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ABSTRACT

Incorporating covariates into the future lifetime distribution is crucial to the

survival analysis. In this thesis a novel version of the exponential-Weibull distri-

bution known as the extended exponential-Weibull (ExEW) distribution is devel-

oped and examined using the Lehmann alternative II (LAII) technique. The basic

mathematical properties of the new ExEW distribution are derived. The max-

imum likelihood estimation (MLE) technique is used to estimate the unknown

parameters of the ExEW distribution. The estimators' performance is further

assessed using Monte Carlo simulations. Two real-world data sets are utilized

to show the applicability of the new distribution. Moreover, a fully parametric

accelerated failure time (AFT) model with a �exible, novel modi�ed exponential

Weibull baseline distribution called the extended exponential Weibull accelerated

failure time (ExEW-AFT) model is developed. The model is presented using the

multi-parameter survival regression model, where more than one distributional

parameter is linked to the covariates. The model formulation, probabilistic func-

tions, and some of its sub-models are derived. The parameters of the developed

model are estimated using the maximum likelihood approach. An extensive simu-

lation study is used to assess the estimates' performance using di�erent scenarios

based on the baseline hazard shape. The developed model is applied to a real-life

right-censored COVID-19 data set from Sudan to illustrate the practical appli-

cability of the developed ExEW-AFT model. A mixture cure model with ExEW

distribution is presented to include the fraction of unsusceptible (cured) individ-

uals in the study. The developed models are compared with existing models and

are found to perform better.
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CHAPTER 1

INTRODUCTION

1.1 Background

Analysis of lifetime data has seen applications in various �elds including health,

business, engineering, �nance, etc (Ahmad et al., 2020; Nasiru et al., 2019b). The

main objective of such analysis is usually to model the distribution time to an

event and/or the determinants of time to event of interest.

For modeling lifetime data, a variety of probability models are available, includ-

ing log-logistic, beta, gamma, Weibull, exponential, and others. Furthermore, in

many cases, these traditional models are inappropriate for modeling lifetime data

necessitating the use of updated versions of current distributions (Nasiru et al.,

2019a). These models are inappropriate for survival data with a non-monotone

failure rate function. New models bring up new possibilities for theoretical and

practical researchers to solve real-world issues since they suit asymmetric and

complicated random occurrences so well.

The Weibull distribution has been used to cope with several challenges in a wide

range of survival data and to model lifespan data. The Weibull distribution, with

its negatively and positively skewed density forms, is the primary option when

modeling monotone hazard rates (He et al., 2020).

The parameters of this distribution's tremendous �exibility allow for a range of

techniques, all of which have the same key property: the hazard rate is a monotone
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function that can be decreasing, constant, or increasing. The Weibull distribution

is inappropriate for survival data with a non-monotone failure rate function. As a

result, scientists explore extensions and modi�cations of the Weibull distribution.

On other hand, over the past few decades, the semi-parametric Cox model has

been extensively adopted in the analysis of survival data. Modi�cations to remove

the assumption of �proportional hazards (PH)� are discussed in Cox's original

paper (Cox, 1972). Many e�orts have been made to increase the adaptability

of hazard-based regression models using �exible functions for both the baseline

hazard and the inclusion of time-dependent parameters, primarily using modi�ed

probability distributions (Ashraf-Ul-Alam and Khan, 2021; Khan and Khosa,

2016; Rubio et al., 2019).

The two most popular techniques for parametric hazard-based regression models

of survival data are PH models and AFT models. Speci�cally, under the paramet-

ric PH assumption, only a few probability models are closed, and none of them

are �exible enough to explain a large range of survival data (Lawless, 2011).

Other alternative PH models have been proposed, and they can directly account

for the time-dependent e�ects of covariates. The AFT model is a notable example

of these earliest alternatives to the PH (Aida et al., 2022). According to the AFT

model, the covariates have a direct e�ect on the time to event, as opposed to the

PH model, where the covariates a�ect the hazard rate function (HRF) only.

Some medical studies have shown that AFT models are frequently used to analyze

survival data (Collett, 2015). In comparison to the interpretation of a hazard rate,

which denotes a relative rise or decrease in the event rate, the interpretation of

an acceleration factor can be thought of as being more obvious because it directly

a�ects the survival time, either by increasing it or decreasing it. Additionally,

parametric survival models are essential for assessing survival data (Sinha, 2019).

These models can be applied to various applications. For instance, (i) when

the baseline hazard is theoretically expected in a healthcare data set, a survival

analysis can be applied to produce a relatively better estimation, (ii) the survival

models are applicable to the spatial models that predict disease prevalence, (iii)
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the models can provide better estimates for mixed e�ects in the clustered survival

data-sets, and (vi) the survival rates can be estimated using the random e�ects-

frailty models, which are part of the parametric survival models.

Furthermore, to formulate the parametric AFT model framework, the Weibull,

log-logistic, and log-normal distributions are commonly utilized as baseline HRFs (Law-

less, 2011).

These distributions cannot accommodate both monotone and non-monotone HRFs.

However, it is important to develop a baseline distribution that can handle dif-

ferent HRFs while remaining closed under the AFT model framework.

However, a common scenario in the study of survival data, particularly in can-

cer research, is when a portion of the population is not exposed to the problem

event (Liu and Braun, 2009). Researchers often choose cure fraction models over

parametric models in this scenario if the survival time distribution for vulnerable

individuals is known (Omer et al., 2021). The study of survival data, including

long-term survivors, makes use of cure fraction models, which are regarded as an

enlarged form of conventional survival models. Since the 1940s, these models have

been a subject of study (Omer et al., 2020). Moreover, a Kaplan-Meier (KM)

curve, which exhibits a tall and constant level with dense censoring at the right

extreme, frequently suggests the presence of cured subjects in a sample of data

(Corbiere et al., 2009). The mixture and non-mixture cure are the two primary

groups of cure fraction models. According to the underlying assumption of the

mixed cure model, the population is divided into two groups: susceptible (cured)

and unsusceptible (uncured). Boag (1949) �rst proposed the mixed cure model,

then Berkson and Gage (1952) further improved it after three years. The mixed

cure concept has been thoroughly investigated by numerous researchers succh as

(Chen and Du, 2018; Tournoud and Ecochard, 2007,0; Tsodikov et al., 1996; Yin

and Ibrahim, 2005).

This study developed a new version of the exponential-Weibull distribution known

as the ExEW distribution by adding an additional shape parameter to increase

the versatility and goodness-of-�t of modi�ed distributions when analyzing life-
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time data sets. Furthermore, with the covariate integrated into the ExEW distri-

bution, a fully parametric accelerated failure time (AFT) model with a �exible,

novel modi�ed exponential Weibull baseline distribution known as the ExEW-

AFT model is proposed.

1.2 Basic Concepts of Survival Analysis

Assume that T is a non-negative random variable that represents a individual's

lifetime within a population. Assume that the distribution function of T is given

by F (t) = Pr (T ≤ t), t ∈ R. Assume that F (.) is absolutely continuous with

respect to the Lebesgue measure on the real line R and that f(.) is the probability

density function of T . We now discuss some fundamental quantities associated

to the lifetime variate T distribution.

1.2.1 Survival Function

The survival function (SF), is the fundamental quantity used to analyze the life-

time data. It is de�ned by

S(t) = Pr (T > t) =

∫ ∞

t

f(u)du. (1.2.1)

The probability that an individual will survive through time t is estimated using

the function SF, where S(t) = 1− F (T ). Therefore take note of that the SF is a

monotone decreasing function with

1. S(t) = 1 for t = 0.

2. S(t) = 0 for t = ∞

The SF is known as the reliability function when used in reliability analysis.
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1.2.2 Hazard Rate Function

The HRF is one of the fundamental ideas linked to the lifetime distribution and

is de�ned by

h(t) = lim
△t→0

Pr (t ≤ T < t+△t | T ⩾ t)

△t
. (1.2.2)

Given that the individual survives for at least t units of time, the HRF describes

the instantaneous rate of failure or death of an individual at time t. Therefore,

given survival for at least t units of time, h(t) △ t is the approximation of the

probability of failure in
[
t, t + △t

)
. Sometimes the HRF is referred to as the

force of mortality. Furthermore, it can be increasing, decreasing, constant, or a

combination of the two types of non-monotone function (bathtub or unimodal).

Noting that the HRF is a non-negative function and connected to the SF and

probability density function by identity.

h(t) = −d log (S(t))
dt

=
f(t)

S(t)
(1.2.3)

The cumulative hazard rate function (CHRF) is described as

H(t) =

∫ t

0

h(u)du. (1.2.4)

It is well known that HRF, or alternatively CHRF, establishes the distribution

in a unique manner based on the identi�cation.

S(t) = exp
(
−H(t)

)
= exp

(
−
∫ t

0

h(u)du

)
. (1.2.5)

1.3 Features of Survival Data

We must �rst take into account the reasons why standard statistical techniques

employed in data analysis are inapplicable to survival data. One explanation

is that survival data are typically not distributed symmetrically (Collett, 2015;

Klein and Moeschberger, 2003; Lemeshow et al., 2011; Leung et al., 1997; Lu,
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2019). Time to-event-data typically consists of three primary features:

1.3.1 Skewness

First, time-to-event data are typically not symmetrically distributed, which is

a feature of survival data. The survival times of a group of similar individuals

will often generate a histogram that is favorably skewed, with a longer "tail" to

the right of the interval that contains the most observations. As a result, it is

unrealistic to assume that data of this type have a normal distribution. By �rst

altering the data to get a more symmetric distribution, this problem could be

solved. However, using a di�erent distributional model for the initial data is a

more e�ective strategy (Collett, 2015).

One crucial aspect of time-to-event data is its skewness. Due to the failure of the

normal linear model theory, models like the Weibull, log-logistic, and log-normal

as well as their extensions are widely utilized.

1.3.2 Censoring

The primary feature of survival data that makes conventional approaches inad-

equate is how frequently survival times are censored. When the end-point of

interest has not been observed for a particular individual, the survival time of

that individual is said to have been censored. This might be the case since the

analysis of study data will take place while some study individuals are still alive.

As an alternative, an individual's survival status at the time of the analysis might

not be known since that individual was lost to follow-up.

There are numerous types of censorship that naturally take place in observational

schemes. Right, left, interval, and other well-known censoring techniques are

examples of censoring schemes. We will now provide a quick overview of di�erent

censorship schemes.
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1.3.2.1 Right censoring

Times to event for right censored (CR) observations are known to be greater than

a speci�c time. This means that if T stands for the observed relative lifetimes

rather than their lifetimes then T = min(T ∗, CR) , where T
∗ is the time-to-event

random variable. It is determined by an indicator variable whether a survival

time is censored, that is

δ =

 1, if T ∗ ≤ CR

0, otherwise.

The expression of observations will be in terms of pairs (T, δ).

Depending on the features of the study, the CR can be either �xed or random.

The following right censoring types are produced by this situation:

(i) Type I censoringType I censoringType I censoring: Here, the experiment is stopped at a predetermined time,

at which point any subjects remaining are considered right-censored.

(ii) Type II censoringType II censoringType II censoring: It is a special instance of Type I censoring in which the

failure of a certain number of individuals determine the pre�xed time for

right censoring.

(iii) Random right censoringRandom right censoringRandom right censoring: This censoring issue arises when some research

participants have a competing event that results in their exclusion from

the study. Event and �ltering times might not be independent in this

case. The inference must be handled di�erently depending on whether

the independence requirement is met. Accidental deaths and population

movement are common instances of separate random censoring times of the

primary event time of interest.

1.3.2.2 Left censoring

Time-to-event for left censored (CL) observations are known to be lower than

a speci�c value. Observed and true survival times (T and T ∗, respectively) are

related as T = max(T ∗, CL) with left censored denoting censoring time. The
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pairs of observations are (T, δ), and the current δ is a non-censoring indication

with a value of 1 when the event is observed and 0 when it is not.

1.3.2.3 Interval censoring

The interval [CL;CR] contains the time to event, which can be interpreted as a

generalization of left and right censoring.

1.3.3 Truncation

Truncation happens when only individuals whose event time falls inside a speci�c

observational window are observed (TL;TR). The investigator is not aware of any

information regarding an individual whose event time falls outside of this interval

because they were not observed. In contrast, when someone is being suppressed,

at least some information about that individual is available. The inference for

truncated data is limited to conditional estimate because individual event times

are a part of the observational window (Klein and Moeschberger, 2003). This is

a challenge for frequentest inference, but Bayesian reasoning o�ers a clear and

straightforward solution (Armero and Bayarri, 1994).

The truncation classes are listed below

(i) Left truncationLeft truncationLeft truncation: When people who have already reached the milestone at

the time of research recruitment are excluded from the study, this is known

as left truncation.

(ii) Right truncationRight truncationRight truncation: When data are only recorded for individuals whose sur-

vival time exceeds a random time, right truncation occurs.

(iii) Double truncationDouble truncationDouble truncation: Double truncation refers to the occurrence of both left

and right truncation.
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1.3.4 Non-parametric Models

Non-parametric methods of estimating survivor functions and/or cumu-

lative hazard functions are often used in exploratory analysis of time-to-

event data. Non-parametric approaches are e�ective for gaining insights

into the main properties of the T distribution and are frequently used to

evaluate the adequacy of a parametric model. The KM estimator of sur-

vivor functions (Kaplan and Meier, 1958) and the Nelson-Aalen estimator

of cumulative hazard functions (Nelson, 1972)are the most extensively used

non-parametric techniques in survival analysis.

1.3.4.1 Kaplan-Meier Estimator of the Survivor Function

Let t1 < · · · < tk be the ordered observed lifetimes from a sample of size n.

In addition, Let rj be the number of individuals who are at risk of failing

at time t = tj (also known as the risk set), dj be the number of individuals

who encounter the event at time t = tj, and cj be the number of individuals

who have censoring times in [tj; tj+1]), where j = 0, 1, . . . , k, t0 = 0 and

tk+1 = ∞. In this case, rj = dj + cj + dj+1 + cj+1 + · · · + dk + ck. For

more theoretical details see (Lawless, 2011). The KM estimator of the SF

is provided by

Ŝ(t) =
∏
j|tj<t

(
1− dj

rj

)
, (1.3.1)

which indicates that the conditional probability of an event occurring at

each observed time tj is equal to the observed conditional relative frequency

of the event occurring at tj (i.e., | dj/rj). It is worth noting that if a

censoring time and a lifetime are both recorded as equal, the common rule

is to consider the censoring time to be in�nitesimally bigger in the de�nition

of Ŝ(t). Lawless (2011) discusses the KM approach for calculating pointwise

con�dence intervals for S(t).
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1.3.4.2 Nelson-Aalen Estimator of the Cumulative Hazard Func-

tion

The CHRF Nelson-Aalen estimator is given by

ˆH(t) =
∑
j|tj<t

dj
rj
. (1.3.2)

A cumulative hazard plot is a plot of H vs t that is commonly used as a

diagnostic tool to examine the assumptions of a parametric model. for more

information on calculating H(t) and accumulated hazard plots, see (Nelson,

1972).

1.3.5 Parametric Failure Time model

Certain probability distributions are widely employed to model time-to-event data

(Weibull, exponential, log-logistic, and exponentiated Weibull). These are popu-

lar in survival analysis due to (a) model parsimony, (b) simplicity of the method,

(c) ability to adequately model data found in survival analysis, and (d) easily

accessible statistical software programs.

In this section, some continuous probability distributions that can be used to

study survival data are reviewed. log-logistic, exponential, and Weibull contin-

uous probability distributions are the most common way to represent survival

data. These are more likely in survival analysis because of (a) the model's sim-

plicity, (b) the approach's �exibility, (c) the ability to satisfactorily represent data

that already exist and are typically encountered in survival analysis, and (d) the

availability of widely used statistical software tools (Mahmood et al., 2022). As

a starting point for our extended distribution and a fundamental survival data

generator for several simulation investigations in the thesis, respectively, the ex-

ponential Weibull distribution and the exponentiated Weibull distribution are

examined, along with other Weibull extensions.
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1.3.5.1 Exponential Distribution

A continuous probability distribution known as an exponential (E) has just one

unknown parameter a. For models of lifetime distribution, it is the most straight-

forward distribution. In terms of hazard rate shapes for survival data, the

distribution is not adaptable enough to describe typical situations. Let X ∼

exponential(a) with a > 0. Accordingly, the exponential random variable's PDF,

CDF, SF, and HRF are:

(i) The PDF is

f(x) = a exp
{
− ax

}
, x > 0. (1.3.3)

(ii) The CDF is

F (x) = 1− exp
{
− ax

}
. (1.3.4)

(iii) The SF is

S(x) = exp
{
− ax

}
. (1.3.5)

(iv) The HRF is

h(x) = a. (1.3.6)
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Figure 1.1: PDF of the E distribution with di�erent values of the parameter.

1.3.5.2 Weibull Distribution

The Weibull distribution has been shown to be useful in describing a variety of

systems with monotone failure rates (Weibull, 1951). This distribution is one of

the most often used lifetime distributions in survival and reliability analysis. It is

also utilized in many other applications, including the physical, social, economic,

business, hydrological, and weather sciences.

A generalization of the exponential distribution is the Weibull distribution. It is

an adaptable distribution that can adopt the behaviors of several kinds of con-

tinuous distributions. In contrast to the exponential, it has an extra parameter.

Depending on the value of the form parameter, the extra parameter determines

how the hazard functions are structured.

if X ∼ W(a, b), then the PDF, CDF, SF, HRF, and CHRF are.
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(i) The PDF of the Weibull distribution is:

f(x) = abxa−1 exp
{
− bxa

}
x > 0. (1.3.7)

(ii) The CDF of the Weibull distribution is

F (x) = 1− exp
{
− bxa

}
. (1.3.8)

(iii) The SF of the Weibull distribution is

S(x) = exp
{
− bxa

}
. (1.3.9)

(iv) The HRF of the Weibull distribution is

h(x) = abxa−1. (1.3.10)

(v) The CHRF of the Weibull distribution is

H(x) = − logS(X) = − log
(
exp

{
− bxa

})
= bxa (1.3.11)

Where b > 0 is the scale parameter, and a > 0 is the shape parameter.

The HRF decreases when a < 0, increases for a > 0, and constant a =

1. Whena = 1, the Weibull distribution is reduced to the exponential

distribution. It is important to note that the W distribution does not

accommodate non-monotone HRFs.
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Figure 1.2: PDF of the Weibull distribution with di�erent values of the parame-
ters.

Figure 1.3: HRF of the Weibull distribution with di�erent values of the parame-
ters. 14



1.3.5.3 Log-logistic Distribution

The log-logistic (LL) distribution (also known as the Fisk distribution) is mainly

valuable at modeling unimodal (non-monotone) hazard rate curves. Let X ∼

LL(a, b),the PDF, CDF, SF, and HRF of the LL distribution are as follows:

(i) The PDF is

f =
ab(bx)a−1

[1 + (bx)a]2
, x > 0. (1.3.12)

(ii) The CDF is

F (x) =
(bx)a

1 + (bx)a
. (1.3.13)

(iii) The SF is

S(x) =
1

1 + (bx)a
. (1.3.14)

(iv) The HRF is

h(x) =
ab(bx)a−1

1 + (bx)a
. (1.3.15)

Where b > 0 is The scale parameter, and (a > 0) is the shape parameter.
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Figure 1.4: HRF of the LL distribution with di�erent values of the parameters

1.3.5.4 Exponentiated Exponential Distribution

The exponentiated exponential (EE) distribution is a very appealing version of

the exponential distribution presented by Kundu and Gupta (1999) has gotten a

lot of attention. The density function and hazard function of the EE distribution

are very similar to the PDF and HRF Weibull distribution.

Let X ∼ EE(a, b), the PDF, CDF, SF, HRF, and of the EE distribution are given

by:

(i) The PDF is

f(x) = ab exp
(
− bx

){
1− exp

(
− (bx)

)}a−1

, x > 0. (1.3.16)
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(ii) The CDF is

F (x) = 1−
{
exp−

(
bx
)}a

, (1.3.17)

where b > 0 is the scale parameter, and a > 0 is the shape parameter.

When a = 1 the Equation 1.3.16 reduced to the exponential distribution.

(iii) The SF is given by

S(x) =

{
exp−

(
bx
)}a

. (1.3.18)

(iv) The HRF is

h(t) =

ab exp
(
− bx

){
1− exp

(
− (bx)

)}a−1

{
exp−

(
bx
)}a . (1.3.19)

Figure 1.5: PDF of the EE distribution with di�erent values of the parameters.
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1.3.5.5 Exponentiated Weibull Distribution

Mudholkar and Srivastava (1993) developed an extension of the Weibull distri-

bution known as the exponentiated Weibull (EW) distribution. The PDF, CDF,

SF, HRF, and of the EE distribution are given by

(i) The PDF of the EW is

f(x) = cabcxc−1 exp
[
− (bx)c

]{
1− exp

[
− (bx)c

]}a−1

, x > 0. (1.3.20)

(ii) The CDF of the EW is

F (x) =

{
1− exp

[
− (bx)c

]}a

. (1.3.21)

(iii) The SF of the EW is

S(X) = 1−
{
1− exp

[
− (bx)c

]}a

. (1.3.22)

(iv) The HRF is given by

h(x) =

cabcxc−1 exp
[
− (bx)c

]{
1− exp

[
− (bx)c

]}a−1

1−
{
1− exp

[
− (bx)c

]}a , (1.3.23)

where a > 0 and c > 0 are shape parameters, and b > 0 is scale parameter. It

is worth noting that a = 1 reduces the EW distribution to the two-parameter

Weibull distribution. According to Mudholkar and Srivastava (1993), the hazard

function is (1) increasing for ac ≥ 1and c ≥ 1, (2) decreasing for ac ≤ 1 and

c ≤ 1, (3) unimodal for ac > 1 and c < 1 , and (4) bathtub-shaped for ac ≤ 1

and c > 1.
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Figure 1.6: HR shapes for the EW distribution for all scenarios.

1.3.5.6 Exponential Weibull Distribution

The exponential-Weibull (ExW) distribution is proposed by Cordeiro et al. (2014)

is an extension of exponential and Weibull distributions. Let X ∼ ExW(a, b, c),

the CDF, PDF, SF, and HRF of the ExW distribution are as follows:

(i) The CDF of the ExW is given by

F (x) = 1− exp

{
−(ax+ bxc)

}
, x > 0. (1.3.24)

Where b >0 is the scale parameter, a > 0, c > 0 are shape parameters.

(ii) The PDF of the ExW is

f(x) = (a+ bcxc−1) exp

{
−(ax+ bxc)

}
. (1.3.25)

(iii) The SF of the ExW is

s(x) = exp

{
−(ax+ bxc)

}
. (1.3.26)

(iv) The HRF is given by

h(x) = a+ bcxc−1. (1.3.27)
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Figure 1.7: HRF of the ExW distribution with di�erent values of the parameters

Other Generalization of the Weibull Distribution

Here are PDFs of some further generalizations of the Weibull distribution, which

will be used as competing models with our proposed model, including beta-

Weibull (BW) Lee et al. (2007), beta extended-Weibull (BEW) Cordeiro et al.

(2012), and modi�ed beta-Weibull (MBW) Nadarajah et al. (2014). Addition-

ally, some generalizations of the log-logistic is presented including, tan-log-logistic

(TanLL) distribution (Muse et al., 2021c) and and the generalized log-logistic

(GLL) (Muse et al., 2021a) distribution.
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(i) The PDF of BW distribution is

f(x) =
Γ (a+ b)

Γ (a)Γ (b)

c

α

(x
α

)c−1 [
1− e−( x

α
)c
]a−1

e−b( x
α
)cx > 0. (1.3.28)

(ii) The PDF of BEW distribution is

f(x) =
α

β(c, d)
babxb−1e−axb

(
1− e−α(1−e−axb )

)c−1

e
−αd

(
1−e−axb

)
. (1.3.29)

(iii) The PDF of MBW is

f(x) =
αc

β(c, d)

babxb−1e1−axb
[
1− e−axb

]c−1 [
e−axb

]d−1

(
1− (1− α)(1− e−axb)

)c+d
. (1.3.30)

Other generalization of the Log-logistic distribution

(i) The PDF of TanLL distribution is

f(x) =
π

4
{(b/a)(x/a)

b−1

(1 + (x/a)b)2
} sec2[π

4
{ (x/a)b

(1 + (x/a)b)
}]. (1.3.31)

(ii) The PDF of the GLL distribution is given by

f(x) =
ac(cx)a−1

[1 + (bx)a]
ca

ba
+1
. (1.3.32)

21



1.4 Statement of the Problem

The Weibull distribution has been widely used for modeling monotonic types of

failure rate data (Prudente and Cordeiro, 2010). Furthermore, it has a severe �aw

in that it is unable to accommodate non-monotone hazard rates. The problem at

hand is that very few distributions can handle both monotone and non-monotone

hazards rate functions (HRFs).

Most survival data usually include some explanatory variables/covariates and

usually the interest is to check on the e�ect of these covariates on the survival

rates. Therefore, new survival models being developed need to be extended to

regression frameworks that help in assessing e�ect of covariates.

To solve this problem, we will propose extended-exponential Weibull regression

model.

1.5 Objectives of the Thesis

1.5.1 General Objective

The main objective is to develop the extended exponential Weibull regression

model for handling survival data in the presence of covariates.

1.5.2 Speci�c objectives

i. To develop the ExEW distribution using method of Lehmann alternative

II.

ii. To derive the mathematical properties of the ExEW distribution.

iii. To develop the ExEW regression model.

iv. To estimate the parameters in the ExEW regression model using MLE

method via BFGS algorithm.

v. To assess the performance of the estimators of the developed models via

Monte Carlo simulation.
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vi To apply the developed models to the real-life data.

1.6 Motivation Statement

Using the LAII parameter induction approach, a tractable extension of theWeibull

distribution will be introduced, which provides increasing, decreasing, and con-

stant hazard rate forms. To create a modi�ed Weibull distribution with a more

adaptable kurtosis compared to the standard Weibull model. Extending the par-

ent Weibull distribution to one that is extended so that its density function can

display symmetrical, asymmetrical, unimodal, J, and reversed-J shapes. fur-

thermore, developed a more comprehensive model that can be used to represent

di�erent types of data in the �elds of engineering, medicine, actuarial science,

and other applied �elds. This fact is demonstrated by modeling two real-life data

sets from the engineering and medicine disciplines, demonstrating its superiority

as compared to other competing distributions. Lastly, the motivation stems from

the desire to demonstrate how the inclusion of a single parameter may increase

the application and tractability of the parent distribution.

Additionally, proposed an ExEW-AFT model that is quite adaptable and can

easily accommodate a variety of applications in reliability and survival analy-

sis. The ExEW-AFT model could be viewed as a multiple-parameter survival

regression, which is perhaps more adaptable than the common single-parameter

survival regression model, including the Weibull and exponential AFT models.

1.7 Signi�cance of the Thesis

1.7.1 Signi�cance to Theory

The goal of this study, which focused on the frequentist approach for hazard-based

regression models using a �exible baseline ExEW distribution. This research

casts light on statistical model development and generalization methods, with a

focus on parametric hazard-based regression models and the use of right-censored
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survival data sets. Furthermore, the study adds to and improves the utility

of time-to-event data analysis. As a consequence, developing novel parametric

hazard-based regression models for the use of modi�ed baseline distributions that

can incorporate various hazard rate shapes is important. As a result, a novel

parametric hazard-based regression model was developed in this research using a

�exible baseline distribution.

1.7.2 Signi�cance to users and model consumers

This study contributes to the improvement of survival model teaching and learn-

ing in social science, engineering, medical research centers, and economics. The

study's results are thus important to the academic and industrial �elds.

1.8 Scope

This study's academic scope is restricted to parametric hazard-based regression

models in right censoring time to event data with an extended exponential-

Weibull accelerated failure time model.

1.9 Thesis Outline

This thesis includes Five chapter as follows. The introduction of the thesis is

presented in Chapter (1). In the Chapter (2) the Literature review is discussed.

Research methodology is presented in Chapter (3). Results and discussions are

displayed in Chapter (4) In Chapter (5) conclusions and recommendations are

presented.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The art of parameter(s) induction to the baseline distributions, generalized and

extended Weibull distributions, and survival regression modeling approaches are

all brie�y reviewed in this Chapter.

2.2 Art of parameter(s) induction to the saseline

distributions

In recent years, the technique of parameter induction has attracted a lot of at-

tention, for example, Tahir and Nadarajah (2015) reviewed the most common G

families introduced for the last decade using the parameter induction technique.

Tahir and Cordeiro (2016) presented a survey for probability families formulated

by parameter induction techniques and they developed some new G-families. Ah-

mad et al. (2019) reviewed and presented a brief survey of recent advances in

distribution theory with a focus on the parameter induction technique. Recently,

Muse et al. (2021b) presented a survey of the LL distribution and its general-

izations by focusing on the new LL distributions formulated from the parameter

induction technique.

There exists many generalized (or generated) G family of distributions like Az-
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zalini's skewed family (Azzalini, 1985), Marshall-Olkin extended (MOE) family

Marshall and Olkin (1997), and our interested exponentiated family (EF) of dis-

tributions (Gupta et al., 1998).

2.2.1 Exponentiated-G family (EF) of distributions

The origins of this family may be traced back to the �rst half of the nineteenth

century when Verhulst and Gompertz employed the cumulative distribution func-

tion (cdf) G(t) = (1− ρe−λt)α for t > λ−1 log ρ, where ρ and λ are positive real

numbers. To examine growth curve mortality,Ahuja and Nash (1967) developed

the generalized Gompertz-Verhulst family of distributions. The EF of distribu-

tions was founded by Gompertz-Verhulst's cdf. The exponentiated exponential

(EE) distribution is the special case for ρ = 1.

Many writers have investigated the properties and estimate methods for parame-

ters of the EF of distributions such as: (Nadarajah, 2011) and (Jabeen and Jan,

2015). The EF of distributions is also known as Lehmann alternatives (LAs) or

proportional reversed hazard rate model (PHRM) by (Gupta and Kundu, 2007).

Some authors referred to the EF of distributions as max-stable family Ahuja and

Nash (1967); Gupta and Kundu (1999) and F α - distributions Cordeiro et al.

(2014); Gupta and Kundu (1999) and (Ahsanullah et al., 2012), and (Hamedani,

2013), and (Ghitany et al., 2013).

2.3 Generalization of Weibull distribution

The Swedish mathematician and physicist Weibull (1951), developed the Weibull

(W) distribution. It is a continuous probability distribution that is closed in

hazard-based regression models.

The Weibull family of distributions has been shown to be useful in describing a

variety of systems with monotone failure rates (Nassar and Eissa, 2003). This

statistical family includes distributions that can be used to describe data with

increasing, decreasing, or exponential failure rates.
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Moreover, the Weibull distribution has a wide range of applications. Accord-

ing to Lawless (2011), Weibull distribution is possibly the most extensively used

lifetime model for instance, ball bearings, vehicle components, light bulbs, ca-

pacitors, disk drives, and electrical insulation are all examples of things where

the distribution is widely utilized to estimate the lifetime or durability. It is also

utilized in scienti�c and medical research, such as investigations of the time it

takes for tumors, sickness, or death to occur in human populations or laboratory

animals.

The hazard rate is a monotone function that can be decreasing, constant, or

increasing (Santana et al., 2019). However, the Weibull distribution is inappro-

priate for survival data with a non-monotone failure rate function.

As a result, scientists explore for extensions and modi�cations of the Weibull dis-

tribution. Mudholkar and Srivastava (1993) presented the �exponentiated Weibull

family" as an extension of the Weibull family, which includes distributions with

bathtub shaped and unimodal failure rates, as well as a broader class of mono-

tone failure rates. Lee et al. (2007) presented the BW distribution, which can be

�tted to data sets with monotone and non-monotone HRF and includes the ex-

ponential, EE), and EW distributions as sub-models. Sarhan and Apaloo (2013)

proposed a new life-time distribution model that primarily generalizes these two

distributions, the exponentiated modi�ed Weibull extension distribution was the

name given to this new distribution. Cordeiro et al. (2014) presented a new three

- parameter models named the ExW distribution. Salem and Selim (2014) pro-

posed a new four-parameter model generalized Weibull - exponential distribution

(GWED). Almheidat et al. (2016) suggested a generalization of the Weibull dis-

tribution, is described by four parameters that specify the shape and scale prop-

erties. Famoye et al. (2018) developed Weibull-Normal Distribution and found

that the Weibull-normal distribution is to be unimodal or bimodal. Famoye et al.

(2018) proposed the exponentiated Weibull Lomax, a novel �ve-parameter model

derived from the exponentiated Weibull generated family. Aldahlan (2019) in-

troduced a novel model called the inverse Weibull inverse exponential (IWIE)
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distribution. Hassan and Abd-Allah (2018) proposed the exponentiated Weibull

Lomax, a novel �ve-parameter model derived from the exponentiated Weibull

generated family. Furthermore, the are another several extensions of the Weibull

developed by A�fya et al. (2016), ,A�fy et al. (2018); Cordeiro et al. (2018), Mead

et al. (2019), Nassar et al. (2020), Zhao et al. (2021), Aljohani et al. (2022), and

Iqbal et al. (2023).

Additional important generalized forms of the Weibull model are introduced by

A�fy et al. (2017), Nassar et al. (2018), Alizadeh et al. (2018); Nasir et al. (2018),

Abouelmagd et al. (2019a,0); Elbatal et al. (2019), Bhatti et al. (2019), A�fy et al.

(2020); Cordeiro et al. (2020); Mead et al. (2020), A�fy et al. (2021), A�fy et al.

(2022), Hussein et al. (2022).

2.4 Survival regression models

Data sets on failure times often include information on covariates in addition to

the survival time (T) and censoring status records. It is therefore particularly

interesting to develop regression models to describe the connection between the

response, T, and one or more covariates that are assumed to in�uence speci�c

characteristics of the distribution of T (Khan, 2018).

In recent decades, many novel emerging methodologies for analyzing right-censored

data have been developed, with the ultimate goal of estimating covariate e�ects

on the HRF or the odds function (Muse et al., 2022b). Cox (1972) proposed

PH model, Kalb�eisch and Prentice (1973) derived AFT model, Chen and Wang

(2000) presented accelerated hazards (AH) model, Ciampi and Etezadi-Amoli

(1985) proposed general hazard (GH) model Class, Yang and Prentice (2005) de-

veloped Yang and Prentice (YP) model class, Banerjee et al. (2007) introduced

the generalized odds-rate class of regression models. Two further survival regres-

sion models are given, based on the mean residual life and vitality functions,

respectively; Oakes and Dasu (1990) proposed proportional mean residual life

model, and Shrahili et al. (2020) introduced proportional vitalities model.
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2.4.1 The standard cox proportional hazards (PH) model

The Cox PH model Cox (1972) is the standard method for analyzing time-to-

event data in medical research. This model enables us to measure and determine

the impact of covariates without assuming any shape for the baseline HRF or

the event time distribution. the Cox PH model is written as a baseline HRF,

multiplied by the exponential function of the covariates, in the following form:

h(t;zzz) = h0(t) exp (zzz
′βββ), (2.4.1)

where h(t;zzz) is the HRF for a subject zzz = (z1, z2, . . . zn)
′ is the vector of covariates,

h0(t) is the baseline HRF obtained with xxx = 0, and βββ = (β1, β2, . . . βp)
′ represents

the regression coe�cients. As a result, the SF conditional on covariate X can be

written as

S(t;zzz) = exp

[
−
∫ t

0

h0(u) exp (zzz
′βββ)du

]
= S0(t)

exp (zzz′βββ), (2.4.2)

whereas S0(t) = exp
[
−
∫ t

0
h0(u)du

]
.

2.4.1.1 The Cox PH model's assumptions

Two assumptions are imposed by the standard Cox PH model. First, each con-

tinuous covariate's e�ect on the logarithm of the hazard is assumed to be linear

(linearity assumption).

Cumulative martingale residuals and martingale residuals can be used to in-

vestigate the functional forms of the model's continuous covariates (Klein and

Moeschberger, 2003; Therneau et al., 1990). Nevertheless, in many real-world

applications, the linearity assumption is commonly taken for granted.

Second, the relationship between the covariates and the event's hazard is quan-

ti�ed using a hazard ratio (HR): exp (βββ(ZiZiZi −ZjZjZj)) , which compares two vectors
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of covariate values, ZZZi and ZZZj, the hazard ratio is not time dependent. This

constraint is known as the Cox model's PH assumption, which states that the

in�uence of each covariate on survival does not change over time. The log-log

curve, the Schoenfeld residual plot, the Schoenfeld residual test, and tests based

on interactions between time and the covariates can all be used to evaluate the

PH assumption (Harrell and Harrell, 2015; Hess, 1995; Schoenfeld, 1982).

2.4.2 Accelerated failure time model

The AFT model has been proposed as a viable alternative to the Cox PH model

(Fleming and Lin, 2000; Wei, 1992). The natural logarithm of the event time,

log T , is typically described as a linear function of the covariate vector ZZZ in an

AFT model(Kalb�eisch and Prentice, 2011).

log T = ZZZ ′βββ + ε. (2.4.3)

Where ε is a random error term that is independent of the covariate.

In the medical literature, AFT models are frequently employed in a variety of

contexts (Collett, 2015). As opposed to the interpretation of a hazard ratio,

which denotes a relative change in the event rate, the interpretation of an ac-

celeration factor can be seen of as more logical because it directly a�ects the

survival time by either increasing it or reducing it (Swindell, 2009). When �tting

an AFT model, a parametric approach is frequently utilized; nevertheless, para-

metric models are constrained by the �exibility of the selected distribution (Cox,

2008; Cox et al., 2007). In order to �nd the best-�tting model, it is important to

�t a wide range of parametric models (either proportional hazards or accelerated

failure time). Furthermore, to formulate the parametric AFT model framework,

the Weibull, log-logistic, and log-normal distributions are commonly utilized as

baseline HRFs (Lawless, 2011). The Weibull family can accommodate mono-

tone HRFs (i.e., increasing and decreasing), while log-logistic and log-normal can

accommodate non-monotone HRFs (Khan, 2018; Santana et al., 2019). These dis-
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tributions cannot accommodate both monotone and non-monotone HRFs (Muse

et al., 2022a). To address this problem some researchers proposed more �exible

parametric regression survival models such as: Khan (2018) developed EW regres-

sion for time-to-event data which can can incorporate accommodate monotone

non-monotone HRFs. Ashraf-Ul-Alam and Khan (2021) suggested generalized

Topp-Leone-Weibull AFT model. Muse et al. (2022c) proposed Bayesian and fre-

quentist approach for the generalized log-logistic AFT model with applications

to larynx-cancer patients

2.5 Research gap

From the foregoing literature review, some gaps were identi�ed and they form

the main contributions of this thesis:

1. Develop a tractable, a novel version of the ExW distribution known as the

ExEW distribution. The basic mathematical properties of ExEW distribu-

tion are derived.

2. The main contribution of this study is to o�er a useful addition to the toolkit

for analyzing survival data that can be used with di�erent hazard regression

models in a more general way. Therefore, the work described in this thesis

is a unique contribution to the advancement of statistical methods in time-

to-event investigations, with an emphasis on the AFT model. Although

this method is less commonly used in survival analysis than the well-known

Cox PH model, it merits further investigation due to its relevance for real-

life investigations, particularly when the essential assumptions of the Cox

model are violated.
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CHAPTER 3

METHODOLOGY

3.1 Introduction

The principles pertaining to the techniques employed to accomplish the study's

objectives are presented in this chapter. The Lehmann type-II method for gener-

ating new probability distributions, our estimation method and algorithm. Fur-

thermore, regression analysis of time-to-event, the Schoenfeld residual, the mix-

ture cure model, and statistical computing techniques. model comparisons, and

the total time on test (TTT) technique for examining hazard rate shapes are

covered.

3.2 The Method of Lehmann alternative II

To address the speci�c objective one, the exponentiated family of distributions is

used, which includes two main methods to develop the exponentiated family (EF)

of distributions in the literature. These techniques are: the Lehmann alternative I

(LAI) technique which has gotten a lot of attention and the Lehmann alternative

II (LAII) technique which has received less attention. The method of Lehmann

alternative II (LAII) aids in the derivation and understanding of its many features.

According to Tahir and Nadarajah (2015), Lehman II technique is de�ned as

follows:
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If G(x) is the CDF and G(x) = 1 − G(x) is the SF of the existing distribution.

Then, by taking one minus the αth power of G(x), the CDF of the LAII family

or the EF follows as

F (x) = 1− [1−G(x)]α. (3.2.1)

According to Equation (3.2.1), the PDF is

f(x) = (α)G(x)[1−G(x)]α−1. (3.2.2)

With every lifetime random variable (t),

The HRF, SF, RHRF, and CHRF are:

The SF de�ned as follows:

S(t) = [1−G(t)]α. (3.2.3)

The HRF is written by

h(t) =
g(t)(α)

1−G(t)
. (3.2.4)

The RHRF is

r(t) =
pdf

cdf
=

[1−G(t)]α−1g(t)(α)

1− [1−G(t)]α

by making more simple it becomes

r(t) =
PDF

CDF
=
g(t)(α)

G(t)
. (3.2.5)

The CHRF H(t) is:

H(t) = − log[1−G(t)](α). (3.2.6)

3.3 Maximum likelihood estimation

The most popular classical method for estimating the parameters of a probability

distribution model is the maximum likelihood estimation (MLE) method, which

is based on a likelihood function. The maximum value of the likelihood function
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is reached for a speci�c parameters value. Assume that the X1, X2, . . . , Xn are

independent and identically distributed random variables of sample size n with

PDF f(x,θθθ) where θθθ = (θ1, θ2, . . . , θk)
′ , k < n is the vector of parameters that

controls the PDF. The joint PDF can be expressed as

f(x | θθθ) =
n∏

i=1

f(xi, θθθ). (3.3.1)

When the random sample is gathered, the joint PDF transforms into a function

of θθθ, and this function is known as the likelihood function. Consequently, the

likelihood function is de�ned as.

L(θθθ | x) =
n∏

i=1

f(xi, θθθ). (3.3.2)

Dealing with the likelihood logarithm function is more practical from a practical

standpoint, ℓ represents the log-likelihood function, which is provided by

ℓ (θθθ | x1, x2, . . . , xn) =
n∑

i=1

log f(xi, θθθ). (3.3.3)

Since the logarithm is a monotone function, maximization of the likelihood func-

tion also results in maximization of the log-likelihood function, and vice versa.

The values of θθθ that maximize the likelihood function are the estimates θ̂θθ. Setting

the �rst partial derivatives of ℓ with respect to theta to zero yields the likelihood

equations, whereby

∂ℓ (θθθ | x1, x2, . . . , xn)
∂θi

= 0, i = 1, 2, . . . , k. (3.3.4)

The MLEs for the parameters are derived by resolving the set of likelihood equa-

tions in Equation (3.3.4) for θ1, θ2, . . . , θk.
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3.3.1 Properties of MLEs

Under speci�c general situations, the MLEs possess some attractive properties.

These properties are discussed in this subsection.

3.3.1.1 Consistency

Assume thatX1, X2, . . . , Xn are independent uniformly distributed samples drawn

at random from population X with density f(x,θθθ). It depends on the sample size

n, if θ̂ is an estimator based on the sample size n. To demonstrate how depends

of θ̂ on n, writing θ̂ as θ̂n.

A series of θθθ estimators
{
θ̂n

}
is consistent with θθθ if and only if the series

{
θ̂n

}
converges in probability to the θθθ, which means for any ε > 0.

lim
n→∞

Pr
(∣∣∣θ̂̂θ̂θn − θθθ

∣∣∣ ≥ ε
)
= 0. (3.3.5)

It is important to note that
{
θ̂̂θ̂θn

}
probabilistically converges to θθθ if the mean

squared error approaches zero as n approaches in�nity. As a result, if the variance

of θ̂̂θ̂θn is in�nite and occurs for any n, then

lim
n→∞

E
[(
θ̂̂θ̂θn − θθθ

)n]
= 0, (3.3.6)

furthermore, if x > 0, implies

lim
n→∞

Pr
(∣∣∣θ̂̂θ̂θn − θθθ

∣∣∣ ≥ ε
)
= 0.

As the sample size increases, the MLEs converge to the true parameter value.

3.3.1.2 Asymptotic normality

As the sample size increases, the MLEs distribution converges to a multivariate

normal variate. Hence

√
n
(
θ̂̂θ̂θ − θθθ

)
Dis−−→ N

(
000, I−1(θθθ)

)
,
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where 000 is a mean zero vector with k dimensions,
Dis−−→ indicates a distribution's

convergence and I(θθθ) represents a Fisher information matrix with k × k dimen-

sions. The Fisher Information matrix is described as the negative anticipated

value of the second partial derivative matrix of the log-likelihood function evalu-

ated at the true parameter θθθ. Hence,

I(θθθ) = −E

[
∂2 `g(x | θθθ)
∂θθθ∂θθθ′

]
= −

∫ ∞

−∞

[
∂2 `g(x | θθθ)
∂θθθ∂θθθ′

]
`g(x).dx. (3.3.7)

By inverting the Fisher information matrix, the parameters' variance-covariance

matrix is produced.

3.3.1.3 Asymptotic e�ciency

In a class of unbiased estimators, more than one consistent estimator may be

obtained in practice. So it is necessary to compare them and pick the estimator

with the lowest variance. The most e�cient estimator belongs to this class of

unbiased estimators and has the lowest variance. Asymptotically, MLEs are the

most e�ective. Mathematically, if an additional unbiased estimator θ̄θθ exists, such

that
√
n
(
θ̄θθ − θθθ

)
Dis−−→ N

(
000, I−1(ΩΩΩ)

)
, (3.3.8)

Consequently, I−1(ΩΩΩ) is always greater than or equal to I−1(θθθ).

3.3.1.4 Invariance property

If f(θθθ) is a di�erentiable function, the maximum likelihood estimator for f(θθθ)

is equal to the function evaluated at the maximum likelihood estimator for θθθ,

In other words, if θ̂θθ is the maximum likelihood estimator of θθθ, then f(θ̂θθ) is the

maximum likelihood estimator of f(θθθ), and so on.

√
n
(
f(θ̂θθ)− f(θθθ)

)
Dis−−→ N

(
000,
[∂f(θθθ)
∂θθθ

]
I−1(θθθ)

[∂f(θθθ)
∂θθθ

]′)
. (3.3.9)
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3.3.2 Con�dence intervals for parameters

Assume that the distribution's parameters γ1, . . . , γk are also its corresponding

variances
∑

11, . . . ,
∑

kk. Using the multivariate normal approximation, the pa-

rameters' 100(1− η)% con�dence intervals are estimated as follows:

γ1 ∈ γ̂1 ∓ z η
2

√∑
11, γk ∈ γ̂k ∓ z η

2

√∑
kk, where z η

2
is the standard normal distri-

bution's upper ηth percentile.

3.3.3 Broyden-Fletcher-Goldfarb-Shanno algorithm

When the parameter MLEs do not have a closed form, numerical methods are

used to solve the system of equations. The BFGS method was used in this work

to solve this particular system of equations. Independently developed by Broyden

(1969)Broyden (1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970), the

BFGS algorithm is an iterative method for addressing unconstrained optimization

problems. The process of optimizing a given function (ℓ) begins with a �rst guess,

such as θθθ0, and an approximate Hessian matrixHHH0. As θθθi approaches the solution,

the subsequent steps are then repeated.

1. First, obtain a direction by solving aaai.

HHH iaaai +▽ℓ(θθθi) = 0.

2. The next step is to perform a one-dimensional optimization to �nd an ap-

propriate step size γi in the direction determined in step 1.

3. Assign bbbi = γiaaai, then update θθθi+1 = θθθi + bbbi.

4. yi = ▽ℓ(θθθi+1)−▽ℓ(θθθi).

5. HHH i+1 =HHH0 +
yiy

′
i

y′ibbbi
− HHHibbbibbb

′
iHHHi

bbb′iHHHibbbi
.

The gradient's norm, |▽ℓ(θθθi)| is used to observe the convergence of the procedure.

The identity matrix, H0 = 1H0 = 1H0 = 1, can be used to initialize HHH0 in practice to make the

�rst step resemble a gradient descent, but additional steps are re�ned by the
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approximation of the Hessian, HHH i.

The Sherman-Morrison formula can be e�ectively used to the �fth step of the

method to yield the inverse of HHH i, which is used in step one of the process.

Hence,

HHH−1
i+1 =

(
III − bbbiyyy

′
i

yyy′ibbbi

)
HHH−1

i

(
III − bbbiyyy

′
i

yyy′ibbbi

)
+
bbbibbb

′
i

yyy′ibbbi
. (3.3.10)

Since yyy′iHHH
−1
i yyyi and bbb

′
iyyyi are scalar terms andHHH

−1
i+1 is symmetric, Equation (3.3.10)

can be calculated more e�ciently by applying the expansion.

HHH−1
i+1 =HHH−1

i +
(bbb′iyyyi + yyy′iHHH

−1
i yyyi)(bbbibbb

′
i)

(bbb′iyyyi)
2

− HHH−1
i yyyibbb

′
i + bbbiyyy

′
iHHH

−1
i

bbb′iyyyi
(3.3.11)

Con�dence intervals for the parameters in a classical estimation problem, such as

the maximum likelihood, can be quickly obtained by inverting the �nal Hessian

matrix.

3.4 Regression analysis of time-To-event

Statistical analysis is frequently required to prepare data summaries for predic-

tion. One approach is to look for a theoretical model that adequately �ts the ob-

served data and discover the covariates that are strongly related to the response.

For regression analysis of time-to-event data, there are two prevalent classes:

odds-based and hazard-based regression models (Khan and Khosa, 2016). While

the formulation in hazard-based models is dependent on the tractability of the

baseline distribution's HRF and CHRF, the formulation in odds-based models is

dependent on the tractability of the odds function and its derivative (Muse et al.,

2022b).

The three common regression models in the context of hazard-based regression

models are: PH (Khan and Khosa, 2016), AFT (Khan, 2018), and AH (Muse

et al., 2022a) models. On the other hand, the three most popular regression

models in the context of odds-based regression models are (Economou and Ca-

roni, 2007), AO (Muse et al., 2022b), and AFT models. Hence, the AFT model
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is the only survival regression model that is closed under both odds-based and

hazards-based regression models. These models are formulated on the link func-

tion ψ(x′βx′βx′β), The link function has the following properties:

(i) ψ(x) > 0 for all x ̸= 0.

(ii) ψ(x) is one-to-one monotone function.

(iii) ψ(0) = 1.

The exponential function exp(z′βz′βz′β) is the most natural choice for ψ(z′βz′βz′β). In this

part, we will describe the AFT model with ψ(z′βz′βz′β) = exp(z′βz′βz′β).

3.4.1 The accelerated failure time model

To address the speci�c objective 3 we will apply the AFT model. It is assumes

that the e�ect of variables on survival time is multiplicative. The AFT model's

assumption can be summarized as follows:

S(t | zzz) = S0[tψ(zzz)], t ≥ 0 (3.4.1)

Where S0[tψ(zzz)] is the baseline survival function (i.e, SF for an individual with

z = 0z = 0z = 0), S(t | zzz) is the SF at the time t, and the ψ(zzz) is the link function.

The covariates are linked to the lifetime by ψ(zzz), satisfying

ψ(0) = 1, ψ(zzz) > 0∀zzz ̸= 0.

With these characteristics of ψ(zzz), zzz = 0 implies S(t | zzz) = S0(t | zzz)

ψ(x) = exp(zzz′βββ). (3.4.2)

The vector βββ represents regression coe�cients and zzz is a vector of non-random

regressors. With Equation (3.4.2) the covariate accelerate (zzz′βββ > 0) or decrease

(zzz′βββ < 0) the rate at which a unit progresses in time in comparison to the baseline

scenario.
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Lifetime distribution functions for the AFT model

In this part, we construct the common probabilistics functions of the AFT model.

Let zzz be a vector of explanatory variables, and ψ(z′βz′βz′β) be the link function for

the explanatory variables, where βββ is a vector of regression coe�cients. The HRF

function of the AFT model are expressed as follows:

h(t;zzz) = h0 (tψ(zzz
′βββ))ψ(zzz′βββ), t ≥ 0 (3.4.3)

In this study, we employed the link function as a standard exponential function.

Hence, the HRF and SF of the AFT model can be re-written as follows:

h(t;zzz) = h0

(
tez

′βz′βz′β
)
ez

′βz′βz′β, (3.4.4)

and using Equation (3.4.1)

S(t;zzz) = S0

(
tez

′βz′βz′β
)
. (3.4.5)

Using Equation (3.4.3), the AFT model's HRF is as follows:

h(t) =
f(t)

S(t)
= ψ(zzz)

f0[tψ(zzz)]

S0[tψ(zzz)]
= ψ(zzz)h0[tψ(zzz)] = ezzzzzzzzz

′βββh0
[
t exp

(
zzz′βββ
)]

(3.4.6)

For an AFT model using Equation (3.4.5), the other three frequent lifetime dis-

tribution representatives are as follows:

The AFT model's cumulative density function is:

F (t) = 1− S(t) = 1− S0

[
tψ(zzz)

]
= S0

[
exp(zzz′βββ)t

]
for t ≥ 0 (3.4.7)

The AFT model's probability density function may be determined using the fol-

lowing equation:

f(t) = ψ(zzz)f0[tψ(zzz)] = exp
(
zzz′βββ
)
f0
[
tezzz

′βββ
]

for t ≥ 0 (3.4.8)
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The AFT model's CHRF is as follows:

H(t) = − log
(
S0

[
tψ(zzz)

])
= H0

[
tψ(x)

]
= H0[te

−zzz′βββ], (3.4.9)

where F0(.), f0(.), h0(.), andH0(.), respectively, are the baseline CDF, PDF, HRF,

and CHRF.

We can observe from the foregoing Equations (3.4.4 - 3.4.9) that the covariates

work multiplicatively on time, causing the time to failure to accelerate or decel-

erate, thus the model's name. For an AFT model we are interested in measuring

the direct e�ect of covariates on survival time.

3.4.2 Estimation of the AFT model parameter

To estimate the model parameter, MLE is used. Let T1, T2, . . . , Tn be the lifetimes

of n individuals. If the data are subject to right censoring, then ti = min(Ti, Ci),

where Ci > 0 corresponding to a potential censoring time for individual i. Sup-

pose that δi = I(Ti ≤ Ci) = 1 for Ti ≤ Ci and δi = 0 otherwise. Hence,

the observed data for an individual i consists of {ti, δi}, for i = 1, 2, . . . , n, where

ti is a censoring time or lifetime according to whether δi = 0 or 1, respectively

and zzzi = (zi1, zi2, . . . , zin) is a column vector of n external covariates for the ith

individual.

In this scenario, non-informative censoring is assumed to be in place, meaning

that neither the distribution of survival times nor the distribution of censoring

times can be inferred from one another.

It is important to note that the assumption of non-informative censoring is justi-

�able when censoring is random (it is assumed that the failure rates for observa-

tions that are censored, uncensored, and remain in the risk set are equal) and/or

independent (in other words, censorship is supposed to be random within any in-

terested subgroup); for additional information on the non-informative censoring

(Kleinbaum and Klein, 2012).
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In this setting, the censored likelihood function is therefore de�ned as follows:

L(ϑ) =
n∏

i=1

[f (t;zzzi)]
δi [S (t;zzzi)]

1−δi , (3.4.10)

where ϑ is the vector of the involved parameters.

Based on Equation (4.3.1), the log-likelihood function for a parametric AFT

model is de�ned as follows:

ℓ(ϑ) =
n∑

i=1

δi log [f(t;zzzi)] +
n∑

i=1

(1− δi) log [S (t;zzzi)] , (3.4.11)

The Newton-Raphson optimization procedure can be used to directly optimize

this, and interval estimates of the model parameters and hypothesis testing are

both possible under the approximative normally distributed MLE estimates (Law-

less, 2011).

3.4.3 The Schoenfeld residual

The Schoenfeld residuals test and Schoenfeld residuals plot test are tests based

on correlations between time and covariates, and can all be used to assess the

PH premise. This techniques based on Schoenfeld residuals were developed to

examine the PH assumption in the Cox PH model (Grambsch and Therneau,

1994). The description of these residuals is based on Collett (2015) and Lawless

(2011).

For the jth covariate z, the ith Schoenfeld residual is de�ned as

Ŝij = δi
(
zij − aij

)
, (3.4.12)

aij =

∑
ℓ∈R(ti)

Zij exp(ZZZ
′
iβ̂ββ)∑

ℓ∈R(ti)
exp(ZZZ ′

iβ̂ββ)
(3.4.13)

where
∑n

i=1 Ŝij is a �rst derivative estimate of the partial log-likelihood function

in Equation (2.4.1) with regard to βj,j = 1, . . . , p (the ith component of the

score vector examined at β̂j). Using the score function's features, we have, (i)
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Schoenfeld residuals for a covariate must total zero, (ii) In big datasets, the

expected value of Ŝij is zero, and (iii).

3.5 The mixture cure model

It is commonly assumed in survival analysis that every individual in the research

is susceptible to the event of interest. This assumption, however, may be un-

reasonable in some instances when a sub-population of individuals is immune to

the occurrence of such an event. The conventional survival approach is ine�ec-

tive. In order to measure the ability of a speci�c "treatment" to "cure," survival

regression models must include a cure fraction. The present statistical methods

for dealing with such data is extensive and is commonly referred to as cure rate

models (Lambert, 2007).

In a cure model, the target population is a mix of susceptible and non-susceptible

(cured) individuals. As a result, the primary goal of this model is to provide a

simultaneous estimation of the proportion of "immune" individuals as well as the

distribution of survival times for the " susceptible" ones.

Mixture cure rate model

The mixture cure model (MCM) is an approach that is widely used to model

data containing long-term survivors. The MCM has the advantage of allowing

covariates to e�ect individuals who are cured di�erently than how long vulnerable

individuals survive.

In a mixture cure model, the population is divided into two groups: uncured

(susceptible) subjects who will experience the event of interest and cured (non-

susceptible) subjects who will not. "Cured subjects" or "long-term survivors" are

those who do not develop the event of interest. Let T represent a subject's survival

time and ε represent the cure indicator, with ε = 0 when the subject is cured

and ε = 1 when the subject remains uncured. Let p represent the proportion of

cured individuals and 1 − p represent the proportion of uncured subjects. That
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is, P (ε = 1) = 1 − p, and P (ε = 0 = p.) Then, P (T ≤ t | ε = 0) = 0 and

P (T ≤ t | ε = 1) = F (t), which is the CDF of uncured individuals. So, the CDF

of the total population T is

FT (t) = P (T ≤ t) = P (T ≤ t | ε = 0)P (ε = 0) + P (T ≤ t | ε = 1)P (ε = 1) =

(1− p)FT (t), and the SF of T is

ST (t) = 1− FT (t) = 1− (1− p)FT (t) = p+ (1− p)ST (t), (3.5.1)

where S(t) speci�es a correct SF for uncured subjects, it is important to note

that ST (t) is incorrect.

The corresponding PDF of T is

fT (t) = (1− p)f(t), (3.5.2)

where f(t) is the PDF of uncured subjects.

3.5.1 Likelihood function of the MCM

This sub-section presents the maximum likelihood to estimate model parameters

in the mixture cure model.

Assume ti is the right censored survival time for individual i, moreover ti =

min
(
Ti, Ci

)
, where Ti is the failure time of the ith individual and Ci is the right

censored variable of the ith individual, i = 1, 2, . . . , n.

The observed survival time of ith individual is ti, and the censoring indicator is

δi, where δi = I
(
Ti, Ci

)
, for i = 1, 2, . . . , n. The MCM's likelihood function is

therefore

LMCM(θ) =
m∏
i=1

f δi
T (ti)S

1−δi
T (ti) =

m∏
i=1

[
(1− ρ)f(ti)

]δi[ρ+ (1− ρ)S(ti)
]1−δi ,
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as well as the log-likelihood function

LMCM(θ) = ln
(
LMCM(θ)

)
= ln

(
1− p

) n∑
i=1

δi +
n∑

i=1

δi ln
(
f(ti)

)
+

n∑
i=1

(
1− δi

)
ln
(
ρ+ (1− ρ)S(ti)

)
. (3.5.3)

Where θ is vector of parameter.

The maximum likelihood estimates of θ can be obtained by maximising Equation

(3.5.3) directly, with respect to the parameter vector θ. By directly maximizing

the total log-likelihood function with the help of the tools MATHEMATICA, R,

and MATLAB, the parameter estimations can be derived.

3.6 Statistical computing techniques

Statistical computing is a branch of statistics that encompasses a wide range of

methodologies for solving statistical issues. Among the techniques are computa-

tion or numerical techniques, graphical techniques, Monte Carlo technique, and

signi�cance sampling. Monte Carlo technique is simulation-based technique.In

this part brie�y we will present Monte Carlo simulation technique.

3.6.1 Monte Carlo simulation technique

Monte Carlo techniques are commonly utilized as a computational tool in modern

applied statistics. It is a statistical method based on random sampling, that

is, simulations are utilized to conduct analysis and produce inferences in this

method. The mean squared error (MSE), average bias, and standard error, or

other important variables can be used to estimate sampling distribution. They

can be used to analyze the coverage probabilities for a con�dence interval, as well

as to compare the performance of various processes handling a problem. There

is always some degree of uncertainty in the estimate; the Monte Carlo approach

aids in the investigation of such issues.
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Assuming h(x) is a function, compute
∫ ∞

−∞
h(x)dx assuming the integral exists.

If X is a random variable with a PDF f(x), then

E [h(x)] =

∫ ∞

−∞
f(x)h(x)dx

If a random sample from X|(X) is provided, the sample mean will represent an

unbiased estimate of E [h(x)].

3.6.2 The inverse transform technique

A popular probabilistic approach for creating datasets using regression survival

models is the inverse transform technique (Austin, 2012; Bender et al., 2005;

Leemis, 1987). This technique is based on the association between the CHRF of

a lifetime random variable and a standard uniform random variable. Whenever

the CHRF of the baseline distribution has an explicit form solution, it may be

used, reversed, and easily used in R.

The CDF is derived from the SF as follows:

F (t;x) = 1− S(t; z). (3.6.1)

Given this, when generating data, if Y is a random variable that has this CDF,

then U = F (Y ) follows a uniform distribution throughout the range [0; 1] and

[1−U ] also follows a uniform distribution U [0, 1]. At the end, for a realization u

of U , by using the baseline CHRF H0 (t;x), we get

1− u = exp {−H0 (t; z)} . (3.6.2)

The inverse of the CHRF must only be calculated if the baseline HRF is strictly

positive for every t to simulate lifetime data. An expression of the random live

corresponding to the AFT model is as follows:

T =
H−1

0 (− log(1− U))

ezzz′βββ
. (3.6.3)
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3.7 Model comparison

Two or more models may yield acceptable �ts to real data in some cases. In such

situations, comparing the �ts is useful in order to give a choice to the alterna-

tives. Although a graphical method, such as comparing residual plots, might give

insight into what is going on, it may include subjective decision-making when

choosing one model over the others. This is especially true when the �ttings are

close together. As a result, for model comparison, a more objective method (e.g.,

statistical tests, goodness of �t criteria) is preferable. Several model selection

criteria have been developed based on various principles, including minimizing in-

formation loss (Akaike, 1974), maximizing posterior probability (Schwarz, 1978),

deviance information criterion (David et al., 2002), and testing nested models.

In this part, we present goodness-of-�t test and the analytical performance mea-

sures.

3.7.1 Goodness of �t test

If X1, . . . , Xn are random sample from a given distribution, a goodness-of-�t test

is an approach for determining whether the random samples originated from the

speci�ed distribution. In this study the likelihood ratio test (LRT) is used.

3.7.1.1 Likelihood ratio test

The LRT is used to determine how well a model �ts a particular data set. The

test compares two nested models. Assume that the random variable X has a PDF

given by `g(x; θ) with an unknown parameter θ. The primary aim is to evaluate

the null and alternative hypotheses, H0H0H0 : θ ∈ θ0θ0θ0 and H1 : θ ∈ θ1θ1θ1H1 : θ ∈ θ1θ1θ1H1 : θ ∈ θ1θ1θ1, where θ0θ0θ0 and θ1θ1θ1
are the parameter spaces of the simpli�ed and full model, respectively. The test

statistic is provided by

w = −2 log

(
L0(θ̂)

L1(θ̂)

)
, (3.7.1)

where L0 and L1 are the likelihood functions for the simpli�ed and full model,

respectively. Under H − 0H − 0H − 0, w is asymptotically distributed as a chi-square ran-
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dom variable with degrees of freedom equal to the di�erence in the number of

parameters of the two models. When the null hypothesis is rejected, it indicates

that the full model performs better than the reduced model on the data.

3.7.2 Analytical performance measures

Increasing the number of parameters generally enhances the �t of a particular

model and, of course, the likelihood, regardless of whether the extra parameter

is necessary or not. When the models are not nested, the analytical performance

measures allow us to make this comparison. the Bayesian information criterion

(BIC), the Akaike information criterion (AIC), consistent Akaike information

criterion (CAIC) and Hannan- Quinn information criterion (HQIC) are the most

commonly used analytical performance measures.

3.7.2.1 Akaike information criterion

Akaike et al. (1973) proposed the AIC, which was expanded upon in Akaike

(1974). It is the most commonly used model selection tool among researchers.

To implement AIC, one begins with some alternative models that are considered

appropriate models for speci�c data. The test statistic is provided by

AIC = −2 log(θ̂) + 2k, (3.7.2)

where ℓ refers to the log-likelihood function calculated at the MLEs, k is the

parameter's number of models. The best model for the data collection is the

one with the lowest AIC value when compared to other models. One of the

AIC's advantages is its ability to penalize models with many parameters. The

AIC presents good model selection for small sample. However, the AIC works

reasonably well in small samples but is inconsistent and does not improve in large

samples. As a result, the CAIC was developed to address this issue (Burnham
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et al., 1998). the CAIC is de�ned as follows

CAIC =
2nk

n− 1− k
− 2(ℓ), (3.7.3)

where n is the sample size.

3.7.2.2 Bayesian information criterion

Schwarz (1978) developed the BIC, which is often referred to as the Schwarz

information criterion (SIC) in literature. The fundamental principle of BIC is

derived by approximating the Bayes factor under the presumption that the data

are independent and identically distributed. The test statistics for the BIC are

provided by

BIC = k(log(n))− 2(ℓ), (3.7.4)

Compared to the AIC and CAIC in both large and small samples, the BIC has

the ability to penalize models with numerous parameters. In order to choose the

best model out of a group of competing models, it is crucial to employ the BIC

along with the AIC and CAIC. Similar to the AIC, the appropriate model is the

one that has the lowest BIC value in comparison to other models.

3.8 Total time on test

TTT transform theory is well-known due to its applications in a variety of aca-

demic domains, including stochastic modeling, econometrics, survival and reli-

ability research, and ordering of distributions (Nasiru, 2018). The form of the

HRF for a particular data set is frequently of interest to researchers in survival

and reliability studies. The TTT-transform gives the researchers with a graphical

representation of the HRF shape.

The TTT-transform is used mostly in literature to solve problems related to sur-

vival and reliability, such as characterizing aging qualities, testing hypotheses,

sorting life distributions, identifying models, and creating new classes of lifetime
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distributions. Barlow and Doksum (1972) developed the technique to solve sta-

tistical inference issues including order constraints.

With a SF S(x) and CDF (F(x)) for a random variable denoting a lifetime, the

function de�ned on [0, 1] by

H−1
F (p) =

∫ F−1(p)

0

S(u)du, p ∈ [0, 1]. (3.8.1)

The TTT-transform of F is what it is termed. The SF is given by S(u) = 1−F (u).

The scaled TTT transform is calculated by

φG(p) =
H−1(p)

H−1(1)
. (3.8.2)

Scaled TTT-transform is represented by curve G(p) versus 0 ≤ p ≤ 1.

Using the scaled TTT-transform curve, Barlow and Doksum (1972) identi�ed the

HRF's shape as one of the following:

1. If the scaled TTT-transform curve is on the 45° line, the HRF is considered

to be constant.

2. If the scaled TTT-transform curve is concave above the 45° line, the HRF

is increasing.

3. If the scaled TTT-transform curve is convex below the 45° line, the HRF is

decreasing.

4. If the scaled TTT-transform curve is initially convex below the 45° line, and

subsequently concave above the line, the HRF displays a bathtub shape.

5. If the scaled TTT-transform is �rst concave above the 45° line and then

convex below the 45° line, the HRF is uni-modal or has an inverse bathtub

shape.

Ramos et al. (2014) produced Figure 3.1 to show how to test the hazard function's

behavior.
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Figure 3.1: TTT plots for various distributions show the form of the hazard
function
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CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This Chapter presents and discusses the results of the speci�c objectives of this

study.

4.2 Development of the Extended Exponential-Weibull

Distribution

The ExEW distribution generalizes the exponential-Weibull distribution. It is

formulated by using LAII approach.

Let X ∼ ExEW(a, b, c, α) then the CDF of the ExEW distribution can de�ne by

applying Equation (3.2.1) as follows

F (x) = 1−
[
e−
(
ax+bxc

)]α
= 1− e−α

(
ax+bxc

)
, x > 0. (4.2.1)

Where α > 0, a > 0, and c > 0 are shape parameters, b > 0, is scale parameter.

Note that the additional shape parameter is α .
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4.2.1 Sub-models

The proposed ExEW distribution has some sub-models that are often utilized in

parametric survival modeling. Its sub-models include the E, Weibull, EE, and

the ExW distributions . These sub-models are listed in Table 4.1.

The propositions below relate the proposed distribution to its sub-models.

The Exponential Distribution

Proposition 1Proposition 1Proposition 1. Let X ∼ ExEW(a,b,c,α) If b = 0 and α = 1 in Equation (4.2.1)

then the CDF of ExEW reduce to the CDF of the exponential distribution.

Proof. The ExEW distribution's CDF is written by

F (x) = 1− [e−(ax+bxc)]α, x > 0.

If we change b = 0 and α = 1 , it given us

F (x) = 1− [e−(ax+0xc)] = 1− e−ax, x > 0 (4.2.2)

The Weibull distribution

Proposition 2Proposition 2Proposition 2. LetX ∼ NMEW(a,b,c,α) If a = 0 and α = 1 in Equation (4.2.1)

then the CDF of ExEW reduce to the CDF of the W distribution.

Proof. The ExEW distribution's CDF is written by

F (x) = 1− [e−(ax+bxc)]α, x > 0.

If a = 0 and α = 1 , it given us

F (x) = 1− [e−(a×0+bxc)] = 1− e−bxc

, x > 0. (4.2.3)
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The exponentiated exponential distribution

Proposition 3Proposition 3Proposition 3. Let X ∼ ExEW(a,b,c,α) If b = 0 in Equation (4.2.1) then the

CDF of ExEW reduce to the CDF of the EE distribution.

Proof. The ExEW distribution's CDF is written by

F (x) = 1− [e−(ax+bxc)]α, x > 0.

If we change b = 0, it given us

F (x) = 1− [e−(a∗x+0∗xc)]α = 1− [e−a∗x]α, x > 0. (4.2.4)

The exponential Weibull distribution

Proposition 4Proposition 4Proposition 4. Let X ∼ ExEW(a,b,c,α) If α = 1 in Equation (4.2.1) then the

CDF of ExEW reduce to the CDF of the ExW distribution.

Proof. The ExEW distribution's CDF is de�ned by

F (x) = 1− [e−(ax+bxc)]α, x > 0.

If we change α = 1, it given

F (x) = 1− [e−(a∗x+b∗xc)] = 1− e−(a∗x+b∗xc), x > 0. (4.2.5)

Table 4.1: Sub-models of ExEW(a, b, c, α) distribution

Model a b c α
Exponential a 0 0 1
Weibull 0 b c 1
EE a 0 0 α
EW a b c 1

4.2.2 Probabilistic functions for the ExEW distribution

In this section, the PDF, HRF and SF of the ExEW are presented. In addition

to the above probabilistic functions, CHRF and RHRF are also formulated.
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1. The PDF corresponding to Equation (4.2.1) takes the form

f(x) = α(a+ b cxc−1) exp [−α(a x+ b xc)] , x > 0. (4.2.6)

Figure 4.1 illustrates pdf shapes of the ExEW distribution for various

choices of the parameters. The pdf of the ExEW distribution can be sym-

metrical, asymmetrical, unimodal, J, and reversed-J shapes.

Figure 4.1: Shapes of the PDF of the ExEW distribution for various choices of
the parameters

2. The SF corresponding to Equation (4.2.1) is as follows:

S(x) = exp [−α(a x+ b xc)] . (4.2.7)

3. The HRF of the ExEW distribution is expressed as:

h(x) = α(a+ b cxc−1). (4.2.8)

Figure 4.2 shows the HRF which is clearly decreasing, increasing, constant,

J-shaped.
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4. The RHRF is written as follows:

r(x) =
α(a+ b cxc−1) exp [−α(a x+ b xc)]

1− exp [−α(a x+ b xc)]
. (4.2.9)

5. The CHRF is obtained as:

H(x) = α(a x+ b xc). (4.2.10)

Figure 4.2: Shapes of the HRF of the ExEW distribution for di�erent values of
the parameters
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4.3 Derivation of the mathematical properties of

the ExEW distribution

The quantile function of the distribution, Moments, and related functions such

as the mean, variance, central moments, residual life function, and its inverse,

among others are discussed in this part. The mathematical properties can be

used to describe and investigate lifetime distributions in addition to the functions

presented in Subsection (4.2.2).

4.3.1 Quantile function

The quantile function (qf) is the reverse of the CDF and is signi�cant in quanti-

tative and statistical data analysis. A probability distribution can be described

using either the qf or the CDF (Midhu et al., 2013).

Let x = Q(u) = F−1(u), for 0 < u < 1, then the qf of the ExEW distribution is

given by reversing Equation (4.2.1), thus, F (x) = 1− e−α(ax+bxc) = u for x, then

the qf will be the solution of the equation,

ax+ bxc = − ln{1− u}
1
α . (4.3.1)

4.3.2 Residual and reverse residual life functions

In reliability analysis and risk management, residual life has a wide range of

applications. The residual life of the ExEW r.v. is:

R(t)(x) =
S(x+ t)

S(t)
,

R(t)(x) =

exp

{
−α(a(x+ t) + b(x+ t)c)

}
exp

{
−α(at+ btc)

} . (4.3.2)
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Furthermore, the reverse Residual life of the ExEW distribution can be calculated

as follows:

R̂(t)(x) =
S(x− t)

S(t)
,

R̂(t)(x) =

exp

{
−α(a(x− t) + b(x− t)c)

}
exp

{
−α(at+ btc)

} . (4.3.3)

4.3.2.1 Moments

Moments can be used to analyze some of a distribution's most important char-

acteristics and properties, such as dispersion, tendency, kurtosis, and skewness.

The rth moment of a r.v. X ∼ ExEW (a, b, c, α) is

E(Xr) =
∞∑

j,k,m=0

(−1)j+k+mΓ (α)

j!k!m!Γ (α− j)
am{
α aΓ ( r+k+m+−2c

c
)

c [b(1 + j)]
r+k+m+1

c

+
b Γ ( r+m−c

c
)

[b(1 + j)]
r+c+m

c

}
. (4.3.4)

ProofProofProof: A r.v. X with pdf f(x), the rth moment is written as follows

µ′
r =

∫ ∞

0

xrf(x)dx. (4.3.5)

Equation (4.2.6) is substituted for Equation (4.3.5) and the result is

E(Xr) =

∫ ∞

0

xrαα(a+ b cxc−1)e−α(ax+bxc)dx (4.3.6)

=

∫ ∞

0

xrαae−α(ax+bxc)dx+

∫ ∞

0

xrbcxc−1e−α(ax+bxc)dx (4.3.7)

E(Xr) = αa

∫ ∞

0

xre−α(ax+bxc)dx+ bc

∫ ∞

0

xrxc−1e−α(ax+bxc)dx. (4.3.8)
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Applying binomial expansion and further simpli�cation, Equation (4.3.8) becomes

E(Xr) = αa

∫ ∞

0

xre−(ax+bxc)

∞∑
j=0

(−1)jΓ (α)

j!Γ (α− j)

∞∑
k=0

(−1)k(aj)kxk

k!
e−jbxc

dx+ bc

∫ ∞

0

xr+c−1e−(ax+bxc)

∞∑
j=0

(−1)jΓ (α)

j!Γ (α− j)

∞∑
k=0

(−1)k(aj)kxk

k!
e−jbxc

dx. (4.3.9)

E(Xr) =
∞∑

j,k=0

(−1)j+kΓ (α)(aj)

j!k!Γ (α− j)
αa

∫ ∞

0

xr+ke−(ax+bxc)

e−jbxc

dx+
∞∑

j,k=0

(−1)j+kΓ (α)(aj)

j!k!Γ (α− j)

bc

∫ ∞

0

xr+c−1e−(ax+bxc) − jbxcdx. (4.3.10)

But

e−(ax+bxc) = e−ax × e−bxc

. (4.3.11)

By using McLaurin's series expansion

e−ax =
∞∑

m=0

(−1)m × amxm

m!
. (4.3.12)

Substituting (21) in (19), we have

E(Xr) =
∞∑

j,k,m=0

(−1)j+k+mΓ (α)

j!k!m!Γ (α− j)

{
αam+1

∫ ∞

0

xr+k+me−bxc(1+j)dx

}
+{

bcam
∫ ∞

0

xr+c+m−1e−bxc(1+j)dx

}
. (4.3.13)

Let

w = bxc(1 + j).
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We get,

xc =
w

b(1 + j)
⇒ w1/c

[b(1 + j)]1/c
.

Hence,

x =
w1/c

[b(1 + j)]1/c
.

Then,
dx

dw
=

1/cw
1−c
c

[b(1 + j)]1/c
,

which is follows that

dx =
w

1−c
c

c[b(1 + j)]1/c
dw. (4.3.14)

Substituting Equation (4.3.14) in Equation(4.3.13), we obtain

E(Xr) =
∞∑

j,k,m=0

(−1)j+k+mΓ (α)

j!k!m!Γ (α− j)

{
αam+1

∫ ∞

0

w
r+k+m

c

[b(1 + j)]
r+k+m

c

e−w

}
×{

w
1−c
c

c[b(1 + j)]1/c
dw + bcam

∫ ∞

0

w + c+m− 1
c

[b(1 + j)]r+c+m− 1
c

e−w × w
1−c
c

c[b(1 + j)]1/c
dw

}
.

(4.3.15)

After simpli�cation, Equation (4.3.15) becomes

E(Xr) =
∞∑

j,k,m=0

(−1)j+k+mΓ (α)

j!k!m!Γ (α− j)
am {

α aΓ ( r+k+m+−2c
c

)

c [b(1 + j)]
r+k+m+1

c

+
b Γ ( r+m−c

c
)

[b(1 + j)]
r+c+m

c

}
.

Table 4.2 reports the values of the �rst �ve moments, standard deviation (SD),

coe�cient of variation (CV), skewness (CS), and kurtosis (CK) of the ExEW

model for various parameter values.
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Table 4.2: Numerical values of the �rst �ve moments, SD, CV, CS, and CK for
various parametric values

a,b,c, α a,b,c, α a,b,c, α a,b,c, α a,b,c, α
Moments (1,10,1.9,0.05) (0.1,1,1.1,1.05) (0.5,7,0.5,1.1) (0.1,1,1.05,1.1) (1,7,1.1,2.1)

µ′
1 1.197 0.584 0.208 0.557 0.035
µ′
2 3.0132 0.433 0.119 0.414 0.012
µ′
3 1.007 0.344 0.079 0.329 0.009
µ′
4 4.173 0.286 0.058 0.273 0.003
µ′
5 2.047 0.244 0.045 0.233 0.002

SD 5.357 0.305 0.275 0.322 0.106
CV 4.474 0.522 1.323 0.577 3.068
CS 5.869 -0.594 1.109 -0.508 3.843
CK 4.513 2.239 3.036 2.008 19.828

From Table 4.2, the ExEW distribution is quantitatively versatile in terms of

mean and variance. As evidenced by its values, CS can be right-skewed, al-

most symmetrical, or somewhat left-skewed. The CK values indicate whether

the ExEW distribution is leptokurtic, platykurtic, or mesokurtic. All of these

features point to the ExEW distribution's versatility, which makes it an ideal

choice for modeling.

4.3.3 Moment generating function (mgf)

The mgf of the ExEW distribution is written as follows:

Mt(t) = E(etx) =

∫ ∞

−∞
etxfExEW (x)dx. (4.3.16)

Using the results from Subsection 4.3.2.1, we can get closed-form for the mgf.

Then, the mgf of ExEW distribution reduces to

E(etx) =
∞∑

j,k,m=0

(−1)j+k+mΓ (α)

k!m!j!Γ (−j + α)

(t)r

r!
am{

αa
Γ ( r+k+m+−2c

c
)

c[b(1 + j)]
r+k+m+1

c

+ b
Γ ( r+m−c

c
)

[b(1 + j)]
r+c+m

c

}
. (4.3.17)
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4.4 Estimation of the parameter of the ExEW dis-

tribution

Maximum likelihood (ML) is used to estimate the unknown parameters of the

ExEW distribution using a full sample.

If X1, X2, . . . , Xn denote a random sample from the ExEW distribution with an

unknown parameter vector θθθ = (a, b, c, α).

Then, the ML function follows as

L(θθθ) =
n∏

i=1

α(a+ bcxc−1
i )e−α(axi+bxc

i ). (4.4.1)

Then, the log-likelihood function reduces to

ℓ(θθθ) = n log a+n log b+n log c+n logα+n log(c−1)
n∑

i=1

log xi−
n∑

i=1

(α(axi+bx
c
i))

(4.4.2)

The parameter estimates are produced by performing a partial derivative of ℓ(θθθ)

with respect to each parameter, as shown below.

∂ℓ

∂a
=
n

a
− α

n∑
i=1

xi. (4.4.3)

∂ℓ

∂b
=
n

b
− α

n∑
i=1

xci . (4.4.4)

∂ℓ

∂c
=
n

c
+

n

(c− 1)

n∑
i=1

log xi − bα
n∑

i=1

xci log xi (4.4.5)

and
∂ℓ

∂α
=
n

α
−

n∑
i=1

xi(axi + bxci). (4.4.6)

The unknown parameters can be calculated via resetting the aforementioned

equations to zero and calculating them all at once. These equations can alos
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be numerically solved using statistical software (for example, the adequacymodel

package in R software) or an iterative technique such as the Newton-Raphson

algorithm.

Because of predicted information matrix is too complicated to set con�dence

intervals for the parameters, the observed information matrix I(θθθ) is used.

The following is how the information matrix is obtained:

I(θθθ) = −


∂ℓ2

∂a2
∂ℓ2

∂a∂b
∂ℓ2

∂a∂c
∂ℓ2

∂a∂α

∂ℓ2

∂b2
∂ℓ2

∂b∂c
∂ℓ2

∂b∂α

∂ℓ2

∂c2
∂ℓ2

∂α∂c

∂ℓ2

∂α2

 .

Whereas the regularity criteria are satis�ed and the parameters are within the

interior of the parameter space but not on the boundary,
√
n(∼= θ̂θθ − θθθ) con-

verges in distribution to N4(0, I
−1(θθθ)), where I(θθθ) is the predicted. When I(θθθ) is

substituted by the observed information matrix assessed at J(θ̂θθ), the asymptotic

behavior remains true. To construct 100(1 − τ)% two-sided 95% con�dence in-

terval for model parameters, use the asymptotic multivariate normal distribution

N4(0, I
−1(θ̂θθ), where τ is the signi�cance level.

4.5 Development of the Extended Exponential-Weibull

Regression Model

4.5.1 The extended exponential-Weibull accelerated failure

time model

The proposed AFT model is developed by extending the ExEW(a, b, c, α) distri-

bution to incorporate covariates. The corresponding SF with covariate vector zzz
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is given by

S(t;zzz) = exp
{
−α
[
a
(
tez

′βz′βz′β
)
+ b
(
tez

′βz′βz′β
)c]}

, t > 0, (4.5.1)

which corresponds to the SF of the ExEW distribution under the following con-

�guration: a∗ = aezzz
′βββ and b∗ = b

(
ezzz

′βββ
)c
, that is

S(t;zzz) = exp [−α (a∗t+ b∗tc)] , t > 0.

This demonstrates that, under the AFT model framework, the ExEW distribution

is closed in the distributional sense.

Furthermore, the HRF with covariates zzz is written as follows:

h(t;zzz) = α

[
a+ b c

(
tezzz

′βββ
)c−1

]
ezzz

′βββ, t > 0. (4.5.2)

The PDF with covariates vector zzz is given by

f(t;zzz) = α

[
a+ b c

(
tezzz

′βββ
)c−1

]
exp

{
−α
[
a
(
tezzz

′βββ
)
+ b

(
tezzz

′βββ
)c]}

, t > 0.

(4.5.3)

Single-parameter hazard-based regression (SPHBR) models are commonly used

to relate covariates to one parameter of speci�c interest. In these SPHBR models,

the role of the other (explanatory independent variables) parameters are often lit-

tle more than to give the model su�cient generality to adapt to the data. A more

tractable method is to relate these other parameters to covariates; this method

is known as multi-parameter hazard-based regression (MPHBR) models (Burke

et al., 2020a,0; Jaouimaa et al., 2021; Peng et al., 2020). The primary focus of this

study is the development of MPHBR models in the context of time-to-event anal-

ysis.

In our case, this is a multi-parameter AFT model, which is di�erent from a

single-parameter AFT model, like the Weibull AFT model or the log-logistic AFT

model, among others, where only the scale parameter is changed. As a result,

except for the α parameter, the covariates in�uence the majority of the baseline
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distribution parameters. This is what makes our work unique and di�erent from

the common classical AFT models.

4.6 Estimation of the ExEW-AFT parameters

The likelihood function in the ExEW-AFT model is given by

L(θ,D) =
n∏

i=1

[f(ti; a, b, c, α,βββ,zzzi)]
δi [S(ti; a, b, c, α,βββ,zzzi)]

1−δi , (4.6.1)

where S(t; a, b, c, α,βββ,zzz) and f(t; a, b, c, α,βββ,zzz) of the ExEW-AFT model are de-

rived from Equations (4.5.1) and (4.5.3), θ = (a, b, c, α,βββ),

D = ((t1, δ1, zzz1), (t2, δ2, zzz2), . . . , (tn, δn, zzzn)). We recall that the censoring indica-

tor satis�es δ = 0 if the observation is censored and δ = 1 if the observation is

failed, and zzzi is the matrix of covariates, which is known as the design matrix

or model matrix. After expressing the PDF in terms of HRF and SF and taking

the logarithm of both sides of the likelihood function, the log-likelihood can be

written as follows:

ℓ(θ;D) =
n∑

i=1

[δi log h(ti; a, b, c, α,βββ,zzzi) + logS(ti; a, b, c, α,βββ,zzzi)] . (4.6.2)

As a result, the full log-likelihood function for the ExEW-AFT model can be

written as follows:

ℓ(θ;D) =
n∑

i=1

δi log

[
α

(
a+ b c

(
tezizizi

′βββ
)c−1

)
ezizizi

′βββ

]

+
n∑

i=1

log

[
− α

(
a
(
tezizizi

′βββ
)
+ b
(
tezizizi

′βββ
)c)]

. (4.6.3)

The MLEs of θ′ = (a, b, c, α) and βββ can be obtained by maximising Equa-

tion (4.6.3) directly with respect to θ. The log-likelihood function's �rst derivative

65



can be solved (non-linear equations below).

∂ℓ

∂a
=

ezizizi
′βββ
∑n

i=1 ti

a
(
tiezizizi

′βββ
)
+ b
(
tiezizizi

′βββ
)c + ezizizi

′βββ
∑n

i=1 tiδi

a
(
tiezizizi

′βββ
)
+ bc

(
tiezizizi

′βββ
)c , (4.6.4)

∂ℓ

∂b
=

∑n
i=1

(
tie

zizizi
′βββ
)c

a
(
tiezizizi

′βββ
)
+ b
(
tiezizizi

′βββ
)c + c

∑n
i=1 δi

(
tie

zizizi
′βββ
)c

a
(
tiezizizi

′βββ
)
+ bc

(
tiezizizi

′βββ
)c , (4.6.5)

∂ℓ

∂c
=
b
∑n

i=1

(
tie

zizizi
′βββ
)c
log
[
tie

zizizi
′βββ]

a
(
tiezizizi

′βββ
)
+ b
(
tiezizizi

′βββ
)c +

∑n
i=1 δi

(
b
(
tie

zizizi
′βββ
)c

+ bc
(
tie

zizizi
′βββ
)c

+ log
[
tie

zizizi
′βββ
])

a
(
tiezizizi

′βββ
)
+ bc

(
tiezizizi

′βββ
)c ,

(4.6.6)

∂ℓ

∂α
=

∑n
i=1 δi
α

−

∑n
i=1

(
− a
(
tie

zizizi
′βββ
)
− b
(
tie

zizizi
′βββ
)c)(

a
(
tiezizizi

′βββ
)
+ b
(
tiezizizi

′βββ
)c)

α

, (4.6.7)

∂ℓ

∂βββ
=

∑n
i=1

(
a
(
zizizitie

zizizi
′βββ
)
+ bc

(
zizizitie

(
zizizi

′βββ
)c−1))

a
(
tiez

′
iz
′
iz
′
iβββ
)
+ b
(
tiez

′
iz
′
iz
′
iβββ
)c +

∑n
i=1 δi

(
a
(
zizizitie

zizizi
′βββ
)
+ bc2

(
zizizitie

(
zizizi

′βββ
)c−1))

a
(
tiez

′
iz
′
iz
′
iβββ
)
+ bc

(
tiez

′
iz
′
iz
′
iβββ
)c .

(4.6.8)

It is crucial to remember that θ′ = (a, b, c, α) and βββ cannot be analytically solved.

Numerical iteration techniques like the Newton-Raphson algorithm are employed

to solve these equations.

Tests and interval estimates for the model parameters are made based on the

maximum likelihood estimators' approaching normality. With a mean θ and

covariance matrix
∑

= I(θ̂)−1, the asymptotic distribution of θ̂ is approximately

a (p+4) variate normal distribution. For the extended exponential-Weibull model,

the observed information matrix is represented as

I(θ̂) = −



∂2ℓ(θ)
∂a2

∂2ℓ(θ)
∂a∂b

∂2ℓ(θ)
∂a∂c

∂2ℓ(θ)
∂a∂α

∂2ℓ(θ)
∂a∂βββ

∂2ℓ(θ)
∂b2

∂2ℓθ
∂b∂c

∂2ℓ
∂b∂α

∂2ℓ(θ)
∂b∂βββ

∂2ℓ
∂c2

∂2ℓ
∂α∂c

∂2ℓ(θ)
∂c∂βββ

∂2ℓ(θ)
∂α2

∂2ℓ(θ)
∂α∂βββ

∂2ℓ(θ)
∂βββ2

p


a (p+4)× a (p+4) observed information matrix (second derivatives of ℓ(θ). By the
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multivariate delta method, the asymptotic distribution of θ̂ is also approximately

normal with mean θ and covariance matrix D
∑
D‘, where D is the (p + 4) × a

(p+ 4) diagonal matrix.

4.6.1 Extended exponetial-Weibull mixture cure model

The ExEW mixture cure model (ExEW-MCM) in this Subsection is proposed

with the aim of accounting for the fraction of susceptible (cured) subjects in the

study. According to the Equations (4.2.6) and (4.2.7) for the ExEW distribution

and Equations (3.5.1) and (3.5.2) for MCM, we can formulate the ExEW-MCM

as follows

� The S(MCM)(t) for ExEW model is given by

S(MCM)(t) = ρ+ (1− ρ). exp

{
−α(a ti + b tci)

}
, (4.6.9)

� the f(MCM)(t) or ExEW model can be written as follows

f(MCM)(t) = (1− ρ)α(a+ b cxc−1) exp

{
−α(a x+ b xc)

}
, x > 0. (4.6.10)

4.7 Estimation of the ExEW-MCM parameters

In this Section we employ the maximum likelihood to estimate the ExEW-MCM

parameters. Let θ =
(
a, b, c, α, ρ

)′
. substituting Equations (4.2.6) and (4.2.7)

into equation (3.5.3) of the MCM with ExEW susceptible distribution, we obtain

the log-likelihood:

ℓ(θ) = log
(
LMCM(θ)

)
= log

(
1− p

) n∑
i=1

δi+
n∑

i=1

δi log

(
α(a+b ctc−1

i ) exp

{
−α(a ti+b tci)

}
)

)
+

n∑
i=1

(
1− δi

)
log

(
ρ+ (1− ρ) exp

{
−α(a ti + b tci)

})
. (4.7.1)
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The MLE of θ =
(
a, b, c, α, ρ

)′
is one that maximizes ℓ(θ), As indicated by the

θ̂. The following scoring functions are derived from partial derivatives of the

log-likelihood function in Equation (4.7.1) with respect to θ:

∂ℓ

∂a
=
n

a
+

n∑
i=1

exp

{
α
(
ati + btci

)}(
1− ρ

)
αti
(
1− δi

)
exp

{
α
(
ati + btci

)}(
1− ρ

)
+ ρ

, (4.7.2)

∂ℓ

∂b
= log(c− 1)

n∑
i=1

(
tci +1

)
+

n∑
i=1

exp

{
α
(
ati + btci

)}(
1− ρ

)
αtci
(
1− δi

)
exp

{
α
(
ati + btci

)}(
1− ρ

)
+ ρ

, (4.7.3)

∂ℓ

∂c
=
n

c
+ log(c− 1)

n∑
i=1

−
(
tci log(ti) + αb

)
+

∑n
i=1 ti

(
− α

(
ati + btci

))(
c− 1

) +

n∑
i=1

b exp

{
α
(
ati + btci

)}(
1− ρ

)
α log(ti)t

c
i

(
1− δi

)
exp

{
α
(
ati + btci

)}(
1− ρ

)
+ ρ

, (4.7.4)

∂ℓ

∂α
=
n

α
+ (c− 1)

n∑
i=1

ti
(
−
(
ati + btci

))
+

n∑
i=1

(1− ρ)

(
ati exp

{
α
(
ati + btci

)}
+ btci exp

{
α
(
ati + btci

)})
(1− δi)

exp

{
α
(
ati + btci

)}
(1− ρ) + ρ

, (4.7.5)

∂ℓ

∂ρ
=

n∑
i=1

(
1− exp

{
α
(
ati + btci

)})(
1− δi

)
exp

{
α
(
ati + btci

)}(
1− ρ

)
+ ρ

−
∑n

i=1 δi
1− ρ

. (4.7.6)

The MLE is the solution to the scoring equations if the log-likelihood function

has a global maximizer. The Newton-Raphson method is used to compute the

numerical solution since it is a nonlinear system.
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4.8 Simulation Study

4.8.1 Introduction

This Section presents extensive simulation studies to evaluate the developed mod-

els, including the ExEW model and the ExEW-AFT model.

4.8.2 Simulation study of the ExEW distribution

In this part, a comprehensive numerical inspection using Monte Carlo simula-

tions is achieved to evaluate the capability of the ML estimates (MLEs) for

the ExEW model. The absolute biases (AB), root mean square errors (RM-

SEs), and coverage probability (CP) are calculated for di�erent small and large

samples and parameter settings, to evaluate the performance of MLEs. To

produce random samples from the ExEW distribution, the qf (4.3.1) is em-

ployed. With n = 25, 50, 75, 100, 150, and 200, the simulation experiments are

repeated N = 1000 times. For set I: a = 1, b = 1, c = 1.5, α = 0.12, set II:

a = 1, b = 1, c = 1.5, α = 0.14, set III: a = 1, b = 1, c = 1.5, α = 0.25, and set

IV: a = 1, b = 1, c = 1.5, α = 0.50.

The AB and RMSE values of the parameters a, b, c, and α for various sample

sizes are shown in Tables 4.3 and 4.4. The visual comparisons of these results

are shown in Figures 4.3�4.10. The �ndings show that the RMSE decreases as

the sample size grows until it hits zero. Furthermore, the AB decreases as the

sample size grows. As a result, the MLEs and their asymptotic features can be

used to build con�dence ranges even for tiny sample numbers. Additionally, the

con�dence intervals' CPs are quite close to the nominal 95 percent level.
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Table 4.3: The results of ABs, RMSEs, and CP for the MLEs of ExEW distribu-
tion for I & II.

I II
Parameters n ABs RMSEs CP ABs RMSEs CP

25 2.327 3.646 0.995 2.390 3.643 1.000
a 50 1.784 2.897 0.998 1.804 2.927 0.999

75 1.603 2.675 1.0 1.571 2.698 1.000
100 1.247 2.223 0.999 1.122 2.121 1.000
150 0.818 1.555 1.000 0.793 1.583 1.000
200 0.631 1.273 1.00 0.539 1.113 1.000
25 0.695 0.818 0.872 0.710 0.829 0.859

b 50 0.570 0.736 0.926 0.578 0.749 0.914
75 0.518 0.708 0.93 0.514 0.709 0.927
100 0.451 0.651 0.952 0.403 0.642 0.959
150 0.334 0.571 0.982 0.324 0.576 0.975
200 0.281 0.535 0.99 0.259 0.528 0.993
25 1.332 1.910 0.97 1.509 2.139 0.957

c 50 0.884 1.362 0.969 1.035 1.562 0.957
75 0.785 1.263 0.97 0.857 1.376 0.964
100 0.609 1.047 0.971 0.595 1.046 0.976
150 0.387 0.705 0.971 0.404 0.764 0.971
200 0.292 0.518 0.98 0.285 0.546 0.975
25 0.033 0.057 0.999 0.041 0.067 0.999

α 50 0.028 0.044 1.000 0.036 0.051 1.000
75 0.027 0.040 1.000 0.032 0.045 1.000
100 0.021 0.034 1.000 0.023 0.038 1.000
150 0.015 0.027 1.000 0.017 0.031 1.000
200 0.012 0.023 1.000 0.013 0.025 1.000
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Table 4.4: The results of ABs, RMSEs, and CP for the MLEs of ExEW distribu-
tion for III & IV.

III IV
Parameters n ABs RMSEs CP ABs RMSEs CP

25 1.750 2.816 0.996 1.304 2.243 0.999
a 50 1.362 2.330 1.000 1.111 2.070 0.997

75 1.029 1.965 0.999 0.798 1.543 1.000
100 0.871 1.617 0.999 0.742 1.372 0.999
150 0.578 1.222 1.000 0.463 1.045 1.000
200 0.455 01.036 1.00 0.361 0.998 1.000
25 0.592 0.725 0.87 0.518 0.685 0.914

b 50 0.494 0.658 0.912 0.449 0.647 0.925
75 0.386 0.617 0.944 0.370 0.593 0.943
100 0.367 0.595 0.954 0.361 0.577 0.964
150 0.285 0.536 0.976 0.250 0.508 0.988
200 0.240 0.489 0.99 0.187 0.476 0.986
25 1.764 2.671 0.946 2.417 3.911 0.938

c 50 1.179 1.892 0.969 1.705 2.917 0.955
75 0.844 1.480 0.977 1.174 2.153 0.965
100 0.745 1.314 0.976 0.984 1.726 0.966
150 0.487 0.933 0.981 0.569 1.12 0.974
200 0.352 0.711 0.973 0.466 1.054 0.983
25 0.063 0.111 1.000 0.092 0.197 1.000

α 50 0.054 0.085 1.000 0.082 0.160 1.000
75 0.040 0.071 1.000 0.062 0.136 1.000
100 0.035 0.065 1.000 0.061 0.121 1.000
150 0.025 0.049 1.000 0.035 0.093 1.000
200 0.017 0.041 1.000 0.028 0.083 1.000

Figure 4.3: The plots of ABs for the ExEW parameters in set I
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Figure 4.4: The plots of ABs for the ExEW parameters in set II

Figure 4.5: The plots of ABs for the ExEW parameters in set III

Figure 4.6: The plots of ABs for the ExEW parameters in set IV
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Figure 4.7: The plots of RMSEs for the ExEW parameters in set I

Figure 4.8: The plots of RMSEs for the ExEW parameters in set II
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Figure 4.9: The plots of RMSEs for the ExEW parameters parameters in set III

Figure 4.10: The plots of RMSEs for the ExEW parameters in set IV

4.8.3 Simulation study of the ExEW-AFT model

In this Subsection, we demonstrate the inferential capabilities of the proposed

model using simulation results. Here, we demonstrate parameter estimation,

the inclination to recover baseline HRF shapes using standard error (SE), average

bias (AB), mean square error (MSE), and relative bias (RB) to pick models

that accurately re�ect the underlying HRF shape, and the e�ect of censoring

proportions on the model's inferential features.
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4.8.3.1 Simulation designs and data generation

Assuming the AFT regression model framework presented in Equation (4.5.2), we

speci�cally simulated n = 1000 and 5000 data sets. Four variables were taken into

account in the simulation study when we considered covariates. Two binary co-

variates, x1 and x2, are produced using the Bernoulli (0.5) distribution, while two

continuous covariates, x3 and x4, were produced using the standard normal distri-

bution. The covariate vector xxx = (x1, x2, x3, x4)
′ corresponds to the values for the

AFT regression coe�cients, which are selected to be (−2, 0.75,−0.75, 0.5,−0.5).

Using the inverse transform technique, the exponentiated Weibull (EW) distri-

bution is used to simulate lifetime data from the AFT model framework (Leemis

et al., 1990).

In the regression equation, the e�ects of the covariates and the intercept are

presumptive.

4.8.3.2 Simulation algorithm

The following are the steps for executing the proposed AFT model:

(i) Set the parameters of the model's initial values,

(ii) Utilize the inverse transform technique, create the lifetime data by inverting

the CHRF of the proposed model,

(iii) Utilize the various estimates to evaluate the estimations' values,

(iv) Analyze the inferential properties of the estimates, taking into account the

SE, AB, MSE, and RB.

(v) The superior model should be chosen based on the AIC.

In this study, we used the EW baseline distribution to generate survival times that

can accommodate all of the basic HRF shapes, including decreasing, constant,

increasing, unimodal, and bathtub shapes. The EW distribution is likewise closed

in the context of AFT regression model (Khan, 2018).
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As a last comment, we recall that the CHRF of the EW model is

H0(t; a, b, c) = − log
[
1−

(
1− e−(bt)a

)c]
. (4.8.1)

and thus the inverse of the CHRF is written as follows:

H−1
0 (t; a, b, c) =

(
− log

[
(e−t − 1)

1/c − 1
]) 1

a

b
. (4.8.2)

4.8.3.3 Simulated scenarios

Based on the Figure 1.7 we provide the results of four simulation scenarios based

on non-monotone HRF (bathtub or unimodal), and monotone HRF (decreasing or

increasing) to evaluate the performance of the ExEW-AFT model in comparison

with the Weibull AFT (W-AFT), log-logistic AFT (LL-AFT), and EW-AFT

models and to investigate the impact of the baseline HRF shape speci�cation on

the AFT model's inferential qualities.

Scenario 1: monotone (increasing) HRF :

The lifetime data for this scenario are created using the EW model, and the

parameter for (a = 1.0, b = 1.5, and c = 1.5), and censoring times generated

from the exponential distribution with rate parameter (λ):

For n = 1000, λ = 0.33 and 0.2.

For n = 5000, λ = 0.4 and 0.22

Scenario 2: monotone (decreasing) HRF:

The EWmodel was used to create the lifetime data for this scenario, and the

parameter values for (a = 0.80, b = 0.80, and c = 1.9), The censoring times

generated from the exponential distribution with rate parameter (λ):

For n = 1000, λ = 0.38 and 0.25

For n = 5000, λ = 0.47 and 0.25

Scenario 3: non-monotone (bathtub) HRF:

The EWmodel was used to create the lifetime data for this scenario, and the
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parameter values for (a = 0.75, b = 1.50, and c = 2.0), and the censoring

times generated from the exponential distribution with rate parameter (λ):

For n = 1000, λ = 0.33 and 0.2

For n = 5000, λ = 0.65 and 0.22

Scenario 4: non-monotone (unimodal) HRF:

The EWmodel was used to create the lifetime data for this scenario, and the

parameter values for (a = 1.65, b = 1.50, and c = 0.95), and the censoring

times generated from the exponential distribution with rate parameter (λ):

For n = 1000, λ = 0.29 and 0.18

For n = 5000, λ = 0.47 and 0.21

Figure 1.7 shows the four scenarios 1�4 (increasing (blue line), decreasing (red

line), bathtub (green line), and unimodal (purple line) respectively), depending

on the parameter values we chose, there were, on average, 20 and 30 percent

censored observations.

4.8.3.4 Analyses of simulated data

To evaluate the inferential properties of the proposed models in all simulated sce-

narios, the ExEW-AFT model is �tted to the appropriate true generating model

from the EW-AFT model. We also �tted the sub-models into each scenario. Fur-

thermore, the estimates of the regression coe�cients for each model are evaluated

for stability based on the SE, RB, MSE, and the AB.

Instead of examining the properties of the optimization process, our purpose was

to examine the qualities of the estimates.

In all circumstances, we used the parameter values from the generating model

as our optimization step starting points. The R programming language is used

to do the analysis. The optimization stage was completed using the R software

�nlminb()�.
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4.8.3.5 Performance measures

The �exibility of the models for the covariates is evaluated in this study using

measures such as the mean (estimated), AB, MSE, RB, and SE. Furthermore,

the AIC is employed to compare the studied models.

4.8.3.6 Simulation results

According to the �ndings of scenario 1 in Tables 4.5�4.8, the AIC indicates that

the proposed model performed better than others. AIC values in Tables 4.6 di�er

only slightly. Moreover, the SE, AB, MSE, and RB indicate that the proposed

model performed better than others. Furthermore, it appears that sample size

and censoring percentage have an e�ect on how well models match data. When

censoring and sample size are increased, our proposed ExEW-AFT model often

outperforms the W-AFT and LL-AFT models. As anticipated, all models equally

integrated the increasing HRF. However, our proposed model performs better in

the case of heavy censoring.

Theoretically, the �ndings of scenario 2 in Tables 4.9�4.12 show that all of the

competing models can take into account the decreasing HRF shape. The AIC

indicates that the proposed model performed better than others. Our proposed

ExEW-AFT model outperformed the W-AFT and LL-AFT models, and even the

genuine produced model in terms of SE, AB, MSE, and RB. Moreover, when the

censoring and sample size increase, our proposed model is once again the best-

suited one and makes a wise choice of heavy censoring.

The results of scenario 3 in Tables 4.13�4.16, reveal that the only model that

has the lowest value in terms of SE, AB, MSE, and RB is our proposed ExEW-

AFT model. Generally, the W-AFT and LL-AFT models generated the least

accurate estimates for AB, MSE, and RB according to Scenario 3, as expected

(i.e., bathtub hazard).

The �ndings of scenario 4 in Tables 4.17�4.20 show that the proposed ExEW-

AFT model produced estimates that had the lowest bias, MSE, and RB values

for all the regression coe�cients while producing estimates that are equivalent to
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the genuine model in terms of the AIC value. Finally, the proposed AFT model

outperforms the other competing models in all circumstances, including heavy

censoring.

Table 4.5: Simulation study for scenario 1 (n = 1000 ) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -1.118 10.444 0.882 -2.749 -0.441
(AIC = 1342.993) β1 0.75 1.144 0.057 0.394 0.746 0.525

β2 -0.75 -1.233 0.062 -0.483 0.958 0.644
β3 0.50 0.924 0.116 0.424 0.604 0.848
β4 -0.50 -0.789 0.116 -0.288 0.371 0.576
a 1.0 -8.288
b 1.50 8.463
c 1.50 1.010
α 0.033 0.165

EW βo -2.0 -3.381 85.370 -0.880 4.293 0.440
(AIC = 1342.156) β1 0.75 1.179 0.066 0.429 0.828 0.572

β2 -0.75 -1.265 0.069 -0.515 1.037 0.687
β3 0.50 0.952 0.127 0.452 0.657 0.904
β4 -0.50 -0.813 0.122 -0.313 0.411 0.626
a 1.0 1.027
b 1.50 0.827
c 1.50 1.784

W-AFT βo -2.0 -2.288 44.235 -0.288 1.236 0.144
(AIC = 1342.835) β1 0.75 1.206 0.060 0.456 0.891 0.608

β2 -0.75 -1.268 0.066 -0.518 1.046 0.691
β3 0.50 0.974 0.122 0.474 0.698 0.948
β4 -0.50 -0.815 0.119 -0.315 0.414 0.630
a 1.0 1.288
b 1.50 0.685

LL-AFT βo -2.0 -2.288 2.785 -0.288 1.236 0.144
(AIC = 1341.037) β1 0.75 1.206 0.066 0.456 0.891 0.608

β2 -0.75 -1.268 0.068 -0.518 1.046 0.691
β3 0.50 0.974 0.013 0.474 0.698 0.948
β4 -0.50 0.012 0.815 -0.315 0.414 0.630
a 1.0 1.288
b 1.50 0.685
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Table 4.6: Simulation study for scenario 1 (n = 5000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -1.356 1.507 0.644 -2.161 -0.322
(6107.316) β1 0.75 1.255 0.028 0.505 1.013 0.673

β2 -0.75 -1.297 0.029 -0.547 1.120 0.729
β3 0.50 0.948 0.054 0.448 0.649 0.896
β4 -0.50 -0.830 0.053 -0.330 0.439 0.660
a 1.0 -6.156
b 1.50 6.649
c 1.50 1.026
α 0.033 0.083

EW-AFT βo -2.0 -3.288 11.628 -0.811 3.900 0.406
(AIC = 6100.729) β1 0.75 1.283 0.031 0.533 1.083 0.711

β2 -0.75 -1.321 0.032 -0.571 1.181 0.761
β3 0.50 0.973 0.057 0.473 0.697 0.946
β4 -0.50 -0.852 0.056 -0.352 0.476 0.704
a 1.0 1.034
b 1.50 0.744
c 1.50 2.078

W-AFT βo -2.0 -1.931 12.884 -1.224 6.394 0.612
(AIC = 6116.419) β1 0.75 1.253 0.029 0.503 1.008 0.671

β2 -0.75 -1.299 0.030 -0.549 1.126 0.732
β3 0.50 0.937 0.055 0.437 0.628 0.874
β4 - 0.50 -0.823 0.054 -0.323 0.428 0.646
a 1.0 1.961
b 1.50 1.241

LL-AFT βo -2.0 -2.310 4.515 0.141 -0.543 -0.070
(AIC = 6104.668) β1 0.75 1.292 0.029 0.503 1.009 0.671

β2 -0.75 -1.322 0.032 -0.557 1.146 0.743
β3 0.50 0.985 0.057 0.479 0.709 0.958
β4 -0.50 -0.866 0.057 -0.359 0.487 0.718
a 1.0 1.310
b 1.50 0.688
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Table 4.7: Simulation study for Scenario 1 (n = 1000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -0.694 6.442 1.306 -3.518 -0.653
(AIC = 1925.137) β1 0.75 1.053 0.043 0.303 0.546 0.404

β2 -0.75 -1.087 0.045 -0.337 0.619 0.449
β3 0.50 0.756 0.087 0.256 0.322 0.512
β4 -0.50 -0.821 0.089 -0.321 0.424 0.642
a 1.0 -8.194
b 1.50 8.315
c 1.50 1.013
α 0.033 0.195

EW-AFT βo -2.0 -2.329 13.650 -0.296 1.271 0.148
(AIC = 1927.636) β1 0.75 1.067 0.047 0.317 0.576 0.423

β2 -0.75 -1.099 0.048 -0.349 0.645 0.465
β3 0.50 0.746 0.090 0.246 0.306 0.492
β4 -0.50 -0.837 0.092 -0.337 0.451 0.644
a 0.50 1.572
b 1.50 0.920
c 1.50 1.821

W-AFT βo -2.0 -1.121 11.686 0.879 -2.743 -0.440
(AIC = 1929.452) β1 0.75 1.043 0.044 0.293 0.526 0.391

β2 -0.75 -1.087 0.045 -0.337 0.619 0.449
β3 0.50 0.730 0.088 0.230 0.283 0.460
β4 - 0.50 -0.822 0.089 -0.322 0.426 0.644
a 1.0 7.959
b 1.50 1.385

LL-AFT βo -2.0 -1.963 8.908 0.037 -0.148 -0.018
(AIC = 1928.382) β1 0.75 1.083 0.047 0.333 0.610 0.444

β2 -0.75 -1.104 0.048 -0.354 0.656 0.472
β3 0.50 0.745 0.071 0.245 0.304 0.490
β4 -0.50 -0.841 0.070 -0.341 0.458 0.682
a 1.0 0.963
b 1.50 0.601
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Table 4.8: Simulation study for scenario 1 (n = 5000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -1.839 2.163 0.161 -0.618 -0.080
(AIC = 9321.257) β1 0.75 1.130 0.020 .380 0.714 0.507

β2 -0.75 -1.149 0.021 -0.399 0.758 0.532
β3 0.50 0.828 0.039 0.328 0.436 0.656
β4 -0.50 -0.766 0.039 -0.266 0.337 0.532
a 1.0 -4.313
b 1.50 5.871
c 1.50 1.105
α 0.033 0.093

EW-AFT βo -2.0 -2.495 6.116 -0.495 2.227 0.248
(AIC = 9317.443) β1 0.75 1.142 0.022 0.392 0.742 0.523

β2 -0.75 -1.157 0.022 -0.407 0.776 0.543
β3 0.50 0.828 0.040 0.328 0.435 0.656
β4 -0.50 -0.771 0.039 -0.271 0.344 0.542
a 1.0 1.277
b 1.50 0.862
c 1.50 2.032

W-AFT βo -2.0 -1.194 102.989 0.806 -2.575 -0.403
(AIC = 93341.946) β1 0.75 1.119 0.012 0.369 0.690 0.492

β2 -0.75 -1.143 0.020 -0.393 0.745 0.524
β3 0.50 0.804 0.039 0.304 0.396 0.608
β4 - 0.50 -0.749 0.038 -0.249 0.311 0.498
a 1.0 7.893
b 1.50 1.377

LL-AFT βo -2.0 -2.698 2.097 -0.698 3.281 0.349
(AIC = 9333.703) β1 0.75 1.144 0.022 0.394 0.746 0.525

β2 -0.75 -1.170 0.021 -0.420 0.807 0.560
β3 0.50 0.850 0.039 0.350 0.473 0.700
β4 -0.50 -0.750 0.039 -0.250 0.312 0.500
a 1.0 0.297
b 1.50 0.574
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Table 4.9: Simulation study for scenario 2 (n = 1000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -2.190 0.287 -0.190 0.798 0.095
(AIC = 1155.018) β1 0.75 1.431 0.312 0.681 1.486 0.908

β2 -0.75 -1.447 0.311 -0.697 1.531 0.929
β3 0.50 1.104 0.219 0.605 0.970 1.210
β4 -0.50 -1.103 0.182 -0.603 0.968 1.206
a 0.80 -0.977
b 0.80 1.427
c 1.90 0.701
α 0.09 0.114

EW-AFT βo -2.0 -2.529 0.275 -0.529 2.394 0.264
(AIC = 1212.930) β1 0.75 1.433 0.285 0.683 1.491 0.911

β2 -0.75 -1.445 0.286 -0.695 1.526 0.927
β3 0.50 1.126 0.207 0.626 1.018 1.252
β4 -0.50 -1.114 0.180 -0.614 0.990 1.228
a 0.80 0.816
b 0.80 0.263
c 1.90 3.846

W-AFT βo -2.0 -2.864 0.288 -0.864 4.202 0.432
(AIC = 1162.468) β1 0.75 1.450 0.323 0.700 1.540 0.933

β2 -0.75 -1.454 0.319 -0.704 1.552 0.939
β3 0.50 1.135 0.222 0.635 1.039 1.270
β4 - 0.50 -1.110 0.181 -0.610 0.982 1.220
a 0.80 1.664
b 0.80 1.368

LL-AFT βo -2.0 -2.864 0.278 -0.864 4.201 0.432
(AIC = 1173.484) β1 0.75 1.450 0.288 0.700 1.539 0.933

β2 -0.75 -1.454 0.290 -0.704 1.551 0.939
β3 0.50 1.135 0.210 0.635 1.038 1.270
β4 -0.50 -1.110 0.180 -0.610 0.982 1.220
a 0.80 1.663
b 0.80 1.368
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Table 4.10: Simulation study for scenario 2 (n = 5000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -2.190 0.287 -0.190 0.798 0.095
(AIC = 7012.171) β1 0.75 1.431 0.312 0.681 1.486 0.908

β2 -0.75 -1.447 0.311 -0.697 1.531 0.929
β3 0.50 1.105 0.219 0.605 0.970 1.210
β4 -0.50 -1.103 0.182 -0.603 0.968 1.206
a 0.80 -0.087
b 0.80 0.719
c 1.90 0.743
α 0.09 0.074

EW-AFT βo -2.0 -2.529 4.844 -0.529 2.394 0.264
(AIC = 7366.012) β1 0.75 1.433 0.123 0.683 1.491 0.911

β2 -0.75 -1.445 0.125 -0.695 1.526 0.927
β3 0.50 1.126 0.235 0.626 1.018 1.252
β4 -0.50- -1.114 0.235 -0.614 0.990 1.228
a 0.80 0.816
b 0.80 0.263
c 1.90 3.846

W-AFT βo -2.0 -5.213 49.582 -3.213 23.173 1.606
(AIC = 7127.747) β1 0.75 1.417 0.114 0.667 1.446 0.889

β2 -0.75 -1.449 0.117 -0.699 1.537 0.932
β3 0.50 1.077 0.227 0.577 0.911 1.154
β4 - 0.50 -1.101 0.228 -0.601 0.963 1.202
a 0.80 0.823
b 0.80 0.640

LL-AFT βo -2.0 -2.864 0.124 -0.864 4.201 0.432
(AIC = 7189.352) β1 0.75 1.450 0.129 0.700 1.539 0.933

β2 -0.75 -1.454 0.130 -0.704 1.551 0.939
β3 0.50 1.135 0.094 0.635 1.038 1.270
β4 -0.50 -1.110 0.081 -0.610 0.982 1.220
a 0.80 1.664
b 0.80 1.368
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Table 4.11: Simulation study for scenario 2 (n = 1000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -2.029 0.522 -0.029 0.118 0.015
(AIC = 1193.398) β1 0.75 1.212 0.076 0.462 0.907 0.616

β2 -0.75 -1.187 0.076 -0.437 0.848 0.583
β3 0.50 0.822 0.156 0.322 0.426 0.644
β4 -0.50 -0.930 0.158 -0.430 0.614 0.860
a 0.80 0.869
b 0.80 -0.556
c 1.90 1.082
α 0.09 0.583

EW-AFT βo -2.0 -0.422 17.156 1.577 -3.821 -0.788
(AIC = 1282.736) β1 0.75 1.254 0.098 0.504 1.011 0.672

β2 -0.75 -1.375 0.101 -0.625 1.328 0.833
β3 0.50 1.056 0.189 0.556 0.866 1.112
β4 -0.50 -1.185 0.192 -0.685 1.154 1.370
a 0.80 1.301
b 0.80 0.244
c 1.90 5.801

W-AFT βo -2.0 -4.290 75.287 -2.290 14.406 1.145
(AIC =1215.912) β1 0.75 1.247 0.089 0.497 0.992 0.663

β2 -0.75 -1.389 0.094 -0.639 1.366 0.852
β3 0.50 1.038 0.183 0.538 0.828 1.076
β4 -0.50 -1.176 0.186 -0.676 1.132 1.352
a 0.80 1.099
b 0.80 0.699

LL-AFT βo -2.0 -2.524 59.316 -0.524 2.371 0.262
(AIC = 1239.634) β1 0.75 1.278 0.095 0.528 1.071 0.704

β2 -0.75 -1.386 0.053 -0.636 1.359 0.848
β3 0.50 1.056 0.019 0.556 0.866 1.112
β4 -0.50 -1.184 0.019 -0.684 1.152 1.368
a 0.80 1.324
b 0.80 1.210
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Table 4.12: Simulation study for scenario 2 (n = 5000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -3.402 0.169 -1.402 7.573 0.701
(AIC = 7142.843) β1 0.75 1.106 0.011 0.356 0.661 0.475

β2 -0.75 -1.159 0.021 -0.409 0.781 0.545
β3 0.50 0.888 0.040 0.388 0.539 0.776
β4 -0.50 -0.768 0.039 -0.268 0.340 0.536
a 0.80 -0.391
b 0.80 1.464
c 1.90 1.234
α 0.09 1.067

EW-AFT βo -2.0 -1.541 7.520 0.459 -1.624 -0.2304
(AIC = 7581.023.736) β1 0.75 1.142 0.022 0.392 0.742 0.523

β2 -0.75 -1.157 0.022 -0.407 0.776 0.543
β3 0.50 0.828 0.040 0.328 0.435 0.656
β4 -0.50 -0.771 0.040 -0.271 0.344 0.542
a 0.80 3.314
b 0.80 0.862
c 1.90 2.032

W-AFT βo -2.0 -1.795 117.420 0.205 -0.776 -0.102
(AIC =7320.311) β1 0.75 1.119 0.020 0.369 0.690 0.492

β2 -0.75 -1.143 0.020 -0.393 0.745 0.524
β3 0.50 0.804 0.038 0.304 0.396 0.608
β4 -0.50 -0.749 0.038 -0.249 0.311 0.498
a 0.80 4.324
b 0.80 1.377

LL-AFT βo -2.0 2.086 21.810 -0.086 0.353 0.043
(AIC = 7422.633) β1 0.75 1.153 0.022 0.403 0.767 0.537

β2 -0.75 -1.158 0.021 -0.408 0.777 0.544
β3 0.50 0.836 0.040 0.336 0.449 0.672
β4 -0.50 -0.783 0.000 -0.283 0.363 0.566
a 0.80 0.886
b 0.80 0.594
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Table 4.13: Simulation study for scenario 3 (n = 1000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -2.204 0.762 -0.204 0.857 0.102
(AIC = 1295.954) β1 0.75 1.114 0.046 0.364 0.678 0.485

β2 -0.75 -1.170 0.045 -0.420 0.807 0.560
β3 0.50 0.786 0.094 0.286 0.368 0.572
β4 -0.50 -0.707 0.093 -0.207 0.249 0.414
a 0.50 -0.925
b 1.50 1.351
c 2.0 1.171
α 1.0 0.449

EW-AFT βo -2.0 -1.580 8.413 0.420 -1.503 -0.210
(AIC = 1298.139) β1 0.75 1.116 0.051 0.366 0.683 0.488

β2 -0.75 -1.150 0.052 -0.400 0.760 0.533
β3 0.50 0.821 0.095 0.321 0.423 0.642
β4 -0.50 -0.770 0.093 -0.270 0.343 0.540
a 0.50 2.788
b 1.50 0.849
c 2.00 2.572

W-AFT βo -2.0 -1.769 38.554 0.231 -0.871 -0.116
(AIC = 1303.820) β1 0.75 1.071 0.046 0.321 0.584 0.428

β2 -0.75 -1.134 0.049 -0.384 0.723 0.512
β3 0.50 0.777 0.092 0.277 0.353 0.554
β4 - 0.50 -0.750 0.091 -0.250 0.313 0.500
a 0.50 4.3492
b 1.50 1.588

LL-AFT βo -2.0 -2.263 69.060 -0.263 1.123 0.132
(AIC = 1294.980) β1 0.75 1.133 0.000 0.383 0.722 0.511

β2 -0.75 -1.151 0.048 -0.401 0.763 0.535
β3 0.50 0.830 0.093 0.330 0.440 0.660
β4 -0.50 -0.777 0.092 -0.277 0.354 0.554
a 0.50 0.763
b 1.50 0.524
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Table 4.14: Simulation study for scenario 3 (n = 5000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -2.510 0.172 -0.510 2.300 0.255
(AIC = 5190.614) β1 0.75 1.137 0.023 0.387 0.731 0.516

β2 -0.75 -1.231 0.025 -0.481 0.953 0.641
β3 0.50 0.863 0.044 0.363 0.495 0.726
β4 -0.50 -0.733 0.043 -0.233 0.288 0.466
a 0.50 -0.485
b 1.50 2.241
c 2.00 1.414
α 1.00 0.249

EW-AFT βo -2.0 -1.550 9.767 0.450 -1.597 -0.225
(AIC = 1185.402) β1 0.75 1.205 0.026 0.455 0.888 0.607

β2 -0.75 -1.229 0.026 -0.479 0.949 0.639
β3 0.50 0.906 0.046 0.406 0.571 0.812
β4 -0.50 -0.793 0.045 -0.293 0.378 0.586
a 0.50 2.105
b 1.50 0.788
c 2.00 2.763

W-AFT βo -2.0 -0.755 9.161 1.245 -3.429 -0.623
(AIC = 5191.767) β1 0.75 1.172 0.023 0.422 0.810 0.563

β2 -0.75 -1.207 0.024 -0.457 0.894 0.609
β3 0.50 0.868 0.044 0.368 0.503 0.736
β4 - 0.50 -0.765 0.043 -0.265 0.336 0.530
a 0.50 9.709
b 1.50 1.541

LL-AFT βo -2.0 -2.145 29.658 -0.145 0.601 0.072
(AIC = 5192.280) β1 0.75 1.210 0.026 0.460 0.901 0.613

β2 -0.75 -1.229 0.029 -0.479 0.947 0.639
β3 0.50 0.909 0.047 0.409 0.577 0.818
β4 -0.50 -0.800 0.045 -0.300 0.390 0.600
a 0.50 0.645
b 1.50 0.542
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Table 4.15: Simulation study for scenario 3 (n = 1000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -2.273 0.381 -0.273 1.165 0.136
(AIC = 1467.579) β1 0.75 0.906 0.019 0.156 0.258 0.208

β2 -0.75 -0.970 0.023 -0.220 0.378 0.293
β3 0.50 0.645 0.035 0.145 0.167 0.290
β4 -0.50 -0.621 0.038 -0.121 0.135 0.242
a 0.50 -0.165
b 1.50 0.953
c 2.00 2.311
α 1.00 0.851

EW-AFT βo -2.0 -2.074 4.228 -0.074 0.303 0.037
(AIC = 1478.715) β1 0.75 0.902 0.020 0.152 0.252 0.203

β2 -0.75 -0.917 0.0207 -0.167 0.279 0.223
β3 0.50 0.607 0.038 0.107 0.119 0.214
β4 -0.50 -0.636 0.038 -0.136 0.154 0.272
a 0.50 0.993
b 1.50 1.886
c 2.00 2.253

W-AFT βo -2.0 -1.182 7.313 0.818 -2.603 -0.409
(AIC = 1486.010) β1 0.75 0.884 0.018 0.134 0.220 0.179

β2 -0.75 -0.906 0.019 -0.156 0.258 0.208
β3 0.50 0.590 0.037 0.090 0.099 0.180
β4 - 0.50 -0.629 0.037 -0.129 0.146 0.258
a 0.50 3.165
b 1.50 3.148

LL-AFT βo -2.0 -1.857 14.83 0.1437 -0.551 -0.072
(AIC = 1480.315) β1 0.75 0.911 0.020 0.161 0.268 0.215

β2 -0.75 -0.923 0.021 -0.173 0.289 0.231
β3 0.50 0.611 0.038 0.111 0.124 0.222
β4 -0.50 -0.634 0.039 -0.134 0.152 0.268
a 0.50 0.357
b 1.50 0.252
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Table 4.16: Simulation study for scenario 3 (n = 5000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -2.233 0.628 -0.233 0.987 0.116
(AIC = 7839.672) β1 0.75 0.999 0.013 0.249 0.436 0.332

β2 -0.75 -0.987 0.012 -0.237 0.412 0.316
β3 0.50 0.729 0.024 0.228 0.280 0.456
β4 -0.50 -0.548 0.023 -0.048 0.051 0.096
a 0.50 -0.051
b 1.50 0.919
c 2.00 2.192
α 1.00 0.302

EW-AFT βo -2.0 -1.285 7.195 0.715 -2.350 -0.358
(AIC = 7846.99) β1 0.75 0.994 0.013 0.244 0.426 0.325

β2 -0.75 -1.006 0.013 -0.256 0.450 0.341
β3 0.50 0.690 0.024 0.190 0.226 0.380
β4 -0.50 -0.664 0.024 -0.164 0.191 0.328
a 0.50 3.459
b 1.50 1.625
c 2.00 1.703

W-AFT βo -2.0 -1.191 26.590 0.809 -2.581 -0.404
(AIC = 7842.666) β1 0.75 0.980 0.012 0.230 0.397 0.307

β2 -0.75 -0.997 0.012 -0.247 0.431 0.329
β3 0.50 0.676 0.023 0.176 0.207 0.352
β4 - 0.50 -0.652 0.023 -0.152 0.175 0.304
a 0.50 4.701
b 1.50 2.325

LL-AFT βo -2.0 -2.038 13.067 -0.038 0.153 0.019
(AIC = 7855.242) β1 0.75 1.007 13.202 0.257 0.452 0.343

β2 -0.75 -1.012 0.000 -0.262 0.461 0.349
β3 0.50 0.704 0.024 0.204 0.246 0.408
β4 -0.50 -0.678 0.024 -0.177 0.208 0.354
a 0.50 0.539
b 1.50 0.350
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Table 4.17: Simulation study for scenario 4 (n = 1000) with about 20% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -1.704 2.801 0.296 -1.097 -0.148
(AIC = 1751.955) β1 0.75 1.310 0.093 0.560 1.154 0.747

β2 -0.75 -1.410 0.092 -0.660 1.425 0.880
β3 0.50 1.115 0.179 0.615 0.993 1.230
β4 -0.50 -1.019 0.176 -0.519 0.789 1.038
a 1.650 3.176
b 1.500 -2.714
c 0.95 1.021
α 0.90 0.178

EW-AFT βo -2.0 -3.877 33.412 -1.877 11.033 0.939
(AIC = 1808.559) β1 0.75 1.303 0.093 0.553 1.136 0.737

β2 -0.75 -1.413 0.096 -0.663 1.433 0.884
β3 0.50 1.114 0.181 0.614 0.992 1.228
β4 -0.50 -1.013 0.178 -0.513 0.776 1.026
a 1.65 1.851
b 1.50 0.730
c 0.95 1.205

W-AFT βo -2.0 -5.793 14.192 -3.793 29.562 1.897
(AIC = 1756.782) β1 0.75 1.289 0.087 0.539 1.100 0.719

β2 -0.75 -1.405 0.094 -0.655 1.412 0.873
β3 0.50 1.101 0.178 0.601 0.962 1.202
β4 - 0.50 -1.004 0.176 -0.504 0.758 1.008
a 1.65 0.318
b 1.50 0.844

LL-AFT βo -2.0 -2.328 38.052 -0.328 1.419 0.164
(AIC = 1768.577) β1 0.75 1.343 0.096 0.593 1.242 0.791

β2 -0.75 -1.419 0.098 -0.669 1.452 0.892
β3 0.50 1.144 0.000 0.644 1.059 1.288
β4 -0.50 -1.022 0.018 -0.522 0.794 1.044
a 1.65 1.978
b 1.50 1.046
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Table 4.18: Simulation study for scenario 4 (n = 5000) with about 20% censored.

Model Parameter (True value) Mean SE AB MSE RB
20% Censoring

ExEW-AFT βo -2.0 -3.163 3.356 -1.163 6.002 0.582
(AIC = 1751.955) β1 0.75 1.576 0.054 0.826 1.920 1.101

β2 -0.75 -1.633 0.055 -0.883 2.103 1.177
β3 0.50 1.208 0.102 0.708 1.210 1.416
β4 -0.50 -1.095 0.101 -0.595 0.950 1.190
a 1.650 -0.715
b 1.500 3.136
c 0.95 0.744
α 0.90 0.107

EW-AFT βo -2.0 -0.047 6.920 1.953 -3.998 -0.977
(AIC = 1808.559) β1 0.75 1.591 0.057 0.841 1.968 1.121

β2 -0.75 -1.644 0.058 -0.894 2.142 1.192
β3 0.50 1.270 0.105 0.770 1.363 1.540
β4 -0.50 -1.139 0.105 -0.639 1.047 1.278
a 1.65 7.015
b 1.50 0.245
c 0.95 4.711

W-AFT βo -2.0 -3.650 16.810 -1.650 9.324 0.825
(AIC = 1756.782) β1 0.75 1.572 0.053 0.822 1.909 1.096

β2 -0.75 -1.639 0.055 -0.889 2.124 1.185
β3 0.50 1.191 0.102 0.691 1.169 1.382
β4 - 0.50 -1.084 0.101 -0.584 0.925 1.168
a 1.65 5.055
b 1.50 0.655

LL-AFT βo -2.0 -2.540 96.820 -0.540 2.451 0.270
(AIC = 1768.577) β1 0.75 1.600 0.056 0.850 1.998 1.133

β2 -0.75 -1.646 0.057 -0.896 2.147 1.195
β3 0.50 1.257 0.104 0.757 1.329 1.514
β4 -0.50 -1.133 0.103 -0.633 1.034 1.266
a 1.65 2.190
b 1.50 1.316
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Table 4.19: Simulation study for scenario 4 (n = 1000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -2.197 3.087 -0.197 0.828 0.098
(AIC = 1829.568) β1 0.75 1.144 0.066 0.394 0.747 0.525

β2 -0.75 -1.235 0.069 -0.485 0.963 0.647
β3 0.50 0.887 0.132 0.387 0.538 0.774
β4 -0.50 -0.931 0.133 -0.431 0.618 0.862
a 1.650 -5.965
b 1.500 6.806
c 0.95 0.989
α 0.9 0.260

EW-AFT βo -2.0 -3.049 25.049 -1.049 5.294 0.524
(AIC = 1902.871) β1 0.75 1.151 0.067 0.401 0.763 0.535

β2 -0.75 -1.237 0.069 -0.487 0.967 0.649
β3 0.50 0.894 0.133 0.394 0.549 0.788
β4 -0.50 -0.940 0.134 -0.440 0.634 0.880
a 1.65 1.648
b 1.50 0.724
c 0.95 1.397

W-AFT βo -2.0 -1.975 33.399 0.025 -0.101 -0.013
(AIC = 1844.159) β1 0.75 1.137 0.064 0.387 0.731 0.516

β2 -0.75 -1.229 0.067 -0.479 0.947 0.639
β3 0.50 0.880 0.129 0.380 0.524 0.760
β4 - 0.50 -0.924 0.130 -0.424 0.603 0.848
a 1.65 6.545
b 1.50 0.922

LL-AFT βo -2.0 -1.909 18.106 0.091 -0.356 -0.046
(AIC = 1865.730) β1 0.75 1.169 0.071 0.419 0.803 0.559

β2 -0.75 -1.234 0.072 -0.484 0.959 0.645
β3 0.50 0.900 0.097 0.400 0.561 0.800
β4 -0.50 -0.961 0.097 -0.461 0.674 0.922
a 1.65 1.559
b 1.50 0.928
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Table 4.20: Simulation study for scenario 4 (n = 5000) with about 30% censored
observations.

Model Parameter (True value) Mean SE AB MSE RB
30% Censoring

ExEW-AFT βo -2.0 -3.159 0.409 -1.159 5.982 0.580
(AIC = 10501.254) β1 0.75 1.279 0.029 0.529 1.073 0.705

β2 -0.75 -1.279 0.030 -0.529 1.074 0.705
β3 0.50 0.925 0.056 0.425 0.605 0.850
β4 -0.50 -0.873 0.056 -0.373 0.513 0.746
a 1.650 2.843
b 1.500 1.372
c 0.95 0.835
α 0.9 0.114

EW-AFT βo -2.0 -3.107 10.417 -1.107 5.654 0.553
(AIC = 10857.357) β1 0.75 1.297 0.032 0.547 1.119 0.729

β2 -0.75 -1.313 0.032 -0.563 1.161 0.751
β3 0.50 0.950 0.060 0.450 0.652 0.900
β4 -0.50 -0.870 0.059 -0.370 0.506 0.740
a 1.65 1.716
b 1.50 0.715
c 0.95 1.432

W-AFT βo -2.0 -2.209 0.059 -0.209 0.878 0.104
(AIC = 10600.042) β1 0.75 1.280 0.030 0.530 1.076 0.707

β2 -0.75 -1.303 0.031 -0.553 1.134 0.737
β3 0.50 0.931 0.058 0.431 0.618 0.862
β4 - 0.50 -0.855 0.057 -0.355 0.481 0.710
a 1.65 5.863
b 1.50 0.924

LL-AFT βo -2.0 -1.970 26.224 0.030 -0.119 -0.015
(AIC = 10692.546) β1 0.75 1.313 0.000 0.563 1.162 0.751

β2 -0.75 -1.316 0.033 -0.566 1.170 0.755
β3 0.50 0.971 0.061 0.471 0.693 0.942
β4 -0.50 -0.888 0.061 -0.388 0.539 0.776
a 1.65 1.620
b 1.50 0.915

4.9 Applications to real-life data for the ExEW

distribution

4.9.1 Introduction

This Section introduces the applications of developed models to di�erent real-

world data-sets.
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4.9.2 Applications to real-life data for the ExEW distribu-

tion

To illustrate the applicability of the ExEW distribution, we analyze and compare

the �tting of the ExEW distribution with other competing models by using two

real-life data sets. The ExEW distribution is compared to sub-models such as:

the Weibull, EE, and ExW distributions, and other common lifetime distributions

LL, BW, BEW, MBW, and TanLL distributions.

To specify which statistical distribution best �ts the two data, a variety of an-

alytical measures are applied, such as the Bayesian information criterion (BIC),

the Akaike information criterion (AIC), consistent AIC (CAIC) and Hannan�

Quinn information criterion (HQIC). Moreover, goodness-of-�t measures like the

log-likelihood is also adopted.

4.9.2.1 Likelihood ratio tests

The ExEW distribution has some sub-models including the Weibul , EE, ExW

distributions. As a result, the LRT is used to evaluate the following hypotheses:

1. H0 : a = 0, and α = 1, this means that the sample comes from the Weibull

distribution.

H1 : a ̸= 0, and α ̸= 1, this means that the sample comes from the ExEW

distribution.

2. H0 : b = 0, this indicates that the sample size is comes from the EE

distribution.

H1 : b ̸= 0, this indicates that the sample size comes from the ExEW

distribution.

3. H0 : α = 1 this means that the sample comes from the ExW distribution.

H1 : α ̸= 0, this means that the sample comes from the ExEW distribution.
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4.9.2.2 Application to airplane windshield data

The airplane windshield data consists of 84 observations. This data set on failure

time for a particular model windshield, this data is studied lately by Ramos et al.

Ramos et al. (2013). The data set is reported in Table 4.21, and its descriptive

statistical analysis are shown in Table 4.22 which indicates that the skewness

coe�cient has a positive value, the data is right skewed. Due to the kurtosis has

negative value, the data is platykurtic.

Figure 4.11 illustrates the TTT transform plot with a concavity pattern, indicat-

ing that the data has an increasing hazard rate shape. This con�rms that the hrf

in Figure 4.2 is appropriate for analyzing this data.

Table 4.21: The airplane windshield failure times data (in thousand hours)

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610,
3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914,
2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281,
2.038, 2.823, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167,
1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964,
4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223,
3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652,

2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663

Table 4.22: Descriptive analysis of airplane windshield data

µ Mid Mode V ar CS CK Min Max
2.55745 2.3545 2.25 1.25177 0.09949 -0.65232 0.04 4.663

The MLEs of the parameters of the �tted models, as well as the corresponding

standard errors are shown in Table 4.24. At the 5% signi�cance level, all of the

ExEW parameters are signi�cant. The ExEW model �ts the airplane windshield

data better than its sub-models and other rival distributions. Table 4.25 shows

that the ExEW has the highest log-likelihood and the lowest CAIC, HQIC, BIC,

and AIC values as compared to the other models. Although the ExEW model

provides the greatest �t to the data, the W distribution is a suitable option since

its �t values are more similar to the ExEW model.

Figure 4.12 illustrates the �tted density shapes for competitive models, demon-

strating that the ExEW distribution �ts aircraft windshield better.
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Figure 4.11: The TTT Plot of the airplane windshield data.

Table 4.23: The LRT statistic for the windshield data.

Dis Hypothesis LRT p-value
Weibull H0 : a = 0, and α = 1 vs H1 : H0 is false 260 < 0.001
EE H0 : b = 0 vs H1 : H0 is false 253 < 0.001
ExW H0 : α = 1 vs H1 : H0 is false 280 < 0.001
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Table 4.24: The MLEs of the competing models with standard errors for wind-
shield data

model â b̂ ĉ α̂ d
ExEW 0.712 0.504 2.931 0.0715 -

(6.338) (5.510) (0.354) (0.637) -
Weibull 2.375 2.863 - - -

(0.210) (0.138) - - -
EE 3.560 0.758 - - -

(0.611) (0.077) - - -
EW -0.017 0.159 1.701 - -

(0.023) (0.041) (0.183) - -
LL 2.391 .224 - - -

(0.137) (0.297) - - -
BW 0.271 0.783 5.911 3.770 -

( 0.258) (0.784) (4.604) (1.117) -
(0.754) (401) (1.013) (0.419) -

BEW 0.262 5.182 5.208 6.212 7.063
(0.032) (1.203) (0.053) (0.054) (0.053)

MBW 0.348 11.855 0.129 4.630 4.663
(0.414) (23.226) (0.266) (4.660) (0.888)

TanLL 2.139 3.340 - - -
(0.126) (0.304) - - -

Table 4.25: The analytical performance measures for comparing distributions for
windshield data

Model AIC BIC CAIC HQIC (ℓ)
ExEW 261.310 271.033 261.816 265.218 -126.655
Weibull 264.107 268.968 264.255 266.061 -130.0533
EE 283.681 288.543 283.829 285.635 -139.841
EW 280.794 288.087 281.094 283.726 -137.397
LL 283.163 288.024 283.311 285.117 -139.581
BW 263.167 272.890 263.673 267.075 -127.583

BEW 265.641 277.795 266.410 270.526 -127.820
MBW 264.563 276.717 265.332 269.449 -127.281
TanLL 283.89 288.752 284.038 285.844 -139.945
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Figure 4.12: The �tted density shapes of the ExEW distribution and other dis-
tributions for windshield data.

4.9.2.3 Application to COVID-19 fatality rate data

The second set of data about COVID-19 fatality rate from Mexico contains 108-

day, and it collected between March 4 and July 20, 2020. It is available at

https://covid19.who.int. The data is recently studied by Almongy et al.

(2021). Table 4.26 lists the data observations and Table 4.27 shows the descriptive

statistical analysis of the data. Because the skewness coe�cient has a positive

value, the data is right-skewed. The data is platykurtic since the kurtosis is

smaller than three. Figure 4.13 displays the TTT plot with a concavity shape,

indicating that the data has an increasing failure rate. This demonstrates that

the ExEW distribution is appropriate for analyzing this type of data.

Table 4.29 shows the MLEs of the parameters of the �tted models, together with

the standard errors in brackets. At the 5% signi�cance level, all of the ExEW

parameters are signi�cant. Table 4.30 provides the analytical measures of com-

peting distributions and shows that the ExEW provides the best �t to the data.

The �tted densities for competing models is depicted in Figure 4.14, demonstrat-

ing that the ExEW distribution �ts the COVID-19 mortality rate data better.
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Table 4.26: COVID-19 fatality rate data set

8.826, 6.105, 10.383, 7.267, 13.220, 6.015,10.855, 6.122, 10.685, 10.035, 5.242,
7.630, 14.604, 7.903, 6.327, 9.391, 14.962, 4.730, 3.215, 16.498, 11.665, 9.284,
12.878, 6.656, 3.440, 5.854, 8.813, 10.043, 7.260, 5.985, 4.424, 4.344, 5.143,

9.935,7.840,9.550,6.968,6.370,3.537,3.286,10.158,8.108,6.697,7.151,
6.560, 2.988, 3.336, 6.814, 8.325, 7.854, 8.551, 3.228, 3.499, 3.751, 7.486,
6.625, 6.140, 4.909, 4.661, 1.871, 2.838, 5.392, 12.042, 8.696, 6.412, 3.395,
1.815, 3.327, 5.406, 6.182, 4.949, 4.089, 3.359, 2.070, 3.298, 5.317, 5.442,
4.557, 4.292, 2.500, 6.535, 4.648, 4.697, 5.459, 4.120, 3.922, 3.219, 1.402,
2.438, 3.257, 3.632, 3.233, 3.027, 2.352, 1.205, 2.077, 3.778, 3.218, 2.926,

2.601, 2.065 ,1.041, 1.800, 3.029, 2.058, 2.326, 2.506, 1.923

Table 4.27: Descriptive statistics of COVID-19 fatality rate data.

µ Mid Mode V ar CS CK Min Max
5.758 5.193 3 10.5893 0.98668 0.68134 1.041 16.498

Figure 4.13: The TTT Plot of the COVID-19 fatality rate data

Table 4.28: The LRT statistic for COVID-19 fatality rate data.

Dis Hypothesis LRT p-value
W H0 : a = 0, and α = 1 vs H1 : H0 is false 0.920 0.631
EE H0 : b = 0 vs H1 : H0 is false 40.055 < 0.001
ExW H0 : α = 1 vs H1 : H0 is false 6.479 < 0.039
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Table 4.29: MLEs of the competing models with standard errors for COVID-19
fatality rate data

Model â b̂ ĉ α̂ d
ExEW -2.422 2.285 1.059 1.227 -

(0.005) (0.015) (0.001) (0.020) -
W 1.897 6.521 - - -

(0.138) (0.350) - - -
EE 3.998 0.362 - - -

(0.674) (0.035) - - -
EW -0.410 0.395 1.272 - -

(0.232) (0.206) (0.092) - -
LL 4.973 2.935 - - -

(0.288) (0.231) - - -
BW 2.531 0.158 1.544 1.698 -

( 0.567) (0.017) (0.009) (0.012) -
(0.162) (2.297) (0.126) (0.122) -

BEW 4.345 8.915 2.495 0.949 33.450
(6.153) (14.228) (3.654) (0.686) (47.771)

MBW 3.323 0.451 9.698 2.038 5.103
(5.260) (0.255) (10.930) (0.950) (3.619)

TanLL 4.418 3.054 - - -
(0.258) (0.237) - - -

Table 4.30: The analytical performance measures for comparing distributions for
COVID-19 fatality rate data.

ModelModelModel AICAICAIC BICBICBIC CAICCAICCAIC HQICHQICHQIC (ℓℓℓ)
ExEW 506.444 517.172 506.832 510.794 -249.222
W 541.911 547.275 542.025 544.086 -268.955
EE 536.352 541.716 536.466 538.527 -266.176
EW 516.850 524.897 517.081 520.113 -255.425
LL 542.164 547.527 542.279 544.339 -269.082
BW 563.167 549.962 539.622 5543.584 -265.617
BEW 542.686 556.096 543.274 548.123 -266.343
MBW 539.714 553.124 540.302 545.151 -264.857
TanLL 541.295 546.659 541.409 543.470 -268.647
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Figure 4.14: The �tted density shapes of the ExEW distribution and other dis-
tributions for COVID-19 fatality rate data.

4.9.3 Application of Sudan COVID-19 data to the ExEW-

AFT model

In this Section, we demonstrate the adaptability and utility of the ExEW-AFT

model, considering real-world right-censored COVID-19 data from Sudan.

4.9.3.1 Sudan COVID-19 data

COVID-19 is an infectious illness. Many studies have been conducted since it

was declared a global health emergency to better understand the disease's clini-

cal, epidemiological, and prognostic aspects Cabore et al. (2022); Cordeiro et al.

(2021); Kiarie et al. (2022); Liu and Tian (2020); Marinho et al. (2021).

In Sudan, the epidemiological data are disclosed by the epidemiology department

of the federal ministry of health (FMH) www.fmoh.gov.sd. Therefore, according

to the investigation of FMH, there are 35,321 patients who are infected with the

virus. Moreover, every positive case between 13 March 2020 and 31 December

2021 is included in the study sample. The period from the date of admission until

the date of the sample result is considered the length of the hospital stay.COVID-
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19 is an infectious illness. Many studies have been conducted since it was declared

a global health emergency to better understand the disease's clinical, epidemio-

logical, and prognostic aspects (Cabore et al., 2022; Cordeiro et al., 2021; Kiarie

et al., 2022; Liu and Tian, 2020; Marinho et al., 2021). In Sudan, the epidemio-

logical data are disclosed by the epidemiology department of the federal ministry

of health (FMH) www.fmoh.gov.sd. Therefore, according to the investigation of

FMH, there are 35,321 patients who are infected with the virus. Moreover, every

positive case between 13 March 2020 and 31 December 2021 is included in the

study sample. The period from the date of admission until the date of the sample

result is considered the length of the hospital stay.

Overview of covariates of OVID-19 data

For each patient (i = 1, . . . , 35, 321), the following covariates are taken into ac-

count.

� y : The length of stay in the hospital (by days).

� Status: For censoring.

� x1 : Age.

� x2 : Sex group.

� x3 : The comorbidity group.

Table 4.31 shows some descriptive statistics of these covariates. The average

hospital stays last three days. The scaled total time on test (TTT) plot for

the COVID-19 hazard rate shape is displayed in Figure 4.15, which shows that

the hazard rate shape of COVID-19 is unimodal. The initial density shape of

the length of stay in the hospital is reported using the non-parametric kernel

density estimation (KDE) approach in Figure 4.16, beside the histogram. It is

noted that the density is asymmetrical and positively skewed, which is a common

feature for survival data and makes the normal distribution inappropriate to

analyze (Alvares et al., 2021). This is one of the points that motivated us to use
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the ExEW distribution as a baseline hazard in the AFT model to �t this data.

The box plot and violin plot in Figure 4.16 are used to identify the extremes,

and they reveal that some of these extreme observations are recorded.

Table 4.31: Statistical summary of the covariates for COVID-19 data

Covariate Number of observations (%) Mean (standard deviation (SD))
Length of stay in the hospital (in days) - 3 (6.227)

Age (in years) - 45 (18.750)
Status 1 32731(92.7%) -

0 2590(7.3%) -
Comorbidity yes 845(2.4%) -

no 34476(97.6%) -
Sex male 20654(58.5%) -

female 14667(41.5%) -
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Figure 4.15: TTT plot for Sudan COVID-19 data.
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Figure 4.16: Plots for the Sudan COVID-19 data.

We analyze and compare the �tting of the ExEW-AFT model with that of sub-

models such as the W-AFT, the exponentiated exponential (EE) AFT (EE-AFT),

and the exponential Weibull AFT (ExW-AFT) models.

The AFT models for the competing models are as follows:

1. The W-AFT model:

fW−AFT (t;β, xβ, xβ, x) = ac
(
texxx

′βββ
)a−1

exp
{
−c
(
texxx

′βββ
)a}

exxx
′βββ, t > 0. (4.9.1)

2. The EE-AFT model:

fEE−AFT (t;β, xβ, xβ, x) = ac
[
exp

{
−c
(
texxx

′βββ
)}] [

1− exp
{
−c
(
texxx

′βββ
)}]a−1

exxx
′βββ, t > 0.

(4.9.2)

3. The ExW-AFT model:

fExW−AFT (t;β, xβ, xβ, x) =

[
a+ bc

(
texxx

′βββ
)c−1

]
exp

{
−a
(
texxx

′βββ
)
+ b
(
texxx

′βββ
)c}

exxx
′β, t > 0.

(4.9.3)

The aforementioned Equations (4.9.1)�(4.9.3) demonstrate how the covariates act

multiplicatively on time, causing an acceleration or a deceleration of time. The

analytical measurements, such as the BIC, and the CAIC are used to decide which
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AFT model matches the COVID-19 data the best. Additionally, goodness-of-�t

metrics like the LRT are used. The BIC is given by

BIC = k log(n)− 2ℓ (4.9.4)

and the CAIC is provided by

CAIC =
2nk

n− k − 1
− 2ℓ, (4.9.5)

where ℓ refers to the log-likelihood function calculated at the MLEs, k for the

number of model parameters, and n for the sample size.

4.9.3.2 Cox PH model

To ascertain the relationship between survival time and the covariates thought

to a�ect survival time, the Cox PH model is conducted. The Cox PH model

parameters are estimated.

Table 4.32 shows the regression analysis of the Cox-PH model, including regres-

sion coe�cients, SE, p-value, LRT, and BIC values. Furthermore, all of the

covariates (age, sex, and comorbidity) signi�cantly a�ect the length of stay in

the hospital at a 5% level of signi�cance.

Table 4.32: Results of Cox-PH model including the coe�cients, SE, p-value, LRT,
BIC, and CAIC

Covariates coe�cients SE p-value
Age -0.005 0.000 < 0.022
Sex -0.103 0.011 < 0.022

Comorbidity 0.792 0.044 < 0.022
LRT 909.600 < 0.000
BIC 621599
CAIC 621587

Testing PH assumption

The Schoenfeld residual is used in this study to test the PH assumption as fol-

lows: Based on the test, the Schoenfeld residuals are obtained for age and sex
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as covariates. The results in Table 4.33 provide evidence of the rejection of the

assumption of PH for all covariates considered in the COVID-19 data. Addition-

ally, Figure 4.17, shows that all covariates reject the null hypothesis of the test of

the proportional hazards. In other words, the PH models present an inadequate

�t for this COVID-19 data.

Table 4.33: Chi-square (χ2) test and p-value for Schoenfeld residual test at level
of signi�cance 1%

Covariate χ2 p− value
Age 65.75 <-0.000
Sex 84.88 <-0.000

Comorbidity 2.07 <-0.15
Global 171.46 < 0.000
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Figure 4.17: The conventional Schoenfeld residuals from the application of the
COVID-19 data-sett.
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4.9.4 AFT model analysis

In this subsection, we present the analysis of the ExEW-AFT, W-AFT, EE-AFT,

and ExW-AFT models using the Sudan COVID-19 data.

We calculated the LRT statistics for the three sub-models. According to the

LRT statistics in Table 4.34, the ExEW-AFT model �ts the COVID-19 data the

best. Table 4.35 showed that the SE of β̂s for the ExEW-AFT, W-AFT, EE-

AFT, and ExW-AFT models is small enough. Moreover, at 5% signi�cance level,

the parameters of all AFT models are signi�cant, as shown in Table 4.36. Further-

more, the analytical measures of competing AFT models are shown in Table 4.37

which reveals that the ExEW-AFT model has the lowest BIC, and CAIC. In con-

clusion, the ExEW-AFT model is the best �t for the data among the W-AFT,

EE-AFT, and ExW-AFT models under consideration. Moreover, at 5% level of

signi�cance, all the covariates (age, sex, and comorbidity) signi�cantly in�uence

the length of stay at the hospital.

Figure 4.18 shows the KM survival curve, Yes the curve is KM plot. However,

the test done to compare survival functions between the two groups is the Log-

Rank test. Furthermore, the comparison is for comorbidity and non-comorbidity

group. Figure 4.19 depicts estimated HRFs for the competitive baseline hazards,

and Figure 4.20 represents the average KM estimator and population SF. All of

these �gures show that our proposed ExEW-AFT model �ts the data better than

its competitors, including the Cox-PH and its sub-models.

Table 4.34: The LRT statistics for COVID-19 data at signi�cance level 1%

Model Hypothesis LRT p-value
W-AFT H0 : a = 0, and α = 1 vs H1 : H0 is false 1987.469 < 0.000
EE-AFT H0 : b = 0 vs H1 : H0 is false 2197.355 < 0.000
ExW-AFT H0 : α = 1 vs H1 : H0 is false 1544.978 < 0.000
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Table 4.35: MLE �ts of the ExEW, W, EW, ExW AFT models with SE (in
parentheses) for COVID-19 data

model â b̂ ĉ α̂ β̂1 β̂2 β̂3
ExEW-AFT 0.469 0.568 0.977 1.516 -0.201 0.017 0.506

(0.029) (0.029) (0.001) (0.037) (0.007) (0.014) (0.021)
W-AFT 3.772 0.869 - - -0.147 -0.001 0.050

(0.615) (0.003) - - (0.005) (0.009) (0.075)
EE-AFT 1.107 0.027 - - -0.105 0.050 1.175

(0.009) (0.002) - - (0.005) (0.011) (0.032)
ExW-AFT 0.007 0.141 0.867 - -0.108 0.027 0.466

(0.016) (0.002) (0.008) - (0.006) (0.011) (0.038)

Table 4.36: z-value, p-value and con�dence interval (CI) for the AFT estimates
for each model at level of signi�cance 5%

Model Mean z-value p− value CI 95%
ExEW-AFT (â = 0.469) 16.378 < 0.000 (0.4120.525)

(b̂ = 0.568) 19.461 < 0.000 (0.510, 0.625)
(ĉ = 0.977) 805.912 < 0.000 (0.975, 0.979)
(α̂ = 1.516) 40.551 < 0.000 (1.443, 1.589)

(β̂1 = −0.201) 27.457 < 0.000 (−0.215,−0.187)

(β̂2 = 0.017) 7.482 < 0.000 (0.010, 0.045)

( β̂3 = 0.506) 23.692 < 0.000 (0.464, 0.548)
W-AFT (â = 3.772) 6.136 < 0.000 (2.567, 4.977)

(b̂ = 0.869) 340.541 < 0.000 (0.864, 0.874)

(β̂1 = −0.147) -27.114 < 0.000 (−0.158,−0.137)

(β̂2 = −0.001) -0.098 < 0.018 (−0.100,−0.080)

(β̂3 = 0.050) 12.734 < 0.000 (0.035, 0.065)
EE-AFT (â = 1.107 ) 126.464 < 0.000 (1.090, 1.124)

(b̂ = 0.027) 15.592 <0.000 (0.024, 0.030)

(β̂1 = −0.105) -19.384 < 0.018 (−0.116,−0.094)

(β̂2 = 0.050) 4.724 < 0.922 (0.029, 0.071)

(β̂3 = 1.0175) 36.634 < 0.000 (1.112, 1.238)
ExW-AFT (â = 0.007) 0.425 0.671 (−0.024, 0.037)

(b̂ = 0.141) 56.618 < 0.000 (0.136, 0.146)
(ĉ = 0.867) 108.2542 < 0.000 (0.851, 0.882)

( β̂1 = −0.108) -17.067 < 0.000 (−0.121,−0.096)

( β̂2 = 0.027) 2.493 < 0.013 (0.006, 0.049)

(β̂3 = 0.466) 39.738 < 12.266 (0.392, 0.541)

Table 4.37: The analytical performance measures for comparing AFT models for
COVID-19 data

ModelModelModel BICBICBIC CAICCAICCAIC
ExEW-AFT 147089 147096
W-AFT 149056 149061
EE-AFT 149266 149271
ExW-AFT 148624 148630
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Figure 4.18: Plot of the KM curves for time.
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Figure 4.19: Estimated HRFs for the competing baseline hazards.
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Figure 4.20: Average KM estimator and population SF.

4.9.5 Extended exponential-Weibull mixture cure model

with application to cancer clinical trails data

To illustrate the applicability of the proposed mixture cure model, we analyze the

rebuilt IPASS clinical trial data that was published by Argyropoulos and Unruh

(2015). The data set is available in the R package AHSurv see https://cran.r

-project.org/web/packages/AHSurv/index.html]. The data base covers the

time frame from March 2006 to April 2008, which is consisting 1217 observations.
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The TTT transform plot in Figure 4.21 shows a concavity pattern, illustrating

the data's increasing hazard rate shape. This demonstrates that the hrf in Figure

4.2 is suitable for analyzing this data.

The proposed model is compared to the another-models such as: Weibull, LL,

ExW, and the GLL models.

The AIC and BIC are used to determine which mixture cure mode (MCM)

matches the data the best.

Figure 4.21: The TTT Plot of the rebuilt IPASS clinical trial data.

Table 4.38 displays the ML estimates of the �tted models' parameters with stan-

dard error. The ExEW MCM model more closely matches the data from the

rebuilt IPASS clinical trial than any other comparable MCM model. More-

over, at 5% signi�cance level, the parameters of the ExEW-MCM is signi�cant,

as shown in Table 4.39.

Table 4.40 shows that the ExEW MCM model has the lowest AIC and BIC values

when compared to the other MCM models. means that the ExEW MCM model

provides the greatest �t to the data-st.
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Table 4.38: Parameters of competing models estimated with SE (in parentheses)

model â b̂ ĉ α̂ ρ
ExEW 1.099 0.707 1.597 0.041 0.021

(0.259) (0.150) (0.059) (0.005) (0.011)
W 7.432 1.371 - - 0.013

(0.241) (0.041) - - (0.013)
LL 1.566 6.591 - - 0.145

(0.075) (0.324) - - (0.025)
ExW 0.018 0.056 1.393 - 0.016

(0.014) (0.014) (0.058) - (0.012)
GLL 0.140 1.422 0.044 - -0.013

(0.007) (0.072) (0.035) - (0.030)

Table 4.39: z-value, p-value and CI for the AFT estimates for each model at level
of signi�cance 5%

Model Mean z-value p− value CI 95%
ExEW (â = 1.099) 4.236 < 0.000 (0.590, 1.607)

(b̂ = 0.707) 4.710 < 0.000 ( 0.413, 1.001)
(ĉ = 1.597) 26.843 < 0.000 (1.480, 1.713)
(α̂ = 0.041) 8.825 < 0.000 (0.032, 0.050)
(ρ̂ = 0.021) 1.809 < 0.070 (0.002, 0.043)

W (â = 7.425) 30.856 < 0.000 (6.953, 7.897)

(b̂ = 1.353) 33.084 < 0.000 (1.272, 1.434)
(ρ̂ = 0.011) 0.988 < 0.323 (−0.015, 0.036)

LL (â = 1.566) 27.213 < 0.000 (1.453, 1.679)

(b̂ = 6.591) 20.334 < 0.000 (5.956, 7.227)
(ρ̂ = 0.145) 5.909 < 0.000 (0.097, 0.194)

ExW (â = 0.018) 1.223 < 0.222 (−0.011, 0.046)

(b̂ = 0.056) 3.964 < 0.000 (0.029, 0.084)
(ĉ = 1.393) 24.048 < .000 (1.280, 1.507)
(ρ̂ = 0.016) 1.299 < 0.194 (−0.008, 0.040)

GLL (â = 0.140) 19.198 < 0.000 (0.126, 0.155)

(b̂ = 1.422) 19.820 < 0.000 (1.282, 1.563)
(ĉ = 0.044) 1.255 < 0.209 (−0.025, 0.113)
(ρ̂ = 0.013) 0.438 < 0.661 (−0.072, 0.046)
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Table 4.40: The analytical performance measures for comparing models

Model AIC BIC
ExEW 5704.828 5721.365
W 5708.104 5723.447
LL 5712.876 5728.255
ExW 5714.956 5741.853
GLL 5708.614 5729.031
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CHAPTER 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusions

The study was designed to develop a more versatile lifetime model is called the

extended exponential-Weibull (ExEW). The mathematical and statistical prop-

erties of the ExEW are proposed and described. The ExEW model includes

several known sub-models as special cases. Some mathematical features of the

new model are derived. The ExEW parameters are estimated via the maximum

likelihood method and the estimators' behaviour is evaluated via Monte Carlo

simulations. Based on goodness-of-�t statistics and analytical performance mea-

surements, the ExEW model �ts the two real-world data sets better than its

sub-models and other typical parametric survival models. As a consequence, we

conclude that the ExEW distribution is the most �tting model among the models

studied and is a good contender for modeling lifetime events.

Furthermore the study also intended to produce a more �exible and general sur-

vival regression model named extended exponential-Weibull accelerated failure

time (ExEW-AFT) model. We assessed the performance of the proposed model's

estimators through a comprehensive Monte Carlo simulation study. The pro-

posed model was also applied to Sudan COVID-19 Data. The choice of the AFT
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model is, therefore, sound as covariates directly relate to the time to event, which

eases interpretability.

Considering the four di�erent hazard rate (HR) shapes, including (increasing,

decreasing, unimodal, and bathtub HR shapes), the simulation results showed

that the ExEW model is capable of representing monotone decreasing, mono-

tone increasing, unimodal, and bathtub HR functions more accurately than the

existing AFT models such as: exponentiated-Weibull, Weibull, and log-logistic

AFT models. Additionally, the SE, AB, RB, and MSE values showed that the

proposed ExEW-AFT model performed well.

A real right-censored COVID-19 data set from Sudan reveals that it is misleading

to trust the analysis based on the usual PH model, especially when the data ex-

hibits characteristics such as the proportionality assumption Patel et al. (2006).

This choice induces wrong conclusions, which, in turn, may lead to inappropriate

clinical practices in terms of the best model that �ts the data Aida et al. (2022);

Yang et al. (2020). As demonstrated in our analysis, using di�erent information

criteria and some goodness-of-�t tests, including the likelihood ratio test, our

proposed AFT model �ts the data very well as compared to the common Cox-

PH model and some other AFT single-parameter regression models (EW-AFT,

W-AFT, and LL-AFT models). The three covariates (age, sex, and comorbidity)

are signi�cantly associated with the length of stay in the hospital.

The developed model provided an important contribution to the tool-set for as-

sessing survival data and can be used with overall hazard regression models.

No research is without limits, our model has some limitations. The model is

unable to handle survival data with crossing survival curves.

Another limitation arrases from the application perspective of the study with

respect to covariates used. In the analysis of the ExEW-AFT, only age, sex,

and comorbidity covariates were used. Vaccination and place of residence (urban

and rural) as variables to analyze the length of stay in the hospital could be

very useful, but no information from those variables was collected. Additionally,

mixture cure models can be used to estimate the cured individuals' likelihood
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function. However, when there are no cure individuals in the population under

study, these models can be reduced to the classical survival models. Furthermore,

in this study, the maximum likelihood estimates analysis for the four-parameter

ExEW distribution in the existence of cured individuals, censored observations is

presented. The limitation of this model that it is cannot verify the property of

proportional hazard functions.

5.2 Recommendation for further research

The future will see the development of residual analysis techniques and diagnostic

measures for assessing the goodness of �t of the ExEW-AFT model. Addition-

ally, this work can be extended by proposing an AFT multi-parameter regression

model for other types of censored survival data sets, including left censoring,

interval censoring, middle censoring, and double censoring mechanisms. Further-

more,it can be extended to more complex survival models, including competing

risk models, frailty models, and mixed e�ects AFT models, to apply to spatial and

clustered survival data sets. Finally, in the future study the ExEW distribution

can be extended to the non-mixture cure model.
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