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ABSTRACT

Various group actions have been studied in the past witreatsp their associated combina-
torial properties, invariants, structures and formuladssThesis focuses on the combinatorial
properties, invariants and structures of the alternatiogig A,, acting onX ") and X, re-
spectively the ordered and unorderedlement subsets of the sEtof » letters. It also aims
at deriving an expression of the cycle index of the symmerozip S,,, a semidirect product
of A,, by the cyclic groug’; of order2, explicitly in terms of the cycle index of,, and that of
Cs. Transitivity of the actions is established using either @auchy-Frobenius Lemma or the
Orbit-Stabilizer Theorem; primitivity is determined frotine definition of blocks; ranks and
subdegrees are computed using combinatorial argumentsigpaf suborbits is determined
from definition; the suborbital graphs are constructed ftbgir corresponding suborbitals;
and the cycle index is derived from definition. The study shakat the action of4,, on
X[ is transitive and imprimitive if and only if. > r + 2, while the rank is constant for
alln > 2(r 4 1). On the other hand, the action df, on X" is shown to be transitive for
all n > r + 1 and imprimitive if and only ifn = 2r, while the rank isr + 1 if and only

if n > 2r. Further, the ranks and subdegrees of the two actions arelatdd and pairing
of the associated suborbits explored. Moreover, subdrpitgphs related to the actions are
seperately constructed and examined for directednessectedness, number of components,
vertex degrees, and girths, depending on whether a comdsmpsuborbit is self-paired or
paired with another, and also the number of elements fromed fbelement subset that each
element of the suborbit has. Finally, an expression of tleéeandex ofS,,, explicitly in terms
of the cycle index of4,, and that ofC5, is obtained.
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CHAPTER ONE
INTRODUCTION

1.1 Background Information

1.1.1 Group Actions

Definition 1.1.1. Let G be a group and( a non-empty set. The@d acts on the left ofX if
there exists a functio’ x X — X such thatg;g.)z = ¢1(¢2)x andlz = z, wherel is the
identity inGG, x € X andgy, g» € G. The action ofG on the right ofX can be defined in a
similar way. In this caseX is called aG-set.

Definition 1.1.2. Suppose a grou@’ acts on a sek. Define a relationr ~ y on X if and
only if there existy; € G such thaty = gx. This defines an equivalence relation &n The
equivalence class containingis Orbqr = {gz|g € G}, and is called therbit of z. Since
any set is a disjoint union of equivalence classes under awagnce relation, it follows that
if G acts onX, thenX is a union of disjoint orbits.

Theorem 1.1.1. If GG is a finite group andX is a finiteG-set, then the number of orbits X

underG is given byl—é‘ Y| fiz(g)| wherefix(g) = {x € X|gz = x} (Rose, 1978; Gardiner,
geG

1986; Flareigh, 1994).

Theorem 1.1.1 is called tH@auchy-Frobenius Lemn@ theBurnside’s Formula

Definition 1.1.3. Thestabilizerin G of x is the subseftabsz = {g € G|gx = x} of G. Itis
also denoted by~,.. According to Gardiner (1986§;,. is a subgroup of~, called thasotropy
subgroupof G. If G, is trivial, i.e.,G, = {1}, thenG is said to acfreelyon X.

Theorem 1.1.2. Let X be aG-set and letr € X. Then|Orbgz| = |G : G,
in G (Rose, 1978; Gardiner, 1986; Flareigh, 1994).

, the index ofG7,,

Theorem 1.1.2 is called th@rbit-Stabilizer Theorem.

Definition 1.1.4. The action of a grous on a setX is said to betransitiveif for each
x,y € X, there existg € G such thaty = gz; in other wordDrbgx = X if x € X. A group
which is not transitive is callemhtransitive

Theorems 1.1.1 and 1.1.2 are used interchangeably in teendegtion of transitivity of a
group action.

Example 1.1.1.The symmetric groupy,, acts transitively onX = {1,2,--- ,n}. Thisis so
because for any, y € X, there exists an element e S,, for whichy = «ax. Similarly, the
alternating groupd,, acts transitively onX = {1,2,--- n} for all for all n > 3, but acts
intransitively ifn = 2.



Definition 1.1.5. An action of a group on a setX, with | X| > 2, is called2-transitive
(doubly transitivg when for any two ordered pairs of distinct elemefitsz’) and (y, y') in
X, there is ag € G such thaty = gz andy = gz'. The distinctness of elements means
r # randy # y. The elemeny is said to take the paifz,z’) to the pair(y,y’). One
can formulate the idea &ftransitive(triply transitive) action, and more generakatransitive
action for any integek > 1: given any two ordered-tuples(xy, - - - , xx) and(yy, - - - , yx) of
distinct elements in the set, some element of the group sendg; for all i. An action which
is k-transitive isl-transitive forl < k; so any3-transitive action i2-transitive and transitive.

Theorem 1.1.3.The alternating group!,, has a naturaln — 2)-transitive action on the set
X ={1,2,---,n} forall n > 3 (Smith & Tabachnikova, 2000).

Definition 1.1.6. Let G act transitively onX and letG,. be the stabilizer of € X. The orbits
Ny = {x}, A, Dy, -+ A, Of G, on X are known asuborbitsof G. In this case/\,
is referred to as theivial suborbit ofG. The valuer is called therank and the size$A,|,
(1 =0,1,2,---,r — 1) the subdegreesof G. Both the rank and the subdegreestbfare
independent of the choice ofe X (Rose, 1978).

Definition 1.1.7. Let G act transitively on a seX and letA be an orbit ofG, on X. If
AN* = {gz|lg € G,z € gA}, thenA* is also an orbit of 7, called theG,-orbit or G-suborbit
paired with A. Clearly, A** = A and|A| = |A*. If A = A*, thenA is said to beself-
paired The trivial suborbit of7 is always self-paired.

Theorem 1.1.4.Let GG act transitively on a seX’. ThenG has non-trivial self-paired suborbits
if and only if G has even order (Wielandt, 1964).

Theorem 1.1.5. Let G be transitive onX and letg € G. Then the number of self-paired
suborbits of7 is given byl—é‘ >~ | fiz(g?)| (Cameron, 1974)
geG

Definition 1.1.8. Let GG act transitively on a finite seX. Then a subsét” of X, where|Y| is
a factor of| X |, is called ablockor set of imprimitivityfor the action if for eacly € G, either
gY =Y orgY NY = (; in other wordsgY andY do not overlap partially. In particular,
(), X and all1-element subsets of are blocks, calledrivial blocks The action is said to be
primitiveif the only blocks are the trivial blocks, amehprimitive otherwise.

Theorem 1.1.6.A transitive groupG on X is primitive if and only ifG,, for a fixedz € X,
is a maximal subgroup off. In addition, a2-transitive group is primitive. Moreover, any
non-trivial normal subgroup of a primitive group is transst(Cameron, 1999).

Theorem 1.1.7.Let G be transitive onX and let the subdegrees @f ordered according to
increasing magnitude, be= ny < n; < ny < --- < n,_;. ThenG is imprimitive if there
exists an indey > 0 such thaty; > nyn,_; (Wielandt, 1964)
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1.1.2 Graph Theory

Definition 1.1.9. A simple graph’Z consists of a non-empty s&t(() of objects callegoints
or nodesor verticesand a (possibly empty) séi(G) of pairs of elements of callededges
The setV is called thevertex-seand E theedge-list of G.

Definition 1.1.10. Two or more edges joining the same pair of vertices are callalliple
edgeswhile an edge joining a vertex to itself is calledo@mp. A multigraphis a graph which
is allowed to have multiple edges but no loops.

It is clear from definition that a simple graph has no loops altiple edges. From this point
on, by a graph it shall mean a simple graph.

Definition 1.1.11. Let v andw be two vertices of a grapi. Then an edge = (v, w) is said
to join or connecty andw. In this case: is said to bencidentwith v andw and the vertices
andw areadjacent A graph is calleccompletaf each pair of distinct vertices is joined by an
edge.

If a graph has: vertices, then the maximum number of edges it can ha{eg}, the number

of 2-element subsets &f.

Definition 1.1.12. Let GG be a graph with vertex-sét and edge-lisE. A subgraphof GG is a
graph all of whose vertices belongtoand all of whose edges belong kb

Definition 1.1.13. The degreeor valencyof a vertexv of a graphG is the number of edges
incident withv, and is denoted byeg v. If a graphG hasn vertices, then for any vertex,

0 < degv < n — 1. Theminimum degreef G, denoted by (G), is the smallest number of
edges incident with a vertex ¢f while themaximum degreef GG, denoted by\(G), is the
largest such number. The gra@hs said to beegular of degree- if the degree of each vertex
isr,i.e.,ifd(G) = A(G) =r.

Theorem 1.1.8. In any graph, the sum of all the vertex-degrees is equal toetitie number
of edges (Wilson & Watkins, 1990)

Theorem 1.1.8 is calleilhe Handshaking Lemma

Definition 1.1.14. Two graphs& and H areisomorphic writtenG == H, if there exists a one-
to-one correspondenee: V(G) — V(H) such thatx preserves adjacency; in other words,
(u,v) € E(G)ifand only if (a(u), a(v)) € E(H). Since|V(G)| = |V (H)|, any one-to-one
correspondence is equivalent to a relabelling of the vestic

Definition 1.1.15. A walk of length% in a graphG is a succession of edges ofG of the
form vovy, vivg, - - -, vp_1vk, denoted byvguivs - - - vp_1ve. A walk of lengthk all of whose

3



edges are different (but not necessarily all the verticesplled atrail of lengthk. A walk

of lengthk all of whose vertices are different is callegath of lengthk. A closed walk is
a succession of edges of the fouquy, v1vs, - - - , v,_1v,, v,v9. A closed walk all of whose
edges are different is a closed trail. A closed walk all of séngertices are different (except
the first and the last) is calledcgcle The length of the shortest cycle (if any)dnis called
thegirth of GG. Every cycle is a closed walk, but not every closed walk isdecy

Definition 1.1.16. A graph( is connectedf there is a path inG between any pair of distinct
vertices, andlisconnecteadtherwise. Every disconnected graph can be split up intawaben
of connected subgraphs calledmponents

Definition 1.1.17. A bipartite graph is one whose vertex-set can be split into deasd B in
such a way that each edge of the graph joins a vertektma vertex in5.

Definition 1.1.18. A treeis a connected graph that contains no cycleded of a tree is a
vertex of degree one. A graph all of whose components ars isazalled dorest

Theorem 1.1.9.1f a tree has: vertices, then it has — 1 edges (Chetwynd & Diggle, 1995)

Definition 1.1.19. A directed graphor digraph, D, is a graph with a function which assigns
each edge an ordered pair of vertices:, v). The vertexu is called thetail of e, v thehead
of e, andu, v theendsof e. If there is an edge with tail and head, then(u, v) denotes such
an edge, and the edgedsectedfrom « to v. Theout-degreeof a vertexv, denotecutdegy,

is the number of edges with tail and thein-degreeof v, denotedndeguv, is the number of
edges with head.

Theorem 1.1.10.In any digraph, the sum of all the out-degrees and the suml ¢elin-
degrees are each equal to the number of directed edges (Milgdatkins, 1990)

Theorem 1.1.10 is callethe Handshaking Di-Lemma

1.1.3 Suborbitals and Suborbital Graphs

Definition 1.1.20. Suppose’z acts onX. ThenG acts onX x X also, by the rule that
g(z,y) = (9x,9y), g € G,z,y € X. If O C X x X is aG-orbit, then for a fixed element
re X, A ={ye X|(z,y) € O} is aG,-orbit. Conversely, ifA C X is aG,-orbit, then

O = {(g9z,9y)lg € G,y € A} is aG-orbit on X x X. This means there is a one-to-one
correspondence between the orbitshf (r € X) on X and the orbits of7 on X x X. In
this caseA is said to correspond t0. The G-orbits onX x X are calledsuborbitals The
number of these suborbitals is equal to the rank of

Definition 1.1.21. LetO; C X x X, (i = 0,1,2,--- ,r — 1) be a suborbital. Then a graph
I'; is formed by takingX as the points of’; and including a directed line fromto y, where

4



xz,y € X, ifand only if (z,y) € O;. Thus each suborbit@); determines a suborbital graph
[;. Now, defineO; = {(y,z)|(z,y) € O;}. ThenO; is aG-orbit also and determines a
corresponding suborbital graptj.

Theorem 1.1.11.Let G be transitive onX and letl" be the suborbital graph corresponding to
the suborbitA. ThenI' is undirected ifA is self-paired and directed otherwise (Sims, 1967)

Theorem 1.1.12.Let G be transitive onX. ThenG is primitive if and only if every non-trivial
suborbital graph corresponding to the action is conne@edg, 1967).

1.1.4 Permutation Groups

Definition 1.1.22. Let X = {1,2,--- ,n}. Then thesymmetric groupf degree: is the group
of all permutations ofX under the binary operation of composition of maps. It is deddy
S, and has orden!. A subgroup ofS,, is called gpermutation group

Definition 1.1.23. The alternating groupof degreen is the subgroup of,, consisting of all
even permutations oX under the binary operation of composition of maps. It is deddy
A, and has ordet.

Definition 1.1.24. A groupG is calledcyclicif G = {¢* | k € Z}, that isG can be generated
by a single element € G. Thisis denoted by = < g >. The elemeny in this case is called
thegeneratorof G. A cyclic group can have two or more generators.

Example 1.1.2.A cyclic subgroup ofS,, of degreen and ordem is denoted by,,. Just but
to mention,

Cy = < (ab) > = {1, (ad)},
C3 = < (abc) > = < (acb) > = {1, (abc), (acb) }

and
Cy = < (abed) > = < (adceb) > = {1, (abed), (ac)(bd), (adcd) }.

The subgrou@’; generated by a transposition will be of particular inteegdstome later stage
of this thesis.

1.1.5 Operations on Permutation Groups

There are some important operations on permutation grohghwvproduce other permutation
groups. These include sum, product, composition, and ponarp. For the purpose of
definitions of these operations, consider a permutation@¢o of orderm,; and degree:;
defined on the seX = {x;, 2, -, x,, }, and another permutation grodp of orderm, and
degreen, defined on the sét = {y1, v, -+, Yn, }-
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Definition 1.1.25. ThesumG + H is a permutation group which is defined on the disjoint
union X U Y and whose elements are the ordered pgjré) of permutationy; € G and
h € H. Any element: of X UY is permuted by(g, h) according to the rule:

gz, ze€X
(97 h)Z =
hz, zeY.
Clearly,G + H has ordem;m, and degree; + n,. The group operation between the pairs

of elements of the sum is given by

(g,h)(g . 1) = (g9, h).

Definition 1.1.26. The productG x H, also called theCartesian producbf G and H is a
permutation group which is defined on the &etx Y and whose elements are all the ordered
pairs (g, h) of permutationg; € G andh € H. The elementx,y) of X x Y is permuted
by (g, h) using the rulg g, h)(x,y) = (g, hy). Clearly,G x H has ordern;m, and degree
niny. The group operation between the pairs of elements of thdugtas given by

(g,h)(g . 1) = (g9, h).

Definition 1.1.27. The compositionG[H| of G aroundH, also called thevreath productof
G by H, is also defined otX' x Y. For eachy € G and any sequendgy, hs, - - - , hy,, ) Of
ny (not necessarily distinct) permutationshh there is a unique permutation @ H| written
(g; b1, ha,- -, hy,) such that foz;, y;) in X X Y, (g; ha, ho, -+ by ) (24, y5) = (94, hiy;)
foralli =1,2,--- ,ny,j = 1,2,--- ,ny. The order ofG[H] is clearly|G||H|™ = mym3*
while its degree i®n5. The group operation between the pairs of elements of thativprod-
uctis givenby(g; hu, ha, -+ by ) (g by by, -+ By ) = (99759 ki, g'hohy, -+ g o By ).

» g n1"%"nq

Definition 1.1.28. The power groupH ¢ is the set of permutations defined on the Bét of
all functions fromX to Y. The assumption is that the power group acts on more than one
function. For each pair of permutatiopsce G andh € H there is a unique permutation,
written k9 in H“. The action of the permutatiok? on any functionf : X — Y in HY is
given by (h9f)(xz) = hf(gx) for eachz € X. The group operation between the pairs of
elements of7¢ is given by

(h9) (h’9'> — hh'99

The order ofH® is |G||H| = mim,, and its degree is}*.

The sum, product, and power group are all isomorphic asadigiroups, although they are
different as permutation groups, and the three operationsc@mmutative (Harary, 1969;
Harary, 1970).



1.1.6 Direct Products

The productd x K can be defined for any two groupsand K.

Definition 1.1.29. Let H and K be any two groups. The produéf x K is a group with
multiplication of its elements defined iy, k)(h', k') = (hh',kk") for all h,h" € H and
k, k' € K. Inthis caseH x K is called theexternal direct producdf H and K.

The definition of direct product of two groups can be extentethe direct product of any
finite number of groups.

Definition 1.1.30. Let n be any positive integer and l€ét,, Gs, - -- , G,, be anyn groups,
which are not necessarily distinct. Th@ax Gz x- - -xG,, is the set ohi-tuples(gi, g2, - -+ , gn)
with g; € G;. This set is given the structure of a group called the extelinect product of the
groupsGy, Gs, - - - , G, by defining multiplication of the:-tuples component-wise; in other
words if (g1, go, -+, 9n)s (91, 92+ 5 Gy,) € G1 X G X -+ x G, then

(91,92, 9n) (01, Gos -+ + G) = (9101, G2y =+ s Gnry) € G1 X Gy X -+ % Gy,

This group is denoted bipr ﬁ G;.
=1

Definition 1.1.31. Let H and K be normal subgroups of a groapwith H N K = {1} and
G = HK. ThenG is a group, called thenternal direct productof H by K. In this case
G=2HXK.

Example 1.1.3.The Klein4 groupG = {1, (12)(34), (13)(24), (14)(23) } has normal sub-
groupsH = {1,(12)(34)} and K = {1, (14)(23)} such that{ N K = {1} andG = HK.
Thus,G is an internal direct product df by K, andG = H x K.

Definition 1.1.32. Let GG be a group with subgroupg? and K. Then( is called asemidirect
productof K by H, denoted? = H x KorG =K x H ,if K < G, HN K = {1} and
G =HK.

Example 1.1.4.Consider the groupr = S;3 = {1, (123), (132), (12), (13), (23) }. In this case
K = A3 ={1,(123),(132)} andH = Cy = {1, (12)} are subgroups aff with K’ < G. Itis
easy to verify thatz is a semidirect product ok by H (though not an internal direct product
sinceH is not normal inG). In fact, S,, = A,, x C; for all n > 2. Similarly, D,, = C,, x Cs
forall n > 3.

Definition 1.1.33. A Frobenius grougs a groupG acting on a sef, transitively, in such a
way that the stabilizeH of a point is non-trivial, but only the identity fixes two or megpoints.
That means thatl N (gHg ') = {1} if g € G\ H. DefineK* = G\ U{gHg' : g € G},
the set of all elements i@ having no fixed points. TheR = K* U {1} is a normal subgroup
of . Besides( = K x H.



Example 1.1.5.The groupG = S5 acts transitively onX = {1, 2, 3} (see Example 1.1.1). In
this caseH = Stabg(3) = {1, (12)}, but only the identity fixes two or more points. S,
is a Frobenius group, by Definition 1.1.33. Furthermare, H = {(123), (132), (13), (23)}.
In this casgyHg ™' = {1, (23)} if g = (123) org = (13), gHg ' = {1, (13)} if g = (132) or
g=(23),andgHg™' = Hif g € H. Accordingly, H N (gHg™!) = {1} whenevely € G\ H,
andM = U{gHg': g € G} = {1,(12),(13),(23)}. So, if K* = G\ M = {(123), (132)},
thenK = K*U {1} = {1, (123),(132)} = A, and from Example 1.1.47 = K x H.

In general, ifn > 4, the stabilizer of a point o = {1,2,--- ,n} in S, has non-trivial
elements which fix more than one element. Theref6ras not Frobenius fon > 4.

1.1.7 Cycle Indices

Definition 1.1.34.If a finite group acts on a seX with n elements, each € G corresponds
to a permutatiorr of X, which can be written uniquely as a product of disjoint cgcld o
hasa; cycles of lengthl, «; cycles of lengtl?, - - - | «,, cycles of length, theno and hence
g hascycle typeay, as, - -+, ay).

Theorem 1.1.13.Let g be a permutation with cycle typev, as, - - - , a,,). Then the number

of 1-cycles ing! is > ia; (Bruijn & Klarner, 1969).
il

Theorem 1.1.14.Two permutations inS,, are conjugate if and only if they have the same

cycle type; and ify € S,, has cycle typéa;, as, - - - , v,), then the number of permutations in
Sn conjugate tqy is —~— (Krishnamurthy, 1985).

=1
Definition 1.1.35. If a group G acts on a setX, |X| = n, andg € G has cycle type
(o, g, - -+, ), themonomiabf g is defined asnon(g) = t1¢5% - - - %, wherety, to, - - - , 1,
are distinct commuting indeterminates.

Definition 1.1.36. The cycle indexof the action ofG on X is the polynomial (say over the
rational fieldQ) in ¢, - - - , ¢, given by

Z(G) = Zgx(tr, - ,tn) = éZ{mon(g)}.

geG

If G has conjugacy classés,, - - - , K,,, with g; € K;, then

2(G) = g 3 IKil{mon(s)}. (L1.1)



Example 1.1.6.Let X = {1,2,3,4} so thatG = S,. Then,

G = {1,(123),(132), (124), (142), (134), (143), (234), (243), (12)(34),
(13)(24), (14)(23), (12), (13), (14), (23), (24), (34), (1234),
(1243), (1324), (1342), (1423), (1432)}.

Now, Table 1.1 below displays the various permutation typeslements ofz, and their
corresponding cycle types and monomials. The number ofexiesiwith the same cycle type
can be counted directly fror@ and are given in the fourth column of the table (it is only
reasonable to calculate this number using the expressidheorem 1.1.14 for cases where
|G| is relatively large).

Table 1.1: Monomials of Elements 6f;
Permutation Cycle Corresponding Corresponding Number

Type Type Monomial of Elements ifi,
(a)(0)(e)(d)  (4,0,0,0) ty 1
(a)(bed) (1,0,1,0) t1ts 8
(ab)(cd) (0,2,0,0) t3 3
(a)(b)(ed) (2,1,0,0) 2ty 6
(abed) (0,0,0,1) ty 6
Total 24 = |54

Lastly, from Table 1.1 and Equation 1.125 x = 5 {t + 8t1t3 + 3t3 + 6t3ts + 6t4}.

Definition 1.1.37. Let A and B be polynomials in the indeterminatgst,, - - -. Then, by the
Plethysnof A and B, it means the replacing of evetyin A (i = 1,2, - - -) by the polynomial
obtained fromB by multiplying by: the subscript of each of its indeterminates. The resulting
polynomial is denoted byl [B].

Example 1.1.7.ConsiderZ(S;) = 3{t} + to} and Z(Ss) = #{t} + 2¢3 + 3t1t,}, the cycle

indices ofS, and S; respectively. TherZ(S,[Ss]) is obtained by replacing, in Z(S;) by
{13 + 2t3 + 3t1t2} andty in Z(S) by ¢{t3 + 2ts + 3tots}. Thus

1
Z(85[Ss]) = 5{75? + A5 + 9ty + Aty + 12t tots + Gty + 6ts + 125 + 18taty }.

1.2 Statement of the Problem

The current study seeks to answer the open question abaositivdy, primitivity, ranks, sub-
degrees, pairing of suborbits, and properties of the sulabdraphs, associated with the ac-
tions of A,, on X"l and X "), respectively the ordered and unordereglement subsets of the
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setX = {1,2,--- ,n}. In addition, it focuses on deriving an expression of thdeyrudex of
Sn, explicitly in terms of the cycle index of,, and that ofC5.

1.3 Justification

The theory of combinatorics has applications in countirggrtmber of distinct objects in the
presence of symmetry. Applications of this theory is présethe enumeration of graphs and
solving a lot of counting problems connected with chemisahiers. The two main theorems
used in this field are the Burnside’s Formula, which utililes concept of orbits to count
mathematical objects with regard to symmetry, and the PoBraumeration Theorem, which
uses the cycle index of a group.

Graph theory has applications in modelling types of retetiand process dynamics in phys-
ical, biological, social and information systems. Manygbiaal problems can be represented
by graphs. For instance, graph theory is important in chigyngd physics when studying
the nature of bonding in crystals. In computer science,liggape used to represent networks
of communication, data organization, computation devittessflow of computation, etc. One
practical example is the link structure of a website whichldde represented as a directed
graph, where the vertices are the web pages available atedhgite and a directed edge from
vertex A to vertex B exists if and only if paged contains a link to pagés. In addition,
homogeneous multiprocessor systems are usually modejleddirected graphs.

1.4 Objectives

1.4.1 General Objective

To determine combinatorial properties, invariants, stries, and formulas, associated with
some actions of the alternating grodp.

1.4.2 Specific Objectives

1. To determine transitivity and primitivity of the actionsA4,, on X"l and X ),
2. To compute the ranks and subdegrees of the actiods oh X"l and X ),
3. To examine pairing of the suborbits corresponding to thieas ofA,, on X"l and X ),

4. To construct the suborbital graphs associated with thierecof A4,, on X" and X
and to analyse the theoretic properties of these graphs.

5. To derive an expression of the cycle index of the semitipeaductS,, = A, x C5
explicitly in terms of the cycle indices of,, and (.
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1.5 Null Hypothesis

The actions of4,, on X"l and X (") are not transitive and the cycle index formulasfis not
explicitly expressible in terms of the cycle indicesAf andCs.
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CHAPTER TWO
LITERATURE REVIEW

2.1 Introduction

The concepts of combinatorial properties, invariantsicstres and formulas associated with
a group action form the basis for the study of the group acfidis chapter provides a review
of some past studies, with respect to these concepts, thati@ely related to the current
study. In this regard, Section 2.2 examines studies coadenith the combinatorial proper-
ties, invariants, and structures, while Section 2.3 examsgtudies dealing with combinatorial
formulas, of different group actions.

2.2 Combinatorial Properties, Invariants and Structures

A study by Nagai (1961) used the action .4f on X®, the set of unordered pairs from
X ={1,2,---,7}, to illustrate the existence of a primitive not doubly triéie group of
degree21 which contains a non-abelian regular subgroup of ozder

According to Higman (1970) the symmetric grofipacts onX ) with rank3 and subdegrees
1, 2(n — 2), (",?). The action is imprimitive if. = 4 and primitive ifn > 5. Higman also
showed that any rankgroup of odd order is primitive. Moreover,@ < S,,, n > 4, acts with
rank3 on X?| thenG is 4-transitive except for, = 9 and the case whel@ = PT Ly(8).
According to Cameron (1981)  is a primitive permutation group of degree= 2p where

p is prime, thenGG has rank at most; and if n — 1 is not a square, the@' is 2-transitive.
Moreover, ifG is a permutation group of degréa(n — 1) in which G, has orbit lengthg,
2(n —2), andi(n — 2)(n — 3), and ifn is not one of a known finite list of exceptional values
(which includesn = 9), thenG < S, (acting on unordered pairs). Cameron further proved
that all finite2-transitive groups are known and that none, exégmndA,,, is 6-transitive.
Cameron (1999) established thagifis a primitive permutation group ol of rankr andG,
has an orbit of sizé > 1, then

o —1 if k=2

Xl < K=o
1+ — %2 Zf k> 2.

Further, Cameron showed that the equality holds only in #seg§ where = 2 so thatG is
2-transitive, ork = 2 so thatG is dihedral of prime degree, or= 3 andk = 3 so thatG is S5
or A; of degreeb, orr = 3 andk = 7 so thatGs is of order50.

Li et al. (2004) studied finite primitive permutation groups withraadl suborbit. They first
produced a precise list of primitive permutation groupshwatsuborbit of lengti. In partic-
ular, they showed that there exist no examples of such gneithsa point stabilizer of order
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243%, answering a question that has been open siftes. They then analyzed the suborbital
graphs of primitive permutation groups with a suborbit eigéh3 or length4.

Hamma & Aliyu (2010) proved that a dihedral group of degteé- > 2) acts both transitively
and imprimitively.

Hamma & Audu (2010) showed thatdf, is a dihedral group of prime degree> 3 andG, is

a Sylowp—subgroup oiG1, then bothz; andG, are transitive and primitive. They however
showed that if the degree 6f, is p? for a primep, then bothG; andG,, act imprimitively
Rimberia (2011); Rimberiat al. (2012, 2013) investigated the action$f on X", the set
of orderedr-element subsets of = {1,2,---,n}. It was proved that the actlon is both

transitive and imprimitive. The rank of the action was fouade equal tdr!)> E (Z,)Q =]

for all n > 2r, and the corresponding subdegrees were also calculatetueFut was shown
that suborbital graphs of the action, corresponding toaifed suborbits, have girth zero if
n > 2r, while those corresponding to paired suborbits have dintbet forn > 3r.

The action ofS,, on X (), the set of unordered-element subsets of = {1,2,---,n}, was
studied by (Nyaga, 2012; Nyags al., 2012; Nyaga & Kamuti, 2013). It was proved that
the action is transitive. In addition, if > 2r, the rank of the action was found to be+ 1

in which case the length of a suborbiit._; (: = 0,1,2,---,r) whose each element contains
exactly: elements from the sdtt, 2,--- ,r} is (}) ("_7). Moreover, it was observed that the
suborbits of the action are self-paired and that the sutarpiaphs of the action have girth
three ifn > 3r.

Kamutiet al. (2012) investigated some propertieslaf (the stabilizer ot in the modular
groupl’) acting on the sef. of integers. They showed that the action is simply transigind
imprimitive. Additionally, they gave conditions for thelwts of the action to be paired and for
the graphs associated with the action to be connected, dasvalformula for the number of
connected components in a disconected graph.

Mwai (2015) investigated the transitivity, primitivityanks, subdegrees, and properties of
suborbital graphs associated with the actions of the cgghap C,, and the dihedral group
D,, on the vertices of a regular-gon thus extending the work of (Hamma & Aliyu, 2010;
Hamma & Audu, 2010) to the general degretor bothC,, and D,,.

2.3 Combinatorial Formulas

The cycle index polynomial of,, is Z(S,) = niz ﬁ Hto‘l This can be found in
=1 1%yl =

(Harary, 1955; Harary, 1958; Palmer, 1973; Knshnamurﬂl@ﬁS Bjorge, 2009; Badar &
Igbal, 2010).

Harary (1955) derived the cycle index polynomials for theé gaoup S% and the reduced
ordered pair groupsy[?}, the groups induced when the symmetric graijpacts respectively

13



on unordered and ordered pairs from theXet {1,2,--- ,n}. These polynomials are used
extensively in enumerating various types of graphs andagiggs as seen in (Harary, 1955;
Harary, 1958; Harary, 1970; Harary & Palmer, 1966).
The formula forZ(S52) was calculated by (Harary, 1958) and according to (Palmep&iiR
son, 1973)7(S;™) was calculated by Slepian. Harison & High (1968) constraicte algo-
rithm for finding Z (G*°~) for a general permutation grodpand used their results to enumer-
ate Post functions.
The problem of the cycle index of a general power group wagesoby (Harary & Palmer,
1966). In addition, Palmer & Robinson (1973) verified an etpyeneral formula foeZ (GS™)
in terms ofZ(G1) andZ(Gs) for any permutation groups; andG,. The result was obtained
by substituting certain operators for the variable& ¢f7; ) and then letting them act of(G»).
Several applications were then sketched, including thenenation of Boolean functions,
bicolored graphs, and Post functions.
Harary (1970); Krishnamurthy (1985) showed that the cyatkek of the sund7; + G, of two
groupsG; andG, is the product otZ (G) by Z(G5); in other words

Z(Gy + Gy) = Z(G1)Z(G,). They also showed that the cycle index of the Cartesian @todu
Gy x Gyis

ni,no

((11) ((12)
Gi x Gy) #(rs8)ir
Z(Gh 2) \G1HGz\ Z H [r,s]

g1€G1T,5=1
go€G2

wherej(g1 and](”) are respectively the number of cycles of lengthnd s in ¢g; and g,
respectively, whilelr, s| and (r, s) are, respectively, the I.c.m and g.c.drofind s, where
1<r<ng,1<s < ns.

Palmer & Robinson (1973); Krishnamurthy (1985) studiedayee index of a wreath prod-
uct. They showed that i (G,) = Zg, x(t1,- - ,tn,) ANAZ(G2) = Zg, v (51, , Sny), then
Z(G41[Gq)) = Z(G1)[Z(G3)], the Plethysm of the cycle indices 6f andG,; in other words,
Z(G4[Gs)) is obtained by replacing each variabjef Z (G ) by the polynomialZ;(G) gen-
erated fromZ(G,) by multiplying each subscript by This expression was originally done
by Polya and it plays a key role in the enumerationtafolored graphs and non-separable
graphs.

The extension of the cycle index 6f? to that of S¥ was done by (Palmer, 1973). Palmer
used the results to calculate the numbe2-giexes forn < 9 and went further to derive the
cycle index ofsy”.

Grove (1983); Krishnamurthy (1985); Bjorge (2009); Badatgkal (2010) showed that the
cycle index of the cyclic group’,, is given asZ (C,,) = 1 = o(i)t; ¢/ , Whereg is the Euler’s phi

tn

function given byp(n) = |{d : 1 < d < n, ged(d,n) = 1}|. They also expressed the cycle
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index polynomial of the dihedral group,, in terms ofZ(C,,) as

(n=1)
2

1 %tth 1f nisodd
Z(Dy) = =Z(Cy) + (n=2)
7| ta 1f niseven.

+ tit, 2

Krishnamurthy (1985); Bjorge (2009) expressed the cyaliexnof A,, in terms of Z(S,,) as
Z(Ay) = Z(Sn) + Z(Sn)(t1, —ta, tg, —tg, -+ ).

Kamuti & Obon’go (2002) extended the cycle index%f to that of S They also used
similar techniques to derive the cycle index$Jf’ which according to (Palmer, 1973) had
earlier been found by Oberschelp.

Kamuti & Njuguna (2004) derived in detail the cycle indexrfarla of St and gave an outline
of how that ofS!’ can be obtained in general, thereby extending some re$(Hsary, 1955;
Kamuti & Obon’go, 2002).

Kamuti (2004) expressed the cycle index formula of a semadliproduct: = M x H explic-
itly in terms of the cycle indices af/ and H. The study solved the problem by considering
the cycle indices of some important semidirect productmeig the Frobenius groups. The
method of solution exploited the well-known structure oblb&nius groups.

Kamuti (2012) extended a previous study by (Kamuti, 2004gdysidering the internal direct
productG = M x H with the aim of expressing the cycle index@fin terms of the cycle
indices of M and H if GG acts on the cosets @f in G.

The studies outlined in Section 2.2 above show that verg liths been done on transitivity,
primitivity, ranks, subdegrees, pairing of suborbits, aslvas properties of the suborbital
graphs associated with the actionsAf on X! and X ). Additionally, from Section 2.3,
it is clear that the expression of the cycle index of the s&extl productS,, = A, x Cs,
explicitly in terms of the cycle indices of,, andCs, remains undetermined.
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CHAPTER THREE
PROPERTIES AND INVARIANTS OF THE ACTION OF A, ON
ORDERED SUBSETS

3.1 Introduction

The combinatorial properties and invariants of a groupacire fundamental concepts as far
as the study of the group action is concerned. This chapteserved for the exploration of
these concept with respect to the actiomgfon X", the set of the orderedelement subsets
of X = {1,2,---,n}. Transitivity and primitivity of the action are determinedspectively,
in Sections 3.2 and 3.3. On the other hand, calculation afthieand subdegrees of the action
is done in Section 3.4, while pairing of the suborbits cquaesling to the action is explored
in Section 3.5.

Throughout this, and the next three chapters, for converidiyG it shall mean the alternat-
ing groupA,,.

Now, the action of¥ on X = {1,2,---  n}induces an action af on X", The induced action
is defined byg[xy, 7, -, ] = [g(21), 9(x2), -+, 9(x,.)] Vg € G, [x1, 29, , 7,] € X,

In this case|X"| = , P, = -

(n—r)!"

3.2 Transitivity of A, on X2, X3 and X/

3.2.1 Transitivity of A,, on X2

3.2.1.1 Transitivity of A3 on X2

In this caseG = {1, (123),(132)} and X2 = {[1,2],[2,1],[1,3],[3,1],[2,3],[3,2]}. The
identity in G fixes every element ok[?; the other two permutations move each element of
X[, So, by Theorem 1.1.1, the number of orbits corresponditiget@ction is

e > Ifix(g)] = %[6+0+0] =2.

geG

1
|G

These ar®rbq[1, 2] = {[1, 2], [2,3],[3,1]} andOrbs[2, 1] = {[2, 1], [3, 2], [1, 3]}. Hence, by
Definition 1.1.4, the action afl; on X2/ is intransitive.

3.2.1.2 Transitivity of A4 on X2

In this case,

G = {1,(123),(132), (124), (142), (134), (143), (234),
(243), (12)(34), (13)(24), (14)(23)}
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and

XE = {[1,2],[2,1],[1,3], [3, 1], [1,4], [4, 1], [2,3],
3,2],12,4], [4,2],[3,4], 4, 3]}

Just like in Subsubsection 3.2.1.1, only the identity eleneG fixes an element ok 2. So,
by Theorem 1.1.1, the number of orbits of the action is

me 240+ 0] =1

gEG

Therefore, by Definition 1.1.4, the action is transitive.

3.2.1.3 Transitivity of A, on X2/ for n > 4

Proposition 3.2.1. The action ofG' on X 2! is transitive if and only if» > 4.

Proof. Supposer > 4. Let H = Stabg[z,y] where[z,y] € X2, An elementy € H fixes
[z, y] sothaty(z) = x andg(y) = y. This happens only if each afandy belongs to d-cycle
of g so thatH is isomorphic ta4,,_». Hence|H| = ("22)

hypothesis. Now, by Theorem 1.1.2,

|Orbglz,yll = |G: H|
Ial
|H]
n!/2
(n=2)!/5
n!
(n—2)!
= |xH.

So, the action has a unique orbit and is therefore transivethe other hand, suppose< 4.
Then(n — 2)! < 2 so that|G| = 5 < “5; = [XPI|. Consequently, by Theorem 1.1.2,

|Orbglx, y]| = % < |G| < |X?!|, and the action is thus intransitive. O

3.2.2 Transitivity of A,, on X3!

3.2.2.1 Transitivity of A, on X!

In this case| X Pl| = ;P; = 24. By Theorem 1.1.1, the number of orbits of the action is

Z\fm; 24+0+ +0] =2.

gEG
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The two orbits of the action are

Orbg(1,2,3] = {[1,2,3],[1,3,4],[1,4,2],[2,1,4],[2,3,1],[2,4, 3], 3,1, 2],
3,2,4],[3,4,1],[4,1,3],[4,2,1],[4,3,2] }

and

Orbg[1,3,2] = {[1,2,4],]1,3,2],[1,4,3],[2,1,3],[2,3,4],[2,4,1],[3,1, 4],
13,2,1],[3,4,2],[4,1,2],[4,2,3],[4,3,1] }.

Hence, the action is intransitive.

3.2.2.2 Transitivity of A, on X for n > 5

Proposition 3.2.2. The action ofG on XBlis transitive if and only ifn > 5.

Proof. Suppose: > 5. Let H = Stabg|x,y, 2] for [z,y,2] € XBL If g € H, then it fixes
[z, y, z], which follows thaty(xz) = z, g(y) = y andg(z) = z. This is the case only if each of

the elements;, y andz belongs to d-cycle ofg. Hence,H = A,,_; and|H| = (";3)!, which
is practical since, by assumptian> 5. By Theorem 1.1.2,
|OTbe[ZE,y,Z]| - |G : H|
_ ol
|H|
B n!/2
C (=3)ly
n!
 (n-23)
= |xBI.
So, the action is transitive. Now,iif < 5, then(n—3)! < 2so thaiG| = § < 25 = |XPI].
Accordingly, |Orbgz, y, 2]| = % < |G| < |XPBl|, by Theorem 1.1.2, and the action is
therefore intransitive. O
3.2.3 Transitivity of A, on X[
Lemma 3.2.1. LetG actonX" with n > r + 2. If [21, 29, -- ,2,] € XTI, then
— )
‘Sta’bG[xlu MO PR 7:67“]‘ = (n 9 T)"
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Besides,Stabg|x1, 0, - - - , x,] is trivial if n = r + 2, so thatG acts freely onX!", and is
non-trivial otherwise.

Proof. Let G act onX " and let[z,, zy,--- ,z,] € XU, Theng € G fixes[zy, zo, - - - , 2]
only if each element of z, x5, - - - , x,.} is in al-cycle ofg. Hence,Stabg[x1, 2, -+, z,] IS
the group of all even permutations of the ¢t 1, z,.o, -, z,}. But, this group is isomor-

phicto A, _,. Therefore,

(n—r)!.

|Stabg|x, xa, -+, x| = 5
Now, if n = r + 2, then on rewritings — r = 2, so that
2!
|Stabglxy, T2, -, x,.]| = 5= 1.

Hence the action of! on X" is free. On the other hand, if > r + 2, thenn — r > 2, on

rewriting, so that
—r) 2l
|Stabg|xy, z2, -+ 2] = (n 5 ) > 5= 1

andStabg|x1, z2, - - - , x,] is thus non-trivial. O

Theorem 3.2.1.The action ofG on X" is transitive if and only if, > r 4 2.

Proof. Suppose: > r + 2. From Theorem 1.1.2, and Lemma 3.2.1,

|Orbg|x1, 29, -+ ,2,]| = |G : Stabglxy,za, -, x,]|
|G|
|Stabg [z, 2, - -, 2|
n!/s

(n=r)!/9

n!
(n—r)!

= |x0,

and then action is transitive. Now, suppose< r + 2. It follows that(n — r)! < 2 and
G| =2 < oo — | XU, By Theorem 1.1.20rb¢[x1, xs, - - , 2| = 19 < |G| < |X1],

(n—r)! |H|
and the action is intransitive. O

Example 3.2.1.Consider the action off = A;; on X/, Then,|XP)| = ;P = 12 and by
Lemma 3.2.1|H| = <. Now, by Theorem 1.1.2,

B |G| B 15/5 15!

20 xEl
C|H| w0210 X

|OTbG’[fE1, X2, X3, T4, $5]|

Therefore, by Definition 1.1.4, the action is transitive.
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3.3  Primitivity of A, on X2, X8 X[ and X!

3.3.1 Primitivity of A, on X/
Proposition 3.3.1. The action ofG on X2 is imprimitive if and only ifn > 4.

Proof. This action is transitive if and only i#f > 4, by Theorem 3.2.1. Consider the non-trivial
subset” = {[1,2],[1,3],[1,4],-- -, [1,n]} of X[ Whereﬁz {1,i} = {1}. Then|Y| =n —1
which divides| X?| = n(n — 1). Now, if g € G such thatl belongs to d-cycle of g, theng
either fixes an element of or takes one element af to another so thajy” = Y. Any other

g € G moves an element df to an element not ifr” so thatgY N Y = (). This argument
shows that” is a block for the action and the conclusion follows, from Dgion 1.1.8. [

3.3.2 Primitivity of A,, on X©
Proposition 3.3.2. The action ofG' on X! is imprimitive if and only ifn > 5.

Proof. The action is transitive if and only i > 5, by Theorem 3.2.1. Consider the set
Y = {[1,2,3],[1,2,4],[1,2,5],---,[1,2,n]} such thatﬁ3 {1,2,i} = {1,2}. In this case
Y| =n —2is afactor of| X®¥/| = n(n — 1)(n — 2). Now, if g € G such that each of and

2 belongs to d-cycle of g, theng either fixes an element &f or takes one element of to
another so thagy = Y. On the other hand, if either dfor 2 is in ak-cycle, wherek > 1, of

g € GG, theng moves an element a&f to an element not i so thatyY NY = (). HenceY is

a non-trivial block for the action. Therefore, the actiomigrimitive, by Definition 1.1.8. [

3.3.3 Primitivity of A, on X!
Proposition 3.3.3. The action ofG' on X is imprimitive if and only ifn > 6.

Proof. This action is transitive if and only it > 6, by Theorem 3.2.1. Now, consider the
setY = {[1,2,3,4],[1,2,3,5],[1,2,3,6],---,[1,2,3,n]} with @-64 {1,2,3,3} = {1,2,3}.
Clearly,|Y'| = n — 3 divides| X | = n(n — 1)(n — 2)(n — 3). Now, if g € G such that each
of 1, 2, and3 belongs to d-cycle ofg, theng either fixes an element &f or takes one element
of Y to another so thajyY” = Y. Any otherg € G moves an element &f to an element not
inY sothatgY NY = (). HenceY is a non-trivial block for the action and the conclusion is
direct, from Definition 1.1.8. O

3.3.4 Primitivity of A, on Xl

Theorem 3.3.1.The action ofG on X" is imprimitive if and only ifn > r + 2.
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Proof. The action is transitive if and only if > r +2, by Theorem 3.2.1. Consider the subset

Y = {[1,2,---,r =17, [1,2,---,r =1L, r+1],[1,2,--- ,r —1,r+ 2],
1,2, ,r—=1r+3,-- 1,2, r—1,n-1],[1,2,--- ,r—1,n|}

of X"l such thatﬁr {1,2,---,r — 1,3} = {1,2,--- ,r — 1}. Then|Y| =n — r + 1 which
divides|X'| = n(n—1)(n—2)--- (n—7r+1). Now, if g € G where eachof,2,--- ,r—1
belongs to al-cycle of g, theng either fixes an element &f or takes one element &f to
another so thagY = Y. However, ifany ofl, 2, - - - , » — 1 belongs to &-cycle, where: > 1,
of ¢ € G, theng moves an element df to an element not i so thatgY NY = (. The
argument shows that is a non-trivial block for the action. Hence the action is rmptive,
by Definition 1.1.8. O

Example 3.3.1.Let G = A, act onX?. The groupG and the setX!? in this case are as
given in Subsubsection 3.2.1.2. Consider the suset{[1,2], [1, 3], [1,4]} of X[2. Then, it
can be shown thaty =Y if g =1, g = (234) or g = (243), andgY N'Y = {) for any other
g € G. S0,Y is a non-trivial block for the action. Therefore, by Defioiti1.1.8, the action is
imprimitive.

3.4 Ranks and Subdegrees oA ,, on X2, X8l x4 and X!

3.4.1 Rank and Subdegrees of,, on X2

From Theorem 3.2.1, this action is transitive if and only i 4. Throughout this subsection,
by N it shall mean the sdft, 2}.

3.4.1.1 Rank and Subdegrees o, on X2

LetG actonX?. Then,|X| = ,P, = 12. From Lemma 3.2.1G}; oy = {1}. Now, G|, 5 has
orbits (G—suborbits) each of whose element has exattlyor no element froniV. These are
a) Suborbits whose respective elements contain baiid2:

Ao = Orbg, ,[1,2] = {[1,2]}

Ay = Orbgy, (2,1 = {[2,1]}

b) Suborbits whose respective elements contain exactlgl@meent fromV:

Ay = Orbg, ,[1,3] = {[1, 3]}

Ns = Orbg,, ,[3,1] = {[3,1]}
Ay = Orba, , [1,4] = {[1,4]}
As = Orbg, , [4,1] = {[4,1]}
N6 = Orbg,, ,[2,3] = {[2,3]}
Az = Orba, , [3,2) = {[3,2}
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Ag = Orbg,, ,(2,4] = {[2,4]}

Ag = Orbg, ,[4,2] = {[4,2]}

¢) Suborbits whose respective elements contain neither 2:

Aqg = Orbgy, ,[3,4] = {[3,4]}

A = Orbg, ,[4,3] = {[4, 3]}

So, the action hak2 suborbits each of length These are summarized in Table 3.1 below.

Table 3.1: Rank and Subdegreesffon X2
Numberz of Number of Suborbits Corresponding  Corresponding

Elements Containing Exactly Number of
from N z Elements fromV. Subdegrees  Elements il?
2 5Co X 9Py = 2 1 2
1 (0] X 9Py) x 2 =28 1 8
0 (QCOXQPQ)XQZQ 1 2
Total 12 12 = | XU

Thus, the rank ofd, on X2 is 12.

3.4.1.2 Rank and Subdegrees o5 on X2

In this case|X?| = ;P = 20. From Lemma 3.2.1G;; 9= Aj3. Just like in the case in
Subsubsection 3.4.1.1 abov¥g; » has orbits each of whose every element has exacthor
no element fromV. These are summarized in Table 3.2 below.

Table 3.2: Rank and Subdegrees4gfon X2
Numberz of Number of Suborbits Corresponding Corresponding

Elements Containing Exactly Number of
from N z Elements fromV. Subdegrees  Elementsii®
2 202 X 2P2 =2 1 2
1 201 X 2P1 =4 3 12
0 (2Cp X o Py) x 2 =2 3 6
Total 8 20 = | XM

So, the rank ofd; on X is 8.

3.4.1.3 Rank and Subdegrees kg on X2

In this casd X?/| = 4P, = 30. From Lemma 3.2.1Gi; 5= A,. Now, G|, o) has orbits each
of whose every element has exactlyl or no element fromV. These suborbits off are
summarized in Table 3.3 below.
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Table 3.3: Rank and Subdegreesffon X
Numberz of Number of Suborbits Coresponding  Coresponding

Elements Containing Exactly Number of
from N z Elements fromV  Subdegrees  Elements i
2 202 X 2P2 =2 1 2
1 5Oy X o P = 4 4 16
0 5Co X 9Py =1 12 12
Total 7 30 = | XM

So, the rank ofds on X is 7.

3.4.1.4 Rank and Subdegrees ok, on X2 for n > 6

Proposition 3.4.1. The rank ofG on X2 is 7 if n > 6.

Proof. Let G act onX., ThenGy, o) has orbits each of whose every element has exagctly

1 or no element fromV. There is only,C>; = 1 way of selecting two elements frotd and

the two can be arranged in the two positions iy = 2 ways. So, there arg’s x o P, = 2
suborbits each of whose element contains both elements FAomlso, there areC; = 2
ways of selecting an element from, which can occupy any of the two positions,iff, = 2
ways. Hence, there ar€'; x , P, = 4 suborbits each of whose every element has exactly one
element fromV. Similarly, there is onlyCy x » Py = 1 suborbit whose each element contains
no element fromV. So,G has7 suborbits in total. O

The seven suborbits discussed in Theorem 3.4.1 are
a) Suborbits whose respective elements contain baiid2:

Ao = Orbg, ,[1,2] = {[1,2]}

Ly = OTme][ 1] ={[2,1]}

b) Suborbits each of whose every element contains exacyelmment fromV:
Dy = Orbey (1, 3] = {[1,3], [1,4], [1,5],- - , [1,n]}

Dy = Orb,,[3,1] = {[3,1], [4,1], [5,1], -+ , [n, 1]}

Ay = Orbg,,[2,3] = {[2,3], 2,4, [2,5],-- -, [2,nl}

D5 = Orbg, (3,2 = {(3,2),[4,2), 5,2, -+ [n, 2]}

c) Suborbit whose each element contains neithsor 2:

A = Orbgy, ,[3,4] = {[3,4],3,5],- -+, [3,n], [4,3],--- . [4,n], -, [n,n — 1]}

The subdegrees and corresponding number of suborbitg oh X for n > 6 are summa-
rized in Table 3.4 below.

23



Table 3.4: Rank and Subdegreesffon X2 forn > 6

Number Corresponding Corresponding
of Elements Number of
from N Subdegrees Suborbits
2 1 5Co X o Py = 2
1 (n—2) 2C X 9Py = 4
0 (TL—Q)(TL—g) QCOXQPOZI
Total 7

3.4.2 Rank and Subdegrees of,, on X3!

From Theorem 3.2.1, this action is transitive if and only i 5. Throughout this subsection,
by N it shall mean the sdft, 2, 3}.

3.4.2.1 Rank and Subdegrees o5 on X3!

Let G act onX . In this casg X®| = 5P, = 60. From Lemma 3.2.1G/}; »5) = {1} and has
orbits each of whose element has exagtl®, or 1 element from/N. Each of these suborbits
of G has lengthl and they ar&0 in total. The suborbits are summarized in Table 3.5 below.

Table 3.5: Rank and Subdegrees/gfon X °!
Numberz of Number of Suborbits Corresponding Corresponding

Elements Containing Exactly Number of
from N x Elements fromV Subdegrees  Elements !
3 3C3 X 3P3 =6 1 6
2 (3C5 x 3P5) x 2 =36 1 36
1 (5C1 x 3P) x 2 =18 1 18
Total 60 60 = | XP|

So, the rank ofd; on X! is 60.

3.4.2.2 Rank and Subdegrees akg on X3!

If G acts onX, then|XB| = ¢P; = 120. From Lemma 3.2.1G 13 = A3 and G2
has orbits each of whose every element contains exacllyl or no element fromV. These
suborbits ofG are summarized in Table 3.6 below.
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Table 3.6: Rank and Subdegrees/fon X °!
Numberz of  Number of Suborbits  Corresponding Corresponding

Elements Containing Exactly Number of
from N = Elements fromV Subdegrees  Elementsl®!
3 3C3 X 3P3 =6 1 6
2 3Cs X 3P, =18 3 54
1 (3C) x 3P)) x 2 =18 3 54
0 (3COX3P0)X2:2 3 6
Total 44 120 = | X ]

So, the rank ofd; on X Bl is 44.

3.4.2.3 Rank and Subdegrees ok ; on X3!

In this casg X ®¥)| = ;P; = 210. From Lemma 3.2.1G/[; 2.3y & A, andG|; 1.3 has orbits each
of whose every element has exacily2, 1 or no element fromV. These suborbits afr are
summarized in Table 3.7 below.

Table 3.7: Rank and Subdegreesdfon X!
Numberz of  Number of Suborbits  Corresponding Corresponding

Elements Containing Exactly Number of
from N z Elements fromV Subdegrees  Elements il
3 3C3 X 3P3 =06 1 6
2 302 X 3P2 =18 4 72
1 301 X 3P1 =9 12 108
0 (5Cy X 3Py) x 2 =2 12 24
Total 35 210 = | X ]

So, the rank ofd,; on X! is 35.

3.4.2.4 Rank and Subdegrees ks on X3!

Let G act onX Bl Then,| XBl| = ¢P; = 336. From Lemma 3.2.1G71 0.5) & A5 and G123
has orbits each of whose every element has exactly 1, or no element fromV. These
suborbits ofG are summarized in Table 3.8 below.
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Table 3.8: Rank and Subdegrees/qfon X °!

Numberz of Number of Suborbits Corresponding

Corresponding

Elements Containing Exactly Number of
from N = Elements fromV. Subdegrees  Elements il’!
3 3C3 X 3P3 =6 1 6
2 3Cy X 3P, =18 ) 90
1 3C1 x 3P =9 20 180
0 3Co X 3Py =1 60 60
Total 34 336 = | X

So, the rank ofds on X! is 34.

3.4.2.5 Rank and Subdegrees ok, on X3 for n > 8

Proposition 3.4.2. The rank ofG on X! is 34 for all n > 8.

Proof. Suppose&? acts onX[®, ThenGy, 2 5 has orbits each of whose element has exagtly
2, 1, or no element fromV. An argument similar to the one in the proof of Theorem 3.4.1
shows thatz has;C; x 3P; = 6 suborbits each of whose element has exagtglements
from N, 3Cy x 3P, = 18 suborbits each of whose every element has exaathgments from
N, 3Cy x 3P, = 9 suborbits each of whose every element has exdatigment fromV and
3Cy X 3Py = 1 suborbit whose every element has no element ffonTherefore, the rank of
G on X Bl s 34. O

The 34 suborbitsA\g, Ay, g, - - -, As3 discussed in Theorem 3.4.2 are listed in Appendix A.
The subdegrees and corresponding number of suborbitg oh X®! for n > 8 are summa-
rized in the Table 3.9 below.

Table 3.9: Rank and Subdegreesffon X forn > 8

Number Corresponding Corresponding
of Elements Number of
from N Subdegrees Suborbits
3 1 3C3 X 3P3 =6
2 (TL—?)) 3CQ><3P2:18
1 (n—3)(n—4) 3C) x 3P =9
0 (n—=3)(n—4)(n—1>5) 3Cy X 3Py =1
Total 34

3.4.3 Rank and Subdegrees of,, on X4

From Theorem 3.2.1, this action is transitive if and only i 6.
by N it shall mean the sdftl, 2, 3,4}.
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3.4.3.1 Rank and Subdegrees kg on X4

Let G act onXM. Then|X¥| = 4P, = 360. From Lemma 3.2.1¢[; 234 = {1}, and has
orbits each of whose element has exadtl$, or 2 elements fromV. Each of these suborbits

of GG has lengthl and they arg60 in number. These suborbits are summarized in Table 3.10
below.

Table 3.10: Rank and Subdegreesigfon X4
Numberz of  Number of Suborbits  Corresponding  Corresponding

Elements Containing Exactly Number of
from N x Elements fromV Subdegrees  Elements 4!
4 404 X 4P4 =24 1 24
3 (4C5 X 4Ps) x 2 =192 1 192
2 (4Co X 4P3) x 2 =144 1 144
Total 360 360 = | X ]

So, the rank ofds on X is 360.

3.4.3.2 Rank and Subdegrees ok, on X4

Supposé&? acts onX. Then,|X"| = ;P; = 840. From Lemma 3.2.1(7(; 5 3 4 = A3 and
G1,2,3,4) has orbits each of whose every element has exagtdy 2, or 1 element from/V.
These suborbits af are summarized in Table 3.11 below.

Table 3.11: Rank and Subdegreestgfon X4
Numberxz of ~ Number of Suborbits  Corresponding  Corresponding

Elements Containing Exactly Number of
from N x Elements fromV Subdegrees  Elements *
4 4Oy X 4Py =24 1 24
3 403 X 4P3 =96 3 288
2 (4Co X 4Py) x 2 = 144 3 432
1 (4C X 4Py) x 2 =32 3 96
Total 296 840 = | X1|

So, the rank ofd; on X is 296.

3.4.3.3 Rank and Subdegrees akg on X4

In this casg X = P, = 1680. From Lemma 3.2.1G[; 53 4) = A4. Moreover,G[; o 3.4 has
orbits each of whose every element contains exaGty 2, 1, or no element fromV. These
suborbits ofG are summarized in Table 3.12 below.
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Table 3.12: Rank and Subdegreesigfon X4
Numberz of  Number of Suborbits  Corresponding  Corresponding

Elements Containing Exactly Number of
from N x Elements fromV Subdegrees  Elements 4!
4 404 X 4P4 =24 1 24
3 4C5 x 4P3 =96 4 384
2 1Co X 4Py = T2 12 864
1 (4C1 X 4Pp) x 2 = 32 12 384
0 (4COX4PQ)X2:2 12 24
Total 226 1680 = | X

So, the rank ofds on X is 226.

3.4.3.4 Rank and Subdegrees oty on X4

In this casgl XM| = P, = 3024. From Lemma 3.2.1G[1 234 = As. Further,Gp 234
has orbits each of whose every element has exdctly 2, 1, or no element fromV. These
suborbits ofG are summarized in Table 3.13 below.

Table 3.13: Rank and Subdegreesdgfon X4
Numberz of Number of Suborbits Corresponding  Corresponding

Elements Containing Exactly Number of
from N z Elements fromV Subdegrees  Elementsinl*!
4 404 X 4P4 =24 1 24
3 403 X 4P3 =96 5 480
2 1Co X 4Py = T2 20 1440
1 4C1 X 4P, =16 60 960
0 (4Cy X 4Py) x 2 =2 60 120
Total 210 3024 = | X1

So, the rank ofd, on X is 210.

3.4.3.5 Rank and Subdegrees ok, on X4

Let G act onX™. Then,|X!| = (P, = 5040. From Lemma 3.2.1G[; 234 = As and
G1,2,3,4) has orbits each of whose every element has exactly2, 1, or no element froniv.
These suborbits aff are summarized in Table 3.14 below.
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Table 3.14: Rank and Subdegrees4gf on X ¥
Numberz of Number of Suborbits Corresponding Corresponding

Elements Containing Exactly Number of
from N = Elements fromV. Subdegrees  Elements ¥
4 404 X 4P4 =24 1 24
3 1C3 x 4 P3 =96 6 576
2 1Co X 4Py =172 30 2160
1 401 X 4P1 =16 120 1920
0 1Co X 4Py =1 360 360
Total 209 5040 = | XM

So, the rank ofd;, on X4 is 200.

3.4.3.6 Rank and Subdegrees ok, on X for n > 10
Proposition 3.4.3. The rank ofG on X is 209 for all n > 10.
Proof. It is analogous to the proofs of Propositions 3.4.1 and ab®e. O

The209 suborbits\g, Ay, - - -, Agpg discussed in Theorem 3.4.3 are as listed in Appendix B.
The subdegrees and corresponding number of suborhits oh X for n > 10 are summa-
rized in Table 3.15 below.

Table 3.15: Rank and Subdegreesigfon X for n > 10

Number Corresponding Corresponding
of Elements Number of
from N Subdegrees Suborbits
4 1 4C4 X 4P4 =24
3 (n—4) 4C3 X 4P3 = 96
2 (n—4)(n—75) 1Cy X 4Py = T2
1 (TL—4)(TL—5)(TL—6) 401 ><4P1:16
0 (n—4)(n—5)(n—6)(n—7) 4CQ><4P0:1
Total 209

3.4.4 Rank and Subdegrees A, on X

Let G act onX ! and letN = {1,2,---,r}. From the findings in Subsections 3.4.1 through
3.4.3, above, itis quite clear thatif> 2(r+ 1), G' has suborbits each of whose every element
has exactly- —i (i = 0,1,2,---,r) elements fromV. The subdegrees and corresponding
number of suborbits of the action are obtained by genengjithe results in, respectively, the
second and third columns of Tables 3.4, 3.9 and 3.15 abowves.ighs shown in Table 3.16
below.
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Table 3.16: Rank and Subdegreesigfon X" for n > 2(r + 1)

Number of Corresponding Corresponding
Elements Number of
from N Subdegrees Suborbits

r 1 +Cr %, P,
(r—1) (n—r) +Cry X Py
(r—2) (n—r)n—r—1) +Crg Xy Pr_sg
(r—3) m—r)n—r—1)Mn-r—2) +Cr3 X Pr_3
(r—4) m—-r)n—r—1)n—-r—-2)(n—1r—23) +Cry Xy Pry
(r —1) n—r)n—r—1)--(n—r—i+1) +Cri X0 Pry

3 m—r)n—r—1)---(n—2r+4) +C3 X, Ps

2 m—r)n—r—1)---(n—2r+3) +Co X, Py

1 m—r)n—r—1)---(n—2r+2) +Ch X, Py

0 m—r)n—r—1)---(n—2r+1) +Co X By

Total S (-Cri Xy Pry)
i=0

Lemma 3.4.1.Let G actonX!" and letn > 2(r +1). Suppose a suborhit; of G has exactly
r—i(i=0,1,2,--- r)elements fromV = {1,2,--- ,r}. Then adding an extra element to
the setX increases/\;| by

im—r)(n—r—n—-r—=2)---(n—r—i+3)(n—r—i+2)

units; however, this addition does not affect the rank’/of

Proof. From the second column of Table 3.16,
|ANil=(n—r)n—r—1Dn—-r—=2)---(n—r—i+2)(n—r—i+1).

If an extra element is added 10, the new value ofA,| is obtained by replacing with n + 1,
which equal§n —r+1)(n—r)(n—r—1)---(n—r —i+3)(n —r —i+2). So, the number
of units by which the suborbit length changes is

m—r+)(n—r)(n—r—-1)-n—r—i+3)(n—r—1i+2)
—(n—rn—r—1)-n—-r—i+2)(n—r—i+1)
=[n—r+1)—(n—r—i+1)]
x(n—=r)(n—r—1)-(n—-r—i+3)(n—r—1i+2)
=in—r)n—r—1)-(n—r—i+3)(n—r—i+2).

Now, the number of suborbit&;, which is the corresponding entry in the third column of
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Table 3.16, is given purely in terms of the non-negativegater and:. It is clear that these
integers are unaffected by increasing the number of elesradnt’. This in turn implies that
increasing X | does not change the number of suborhits Accordingly, the rank o€, which

is simply the sum of entries in the said column, is not affeédig adding an extra element to
X. O

Theorem 3.4.1.The rank ofG on X' is (#1)*> 32 e foralln > 2(r +1).
1=0

Proof. If n = 2(r + 1), the sum of the entries in the third column of Table 3.16 gives
desired result; in other words, the rank@is

@2 (- D)

7

Thus, the given statement is true for= 2(r + 1). Now, suppose the statement is true for
n=2(r+1)+ kwherek € Z*. Now, forn = 2(r + 1) + (k + 1), add an extra element to
theset{1,2,--- ,2r,2r+1,2(r+1),---,2(r+1) + k}. By Lemma 3.4.1, the extra element
just changes the length of each suborbjt(i = 0,1, 2, --- ,r) whose every element contains
r — i elements from the sétl, 2,--- | r}, by

im—r)(n—r—1--(n—r—i+3)(n—r—1i+2)

units, but this increment has no effect on the number of thmmhits /\;. As a result, if
n=2(r+1)+ (k+1), therankis the same as that wher= 2(r + 1) + k. So, the statement
holds forn = 2(r + 1) + (k + 1) whenever it holds fon = 2(r + 1) + k. Therefore, by the
principle of mathematical induction, the statement is fareall n > 2(r + 1). O

Example 3.4.1.The group4,, (n > 10) acts onX with rank

1 1 1 1 1

o= Wy [(m)w Tl @ @ (anel

11 1 1 1
= 576[—+—+—+—+—

24 6 8 36 576

209
= D76 X —

276
= 209.
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Also, A, (n > 12) acts onX ! with rank

= (5!) NI S S S S
A= onzst T anzar T @2nar Tzl T @hzn (520!
11 1 1 1 1
= 14400 [ b b b o e

[120+24+24+72+576+14400}
773
= 14400 X ———
7200
— 1546.

In a similar manner, it can be shown that the rankipf(in > 14) on X% is 13327 while that
of A, (n > 16) on X7 is 130922. In fact, the Python computer programme in Appendix C
can be used to compute the rank4f on X' for all n > 2(r + 1) whenever < 166.

3.5 Pairing of Suborbits of A,, on X!

Theorem 3.5.1.Let A be an orbit 0fG[; ».... ,; on X', Suppose the ordered-element sub-

sets[zy, xo, - -+, ] @and[yy, y2, - - - ,y,] are in/A. ThenA is self-paired if and only il some
) 1 2 i ek 1 2 v r .k
permutationg; = andg; =
Yyioy2 o Yo Yk Ty X v Xy v Tg
in G, withr < k < n, thatare inverses of each other. Incpsexs, - - - , x| = [y1,92," -, ¥s],
1 2 ... e kN )
theng;, = g; = g such thay = ( " is self-inverse.
a’;‘l ZL“Q DR :L'r e l‘k

Proof. Suppose) is self-paired. Then, by Definition 1.1.7 there exjsty; € G such that

gi[xlax%”' 7x1“] = [1727 7T]; gi[1727"' 7T] - [y17y27"' 7y7"]

and
gj[yby?f“ 7y1“] = [1727 7T]; gj[1727"'7r] = ['rlux%'“ 7:67“]-

By the definition of the action,
gi(xl) - lagi(xQ) = 27 e 7gi(x7") =n gl(]') = ylagi(2) =Yz, 7gi(r) = Yr
and

gi(y1) =1,9(y2) =2,--- ,9;(y,) =75 9;,(1) = 1, 9;(2) = 22, -+, g;(r) = ;.

This argument implies that

(9i9;)(1) = 1,(9ig;)(2) = 2, , (gigj)(r) =
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and
(9;9:)(1) = 1,(9;9:)(2) = 2, -+, (g9:)(r) =1,

so that the permutationg andg; are inverses of each other.

. . 1 2 - r -k
Conversely, suppose there exist even permutaiypres and
Y Y2 o Yro o Yk
1 2 r -k .
g; = that are inverses of each other. Then
xl .’1:‘2 ... 'TT‘ DR "L’k

gilr1, xe, -y x] = [1,2,--+ ,r] and g;[1,2,--- ;7] = [y1,¥2, -+ ,y-]. On the other hand,
gilyi, ye, -,y = [1,2,--- ,r] andg;[1,2,--- ;7] = [zr1,29, - ,z,]. Hence,A is self-
paired, by Definition 1.1.7. Now, suppoge, xs,- -,z = [y1,¥2, - ,¥y:]. Then, clearly,
g; = g; = g and itis trivially self-inverse. O

Theorem 3.5.2. SupposeG acts onX") and suppose\; and A; are orbits ofG2,... 1)
Let [z1, 29, -+ ,2,] € A; Wherex, € {1,2,--- ,n} Vk = 1,2,--- ,r. Then/,; is paired
with A; if and only if there is an elemeny,, yo, -+ ,y.] € A; with y, € {1,2,--- ,n}

_ 1 2 v r .k
vt = 1,2,---,r, and some even permutatiops = and
Yi Y2 o Y o Yk
1 2 v r .k )
gj = ,m < k < n, that are inverses of each other.
':Cl .’1:‘2 ... 'TT‘ o e "L‘k

Proof. Suppose),; is paired withA; and [z, z3, - - - ,x,] € A;. Then, by Definition 1.1.7,
there existsyi, v, - - - ,y,] € A; andg,, g; € G such that

gi[xhx%'“ 7:67“] = [1727 7T]; g2[1727 7T] = [yhy?v'“ 7y7“]

and
gj[ylvy%“' 73/7“] = [1727 7T]; g][1727 7T] = [xhx?u“' 73:7“]'

By the definition of the action,

9i(r1) = 1,gi(x2) = 2, , gi(zr) = 75 6i(1) = y1,9i(2) = y2,- -+, 9i(r) = yr
and

9i(1) = Lgi(y2) =2, -+, g;(yr) = 15 9;(1) = 21, 9;(2) = @2, - -+, g5(r) = 2.

This implies that

(9i9;)(1) = 1,(9i9;)(2) = 2, -+, (gag;)(r) =
and

(959:)(1) = 1,(9;9:)(2) = 2, -+ . (g;9:)(r) =,
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so that the permutations andg; are inverses of each other.

. . 1 2 - r -k
Conversely, suppose there exist even permutaiypres and
yl y2 .. yr DR yk;
1 2 r -k .
gj = that are inverses of each other. Then
Tr1 To e Ty . e Tk

gilr1, xe, -y x] = [1,2,--- ,r] and g;[1,2,--- ;7] = [y1,2, -+ ,y-]. On the other hand,
gilyi, yo, -yl =[1,2,--- ,r]andg;[1,2,- -+ ,r] = [21,22,- - - , z,]. Hence A\; andA; are
paired, by Definition 1.1.7. O

Example 3.5.1.Consider the action af on X% for n > 6 (see Subsection 3.4.1). Sincg is
even, then by Theorem 1.14;, 5 has at least one non-trivial orbit which is self-paired. Now
1 2 3 4

21 4 3 )

In this casey takes|2, 1] to [1, 2] and vice versa. So, by Definition 1.14; = A, that is
A is self-paired. A similar argument shows that = A,, A = A; andAf = Ag. On

1 2
the other handj3, 1] € As, and ifg; = (123) = < 5 3 i’ ) theng,[3,1] = [1,2] and

consider2, 1] € A; and the self-inverse even permutatips- (12)(34) =

1 2 3
g91[1,2] = [2,3] € A4. Further, ifg, = (132) = ( 51 9 , theng,[2,3] = [1,2] and

g2[1,2] = [3,1]. In this caseg; and g, are inverses of each other and by Definition 1.1.7,
A% = Ay, thatisA; is paired withA,.

Example 3.5.2.From Appendix A\ 7, /Ay; and/\y3 are suborbits associated with the action
6 3 21 45

Theng,[4,3,2] = [1,2,3] € 9123 andgy[1,2,3] = [6,3,2] € Ays. Similarly, consider the
1 2 3 4 5 6

. 1 23 45 6
of G on Xl forn > 8. Take the even permutatign = (1654)(23) = ( ) :

ermutationg, = (1456)(23) = . Theng,[6,3,2] = [1,2,3] and
p 92 ( )(23) 43956 1 92| ] [ ]
g2[1,2,3] = [4,3,2]. In this caseg; and g, are inverses of each other. Alternatively, the
. : 1 2 3 4 .
self-inverse permutation = (14)(23) = 439 1 takes[4, 3, 2] to [1, 2, 3] and vice

versa. So, by Definition 1.1.7)43 is self-paired. On the other hand, consider the even per-
1 23 45 6

mutationgs = (1324)(56) =
g = (1324)(56) <342165

). Thengg[4,3,1] = [1,2,3] S 93A17

1 23 45 6
and g3[1,2,3] = [3,4,2] € Ay. Also, letgy = (1423)(56) = .
93] ] [ ] 21 94 ( )(56) 43196 5 )

Then g4[3,4,2] = [1,2,3] and g4[1,2,3] = [4,3,1]. In this caseg; and g, are inverses
of each other, and by Definition 1.1.2y,; is paired with/A,;. In fact, the13 suborbits
N (i = 1,2,5,6,8,13,15,22,23,24, 28,32 and 33) of the action are self-paired while the
suborbitsA; (7 = 3,7,9,10,11,16, 17, 25, 26, 29) are paired, respectively, with the suborbits
Ay (k= 4,12,14, 18,20, 19, 21,27, 30, 31).
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Example 3.5.3.Similarly, consider the suborbits of the action@fon X for n > 10 (see
these suborbits in Appendix B). The suborkits(i = 1, 2, 5, 6, 7, 14, 16, 21, 23, 24, 28, 30,
40, 49, 51, 55, 63, 76, 77, 82, 89, 114, 115, 116, 119, 120, 121, 134, 135, 148, 149, 160, 161,
176, 177, 190, 191, 192, 197, 202, 207, 208) are self-paired. On the other hand, the suborbits
N (7=3,8,9,10,11, 15,17, 25,26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45,
46, 47, 52, 53, 57, 58, 59, 64, 65, 66, 67, 68, 69, 70, 71, 83, 90, 91, 92, 93, 94, 95, 117, 122,
123, 124, 125, 126, 127, 128, 129, 130, 131, 136, 137, 138, 139, 140, 141, 142, 143, 150, 151,
152, 153, 154, 155, 164, 165, 166, 167, 178, 179, 193, 194, 195, 198, 199, 203) are paired,
respectively, with the suborbits,, (k = 4, 12, 18, 13, 19, 20, 22, 48, 72, 74, 50, 54, 36, 60,
78, 84, 56, 80, 86, 62, 96, 98, 102, 108, 104, 110, 73, 75, 61, 79, 85, 81, 87, 97, 99, 103, 109,
105, 111, 88, 100, 101, 106, 112, 107, 113, 118, 132, 133, 144, 145, 180, 181, 168, 169, 156,
157,146, 147, 182, 183, 170, 171, 158, 159, 162, 163, 172, 173, 184, 185, 174, 175, 186, 187,
188, 189, 196, 200, 204, 201, 205, 206).

Lemma 3.5.1. Let the cycle type off € G be(ay,aq, -+, ay). If a3 > r, then the number
of elements inX " fixed by g is given by

Proof. Let [z, 2y, - ,2,] € X"\, Theng € G fixes [z, x5, - - -, z,] if and only if each of
the elements, xo, - - - , x,, comes from d-cycle ing (see Proof of Lemma 3.2.1). From the
set ofa; elements ofX that are fixed by, the total number of orderedelement subsets that

can be formed is
(7]
alpr - T'( ) y
T

and the conclusion is clear. O

Theorem 3.5.3.Let G act onX ! and suppose € G has cycle typéa;, as, - - - ,a,,). Then
the number of self-paired suborbits@fis given by

|
r 2 C“+2%). (3.5.1)
T

n!
gelG

Proof. The number ofi-cycles ing? is (a; + 2a»), by Theorem 1.1.13. By Lemma 3.5.1, the
number of elements iX "] fixed by ¢ is given by

o1 + 200
. )

st =r(
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Now, by Theorem 1.1.5, the number of self-paired suborlits on X! is given by

el = s ()

geG geG

_2r! oy + 204
ol r )

geG
O

Example 3.5.4.Consider the case whet@ = A acts onX?. Table 3.17 below gives the
number of elements with the same cycle type&in

Table 3.17: Cycle Types of Elements 4§

Permutation Corresponding  Corresponding Corresponding

Type of an Cycle Type Value of Number of
Elementy € G (a1, 9, -, ) ay + 2. Elements inG

(a)(b)(c)(d)(e)(f)  (6,0,0,0,0,0) 6 1

(a)(b)(cd)(ef) (2,2,0,0,0,0) 6 45
(a)(b)(c)(def) (3,0,1,0,0,0) 3 40

(abc)(def) (0,0,2,0,0,0) 0 40

(a)(bedef) (1,0,0,0,1,0) 1 144

(ab)(cdef) (0,1,0,1,0,0) 2 90

Total 360 = |G|

The elements with cycle typé&s, 0,2,0,0,0) and(1,0,0,0, 1,0) have no contribution to the
: . : , . 0 1

number of self-paired suborbits of the action since themons@) and <2) are mean-

ingless. Thus, from Equation 3.5.1 above, the number offsted suborbits ofy on X

'S = () e(®) ) o)

4
= 15 + 675 + 120 + 90
750 [15 4+ + + 90]

900

180
= 5.

The 5 suborbits are’\, the trivial suborbit, by default, and\;, A,, A5 and/A\g as seen in
Example 3.5.1 above.

Example 3.5.5.Similarly, consider the action @i = Ag on X,
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Table 3.18: Cycle Types of Elements 4§

Permutation Corresponding Corresponding Corresponding
Type of an Cycle Type Value of Number of
Elementg € G (a1, 9, -+, ag) o + 20 Elements iy
(a)(b)(c)(d)(e)(f)(g)(h) (8,0,0,0,0,0,0,0) 8 1
(a)(b)(c)(d)(ef)(gh)  (4,2,0,0,0,0,0,0) 8 210
(ab)(cd)(ef)(gh) (0,4,0,0,0,0,0,0) 8 105
(a)(b)(c)(d)(e)(fgh)  (5,0,1,0,0,0,0,0) 5 112
(a)(bc)(de)(fgh) (1,2,1,0,0,0,0,0) 5 1680
(a)(b)(cde)(fgh) (2,0,2,0,0,0,0,0) 2 1120
(a)(b)(cd)(efgh) (2,1,0,1,0,0,0,0) 4 2520
(abed)(efgh) (0,0,0,2,0,0,0,0) 0 1260
(a)(b)(c)(defgh) (3,0,0,0,1,0,0,0) 3 1344
(abe)(defgh) (0,0,1,0,1,0,0,0) 0 2688
(ab)(cdefgh) (0,1,0,0,0,1,0,0) 2 3360
(a)(bedefgh) (1,0,0,0,0,0,1,0) 1 5760
Total 20160 = |G|

From the last two columns of Table 3.18 and Equation 3.5elntimber of self-paired subor-
bits of G on X Pl is

T o= %[(2) +210(§) + 105(2)
+ 112(2) + 1680 (2) + 2520 (g) +1344 (g)]

1
= 3380 [56 + 11760 + 5880 + 1120 + 16800 + 10080 + 1344]

1
= —— x 47040

3360
= 14.

These are thé3 non-trivial self-paired suborbits specified in Example.3.8bove, together
with the trivial suborbit, fom = 8.
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CHAPTER FOUR
PROPERTIES AND INVARIANTS OF THE ACTION OF A, ON
UNORDERED SUBSETS

4.1 Introduction

Primary to the study of any group action are the associatethowtorial properties and in-
variants. The current chapter provides a thorough examimaf these concepts with regard
to the action of4,, on X, the set of the unorderedelement subsets of = {1,2,--- ,n}.
Transitivity and primitivity of the action are respectiyaletermined in Sections 4.2 and 4.3.
Additionally, calculation of the rank and subdegrees ofdhbgon is handled in Section 4.4,
while examination of pairing of the suborbits of the actism@ealt with in Section 4.5.

The action ofG on X induces an action off on X(. The induced action is defined by
g{xlux% o 7377“} = {g(xl)ug(x2)7' te 79(3:7“)} vg € G7 {xlux%' te 7:67“} S X(T) In this
n

case|X"| = (T =

4.2 Transitivity of A, on X® X©®) X®) gnd X

4.2.1 Transitivity of A, on X2

4.2.1.1 Transitivity of Az on X2

In this caseG = {1, (123), (132)} and X® = {{1,2},{1,3},{2,3}}. Itis clear that the
identity in GG fixes the unordered pa{rl, 2}, but the other elements 6f move the unordered
pair. So, by Definition 1.1.35tabs{1,2} = {1}. Now, by Theorem 1.1.2,

|Orbe{1,2}| = |G : Stabg{1,2}|
|G|
|Stabe{1,2}|
_ 3
1
=3
— \X(2)|.

Hence, by Definition 1.1.4, the action is transitive.
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4.2.1.2 Transitivity of A, on X2
The set under consideration 82 = {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}, and in
this caseStabs{1,2} = {1, (12)(34)}. By Theorem 1.1.2,

0rbe{1,2}| = |G : Stabe{1,2}]
G|

|Stabe {1, 2}]

12

2

~ 6

= |X3.
Thus, the action is transitive.

4.2.1.3 Transitivity of A5 on X2

In this case

X = {{17 2}7 {17 3}7 {17 4}7 {17 5}7 {27 3}7 {27 4}7
{2,5},{3,4},{3,5},{4,5}}.

Now,
Staba{1,2} = {1, (345), (354), (12)(34), (12)(35), (12)(45)}

and by Theorem 1.1.2,

|Orbe{1, 2}|

|G : Stabg{1,2}|
Gl

|Staba{1, 2}

60

6

= 10

= |X@.

So, the action is transitive.

Lemma 4.2.1. The order of the stabilizer it¥ of an unordered paif1, 2} is W for all
n > 3.

Proof. The stabilizer of the unordered pdit, 2} is the union of the products of the transpo-
sition (1 2) by the odd permutations g8, - - - ,n}, and the even permutations{f, - - - , n},
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n > 3. Thus,

(n—2)  (n—2)

tabg{1,2 =
22
B 2
_ (n—=2)12!
=
[
Proposition 4.2.1. The groupG acts transitively onX ? for all n > 3.
Proof. Since|X®)| = Z , it is sufficient to show thatOrbg{1,2}| = (g) . Now, by
Theorem 1.1.2 and Lemma 4.2.1,
0rbe{1,2}| = |G : Stabe{1,2}]
_ e
|Stabe {1, 2]
B n!/2
B (n—2)12!/
n!
- (n—2)12!
. n
= {4):
[

4.2.2 Transitivity of A, on X®)
4.2.2.1 Transitivity of A, on X3

Now, X® = {{1,2,3},{1,2,4},{1,3,4},{2,3,4} } andStabs{1,2,3} = {1, (123), (132)}.
By Theorem 1.1.2,

|Orb{1,2,3}| = |G : Staba{1,2,3}|
_ el
‘Stabg{l,Q,?)}‘
_ L
3
= 4
= |X¥.

Hence, the action is transitive.
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4.2.2.2 Transitivity of A5 on X®)
The set under consideration is

X® = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},
{2,3,4},{2,3,5},{2,4,5},{3,4,5}}.

Also,
Stabg{1,2,3} = {1,(123), (132), (12)(45), (13)(45), (23)(45)}.

By Theorem 1.1.2,

0rbe{1,2,3}| = |G : Stabe{1,2,3}|
_ G|
|Stabe{1,2,3}|
_ 60
6
= 10
= |X®).

Thus, the action is transitive.

Lemma 4.2.2. The order of the stabilizer it of an unordered tripl€1, 2,3} is @ for
alln > 4.

Proof. The stabilizer of the unordered trip{é, 2, 3} is the union of the products of the even
permutations of 1, 2, 3} by the even permutations ¢4, - - - , n}, and the products of the odd
permutations of 1, 2, 3} by the odd permutations ¢ft, - - - ,n}, n > 4. So,

3 (n—3)! 3 (n—23)!

Stabg{1,2,3}| = ———+ —

2[(n — 3)13]]
2.2

(n —3)!3!

—

Proposition 4.2.2. The groupG acts transitively onX ® for all n > 4.
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Proof. It suffices to show thaODrbs{1,2,3}| = | X©®|. By Theorem 1.1.2 and Lemma 4.2.2,

|O7’bg{1, 2,3}‘

‘G . Stabg{l, 2, 3}|
|G
‘Stabg{l,Q,?)}‘
n!/2
(n—3)!3!/2
n!
(n —3)!3!

- (3)

O
4.2.3 Transitivity of A,, on X
4.2.3.1 Transitivity of A5 on X*)
In this caseX ™ = {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}, and
Stabg{1,2,3,4} = {1,(123),(132),(134), (143), (124), (142), (234),
(243), (12)(34), (13)(24), (14)(23)}.
By Theorem 1.1.2,
|Orbc{1,2,3,4} = |G : Stabg{1,2,3,4}|
_ el
|Stabe{1,2,3,4}|
_ o0
12
=5
= |XW).
Therefore, the action is transitive, by Definition 1.1.4.
(n—4)'4!

Lemma 4.2.3.The order of the stabilizer iy of an unordered quadrupf&, 2, 3,4} is
forall n > 5.

Proof. The stabilizer of the unordered quadruple2, 3, 4} is the union of the products of the
even permutations dfl, 2, 3,4} by the even permutations ¢6, - - - | n}, and the products of
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the odd permutations dfl, 2, 3,4} by the odd permutations gb, - -- ,n}, n > 5. Hence,

A (n—4)! 4l (n—4)!
tabg{1,2,3,4}| = — —
2[(n — 4)!14!]
2.2
(n —4)4!

2

Proposition 4.2.3. The groupG acts transitively onX ® for all n > 5.

Proof. It is adequate to show tha®rb.{1,2,3,4}| = (Z) Now, by Theorem 1.1.2 and
Lemma4.2.3,

|Orbc{1,2,3,4} = |G : Stabg{1,2,3,4}|
G|
|Staba{1,2,3,4}|
B n!/2
- (n74)!4!/2
n!
- (n—4)14!

- (1)

4.2.4 Transitivity of A, on X )

Lemma 4.2.4.The order of the stabilizer i& of an unordered-element subsedl, 2, - -- | r}

is%forallnzfrjtl.

Proof. The stabilizer of the subsét, 2,--- | r} is the union of the products of the even per-
mutations of{1,2,--- ,r} by the even permutations ¢f + 1,--- ,n}, and the products of
the odd permutations dfl, 2, - - - , v} by the odd permutations gf- + 1,--- ;n},n > r + 1.
Thus,

|StabG'{1727"'7T}| = = +_
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Theorem 4.2.1.The groupG acts transitively onX ™ for all n > r + 1.

Proof. Since|X ™| = (n) it is enough to show thaOrvg{1,2, - ,r}| = (n) Now, by
r r
Theorem 1.1.2 and Lemma 4.2.4,

|Orbc{1,2,---,r} = |G: Stabg{1,2,--- 1}
G|
|Stabg{1,2, - ,r}|
nlo
(n=r)ir'/
n!

()

Example 4.2.1.Consider the action aff = A;3 on X©. In this case| X (©| = 1. Clearly,

Staba{1,2,3,4,5,6} is the union of the products of the even (odd) permutationhefset
{1,2,3,4,5,6} by the even (odd) permutations of the &8, 9,10, 10, 11, 12, 13}. Thus,

O

6!7 67!
tabs{1,2,3,4 = —— 4+ ——
|SQG{,,3, 7576}| 22+22
|71
L[
22
7'6!
-2
Now, by Theorem 1.1.2,
|0rbc{1,2,3,4,5,6}| = |G : Stabe{1,2,3,4,5,6}|
_ G|
|Stabg{1,2,3,4,5,6}|
13!/
T
13l
— 76!
= |X©).

Therefore, by Definition 1.1.4, the action is transitive.
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4.3 Primitivity of A, onX®, X3 and X®

4.3.1 Primitivity of A, on X®

From Theorem 4.2.1, the action is transitive forralk 3.

4.3.1.1 Primitivity of Az on X®
Proposition 4.3.1. The action ofd; on X? is primitive.

3 . . . .
Proof. Clearly, | X?)| = <2) = 3 is prime. So, the action has only trivial blocks and by
Definition 1.1.8, it is primitive. O
4.3.1.2 Primitivity of A, on X2

Proposition 4.3.2. The action ofd, on X is imprimitive.

Proof. In this caseX® = {{1,2},{1,3},{1,4},{2,3},{2,4}, {3,4}}. Consider the subset
Y = {{1,2},{3,4}} of X@ If g € {1,(12)(34), (13)(24), (14)(23)}, theng either fixes the
elements oft” or takes each element &f to the other, so thatY = Y. However, ifg is any
other element ofd4, i.e.,g = (z1x223), x; € {1,2,3,4}, ¢ = 1,2,3, then it moves each
element ofY” to an element ofX® notinY so thatgY NY = (. Hence)Y is a non-trivial
block for the action. In general, ¥ = {{z,, 25}, {3, z4}} is a subset of{? such that
{x1, 29} N {x3, 24} = 0, thenY is a non-trivial block for the action. By Definition 1.1.8 eth
action is imprimitive. O
4.3.1.3 Primitivity of A,, n > 5 onX®

Proposition 4.3.3. The action ofG on X? is primitive for alln > 5.

Proof. If n > 5, then2 < n — 2. By Theorem 1.1.3, the action {& — 2)-transitive and is
hence2-transitive, from Definition 1.1.5. Thus, by Theorem 1.1t action is primitive. [J
4.3.2 Primitivity of A,, on X(®)

From Theorem 4.2.1, the action is transitive forrall 4.

4.3.2.1 Primitivity of A, on X®)

Proposition 4.3.4. The action ofd, on X is primitive.

Proof. The groupA, acts onX® = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}. Let {z, zy, 3}
and {y1, v, y3} be distinct elements oK ®. Then|{xy, 22, 23} N {y1, 0, y3}| = 2, say
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=y, = 2 andzg # ys. FY = {{z’, 2", 23}, {a', 2", ys}}, then
g = (2" 2" x3) € Ay fixes{z', 2" 23} but moves{z', ", y3} to an element not iY. Hence
gY NY # (P andgY # Y. Hence the action lacks a block with two elements. Thus, thiera
has only trivial blocks and the conclusion is direct. O

xr1 =

s
S

I

8

8
[\

4.3.2.2 Primitivity of A5 on X®)

Proposition 4.3.5. The action ofd; on X is primitive.

Proof. In this case,

X = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},
{2,3,4},{2,3,5},{2,4,5},{3,4,5} }.

If Y is a non-trivial block of the action, thefy’| = 2 or 5 since|Y| divides |X®)|. Let
{21, 29, 25} @and{y1, yo, y3} be the distinct elements of a subdebf X, If g = (2, 25 23),
theng{xy,zs, 23} € Y, butg{y1,y.,y3} ¢ Y since the elements d&f are not disjoint. So,
gY NY # P andgY # Y. Hence, the action does not have a block consisting ele-
ments only. Now, consider the permutatign= (12345) € As. In this casegY; = V)
for the subset; = {{1,2,3},{1,2,5},{1,4,5},{2,3,4},{3,4,5}}, and gY, = Y5, for
Yo = {{1,2,4},{1,3,4},{1,3,5},{2,3,5},{2,4, 5} } with Y1 N Y5 = (). However, neither of
Y; orY; is a block since iy = (123), gY; andY;, alsogY; andY;, overlap partially. Lastly,
any other subsét of X©® consisting ofs elements is not a block; this follows from the fact
thatgY NY # 0 andgY # Y for g = (12345). The conclusion is now clear. O

4.3.2.3 Primitivity of Ag on X®)

Proposition 4.3.6. The action ofds on X is imprimitive.

Proof. It is sufficient to show that” = {{1,2,3},{4,5,6}} is a block for the action. If
g is a product of an even (odd) permutation{df 2,3} by an even (odd) permutation of
{4,5,6}, theng fixes both elements of. On the other hand, i§f = (ax)(bycz) where
{a,b,c} ={1,2,3}and{z,y, z} = {4,5,6}, theng takes{1, 2,3} to {4, 5,6} and vice versa.
In either caseyY = Y. Now, letg be any other element @i, i.e., g is a3-cycle but not an even
permutation off 1,2, 3} or {4, 5,6}, or g is a5-cycle, org = (ax)(by) wherea,b € {1,2,3}
andz,y € {4,5,6}, org = (ab)(cd) where any three af, b, c andd come from{1, 2, 3} or
{4,5,6}, or g is a product of twa®-cycles neither of which is an even permutatioq ©f2, 3}
or {4,5,6}. Theng moves each element &f to an element not i” so thatgY NY = 0.
Hence,Y is a non-trivial block for the action. O
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4.3.2.4 Primitivity of A,, n > 7 onX®)

Proposition 4.3.7. The action ofG on X is primitive for alln > 7.

Proof. Since2 < n — 2, then by Theorem 1.1.3, the action(is — 2)-transitive, and by
Definition 1.1.5, it is2-transitive. The conclusion now follows from Theorem 1.1.6 O

4.3.3 Primitivity of A, on X®
From Theorem 4.2.1, the action is transitive forralk r + 1.
Theorem 4.3.1.The action ofG; on X ") is imprimitive if and only ifn = 2r.

Proof. It is adequate to prove th&t acts onX (™) imprimitively if n = 2r and primitively
otherwise. Let: = 2r and letY = {{zy, 22, -, 2.}, {y1,¥2,- -+ ,y-}} be a subset ok
such that{xy, 29, -+ , 2.} N {y1, 92, ,y-} = 0. Supposeg € Stabg{x1, 22, - ,x,} Or

g € Stabg{y1,y9, - ,yr}, i.€.,g is a product of an even permutation{af;, zs, - - - , .} by
an even permutation @fy;, yo, - - - , y,-} or a product of an odd permutationff,, z5, - - - , x, }
by an odd permutation dfy;, v, - - - , y-}. Theng fixes each element af. On the other hand,
let ¢ be a product of an even number of odd cycles of the form ys, za, Ys, - - - Ta, Y5,
1<k<rowopBe{l,2,---,r},i,7=12,--- k where each element of an elementof
belongs to an odd cycle. Thepfx, 22, -+ , .} = {y1, 2, - -, y-}, and vise versa. In either
casegY =Y. Now, any othey € G takes each element &f to an element o ") notinY
so thatgY NY = (). Hence)Y is a non-trivial block for the action and, by Definition 1.1.8
the action is imprimitive. Next, suppose< 2r. If n is prime withn = r 4+ 1, thenr =n — 1

so that| X ™| = ( = n and the action will definitely have only trivial blocks. Now,

n
n—1
consider the other cases for whieh< 2r. Clearly, any two elements of ") are not disjoint.
Hence, ifY is a proper subset ok (") containing two or more elements, then there exists a
permutatiory € G that takes one element &f to another and the latter to an element not in
Y sothatyY NY # () andgY # Y. Thus, the action lacks non-trivial blocks and is therefore
primitive. On the other hand, suppose> 2r. Clearly,2 < n — 2. By Theorem 1.1.3, the
action is(n — 2)-transitive, and by Definition 1.1.5, it istransitive. Thus, by Theorem 1.1.6,

the action is primitive. O

4.4 Ranks and Subdegrees oi,, on X®, X® X® and X

4.4.1 Rank and Subdegrees oA, on X2

From Theorem 4.2.1, the action is transitive forralk 3. Throughout this subsection, by
it shall mean the sdftl, 2}.
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4.4.1.1 Rank and Subdegrees k5 on X(?

In this caseX® = {{1,2},{1,3},{2,3}} andG; 5y = {1}. Now, G{; 5; has orbits whose
respective elements contain exadlgr 1 element fromV:

Aog = Orbg,, ,{1,2} = {{1,2}}, the orbit whose element has both elements fr¥nthe

- o 2\ (1
trivial orbit, with |Ag| = 1 = 5 ) o)

Ay = Orbg,, ,,{1,3} = {{1,3}} andAy = Orbg,,,,{2,3} = {{2,3}}, the orbits whose
respective elements contain exadtlglement fromV, with |A;| = |A,| = 1.
Therefore A5 acts onX ® with rank3 and subdegreess 1, 1.

4.4.1.2 Rank and Subdegrees ok, on X(?

In this case

X = {{1,2},{1,3}, {1,4}, {2, 3}, {2, 4}, {3, 4}}
andGy 0y = {1,(12)(34)}. Now, G2y has orbits each of whose every element contains
exactly2, 1, or no element fromv:

- : 2\ (2

Ao = Orbg,, ,,{1,2} = {{1,2}}, the trivial orbit, wherd o[ = 1 = (2 0/
Ay = Orbg, ,{1,3} = {{1,3},{2,4}} and Ay = Orbg,,,{1,4} = {{1,4},{2,3}},
the orbits each of whose every element contains exdc#iement from/N, in which case
A = D] = 2.
Ay = Orbg,, ,,{3,4} = {{3,4}}, the orbit whose element contains no element from the set

2\ (2
N, where|A;] =1 = (0) (2)

Therefore,A, acts onX ® with rank4 and subdegrees 1, 2, 2.

4.4.1.3 Rank and Subdegrees k5 on X(?

In this case

X = {12}, {1,3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2,5},{3,4},{3,5},{4,5}}

andGy 2y = {1,(12)(34), (12)(35), (12)(45), (345), (354) }. Now, G (1 23 has orbits each of
whose every element contains exa&Jyi, or no element fromv:
2\ (3

Ao = Orbg,, ,,{1,2} = {{1,2}}, the trivial orbit, wherd o[ = 1 = (2 0/
Ay = Orbg, ,{1,3} = {{1,3},{1,4},{1,5},{2,3},{2,4},{2,5} }, the orbit whose each

, . 2\ (3
element contains exactlyelement fromV, with |A;| =6 = (1) (1)
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Ay = Orbg,,,{3,4} = {{3,4},{3,5},{4,5}}, the orbit whose each element contains no
2

element fromV, such thatA\,| = 3 = (0) (2)

Therefore,A; acts onX ® with rank3 and subdegress 3, 6.

4.4.1.4 Rank and Subdegrees okg on X(?

In this case

{{1, 2}, {1, 3}, {1,4},{1,5},{1,6}, {2, 3}, {2,4}, {2, 5},
{2,6},{3,4},{3,5},{3,6},{4,5},{4,6}, {5,6}}

and

Guzy = {1,(12)(34), (12)(35), (12)(36), (12)(45), (12)(46), (12)(56),
(34)(56), (35)(46), (36)(45), (345), (354), (346), (364),

(356), (365), (456), (465), (12)(3456), (12)(3465),

(12)(3546), (12)(3564), (12)(3645), (12)(3654)}.

Now, G'(1 o) has orbits each of whose every element has exactlyor no element fronV:

. : 2\ (4
Ao = Orbg,, ,,{1,2} = {{1,2}}, the trivial orbit, wherd /o[ = 1 = <2) <0 :
Ay = Orbg, ,,{1,3} = {{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6}}, the orbit
. 2\ (4
whose each element contains exadtilement fromV, where|A,| = 8 = L)

Ny = Orbg, ,{3,4} = {{3,4},{3,5},{3,6},{4,5},{4,6},{5,6} }, the orbit whose each

, 2\ [4
element contains no element fraW such that/\,| = 6 = (0) (2)

Therefore, A4 acts onX ® with rank3 and subdegreés 6, 8.

4.4.1.5 Rank and Subdegrees ok, on X forn > 5

2 —2
Proposition 4.4.1. The groupG acts onX? with rank 3 and subdegree€2> (n )

() we)(3) s |

Proof. Supposé- acts onX 2. Then,G, 9y has orbits each of whose every element contains
exactly2, 1, or no element fromv:

Ao = Orbg, ,{1,2} = {{1,2}}, the trivial orbit. Clearly|Ao| =1 = (;) (n 6 2), the

number of ways of selectingyobjects from a set df distinct objects and objects from a set
of n — 2 distinct objects.
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Ay = Orbg,,,{1,3} = ({13}, {1, 4}, {1,n},{2,3},{2,4},--- ,{2,n}}, the orbit
whose each element contains exadtlglement from/N. The length of this orbit is given

2 n—2
by |[Aq1] =2(n—2) = ] ]

2 distinct objects and object from a set ofi — 2 distinct objects.

Ny = Orbe,,, {3.4} = {{3.4},{3,5}, -, {3,n}, {4.5}. - . {4.n}, -+~ {n— Ln}},

the orbit whose each element contains no element f¥orithe orbit has corresponding length
Dol =(n—3)+(n—4)+---+3+2+1 =208 g n;Q
ways of selecting objects from a set df distinct objects and objects from a set of — 2
distinct objects.

Clearly, these orbits are disjoint and summing up the sulessgy

OO0 ) (-

Hence each element &f? is in someA; (i = 0, 1, 2) above. So, the rank i&
Now, calculations show that the subdegrees are ordereddacgdo increasing magnitude as

G =57 =7 wosnss
) =<G)7) <)) wn=s

, the number of ways of selectirigobject from a set of

, the number of

4.4.2 Rank and Subdegrees oA, on X(3)

From Theorem 4.2.1, the action is transitive forral> 4. Throughout this subsection, by
it shall mean the sdfl, 2, 3}.

4.4.2.1 Rank and Subdegrees ok, on X(®

In this case
X® = {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}

andGp 23 = {1,(123),(132)}. Now, G233 has orbits each of whose every element has
exactly3 or 2 elements fromV:
Ao = Orbg,, ,,,{1,2,3} = {{1,2,3}}, the orbit whose element has all the elements from

N; the trivial orbit, with|Ag| = 1 = (g) ((1))
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Ay = 0rbg,,,{1,2,4} = {{1,2,4}, {1, 3,4},{2, 3, 4}}, the orbit whose each element has
3\ /1

exactly2 elements fromV, where|A;| = 3 = (2) (1)

Therefore,A, acts onX® with rank2 and subdegreés 3.

4.4.2.2 Rank and Subdegrees k5 on X(®)

In this case

X® = {{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},
{2,3,4},{2,3,5},{2,4,5},{3,4,5}}
and
Grag = {1,(123), (132), (12)(45), (13)(45), (23)(45)}.
Now, G123y has orbits each of whose every element has exadctlyor 1 element fromV:
Ao = Orbg,,,,{1,2,3} = {{1,2,3}}, the trivial orbit, with| A¢| = 1 = (2 g :
Ay = Orbey,,, {1,2,4} = {{1,2,4},{1,2,5},{1,3,4},{1,3,5},{2,3,4},{2,3,5}},
the orbit whose each element contains exat#iements fromV, with |A;| = 6 = (2) G)
Ay = Orbg,,{1,4,5} = {{1,4,5},{2,4,5},{3,4,5}}, the orbit whose each element
contains exactly element fromV, such thatA,| = 3 = <3) <2)

1/\2
Therefore A5 acts onX ) with rank3 and subdegreeés 3, 6.

4.4.2.3 Rank and Subdegrees okg on X(®)
In this case
X = {{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,3,6},{1,4,5},
{1,4,6},{1,5,6},{2,3,4},{2,3,5},{2,3,6},{2,4,5},
{2,4,6},{2,5,6},{3,4,5},{3,4,6},
{37576}7{47576}}

and

Guea = {1,(123),(132), (456), (465), (12)(45), (12)(46), (12)(56),

(12)
(13)(45), (13)(46), (13)(56), (23)(45), (23)(46), (23)(56),
(123)(456), (123)(465), (132)(456), (132)(465)}.
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Now, Gy 2,3; has orbits each of whose every element contains exactlyl, or no element
from N:

Ay = Orba{lg,g}{lj 2,3} = {{1,2,3}}, the trivial orbit, wherg A\o| = 1 = (2) (g)

Ay = Orbay, 0 {1,2,4) = {{1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5},
{1,3,6},{2,3,4},{2,3,5},{2,3,6}},

the orbit whose each element contains exat#iements fromV, with |A;| =9 = (;) (i))

Ny = Orbey,,y{1,4,5) = {{1,4,5},{1,4,6},{1,5,6},{2,4,5}, {2,4,6},
{2.5,6},{3,4,5},{3,4,6},{3,5,6}},

the orbit whose each element contains exacéiement fromV, where|A,| = 9 = (i)) G)

Ay = Orbg,,,14,5,6} = {{4,5,6}}, the orbit whose only element contains no element

from N, such thatA;| =1 = (3) (g)

Therefore, A4 acts onX ) with rank4 and subdegrees 1,9, 9.

4.4.2.4 Rank and Subdegrees ok, on X(®)

In this case

X® = {{1,2,3},{1,2,4},{1,2,5},{1,2,6},{1,2,7},{1,3,4},{1,3,5},{1,3,6},{1,3,7},
{1,4,5},{1,4,6},{1,4,7},{1,5,6},{1,5,7},{1,6,7},{2,3,4},{2,3,5}
{2,3,6},{2,3,7},{2,4,5},{2,4,6},{2,4,7},{2,5,6},{2,5,7},
{2,6,7},{3,4,5},{3,4,6},{3,4,7},{3,5,6}, {3,5, 7},
{3,6,7},{4,5,6},{4,5,7},{4,6,7},{5,6, 7} }.
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and
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132)(45)(67) (123)(46)(5 )
(132)(46)(57), (123)(47)(56), (132)(47)(56)}.

Now, G 2,31 has orbits each of whose every element contains exactlyl, or no element
from N: N
Ao = Orbg,, ,,,{1,2,3} = {{1,2,3}}, the trivial orbit, with| Ao = 1 = 5 o)

A = Orbg{m’g}{l, 2,4}y = {{1,2,4},{1,2,5},{1,2,6},{1,2,7},{1,3,4}, {1, 3,5},
{1,3,6},{1,3,7},{2,3,4},{2,3,5},{2,3,6},{2,3,7}},

3\ [4

2/\1)°

DNy = Orbg,,,,{1,4,5} = {{1,4,5},{1,4,6},{1,4,7},{1,5,6},{1,5,7},{1,6, 7},

{2,4,5%,{2,4,6},{2,4,7},{2,5,6},{2,5,7},{2,6, 7},

{3,4,5},{3,4,6},{3,4,7},{3,5,6},{3,5,7},{3,6,7}},

3\ (4

1)\2/)°

Az = Orbg,,,,,{4,5,6} = {{4,5,6},{4,5,7},{4,6,7},{5,6,7}}, the orbit whose each

, 3\ [4
element contains no element fraf such thatA;| = 4 = <0) <3)

Therefore,A; acts onX ®) with rank4 and subdegreeis 4, 12, 18.

the orbit whose each element contains exatdiements fromV, with | A, | = 12 =

the orbit whose each element contains exac#yement fromV, and|A,| = 18 =

4.4.25 Rank and Subdegrees ok, on X®) forn > 6

Proposition 4.4.2. The groupG acts onX ) with rank4 and subdegree@) (n g 3) ,
(3) <n—3)7 <3) (n—S) and<3) <n—3) foralln > 6.
2)\ 1 1)\ 2 JAWE!
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Proof. The group(y, 2,33 has orbits each of whose every element contains exacfly1, or
no element fromv:
Ao = Orbg,, ,,,{1,2,3} = {{1,2,3}}, the trivial orbit. The orbit has corresponding length

3\ [n—3
[Bol=1=( ]
objects and) objects from a set of — 3 distinct objects.

Ay = Orby,, 4, {1,2,4} = {{1,2,4},{1,2,5},- -+ . {1,2,n},{1,3,4},
{1,3,5},...,{1,3,n},{2,3,4},{2,3,5},-- -, {2,3,n}},
the orbit whose each element contains exaZtiyements fromV. The length of the orbit in

this case i/, | = 3(n—3) = ;) "

a set of3 distinct objects and object from a set of. — 3 distinct objects.

Ny = Orbg,,,,{1,4,5} = {{1,4,5}, ..., {1,4,n},{1,5,6},...,{1,5,n},
{1,6,7},....{1,n—1,n},{2,4,5},....{2,n—1,n},{3,4,5},...,{3,n—1,n}},

the orbit whose each element contains exactly one elemamt#. The length of this orbit

iS| Ao = 3[(n—4) + (n—5) 4 -+ 2+ 1] = 23t i’ ngg),thenumberof

ways of selecting object from a set o8 distinct objects an@ objects from a set containing

n — 3 distinct objects.

Az = Orbg,, ,,{4,5,6} = {{4,5,6},--- ,{4,5,n},{4,6,7},--- ,{4,6,n},
{4,7,8},---,{4,n—1,n},{5,6,7},--- ,{b,n—1,n},{6,7,8},--- , {n—2,n—1,n}},

the orbit whose each element contains no element fkarit has corresponding length

, the number of ways of selectidgobjects from a set df distinct

, the number of ways of selectirkgpbjects from

A3l = {[(n—=5)+(n—6)+---+2+1]+[(n—6)+ ( =T+ +2+1]
+(n=7)+ M-8+ --+2+1+---+B3+2+1]+[2+1]+ 1}
_ (n—4)(n—5)+(n—5)2( —6)+. +3(24)+2(23)+1(22)
:%{n—[’))( 4) + (0 = 6)(n—5) -+ 3(4) +2(3) + 1(2)}
1 4)(n —3)
e

(n—3)( 4)(n —5)
3!

~ (3\(n-3

o 3 )
This is the number of ways of selectifgbjects from a set df distinct objects and objects
from a set ofn — 3 distinct objects.

Clearly, the orbits are distinct and disjoint. Summing up shbdegrees,

23: A :23: (3:) (n;:%) _ <Z> X,

=0 1=0
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This shows that each element.&f?) is in exactly oneA\; (i = 0,1, 2, 3) above. So, the rank
is4.

Now, calculations show that the subdegrees are ordereddacgdo increasing magnitude as
follows:

(OO <O <) (57 wosnss
BT <@ =057 woenzn
)07 <G ) <) <)) wezm

—_

4.4.3 Rank and Subdegrees oA, on X4

From Theorem 4.2.1, the action is transitive forralk 5. Throughout this subsection, by
it shall mean the sdftl, 2, 3,4}.

4.4.3.1 Rank and Subdegrees k5 on X¥

In this caseX ™ = {{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}} and

Grassg = {1,(123),(132), (124), (142), (134), (143), (234),
(243), (12)(34), (13)(24), (14)(23)}.

Now, G'(1 23,4y has orbits each of whose every element has exaaly3 elements fromV:

Do = Orbgy, ,,,,11:2,3,4} = {{1,2,3,4}}, the orbit whose only element has all elements
from N; the trivial orbit, with|Ag| = 1 = i (1] .

Ay = Orbgy,,,,{1,2,3,5) = {{1,2,3,5},{1,2,4,5},{1,3,4,5},{2,3,4,5}}, the orbit
whose each element contains exagtslements fromV, with |[A;| =4 = (3) (1)

Therefore A5 acts onX (Y with rank2 and subdegreeis 4.
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4.4.3.2 Rank and Subdegrees okg on X¥

In this case
{{1, 2,3, 4}, {1, 2,3, 5}, {1, 2,3, 6}, {1, 2,4, 5}, {1, 2,4, 6}, {1, 2,9, 6},
{1,3,4,5},{1,3,4,6},{1,3,5,6},{1,4,5,6},{2,3,4,5},
{2,3,4,6},{2,3,5,6},{2,4,5,6},{3,4,5,6}}
and

Grosay = {1,(123),(132),(124), (142), (134), (143), (234), (243), (12)(34),
(13)(24), (14)(23), (12)(56), (13)(56), (23)(56), (14)(56),
(24)(56), (34)(56), (1234)(56), (1324)(56),
(1342)(56), (1423)(56), (1432)(56)}.

Now, G12.34; has orbits each of whose every element contains exactly or 2 elements

from N 4\ (2
Do = Orbg,, ,, ,11,2,3,4} = {{1,2,3,4}}, the trivial orbit, with[Ao| =1 = (4) O)'

Ay = Orbay,,,,11,2,3,5) = {{1,2,3,5},{1,2,3,6},{1,2,4,5},{1,2,4,6},
{1,3,4,5},{1,3,4,6},{2,3,4,5},{2,3,4,6}},

. . 4\ (2
the orbit whose each element contains exat#jements fromV, and|A;| = 8 = 3) 1).

Doy = Orbe,, ., 11,2,5,6} = {{1,2,5,6},{1,3,5,6}, {1,4,5,6},
{2,3,5,6},{2,4,5,6},{3,4,5,61},

the orbit whose each element contains exat#diements fromV, with |Ay| = 6 = 5

Therefore, A acts onX ) with rank3 and subdegreés 6, 8.

4.4.3.3 Rank and Subdegrees ok, on X4

In this case

X = {11,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,7},{1,2,4,5},{1,2,4, 6},
{1,2,4,7},{1,2,5,6},{1,2,5,7},{1,2,6,7},{1,3,4,5},{1,3,4,6},
{1,3,4,7},{1,3,5,6},{1,3,5,7},{1,3,6,7},{1,4,5,6},{1,4,5,7},
{1,4,6,7},{1,5,6,7},{2,3,4,5},{2,3,4,6},{2,3,4,7},{2,3,5,6},
{2,3,5,7},{2,3,6,7},{2,4,5,6},{2,4,5,7},{2,4,6,7},{2,5,6, 7},

{3,4,5,6},{3,4,5,7},{3,4,6,7},{3,5,6,7},{4,5,6,7}}
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and

Guasay = {1,(123),(132),(124), (142), (134), (143), (234),
(12)(34), (13)(24), (14)

(13)(57), (13)(67), (14)
(23)(67), (24)(56), (2 )
(

(

(

~ = ~ =~

)
( (
(67), (1243)
( )
( )

e e
[a—
w
=~
[\
Ut
=
\_/

(
)
, (1342
)
(

1432)( 7, 1432)( ).

Now, G/ 2,3.4y has orbits each of whose every element contains exactly2, or 1 element

from N:

. - - 4
Ny = Orbg,,,411,2,3,4} = {{1,2,3,4}}, the trivial orbit, wherg Ao = 1 = (4) (3)

Ay =Orbg,,,, ,11,2,3,5} = {{1,2,3,5},{1,2,3,6},{1,2,3,7},{1,2,4,5},
{1,2,4,6},{1,2,4,7},{1,3,4,5},{1,3,4,6},

{1,3,4,7},{2,3,4,5},{2,3,4,6},{2,3,4,7}},

: : : 4\ (3
the orbit whose each element contains exag#diements fromV, with |A,| = 12 = <3) <1)

Ay = Orbg,, ,,,11,2,5,6} = {{1,2,5,6},{1,2,5,7},{1,2,6,7},{1,3,5,6},
{1,3,5,7},{1,3,6,7},{1,4,5,6},{1,4,5,7},{1,4,6,7},{2,3,5,6},{2,3,5, 7},

{2,3,6,7},{2,4,5,6},{2,4,5,7},{2,4,6,7},{3,4,5,6},{3,4,5,7},{3,4,6,7}},

4\ (3
2)\2)°
Az = Orbg,, ,,,11,5,6,7F = {{1,5,6,7},{2,5,6,7},{3,5,6,7},{4,5,6,7}}, the orbit

. 4\ (3
whose each element contains exadtglement fromV, where|A;| = 4 = <1) (3)

the orbit whose each element contains exatdiements fromvV, with |A,| = 18 =

Therefore,A; acts onX ® with rank4 and subdegreeis 4, 12, 18.
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4.4.3.4 Rank and Subdegrees okg on X

The action ofG; » 3 4y 0N X has orbits each of whose every element contains exac8y
2,1, or no element fromV:

.. . 4 4
Ao = Orbg,, ,, ,11,2,3,4} = {{1,2,3,4}}, the trivial orbit, wherg o[ = 1 = (4) (0)

Ay = Orbay,,,,11,2,3,5) = {{1,2,3,5},{1,2,3,6},{1,2,3,7},{1,2,3,8},
{1,2,4,5},{1,2,4,6},{1,2,4,7},{1,2,4,8},{1,3,4,5}, {1, 3,4, 6},
{1,3,4,7},{1,3,4,8},{2,3,4,5},{2,3,4,6},{2,3,4,7}, {2, 3,4,8}},

the orbit whose each element contains exattyements fromV; |A,| = 16 = 5) 11

Ny = Orbe,,,, ,{1,2,5,6} = {{1,2,5,6},{1,2,5,7},{1,2,5,8},{1,2,6,7},{1,2,6,8},
{1,2,7,8},{1,3,5,6},{1,3,5,7},{1,3,5,8},{1,3,6,7},{1,3,6,8},{1,3, 7,8},
{1,4,5,6},{1,4,5,7},{1,4,5,8},{1,4,6,7},{1,4,6,8},{1,4,7,8},{2,3,5,6},
{2,3,5,7},42,3,5,8},{2,3,6,7},{2,3,6,8},{2,3,7,8},{2,4,5,6},{2,4,5,7},

{2,4,5,81,{2,4,6,7},{2,4,6,8},{2,4,7,8},{3,4,5,6},{3,4,5,7},
{3,4,5,8),{3,4,6,7},{3,4,6,8},{3,4,7,8}}
the orbit whose each element contains exaz#yements fromV; |A,| = 36 =
As = Orbg,,,, ,{1,5,6,7} = {{1,5,6,7},{1,5,6,8},{1,5,7,8},{1,6,7,8},
{2,5,6,7},{2,5,6,8},{2,5,7,8},{2,6,7,8},{3,5,6,7},{3,5,6,8},
{3,5,7,8),{3,6,7,8},{4,5,6,7},{4,5,6,8},{4,5,7,8},{4,6,7,8}},

the orbit whose each element contains exac#yement fromV; |Az| = 16 =

4\ (4
2)\2

1/\3)°
Ay = Orbg,,,, ,15,6,7,8} = {{5,6,7,8}}, the orbit whose only element contains no ele-

ment fromN, where|A,| =1 = (3) CD

Therefore A acts onX ® with rank5 and subdegrees 1, 16, 16, 36.

" . 4 —4
Proposition 4.4.3. The groupG acts onX® with rank 5 and subdegree "

O OC) O m()( Ymazs

Proof. The groupGy, » 3,43 has orbits each of whose every element contains exactly?, 1,
or no element fromV:

Do = Orbg,,,,1{1,2,3,4} = {{1,2,3,4}}, the trivial orbit. It has corresponding length

4 —4
1Ao| =1 = n
4 0

and0 objects from a set af — 4 distinct objects.

Ay =Orbg,,,, ,{1,2,3,5} = {{1,2,3,5},{1,2,3,6},--- ,{1,2,3,n},{1,2,4,5},
{1,2,4,6},---,{1,2,4,n},{1,3,4,5},--- ,{1,3,4,n},{2,3,4,5},---,{2,3,4,n}},

the orbit whose each element contains exa¢®yements fromV. The length of the orbit in

this case isA\;| =4(n—4) = <4) <n I 4) , the number of ways of selectirdgobjects from

) , the number of ways of selectirigobjects from a set of objects

3
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a set of4 distinct objects and object from a set of: — 4 distinct objects.
Ay = Orbg,,,, ,11,2,5,6} = {{1,2,5,6},{1,2,5,7},--- ,{1,2,5,n},
{1,2,6,7},---,{1,2,6,n},{1,2,7,8},--- . {1,2,n —2,n — 1}, {1,2,n — 2,n},
{1,2,n—1,n},{1,3,5,6},---,{1,3,n—1,n},{1,4,5,6},--- ,{1,4,n— 1,n},
{2,3,5,6},---,{2,3,n—1,n}, -+, {2,4,n—1,n},{3,4,5,6},---,{3,4,n—1,n}},
the orbit whose each element contains exaztyements fromV. Its corresponding lenthg in
this case is

|Ao] = 6[(n=5)+(n—6)+(n—T7)+---+3+2+1]

_ (=5 -1
- §(£—4)(n2—5) }

4\ (n—4
- (%)
the number of ways of selectiigobjects from a set of distinct objects and@ objects from a
set ofn — 4 distinct objects.
As = Orbe,, ,,,{1,5,6,7} = {{1,5,6,7},{1,5,6,8},--- . {1,5,6,n},
{1,5,7,8},---,{1,5,7,n},{1,5,8,9},--- , {1,5,n —2,n — 1},
{1,5,n—2,n},{1,5,n—1,n},{1,6,7,8},--- . {l,n—2,n—1,n},
{2,5,6,7},--- ,{2,n—2,n—1,n},{3,5,6,7},--- ,{3,n—2,n — 1,n},
{4,5,6,7},--- ,{4,n—2,n—1,n}},
the orbit whose each element contains exac#ement fromV. It has corresponding length

A3l = 4{[n—=6)+(n—T)+--+34+2+1+[(n—T)+(n—8) +---+3+2+1]

+H(n=8) +n—9)+ - +3+2+1+- -+ [B+2+1]+[2+1]+1}

(n—=6)(n—5) (n—"T7)(n—06) 3(4)  2(3)  1(2)
—4{ > + > +---+2+2+2}

= (=)= 5)+ (=T~ 6) 4 3(4) +2(3) + 1(2))

2(n—4)(n—5)(n—6)
3

(4 [(n—-4
—u 3 )
the number of ways of selectirgobject from a set of distinct objects ang objects from a
set ofn — 4 distinct objects.
Ay =Orbg,,,,,15,6,7,8} = {{5,6,7,8},{5,6,7,9},--- ,{5,6,7,n},
{5,6,8,9},---,{5,6,n—2,n},{5,6,n—1,n},{57,8,9},--- . {5,7,n—1,n},
{5,8,9,10},--- . {6,n =3, n—2,n—1},{5b,n—3,n —2,n},{5,n—2,n—1,n},
{6,7,8,9},--- ,{6,n—2,n—1,n},{7,8,9,10},--- ,{n —3,n—2,n— 1,n}},
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the orbit whose each element contains no element fkorithe length of this orbit is given by

|2y

Hin =7+ =8+ +2+1+[(n—=8)+n—9)+- - +2+1]

n—=9+Mm—-10)+---+2+1]+---+B3+2+1]+[2+1] +1}

Hln=8)+n—=-9)+--+2+1]+[(n—9) +(n—10)+ -+ 1]
(n—10)+(n—11)4+ -+ 2+ 1]+ -+ B+2+ 1]+ [2+ 1]+ 1}

Hl(n=9)+n—-10)+---+24+1+[(n—10)+ (n —11) +--- + 1]

+(n—-11)+n—-12)+---+2+1+---+3+2+ 1]+ 24+ 1] + 1}

+- o+ {B+2+1+ 2+ 1]+ 1+ {2+ 1]+ 1} +1}

7

(EE e R S SR UL IR
R R S L UEL IUESOTED)
o MO (2069) o Wem10) 1)
poe 20 10 2 1) a0
%[(n—?)(n—6)—|—(n—8)(n—7)—|—~-~+1(2)]+%[(n—8)(n—7)

+(n—9)n—-8 +---+12)]+ =[(n—9)(n—8)+ (n—10)(n —9)

e L) 5B +203) +1(2)] + 5[203) + 1(2)] + 5[1(2)]
HE=D0=00-5)  0=06-D0=0, _, 100)
1

3 3 3
[(n=7)(n=6)(n—5)+ (n—=8)(n="T)(n—-6)+---+1(2)(3)]

(n—="T)(n—6)(n—>5)(n—4)
6 x4
(n—4)(n—=5)(n—6)(n—7)
4!

- ()

This is the number of ways of selectifgbjects from a set of distinct objects and objects
from a set ofn — 4 distinct objects.
Clearly, theb suborbits are distinct and disjoint. Summing up their sgipeles,

il&l zi (4:) (n;4> _ <Z> — X,

1

This shows that each element &f* is in exactly one/\; (i = 0,1,2,3,4) above. So, the
rank of the action i$.
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Now, calculations show that the subdegrees are ordereddacgdo increasing magnitude as
follows:

<
A (n-4
2)("2 ) if 8<n <10
<
B4 F11<n<15
1)\ 3 R

N /n-4
" if 16 <n <23
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4.4.4 Rank and Subdegrees oA, on X®)

The results stated and proved in this subsection, on thearashkubdegrees of the action®f
on X ) are derived from the observations made in Subsections thebugh 4.4.3, above.

Lemma 4.4.1. If the action of G on X (") has a suborbit whose each element has exactly
(t=0,1,2,---,r) elements from the sé¥ = {1,2,--- ,r}, thenn > 2r — 4, in which case
the rank of the action is at least- i + 1.

Proof. Let AA,_; be the orbit whose each element contains exaathgments fromV. Then
once the first elements of an element &f,_; have been selected froM, there remain — ¢
elements to be selected from the remaining r elements ofX. For this to happen, it is
required that — i < n — r, which becomes. > 2r — i on rewriting. AccordinglyGy; ».... ;3
has orbits each of whose every element has exactty— 1, » — 2,---, i+ 2, i +1,0r4
elements fromV. These are

Ny = OrbG{l’Q’mﬂ{l, 2,--- .1}, the orbit whose only element contains exactlglements
from N (the trivial orbit), where|Ay| = B g "

), the number of ways of selecting
objects fromr distinct objects and no object from— r distinct objects,

ANEES OTZ)G{LZ”.’T}{L 2,---,r—1,r 4+ 1}, the orbit whose each element contains exactly
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r—1 elements fromV, with |A;| = " 1) " I " , the number of ways of selecting- 1
r —

objects fromr distinct objects and object fromn — r distinct objects, and
Ny = OT’bG{LQ"”’T}{l,2, -~ r — 2.7+ 1,7 4+ 2}, the orbit whose each element contains
r n —

-2 2
selecting — 2 objects fromr distinct objects and objects fromn — r distinct objects.

exactlyr — 2 elements fromV, such thatA,| = T), the number of ways of

The intermediate orbit&as, - - - , /\,_;_, are described in an analogous manner. The remaining
orbits are

Ais = Orbg,,.. 11,2, 40+ Lr + 1,7 + 2,--+,2r — i — 1}, the orbit whose
each element contains exacily- 1 elements fromV; the length corresponding to this orbit

is [N, i 1] = < 1 1) < " B " 1), the number of ways of selectingt 1 objects fromr
1 r—1—
distinct objects and — i — 1 objects fromn — r distinct objects, and

N, = Orbc{m...,r}{l,?, et 4+ L+ 2, 2r — i}, the orbit whose each element

contains exactly elements fromV, where|A,_;| = T " r , the number of ways of
1 T—1

selecting; objects fromr distinct objects and — i objects fromn — r distinct objects.

Clearly, the orbits do not overlap partially and are ¢ + 1 in number. O

Theorem 4.4.1.The rank ofG on X ) isr + 1 if and only if n > 2.

Proof. Suppose: > 2r. This corresponds tb= 0 in Lemma 4.4.1 and it then follows from
the lemmathat the stabilizély, ... ., has orbits each of whose every element contains exactly
r,r—1, r—2,---, 2 1 0ornoelementfromV = {1,2,---,r}. Ther + 1 suborbits ofG
areNg, A1, Ng, -+, A\,_o, /\,._1,and/\, respectively. Now, to prove thét has exactly-+ 1
suborbits, it suffices to show thét\, A, Ay, ---, A,._1, A\, } is a partition ofX ™). Clearly,
N,_; # 0 foreachi = 0,1,2,--- ,randA; N A; = Qunlessi = j (i,5 = 0,1,2,--- 7).

Also, ) )
S5 (1)) () e

o) thatlé0 A,y = X" Thus{Ag, Ay, Ny, -+, A1, A} partitions X (7,

Conversely, suppose the rankris- 1. Then there exists a suborlit, corresponding té = 0
in Lemma 4.4.1. The length of this suborbit(%) (n ; T) wherein the facto(n ; T) is
defined only ifn. — r > r, which becomes > 2r on rewriting.

Theorem 4.4.2.1f n > 2r, the length of the suborbit\; (i = 0,1,2,---,r) whose each

element has exactly — ¢ elements from{1,2,--- ,r} is < " , " B "). Further more,
T—1 1

. r n—r r n—r
(A < [Aiga] e, (r—i)( ; ) < (T—i—l) (i+1),foralln2r(r+2).
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Proof. From the proof of Theorem 4.4.1)\;| = " ) (n - T), the number of ways of
r—1 1

selecting- — i objects fromr distinct objects and objects fromn — r distinct objects.
The proof of the other part of the theorem is by mathematiddiction. Ifr = 2, then from

2 n—2 2 n—2
P ition 4.4.1 = 0,1,2), foralln > 8.
roposition (Q—i)( ; ) < (2—i—1)(i+1)’<l 0,1,2), foralln > 8

So, the statement is true for= 2. Now, suppose the statement is true i £ for an integer
k > 3. Thatis, ifn > k(k + 2),

PR [ G I PR | Gy
Mo (n—k) k) (n - k)!
k=) k-0l -Gt D)k—i—D)l(n—Fk—i—1){ 1)

=

k! (n—k)(n—Fk—1)!
k=) (n—k—)(n—k—i—1l
k! (n—k)(n—Fk—1)!
GrO)h—i—Dln—k—i—Dn—k—i-2)G+1)

=

N k! (n—Fk—1)! n—k _
Ak—)(n—k—i—1i \n—Fk—i

k! (n—k—l)! n—=k
(t+DN(k—i—1)!(n—k—i—=2)I(: +1)! (n—k—i—l)

k! (n—k—1)!
k=) (n—k—i—Dul
k! (n—k—1)! n—k—i
@+1mk—¢—nun—k—i—mw+1ﬂ<n—k—¢—1>'

=

Forr = k£ + 1, the aim is to show that

k+1 n—k—1 E+1\/n—k-—1
(k—ﬁ+J( i :><(k—J( i1 )
k+1)!  (n—k—1) (k+1)! (n—k—1)!
Mk— i+ Dl (n—k—i— Dl G+ D)Ik—0)l(n—k—i—2)l(i+ 1)

(k + 1)k! (n—k—1)!
k=it k=)l (n—k—i— Dl
(k + 1)k! (n—k—1)!

Gt DIk —0)(k—i— 1)l (n—Fk—i—2)(i+ 1)
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N k! (n—k—1)! k41 _
Nk— ) (n—k—i— Dl \k—ir1

k! (n—k—1)! (k+1)

Gt D)= i— D (n—k—i =2+ 1) \F—
k! (n—k—1)!
T k=) (n—k—i—D
) (n—k—1)! <k—i+1)
GrD)h—i— Dl n—k—i—20i+ 1\ k—i )

Clearly, -*~ > 1 and*! > 1. Now, sincen > k(k + 2) which on rewriting gives

n — 2k > k2, then

n—k—i)—(k—i+1) = (n—2k)—1
> k-1
> 0

sincek > 3. So,n — k —i > k — i+ 1 and hencé- =+ > —k—i_ From the inductive
hypothesis, that is,

k! (n—k—1)! -
Ak — )l (n—k—i— 1Dl

k! (n—k—1)! ( n—k—i)’

G+ Dk—i-Dln—k—i—2i+ DI \n—k—i—1

and the fact that =1 > -£-—i_ then

k! (n—k—1)!
k=)l (n—k—i—Dul ~
! (n—k—1)! k—i+1
(H]ﬁ%—i—nwn—k—i—%w+lﬂ( k—i)'

This proves that

k+1 n—k—1 - kE+1\/n—k—-1
k—i+1 i k—1i i+1 )
So, the statement is true for= k + 1 whenever true for = k. Therefore, by the principle of

mathematical induction, the statement is true for-al 2. O

Remark4.4.1 Theorem 4.4.1 and part of Theorem 4.4.2 hold only:for 5 whenr = 2.
This is clear from Proposition 4.4.1.
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4.5 Pairing of Suborbits of A,, on X )

Since|G| is even, then by Theorem 1.1.4, the action has non-triviabshits that are self-
paired.

Theorem 4.5.1.The suborbits of the action 6f on X ), except for some non-trivial suborbits
associated with the actions df, and A, on X, are self-paired.

Proof. Consider the general suborkit, ; (i = 0,1,---,r) whose each element contains
exactlyi elements from the sétl,2,--- ,r}. Then

{1,2,-- i,r+1,r+2,--- 2r—i—12r—i} € A, _,.
If » andi are both even or both odd, then
g=0G+1r+1)(+2r+2)---(r—12r—i—1)(r 2r—i)eG
and if one ofr andi is even, and the other odd, then
g=02)Gi+1r+1)(i+2r+2)---(r—12r—i—1)(r 2r—i) € G.
In any of these cases

g{1,2,--- i, r+1,r+2,--- 2r—i—1,2r —i}

{1727“' 727Z+17Z+27 7T_17T}€gAT7i
and

g{1,2, -+ ji,i+1,i+2,--- ;r—1,r}

{1,2,---i,r+1L,r+2- 2r—i—12r—i} € A,

so that by Definition 1.1.77*_, = A, _; (it is easy to verify that no such exists for cases
wheren = 3 andn = 4 whiler = 2,7 = 1; see Remark 4.5.1 and Example 4.5.1 below for
more details). O

Remarkd4.5.1 Theorem 4.5.1, partially fails for the action df on X ?). The two non-trivial
suborbits of the action, found in Subsubsection 4.4.1e paired (see Example 4.5.1 below).
The theorem also partially fails for the action.4f on X(® where the two suborbits whose
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each element contains exactly ond @nd2, found in Subsubsection 4.4.1.2, are paired (again
see Example 4.5.1 for further details).

Example 4.5.1.The non-trivial suborbits of the action 6f = A; on X® are

Ay = Orbg, ,{1,3} = {{1,3}} and Ay = Orbg,,,,{2,3} = {{2,3}}. Now, consider
g=(123) € G, theng{1,3} = {1,2} € gA, butg{1,2} = {2,3} € Ay. S0,A] = A,.
Similarly, if A, acts onX?, the corresponding non-trivial suborbits;, /A, and/\; seen in
Subsubsection 4.4.1.2, are such thgt= A, but Aj = As.

Example 4.5.2.The action ofd; on X ® has two non-trivial suborbitd; andA, (see Sub-
subsection 4.4.1.3). Now, considerinpg = (23)(45), theng,{1,3} = {1,2} € ¢;A; and
gi{1,2} = {1,3} € A;. So,A, is self-paired. Alsog, = (13)(24) takes{3,4} € A, to
{1,2} and vice versa so thdk, is self-paired. Similarly, by Definition 1.1.7, the threenro
trivial suborbits/\;, A, and A3 of the action ofd; on X® (see Subsubsection 4.4.2.3) are
self-paired. This is clear becaugg = (12)(34) takes{1,2,4} € A, to {1,2,3} and vice
versa,g, = (24)(35) takes{1,4,5} € A, to{1,2,3} and vice versa, while; = (1425)(36)
takes{4,5,6} € Az to{1,2,3} and vice versa.
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CHAPTER FIVE
SUBORBITAL GRAPHS OF THE ACTION OF A, ON ORDERED
SUBSETS

5.1 Introduction

The properties of the combinatorial structures associaitt group action form an essential
component of the study of the group action. The aim of thiptdras to construct the subor-
bital graphs associated with the actionffon X ") and also give an in-depth analysis of these
graphs with regard to concepts such as directedness, dedness, number of components in
a disconnected graph, vertex degree, and girth. Congiruatid analysis of suborbital graphs
corresponding to the six non-trivial suborbits of the attid A,, on X2 for n > 6, seen in
Subsection 3.4.1, is done in Section 5.2. On the other h&aed;dnstruction and analysis of
the graphs corresponding to more general action,obn X! takes place in Section 5.3.

5.2 Suborbital Graphs of A, on X2

Consider the action of,,, (n > 6) on X2 (see the action in Subsubsection 3.4.1.4). Then the
suborbits/\ ¢, Ay, Ay and g are self-paired while\; and A, are paired (see this pairing in
Example 3.5.1). Thus, by Theorem 1.1.11, the suborbitglggaorresponding td.;, Ay, A5
and/ are undirected while those correspondingt9and/\, are directed.

A suborbital graph corresponding to a suborbit of the actiasX? as its vertex set. Now,
the six non-trivial graphs of the action are constructeddestribed as follows:

(i) The suborbitalD; corresponding to the suborkit; is

O = {(9[172]79[27 1])|g € G, [27 1] € A1}

So, the corresponding suborbital grdphhas an edge from vertéx, v] to vertex|x, y] if and
only if u = y andv = x. The graph is undirected sincelif, y] is in Oy, so doegy, z]. Itis

disconnected since there is no path franpe] to [1, 3]; a component of the graph is a tree with
two leaves. Thus, itis a regular forest of degt isti P _1py= (")t

: , gular forest of degtemnsisting of~— = 5 (, P») = , | trees.
Its girth is zero, by the definition of a tree. The graph is Hipawith one part corresponding

to all ordered pair$u, v] such that: < v, and the othefz, y] such that: > v.

Example 5.2.1.Forn = 6, the suborbital graph; corresponding to the suborhit; is given
as in Figure 5.2.1 below.
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1,4
2, 6]
[1”3]/ \{su
1,2] .
[6,5] (3,4]
16,4 [3,5]

Figure 5.2.1: Suborbital Gragh, of A on X

(i) The suborbitalD, corresponding to the suborhit; is
02 = {(9[172]7g[17 3])‘9 € G7 [173] € A2}

So, the corresponding suborbital grdphhas an edge froru, v] to [z, y| ifand only ifu = «
butv # y. Now, if ([z,y], [z, 2z]) € Oa, then([z, 2], [z,y]) € O, also. Sol'y is undirected
and hence self-paired. To show that it is regular of degree2, without loss of generality,
the vertex1, 2] is adjacent to each of the— 2 vertices[1, 3], [1,4],--- , [1,n — 1], and[1, n].
It is disconnected since there does not exist a path betweenetrticeq1, 2] and[2,1]. A

connected component consists of the- 1 vertices of the fornjz, y| for a fixedz € X and
y € X — {z}. Thus, the number of connected componen% = L (P) = 2 (Z)
Moreover, it has girtl3 since the verticefl, 2], [1, 3] and[1, 4] are pairwise adjacent.

Example 5.2.2.1f n = 6, the suborbital grapli, corresponding to the suborhit, is given
as in Figure 5.2.2 below.
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(1, 6]

[2,1]

[5, 6] [2,3]
[5,4] (2,4]
[5, 3] [2,5]

5,2] 2,6]

[5, 1] (3, 1]
[3,2]

3,5
4, 2] [4,1] (3, 6]

Figure 5.2.2: Suborbital Gradh, of A on X2
(i) The suborbitalO; corresponding to the suborhit; is
03 = {(9[17 2]79[37 1])|g € G7 [37 1] € A?)}

So, the corresponding suborbital grdphhas an edge froru, v] to [z, y] if and only ifu = y
butv # x. Now, if ([z, ], [z, x]) € Os, then([z, z], [z,y]) ¢ Os. So,I'; is directed and hence
paired with another. It is connected since there existstalpetiveen any two vertices, and has
girth 3 since there is a directed path joining the vertigeg], [3, 1] and[2, 3]. To show that it

is regular where each vertex has indegree2 and outdegree — 2, without loss of generality,

there is a directed edge frofh, 2] to each of thex — 2 vertices[3, 1], [4,1],---, [n — 1,1],
and[n, 1], and a directed edge from each of the- 2 vertices|2, 3], [2,4],-- - , [2,n — 1], and
2,n],t0][1,2].

Example 5.2.3.1f n = 6, the suborbital grapli'; corresponding to the suborhit; is given
as in Figure 5.2.3 below.
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Figure 5.2.3: Suborbital Gragh of A on X

(iv) The suborbitalD, corresponding to the suborlit, is
04 = {(g[]-a 2]79[27 3])|g € G7 [27 3] € A4}

So, the corresponding suborbital graphhas a directed edge from, v] to [z, y| if and only
if v=axbutu #y. If ([z,y], |y, z]) € O4, then([y, 2|, [x,y]) & O4. Infact([y, 2], [x,y]) € Os
above. Sol', is directed and is paired wiil; above and has the same propertieBagxcept

that the edges are oppositely directed to thode;of

Example 5.2.4.1f n = 6, the suborbital grapli, corresponding to the suborhit, is given
as in Figure 5.2.4 below.
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[6,4] (6, 5] [1,2]
[6,3] (L, 3]
[6,2] (L, 4]
[6,1] (L,5]
[1,6]
[5,6]
5, 4] 2,1]
(5,3] [2,3]
(2,4]
[5,2]
2,5]
[5,1]
14,6 e
4,6
(4,5] i
| [4,3] 5,2
| 5 B4
[4,2] w1 36 (3,5]

Figure 5.2.4: Suborbital Gragh, of A on X !

(V) The suborbitaD5 corresponding to the suborhits is

Os = {(9[1,2],9[3,2D)lg € G, [3,2] € D5}

So, the corresponding suborbital grdphhas an edge frofu, v] to [z, y] if and only if v = y
andu # z. Now, if ([z,y],[z,y]) € Os, then([z,y],[z,y]) € Os. So,T’5 is undirected and
hence self-paired. In this case, all the propertieB:adre identical to those df, above.

Example 5.2.5.1f n = 6, the suborbital grapl'; corresponding to the suborhit; is given

as in Figure 5.2.5 below.
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6] 12 (32

[6,5] (3,1]
[4,5] [4,1]
(3, 5] [5,1]

[2, 5] [6,1]

(2,4 1,4 (63

Figure 5.2.5: Suborbital Gragh of A on X

(vi) The suborbitalDg corresponding to the suborhitg is
06 = {(9[17 2]7g[37 4])‘9 € G7 [374] € AG}

The corresponding gragh has an edge frof, v] to [z, y] if and only if {u, v} N {x, y} = 0.

If ([u,v],[z,y]) € Og, then([z,y], [u,v]) € Og. So,T is undirected and hence self-paired.
It is connected since there exists a path between any twizeenf the graph. To show that
it is regular of degreén — 2)(n — 3), any vertex of the fornmu, v] is adjacent to each of the
n—2Py = EZ:Z;: = (n — 2)(n — 3) vertices of the forniz, y] such thafu, v} N {z,y} = 0. It
has girth3 if and only if » > 6 sincell, 2], [3, 4], and|[5, 6] are pairwise adjacent if and only if

n > 6.

Example 5.2.6.1f n = 6, the suborbital graplis corresponding to the suborhits is given
as in Figure 5.2.6 below.
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[1,4]
[6, 4] [1,5]
[6,3] [1,6]
6,2] [2,1]
[6,1] 2,3]
[5, 6] 2, 4]
[5,4] 2,5]
[5,3] (2,6]
5, 2] 3,1]
[5,1] [3:2]
(4, 6] o
(3,5]
51 3,6]

4,2]  [4,1]
Figure 5.2.6: Suborbital Gragdh; of Ag on X2

5.3 Suborbital Graphs of A,, on X!

5.3.1 Construction of the Suborbital Graphs

Let G act onX " and let[z, zo, - - - , x,] € A whereA is an orbit of Gy 5. ,; on X", Then
the suborbitaD corresponding ta\ is defined by

O=A{(g[1,2, - ,r],g[x1, 20, ,2,])|g € G, 21,20, -+ ,2,] € A}

The suborbital graph corresponding to the suborbitahsX ") as its vertex set. Now, suppose
{1,2,--- ,r}n{xy, 29, -+ , 2.} = k,0 < k < r such that the coordinates df 2, - - - , 7] in
positionsay, as, - - -, o are respectively identical to the coordinates$af xs, - - - , x,] in the
positionsfy, fs, - - - , B Wherew,, 8; € {1,2,--- ,r}andi, j € {1,2,--- ,k}. The graph has
an edge fromyy, v, -,y tO[21, 20, - - -, 2] ifand only if ([y1, y2, - - - Ly, [21, 22, -+, 2])

is in O, which in turn occurs if and only if{y1, y2, - -+ , 4.} N {z1, 22, -+, 2.}| = kinsuch a
way that the coordinates @f, y», - - - , y,-] in positionsay, as, - - - , ay, are respectively identi-
cal to the coordinates dfy, 25, - - - , 2,] in positionsGy, (s, - - -, By

Example 5.3.1.Let G act onX ¥ with n > 10. Then the ordered quadrugie 1, 2, 7] belongs
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to the suborbith 30 = Orbg, , , [5,1,2,6] (find A3 in Appendix B). The suborbitaD 3,
corresponding td\ 3, is defined by

0130 = {(9[1727 374]79[57 1727 7])|g S Ga [57 1727 7] S A130}~

Thus, the grapti';s, corresponding ta,5, has X as its vertex set. It has an edge from
[21, 02, 13, 74] 1O [y1, Yo, y3, ya] if @nd only if oy = yo, 20 = yz and{ws, x4} N {y1, 3} = 0.

In this case/\ 3 is paired with the suborbif\ 55 (see/ 55 in Appendix B, and pairing of
the suborbits in Example 3.5.3). Hendgg, is paired with the suborbital gragh ss, which
corresponds td\ 55, and each has directed edges.

5.3.2 Properties of the Suborbital Graphs

Theorem 5.3.1.The action ofG on X"l has at least one disconnected non-trivial suborbital
graph for alln > r + 2.

Proof. This action is imprimitive, from Theorem 3.3.1 and therefdry Theorem 1.1.12, the
action has a disconnected non-trivial suborbital graph. O

Example 5.3.2.Consider the action ofl,, (n > 6) on X, The suborbital graphs,, I'; and
I's described in Section 5.2, associated with the action, atisglonnected.

Theorem 5.3.2.Let G act onX!"l and letT; be the suborbital graph corresponding to a self-

paired orbit ofG/; ».... ;) on X" whose element has all elements frgin2, - -- ,r}. ThenT;

has girth zero, itis regular of degré@and is disconnected with (n) connected components.
r

Proof. Each vertex off; has degree one so that the connected componefijsaoé trees with

two vertices and one edge (see Figure 5.3.1 below). THus,disconnected, has girth zero

and the degree of each vertex isClearly, the number of connected componentg;iis given

[r] [
oy 25— 1 1) = 5(7) 0

r

Figure 5.3.1: A Connected Component/in
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Example 5.3.3.A good illustration is the suborbital grafh corresponding to the self-paired
suborbitA, of the action of4s on X2 (see Example 5.2.1 above). One can easily check that

6
the number of connected componentg'pis 25' (2) = 15.

Theorem 5.3.3.Let G act onX " and letT; be the suborbital graph corresponding to a paired
orbit of G »... ,; on X" whose element has all elements frgm 2,--- ,r}. Then,T; is

disconnected witﬁg’ (n) connected components and has girth three
T

Proof. Each vertex ofl; has indegreé and outdegreé. Construction shows that the con-

nected components @f are directed triangles. S®; has girth3 and the number of connected
| X1]

components i} is = = £ (,P,) = %‘(n) O
r

Example 5.3.4.Let G act onX ¥ with n > 8. The suborbits\; and/\, (find these suborbits
in Appendix A) are paired (see Example 3.5.2). Hence, th@iresponding suborbital graphs
T3 and Ty, respectively, are paired. A connected componernfims given in Figure 5.3.2
below.

1,2,3]

(2,3,1] 3,1,2]

Figure 5.3.2: A Connected Component/in

Theorem 5.3.4.Let G act onX "l and letT" be the suborbital graph corresponding to the self-
paired orbit ofG|; 5.... ;) on X" whose each element contains no element ffan®, - - - ,r}.
Then T is connected and undirected. In additi@hhas girth3 if and only ifn > 3r, and itis
regular of degreén — r)(n —r —1)---(n—2r + 1).

Proof. SupposeA is the orbit of G ».... ,; on X'l whose each element has no element from
{1,2,- -+, r}. If [ug,us,- -+ ,u,] € A, then the suborbital correspondingAois given by

O = {(9[1727"' 7r]7g[u17u27”' 7u7"])|g < G}

Clearly,{1,2,--- ,r}N{uy, us,-- - ,u,} = 0 and the corresponding graffhhas an edge from
[1, V9, -+, 0] 1O [wy, wa, -+ ,w,] Iif and only if {vy,ve, -+ v} N {wy,wa, -+ w.} = 0.
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That the graph is undirected is clear sincé|if;, vo, - - -, v,], [wy,wa, -+ ,w,]) € O, then
([wy,wg, -+ w,], [v1,v2, -+ ,v.]) € O also. Now, construction shows thatlif and V" are
distinct vertices ofl’, there is a path that starts dtand ends at’. Hence,T" is connected.
Further, the three verticds;, us, - - - ,u,], [v1,v9,- -+ ,v,] @and[wy, wo, - - -, w,| will form a
cycle if and only if they are{uy, ug, -+ ,u,.} N {vy,ve, -, 0.} N {wy,we, -+ ,w.} = 0,
which is possible if and only if. > 3r (see Figure 5.3.3 below for a cycle ). Finally,
T is regular of degreén — r)(n —r — 1) ---(n — 2r + 1) since any verteXcy, z, - - - , x,]
is adjacent to each of the . P, = ((::2?)’! =(n—r)(n—r—1)---(n —2r + 1) vertices
(Y1, Y2, - -+, y.] forwhich{zy, zo, - -+ 2.} N {y1, 90, , e} = 0. O

[wi,ug, -, ur]

[v1,v2,- -, vp] (w1, w2, -, wy]

Figure 5.3.3: A Cycle ifl’

Example 5.3.5. The suborbital grapl's seen in Example 5.2.6 above, associated with the
action of A on X2, is one such example.
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CHAPTER SIX
SUBORBITAL GRAPHS OF THE ACTION OF A, ON UNORDERED
SUBSETS

6.1 Introduction

Central to the study of a group action are the propertieseftsociated combinatorial struc-
tures. This chapter sets out to construct the suborbitaphgraorresponding to the action of
A, on X and also provide an examination of these graphs with respecincepts such as
directedness, connectedness, number of components is@dected graph, vertex degree,
and girth. Construction and analysis of the suborbital gsagprresponding to the non-trivial
suborbits of the action afl,, on X is handled in Section 6.2. On the other hand, the con-
struction and detailed analysis of suborbital graphs spwading to more general action of
A,, on X is done Section 6.3.

6.2 Suborbital Graphs of A,, on X2

A suborbital graph corresponding to a suborbit of the aatiicfi on X ? hasX ® as its vertex
set. The non-trivial suborbital graphs Gfon X ? are constructed and described as follows:
(i) A suborbitalO, corresponding to a suborhit of G on X ® whose each element contains
exactly one ofl and2 is

Oy = {(9{1, 2}, 9{1,3})lg € G, {1,3} € A}.

So, the corresponding suborbital graph has an edge fream} to {z,y} if and only if

{u,v} N {z,y}| = 1. The graph is undirected since (ifu, v}, {z,y}) belongs toO,, so

does({z,y}, {u,v}). Itis connected as there exists a path between any two clistmtices,

and it has girth3 because the verticelsl, 2}, {1,3} and {2,3} are pairwise adjacent. To
_ 2\ (n—2 . . ,

show that it is regular of degreél) ( . ) without loss of generality, there is an edge

from the vertex{1, 2} to each of{1,3},--- ,{1,n},{2,3},-- -, {2,n}; the number of edges

is2(n —2) = G) <n I 2) in this case.

Example 6.2.1.1f A5 acts onX(?, the paired suborbitd, andA, (check pairing of the sub-
orbits in Example 4.5.1) have precisely the same subonpigadh. This grapl® is undirected
and is as given in Figure 6.2.1 below.
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{1,2)

(1,3} (2,3}
Figure 6.2.1: A Suborbital Graph of A; on X®

Example 6.2.2.Similarly, the paired suborbitd, and A, of 4, acting onX®, (see pairing

in Example 4.5.1) have precisely the same suborbital grépis.graphV is undirected and is

as given in Figure 6.2.2 below.

{1,2} {2,4}

(3,4} (1,3}

(1,4} 2.3)
Figure 6.2.2: A Suborbital Graph of A, on X

Example 6.2.3.Supposed; acts onX ?), Then, the suborbital gragh corresponding to the
suborbitA; (find A in Subsubsection 4.4.1.3) is as shown in Figure 6.2.3 below.
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{1,3} {1, 4}

{1,2} {15}

(4.5) {2,3}

{3,5} {2,4}

{3,4} {2,5}

Figure 6.2.3: Suborbital Gragh of A5 on X

(i) The suborbitalO, corresponding to the suborbit of G on X whose each element
contains neither of and2 is

O = {(9{1,2},9{3,4})lg € G, {3,4} € A}.

In this case, the corresponding suborbital graph has an edge{u,v} to {z,y} if and
only if {u,v} N{z,y} = (0. The graph is undirected since(ifu,v},{x,y}) is in Oy, SO

does({z,y},{u,v}). Itis regular of degre&{i) (n 5 since, without loss of generality,

. -2 2 -2 .
there is an edge from the vertéx, 2} to each of the(n ) ) = (0) (n i ) vertices

of the form{x,y}, x,y € {3,4,--- ,n}. If n = 4, the graph is disconnected and has girth
zero (see Figure 6.2.4 in Example 6.2.4 below). On the othedhfn > 5, the graph

is connected since there is a path between any two distimtiteg, and has girth since
{1,2}{3,4}{2,5}{1,4}{3,5}{1,2} is a cycle of shortest length in the graph.

Example 6.2.4.Suppose&s = A, acts onX (?). The suborbital grapth; corresponding to the
suborbitA; (see Subsubsection 4.4.1.2 #ag) is as shown in Figure 6.2.4 below.
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{1.2}

{3,4} {1,3}

2.4) 1,4}

{2,3}

Figure 6.2.4: Suborbital Grapf of 4, on X

Example 6.2.5.Supposed; acts onX (?). Then, the suborbital graph, corresponding to the
suborbitA, (see Subsubsection 4.4.1.3 far) is as shown in Figure 6.2.5 below.

(1,3}

{2,5} {2,4}

P\

{2,3}

1,4y {3,5}
Figure 6.2.5: Suborbital Graph, of A; on X

Figure 6.2.5 above is the famous Petersen Graph.



6.3 Suborbital Graphs of A, on X )

6.3.1 Construction of the Suborbital Graphs

Let G act onX ") and letA be a suborbit ofy. Then, the suborbitad corresponding ta\ is
given by

O:{(g{1727 77“}79{$1,$27“‘ ,l’r}) |g€G,{l’1,ZE2,"‘ 7xr} S A}

The suborbital grapli” corresponding to this suborbital is constructed by takifity as the

vertex set. Supposél,2,---,r} N{zy, 2, -+, 2.} = k,0 < k < r. Consider vertices
U=A{y1,y2, - ,y-yandV = {zy, 29, - -+ , z.}. Thenl" has an edge fror®y to V' if and only

if (U,V) € O, which happensifandonly i/ N V| = k.

Example 6.3.1. Suppose’ acts onX® with n > 8. Then{2,3,5,6} € A, in which
caseA; = Orbg,,,..,,{1,2,5,6} (see this suborbit in Subsection 4.4.3). The suborbital
corresponding tad\, is given by

0, ={(9{1,2,3,4},9{2,3,5,6})|g € G,{2,3,5,6} € As},

and the suborbital graph, corresponding ta), has X as the vertex set. Consider the
elementd] = {y1, y2, Y3, ya} andV = {21, 2o, 23, 24} of X, Then(U, V) € O, if and only

if |[U N V| = 2. Accordingly, there exists an edge frarmto V. Now, since/, is self-paired,
by Theorem 4.5.1]} is self-paired and hence undirected.

6.3.2 Properties of the Suborbital Graphs
Theorem 6.3.1.Every suborbital graph af acting onX (") is undirected.

Proof. The trivial suborbital graph is undirected by default. FrBxamples 6.2.1 and 6.2.2,
the suborbital graphs corresponding to the paired sulsofbjtand A\, for the case where

G = A; (or Ay) acts onX® are one and the same, and undirected. From Theorem 4.5.1,
all the other suborbits are self-paired. Therefore, by Téol.1.11, their corresponding
suborbital graphs are self-paired and hence undirected. O

Theorem 6.3.2.The action ofG on X ) has exactly one disconnected non-trivial suborbital
graph ifn = 2r; any other non-trivial suborbital graph of the action is cected.

Proof. Suppose: = 2r so thatX = {1,2,--- ,r,r + 1,7+ 2,--- ,2r}. Now, consider the
suborbitA,. = {r + 1,7+ 2,--- ,2r} whose only element contains no element from the set
N ={1,2,---,r}. Then, the suborbital correspondingAq is

O, ={{1,2,--- ,r},g{r+ 1L, r+2,--- ,2r})|g € G}.
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The corresponding suborbital graph has an edge between vertidés= {x,zs, - , 2.}
andV = {yi,y2, -,y p ifand only if U NV = (). Sincen = 2r, U is adjacent only
to V, and vise versa, so that a component/dfis a tree with two vertices and one edge.
Hencel’, is disconnected with girth zero and the number of conneabeaponents is given

r ny\ . . . .
by 'X% = %( in this case. Now, construction shows that there existslalpetiveen any
T

two vertices of any other non-trivial suborbital graph of tiction so that it is connected. On
the other hand, ifi # 2r, then from Theorem 4.3.1, the action@fon X ™) is primitive and
hence, by Theorem 1.1.12, all the non-trivial suborbitaldys associated with this action are
connected. O

Example 6.3.2. The suborbital grapti; in Example 6.2.4 above is one such disconnected
graph.

Theorem 6.3.3.The suborbital graplt’,._; (i = 0,1,--- ,r — 1) corresponding to the non-
trivial suborbitA,_; of G on X (") whose every element contains exactlglements from

{1,2,---,r}isregular of degree{f) (Z B r)

] —1

Proof. Suppos€ 1, sy, -+ ,z,} € A,._;. Then the corresponding suborbital is

O, ={(g{1,2,--- ,r},g{z1, 20, ,2,}) | g € G, {x1, 29, - , 2.} € LN, }.

In this case{1,2,--- ,r} N{xy, 9, -,z }| = i. Accordingly, the corresponding suborbital
graphl,._; hasX (" as the vertex set and there exists an edge from vértex{y,, v, - - -,y }
to vertexV = {z,29,---, 2.} ifand only if |[U N V| = i. So, the first coordinates o

. r . .. . .
are chosen from elements ofX in ( . | different ways and the remaining— i coordinates
7

. . n T .
chosen from the remaining — r elements ofX in . ] ways. As a result, vertek is
T—1

connected tc(r) (n B T) distinct vertices. Sincé# is arbitrary, the conclusion is clear]
7

Example 6.3.3.1f G = A; acts onX(?, the non-trivial suborbital graph® and I';, (see

Section 6.2) are regular of degré%) (i’) =6 and ((2)) @) = 3, respectively.

Theorem 6.3.4.Let I' be a suborbital graph aff acting onX () where adjacent vertices
U={x, 29, ,x.yandV = {y1,99, -+ ,y,} are such thay N V| = r — 1. ThenI" has
girth 3 .

Proof. Consider the vertice$§1,2,--- ,;r — 2,7 — 1,r}, {1,2,--- ;r —2,r — 1,7 + 1} and
{2,3,---,r—1,r,7+ 1} of I'. They are pairwise adjacent, by the condition of the theprem
and the conclusion follows. O
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Example 6.3.4.If G acts onX¥, then for eachn > 5 there exists a suborbital graph satis-
fying the condition in Theorem 6.3.4. This graph has a clgs&tth connecting the vertices
{1,2,3,4}, {1,2,3,5} and{2,3,4,5}. In fact this is the suborbital graph corresponding to
the suborbitA\; whose each element contains exaétlglements from the sdtl, 2, 3,4}, for
eachn > 5 (check Subsection 4.4.3 for the suborbit).

Theorem 6.3.5.Every non-trivial suborbital graph @ on X ) has girth3 if n > 3r.

Proof. Supposen > 3r. Letl; (i = 1,2,---,r) be the non-trivial suborbital graph corre-
sponding to a suborbit; (i = 1,2,--- ,r). Clearly, sincex > 3r by hypothesis, there exist
distinct element$/ = {uy, us, -+ ,u.}, V = {vy,v9, -+ ,v.} andW = {wy,wy, - ,w,}in
XM suchthaiUNV|=|UNW|=|VNW|=k k=0,1,---,7— 1. HencelU, V andW
are pairwise adjacent ifi;,, so that/; has a cycle of lengtB. O

Example 6.3.5.The action ofds on X ® has two non-trivial suborbitd; andA, (see Sub-
subsection 4.4.1.4). From the argument given in Subse6ti®i above, the suborbital graph
corresponding t@\; has a cycle joining the verticdd, 2}, {1,3} and{1,4}. Similarly, the
suborbital graph corresponding 4o, has pairwise adjacent verticés, 2}, {3,4} and{5,6}.
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CHAPTER SEVEN
CYCLE INDEX OF S,, AS A SEMIDIRECT PRODUCT OF A, BY C,

7.1 Introduction

The idea of the cycle index formula of a group action is a digant one. The current chapter
is devoted for the derivation of the cycle index formula af Bymmetric grou,,, explicitly

in terms of the cycle index formula of,, and that ofC,, whereS,, is a semidirect product of
A, by C5. The expression of cycle index 6f, in terms of cycle indices afl,, andC;, for each
case wher8 < n < 7is done in Section 7.2. Elsewhere, the derivation of theecyalex of

S, in terms of the cycle index ofl,, and that ofC; for anyn > 3 takes place in Section 7.3.
Throughout the chapter, the notatidh x shall be reserved to mean the cycle index of the
trivial group acting onX. On the other hand, the notatiots H, and K shall be used as
defined in the respective contexts but not necessarily asedkiin other contexts before.

7.2 Cycle Index ofS,, as a Semidirect Product ofA,, by C, for
3<n<7

7.2.1 Cycle Index ofS3 as a Semidirect Product ofA 3 by C,

Consider the seX = {1, 2,3} and the groups: = {1, (123), (132), (12), (13),(23)} = Ss,
H = {1,(123),(132)} = A; andK = {1, (12)} = C,. By Equation 1.1.1, the cycle index
polynomials ofG, H, andK acting onX areZg, x = +{t}+2t3+3t1t2}, Zp x = s{t1+2t3},
andZk x = %{t:{’ + t1to }, respectively. Now, on rewriting,

1 1
Zox = 5 {t] 4+ 2t5} + 5 {3t1ts}
11 1 1

1 1
= -7 Z — =7 x.
5 4H.X + 4Kk x g 41X

This formula was originally obtained by (Kamuti, 2004) bsing a different method; this is

as expected sindg is Frobenius (see Example 1.1.5). The formula can furtheewetten as

1 2! 3! 1 3!

Tox = =Z =2 _— 2z
GX g AHX o AKX T g 41X

1 2 /3 1/3
5 ZHX + 3l (2) Lrx — 31 (2) Z1x-

In this case, all the transpositions (odd permutations) iare conjugate to the transposition
(12) in K, by Theorem 1.1.14.
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7.2.2 Cycle Index ofS, as a Semidirect Product ofA 4 by C,

SupposeX = {1,2,3,4} so thatG' = S, (see Example 1.1.6 for the elementsHf

H = {1,(123),(132), (124), (142), (134), (143), (234),
(243), (12)(34), (13)(24), (14)(23)}
- A,

and
K ={1,(12)} = Cs.

By Equation 1.1.1, the corresponding cycle index polyndsrage

1
Zox = ﬁ{t‘l1 + 8tits + 3t5 + 613ty + 6ty ),

Zux = —{t4 + 8tits + 363},

and .
Irx = 5{7541l + {7t}

respectively. NowZ x can be rewritten as

Zox = {t4 + 81t + 33} + 57 {6t2t2 + 6t4}
= 55 {t4 + 8t1ts 4 3t5}

1 1
—— {2, — St — {6t
+22{1+12} 41+24{ 1}
1 1 1

Z Z — -7 t
Hx+2 K,X 4lx+44

2! 4! 1 4! 1

24 Rl
T AEX T qigp Anx Tt

2 (4 1 /4 1
Zax + 1 <2) Lrx — 1 (2) Zix + ZM-

In this case, the extra teniu is the contribution, t&Z; x, of the six odd permutations of
that are not transpositions. These permutations are notonpgate ofK" but all of them
form a conjugacy class i@, by Theorem 1.1.14.

1
2
1
5 ZHX
1
2

7.2.3 Cycle Index ofS5 as a Semidirect Product ofA5 by C,

Let X ={1,2,3,4,5},G =S5, H = A; andK = < (12) > = (5. The cycle index of’
can easily be calculated since its elements and their gamneling monomials can be listed
down without much effort. On the other hand, Table 7.1 beb®ssential in the calculation of
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the cycle indices ofr and H since it is quite cumbersome listing down the elements dfieac

Table 7.1: Monomials of Elements 6f

Permutation Cycle Corresponding Corresponding Number
Type Type Monomial of Elements ifk
(a)(b)(c)(d)(e) (5,0,0,0,0) £y 1
(a)(be)(de) (1,2,0,0,0) tyt2 15
(a)(b)(cde) (2,0,1,0,0) 2t3 20
(abcde) (0,0,0,0,1) ts 24
(a)(b)(c)(de)  (3,1,0,0,0) 3ty 10
(ab)(cde) (0,1,1,0,0) tots 20
(a)(bede) (1,0,0,1,0) tity 30
Total 120 = | S5|

Now, in a manner analogous to the calculatiorfefy in Example 1.1.6,

Zax = 50 {t5 + 158112 4 2013t + 24t5 4 10631, + 20tats + 30t,14},

and

Zhx = 6—10{15*;’ + 158,12 4 2013t + 2415},
while ,
Zrx = 5{ti’ + 345},
Just like in Subsections 7.2.1 and 7.222, x can be rewritten as

Zex = Top 0 {t5 + 156185 + 20t7ts + 245} + —

11 5
260 W4

120 {10t3t2 + 20tat5 + 30ty 4 }

+ 15t,85 + 20855 + 2415} + ~= {t5 + tita}

1
—£ + 20tots + 30t,t
19t 120{ oty + 3001t}
1 1

Zpx + 6ZKX — Ezl X + {20t2t3 + 30t1t4}

2! 5! 1 5
+5|2!3! KX 519131

2 /(5 1/5 1
ZHX_'_ ( )ZKX < )Zlvx+§{20t2t3+30t1t4}

ZH7 — 7 X+ = 5l {20t2t3 + 30t1t4}

1
2
1
2
1
2 512 51\2

The extra term51—! {20t9t5 + 30t1t4} in this case is the contribution, 6. x, of the 50 odd
permutations ofX that are not transpositions. By Theorem 1.1.14, the petmutare not
in a conjugate of{ but form some two conjugacy classeginone consisting 020 elements
and the othes0.
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7.2.4 Cycle Index ofSg as a Semidirect Product ofAg by C,

SupposeX = {1,2,3,4,5,6},G = Sg, H = Agand K = < (12) > = (5. Just like in
Subsection 7.2.3, Table 7.2 below is vital in the calculatdZ. x andZy .

Table 7.2: Monomials of Elements 6§

Permutation Cycle Corresponding Corresponding Number
Type Type Monomial of Elements ifl
(@)(b)(c)(d)(e)(f) (6,0,0,0,0,0) 9 1
(a)(0)(cd)(ef)  (2,2,0,0,0,0) 1213 45
(a)(b)(c)(def)  (3,0,1,0,0,0) t3t3 40
(abe)(def) (0,0,2,0,0,0) t2 40
(a)(bedef) (1,0,0,0,1,0) t1ts 144
(ab)(cdef) (0,1,0,1,0,0) toty 90
(a)(b)(c)(d)(ef) (4,1,0,0,0,0) tits 15
(a)(be)(def) (1,1,1,0,0,0) titats 120
(ab)(cd)(ef)  (0,3,0,0,0,0) £ 15
(a)(b)(cdef)  (2,0,0,1,0,0) tty 90
(abede f) (0,0,0,0,0,1) to 120
Total 720 = | S|
By Equation 1.1.1,
1 6 242 3 2
Zax = ﬁo{tl + 45t7t5 + 40t ts + 4085 + 144t1t5 + 90taty
+15t 1ty + 120t tots + 15t5 + 90Tty + 120t4},
1
Zpx = %{tﬁ + 45t5t5 + 4083t + 40t; + 144t 5 + 90taty )}

and

1
Trx = §{t§5 + tity}.
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Now, Z x can be rewritten as

Zax = 720 {13 + 451713 4 40tt5 + 4015 + 144815 + 90tots }

—{1575%2 + 120t tot5 + 15t5 + 90t3t, + 1204}

1
= 5360 {t6 + 451313 + 40835 + 4Ot3 + 14415 + 90tats }

411 {19+ tita} —

242 720
1 1

~Zux + 5 —Zxx — s —Zix + 5 {120t1t2t3 + 155 + 90t3ts + 1206 }
2! 6! 1 6!

TG X T aﬂZLX

1 3 2
o {120t1t,t5 + 15¢5 + 907ty + 120t6 }

1 2 (6 1/6
= 2ZHX + = ol (2) Zrx — 6l (2) Z1.x

1 3 2
*5 {120¢1t,t5 4 15¢5 + 90tits + 120t6 } .

{120t1t2t3 + 15t3 + 907ty + 120t6}

1

2

1
-7

5 “HX

The extratermy; {120¢1t5t5 + 155 + 90t3t, + 12016} in this case is the contribution, & x,
of the345 odd permutations ok that are not transpositions. These permutations are not in a
conjugate ofK” but form some four conjugacy classegin

7.2.5 Cycle Index ofS; as a Semidirect Product ofA; by C,

TakeX = {1,2,3,4,5,6,7},G = S7;, H = A; andK = < (12) > = (5. While it is easy to
find Zx x, Table 7.3 below becomes absolutely necessary in finding andZ x.
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Table 7.3: Monomials of Elements 6%

Permutation Cycle Corresponding Corresponding
Number of
Type Type Monomial Elements ifi;
(a)(0)(c)(d)(e)(f)(g) (7,0,0,0,0,0,0) ty 1
(a)(b)(c)(de)(fg)  (3,2,0,0,0,0,0) 313 105
(a)(b)(c)(d)(efg)  (4,0,1,0,0,0,0) tits 70
(ab)(cd)(efqg) (0,2,1,0,0,0,0) tats 210
(a)(bed)(efqg) (1,0,2,0,0,0,0) tyt3 280
(a)(be)(defqg) (1,1,0,1,0,0,0) titaty 630
(a)(b)(cdefg) (2,0,0,0,1,0,0) 25 504
(abedef g) (0,0,0,0,0,0,1) tr 720
(@)(B)()(d)(e)(fg)  (5.1,0,0,0,0,0) £t 21
(a)(be)(de)(fg) (1,3,0,0,0,0,0) tht3 105
(a)(b)(cd)(efqg) (2,1,1,0,0,0,0) t2tot3 420
(a)(b)(c)(defqg) (3,0,0,1,0,0,0) t3t, 210
(abc)(defq) (0,0,1,1,0,0,0) tsty 420
(ab)(cdefqg) (0,1,0,0,1,0,0) tots 504
(a)(bedefqg) (1,0,0,0,0,1,0) t1ts 840
Total 5040 = |.S7|

By Equation 1.1.1,

1
Zax M{t{ + 105¢3t5 4 70t ts + 210t5t3 + 280t 13
+630t 1 toty + 504t5ts + T20t; + 21¢5t, + 105t t5
+420t3tyts + 210t3t, + 420t5ty + 504tats + 840,16},
1
Zux = =———{t] +105t}t5 + 70tits + 210t5t;

2520
+280t1t5 + 630ttty + 504tits + 7207}

and .
Trx = 5{t{ + 0t}
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Thus,Zq x can be rewritten

Zex = wo; 0{t7 + 1056515 + 70t1ts 4 210t5t5 + 280151153

+630t1tot, + 504t5ts + 720t} + =0 {21755752 + 105,83
+420t3tyts + 210ty + 420t3t4 + 504tyts + 840t t6}

1
= §m{t7 + 105515 + 70t t3 + 210t5t5 + 280t 13
+630t oty + 504t2t5 + 720t7} + — 50 2{t7 + 1945}
! — 17 + ——{105¢, 13 + 42083 tyt5 + 21065t
240 ! 040 ! 2 !
+420t 5t + 504tats + 840t 16}
1 1 1
= 7 —Txx — —Z
5 A HX + 1202KX ~ g1041X
1
+ﬁ{105t1t§ + 42083 tots + 210t5t, + 420tst, + 504tqts + 840t ts}
1 21 7! 17
= gluxty 2'5' KX = 7551 2%

+ﬁ{105t1t§’ + 420t3tot5 + 210¢5t, + 420tt, + 504tots + 840t 1t}

1 2 (7 1 /7
= §ZHX 7'<)ZKX 7,()21,)(

+ﬁ{105t1t§’ + 42083 tots + 210t5t, + 420tsty + 504tyts + 840t tg}.

The extra tern‘%{105t1t§ + 4203 tot3 + 21085ty + 420t3t 4 + 504tt5 + 840t 16 } in this case is
the contribution toZ; x of the2499 odd permutations ok that are not transpositions. These
permutations are not in a conjugate/®fbut form some six conjugacy classesdi of 105,
420, 210, 420, 504, and840 elements respectively.

7.3 Cycle Index ofS,, as a Semidirect Product ofA,, by C,

Theorem 7.3.1.Let X = {1,2,--- ,n} sothatG = S,,, H = A, andK = (5. Supposé€? is
the set of the odd permutations &fthat are not transpositions. Then,

1 2 (n 1 /n 1
Zox = 5Zux + 0 (2)ZK’X Tl (2)2” T a2 (mon(9)}

geN

Proof. The cycle type of the identity permutation, which is even(7is0,0, ---,0) while
that of a transpositiofub), an odd permutation , i& — 2,1,0,0,---,0). So, by definition,
mon(1) = 7 andmon(ab) = t7%t,. Now, suppose is the sum of monomials of the non-
trivial even permutations ok. Then, by Equation 1.1.17; x = 2 {t! + p}. Similarly,
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Zrkx = 5 {t! +t7*t,}. The conjugacy class dfb) has n

elements, by Theorem 1.1.14. Finally, suppQss the set of the odd permutations &fthat
are not transpositions (i.€2 consists of all odd permutations af that are not conjugate to

n—2)lin—21121 — 2(n-2)l

the transposition ik, by Theorem 1.1.14). Then, from Equation 1.1.1,

Za,x

%Z {mon(9))

%g;, {mon(g)} + %gg\:}l {mon(g)}
L+ { (5) a0 > {mon(g)}}

: {% [+ p}} e (’2’) £, + %Z {mon(g)}
I

i (5) a4 X tmontay

geN

1 2 (n 1 /n 1
§ZH,X + I <2> Jrx — ) <2> Zix + a% {mon(g)} .
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CHAPTER EIGHT
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

8.1 Introduction

This chapter provides a summary of the research findings aptehs 3 through 7 and then
draws conclusions from these findings relative to the objestof the study as outlined in
Chapter 1. It finally gives recommendations for some costéxat may attract interest for
research in the future.

8.2 Summary

This thesis was set out to investigate transitivity, privity, ranks, subdegrees and properties
of the suborbital graphs of the actions of the alternatiraugr4,, on X"l and X, respec-
tively the ordered and unordereeclement subsets of = {1,2,---,n}. It also aimed at
expressing the cycle index polynomial of the semidirectpm S,, = A,, x Cs explicitly in
terms of the cycle index polynomial of,, and that ofC5.

In Chapter 3, it was shown that for a fixed integer > 2) the action of4,, on X'l is both
transitive and imprimitive if and only i > r + 2. On the other hand, the rank was found to

be a constant integér!)” Z m whenevemn > 2(r + 1). The subdegrees of the action

were calculated and arranged according to their increawidgr of magnitude. Also, some
necessary and sufficient conditions for a suborbit to bepsgtied or paired with another, as
well as a formula for finding the number self-paired subarhitere determned.

Next, in Chapter 4, it was proved that the actiondgfon X ) for a fixed integer (r > 2) is
transitive ifn > r + 1. Also, it was shown that the action is imprimitive if and oifly: = 2r.
The rank of the action was established to be a constantl if and only if n > 2r. The
subdegrees of the action were also calculated and arrangedreasing order of magnitude.
The suborbits of this action, except for some few specifisg@savere shown to be self-paired.
Then, Chapter 5 focused on the suborbital graphs assodigtiedhe action of4,, on X",
The graphs were constructed and their properties analysdtiis regard, it was found that
the graphs corresponding to the self-paired suborbits hespective elements have all el-
ements from the seV = {1,2,---,r} are disconnected with girth zero. Also, the graphs
corresponding to the paired suborbits whose respectiveegits contain exactly elements
from N are disconnected with girth three. Moreover, the graphesponding to the suborbit
whose every element contains no element fi¥is connected, undirected, has girth three if
and only ifn > 3r and is regular of degre@ — r)(n —r —1)--- (n — 2r + 1).

Further, Chapter 6 was concerned with the construction aatysis of the suborbital graphs
associated with the action of, on X(). It was found that all the suborbital graphs are
undirected. Also, it was found that the action has exactly disconnected graph if and only
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if n = 2r. In addition, it was established that if any two adjacentiees of a graph have

i(i=0,1,---,r— 1) elements in common, the graph is regular of de r% Z::)
Finally, it was proved that if a graph of the action is such #nay two adjacent vertices have
r — 1 elements in common, or the graph corresponds to the actidp oh X ) with n > 3r,
then it has girth three.

Lastly, in Chapter 7, it was established thatdf = S,,, H = A,, K = (5, andQQ the
set of all odd permutations of that are not transpositions ( i.e., the elementS &fre not
conjugate to the transposition generatifig, then the cycle index polynomial of the group

G is given explicitly in terms of the cycle index polynomialsits subgroups and K as
n n
ZG,X:%ZH,X—i_%( )ZK,X—#<2)ZLX+#Z{mon(g)}

2 geN

8.3 Conclusions

It is evident from Section 8.2 that this study has accomplikits objectives, by answering
guestions that have been open for a while. The transitiity grimitivity of the actions of

the alternating groupl,, on X" and X ("), respectively the ordered and unordereglement
subsets ofX = {1,2,---,n}, have been determined. Also, the ranks and subdegrees of
the actions have been calculated, and the pairing of thegmonding suborbits explored.
Additionally, the suborbital graphs associated with thigoas have been constructed and ex-
amination of their theoretic properties done. Besidesxanession of the cycle index formula

of the symmetric group,, explicitly in terms of the cycle indices of the alternatinggp A,,

and the cyclic groug’s has been obtained.

8.4 Recommendations for Further Research

Having achieved the objectives of the current study, theneain other interesting areas re-
lated to the study that have not received any attention. Caeinvestigate the transitivity,
primitivity, ranks, subdegrees and suborbital graphs gf @nthe following actions, for in-
stance.

1. The Cartesian produét, x A, of the symmetric group,, by the alternating groug,,
on X™ x X or Xl x X1,

2. The dihedral grou@,, and the cyclic groug’,, on the diagonals of a regulargon.

3. The group of units oZ,, on the se, \ {0} of non-zero elements &,.
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APPENDICES

Appendix A: Suborbits of A, (n > 8) Acting on X3!
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Ngs = Orba, ,, [4,5,6] = {[4,5,6], [4,5,7],--- , [4,5,n],
[4,6,5],[4,6,7],---,[4,n,n—1],[5,4,6],--- ,[n,n—1,n—2]}
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Appendix B: Suborbits of A,, (n > 10) Acting on X4

Do = Orbgy, ., ,[1,2,3,4

1, | =
Ay = Orbe, ., ,[1,2,4,3] =
Ny = Orbg,, ,, 4[1,3,2,4] =
Az = Orbg, ,, ,[1,3,4,2] =
Ay = Orbg, ,, ,[1,4,2,3] =
Ns = Orbg, ,, ,[1,4,3,2] =
Do = Orbg, ,, ,[2,1,3,4] =
Dq=Orbg, ,, ,[2,1,4,3] =
Ag = Orbg,, ,, ,[2,3,1,4] =
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Agy = Orbgy, ,, 4[1,3,4,5] =
Ay = Orbg,, , [1,3,5,4] =
Aqy = Orbgy, ,, 4[1,4,3,5] =
Ags = Orbgy, ,, 4[1,4,5,3] =
A = Orbg, ,, ,[1,5,3,4] =
Aqr = Orbgy, ,, 41,5, 4,3] =
Agg = Orbgy, ,, 4[3,1,4,5] =
Aqg = Orbg, ,, ,[3,1,5,4] =
Ago = Orbg, ,, ,[3,4,1,5] =
D = Orbay s 003,45, 1] =
Agy = Orbg, ,, ,[3,5,1,4] =
Agz = Orbg, ,, ,[3,5,4,1] =
Agy = Orbgy, ,, [4,1,3,5] =
Ags = Orbay, s 4 [4,1,5,3] =
Nss = Orbay s 0[4,3,1,5] =
Agr = Orbay, s 4 [4,3,5,1] =
Ags = Orbey, , 4, 4,

Agg = Orbg, ,, 4[4,5,3,1]
Doy = Orbay, ., 4[5,1,3,4] =
Agr = Orbgy, ,, 15,1, 4,3] =
Doy = Orbay, ., 4[5,3,1,4] =
Doy = Orbay, ., 4[5,3,4,1] =
Ngs = Orbay, ., 4[5,4,1,3] =
Doy = Orbay s 0[5,4,3,1] =
Dog = Orbay s 0[2,3,4,5
Agr = Orbgy, ., 2,3,5
Ags = Orbey, , 4, 2,4, 3,
Agg = Orbgy, ,, (2,45
Ao = Orbgy, 4, 412, 5,3,
N1 = Orb(;m’3 412,5,4,
Doz = Orbay, 4 413,2,4,5
Doz = Orbay, 5, 413,2,5,4
Avos = Orba, 4 [3,4,2,5
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,[2,3,4,6], -
[ ,3,6 4]’...
,[2,436],---

2

,12,6,3, 4],-~-
,[2,6,4,3], -
,[3,2,4,6], -
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Ao = Orbg, ,, 414:3,2,5
ANTT = Orbg[m3 214,3,5,2
Ni1o = Orb(;m’34

N3 = Orb(;m’34
Ar1q = Orbg, ,, 415, 2, 3,4

[4,3,2,5] =
[4,3,5,2] =
14,5,2,3] =
[4,5,3,2] =
[ | =
A5 = Orbgy , , [5.2,4,3] =
[5,3,2,4] =
[5,3,4,2] =
[ | =
[5,4,3,2] =
[ | =

]

N1 = Orb(;m’3 419:3,2,4
ANTT = Orbg[m34 5,3,4,
Anig = Orbg, ,, 415,4,2,3
A9 = Orbgy, , , 415,43,
A1go = Orbgy, ,, 411,2,5,6

|
|

Aot = Orbay, s 4[2,1,5,6) =
Pz = Orbg,, ., o[1,5,2,6] =
Aag = Orbay, s 4[2,5,1,6] =
Nisy = Orbg,, ., o[1,5,6,2] =
Nz = Orbg,,,, 4[2,5,6,1] =
Aios = Orbay s 4[5,6,1,2] =
Aygr = Orbgy, ,, 415,6,2,1] =
Aios = Orbay s 4 [5,1,6,2] =
Aisg = Orbe, 4 15,2,6,1] =
Nigo = Orbg,,, o15,1,2,6] =
Agz1 = Orbgy, ,, 415,2,1,6] =
Mgy = Orbg,, ., o[1,3,5,6] =

Algg == OrbG[1,2,3,4] [3, 1, 5, 6] ==

{[4,3,2,5],[4,3,2,6],---,[4,3,2,n|}
{[4,3,5,2],[4,3,6,2],---,[4,3,n,2|}
{[4,5,2,3],[4,6,2,3],--- ,[4,n,2,3]}
{[4,5,3,2],[4,6,3,2],---,[4,n,3,2]}
{[5,2,3,4],[6,2,3,4],--- ,[n,2,3,4]}
{[5,2,4,3],[6,2,4,3], -+ ,[n,2,4,3]}
{[5, 324] ,3,2,4], -+, [n,3,2,4]}
{[5,3,4,2],[6,3,4,2],---,[n,3,4,2]}
{[5,4, 2,3], 6,4,2,3],---,[n,4,2,3]}
{5,4,3,2],[6,4,3,2],---,[n,4,3,2]}
{[1,2,5,6],
1,2,5,7),---,[1,2,5,n],[1,2,6,5], -
{[2, 1,5, 6],
2,1,5,7],---,[2,1,5,n],[2,1,6,5],- - -
{[1,5,2,6],
1,5,2,7,---,[1,5,2,n],[1,6,2,5], - - -
{[2,5,1,6],
2,5,1,7],---,[2,5,1,n],[2,6,1,5], -
{[1,5,6,2],
1,5,7,2],---,[1,5,n,2],[1,6,5,2], - - -
{[2,5,6,1],
2,5,7,1],---,[2,5,n,1],[2,6,5,1],- -
{[5,6,1,2],
[5,7,1,2],---,[5,n,1,2],[6,5,1,2], - - -
{[5,6,2,1],
[5,7,2,1],--+,[5,n,2,1],[6,5,2,1], - - -
{[5,1,6,2],
5,1,7,2],---,[5,1,n,2],[6,1,5,2], - - -
{[5,2,6,1],
[5,2,7,1],---,[5,2,n,1],[6,2,5,1], - - -
{5,1,2,6],
[5,1,2,7],---,[5,1,2,n],[6,1,2,5],- - -
{[5,2,1,6],
[5,2,1,7],---,[5,2,1,n],[6,2,1,5], - - -
{[1,3,5,6],
1,3,5,7,---,[1,3,5,n],[1,3,6,5],- -
{[3,1,5,6],
3,1,5,7],---,[3,1,5,n],[3,1,6,5], - - -
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,[1,2,77,,77,—

1}
J12,1,n,n — 1]}
J1,n,2,n— 1]}
J[2,n,1,n—1]}
1,2]}

,[1,’”,”—

J[2,n,n —1,1]}
[n,m—1,1,2]}
[n,mn—1,2,1]}

1,2]}

7[n717n_

1,1]}

,[n,2,n —
,[n,1,2,n—1]}
,[n,2,1,n—1]}
J[1,3,n,n—1]}

,[3,L,n,n—1]}



Aizs = Orbg,, ,, ,[1,5,3,6] = {[1,5,3,6],

[1,5,3,7),---,[1,5,3,n],[1,6,3,5],--- ,[1,n,3,n — 1]}
Aizs = Orbey, 5, ,13,5,1,6] = {[3,5,1,6],

3,5,1,7],---,[3,5,1,n],[3,6,1,5],-- ,[3,n,1,n — 1]}
Auze = Orbgy, ., ,[1,5.6,3] = {[1,5,6,3],

11,5,7,3],---,[1,5,n,3],[1,6,5,3],--- , [1,n,n — 1,3]}
A1z = Orbe,,,,,[3,5,6,1 = {[3,5,6,1],

3,5,7,1],---,[3,5,n,1],[3,6,5,1],- -+, [3,n,n — 1,1]}
Auzs = Orbgy, ,, ,15,6,1,3] = {[5.6,1,3],

5,7,1,3],---,[5,n,1,3],[6,5,1,3],-+- , [n,n — 1,1,3]}
Auze = Orbgy, ., ,15,6,3,1] = {[5.6,3,1],

[5,7,3,1],--+,[5,n,3,1],[6,5,3,1],- -+, [n,n — 1,3, 1]}
Avgo = Orbg,, 5, ,15,1,6,3] = {[5,1,6,3],

5,1,7,3],---,[5,1,n,3],[6,1,5,3],--- , [n,1,n — 1,3]}
A = Orbg,, ., ,15,3,6,1] = {[5.3,6,1],

5,3,7,1],---,[5,3,n,1],[6,3,5,1], -+, [n,3,n — 1,1]}
Avgp = Orbgy, 5, ,15,1,3,6] = {[5,1,3,6],

[5,1,3,7,---,[5,1,3,n],[6,1,3,5],--- ,[n,1,3,n — 1]}
Az = Orbg,, ,, ,15,3,1,6] = {[5,3,1,6],

5,3,1,7,---,[5,3,1,n],[6,3,1,5],- -+, [n,3,1,n — 1]}
Ay = Orbgy, ., ,[1,4,5,6] = {[1,4,5,6],

[1,4,5,7),--- ,[1,4,5,n],[1,4,6,5], -, [1,4,n,n — 1]}
Auss = Orbg, ., ,[4,1,5,6] = {[4,1,5,6],

[4,1,5,7],---,[4,1,5,n],[4,1,6,5],---,[4,1,n,n — 1]}
Avyg = Orbey, 4, 411,5,4,6] = {[1,5,4,6],

1,5,4,7],---,[1,5,4,n],[1,6,4,5],--- ,[1,n,4,n — 1]}
Avar = Orbg, ,, . [4,5,1,6] = {[4,5,1,6],

[4,5,1,7),--,[4,5,1,n],[4,6,1,5],--- ,[4,n,1,n — 1]}
Auss = Orbgy, ,, ,[1,5,6,4] = {[1,5,6,4],

[1,5,7,4],---,[1,5,n,4],[1,6,5,4],--- ,[1,n,n — 1,4]}
A = Orbg,, ,, ,4,5,6,1] = {[4,5,6,1],

[4,5,7,1],--,[4,5,n,1],[4,6,5,1],- -+, [4,n,n — 1,1]}
Aiso = Orbgy, 4, 15,1,4,6] = {[5,1,4,6],

[5,1,4,7],---,[5,1,4,n],[6,1,4,5],--- ,[n,1,4,n — 1]}
Ais1 = Orbgy, ,, . 15,4,1,6] = {[5.4,1,6],

[5,4,1,7],---,[5,4,1,n],[6,4,1,5],--- ,[n,4,1,n — 1]}
Aisy = Orbgy, ., ,[5,1,6,4] = {[5,1,6,4],

5,1,7,4],---,[5,1,n,4],[6,1,5,4],- -+, [n,1,n — 1,4]}
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A153 = O’I"bG[ 5, 4, 6, 1] = {[5, 4, 6, ].],

1,2,3,4] [

[5747 77 1]7 ,[5,4,”, 1]7 [6747571]7“'

A154 = OrbG[1,2,3,4] [5, 6, ]_, 4] = {[5, 6, 1, 4],
[5a771a4]a T 7[5777’71’4]’ [6a571a4]a e
A155 = OrbG[1,2,3,4] [5, 6, 4, 1] = {[5, 6, 4, 1],

[5a774a ]-]a 7[57n74a ]-]a [6a574a ]-]a

Aisg = Orbg,, ,, ,[2.3,5,6] = {[2,3,5,6],

[2737577]7“' ,[2,3,5,77,], [2737675]7“'

A157 = OTbG[1’273’4] [3, 2, 5, 6] = {[3, 2, 5, 6],

[3a275a7]a e 7[372a57n]a [3a276a5]a e
Aiss = Orb, . ,[2,5,3,6] = {[2,5,3,6],

[2757377]7 e ,[2,5,3,77,], [2767375]7 e
Disy = Orba, ,, 4[3,5,2,6) = {[3,5,2,6],

[3a572a7]a e 7[375a27n]a [3a672a5]a e
Alﬁo = OrbG[1,2,3,4] [5, 2, 3, 6] == {[5, 2, 3, 6],

[5a273a7]a e 7[572a37n]a [6a273a5]a e
Digi = Orba, ,, 415,3,2,6) = {[5,3,2,6],

[5737277]7 e ,[5,3,2,77,], [6737275]7 e
A162 = OrbG[l’gygA] [27 57 67 3] = {[27 57 67 3]7

[2a577a 3]5 e 7[275ana 3]5 [2a675a3]a e
A163 = OTbG[1’273’4] [3, 5, 6, 2] = {[3, 5, 6, 2],

[375777 2]7 e ,[3,5,”, 2]7 [3767572]7 e
Digs = Orba, ,, 4[5,2,6,3] = {[5,2,6,3],

[5a277a 3]5 e 7[572ana 3]5 [6a275a3]a T
A165 = OrbG[1,2,3,4] [5, 3, 6, 2] = {[5, 3, 6, 2],

[5a37 75 2]5 e 7[573ana 2]5 [6a375a2]a e
Digs = Orba, ,, 415,6,2,3) = {[5,6,2,3],

[5777273]7 e ,[5,77,,2,3], [6757273]7 e
Aigr = Orb, . ,15,6,3,2] = {[5,6,3,2],

[5a773a2]a e 7[5777’73’2]’ [6a573a2]a T
A168 = OrbG[1,2,3,4] [2, 4, 5, 6] = {[2, 4, 5, 6],

[2747577]7 e ,[2,4,5,77,], [2747675]7 e
Awg = OrbG[1,2,3,4] [4, 2, 5, 6] = {[4, 2, 5, 6],

[4727577]7 e ,[4,2,5,77,], [4727675]7 e
Az = Orbey, 4, 412,5,4,6] = {[2,5,4,6],

[2a 574a 7]5 T, [275a4an]a [2a674a 5]5 e
A171 = OrbG[1,2,3,4] [4, 5, 2, 6] = {[4, 5, 2, 6],

[4757277]7“' ,[4,5,2,77,], [4767275]7“'
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,[n,4,n —1,1]}
[n,m—1,1,4]}
Jn,m—1,4,1]}
,[2,3,n,n—1]}
,[3,2,m,n — 1]}
,[2,m,3,n —1]}
,[3,n,2,n—1]}
,[n,2,3,n—1]}
,[n,3,2,n—1]}
J[2,n,n —1,3]}
,[3,n,m —1,2]}
,[n,2,n —1,3]}
,[n,3,n—1,2]}
,[n,n—1,2,3]}
,[n,m—1,3,2]}
[2,4,n,n — 1]}
,[4,2,n,n—1]}
J[2,n,4,n—1]}

[4,n,2,n—1]}



Airy = Orbay, ., 4[2,5,6,4] = {[2,5,6,4],
2,5,7,4],- -
Airs = Orbay, ., 4[4,5,6,2] = {[4,5,6,2],
[4,5,7,2],- -
Ayrs = Orbey, ., 15,2, 4,6] = {[5,2,4,6],
[5,2,4,7],- -
Airs = Orbay, ., 4[5,4,2,6] = {[5,4,2,6],
5,4,2,7],-
Arre = Orbey, ., 4 [5,2,6,4] = {[5,2,6,4],
[5,2,7,4],- -
Airr = Orbey, ., 4[5,4,6,2] = {[5,4,6,2],
5,4,7,2],-
Airg = Orbay, ., 4[5,6,2,4] = {[5,6,2,4],
[5,7,2,4],- -
Aizg = Orbgy, ., ,15,6,4,2] = {[5,6,4,2],
[5,7,4,2],- -
Ao = Orbay, ., 4 [3,4,5,6] = {[3,4,5,6],
3,4,5,7],- -
Aig1 = Orbey, ,, 4 [4,3,5,6] = {[4,3,5,6],
[4,3,5,7],- -
Nigy = Orbey, , 4 413,5,4,6] = {[3,5,4, 6],
3,5,4,7],- -
Aigs = Orbay, ., 4[4,5,3,6] = {[4,5,3,6],
[4,5,3,7],- -
Aigs = Orbgy, ., ,[3,5,6,4] = {[3,5,6,4],
3,5,7.4],- -
Aigs = Orbay, ., 44,5, 6,3] = {[4,5,6,3],
[4,5,7,3],- -
Aigg = Orbgy, ., ,15,3,4,6] = {[5,3,4,6],
[5,3,4,7],- -
Argr = Orbey, ., ,[5,4,3,6] = {[5,4,3,6],
5,4,3,7],- -
Aigs = Orbay, ., 4[5,3,6,4] = {[5,3,6,4],
5,3,7,4],- -
Aisg = Orbgy, ., ,15,4,6,3] = {[5,4,6,3],
[5,4,7,3],- -
Aigo = Orbay, ., 4[5,6,3,4] = {[5,6,3,4],

[5,7,3,4],- -
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,[2,5,n,4],[2,6,5,4], - --
,[4,5,n,2],[4,6,5,2],- -
. 15,2,4,n],[6,2,4,5], -
,[5,4,2,n],[6,4,2,5], -
15,2,n,4],[6,2,5,4], - --
,[5,4,n,2],[6,4,5,2],- -
,[5,n,2,4],16,5,2,4], - -
,[5,m,4,2],16,5,4,2], - - -
,[3,4,5,n],[3,4,6,5], - - -
,14,3,5,n],[4,3,6,5],- - -
,[3,5,4,n),[3,6,4,5],---
.[4,5,3,n],[4,6,3,5],-
,[3,5,m,4],[3,6,5,4], - - -
,[4,5,n,3],[4,6,5,3],
,[5,3,4,n],6,3,4,5],- -
,[5.4,3,1],[6,4,3,5], -
,[5,3,n,4],16,3,5,4], - --
. 15,4,n,3],[6,4,5,3], - --

. [5,7n,3,4],[6,5,3,4], - - -

J[2,n,m —1,4]}
J[4,n,mn—1,2]}
,[n,2,4,n— 1]}
,[n,4,2,n — 1]}
,[n,2,n —1,4]}
,[n,4,n —1,2]}
,[n,n—1,2,4]}
,[n,n—1,4,2]}
,[3,4,n,n — 1]}
,[4,3,n,n—1]}
,[3,n,4,n— 1]}
,[4,n,3,n—1]}
,[3,n,n —1,4]}
,[4,n,n —1,3]}
,[n,3,4,n—1]}
,[n,4,3,n—1]}
,[n,3,n —1,4]}
,[n,4,n —1,3]}

J[n,n —1,3,4]}



Dot = Orba, ,, 4 [5,6,4,3) = {[5,6,4,3],
[5,7,4,3],---,[5,n,4,3],[6,5,4,3],- -
Doy = Orba,,,, o[1,5,6,7) = {[1,5,6,7],[1,5,6,8], - -, [1,5,6,7],
1,5,7,6],-- ,[1,5,n,n—1],[1,6,5,7], - --
Mgy = Orbg,,,, o[5,1,6,7] = {[5,1,6,7),[5,1,6,8], - -, [5,1,6,7],
[5,1,7,6],---,[5,1,n,n— 1] 6,1,5,7],--,
Nigs = Orba,,,, 0[5,6,1,7] = {[5,6,1,7),[5,6,1,8], -, 5,6, 1,7],
5,7,1,6],---, [5,n,1,n— 1] 6,5,1,7],- -
Nigs = OrbG[l,z,aA] [5,6,7,1] = {[5,6,7,1],[5,6,8,1],--- , [5,6,n, 1],
[5,7,6,1],--- ,[5,n,n—1,1],16,5,7,1],- - -
Aigs = Orby, . 1[2,5,6,7) = {[2,5,6,7),[2,5,6,8], -+, [2,5,6, 7],
2,5,7,6],-- ,[25nn—1] [2,6,5,7],---
Nig7 = OrbGu,z,sA] [5,2,6,7] = {[5,2,6,7],[5,2,6,8], -, [5,2,6,n],
5,2,7,6],- -, [5,2,1,n— 1] 6,2,5,7], - -
Ngs = Orbay, 1 [5,6,2,7) = {[5,6,2,7],[5,6,2,8],- - , [5,6,2, n],
5,7,2,6],- -, [5,1n,2,n—1],[6,5,2,7], - -
Nigy = Orba,,, 0[5,6,7,2] = {[5,6,7,2],[5,6,8,2], -, [5,6,n, 2],
5,7,6,2), -, [5,7,n—1 2] 6,5,7,2],- -
Nogg = OrbG[1,2,3,4] 13,5,6,7] = {[3,5,6,7],[3,5,6,8],---,[3,5,6,n],
3,5,7,6],- -, [3,5,1,n— 1] 3,6,5,7], - -
Aot = Orb, 5. 115,3,6,7) = {[5,3,6,7),5,3,6,8], -, [5,3, 6, ],
[5376] -, [5,3,n,n— 1] 6,3,5,7],---
Py = Orba, ,, 1[5,6,3,7] = {[5,6,3,7),[5,6,3,8], -, [5,6,3,7],
5,7,3, 6] 5,0, 3,n— 1] 6,5,3,7], - -
Agoz = Orbgy, ,, ,15,6,7,3] = {[5,6,7,3],[5,6,8,3],---,[5,6,n, 3],
[5,7,6,3],--- ,[5,n,n—1,3],[6,5,7,3],---
Naos = Orba,,, 0[4,5,6,7) = {[4,5,6,7], 4,5,6,8], - - -, [4,5,6,7],
(4,5,7,6],--- , [4,5,n,n—1], [4,6,5,7], - - -
Pags = Orbe,, o[5,4,6,7) = {[5,4,6,7),[5,4,6,8], - - -, [5,4,6,7],
[5,4,7,6],---,[5,4,n,n—1],[6,4,5,7],- -
P = Orbay, 1 [5,6,4,7] = {[5,6,4,7],[5,6,4,8],- -, [5,6,4, n],
5,7,4,6],- -, [5,n,4,n—1],[6,5,4,7], - - -
Ngor = Orbg, ,, 4 15,6,7,4] = {[5,6,7,4],15,6,8,4],--- ,[5,6,n,4],
[5,7,6,4],- -, [5,n,n—1,4],[6,5,7,4], - - ,
Nopg = Orbg[l&w] [5,6,7,8] = {[5,6,7,8],---,[5,6,7,n],[5,6,8,7], -
[5,7,6,8],---,[5,n,n—1,n—2],--- [n,n—
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,[5,6,”,77/—

,[n,n—1,4,3]}

J1,n,m—1,n-2]}

n,1,m—1,n—2]}

n,n—1,1,n-2]}
Jn,n—1,n—21]}
J[2,n,m—1,n-2]}
[n,2,m—1,n-2]}
Jn,n—1,2,n—2]}
n,n—1,n-2,2|}
,[3,n,m—1,n—2]}
,[n,3,n—1,n-2]}
,[n,n—1,3,n—2]}
Jn,n—1,n—2 3|}
[4,n,m—1,n-2]}
Jn,4,m—1,n-2]}

,n,n—1,4,n-2|}

n,n—1,n—2,4]}
1],
I,n—2,n-3]}



Appendix C: Computer Code

import math
r = mt(mput("value of r:"))
srank =0
1=0
print("Number of suborbits containing exactly x elements from the set N={1.2....r}: ")
while 1 <=1:
comb = math factorial(r)/(math factorial((r-(r-1)))*math factorial(r-1))
perm = math.factorial(r)/math.factorial(r-(r-1))
product = comb * perm
1+=1
srank += product
k = srank
print(int(product))

print("The rank 1s:". int(k))
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