acoustic emission; AE-table, table acoustic emission; 

smcAC, spindle motor alternating current; smcDC, spindle motor direct current; vib-spindle, spindle vibration; vib-table, table vibration. 

 

(A)  (B)  
 

(C)  

 

F I G U R E  6 Schematic illustration of distorted sensory signals, (A) and (B) are the captured signals for cut numbers 17 and 94 

respectively, with abnormaly high amplitude values, (C) is the captured signal for cut number 105, with an uncharacteristic signature 

unrepresentative of a typical machining cycle. 
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|| || 

∑ 

t + f 

t + f 

n 

n 
i=1 

i i | 

 
 

 

FIGURE 7  Schematic block representation of experimental setup used in data collection. RMS, root mean square. 

 

 

MMD(P, Q) =  Ex∼P[𝜓(x)] − Ey∼Q[𝜓(y)] H (6) 

which translates to the distance between the feature means of P and Q based on a kernel function. MMD = 0 if and only if P = Q. 
MMD is a value between 0 and 1 with a value close to zero indicating statistical closeness of the distributions. The MMD has found 
wide usage in applications such as detecting the distributional discrepancy in datasets, checking whether two distributions are the 

same, as a loss function in ML model training, among other functions.61 The second metric of data usefulness is based on the train-
on-synthetic test-on-real (TSTR) paradigm. The generated synthetic data should be as useful as the real data when used for model 
training on a predictive purpose. Evaluation of generated data, and in extension the generative model, on the usefulness metric is 
based on its successful use in the downstream main task of tool wear prediction. 

The SSL pre-training stage utilizes only generated synthetic data. The pseudo-labels generation is based on the pretext task. For 
cluster id determination task, the clusters as determined by a time series k-Means classifier are adopted for ysynth, whereas the last 
six channel values per sample are adopted in the forecasting task. Upon annotation, training is then carried out in a supervised 
manner. The evaluation metrics for pretext task 1 are the accuracy, precision and recall as provided for in Equations (7), (8), and 
(9); 

accuracy = 
  tp + tn 

 

 
(7) 

n 

i=1 tp + tn + fp + fn 

precisioni = 
  tp 

 

p p 

recalli = 
  tp 

 

p n 

(8) 

 

(9) 

where tp is the cluster true positive count, tn the true negative count, fp the false positive count, and fn the false negative count 
respectively. In order to eliminate classification bias, same sample size per cluster was picked, with the new balanced set then used in 
model pre-training. The softmax function was used for layer output in task 1, with its definition as defined in Equation (3). 
Evaluation of pretext task 2 was based on minimizing the mean square error between the model predictions and assigned pseudo-
labels per data instance as provided for in Equation (10) 

loss = 
1 ∑

|ytruth − ypred |
2 

(10) 

 
where ytruthi 

are the assigned pseudo-labels per data instance, and ypredi 
are the corresponding forecast predictions per same input 

data instance. 
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T AB LE  2 Models hyper-parameters.  

Model  Block Hyper-parameter Value 

VAE  TCN Filter count 32, 64 

   Kernel size 2 

   Dilations [1,2,4] 

  MaxPool1D Pool size 2 

  Sampling Codings size 21 

  UpSampling1D Filter count 32, 64 

  Conv1D Kernel size 2 

   Filter count 64 

Base learner  De-noising Encoding size 16 

   Dropout 0.4 

  Attention extractor Head size 128 

   Head count 4 

   Conv1D filters 1 × 1 

  LSTM extractor Units 16, 32 

   Dropout 0.2 

  TCN extractor Start filter count 16 

   Dilations [1,2,4] 

   Kernel size 2 

  MLP Units 128 

   Dropout 0.4 

 

 
For the supervised model training and eventual end-to-end model evaluation, experimental data from case sam- ples 1 to 8 

were used for model training, with the exception of case 6 which only has one data instance. Due to the unbalanced nature of 
data as a result of uneven runs per experimental case, samples corresponding to cases 15 and 16 were additionally added to the 
train set for augmentation. The remaining case samples, 9 through to 14, were used as the test set. This resulted in 73 case 
samples used in training while 70 being utilized for testing. This data split selection was informed by two facts: first, each 
experimental case was repeated a second time using sim- ilar machining conditions but with different tools, thus by using one 
case for model training, the repeated case can be used for model testing. Secondly, at practical test time, a trained model is 
exposed to data set on tools yet unseen to it thus the data-split formulation chosen allows for better generalizability for model 
deployment. In order to addi- tionally provide an unbiased evaluation of the model on the experimental data, a stratified 15-fold 

cross-validation was carried out.62-64 The exclusion of case 6, with only one data sample, leaves 15 cases providing for the 
choice of hyper-parameter k in the cross-validation, with the stratified fold approach ensuring preservation of class distribution due 
to the unbalanced nature of the experimental data. The 15-fold stratified cross-validation thus involved splitting the dataset into 15 

folds, corresponding to experimental cases. In the first instance, the first 14 folds are used to train the model, while the 15th is 
used as the hold-out test set. The training/testing process is then repeated with a differ- ent hold-out test set fold until all the 
folds have been given the opportunity to be used as the test set, providing for a total of 15 model evaluation runs. The averaged 
performance from these runs provides the final overall prediction results. 

Hyper-parameters selection for base learner was based on random experimentation on different values for sensitivity with no joint 
optimization carried out as yet. Four levels of parameter choices were adopted with encoding size values of 16, 32, 64 or 128, 
attention head size of 64, 128, 256 or 512, head count of 1, 2, 4 or 8, supervised layer nodes of 16, 
32, 64 or 128, and dropout values of either 0.2, 0.3, 0.4 or 0.5. The comparative higher value choices led to significantly increased 
computational processing load due to parameters explosion which inadvertently elevated data overfitting risks. 
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MAPE =  
1 ∑

 
 | i i | 

× 100% (12) 

RMSE = 
√
√ 

 ∑
|y 

n 
i=1 

MAE = 
1 ∑

|ytruth − ypred | (11) 

 

Thus, performance on value variations on different experimentations aided in the selection. Table 2 summarizes the hyper-
parameter selections for the VAE and a single base learner. 

The loss function utilized in the supervised model training is the mean squared error between ground truth wear val- ues and 
corresponding predictions, with the general formulation as provided in Equation (10). The adaptive momentum estimation (Adam) 
optimization function was used for model weight updates at train time, with an exponentially decay- ing learning rate from an initial 
value of 0.01. The choice of initial learning rate value was from random experimentation. The evaluation metrices for model 
performance were the mean absolute error (MAE), mean absolute percentage error (MAPE) and root mean square error (RMSE), 
between the truth and predicted wear values, as provided by Equations (11), (12), and (13) respectively. 

 

 

 

n 

n 
i=1 

ytruth − ypred 

ytruthi 

√ 

1 
n

 

n 
i=1 

| truthi 

 

− ypredi | 

Using different variations of pretext task, temporal feature extractor model and initial random seed generator, three ensemble 
cases were explored resulting in development of three stacked models (ensemblies). Ensemble case 1 involved stacking multiple 
base learners pre-trained on the same pretext task and having the same architecture but randomly initialized differently at start of 
training. Ensemble case 2 involved stacking base learners utilizing different feature extractor algorithms but pre-trained on the same 
pretext task and similar initial random seed generator. As for ensemble case 3, the base learners were of the same architecture but 
are pre-trained on different pretext tasks. Anal- ysis of the different cases would provide an enlightening insight into effect of 
proposed SSL pre-trained ensembling approach as related to choices of model algorithm, pretext task and variance associated 
with weight initialization. In the cases of selection of similar features model type and or pretext task, the choice was based on 
experimentation with the best performance guiding selection. The performance of the developed ensemblies was compared against 
a model purely supervised trained on experimental data only. In order to ensure competitive comparison, the architecture of this 
model was chosen to be same as of the best performing architecture of the base learners in the ensemblies. The attention-based 
learner was chosen to this end with details of its configuration similar as described in the methodol- ogy section. Additionally, 
strided data windowing was utilized for additional augmentation, with same data set applied for the developed ensemblies. Table 3 
summarizes the ensemble cases and choices therein. The models were developed using Tensorflow Keras® deep learning library in 
Python® environment. The computing resource utilized was an Intel® Core i5 3GHz 4GB RAM CPU, with additional hardware 
acceleration provided via a GPU through the Google® Colab platform. 

 

T AB LE  3 Ensemble cases summary.  

Stack Base model name Feature extractor Weights generator Pre-training 

ensemble 1 Model 1 (m1c1) 

Model 2 (m2c1) 

Attention 

Attention 

Rand n 

Rand 2*n 

Task 1 

Task 1 

 Model 3 (m3c1) Attention Rand 3*n Task 1 

ensemble 2 Model 1 (m1c2) 

Model 2 (m2c2) 

Attention 

TCN 

Rand n 

Rand n 

Task 1 

Task 1 

 Model 3 (m3c2) LSTM Rand n Task 1 

ensemble 3 Model 1 (m1c3) 

Model 2 (m2c3) 

Attention 

Attention 

Rand n 

Rand n 

Task 1 

Task 2 
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2 (13) 

n 

i i 



 

 

5 RESULTS AND DISCUSSION  

5.1 Generative model evaluation 

Training of the generative VAE model was aimed at lowering the absolute loss between reconstructions and corresponding original data 
samples, while simultaneously pushing the codings from its encoder to be from a Gaussian distribution. Visual evaluation of the 
VAE’s generated real valued samples vis-a-vis the original experimental dataset is difficult to infer, and this can be evidenced in 
the sample illustrations in Figure 8. 

Performance evaluation of a synthetic time-series data generator is significantly non-trivial as compared to the case usage in 
computer vision and NLP. This is because, as an example case for image generation in computer vision, simple visualization of the 
generator’s output would provide feedback on a model’s realistic or otherwise generated images. This is not the case for synthetic time 
series data, with the longer the series the greater the problem dimension. The generated data samples using the VAE’s decoder were 
evaluated on two metrics, that is, the maximum mean discrepancy (MMD) and the usefulness metric, as previously described in the 
experiments section. By taking a fixed set of M generated samples 

 
 

(A)  (B)  

 

 

 

 

(C)  

 

F I G U R E  8 Schematic illustration of generated versus experimental sensory sample, (A) is a normalized generated sample while (B) is its re-scaled 

version. 
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and a similar number of experimental data, the MMD between the two distributions using a Gaussian filter evaluated to 0.145, 
indicating a statistical closeness between the generated samples and the original experimental monitoring signals data. Evaluation on 
the generated data usefulness metric was based on the performance of a subsequent model trained on this synthetic dataset. If a model 
trained on the generated samples is then tested on actual real data and its performance is comparatively good and acceptable, then the 
dataset is considered useful. Analysis of this metric on the VAE’s generated samples is captured in the subsequent sub-section when 
evaluating the final produced models on the wear prediction task. The variability of the synthetic set is important for useful 
adaptation downstream. An indication of the generated samples variability can be infered from their cluster distribution as 
produced by the k-Means classifier for use in the cluster determination pre-task. The clusters distribution for the generated samples is 
as shown in Figure 9 indicating clear variability in obtained samples. 

 
 

 

F I G U R E  9 Generated samples cluster distribution. Time series k-Means classifier used for the clustering. 

 

T AB LE  4 Classification report on clustering task.  

Cluster Precision Recall Samples 

0 0.91 1.00 1390 

1 0.97 0.98 1390 

2 0.77 0.85 1390 

3 0.87 0.80 1390 

4 0.82 0.98 1390 

5 0.92 0.85 1390 

6 0.96 0.99 1390 

7 0.82 0.92 1390 

8 0.83 0.83 1390 

9 0.99 0.82 1390 

10 0.86 0.86 1390 

11 0.89 0.95 1390 

12 0.86 0.81 1390 

13 0.90 0.87 1390 

14 0.89 0.99 1390 

Accuracy  0.94 20,850 

Weighted avg  0.93 20,850 
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SL only model  Ensemble 1  Ensemble 2  Ensemble 3  

 
TABLE 5 Models performance evaluation on different indices. 

 

Case Valid MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

9 hold-out 0.083 0.094 24.60 0.041 0.045 18.40 0.041 0.045 18.88 0.042 0.051 16.77 

 15-fold 0.091 0.096 19.54 0.057 0.052 14.74 0.049 0.043 17.11 0.062 0.063 14.98 

10 hold-out 0.092 0.113 72.42 0.017 0.023 6.51 0.015 0.023 8.05 0.022 0.028 8.36 

 15-fold 0.071 0.096 74.40 0.022 0.029 10.27 0.035 0.042 22.76 0.026 0.031 11.10 

11 hold-out 0.114 0.152 48.37 0.029 0.045 14.29 0.025 0.038 12.20 0.030 0.043 13.55 

 15-fold 0.116 0.156 55.20 0.029 0.045 15.92 0.044 0.036 12.82 0.048 0.053 12.10 

12 hold-out 0.074 0.080 45.50 0.027 0.029 12.84 0.015 0.017 8.75 0.018 0.023 9.89 

 15-fold 0.079 0.088 53.56 0.027 0.031 15.84 0.028 0.033 18.16 0.020 0.027 10.78 

13 hold-out 0.358 0.476 45.44 0.022 0.026 6.62 0.025 0.029 6.18 0.026 0.036 6.40 

 15-fold 0.314 0.482 36.02 0.042 0.083 6.45 0.047 0.084 7.01 0.056 0.098 7.74 

14 hold-out 0.173 0.237 41.14 0.027 0.032 9.98 0.028 0.030 10.76 0.040 0.048 13.34 

 15-fold 0.191 0.295 43.30 0.044 0.056 9.28 0.032 0.037 12.10 0.068 0.055 14.74 

Note: Key: valid = validation. 

 

 

5.2 Influence of self-supervised learning 

The two pretext tasks formulated for the SSL stage, on the synthetic dataset obtained from the generative model, trans- lated to time 
series clustering and forecasting tasks respectively. The successful performance of the subsequent model pre-trained on either of 
these tasks required the best performance on the associated metrics for each task in order to maxi- mize the learnt knowledge in the 
downstream wear prediction task. For the series id cluster identification task, this meant attainment of a high score on each of the class 
specific metrics of precision and recall, with the maximum attainable score of 1.00 indicative of 100% accurate classification. The 
obtained metric scores for the clustering pretraining task on a hold out test set are as summarized in Table 4, with an averaged 
classification accuracy of 94% attained. On the other hand, for the series forecasting task, attainment of a low mean squared error 
loss between predictions and pseudo labels was the aim. With no set lower limit or guarantee of attainment of the same, repeated 
experimentation on hyper-parameters to achieve lowest possible error metric sufficed for this case. 

The performance, on the single exclusive hold-out test set and 15-fold cross-validated, of the three developed model ensemblies 
versus the base comparison model on the different evaluation metrics is as summarized in Table 5. 

It is observed that, the results obtained from the 15-fold cross-validation exhibits comparatively higher prediction errors as 
compared to the single hold-out test set results, but with general closeness in valuation, a deviation approximately 
±20%. The comparatively higher errors is attributable to increased variance from exposure to a wider data set, which though 
provides for lowered bias and hence more reliable results. The closeness in prediction values of the two validation approaches is 
attributable to lack of data leakage with a respective test case never being used in model training, providing a good estimate of the model’s 
performance on yet unseen data. Irrespective of the two validation approaches, it is observed that, all the three SSL pre-trained ensemble 
models completely outperformed the base comparison model, that was only supervised trained on the few labeled experimental data 
only, on all evaluation metrices. The influence of knowledge learnt from the copious amounts of varied synthetic data is seen in the 
eventual performance enhancement obtained by the SSL pre-training approach as evidenced by reduced mean absolute errors and 
percentage errors for all experimental test cases. Further illustration of models performance is captured in the wear trends of Figures 
10 and 11, with the wear trends in Figure 10 comparing the truth plots versus prediction plots of the supurvised-only trained model and 
ensemble 1 only for simplicity in comparative analysis. The wear plots of all the models compared as in Table 5 are captured in 
Figure 11. The predicted wear trends of all the stacked ensemblies closely trace the truth plots for all experimental test cases with 
significant variation majorly attained for test case 11. This can be attributed to the unbalanced nature of the data set causing irregular 
exposure. The comparatively better predictive results were obtained for stacked ensemble 1, with the averaged 15-fold cross-
validated performance on the data set providing an MAE of 0.035, RMSE of 0.045, and 

JOANES AGUNG’ et al. 17 of 23 

2
5

7
7

8
1

9
6

, 0
, D

o
w

n
lo

a
d

e
d

 fro
m

 h
ttp

s://o
n

lin
e
lib

ra
ry

.w
ile

y
.c

o
m

/d
o

i/1
0

.1
0

0
2

/en
g

2
.1

2
7

8
8

 b
y

 IN
A

S
P

 - K
E

N
Y

A
 Jo

m
o

 K
e
n

y
a
tta

 U
n

iv
e
rsity

 o
f A

g
ric

u
ltu

re
 a

n
d

 T
e
, W

ile
y

 O
n

lin
e
 L

ib
ra

ry
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee
 th

e
 T

e
rm

s an
d

 C
o

n
d

itio
n
s (h

ttp
s://o

n
lin

e
lib

ra
ry

.w
iley

.c
o

m
/te

rm
s
-a

n
d

-c
o

n
d

itio
n

s) o
n

 W
ile

y
 O

n
lin

e
 L

ib
ra

ry
 fo

r ru
le

s o
f u

se
; O

A
 a

rtic
le

s a
re

 g
o

v
e
rn

e
d

 b
y

 th
e
 ap

p
lic

ab
le

 C
rea

tiv
e
 C

o
m

m
o

n
s L

icen
se 



 

25778196, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/eng2.12788 by INASP - KENYA Jomo Kenyatta University of Agriculture and Te, Wiley Online Library on [24/10/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License 

 

 

 

 
JO

A
N

E
S 

A
G

U
N

G
’ e

t 
al

. 
18

 o
f 

23
 

F
I

G
U

R
E

 
10

 

co
m

p
ar

is
o

n
. 

R
eg

re
ss

iv
e 

w
ea

r 
p

lo
ts

; t
ru

th
 v

er
su

s 
p

re
d

ic
te

d
, s

im
p

lif
ie

d
. O

n
ly

 s
ta

ck
ed

 e
n

se
m

bl
e 

1 
p

re
d

ic
ti

o
n

 p
lo

ts
 in

cl
u

d
ed

 f
or

 s
im

p
lif

ie
d

 

F
I

G
U

R
E

 
11

 
R

eg
re

ss
iv

e 
w

ea
r 

p
lo

ts
; t

ru
th

 v
er

su
s 

p
re

d
ic

te
d

, a
ll 

ca
se

s.
 A

ll
 t

h
re

e 
st

ac
k

ed
 e

n
se

m
b

le
 p

re
d

ic
ti

o
n

 p
lo

ts
 i

n
cl

u
d

ed
. 



 

 

MAPE of 12.5%, as compared to the supervised-only trained model with an averaged MAE of 0.115, RMSE of 0.175 and MAPE of 
40%. 

 

5.3 Influence of ensembling 

The influence of ensembling is best captured by analyzing the performance of the individual base learners making up a stacked 
ensemble. The averaged performance on all test data of the constituent base models in each ensemble case versus the stacked ensemble 

on the MAE metric is as shown in Figure12, with extra evaluation indices summarized in Table 6. In analyzing ensemble case 1, 
the effect of different random weight initialization is seen in the varying MAE and MAPE values obtained, clearly evidencing 
aleatoric uncertainty. The stacked ensemble though smoothes out this variance and results in an even lower MAE and MAPE, partly 

also due to the additional information gained from the static cutting variables of feed rate, depth of cut and material type. For 
ensemble case 2, the influence of different base learners in terms of algorithm (architecture) is captured in the completely varied 

results. The attention-based learner and the LSTM appear to perform relatively better compared to the TCN base learner. This is 
attributable to memory capacity of the two in temporal analysis as compared to the TCN. The stacked ensemble of the three with a 

meta learner though offsets the significant performance variation allowing for different model architectures utilizing varying 
strengths to be adopted. Analysis of ensemble case 3 provides an insight into the effect of the choice of pretext task for the SSL 

stage. The cluster determination pretext appears to produce a better generalized model for the downstream wear determination 
task as compared to the model pre-trained on forecasting. This is attributable to the fact that pretext task 2 essentially constituted multi-

variate forecasting on a mean absolute loss in which its difficult to attain best convergence as compared to pretext 1 of multi-
classification. Moreover, the forecasting feature may not be generalizing well for the wear determination task as it does not 

constitute fully in trending. The cluster identification task on the other hand though appears to correlate different series to wear 
phases and the varying experimental cases. The performance of an SSL pre-trained model is thus 

 

 

 

F I G U R E  12 Models performance comparison on MAE metric. att, attention; foc, focusting; clust, clustering. 

 

TABLE 6  Base learners averaged performance evaluation on different indices. 
 

Ensemble 1  Ensemble 2  Ensemble 3  

 m1c1 m2c1 m3c1 stack1 m1c2 m2c2 m3c2 stack2 m1c3 m2c3 stack3 

MSE 0.0015 0.0013 0.0014 0.0013 0.0015 0.0637 0.0033 0.0010 0.0015 0.0599 0.0015 

RMSE 0.0391 0.0357 0.0375 0.0358 0.0391 0.2524 0.0573 0.0321 0.0391 0.2447 0.0390 

MAPE 14.87 11.81 11.47 11.36 14.87 54.15 21.18 10.56 14.87 56.57 11.23 

Note: Key: model name notations as referenced in Table 3. 

JOANES AGUNG’ et al. 19 of 23 

2
5

7
7

8
1

9
6

, 0
, D

o
w

n
lo

a
d

e
d

 fro
m

 h
ttp

s://o
n

lin
e
lib

ra
ry

.w
ile

y
.c

o
m

/d
o

i/1
0

.1
0

0
2

/en
g

2
.1

2
7

8
8

 b
y

 IN
A

S
P

 - K
E

N
Y

A
 Jo

m
o

 K
e
n

y
a
tta

 U
n

iv
e
rsity

 o
f A

g
ric

u
ltu

re
 a

n
d

 T
e
, W

ile
y

 O
n

lin
e
 L

ib
ra

ry
 o

n
 [2

4
/1

0
/2

0
2

3
]. S

ee
 th

e
 T

e
rm

s an
d

 C
o

n
d

itio
n
s (h

ttp
s://o

n
lin

e
lib

ra
ry

.w
iley

.c
o

m
/te

rm
s
-a

n
d

-c
o

n
d

itio
n

s) o
n

 W
ile

y
 O

n
lin

e
 L

ib
ra

ry
 fo

r ru
le

s o
f u

se
; O

A
 a

rtic
le

s a
re

 g
o

v
e
rn

e
d

 b
y

 th
e
 ap

p
lic

ab
le

 C
rea

tiv
e
 C

o
m

m
o

n
s L

icen
se 



 

 

heavily influenced by the formulated pretext task. However, for real valued time series data, there is no guideline on how to best 
achieve an effective formulation and is thus dependent on the task at hand. The performance of ensemble 3 model though shows 
that multiple tasks can be combined to leverage on different information learnt thus minimizing the associated variance due to pretext 
task choice. Conversely, unhelpful pretext task choice could significantly lower overall model performance. All the developed 
ensemblies though provide enhanced model performance allowing a deep model to be trained on only a few labeled data samples. Based 
on the best ensemble cross-validated results, the averaged performance enhancement on the supervised-only trained model constituted 
an MAE, RMSE and MAPE error reduction of 0.08%, 0.13% and 27.5% respectively. 

As a further validation of the proposed methodology, the performance of the developed ensemble models was com- pared with 
other work as reported in literature on the same experimental data set. However, different reported work utilize varying experimental 
data train/test scenarios thus making it difficult to realize a direct inference. The approaches reported in those works though rely on the 
effectiveness of the optimized developed models’ architecture or algorithm for effective results in the condition monitoring tasks, and 
the approach is in essence directly similar to the base comparison model already utilized in this work. The approach reported in this 
work thus still provides a performance enhancement in comparison to reproduced cases from literature on test set used in this study. 

 

6 CONCLUSION  

This study proposed a contiguous approach for development of an end-to-end on-line tool wear monitor on both sensory and static cutting 
parameters for a low annotated experimental data regime, while concurrently addressing challenges associated with predictions 
variance due to different model algorithms and aleatoric uncertainty. Generative modeling allowed for synthetic data use to augment 
the available few experimental samples, essentially negating the need to collect and annotate vast data samples as it is comparatively 
expensive. The performance of the developed stacked ensemblies has shown that predictions variance associated with model 
algorithm type and sensitivity to weight initializer can be minimized significantly using the stacked approach leading to enhanced 
model accuracy. Moreover, adoption of infor- mation related to the static cutting parameters via the meta learner allows for a simplified 
utilization of the knowledge in real time wear trending leading to comparatively better performance. The self supervised pre-training 
approach showed that a better generalized model can be developed via the approach utilizing synthetic data set thus enabling eventual 
suc- cessful development of a deep supervised learner on only a few labeled data samples. The success of the self supervised pre-
training though hinges greatly on the formulated pretext task(s). The proposed approach is still viable even for a case of when vast 
unlabeled data is available with concurrent few labeled samples, as the only step that would not be required then is generative modeling. 
All the developed self supervised pre-trained ensemblies completely outperformed a purely supervised trained model on same few 
experimental data set. 

Future work will involve model interpretability as related to determination of the influence of different cutting param- eters on tool 
wear as provided by a deep neural net, which is still a black box in terms of its explainability. Additionally, exploration of more pretext 
tasks will also be carried out, coupled with models’ hyper-parameter optimization. 
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Appendix III: A Multi-Domain Tool State Classifier Model 
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A multi-domain tool state classifier model for 

computer numerically controlled machining 
Oroko J. Agung’, Kimotho K. James, Kabini K. Samuel, Murimi W. Evan 

 

 

 

Abstract—Real-time condition-based decision making in machine 

health monitoring tasks relies on accurate diagnosis of the underlying 

machine state. Different sensor monitors are normally used to provide 

varying complementary fault sensitive information. The analysis of these 

signals in one of time, frequency or time-frequency domains allows for 

capturing of useful features relevant for the specific mon- itoring task. 

Conventional approaches involve manual handcrafting of these 

features, mostly in a single domain, for purposes of model training, and 

results in crucial information loss. Even though deep learning solves the 

aforementioned loss, a performance loop hole exists in automatic 

feature extraction from multiple sensors, as the more pronounced 

dominant signal’s features are picked over other’s negating the multi-

sensory monitoring. This paper thus proposes a hybrid deep model that 

concurrently parallel processes force and vibration signals in time and 

frequency domains respectively. A recur- rent neural network (RNN) is 

used for time dependency determination on the force signal vector 

whereas a dilated convolutional network is used for spatial processing of 

the frequency vector of the vibration sensors signals. The low-level 

spatio-temporal features from the parallel processing are concatenated 

at an upper layer before inputting into a supervised learning block for 

predicting a cutter’s wear state. The model’s performance was 

evaluated on experimental data from a computer numerically 

controlled (CNC) milling operation, with attainment of a comparatively 

good 99% prediction accuracy on tool wear state classsification on three 

cutters. 

Keywords—classifier, deep learning, multi-domain, tool condition 

monitoring. 

 

I. INTRODUCTION 

HE wear state of a CNC cutting tool plays a pivotal 

role in the resultant dimensional integrity and surface 

finish of the machined part [1], [2]. Moreover, the diagnostic 

information is important for determination of the remaining 

useful life of a tool enabling planning for automated tool 

change and minimization of the risk of part damage due to 

overuse of a worn-out tool. 

A typical cutter tool undergoes three main wear phases in 

a continuous machining operation i.e. initial rapid wear, constant 

wear and final accelerated failure phases, as illustrated in Figure 

1. Data driven models based on artificial intelligence 

technologies have gained popularity for the determination of 

a cutter’s health state [4]–[6], partly aided by the advance- ment 

in computing and data storage technologies. The data- based 

approaches utilize either conventional machine learning 

O. Agung’, Department of Mechatronics Engineering, JKUAT (phone: 

+254725722551; e-mail: oagung@jkuat.ac.ke). 

J. Kimotho, Department of Mechanical Engineering, JKUAT (e-mail: 
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E. Murimi, Department of Mechatronics Engineering, JKUAT (e-mail: 

murimi.evan@eng. jkuat.ac.ke). 

 

 

Fig. 1.  Schematic illustration of tool wear as a function of cutting time. [3] 
 

 

(ML) algorithms or deep-learning approach. In conventional 

machine learning, the model is trained using hand-crafted 

features extracted from the raw input sensory data, such as mean, 

variance etc. In order to achieve acceptable model performance 

at test time, the selected features need to have been tailored to 

be the most responsive to the particular output parameter 

being measured. The major drawback for the conventional ML 

techniques is that the feature extraction step requires expert 

human skill in engineering the best data features to use for 

model training. The increased probability of information loss 

at this step negatively impacts on the model’s performance at test 

time. The deep-learning approach alleviates this problem, by 

having the model automatically extract features from raw 

sensory data directly and then learn the best responsive 

combinations for the particular output measure [4], [5]. However, 

a performance loophole exists in having a deep model 

automatically learn the best features from a multi-sensor 

monitoring system. Deep models will tend to be biased towards 

the more dominant features of the sensor signals dropping the 

less dominant ones. This may result in the model only using 

features of one sensor signal, being the dominant one, negating 

the need of the multi- sensor monitoring system and even more 

adversely important information loss. This is difficult to 

capture and correct due to the black box nature of the models 

operation. 

This study thus proposes a tool condition monitoring deep 

model that automatically extracts features from two sensor 

signals in different domains i.e. force and vibration signals 

in time and frequency domains respectively, using different deep 

learning architectures. The hybrid parallel architecture then 

allows for the concatenation of the extracted features of the two 

signals and uses them in tool condition estimation. 

The rest of this paper is organized into the following sections; 

related work, theory, methodology, results and dis- cussion, 

conclusion and finally references. 
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II. RELATED WORK 
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complex associations in raw sensory data, preventing informa- 

tion loss. The use of CNN in tool condition monitoring is re- 

Studies in [7]–[11] utilize the conventional ML approach 

using back propagated artificial neural networks (ANNs). The 

ANNs, with their neurons and weighted connections, are able to 

successfully capture the complex non-linear relationships 

between measured sensor signals and tool wear, as demon- 

strated in the studies. However, their performance depends 

on the optimal selection of number of hidden layers and neurons, 

for a particular process. This is not a trivial task as there is 

no defined optimal selection scheme, and as a result ends up 

depending on one’s experience. It is thus pos- sible to obtain 

different results from different initializations. Moreover, the 

sealed nature of ANNs internal interactions provides no 

information on the modeled systems dynamics, thus one cannot 

deduce the actual correlations between sensor signals and 

outputs. One way to address this latter limitation is as 

referenced in [12], where a hybrid ANN and adaptive neuro 

fuzzy inference system (ANFIS) monitoring model is developed. 

ANFIS provides a linguistic model allowing for transparency in 

relations not provided by ANN. Other studies incorporating 

fuzzy logic classifiers are reported in [13]– [15], with fairly 

good results. Alternatively, hidden markov model (HMM) based 

classifiers [16] have been used to capture changes in feature 

states over time allowing for dynamic mod- eling, a stark contrast 

to ANNs. However, their observation duration influences the 

prediction accuracy. Support vector machines (SVM), on the 

other hand, have been shown to produce superior classification 

results of tool wear states from relatively smaller sample sizes of 

training data, using a kernel function and statistical learning 

theory [17], [18]. However, its performance is strongly 

impacted by the kernel function and its parameters, whose 

selection is done manually (trial 
and error) without prior data, affecting its accuracy. A further 

ported in [27], [28], where its used to encode time series data, 

from sensor signal, as image data allowing it to be re-created 

during the model training phase without losing information. 

Study in [29] develops a hybrid model employing CNN to 

analyze part surface and tool wear images in order to quantify the 

surface roughness and tool flank wear severity respectively. The 

results are then fed into a RNN to correlate the tool and part 

surface condition with the monitored sensor signal (motor power 

profiles). Even though deep learning clearly improves on 

conventional models accuracy, it requires large amounts of 

training samples for the model. Moreover, in a multi-sensor 

monitoring setup, a performance loop hole exists in directly 

automatically processing all signals at once with prominence 

accorded to the more dominant signals negating the multi-

sensory usefulness. A hybrid structure capable of parallel 

processing these signals would thus be ideal. 

III. THEORY 

The input sensor data in a tool condition monitoring task is a 

time-series of several time stamp information. Spatial relation is 

contained in the neighborly arrangement of the data from 

multiple sensors, with temporal information contained in its time 

dependency. A convolutional neural network (CNN) is usually 

used for spatial relations determination. Since the data from each 

sensor signal constitutes a 1D array, a 1D CNN is used for 

automatic abstract spatial features extraction. The 1D 

convolutional layers work by sliding several kernels across the 

input sequence producing multiple feature maps per kernel, 

allowing for the sequential extraction of useful features. The 

output of a neuron in a convolutional layer is the weighted 

sum of all inputs plus a bias term as provided in equation 1. 

fh−1 fw−1 f
′ −1 

improvement on the SVM is the use of the relevance vector 

machine (RVM) which, though having similar functional form 
zk = 

 

 
u

 

=0 

 

 
u

 

=0 

n 
 
 

 

v=0 

xijk + bk (1) 

as SVM, can provide probabilistic predictions unattainable using 

SVM. Studies in [19], [20] have shown that, in com- parison to 

SVM, RVM can produce more accurate results quickly and from 

smaller training samples. Other probabilistic and deterministic 

based methods for tool wear prediction are reported in [21] 

using a dynamic bayesian neatwork (DBN), in [22], [23] using 

multi-regression models, in [24] using a particle filter, in [25] 

using a Gaussian process regression (GPR) and [26] using an 

extended kalman filter (EKF), with the EKF outperforming the 

deterministic methods in most cases for tool wear area 

estimation. Despite the promising results in all the 

aforementioned machine learning techniques, their performance 

is heavily reliant on feature extraction and 

where fh and fw are the filter height and width respectively, 
′ is the number of feature maps in the previous layer, x is 

the input vector, bk is the bias term for feature map k, wuvk is 

the connection weight between neurons in feature map k and 

input vector. The strided sliding shift from one receptive field to 

next is only along one direction, the time dimension. Non-

linearization of the CNN’s output is attained through an 

activation function; one of rectified linear unit (ReLU ) or its 

variants, hyperbolic tangent (tanh), or logistic function. If the 

dimension of the input sequence to a 1D-convolutional layer 

is n × l × d, where n is the number of data samples, l is the 
number of time steps, and d is the number of input channels, 
then the output dimension is given by n × l−p+f + 1  × k, 

selection from the raw sensing data. However, this feature 
extraction and selection step is tedious and reliant on human where 

s 

p is the padding used, s is the stride and k is the number 

expertise, greatly increasing the probability of information 

loss, which impacts on the model’s accuracy. To this end, 

automatic feature extraction and selection as provided for by 

deep learning has come to the fore. Deep learning through its 

various deep architectures, such as deep belief network (DBN), 

convolutional neural network (CNN), recurrent neural network 

(RNN), is capable of automatically discovering and developing 

f 
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of filters used. 

For temporal relations determination, a recurrent neural net- 

work (RNN), such as a gated recurrent unit (GRU), is usually 

used. The output of a typical RNN cell is a function of both 

the input to the cell and the output of its previous time step, 

as defined by equation 2; 

ht = f (Whht−1 + WxXt + bt)

 (2

) 
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where Wh and Wx represent the weights connecting the previous 

hidden neuron and input neuron to the current hidden neuron, 

respectively, bt is the bias term. The determination of the 

cell’s state uses all available information as up to the current time 

step t. The GRU RNN cell improves the typical RNN cell’s 

performance by providing for long term memory enabling the 

learning of temporal dynamic patterns in longer sequences. The 

architecture of a typical GRU cell is as shown in Figure 2 [30]. 

 

Fig. 2.  Schematic representation of GRU cell architecture 
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The output state of a GRU cell, as shown in Figure 2, at 

each time step for a single instance of input sequence data is 

governed by the equations 3; 

zt = σ(WxzXt + Whzht−1 + bz) 

 

FCNN 

 

 

Fig. 3.  Schematic illustration of the developed model’s architecture 

rt = σ(WxrXt + Whrht−1 + br) 
gt = tanh(WxgXt + Whg(rt ⊗ ht−1) + bg) ht 
= zt ⊗ ht−1 + (1 − zt) ⊗ gt 

 

(3) (DFT) layer. The time-series processing block starts with three 

similar stacks comprising of a 1D convolutional layer followed 

by batch normalization and then rectified linear unit activation 

where zt is the initial gate controller vector, rt is the new gate 

controller vector which controls what part of the previous state 

is shown to the main layer gt, ht and ht−1 are the current state 

and state at previous time step, respectively, W , and b are the 

weights and biases. 

 

IV. METHODOLOGY 

A. Notation 

The monitoring data for the tool state classification task is 

a time-series of real values from N different sensor channels, 

and is denoted X = {xi, ..., xn}, where n is the number 
of data samples. Each input data sample is a 2D tensor 
xi ∈ Rd where d is the sensor channels. At each time step j 
there are d different values. For each input sample, there is 
a corresponding output state value y ∈ R2 of two binary values 
representative of tool state i.e. good or worn. The 

tool state monitoring task is thus formulated as a time-series 

classification prediction task of output value y for each input data 

sample xi. 

 

B. Proposed model 

The proposed tool state classifier model architecture is as 

shown in Figure 3, and comprises of two parallel blocks utilizing 

different deep learning architectures. 

The force signal is input into the model as a time-series while 

the vibration signal is first transformed into the fre- quency 

domain by passing through a discrete fourier transform 

(ReLU) of the normalized values. A similar initial architecture is 

employed for the vibration signal processing block, serving the 

same purpose. The convolutional layer down-samples the input 

sequence by a factor of four, and by using a kernel size 

larger than the stride, the useful information in the input is 

preserved while dropping the less valuable information. The 

1D convolutional layers work by sliding several kernels across 

the input sequence producing multiple feature maps per kernel, 

allowing for the sequential extraction of useful features. Batch 

normalization is utilized to guard against vanishing and 

exploding gradients during model training. 

The force signal processing block proceeds by stacking three 

layers of gated recurrent unit (GRU) cells, each with 16 

nodes. On the other hand, the vibration signal processing 

block proceeds by stacking dilated causal convolutions with 

doubling dilation rates of 1 to 8 i.e. 2i, where i = 0, 1, ..., 3. 

The causal convolutions is as a result of utilizing causal padding, 

meaning, the output value corresponding to a given time step is 

computed using only input values as up to that particular time, 

thus the model cannot peek into the future. The doubling dilation 

rates ensures that the lower convolutional layers learn short-term 

patterns while the higher layers learn how to combine these into 

complex long-term patterns. This is because, the receptive 

field of each convolutional layer in the stack increases 

exponentially from the lower layers to the higher layers, thus the 

layers are progressively exposed to varying input sequence 

lengths. Three stacks of the dilated convolutional blocks are used 

in this model, which provides a total of 12 dilated layers. The 
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output of the final dilated layer 
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is then passed to a global averaging pooling layer, to reduce 

the temporal dimension of the extracted vibration features. 

The model then proceeds by concatenating the extracted force 

and vibration signal features into a single fixed-size vector. 

These are then fed to the model’s output which comprises of 

a two-layer perceptron fully-connected neural network, which 

outputs two values corresponding to the tool wear state. Due to 

particular tool, as either recommended by the manufacturer 

or from expert knowledge derived from machining particular 
materials. In this study, a wear limit of 140 × 10−3 mm was 
adopted, with value chosen as a proof of concept. Figure 4 

shows the tool wear progression curves for each of the cutters 

with the wear limit indicated. 

the slightly noisy nature of the regressive predictions, the wear 

estimates can be passed through an exponentially weighted 

moving average layer to smooth out the predictions. Equation 

4 defines the weighting operation, with vt being the current 

weighted wear average, vt−1 is the previous weighted value, 

θt is the current wear value and β is the smoothing factor. 

vt = βθt + (1 − β)vt−1 (4) 
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V. EXPERIMENTS AND DISCUSSION 

In order to determine the effectiveness of the proposed model 

for the tool wear state classification task, its perfor- mance was 

tested on publicly available milling wear data. 

 

A. Data description and experimental setup 

The data used for validating the proposed methodology in 

this study is for the milling process, from the 2010 data challenge 

by the Prognostics and Health Management (PHM) society, and 

is publicly available. The monitoring signals are from three 

sensors i.e. force, vibration and acoustic emission, with the first 

two having three channels each, for x, y and z axes 

measurements. The input data thus comprises of seven channels. 

In this study, only the first six channels, correspond- ing to the 

force and vibration signals, were used for modeling. This is 

because, a later portion of the study will involve 

 
Fig. 4. Regressive tool wear progression for different cutters with adopted 

wear limit indicated 

 

Wear values below the wear limit threshold were used to 

classify the tool as being in a good state, otherwise the tool 

is considered to be in a worn state. This results in a binary 

classification task, of determining whether a tool is usable or 

worn out. 

 

B. Model settings 

The training and testing regime adopted a three-fold setting 

whereby two sets, from histories C1, C4 and C6, are used for 

training with the third for testing. The adopted training/testing 

setup is as illustrated in table II. 

TABLE II 

TRAINING/TESTING DOMAIN 

experimental data collection using these two sensors, and   

consequent modeling for the turn-milling process, by utilizing 

transfer-learning which will involve reusing the trained milling 

models in the turn-milling process modeling. The measured 

output in the data is the flank wear of ball nose tungsten carbide 

three-flute cutters. Available wear histories are for three cutters, 

labeled C1, C4 and C6. A total of 315 cutting tests using each 

cutter, on a 3-axis high-speed CNC machine, were conducted. 

The time series measurements corresponding to each measured 

cut vary in length. The experimental mea- surements were 

obtained under constant machining conditions indicated in Table 

I. 

TABLE I 

MACHINING PARAMETERS 

 
 Machining parameter Value  

spindle speed, v 10,400 rpm 

feed rate, f 1,555 mm/min 
radial depth of cut, ae 0.125 mm 

 axial depth of cut, ap 0.2 mm  

 

 

The data was acquired through a data acquisition card at 

a frequency of 50 kHz/channel. Various approaches can be 

employed in order to define the usable status of a tool. One 

 Train set Test set Notation  

C4, C6 C1 C4C6/C1 

C1, C6 C4 C1C6/C4 

 C1, C4 C6 C1C4/C6  

 

 

The loss function utilized in model training is the binary 

cross-entropy loss, as given by equation 5. 

n 

loss = − yilog(pi) + 1 − yilog(1 − pi) (5) 
n 

i=1 

The ReLU activation function was used for the hidden layers 

with the sigmoid function employed in the output layer. The 

adaptive momentum estimation (Adam) optimization function 

was used for model weight updates at train time, with an 

exponentially decaying learning rate from an initial value of 

0.01. The choice of initial learning rate value was from random 

experimentation. The adopted indices for evaluating model 

performance were the classification accuracy, precision and 

recall. In order to minimize bias to signal outliers and the 

risk of exploding gradients at train time, the input data was 

standardized to fit a Gaussian distribution, i.e. having a mean of 

0 and a standard deviation of 1, using equation 6: 
X − Xmean 

 
  

 
  

 
  

w
e
a
r
 (
m

m
) 



177  

such approach is the use of allowable wear limit for the 
Xstand = Xstd (6) 
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where Xmean and Xstd are the mean and standard deviations of 

the train set. The model was built using the TensorFlow 

Keras deep learning library in order to enable GPU utilization as 

allocated in the Google Colab platform. 

 

C. Results and discussion 

Initial analysis of the monitoring force and vibration signals 

was carried out in different domains to ascertain the domi- nance 

and viability of feature extraction in respective domain. 
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Sample time series force signals at start, mid and end of tool 

life for the three cutters is as shown in Figure 5, Figure 6 and 
Fig. 8.  Vibration signals at start of tool life 

Figure 7, respectively. 
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time steps Fig. 9.  Vibration signals at mid of tool life 

 

Fig. 5.  Force signals at start of tool life 
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Fig. 10.  Vibration signals at end of tool life 

 

Fig. 6.  Force signals at mid of tool life A correlation between vibration signal and tool wear can 

be inferred in the varying signatures though the variability is not 

as clear as compared to the force signal. Moreover, the 
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vibration sensor is very susceptible to capturing noise that is 

unrelated to tool wear, and this is not easily distinguishable 

in the signal captured. It would thus be beneficial to extract 

features from the vibration signal in the time-invariant fre- 

quency domain as opposed to the time domain. The frequency 

spectrum representation of the force and vibration signals at start, 

mid and end of tool life is as shown in Figure 11 (a) and 

(b), respectively. Similar plots are obtained for the three cutters 

with the difference being in the spectral magnitudes. 

Fig. 7.  Force signals at end of tool life 

 

It is observed from time-domain analysis, from the respec- tive 

Figures 5, 6, and 7, the cutting force increases with tool wear 

progression, with a clear variability in the force signatures at 

different wear stages. The force signatures for cutters C1 and C6 

are closely similar, with a variation present for cutter C4. The 

corresponding time-series vibration signals at start, mid and end 
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of tool life is as shown in Figure 8, Figure 9 and Figure 10, 

respectively. 

It is noted from the spectral frequencies, in Figure 11, that 

in the frequency domain, the force signal lies in the lower 

frequency band and sparse in the higher bands, across the 

different cutters and wear stages, with only major variations 

being in the magnitudes. However, for the vibration signal, 

the frequency band is spread out from low to high bands, and 

increases in density as the tool wears. Thus, in the frequency 

domain, the vibration signal appears to capture comparatively 

better features with changing tool wear, as compared to the force 

signal representation. This pre-analysis informed the 
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attained is 99% for the three cutters, with the few instances 

of mis-classification being for when the tool is in a good 

state but it’s wrongly labeled as worn. This happens near the 

defined tool wear limit i.e. at transition point. For a tool state 

monitoring system, this mis-classification falls in the low risk 

boundary case, as the contrary would be a worse case scenario if 

the tool were worn but it’s constantly classified as good, due 

to the associated risks. Attainment of 100% accuracy can simply 

be obtained by broadening the tool wear 

2000 

(a) 

2500 
limit definition instead of using a single set value. The better 

comparison metric of F1-score, which is a harmonic mean of 
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the precision and recall metrices, provided a return of 0.99 for 

the good state for all cutters with lowest return of 0.96 for worn 

state of cutter 1. The maximum score attainable is 1.00. The 

model’s performance shows that it is able to capture respective 

class definitions clearly. Table III of the perfromance metrices 

evidences this. 

 

VI. CONCLUSION 

A tool wear state classifier has been developed in this 

paper for use in a tool condition monitoring task. The hybrid wear 

model utilizes different deep learning architectures to 
Fig. 11.  Frequency spectrum of force and vibration signals 

 

 

signals parallel processing choice in the developed model. 

The performance of the developed model on the tool state 

classification task is as shown in the confusion matrices in Figure 

12, with the classification report summarized in Table III. 

automatically parallel extract features from the force signal in the 

time domain, and the vibration features in the frequency domain. 

The respective chosen domain for each sensor signal has been 

shown to be most informative for feature extrac- tion. 

Moreover, each sensor channel in a monitoring system contains 

useful discriminative information. Compared with other reported 

architectures, the proposed system allows for the features of 

both signals to be used in wear prediction, and not only the 

more dominant features from one signal as 
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would normally be determined by a deep model. This resulted in 

an enhanced performance with an overall classification accuracy 

of 99% attained. Future studies will inlvolve multiple 

experiments in order to quantify the performance enhancement 

as obtained by the parallel approach. 
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Fig. 12.  Performance on individual cutters based on predicted wear values 

 

 
TABLE III 

STATE MODEL PERFORMANCE METRICS ON ESTIMATED WEAR 

 

Cutter class precision recall 
f1- 

score 
samples 

cutter 1 worn 

good 

0.93 

1.00 

1.00 

0.98 

0.96 

0.99 

52 

263 

accuracy 0.99 315 

cutter 4 worn 

good 
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accuracy 1.00 315 

cutter 6 worn 

good 
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0.99 
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0.99 
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212 

accuracy 0.99 315 

 

 

 

It is observed from the obtained confusion matrices of the 

three cutters in Figure 12 the overall classification accuracy 
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