
Proceedings of the 2022 Sustainable Research and Innovation Conference

JKUAT Main Campus, Kenya

5 - 6 October, 2022

Abstract—— Microcontroller devices are incorporated in the

flight computer that convey data to the ground station in the design and

implementation of model rocketry. In the field of rocketry, data

transfer speed and precision are critical. Due to its small code

footprints and low network bandwidth requirements, the Message

Queuing Telemetry Transport (MQTT) messaging protocol tackles

both of these issues. MQTT uses Transmission Control Protocol (TCP)

which ensures packet delivery, as opposed to User Datagram Protocol

(UDP), which is faster but does not guarantee packet delivery or even

the sequence in which packets are delivered. MQTT also uses a single

connection to send messages, making it faster than Hypertext Transfer

Protocol (HTTP), which requires a three-way TCP handshake every

time a message is transmitted. This paper describes how to incorporate

MQTT messaging protocol to the flight software to facilitate

communication between the onboard computer and the ground station.

Publish and subscribe architecture in MQTT was utilized where the

onboard computer published sensor values to particular topics and the

ground station subscribed to these topics so as to receive the data. This

communication was facilitated by MQTT broker that acted as an

intermediary between the two clients. From field tests carried out, data

transmission was found to be fast and reliable as all the data packets

transmitted were received from a distance of 300 m, the onboard

computer and the ground station were able to interact through Wi-Fi,

and the sensor data from the onboard computer was plotted and

displayed on the ground station dashboard.

Keywords— HTTP, Microcontrollers, model rocketry, MQTT,

MQTT broker, TCP, UDP.

I. INTRODUCTION

Developing model rockets is a difficult endeavor, owing to

the large number of crucial parameters that occur during high-

altitude flights [1]. During rocket flight, there is need to

accurately collect and transmit flight data for active monitoring

of the rocket flight variables. The embedded avionics play a key

role in this regard: collecting, transmitting, and storing data [2].

 The real-time monitoring of rocket flight parameters is made

possible through data transmission in the field of rocketry. The

transfer of commands from the ground station to the rocket,

such as remote ignition and remote ejection, is made easier by

communication between the rocket and the ground station.

Communication needs to be efficient and reliable in order to

Muchiri I. Ngethe, Department of Telecommunication and Information
Engineering, JKUAT (+254706230020; e-mail: ianmuchiri8@gmail.com).

Yator C. Kiplimo, Department of Telecommunication and Information

Engineering, JKUAT (email: christianyator7@gmail.com)
Shohei Aoki, Department of Mechatronics Engineering, JKUAT (email:

aoki@jkuat.ac.ke)

facilitate all these operations. This will ensure that the system

responds in real-time and that the various metrics, including

altitude, velocity, acceleration, and Global Positioning System

(GPS) coordinates for recovery, are monitored in real-time.

 Wireless communication is used to establish communication

between the rocket and the base station. Long-Range (LoRa),

Wi-Fi, and RF communication are just a few examples of the

wireless communication technologies that could be used.

Different protocols may be used in Wi-Fi communication to

simplify communication between two devices. HyperText

Transfer Protocol (HTTP), and MQTT are a few of the different

protocols that are used that utilize TCP for communication.

This research focuses on the usage of the MQTT protocol for

data transfer between the onboard flight computer and the

ground station.

A. HTTP PROTOCOL

 HTTP is an application layer protocol that uses a

request/response model. A client sends a request to the server

in the form of a request method containing a request header and

a message body. The server responds with a status code success

followed by a message containing server information [3]. By

default, HTTP uses TCP as its transport protocol, while

TLS/SSL is used for security [4]. This makes the connection

between the client and the server to be connection-oriented.

Analogous to publish/subscribe models, HTTP employs

Uniform Resource Identifiers (URI) instead of topics. The URI

is used by the client and server to receive and send data

respectively. Further, HTTP requires additional support for

Quality of Service (QoS) assurance [5].

B. MQTT PROTOCOL

 Client Servers broadcast or subscribe to the messaging

transport protocol known as Message Queue Telemetry

Transport (MQTT). It is transparent, compact, and made to be

easy to use. TCP/IP or any network protocol that permits bi-

directional, lossless connections in a systematic way is used to

build the protocol. Among the features of MQTT are the

publish/subscribe message pattern, which permits one-to-many

message dissemination, and a messaging transport that is

unrestricted by the payload. Three levels of message delivery

quality are included in this protocol, including "At most once,"

Implementation of Message Queuing

Telemetry Transport Protocol in Model Rocket

Telemetry Muchiri I. Ngethe, Yator C. Kiplimo and Shohei Aoki

29

mailto:ianmuchiri8@gmail.com
mailto:christianyator7@gmail.com
mailto:aoki@jkuat.ac.ke

Proceedings of the 2022 Sustainable Research and Innovation Conference

JKUAT Main Campus, Kenya

5 - 6 October, 2022

where messages are sent using the best efforts of the operating

environment. This level may be employed if there is message

loss. Second, "At least once," when message delivery is assured

but message duplication is likely. The final selection, "Precisely

once," ensures that messages will be delivered precisely once.

Although it would significantly reduce network traffic, this

level might be used [6]. In addition to eliminating transport

overhead and protocol exchange to save network traffic, the

MQTT protocol has a noteworthy feature that notifies interested

parties when an unexpected disconnection occurs [7].

 Many microcontrollers available today support the TCP/IP

stack. As a result, integrating MQTT into devices or projects

that employ the aforementioned microcontrollers is made

simple. The two main elements required for MQTT

implementation are MQTT client installed on the

microcontroller or device and MQTT broker server to manage

publish and subscribe data. The main advantage of the

publish/subscribe system is that a broker stands between the

publisher and the subscriber, preventing direct communication

between the two devices [8]. The MQTT architecture is as

shown in Fig.

Fig. 1 MQTT Architecture

II. SYSTEM IMPLEMENTATION

 The following parts were needed to implement the MQTT

protocol in the telemetry system: a Raspberry Pi 4, a

NodeMCU-ESP32S, a BMP180, an MPU6050, a Neo 6M GPS

module, a PowerBeam M2-400 antenna, and a Router.

 The system communicated over Wi-Fi thanks to the

NodeMCU-ESP32s, a low-cost, low-power, dual core system

on chip (SoC) microcontroller. During flight, the rocket's

altitude was measured using the BMP180 barometric pressure

sensor to calculate how high the rocket would soar. The

MPU6050 is a 6-axis motion tracking sensor consisting of a

three-axis accelerometer and a three-axis gyroscope [9]. It was

used to calculate displacement, acceleration, direction, and

speed. The rocket's location was determined via the low-cost,

high-efficiency NEO-6M global positioning system (GPS)

module [10]. At the ground station, a 2.4 GHz directional

parabolic antenna called the PowerBeam served as a signal

receiver. Our ability to broadcast over Wi-Fi across great

distances was made possible by its high gain of 18 dBi and

receiver sensitivity of -94 dBm. A router was employed to

establish an access point at the ground station by utilizing the

PowerBeam antenna's signal as the Wide Area network (WAN)

input. The ground station server was a low-cost quad core 32-

bit Wi-Fi and Bluetooth single-board computer called the

Raspberry Pi 4.

 The onboard microcontroller served as the publisher,

publishing flight data to the various topics for transmission. The

microcontroller also acted as a subscriber to ejection topics

which enabled a user at the ground station to send commands

to the onboard computer such as remote ejection. The

Raspberry Pi 4 was an MQTT broker and was used to facilitate

the exchange of data between the publisher and the subscriber.

The subscriber to the topics published by the onboard flight

computer was the node.js server which subscribed to the topics

and used the data to visualize graphs on a react web application.

 The sensors were connected to the nodeMCU-ESP32s and

transmitted data to it via serial communication. The data was

processed in the microcontroller to filter out noise before being

transmitted. The microcontroller created an access point to be

used for Wi-Fi communication with the ground station. The

data that had been processed was published to the various topics

before being transmitted wirelessly to the ground station where

the broker was located. The signal was received at the ground

station by the PowerBeam antenna which connected to the

onboard access point. The PowerBeam antenna sent the

received signal to the router which then created an access point

at the ground station. The Raspberry Pi 4 was connected to the

ground station access point hence it was linked to the onboard

computer. Thus, the published messages were received by the

broker installed in the Raspberry Pi. In our case we used an

MQTT broker known as Mosquitto broker. The Node.js server

was also installed in the Raspberry Pi and it subscribed to the

topics published to the Mosquitto broker by the onboard

computer. The Node.js then sent the data to the react web

application which visualized the data using graphs and texts.

The complete system architecture is as depicted in Fig.

Fig. 2 Telemetry system Architecture

III. RESULTS AND DISCUSSION

 A ground test was carried out, and data was successfully

transmitted over a distance of about 300 meters as shown in Fig.

The onboard station was carried across a field while still

remaining within line of sight of the ground station antenna.

30

Proceedings of the 2022 Sustainable Research and Innovation Conference

JKUAT Main Campus, Kenya

5 - 6 October, 2022

Fig. 3 Transmission Distance

 The onboard station collected the data from the various

sensors and published the data to the topic esp32. The data

transmitted from the onboard station was successfully received

by the ground station Mosquitto MQTT broker. The Node.js

which was the web application’s server, subscribed to the topic

and received the data from the broker. The system interaction

was as shown in fig. 4.

Fig. 4 MQTT Architecture

 The server then transferred the data to the client side of the

web application which was a react based web application for

visualization.

Fig. 5 Data Visualization

 Based on the data received at the base station, it was

observed that the system’s altitude was not increasing

significantly since the test movements were performed

horizontally on the ground. The minimal fluctuations observed

on the altitude were due to sensor noise. Furthermore, from the

data collected, the team was able to observe the real-time

location of the system as it moved due to the longitude and

latitude positions obtained from the GPS sensor.

TABLE I

COMPARISON BETWEEN MQTT AND HTTP

Test number Quantity of data

packets

transferred via

MQTT

Quantity of data

packets

transferred via

HTTP

1 1865 32

2 1900 30

3 2015 29

4 1810 30

5 2050 29

6 1950 28

7 1825 29

8 1955 30

9 2005 29

10 1995 28

Mean 1937 29.4

Furthermore, this study carried out a comparison test

between HTTP and MQTT protocol to determine which

protocol had a better performance. The study involved

determining the number of data packets transmitted from the

onboard station to the ground station over a period of 1 minute.

The table above shows the results of the test carried out. From

the test results, it was clear that MQTT was faster in data

transmission as compared to HTTP. The data in the table

depicts that MQTT data transmission in this case was

approximately 65 times faster as compared to HTTP

 From the results of the test, the data transmission system

utilizing MQTT protocol proved to be fast and efficient in data

transmission. This is because when utilizing MQTT protocol,

we can be able to reuse a single connection to send multiple

messages over the channel.

IV. CONCLUSION

In this study, the MQTT protocol was successfully integrated

into a model rocket's telemetry system. The test results depict

that the MQTT protocol is both fast and reliable in data packet

delivery due to the quality of service (QOS) it offers. Thus,

MQTT protocol can be used as one of the methods of real-time

data transmission in a model rocket telemetry system.

ACKNOWLEDGEMENT

The authors thank Jomo Kenyatta University of Agriculture and

Technology for the use of the Integrated Prototyping and

Innovation Center. The authors also acknowledge the financial

support of AFRICA-ai-JAPAN project (JICA) and the technical

support of Mr. Ben Maniafu.

REFERENCES

[1] G. de A. Souza, L. Barbosa, G. Ramalho, and A. Zuquete

Guarato, “Low Cost Real Time Rocket Telemetry System

Design,” no. January, 2019, doi:

10.26678/abcm.cobem2019.cob2019-1585.

31

Proceedings of the 2022 Sustainable Research and Innovation Conference

JKUAT Main Campus, Kenya

5 - 6 October, 2022

[2] “Introduction to Avionics Systems - R.P.G. Collinson -

Google Books.”

https://books.google.co.ke/books?hl=en&lr=&id=NlQF

CAAAQBAJ&oi=fnd&pg=PR7&dq=.+Introduction+to+

Avionics&ots=lCc51M8akU&sig=yOrCEJbkkKsFPnjE

pqMFyC31y_4&redir_esc=y#v=onepage&q=.%20Introd

uction%20to%20Avionics&f=false (accessed May 29,

2022).

[3] R. Fielding et al., “Hypertext Transfer Protocol –

HTTP/1.1,” Jul. 1999, doi: 10.17487/RFC2616.

[4] I. Grigorik, “Making the web faster with HTTP 2.0,”

Commun ACM, vol. 56, no. 12, pp. 42–49, Jul. 2013, doi:

10.1145/2534706.2534721.

[5] N. Naik, “Choice of effective messaging protocols for IoT

systems: MQTT, CoAP, AMQP and HTTP,” 2017 IEEE

International Symposium on Systems Engineering, ISSE

2017 - Proceedings, Jul. 2017, doi:

10.1109/SYSENG.2017.8088251.

[6] “MQTT - The Standard for IoT Messaging.”

https://mqtt.org/ (accessed Jun. 30, 2022).

[7] S. Kraijak and P. Tuwanut, “A survey on internet of things

architecture, protocols, possible applications, security,

privacy, real-world implementation and future trends,”

International Conference on Communication Technology

Proceedings, ICCT, vol. 2016-February, pp. 26–31, Feb.

2016, doi: 10.1109/ICCT.2015.7399787.

[8] G. Sasikala et al., “IoT real time data acquisition using

MQTT protocol,” Journal of Physics: Conference Series,

vol. 853, no. 1, p. 012003, May 2017, doi: 10.1088/1742-

6596/853/1/012003.

[9] “What Is MPU6050? - Arduino Project Hub.”

https://create.arduino.cc/projecthub/CiferTech/what-is-

mpu6050-b3b178 (accessed Jul. 01, 2022).

[10] “NEO-6M GPS Module — An Introduction.”

https://www.electroschematics.com/neo-6m-gps-

module/ (accessed Jul. 01, 2022).

32

