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Abstract— Wood fuel is the main supply of heat energy for  

withering and drying of tea. With the diminishing trends of wood fuel 

caused by reducing land mass due to increased population and 

government ban on logging of wood fuel from the forest, tea factories 

are looking for alternative biomass fuels to supplement the wood fuel. 

However, most biomass are faced with uncertainties such as 

availability and calorific value which is affected by moisture content. 

This work presents a stochastic modelling approach for a reliable 

biomass fuel mix strategy of wood and macadamia nutshells taking 

into account the stochastic nature of the availability and calorific value 

of the biomass. These variables determine the quantity of biomass 

consumed to produce the required 400 kg of steam per hour at pressure 

of 10 bar and temperature of 180C. The variables also determine the 

cost of energy per kg of processed tea which affects the profits and 

competitive advantage of tea factories. The model generated randomly 

40 values of moisture content between 12% and 50% and 40 values of 

wood availability between 60% and 100%. The moisture content and 

wood availability were used to calculate the energy content and mass 

of wood fuel used. The model subsequently  calculated the mass of 

macadamia nutshells required to supply the deficit energy. In addition,  

the model calculated the total cost of the fuel mix. The model was 

iterated 20 times to generate more data sets to check the consistency of 

the model. Sensitivity analysis was also carried out to test the validity 

of the model. This model will be beneficial to the factory management 

and the Kenya Tea Development Agency in developing policy and 

strategies for biomass fuel acquisition. 

 

Keywords— biomass fuel , calorific value, fuel mix, moisture 

content, stochastic model 

I. INTRODUCTION 

EA (Camellia sinensis) is the most widely consumed 

beverage throughout the world and is served in several 

different ways. It’s production in Kenya has played an 

important role in the Kenyan social economic development 

since its introduction in 1903 [14]However according to [1] the 

tea industry is facing several adverse forces that threaten the 

industry among them the high cost of fuel. Tea processing is a 

moisture removal process through withering, rolling and drying 

from a moisture content of 80% to 3% [2],[3]. Over  90% of the 

tea factory energy requirement is used as thermal energy for the 

withering and drying of tea. The thermal energy is provided by 
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wood fuel [4]. Wood fuel calorific value and availability hold a 

significant share of the fuel cost. Therefore, wood fuel quality, 

supply security, sustainability and price are great concern to the 

KTDA management [5]. There is high demand for wood fuel 

by rural community and various industries for thermal energy 

supply which has led to deforestation and competition of the 

scarce resource [6]. Tea industries have also been hit hardest by 

the ban of the procurement of wood fuel from the forest by the 

Kenyan government since 2018. Due to the ban, the wood fuel 

has become scarce and therefore sold at exorbitant prices 

leading to decline in profits [7]. Various studies have exploited 

to provide alternative energy source for tea processing among 

them wind energy, solar energy drying technologies, and wood 

fuel substitution using husks and tea waste [8]- [11]. Briquettes 

from rice husks and tea waste are favorable for the thermal 

energy providence in the tea industry, however further 

evaluation needs to be carried out to determine its optimum 

combustion properties [11]. Other sources of bioenergy to 

provide thermal energy in the tea industry have been attempted 

including the use of macadamia nut shells [12]. There exists 

bioenergy substitution opportunities in the tea processing 

sector. However, the main challenge to the substitution is the 

economic aspect [13].Against this uncertainty background, this 

research aims to stochastically model the effect of calorific 

value and availability in determining an optimum cost effective 

fuel mix strategy of wood and macadamia nut shells.  

 

II. MATERIALS AND METHODS  

A. Problem Formulation 

Consider a biomass boiler required to produce 400 kg of 

saturated steam at a dryness fraction x per hour at a pressure of 

10 bar and temperature of 180c. The steam is required for 

withering and drying of tea in the amounts of 30- 40 % and 60-

70% respectively. The minimum energy required in one hour is 

18,675,240 kJ. There are various types of biomass available 

supplied by different suppliers. Biomass availability and quality 

impact the cost of production of tea and the conversion 

efficiency of the boiler. The quality of biomass is affected by 

the calorific value and moisture content of a particular biomass 
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in wet basis. This research used macadamia nut shells as the 

available biomass source. It is assumed that there is no variation 

of moisture content of  macadamia nutshells from 

measurements taken hence a constant calorific value of 

21,296.56 kJ/kg from a proximate analysis undertaken. Wood 

calorific value is affected by moisture content as shown in 

equation 1[15] 

 

𝑁𝐶𝑉𝑀𝐶 =
19×(1−𝑀𝐶)−2.44×𝑀𝐶

1
                                                     (1) 

 

Where NCV is the net calorific value and MC is moisture 

content. The unit purchasing cost of biomass is c and the 

amount of biomass available is i. ξ  represents the probability 

parameter of the chosen biomass. The cost of the biomass will 

depend on the availability  and quality of biomass. The 

objective function is to maximize energy and minimize the cost 

of purchasing cost as shown in equation 2 and 3 

respectively[16]. 

 

𝑀𝑎𝑥 ∑ 𝑖2
𝑖=1 ∑ 𝑁𝐶𝑉2

𝑁𝐶𝑉=1 ∑ 𝑝𝜉𝑃𝑖,𝜉𝑃𝑁𝐶𝑉,𝜉
𝑁
𝜉           (2) 

 

Where N is the total number of scenarios generated. ξ  is the 

scenario representation for the stochastic variable, pξ is 

probability of the scenario of each stochastic variable, Pi,ξ is the 

stochastic  biomass quantity from source i based on scenario ξ  

PNCV,ξ is the stochastic low heat value of the biomass source with 

relation to moisture content based on scenario ξ. 

 

𝑀𝑖𝑛 ∑ 𝑐𝑖2
𝑐𝑖=1 ∑ 𝑝𝜉𝑃𝑐𝑖,

𝑁
𝜉 𝜉               (3) 

 

Where N is the total number of scenarios generated. ξ  is the 

scenario representation for the stochastic variable, pξ is 

probability of the scenario of each stochastic variable, Pci,ξ is the 

stochastic  biomass cost from source i based on scenario ξ  . 

III. SOLUTION APPROACH 

A. Generating of Stochastic Variables in MATLAB 

Monte Carlo approach was utilized in the generation of the 

stochastic variables of moisture content and availability of 

wood. 40 sets of moisture content between 0.12 and 0.5  and 40 

sets of wood availability between 50 and 100% were generated 

The iterations were done 20 times to generate 20 data set. The 

energy supplied by wood and macadamia was also calculated 

using equation1. Further the quantities of wood and macadamia 

and their costs were calculated. The total energy costs for all the 

data sets was also calculated. A sample generated data sets are 

shown in table 1. 

TABLE 1:SAMPLE SIMULATION DATA 

Moisture 

content of 
wood(%) 

   Calorific 

value of 
wood(kJ/k

g) 

wood 

availabili
ty (%) 

Energy in 

wood (kJ) 

Energy 

macadami
a(kJ) 

  Mass 

of wood 
kg 

  cost of 

wood 
(KSH) 

Mass of 

macadamia(
kg) 

 cost of 

macadamia 
(KSH) 

Total cost 

of energy 
mix (KSH) 

0.1321 16490 0.719 13434000 5240800 814.7 4073.6 246.09 3691.3 7764.9 

0.1331 16471 0.691 12900000 5774800 783.2 3916.1 271.16 4067.4 7983.5 

0.1336 16462 0.883 16486000 2189500 1001.5 5007.3 102.81 1542.2 6549.5 

0.1375 16386 0.898 16763000 1912300 1023 5114.9 89.80 1346.9 6461.8 

0.1569 16018 0.593 11083000 7592700 691.9 3459.3 356.52 5347.8 8807.1 

0.2258 14709 0.840 15684000 2990800 1066.3 5331.7 140.44 2106.5 7438.2 

0.2803 13674 0.560 10449000 8226500 764.1 3820.6 386.28 5794.2 9614.8 

0.3044 13215 0.749 13991000 4684100 1058.7 5293.7 219.95 3299.2 8592.9 

0.3278 12771 0.980 18299000 375900 1432.9 7164.6 17.65 264.8 7429.4 

0.3603 12153 0.670 12516000 6159200 1029.8 5149.1 289.21 4338.2 9487.3 

0.4079 11248 0.946 17657000 1018700 1569.7 7848.7 47.83 717.5 8566.2 

 

B. Design of Experiment 

Response surface Methodology (RSM) was used in this study 

to optimize the variables of moisture content and wood 

availability in order  to generate an optimum energy cost of the 

mix. Design expert  version 13 was used to run randomized 800 

runs of data .The factors and the responses are as shown in table 

2 and 3 
TABLE 2: FACTORS 

Factor Name Units Type Subtype Minimum Maximum Coded Low Coded High Mean Std. Dev. 

A Moisture Content % Numeric Continuous 0.1217 0.4997 -1 ↔ 0.12 +1 ↔ 0.50 0.3085 0.1108 

B wood availability % Numeric Continuous 0.5000 1.0000 -1 ↔ 0.50 +1 ↔ 1.00 0.7478 0.1375 

 

Table 3: Responses 
Response Name Units Observations Minimum Maximum Mean Std. Dev. Ratio 

R1 Cost of energy Mix KSH 800.00 5755.11 11385 8761.57 1265.23 1.98 
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IV.RESULTS 

A. Graphical Summary 

The data was clustered in 28 bins as shown in fig.1. From the 

histogram, majority of the energy mix cost lied between 

8972.19 Kenya shillings and 9173.26 Kenya shilling clustering 

54 out of 800 values of data and equivalent to 6.75%. 

 

 

 
Fig 1. Clustering of the energy mix data

V. MODEL FIT SUMMARY 

The model fit summary is as shown in table 4. From the 

analysis of data, a fifth order polynomial model was suggested.  

This is because of a low p-value of <0.0001 indicating 99.99% 

significance of the model, low f-value of 3.80 indicating a low 

variation between the sample means relative to the variation 

within the samples and low prediction error sum of 

squares(PRESS) value indicating a better model predictive 

ability. The model was also maximizing the Adjusted R² and 

the Predicted R². 
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TABLE 4 FIT SUMMARY FOR  COST OF ENERGY MIX 

Source p-value F-value df Std. Dev.  R² Adjusted R² Predicted R² PRESS 
 

Linear < 0.0001 15280.81 1 201.96  0.9746 0.9745 0.9743 3.287E+07 
 

2FI < 0.0001 1088.02 2 131.36  0.9893 0.9892 0.9891 1.392E+07 
 

Quadratic < 0.0001 7672.30 3 29.17  0.9995 0.9995 0.9995 6.947E+05 
 

Cubic < 0.0001 5012.94 4 5.69  1.0000 1.0000 1.0000 26802.95 
 

Quartic < 0.0001 186.23 5 3.86  1.0000 1.0000 1.0000 12296.06 
 

Fifth < 0.0001 5.73 6 3.80  1.0000 1.0000 1.0000 12001.36 Suggested 

Sixth 0.3548 1.11 7 3.79  1.0000 1.0000 1.0000 12198.59 
 

 

 

The equation for predicting cost of energy mix was computed 

as shown in equation 4 

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑒𝑛𝑒𝑟𝑔𝑦 𝑀𝑖𝑥 = 8636.01 + 1465.70𝐴 −
1505.19𝐵 + 487.79𝐴𝐵 + 399.73𝐴² + 127.58𝐴²𝐵 +

112.29𝐴³ + 39.87𝐴³𝐵 + 35.39𝐴⁴ + 17.77𝐴⁴𝐵 + 7.40𝐴⁵   

                       (4) 

The equation in terms of coded factors can be used to make 

predictions about the response for given levels of each factor. 

The coefficients of the coded factors are tabulated in table 4 

 
TABLE 5: COEFFICIENTS IN TERMS OF CODED FACTORS 

 

Factor Coefficient Estimate  df Standard Error 95% CI Low 95% CI High VIF 

Intercept 8636.01  1 0.2526 8635.51 8636.50 
 

A-Moisture Content 1465.70  1 1.03 1463.69 1467.72 20.26 

B-wood availability -1505.19  1 0.4755 -1506.12 -1504.26 3.82 

AB 487.79  1 1.06 485.72 489.87 6.62 

A² 399.73  1 1.60 396.60 402.87 12.91 

A²B 127.58  1 2.91 121.87 133.28 30.68 

A³ 112.29  1 4.01 104.42 120.17 133.06 

A³B 39.87  1 1.61 36.71 43.02 6.70 

A⁴ 35.39  1 1.81 31.83 38.95 12.94 

A⁴B 17.77  1 3.22 11.45 24.10 21.17 

A⁵ 7.40  1 3.55 0.4321 14.38 64.67 

The coefficient estimate represented the expected change in 

response per unit change in factor value when all remaining 

factors were  held constant. variance inflation factors (VIFs 

)greater than 1 indicated a multi-collinearity, the higher the 

VIF the more severe the correlation of factors.  

VI. ANALYSIS OF VARIANCE 

Table 6  indicate the ANOVA for Fifth model  

 

 

 

TABLE 6 ANOVA OF COST OF ENERGY MIX 

Source Sum of Squares df Mean Square F-value p-value 
 

Model 1.279E+09 10 1.279E+08 8.926E+06 < 0.0001 significant 

A-Moisture Content 2.911E+07 1 2.911E+07 2.032E+06 < 0.0001 
 

B-wood availability 1.436E+08 1 1.436E+08 1.002E+07 < 0.0001 
 

AB 3.041E+06 1 3.041E+06 2.122E+05 < 0.0001 
 

A² 8.965E+05 1 8.965E+05 62565.22 < 0.0001 
 

A²B 27590.42 1 27590.42 1925.54 < 0.0001 
 

A³ 11233.65 1 11233.65 784.00 < 0.0001 
 

A³B 8810.01 1 8810.01 614.85 < 0.0001 
 

A⁴ 5458.25 1 5458.25 380.93 < 0.0001 
 

A⁴B 436.02 1 436.02 30.43 < 0.0001 
 

A⁵ 62.27 1 62.27 4.35 0.0374 
 

Residual 11305.34 789 14.33 
   

Cor Total 1.279E+09 799 
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From the analysis of variance of the  Model, F-value of 

8,926,328.68 implied the model was significant. There was 

only a 0.01% chance that an F-value this large could occur due 

to noise. P-values less than 0.0500 indicated that model terms 

were significant too. In this case A, B, AB, A², A²B, A³, A³B, 

A⁴, A⁴B, A⁵ were the significant model terms.  

VII. ENERGY COST OPTIMIZATION 

The objective function was to minimize the cost of energy 

and  moisture content within the range wood availability. 13 

solutions were found as shown in table 7 

 

 
TABLE 7. OPTIMIZATION SOLUTIONS 

Number Moisture Content wood availability Cost of energy Mix Desirability 
 

1 0.122 0.983 5725.523 1.000 Selected 

2 0.122 0.986 5701.209 1.000 
 

3 0.122 0.997 5620.888 1.000 
 

4 0.122 0.980 5751.489 1.000 
 

5 0.122 0.994 5642.335 1.000 
 

6 0.122 1.000 5600.089 1.000 
 

7 0.122 0.989 5683.667 1.000 
 

8 0.122 0.991 5666.266 1.000 
 

9 0.122 0.982 5736.404 1.000 
 

10 0.124 1.000 5613.759 0.997 
 

11 0.122 0.964 5867.713 0.990 
 

12 0.122 0.950 5972.899 0.980 
 

13 0.122 0.906 6304.976 0.950 
 

 

 

From the optimization results solution 1 is selected which is 

of moisture content of 0.122%, wood availability of 98.3%  a 

cost of kshs. 5,725.523 and a desirebility of 1.  Figure 2 also 

indicate the graphical solution of  desirability of  and a 

prediction of the model of the selected model. 

For optimal energy mix the wood availability should be 

greater than 80% and moisture content below 18% 

 

 
Fig 2 Desirability and prediction of the model 

 

VIII. CONCLUSION 

This study presents the stochastic modelling and 

optimization   of the energy mix cost of wood and macadamia 

nutshells to identify the optimal moisture content and wood 

availability. The objective  was to minimize the expected 

energy mix cost while meeting the thermal energy 

requirements. The model considered  the effect of moisture 

content on the calorific   value of wood . It also considered the 

effect of wood availability  on the  thermal energy requirement 

in order to substitute the deficit energy with macadamia nut 

shells. The model used a stochastic approach in order to 

generate  randomly 800 samples of data which were used in the 

analysis. A fifth order polynomial  model was  suggested for the 
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prediction of energy mix cost . The predicted optimum cost was 

ksh. 5725.523 at a moisture content of 0.122% and  wood 

availability of 98.3%.  
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