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ABSTRACT

In general, parametric hazard-based regression models can be motivated by allow-

ing baseline distribution parameters to be affected by covariates. Furthermore, it is

common practice to link covariates to a single parameter of interest; this method

will be called a single parameter hazard-based regression (SPHBR) models. The

role of the additional (covariate independent) parameters in these SPHBR models

is frequently little more than to provide the model with enough generality to adjust

to data. A more flexible technique is to regress these additional distributional pa-

rameters on covariates as well; this is referred to as multi-parameter hazard-based

regression (MPHBR) models. The development of MPHBR models in the context

of Bayesian survival analysis with particular interest towards application to right-

censored oncology data is the main focus of this thesis.

Chapter 2 of this thesis examines the fundamentals of survival analysis as well as

the methodologies employed to achieve the study’s objective; these are common and

can be ignored by readers with familiarity with the field. A flexible generalized log-

logistic distribution that can incorporate both monotone and non-monotone hazard

rates is developed in chapter 3 and examined using both Bayesian and classical in-

ference methods. Using the baseline distribution proposed in chapter 3, chapter 4

presents a flexible parametric proportional hazard (PH) model. The tractability of

the PH model is shown, and the implications of the method are discussed, including

how to interpret covariate effects (via the hazard ratio), how to perform proportion-

ality assumption checks on regression coefficients, and how to use Bayesian model

selection techniques. To show how versatile the accelerated failure time (AFT)

model is, chapter 5 presents an alternative parametric hazard-based regression model

to the one presented in chapter 4. The parametric hazard-based regression mod-

els proposed in chapters 4 and 5 might not be accurate if crossovers exist in the
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hazard or survival functions. The accelerated hazard (AH) model, a novel flexi-

ble hazard-based regression model that can take into account survival data with

crossover survival curves, is proposed in Chapter 6 of this thesis as a solution to

this issue. The parameters of the proposed AH model are estimated using Bayesian

and frequentist approaches. The need to enable parametric hazard-based regression

models—and really any parametric survival regression model—more interpretable

motivates the presentation of a general class of parametric hazard-based regression

models in Chapter 7. Covariate effects on the baseline hazard are straightforward

to interpret due to the proposed general class. The class also has the benefit of

allowing for both proportional and time-independent effects of some covariates on

baseline hazard and non-proportional and time-dependent effects of other covariates

in the same model, unlike PH, AFT, or AH. For estimating the model parameters,

both the Bayesian and frequentist approaches are applied. In chapter 8, the Amoud

Class, a novel class of survival regression models that includes all hazard-based and

odds-based models as special cases and is more flexible in modelling survival data,

is introduced. The main advantage of the class is that it can provide users with

a quantitative tool for selecting which of the seven often employed methods for

hazard-based and odds-based regression models is more appropriate for a certain

set of data. For each of the models proposed in chapters 3, 4, 5, 6, and 7, several

simulations are run using a variety of parameter settings and data generation sce-

narios in order to evaluate the efficacy of the model’s estimators. To demonstrate

the adaptability of the proposed survival regression models, applications of right-

censored oncology data sets are explored. Finally, in Chapter 9, we conclude the

thesis with a discussion and mention of some future works.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Survival analysis is defined as a collection of statistical techniques used to study the

time between the start of an observation and the occurrence of an event of interest

in a population. Survival analysis is used in a variety of fields to examine data

pertaining to the time it takes for an ’event’ to occur. It should be noted that the

wheels of survival analysis have been reinvented several times in various scientific

disciplines, with terminology varying from one discipline to the next. In the fields

of biostatistics, epidemiology, and biomedical sciences, it is commonly referred to

as time-to-event analysis or life time data analysis. Duration analysis or transition

analysis is used in economics; reliability analysis is used by engineers; and event

history analysis is used by demographers, sociologists, and political scientists. The

response variable in a time-to-event analysis is the time until the event, which is

also known as failure time, survival time, or event time.

The event of interest or the outcome variable in medical research may be pain relief,

disease incidence, patient death, recurrence of symptoms, relapse from remission,

incubation time of certain diseases, remission duration of certain diseases in clinical

trials, such as Hepatitis B, AIDS, and so on, and in industry, the failure time of

certain manufactured products (Lawless, 2011; Collett, 2015; Bogaerts et al., 2017;

Cox and Oakes, 2018; Cordeiro et al., 2020; Legrand, 2021) .

According to Feng et al. (2012) the following are the key requirements of time-to-

event analysis:

i. An agreed scale for the measurement of time (for example: time since diagno-
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sis, calendar time);

ii. An unambiguous origin for the measurement of ‘time’, and;

iii. A precise definition of ‘response’ or occurrence of the event of interest.

The major difference between the survival analysis and the other types of statistical

analysis is that survival time data contain both complete and incomplete obser-

vations; which means that the time to the occurrence of the event may not be

necessarily observed for all objects within the study period. In the above exam-

ples, we may not observe for all subjects the events of death (the patient survives

indefinitely), disease incidence or relief from pain. The occurrence of the event

within the study time leads to a complete information in the sense that the time-

to-event is observed. Whereas nonoccurrence of the event during the observation

period leads to an incomplete information (partial information) which means that

the exact time-to-event is unknown.

This unavoidable feature in time-to-event analysis which happens when the exact

survival time is partially known and unknown in the remainder is known as censoring

(Collett, 2015). Survival analysis distinguishes from other branches of statistical

analysis by censoring or truncation. Truncation is defined as a late entry of an

individual in the study who is then followed until the event occurs, while censoring

is the dropout of a participant or lost to follow-up. Both truncation and censoring

are common examples of incomplete observations arising due to the non-occurrence

of the event within the study period, information contains only partial information

about the random variable of interest (Legrand, 2021). These two common traits of

survival data analysis also give rise to the requirement for special statistical methods

to properly handle time-to-event data.
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1.2 Hazard-Based Regression Models

Statistical analysis is often required to prepare summary of data for prediction. One

way to achieve this is to search for a theoretical model which adequately fits the

observed data and identify the covariates which are significantly associated with the

response. Models are central to all statistical researches. Statistical modeling is a

family of probability distributions. Probability distributions make easier character-

ization of the variability and uncertainty prevailing in a data set by identifying the

patterns of variation. Statistical probability distributions are the basis of statistical

techniques in both theory and practice. They form the foundation of every para-

metric statistical method including inference, modeling, survival analysis, reliability

analysis among others (Lawless, 2011). For example, statistical distributions not

only summarize the observations into a concise mathematical form containing a few

parameters but also provide means to analyze the basic structure that govern the

data generating mechanism. In contrast, statistical probability distributions have

been applied in the engineering sciences to model the life cycle of a machine. In the

medical sciences, statistical distributions have been applied to study duration to the

recurrence of cancer after surgical removal.

Survival models are based on the statistical distributions. The family of distribu-

tions may be non-parametric, semi-parametric, or parametric. To analyze survival

data, different survival analysis methods such as empirical survival function, life ta-

ble (actuarial method), Kaplan and Meier (K-M) or Product Limit (PL) estimator

methods, long rank test, Cox Proportional Hazards (PH) model, parametric hazards

models such as exponential, Weibull, Gompertz; parametric survival models such as

log-logistic, log-Normal, gamma, etc have been generally used.

Censored survival data are analyzed by hazard-based regression models which re-

quire some assumptions on the way covariates affect the hazard rate function. There
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are four different ways that the covariates affect the hazard rate function; namely:

i. Proportional Hazard (PH) Model

ii. Accelerated Failure Time (AFT) model

iii. Accelerated Hazard (AH) Model

iv. General Class of Hazard Structure (GH) Form

1.3 Linking the effects of Covariates and Proba-

bility Distributions

There are explanatory variables or covariates in many studies that can be related

to the lifetime of patients, individuals, equipment, and so on. For example, age,

gender, and so on could all be explanatory variables for the time it takes cancer

patients to die. In engineering, covariates can include the type of material used, the

year of manufacture, and so on. This study focuses on the methodology of flexible

Bayesian modeling of covariate effects on the hazard rate function. In survival anal-

ysis, making inferences for covariate effects and baseline hazards from survival data

is a standard problem.

The Cox proportional hazard (PH) model is well-known for investigating the re-

lationship between covariates and the hazard rate function (Cox, 1972). The key

assumption of the Cox proportional hazard model is that the hazard of any indi-

vidual is a fixed proportion of the hazard of any other individual. This implies that

the hazard ratio is determined solely by the covariates and not by time. Through

a logarithmic link function and a linear predictor, the baseline hazard function is

combined with hazard multipliers that are dependent on covariate values. The pro-

portional hazard model is commonly used in time-to-event analysis.

In the context of Cox proportional hazard models, five types of assumptions are

made in survival analysis.
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i. The first is the semi-parametric assumption.

ii. The second assumption is the baseline hazard’s shape

iii. The third is the assumption of proportional hazard.

iv. The fourth assumption is that it is not appropriate to model survival data

with crossing survival curves.

v. The fifth assumption is the nature of the relationship between the values of

the covariates and the hazards.

Each of these assumptions might not be appropriate and hence could be relaxed,

allowing us to provide a more flexible parametric hazard-based regression models:

i. The first assumption can relaxed by using a parametric approach. Paramet-

ric survival models may lead to more precise estimates compared to semi-

parametric and non-parametric methods if the distributional assumption is

correct and valid (Collett, 2015).

ii. The second assumption can relaxed by developing and employing a modified

flexible baseline hazard distribution that can accommodate all basic shapes

of the hazard rate, including uni-modal, bathtub, increasing, decreasing, and

constant hazard rates (Khosa, 2019).

iii. The third assumption can relaxed by using a non-proportional hazard models,

i.e., by developing flexible parametric hazard-based regression models named

accelerated failure time models (Lawless, 2011).

iv. The fourth assumption can relaxed by using a non-proportional hazard models,

i.e., by developing flexible parametric accelerated hazard (AH) models that can

capture survival data with crossing survival curves (Chen et al., 2003).
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v. The fifth assumption can relaxed by using general class of parametric hazard-

based regression models that contain most of the common hazard-based re-

gression models (Rubio et al., 2019).

This thesis is primarily concerned with relaxing all of the assumptions mentioned

above. Using the generalized log-logistic distribution as a baseline hazard, we discuss

four ways for relaxing the form of the relationship between the covariate values and

the hazards.

1.4 Statement of the Problem

The Cox-PH model, a semi-parametric model, has dominated the analysis of survival

data over the past fifty years. While Cox’s original paper discussed extensions to

eliminate the PH assumption (Cox, 1972), much work has been done to increase the

flexibility and versatility of hazard-based regression models using tractable functions

for both the baseline hazard and the inclusion of time-dependent parameters, pri-

marily using modified distributions, fractional polynomials or splines (Ciampi and

Etezadi-Amoli, 1985; Chen and Jewell, 2001; Rubio et al., 2019; Zhang et al., 2019).

This raises six issues that must be addressed.

The first issue concerns the alternative approaches that should be employed when

the semi-parametric assumption of the Cox-PH model are invalid. The second con-

cerns the kind of distribution to employ when account for multiple hazard rates

within the proportional hazard assumption is satisfied. The third concerns the al-

ternative parametric hazard-based regression model that should be used when the

PH assumption is in valid. The fourth issue is how to fit crossover survival curves

if the PH model fails, using other parametric hazard-based regression models. The

development of a general class that can combine all three typical parametric hazard-

based regression models is the topic of the fifth issue. Last but not least, the issue

of how to merge hazard-based regression models with other well-liked survival re-
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gression models, such as odds-based regression models including proportional odds

(PO), accelerated odds (AO), and general odds (GO) models, into a single nested

model, is still open.

As a result, this study investigates the solutions to these six issues and develops

a flexible parametric hazard-based regression models by employing a flexible base-

line known as the generalized log-logistic (GLL) distribution, which accommodates

all the basic shapes of hazard rate function (constant, increasing, decreasing, uni-

modal, and bathtub), and various common lifetime distributions are its sub-models

including (log-logistic, Burr-XII, Weibull and exponential distributions).

1.5 Motivation Statement

In recent years, several new probability distributions have been extended in the lit-

erature for describing real-life problems in survival and reliability analysis. In this

regard, Khan and Khosa (2016) developed a generalized log-logistic PH model. How-

ever, the inferential procedures and the mathematical properties of the distribution

have not received attention so far. Therefore, in this study we extend their work

by considering the Bayesian and classical inference for the GLL distribution and ex-

tending the proposed distribution to all common types of parametric hazard-based

regression models to analyze right-censored cancer survival data with the presence

of covaraiates.

To summarize, the following facts compelled us to work on Bayesian parametric

hazard-based regression models using GLL baseline distribution:

i. Parametric survival models may lead to more precise estimates compared to

semi-parametric and non-parametric methods if the distributional assumption

is correct and valid (Collett, 2015).

ii. Bayesian Inference does not depend on asymptotic approximation for statisti-
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cal inference (Khan and Basharat, 2021).

iii. Due to the availability of software, Bayesian implementation for complex mod-

els is relatively easier and simpler than frequentist methods (Alvares et al.,

2021).

iv. LL distribution has a similar shape to log-normal distribution, but has heavier

tails, its cdf has an explicit closed-form, which is very useful for analyzing

censored data in survival analysis (Bennett, 1983b).

v. The LL distribution is closed under both proportionality odds (PO) and mul-

tiplication of failure time (AFT) frameworks. It is not a PH model. However,

when the log-logistic distribution is generalized, it has the appealing feature

of being a member of all parametric hazard-based regression models because

its failure rate function is quite flexible (Singh, 1998).

vi. The GLL distribution reflects the structure of the heavy tails and the skewness

and generally shows some improvement over the log-logistic distribution and

other competitive models (Khan and Khosa, 2016).

Considering the above points, we now present the main and specific objectives of

this study.

1.6 Objectives

1.6.1 General objective

The main objective of this study is to develop flexible parametric hazard-based re-

gression models with generalized log-logistic baseline distribution for right-censored

survival data using both Bayesian and frequentist appproaches.
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1.6.2 Specific objectives

The specific objectives of this study are:

i. To develop parametric proportional hazard regression model with generalized

log-logistic baseline distribution.

ii. To develop parametric accelerated failure time regression model with general-

ized log-logistic baseline distribution.

iii. To develop parametric accelerated hazard regression model with generalized

log-logistic baseline distribution.

iv. To extend the developed models to general class of parametric hazard-based

regression models with generalized log-logistic baseline distribution.

v. To assess the performance of the estimators for the developed models param-

eters using simulation.

vi. To develop a general class for hazard-based and odds-based regression models.

vii. To demonstrate the application of the developed models using real-life right-

censored survival data sets.

viii. To develop R packages to model the flexible parametric survival regression

models considered in this study.

1.7 Significance of the study

The aim of this study, which focused on the Bayesian and frequentist approaches for

the hazard-based regression models using a flexible baseline generalized log-logistic

distribution, is to contribute towards enhancement of teaching and learning of Sur-

vival models in engineering, social science, economics, and medical research centers.
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The findings of the study are therefore significant to the academic and industrial

world. This study sheds light on the developing and generalization techniques for

statistical models while paying attention to the parametric hazard-based regression

models with the application of right-censored survival data sets. The findings ob-

tained in this study makes the generalized log-logistic distribution applicable in cases

where life testing experiments are faced with censored data. Additionally, the study

contributes and augments the usefulness of survival data analysis.

The understanding of the relationship between covariates and lifetime distributions

significantly improves the power, sensitivity, and efficiency of hypothesis tests as-

sociated with survival data sets. As a result, it is critical to develop new Bayesian

parametric hazard-based regression models for the application of modified baseline

distributions that can incorporate different hazard rate shapes. Hence, using a flex-

ible baseline distribution, new parametric hazard-based and odds-based regression

models were developed in this study.

1.8 The Scope of the Study

The academic scope of this study is limited to the parametric hazard-based re-

gression models in right-censored time-to-event data with generalized log-logistic

baseline hazard using frequentist and Bayesian approaches.

1.9 Research Mindmap

This section summarizes the research mind map in Figure 1.1 that connects the

problems tackled in each chapter and why we followed this order.
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Figure 1.1: The Research Mindmap
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1.10 Thesis Outline

The development of flexible Bayesian parametric hazard-based regression models

for time-to-event analysis is the subject of this thesis. The thesis is divided into

chapters, each of which represents a full research paper that has been published or

submitted in a peer-reviewed journal. Each paper was written as a separate article

that can be read independently of the rest of the thesis but draws completely sep-

arate conclusions that are related to the overall research objectives. This thesis is

divided into nine chapters, which are described in detail below.

Chapter 1: This chapter offers an introduction to the study, presenting the para-

metric hazard-based regression models, giving a description for the link between

covariates and probability distributions, the problem statement, the study’s moti-

vation, the study’s general and specific objectives, the significance of the study, the

scope of this work and the research overview and contributions.

Chapter 2: This chapter presents the basic concepts and methods for Bayesian

survival analysis and provides a very general introduction to survival analysis and

an overview of the main probabilistic functions, such as the hazard rate, cumula-

tive hazard rate, survival, pdf, cdf, reverse hazard rate, and odds functions. We

also emphasize the characteristics for the survival data that differ it from the other

statistical methods. We describe the most usual classical distributions used in the

survival analysis. Then, we discussed the survival regression models that we didn’t

covered this thesis. Additionally, We emphasized the concept of likelihood function

and we described how the censoring influence its construction. We also provide a

brief description of the most widely used computing tools to account for the infer-

ence process. Then, we introduce the model selection criterions that we will applied

through out this work. Finally, we present the total time on test and how it used

for the description of the hazard rate shapes.
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Chapter 3: This chapter presents the generalized Log-logistic Distribution. This

distribution serves as an extension to some of the common lifetime distributions

applied in survival analysis including: log-logistic, Burr XII, Weibull, and expo-

nential distributions. Some of its properties including, quantile function, moments,

skewness, kurtosis, residual life function, and reversed residual life functions are dis-

cussed. The model parameters are estimated using both Classical (via maximum

likelihood estimation), and Bayesian (via non-informative priors) techniques. An

extensive simulation study is demonstrated by using Monte Carlo technique. A

real-life data set related to Bladder cancer patients is illustrated. The results show

that the distribution can provide a better fit than several existing lifetime models

and its sub-models (Muse et al., 2021a).

The rest of the thesis focuses on the study of parametric hazard-based regression

models using GLL baseline hazard.

Chapter 4: This chapter presents a flexible Bayesian parametric proportional haz-

ard model with the baseline distribution as GLL. The model parameters are esti-

mated by using Bayesian approach. An extensive simulation study was carried out

to assess the performance of the proposed model’s estimators with finite sample

sizes. The proposed inference procedure is illustrated using a right-censored cancer

data set (Muse et al., 2022g).

Chapter 5: In this chapter, we presented a flexible parametric accelerated fail-

ure time model with the baseline distribution as GLL. The model parameters are

estimated using both classical (via MLE) and Bayesian (assuming non-informative

priors) approaches. Extensive simulation studies are conducted to assess the perfor-

mance of the proposed model’s estimators. The proposed AFT model is applied to

a right-censored cancer data set (Muse et al., 2022a).

Chapter 6: This chapter shares the structure and methodology with chapter 6,

but applies a different parametric hazard-based regression model named accelerated

hazard model. This model can handle survival data with crossover survival curves
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that the above two mentioned models cannot incorporate (Muse et al., 2022).

Chapter 7: This chapter is devoted to a general class of hazard-based regression

models for right-censored survival data. We assume that the baseline distribution

of lifetime variate is GLL. The MLE for the parameters of the proposed model are

derived. Both Bayesian and Classical inferences are used to estimate the parameters

of the proposed model. An extensive simulation studies are conducted to assess the

performance of the proposed model’s estimators. Two right-censored cancer data

sets are applied to the developed model (Muse et al., 2022c).

Chapter 8: In this chapter, We investigate a universal class named Amoud Class

for survival regression models with special cases that include PH, PO, AFT,AO, AH,

GO and GH models, as well as combinations of these. Based on a versatile para-

metric distribution (generalized log-logistic) for the baseline hazard, we introduced

a technique for applying these various hazard-based and odds-based regression mod-

els. The proposed model has good inferential features, and it performs well when

different information criterions and frequentist likelihood ratio tests were used to

select hazard-based in this study and the odds-based models. The proposed model’s

utility is demonstrated by an application on two-censored lifetime data sets (Muse

et al., 2022d).

Chapter 9: This is the last chapter of this thesis. It presents some concluding

remarks and suggests different issues for further research.

The final part of the thesis includes the usual section with all the bibliographic

references mentioned in the document as well as the Appendices.
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CHAPTER 2

BASIC CONCEPTS AND

LITERATURE REVIEW

2.1 Introduction

This chapter reviews the basic concepts of survival analysis, including the probabilis-

tic functions, the common features of survival data that make standard statistical

inference methods inappropriate, and the classical distributions used in parametric

survival models. The other topics discussed and reviewed include the basic methods

in modelling censored survival data that were used to achieve the study’s objectives.

Methods for discrete analyses are not presented here because the primary focus is

on continuous models for survival data. The framework described in this chapter

is the foundation for the methodological extensions and applications presented in

subsequent chapters.

2.2 Survival Analysis and Probabilistic Functions

Let T ≥ 0 be a non-negative random variable, denoting the survival time. The

distribution of survival times is characterized by any of ten probabilistic functions:

the cumulative distribution function (cdf), the probability density function (pdf),

the survival function (sf), the hazard rate function (hrf), the cumulative hazard

function (chf), the reverse hazard function (rhf), the odds function, the derivative

of the odds function, the mean residual life function (mrl), and the vitality function.

In this section, ten probabilistic functions for a continuous random variable T are

presented and reviewed.
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2.2.1 Cumulative Distribution Function

The cumulative distribution function (cdf) also known as failure function or lifetime

distribution function is the probability that the event will occur before time t and

is expressed as:

F (t) = Pr(T ≤ t), t ≥ 0 (2.1)

F(t) can take the value from 0 to 1 and is a monotone increasing function of t. This

function is also named the cumulative incidence function, since it summarises the

cumulative probability of death occuring before time t (Collett, 2015).

2.2.2 Survival Function

Definition 2.2.1 The survival function is defined as the probability that an indi-

vidual survives longer than time t.

S(t) = P (T ≥ t), t ≥ 0. (2.2)

Survival function is also known as the reliability function, or complementary cu-

mulative distribution function (ccdf). S(t) is a monotone, left continuous, and

non-increasing function, with S(0) = 1, and limt→∞ S(t) = 0. The graph of S(t) as

a function of t is called survival curve. Note that S(t) = 1−F (t), where F(t) is the

cumulative distribution function (cdf) of T .

2.2.3 Probability Density Function

The probability density function (pdf) also known as the failure density or the

density function is the derivative of the cdf and is written as:

f(t) =
dF (t)

dt
= −dS(t)

dt
= lim

∆t→0

P (t ≤ T < t+∆t)

∆t
, (2.3)
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which is the rate of increase of 1− S(t), so that

S(t) =

∫ ∞

t

f(s)ds. (2.4)

2.2.4 Hazard Rate Function

Definition 2.2.2 The hazard rate function (hrf), denoted h(t) is defined as the

conditional probability of failure rate at t given that the individual has survived up

to time t, that is

h(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t
t ≥ 0. (2.5)

The hrf gives the instantaneous rate per unit time for the event to occur at t,

given that the individual survives up to time t. There is clearly defined relationship

between S(t) and h(t), which is given by the formula

h(t) =
f(t)

S(t)
. (2.6)

Note that h(t)∆t is the approximate probability of the event to occur in [t + ∆t],

given survival up to time t. The hrf goes by several aliases:

i. In vital statistics and in the life sciences it is called as the age-specific death

rate.

ii. In actuarial science it is called as the force of mortality or force fo decrement.

iii. In the engineering sciences it is called as the failure rate.

iv. In point process and extreme value theory it is called as the rate function or

intensity function.

v. In economics its reciprocal is known as MILL’S ratio.
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The hrf is also commonly known as the hazard rate or failure rate (Lawless, 2011).

It is simple to demonstrate that building linkages between the pdf, sf, and cdf is

possible when employing the hrf specified in Equation (2.6).

h(t) =
f(t)

S(t)
=

d
dt
F (t)

S(t)
=

d
dt
(1− S(t))

S(t)
=

− d
dt
S(t)

S(t)
=

−S ′(t)

S(t)
. (2.7)

Furthermore, Equation (2.7) suggests that

h(t) = − d

dt
logS(t), (2.8)

so that

logS(t) = −
∫ t

0

h(u)du+ C. (2.9)

The boundary condition S(0) = 1 implies C = 0, and hence

S(t) = exp

[
−
∫ t

0

h(u)du

]
, (2.10)

so that

F (t) = 1− exp

[
−
∫ t

0

h(u)du

]
. (2.11)

Combining Equations (2.7) and (2.10), we get

f(t) = h(t)S(t) = h(t) exp

[
−
∫ t

0

h(u)du

]
t ≥ 0. (2.12)

In another way, differentiating Equation (2.11) yields f(t) in terms of h(t) :

f(t) =
dF (t)

dx
=
d
[
1− exp

(
−
∫ t
0
h(u)du

)]
dx

= h(t) exp

[
−
∫ t

0

h(u)du

]
t ≥ 0.

(2.13)

The hrf may increase, decrease, constant, or indicate a more complicated process.
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Figure 2.1: Different shapes for the baseline hazard rate function (Ramos,
2018)

For example, bathtub shape (when it has both decreasing and increasing shapes),

and unimodal (or reverse bathtub) shapes. The possible different shapes for the

hazard rate are summarized in Figure 2.1.

2.2.5 Cumulative Hazard Function

The cumulative hazard function, represented by H(t), is defined as

H(t) =

∫ t

0

h(u)du, (2.14)

and satisfies three conditions:

i. H(t) = 0

ii. limt→∞H(t) = ∞, H(t)

iii. H(t) is increasing (=non-decreasing).

The cumulative hazard rate function also known as the integrated hazard rate func-

tion and may be interpreted as the expected number of events that occur up to a
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given time (Collett, 2015). From Equations (2.10) and (2.14) we easily find

S(t) = exp{−H(t)}, (2.15)

and furthermore

H(t) = − log{S(t)}. (2.16)

The relationship in Equation (2.16) plays an important role to check adequacy of

a parametric hazard-based regression models, and to formulate likelihood functions

for censored time-to-event data (Khosa, 2019).

2.2.6 Reversed Hazard Function

The reversed hazard rate (also known as the retro hazard) is defined as the ratio of

the corresponding pdf to the corresponding cdf. The following is the retro hazard:

λr(x;θ) =
f(x;θ)

F (x;θ)
. (2.17)

Reversed hazard rate function plays an important role in the analysis of left-censored

data and in the estimation of the survival function. The following equation gives

us the basic relationship between hazard rate function and the reversed hazard rate

function.

λr(x;θ) =
h(x;θ)S(x;θ)

1− S(x;θ)
. (2.18)

2.2.7 Odds Function

Another function in survival analysis that has gained more attention recently is the

odds function (and its associated derivative). Although the odds definition is tra-

ditional in epidemiological case-control studies, its use in survival models appeared

only with the work of (Bennett, 1983a), who proposed the Proportional Odds (PO)
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model class.

The odds function express, for a fixed time t, how much an event of interest is more

likely to occur than not to occur (Panaro, 2020). Thus, denoting the odds function

by R(x; θ) its mathematical expression is defined as follows:

R(x;θ) =
F (x;θ)

S(x;θ)
=

1− exp[−H(x; θ)]

exp[−H(t; θ)]
= exp[H(t; θ)]− 1. (2.19)

2.2.8 Derivative of the Odds Fnction

The derivative of the odds function, denoted by r(x; θ) is defined as follows:

r(x;θ) =
d

dx
[R(x; θ)] =

d

dx
[exp[H(x; θ)]− 1] =

h(x; θ)

S(t; θ)
=

f(x; θ)

[S(x; θ)2]
. (2.20)

2.2.9 Mean Residual Life Function

The mean residual life (mrl) function is defined as:

µ(x;θ) = E(T − t|T > t). (2.21)

The mrl can characterize the x’s distribution in the same way as any of the afore-

mentioned functions. To see this, for instance, the µ(x) can be expressed in S(x),

and vice versa, as in

µ(x;θ) =

∫∞
t
S(u)du

S(x)
. (2.22)

S(x;θ) =
µ(0)

µ(x)
exp

∫ x

0

du

µ(u)
. (2.23)

The other representatives of a lifetime distribution can also be expressed interms of

µ(x):

F (x;θ) = 1− µ(0)

µ(x)
exp

∫ x

0

du

µ(u)
. (2.24)
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H(x;θ) = 1− ln[
µ(0)

µ(x)
] +

∫ x

0

1

µ(u)
du =

∫ x

0

1 + µ′(u)

µ(u)
du. (2.25)

h(x;θ) =
1 + µ′(u)

µ(u)
. (2.26)

f(x;θ) =
1 + µ′(u)

µ2(u)
µ(0)exp[−

∫ x

0

1

µ(u)
du]. (2.27)

2.2.10 Vitality Function

Let X be a non-negative random variable (r.v.) having absolutely continuous cdf

and pdf. The vitality function of X is defined as follows :

v(x;θ) = E(X|X > t) =

∫∞
t
xf(x)

1− F (x)
. (2.28)

The vitality function has a relationship with the hrf and the mrl functions as follows:

h(x;θ) =
v′(x;θ)

v(x;θ)− t′
. (2.29)

m(x;θ) = v(x;θ)− t. (2.30)

2.2.11 Fundamental Relationships between Functions

The ten fundamental probabilistic functions in survival analysis described above.

Mathematically, they can all be written in terms of one another.

Hazard function:

h(t) =
f(t)

S(t)
(2.31)

Cumulative hazard function:

H(t) =

∫ t

0

h(u)du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

−dS(u)
S(u)

du = − log{S(t)}

f(t) = h(t)S(t) = h(t) exp{−H(t)}
(2.32)
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From Equation (2.15) we have that

S(t) = exp{−H(t)}

And furthermore

F (t) = 1− exp{−H(t)}

f(t) = −d exp{−H(t)}
dx

(2.33)

Hence,

R(t) = exp{H(t)} − 1. (2.34)

The relationship in Equation (2.34) plays an important role to formulate the like-

lihood function for the parametric odds-based regression models in the context of

censored survival data (Demarqui et al., 2022).

Using the above equations, we have the following relations between hrf, sf, cdf, pdf,

odds function, and mrl on the one hand and chf on the other hand:

H(t) =

∫ t

0

h(u)du

= − log[S(t)]

= − log[1− F (t)]

= − log[

∫ ∞

t

f(u)du]

= log[R(t) + 1]

=

∫ x

0

1 + µ′(u)

µ(u)
du

(2.35)

H(t) plays a key role in survival and reliability analysis, because of the exponentiated

formula in Equation (2.15) which says that with H(t) specified, we have

Pr(X > x) = e−H(t), x ≥ 0. (2.36)
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2.2.12 Why hazard rate function?

When compared to the other representations of a lifetime distribution, the hrf is

usually more illuminating about the underlying cause of failure. As a result, taking

the hrf into account may be the dominant method for summarizing survival statis-

tics. According to Cox and Oakes (2018); there are several reasons why considering

the hrf is a good idea:

i. It may be physically enlightening to consider the immediate ”risk” attaching

to an individual known to be alive at age t,

ii. Through the hrf, comparisons of groups of individuals are sometimes made

intensively,

iii. Hazard-based regression models are often convenient when there is censoring

or there are several types of failure

iv. The comparison with an exponential distribution is particularly simple in

terms of the hazard,

v. The hazard is a special form for the ”single failure” system of the complete

intensity function for more elaborate point processes, i.e., systems in which

multiple point events can occur for each individual.”

The hrf is more informative than the survival function because different survival

functions can have similar shapes. while the hrf’s can differ dramatically (Colosimo

and Giolo, 2006). The hrf is perhaps the most popular of the ten representatives

modelling and analyzing lifetime data. This is owing to its intuitive reading as the

degree of failure risk associated with a unit at age x. Another reason for its popular-

ity is because it is a specific instance of the intensity function for a non-homogeneous

POISSON process. An hrf models the occurrence of only one event, namely the first
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event (=failure), whereas an intensity function depicts the occurrence of a succession

of events over time.

2.3 Features of Time-to-event Data

To begin, we must consider why survival data are not accessible to typical statistical

approaches employed in data analysis. In general, time-to-event data has three main

features:

1. Skewness

2. Truncation

3. Censoring Mechanism

2.3.1 Skewness

The first feature of survival data is that time-to-event data are not symmetrically

distributed in general. A histogram created from the survival times of a collection

of comparable individuals will typically be favorably skewed, with a longer ”tail” to

the right of the interval containing the greatest number of observations. As a result,

assuming that data of this type has a normal distribution is illogical. This problem

could be solved by first modifying the data to get a more symmetric distribution,

such as by using logarithms. However, a more satisfying solution would be to use a

different distributional model for the original data (Collett, 2015).

The skewness of time-to-event data is an important character. As a result, normal

linear model theory does not work, and models such as Weibull, log-logistic, log-

normal, and their modifications are frequently used.
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2.3.2 Truncation

Another common character of survival data is truncation. Truncation occurs when

there is a late entry of a participant in to the study (Lee and Wang, 2003). Hence,

due to the truncation and censoring, standard statistical methods cannot handle an

analysis of survival data.

Truncation occurs when only those individuals whose event time lies within a certain

observational window (TL, TR) are observed. An individual whose event time is not

in this interval is not observed and no information on this subject is available to

the investigator. This situation contrasts to censoring where there is at least partial

information on the censored individuals. Because individual event times belong to

the observational window, the inference for truncated data is restricted to conditional

estimation (Klein et al., 2014). This is a an issue for doing classical inference but

has a simple and natural approach within the Bayesian inference (Lázaro Hervás,

2018).

2.3.2.1 Left Truncation

Left truncation occurs when TR is infinite so the observation frame is [TL,∞) and

only those individuals are observed whose event time T is greater than the truncation

time TL, that is T > TL, it is also known as delayed entry.

2.3.2.2 Right Truncation

Right truncation occurs when TL = 0 and the observational frame is (0, TR], hence

survival times T are only observed when T ≤ TR. In other words, individuals who

have experienced the event are only observable.
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2.3.3 Censoring

The third and main feature of time-to-event data that makes traditional statistical

inference methods inapplicable is that survival times are frequently censored. The

survival time of an individual is said to be censored when the information about his

lifetime is incomplete.

Censoring schemes that are well known include left censoring, right censoring, inter-

val censoring, double censoring, and middle censoring. We describe all of the basic

censoring schemes in this sub-section.

2.3.3.1 Left Censoring

Left censoring occurs when the exact time the patient entered the study is unknown

but the exact time of death is known. i.e., If we follow people until they become HIV

positive, we may see a failure when they first test positive for the virus. However,

we may not know when we were first exposed to the virus, and thus we do not

know when the failure occurred. As a result, the lifetime is censored because the

true lifetime, which ends at exposure, is shorter than the follow-up time, which ends

when the individual tests positive.

2.3.3.2 Right Censoring

Individuals who are followed from the beginning of the study until a point where

they are lost during the follow up are referred to as right censored; that is, we know

the exact time of entry of a patient but do not have the availability of the exact

time of death.

In practice, there are various types of right censorship. Type I censoring, Type II

censoring, and independent random censoring schemes are the most common. Below

is a brief description of these schemes.

i. Type I Censoring: occurs when the study is designed to end after a certain
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period of follow-up. The number of failures in this case is random.

ii. Type II Censoring: occurs when the study is terminated after a predeter-

mined number of failures. The follow-up time in this case is arbitrary.

iii. Independent Random Censoring: or Type III censoring occurs when an

individual is removed from the study without failing, or when the individual

dies for a reason other than the one studied (Colosimo and Giolo, 2006).

2.3.3.3 Interval Censoring

Interval censoring occurs when the exact times of a patient’s death and entry into

the study are unknown. This type of censored data tells us that the individual was

alive at specific points in time, so we know that the survival time was greater than

a certain value t. i.e., Time to cosmetic deterioration of breast cancer patients.

2.3.3.4 Double Censoring

Consider a survival study in which two related events, E1 and E2, occur at times T1

and T2, respectively, with P (T1 ≤ T2) = 1. Assume that the inter-occurence time,

T = T2 − T1, is the survival time of interest. When both T1 and T2 observations

are interval censored, the survival time T is said to be doubly censored or doubly

interval censored (Prasad and Sankaran, 2017).

2.3.3.5 Middle Censoring

Middle-censoring, as proposed by Jammalamadaka and Mangalam (2003), occurs

when a data point is rendered unobservable if it falls within a random censoring

interval. In such cases, some people have access to their precise lifetimes, while others

are subjected to random censoring intervals to which their true lifetimes belong. To

be more specific, consider T to be a random variable representing the lifetime of

interest, and (U, V ) to be a bivariate random variable representing the censoring

28



interval such that P (U < V ) = 1. The exact lifetime T becomes unobservable

under the middle-censoring setup if T ∈ (U, V ), and we only witness the censoring

interval in such cases (U, V ). Exact observations on T, on the other hand, will be

accessible if T /∈ (U, V ).

2.3.3.6 Informative and Non-informative Censoring

There are two other types of censoring mechanism:

i. Informative Censoring: occurs when the probability of censoring is related

to the expected failure time.

ii. Non-informative Censoring: occurs when the probability of censoring de-

pends on covariates (i.e., sex, age, etcetra.) unrelated to the event process.

2.3.4 Why Right-Censored Observations?

The most common type of censored data in practice is right censoring scheme, which

is especially common in cancer statistics and oncology studies. As a result, the

parametric hazard-based regression models developed in this thesis are for data that

has been right-censored and under the assumption of a non-informative censoring

mechanism (Gu, 2020).

In this thesis, right censoring is of type I, in which the end of the study period Cr

is known and prefixed before it begins, and/or random dropout is permitted.

2.4 Common Survival Distributions

This section reviews at some of the continuous probability distributions that can

be used to analyze survival data. Exponential, Gompertz, Weibull, log-normal, log-

logistic, Burr-XII, and gamma continuous probability distributions are commonly

used to represent survival data. These are more likely in survival analysis due to
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(a) model simplicity, (b) approach flexibility, (c) capacity to satisfactorily represent

data that are typically encountered in survival analysis, and (d) widely accessible

statistical software programs (Khosa, 2019). Another modified distribution named

exponentiated Weibull distribution is also discussed because it was used as a funda-

mental survival data generator for some simulation studies in the thesis as well as

applied for some of the study’s chapters for model comparison.

2.4.1 Exponential Distribution

Exponential distribution is a continuous probability distribution with only one un-

known parameter k. It is the simplest distribution for lifetime distribution models.

The distribution is not flexible enough to describe commonly encountered hazard

rate shapes for survival data. The pdf, cdf, sf, hrf and chf of the exponential random

variable are, respectively

Let X ∼ Exponential(k)

f(t) = k exp{−kt} (2.37)

F (t) = 1− exp{−kt} (2.38)

S(t) = exp{−kt} (2.39)

h(t) = k (2.40)

H(t) = − logS(t) = − log(exp{−kt} = kt (2.41)

where k > 0 is the rate parameter (the scale parameter is α = k−1 is often used

in place of k ) and t ≥ 0. The distribution with k = 1 is known as the standard

exponential distribution. A short value of k shows low risk and long survival, where

as a large value shows high risk and short survival.

Figure 2.2 shows several examples of the density, hazard, and survival function

shapes for various rate parameter values.
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Figure 2.2: Density, hazard and survival shapes for the exponential dis-
tribution for different values of the rate parameter

2.4.2 Weibull Distribution

Weibull distribution, named after Waloddi Weibull, a Swedish mathematician and

physicist, who developed it in 1951 (Weibull, 1951). It is a continuous probability

distribution closed under the hazard-based regression models. This distribution is

one of the most widely used lifetime distributions in survival and reliability analy-

sis, it is also applied in many different fields of applications like the physical, social,

economics, business, hydrology and weather. Several extensions have been made on

the Weibull distribution and many different estimation techniques and mathemati-

cal properties have been discussed by a number of authors.

Weibull distribution is a generalization of the exponential distribution. It is a ver-

satile distribution that can take on the characteristics of other types of continuous

distributions. It has an additional parameter compared to the exponential. The ad-

ditional parameter describes the shape of the hazard functions, based on the value
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of the shape parameter. The pdf, cdf, sf, hrf and chf of the Weibull random variable

are, respectively.

Let X ∼ Weibull (k, α)

f(t) = αk(kt)α−1 exp {−(kt)α} (2.42)

F (t) = 1− exp {−(kt)a} (2.43)

S(t) = exp {−(kt)α} (2.44)

h(t) = αk(kt)α−1, (2.45)

H(t) = − logS(t) = − log (exp {−(kt)a} = (kt)α (2.46)

where β > 0 is the shape parameter and k > 0 is the rate parameter (the scale

parameter is scale = k−1 is often used in place of k ).

The hazard rate function increases when α > 1, decreases for α < 1, and constant

for α = 1. When α = 1 the Weibull distribution reduces to exponential. It is worth

mentioning that the Weibull distribution does not accommodate non-monotone (i.e.,

unimodal) hazard functions.

Figure 2.3 shows several examples of the density, hazard, and survival function

shapes for various rate and shape parameter values.
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Figure 2.3: Density, hazard and survival shapes for the Weibull distribu-
tion for different values of the rate and shape parameters

Regarding the odds function and its derivative, they are expressed as:

R(t) = exp[H(t)]− 1 = exp(kt)α − 1. (2.47)

r(t) = h(t)exp[H(t)] = ακ(κt)α−1exp(κt)α. (2.48)

2.4.3 Gompertz Distribution

Gompertz distribution, named after Benjamin Gompertz, a British mathematician

and actuary., who developed it in 1825 (Gompertz, 1825). It is a continuous prob-

ability distribution used for modelling adult life spans and other application under

different disciplines like; actuarial science, demography, survival and reliability anal-

ysis. This distribution is flexible and can be skewed both in right and in left. The

pdf, the cdf, sf, hrf and chf of the exponential random variable are, respectively
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Let T ∼ Gompertz (k, α)

f(t) = αc · etk exp
{
−α
(
etk − 1

}
, t ∈ [0,∞) (2.49)

F (t) = 1− exp
{
−α
(
etk − 1

}
, (2.50)

S(t) = exp
{
−α
(
etk − 1

}
, (2.51)

h(t) == αk · etk, (2.52)

H(t) = − logS(t) = − log
[
exp

{
−α
(
etk − 1

}]
= α

(
etk − 1

)
(2.53)

Where k > 0 is the rate parameter (the scale parameter is scale = k−1 is often used

in place of k ), α is the shape parameter, and t ≥ 0. The distribution with k = 1. Is

known as the standard Gompertz distribution. When k = 0 , the survival time then

have an exponential distribution, therefore Gompertz distribution is an extension of

exponential distribution. For the Gompertz distribution, log(h(t)) is linear with t.

Figure 2.4: Density, hazard and survival shapes for the Gompertz distri-
bution for different values of the rate and shape parameters
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2.4.4 Log-logistic Distribution

The log-logistic (LL) distribution (also known as the Fisk distribution) is very ef-

fective for modeling unimodal (non-monotone) hazard rate curves. The loglogistic

distribution’s pdf, cdf, sf,hrf and chf are computed as follows:

f(t) =
ακ(κt)α−1

[1 + (κt)α]2
(2.54)

F (t) =
(κt)α

1 + (κt)α
(2.55)

S(t) =
1

1 + (κt)α
(2.56)

h(t) =
ακ(κt)α−1

1 + (κt)α
(2.57)

H(t) = log(1 + (κt)α) (2.58)

where t > 0 is the support of the distribution, and κ > 0 and α > 0 are the

parameters, where κ is the rate parameter and α is the shape parameter. The

numerator of the hazard function for the log-logistic distribution is the same as

the Weibull hazard function, but the total hazard rate has the following features:

monotone decreasing for α ≤ 1, while for α > 1 the hazard rate increases initially

to a maximum at time [(α− 1)/κ]1/α and then decreases to zero as time approaches

infinity. It is easy to verify that the hazard function of the log-logistic distribution is

monotone decreasing for k ≤ 1, and unimodal for k > 1. The log-logistic distribution

is commonly used to represent the course of a disease in which mortality peaks after

a finite period and then gradually diminishes (Bennett, 1983b). Regarding the odds

function and its derivative, they are expressed as:

R(t) = exp[H(t)]− 1 = exp [log(1 + (κt)α)]− 1 = κtα. (2.59)
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r(t) = h(t)exp[H(t)] =

[
ακ(κt)α−1

1 + (κt)α

]
exp [log(1 + (κt)α)] = ακ(κt)α−1. (2.60)

It’s important to note that the odds function and its derivative for the LL distribu-

tion resemble the cumulative hazard function and the hazard rate function for the

Weibull distribution, making the LL distribution closed under odds-based regression

models.

Figure 2.5 shows several examples of the density, hazard, and survival function

shapes for various rate and shape parameter values of the 2-parameter log-logistic

distribution.

Figure 2.5: Density, hazard and survival shapes for the log-logistic dis-
tribution for different values of the rate and shape parameters.

2.4.5 Log-Normal Distribution

The log-normal distribution is a well-known model for representing non-monotone

hazard rate data. The pdf, cdf, sf, hrf, and chf equations for the log-normal distri-

bution are as expressed follows:

f(t) =
1

tα
√
2π

exp

{
−1

2

(
log κt

α

)2
}

(2.61)
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Figure 2.6: Density, hazard and survival shapes for the log-normal dis-
tribution for different values of the rate and shape parameters.

F (t) = Φ

(
log κt

α

)
(2.62)

S(t) = 1− Φ

(
log κt

α

)
(2.63)

h(t) =
f(t)

S(t)
=

1
tα

√
2π

exp
{
−1

2

(
log κt
α

)2}
1− Φ

(
log κt
α

) (2.64)

H(t) = −log[S(t)] = −log
[
1− Φ

(
log κt

α

)]
(2.65)

where t > 0 is the support of the distribution, Φ(·) is the standard normal cdf, and

α > 0 and κ > 0 are the parameters. Note that if T is log-normal with parameters κ

and α, then Y = log T is n with mean α = − log κ and variance α2 (Lawless, 2011).

Figure 2.6 shows several examples of the density, hazard, and survival function

shapes for various rate and shape parameter values of the 2-parameter log-normal

model.
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2.4.6 Gamma Distribution

Another popular distribution is the gamma distribution. Its relationship to exponen-

tial and normal distributions accounts for a considerable portion of its significance.

The random variable T has a gamma distribution if

f(t) =
καtα−1 exp{−κt}

Γ(α)
t > 0. (2.66)

where α > 0 is a shape parameter, and κ−1 > 0 is a scale parameter. The exponential

distribution is a sub-model of the gamma distribution when (α = 1).

The sf of the gamma distribution is expressed as follows:

S(t) = 1− IK(κt), . (2.67)

where Iα(t) =
∫ t
0
uα−1 exp{−u}

Γ(α)
du is the incomplete gamma function.

The hrf is computed as

h(t) =
καtα−1 exp{−κt}
Γ(α) {1− Iα(κt)}

. (2.68)

which is monotone increasing for α > 1(h(t) = 0 at t = 0, and h(t) → κ as t→ ∞),

and monotone decreasing for 0 < α < 1(h(t) → ∞ as t → 0, and h(t) → κ as

t→ ∞).

Figure 2.7 shows several examples of the density, hazard, and survival function

shapes for various rate and shape parameter values of the 2-parameter gamma dis-

tribution.
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Figure 2.7: Density, hazard and survival shapes for the gamma distribu-
tion for different values of the rate and shape parameters.

Weibull, log-logistic, and log-normal distributions are more frequently used in sur-

vival analysis than the gamma distribution, in part because its hazard and survivor

functions are computationally challenging. Additionally, this can make it compu-

tationally difficult to estimate the parameters using maximum likelihood. But the

gamma distribution has been used to predict the lifetime of technological systems

that have been fixed numerous times after failure, rainfall data in meteorology, and

loan and insurance claim data in business (Khosa, 2019).

2.4.7 Burr-XII Distribution

Burr (1942) developed the two-parameter Burr type XII distribution as a result of

his investigation into techniques for fitting distribution functions—rather than prob-

ability density functions—to frequency data. The Burr type XII distribution also

covers a significant portion of the region covered by the gamma and lognormal dis-
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tributions in the skewness-kurtosis plane; for more information, see Danish (2016).

For the distribution function or the hazard function, it has a good closed-form for-

mulation that is not available for the gamma and log-normal distributions. One

of the general parametric families, it offers a wide range of skewness and kurtosis

values and covers a number of curve forms. The pdf of a random variable’s Burr

type XII distribution T is expressed as follows:

fT (t;κ, α) = καtα−1 (1 + tα)−κ−1 ; t > 0, (2.69)

where κ > 0 and α > 0 are the shape parameters of the distribution. The distribu-

tion is unimodal with mode at t =
(
α−1
ακ+1

) 1
α for α > 1 and L-shaped for κ ≤ 0.

The cdf, hrf, and sf of the Burr type XII distribution are computed as follows:

F (t;κ, α) = 1− (1 + tα)−κ (2.70)

h(t;κ, α) =
καtα−1

1 + tα
(2.71)

S(t;κ, α) = (1 + tα)−κ (2.72)

It can be easily seen from (2.71) that the hrf is monotone decreasing for α ≤ 1. It is

upside down bathtub shaped curve for α > 1, that is, it initially increases, attains a

maximum at t = (α− 1)
1
α and then decreases to zero as t approaches ∞.

Figure 2.8 shows several examples of the density, hazard, and survival function

shapes for various shape parameter values of the 2-parameter Burr-XII distribution.

2.4.8 Exponentiated Weibull Distribution

Mudholkar and Srivastava (1993) introduced an extension of the Weibull distribution

named exponentiated Weibull (EW) distribution. The cdf, pdf, hrf, and sf of the
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Figure 2.8: Density, hazard and survival shapes for the Burr-XII distri-
bution for different values of the rate and shape parameters.

EW distribution are, respectively,

F (t) = (1− exp {−(κt)α})η , (2.73)

f(t) = ακη(κt)α−1 (1− exp {−(κt)α})η−1 exp {−(κt)α} , (2.74)

h(t) =
ακη(κt)α−1 (1− exp {−(κt)α})η−1 exp {−(κt)α}

1− (1− exp {−(κt)α})η
, (2.75)

S(t) = 1− (1− exp {−(κt)α})η , (2.76)

where t > 0 is the support of the distribution, κ > 0 is a rate parameter, and α > 0

and η > 0 are shape parameters. Note that η = 1 reduces the exponentiated Weibull

to the two-parameter Weibull distribution. Mudholkar and Srivastava (1993) illus-

trated that the hazard function is (a) monotone increasing for α ≥ 1 and αη ≥ 1,

(b) monotone decreasing for α ≤ 1, and αη ≤ 1, (c) unimodal for α < 1 and αη > 1,
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and (d) bathtub-shaped for α > 1 and αη < 1.

Figure 2.9 demonstrated the hrf shapes for the EW distribution with different values

of the scale and shape parameters

Figure 2.9: Hazard rate shapes for the Exponentiated Weibull distribu-
tion with different values of the scale and shape parameters

The exponentiated weibull distribution has shown significant promise in character-

izing several types of survival data. The model is adaptable and economical since it

can accept both monotone and non-monotone hazard rate functions while estimating

only three parameters. It has been effectively used to model bathtub failure rates of

electrical devices (Mudholkar and Srivastava, 1993), bus-motor failure data (Mud-

holkar and Hutson, 1996), and cancer survival data (Khan and Basharat, 2022); and

(Rubio et al., 2019).
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2.4.9 Why Log-logistic Distribution? and Why its General-

izations?

We chose the generalization of the classical log-logistic distribution as our baseline

distribution in this thesis for numerous reasons:

i. It is cdf has an explicit closed-from expression, which is very useful for an-

alyzing time-to-event data with incomplete information (e.g. censoring and

truncation) (Bennett, 1983a);

ii. It has a similar shape of pdf and hazard function as the log-normal distribution

but has heavier-tails and the tail properties are what the inference is based on

(Singh et al., 1988);

iii. It has a non-monotonic hazard function: the hazard function is unimodal when

shape parameter is greater than 1 and is decreasing monotonically when shape

parameter is less than or equal to 1; this is what makes to be different from

the Weibull distribution (Singh, 1998);

iv. It has the potential for analysis of time-to-event data whose rate increases

initially and decreases later (Khosa, 2019);

v. It is also used to analyze skewed data, which is prevalent in time-to-event

analysis (Lawless, 2011);

vi. The LL distribution can be adopted as the basis of an accelerated failure

time (AFT) model by allowing the scale parameter α to differ between groups

(Reath et al., 2018).

vii. It has also closed under the proportional odds model (Bennett, 1983a); and

the last but not the least
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viii. The generalization of the LL distribution has an attractive feature of being a

member to all hazard-based regression models (Singh, 1998).

2.5 Survival Regression Models

Many new emerging approaches for analyzing right-censored data have been pro-

posed in recent decades, with the ultimate goal of estimating the covariate effects

on the hazard rate function or the odds function. Censored time-to-event data are

analyzed using parametric regression models, which make assumptions about how

covariates affect the hazard rate or odds function and survival time. There are eight

common approaches to how covariates affect hazard or odds function and time scale,

namely:

i. Proportional Hazard (PH) Model (Cox, 1972).

ii. Accelerated Failure Time (AFT) Model (Kalbfleisch and Prentice, 1973).

iii. Proportional Odds (PO) Model (Bennett, 1983a).

iv. Accelerated Hazard (AH) Model (Chen and Wang, 2000).

v. General hazard (GH) Model Class (Ciampi and Etezadi-Amoli, 1985; Etezadi-

Amoli and Ciampi, 1987; Chen and Jewell, 2001).

vi. Yang and Prentice (YP) Model Class (Yang and Prentice, 2005).

vii. General Odds-Rate (GOR) Hazards Model (Banerjee et al., 2007).

viii. Super Model (SM) (Zhang et al., 2019).

Two other survival regression models based on the mean residual life and vitality

functions are proposed respectively;

ix. Proportional mean residual life (PMRL) Model (Oakes and Dasu, 1990)
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x. Proportional vitalities (PVIT) Model (Shrahili et al., 2020)

In this section, we reviewed 5 Survival Regression models including: YP, GOR, SM,

PMRL and PVIT models that are not discussed in the next chapters.

2.5.1 Yang and Prentice (YP) Model

Yang and Prentice (2005) presented a novel odds-based regression model class to

accommodate crossing survival curves. These can occur when, for example, a treat-

ment may be effective in the long run but may have adverse effects on subjects in

the early stages of follow-up, or when, in clinical trials of a curable disease, propor-

tions of long-term survival (i.e., near the end of the study) for treatment and control

groups may be the same, but deaths (the event of interest) may appear earlier in

the control patients. Separately, the abovementioned proportional hazard and pro-

portional odds models are inadequate for survival data with crossing curves.

The odds function of this model is expressed as follows:

RY P (t; β1, β2, x) = ex
′(β1−β2)R0(t)

ex
′β2 . (2.77)

The associated derivative of the odds function for the Y P model is computed as

follows:

rY P (t; β1, β2, x) = r0(t)e
x′β1R0(t)

ex
′β2−1

. (2.78)

The hrf, sf, and chf of the YP model is defined as follows:

hY P (t; β1, β2, x) =
ex

′(β1+β2)h0(t)

F0(t)ex
′β1 + S0(t)ex

′β2
. (2.79)

SY P (t; β1, β2, x) =

[
1 +

{
F0(t)

S0(t)

}
ex

′(β1−β2)
]−ex′β2

. (2.80)

Note that, β2 = 0, and β1 = β2 give PO and PH as formally nested special cases,

45



respectively.

2.5.2 General Odds-rate Hazards Model

Banerjee et al. (2007) proposed a generalized odds-rate hazards (GORH) model to

analyze censored survival data sets when the PH assumption is not valid. The GOR

model contains the PH, AFT, and PO models as special cases. The survival function

of this model is expressed as follows:

SGORH(t; θ, β, x) = {1 + θ exp (φ0(t) + x′β)}−θ
−1

. (2.81)

Where t > 0, θ > 0 is the GORH parameter, and β ∈ Rp. The hrf of the GORH

model is expressed as follows:

hGORH(t; θ, β, x) = φ′
0(t) exp (φ0(t) + x′β) {1 + θ exp (φ0(t) + x′β)}−1

. (2.82)

Note that, θ → 0, θ = 1, and φ0(t) = log(t), give PH,PO, and AFT as formally

nested special cases, respectively.

2.5.3 Super Model

Zhang et al. (2019) introduced a semi-parametric super model, which contains six

common survival regression models including PH,PO,AFT,AH,YP and GH mod-

els. The super model has closed form hrf that they expressed as follows:

hSM (t; β1, β2, β3, x) =
ex

′(β2−β3+β1)h0
{
teβ1x

′}
ex′(β2+β1)F0 {teβ1x′}+ eβ3x′S0 {teβ1x′}

(2.83)

The odds function for the super model is expressed as follows:

RSM (t; β1, β2, β3, x) = ex
′(β2−β3+β1)Ro

{
teβ1x

′
}e(β3−β1)

′x

. (2.84)
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The survivor function for the SM model is expressed as follows:

SSM (t; β1, β2, β3, x) =

[
1 + ex

′(β2−β3+β1)Fo
{
teβ1x

′}
S0 {teβ1x′}

]−e(β3−β1)
′x

. (2.85)

Note that, β1 = 0 YP obtains, β3 = β1 + β2 GH obtains, β3 = 0, β1 + β2 = 0 AH

obtains, β1 = 0, β2 = β3 PH obtains, β3 = β1 = 0 PO obtains, and β3 = β1, β2 = 0

AFT obtains as formally nested special cases, respectively.

2.5.4 Proportional Mean Residual Life Model

Oakes and Dasu (1990) introduced the proportional mean residual life (PMRL)

model, and they expressed as follows:

µ(t | θ) = θµ0(t), t ≥ 0, (2.86)

where θ is a positive parameter, µ(· | θ) is the mrl function of a response variable, and

µ0 is the baseline mrl function. Then, Zahedi [16] highlighted the role of this model

to be played by a regression model. This way, the effect of data in changing the

behavior of a baseline mrl function appears in terms of some regression coefficients.

Estimation procedures for coefficients of the regression PMRL model have been

conducted by Maguluri and Zhang [17] and Chen et al. [18].

2.5.5 Proportional Vitalities Model

Shrahili et al. (2020) introduced the proportional vitalities (PVIT) model as an

alternative to the PH, PO, and PMRL models. Unlike the prevalent PH and PMRL

models, in the PVIT model, the sf and the pdf of the dependent random variable

do not have an explicit closed form. According to Shrahili et al. (2020) the PVIT
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model is expresed as follows:

v(t | θ) = θv0(t), t ≥ 0 (2.87)

where θ > 0 is the vitality growth parameter with a time-dependent domain so

that θ ≥ t/v0(t), for all t ≥ 0, the function v(· | θ) is the vitality function of the

population or the dependent variable and v0 is the baseline vitality function. The

model 2.87 is a partial model but it stands valid and qualified under more general

circumstances (Kayid, 2021).

2.5.6 Why a Parametric Hazard-based Regression Models?

Despite the fact that the Cox PH model is still the most commonly used survival

model (Cox, 1972), there is growing interest in parametric hazard-based regres-

sion models (Crowther, 2014). There are several advantages to using a parametric

method in the study of time-to-event data. One critical difference is that the Cox

PH model does not explicitly estimate the baseline hazard function, but a paramet-

ric model does. Measures of absolute risk, such as hazard rates, can be determined

directly by simply modeling the baseline hazard function, including estimating the

related uncertainty.

This is especially useful to demonstrate how hazard rates alter and evolve over time,

both epidemiologically and clinically. If the baseline hazard is correctly stated, a

completely parametric approach can be more efficient, with smaller standard er-

rors, than the corresponding Cox model generated using partial likelihood (Collett,

2015). When compared to a Cox PH model with time-dependent effects, modeling

time-dependent effects (non-proportional hazards or accelerated models) is signifi-

cantly easier within a parametric framework and is typically computationally more

efficient. Modeling both the baseline hazard and time-dependent effects in contin-

uous time provides the added benefit of permitting predictions both in and out of
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sample, which is very important in prognostic modeling. Hazard ratios can also be

converted to an absolute scale, which can be used to calculate the number of peo-

ple who need to be treated. Finally, parametric survival models must be employed

inside the economic decision modeling framework to model time-to-event data, as

extrapolation is frequently required, frequently across a lifetime horizon, in order to

assess anticipated treatment effects and costs (Latimer, 2013).

In particular, modified continuous probability distributions are increasingly being

used as a baseline hazard for parametric hazard-based regression models (Rubio

et al., 2019). A number of practical studies have recently lauded the merits of

the modified distributions baseline method (Khan and Khosa, 2016; Khosa, 2019;

Crowther, 2014; Pang, 2020; Burke, 2014). In direct comparison to the Cox PH

model, they discovered that ”on balance, we prefer the parametric hazard-based re-

gression model over the Cox PH model because it provides the benefits of parametric

models while closely matching the Cox estimates,” and concluded that ”the appli-

cation of modified baseline distributions that can incorporate different hazard rate

shapes proved a powerful method” (Alvares and Rubio, 2021), and ”Researchers

working in cancer epidemiology and patient survival are encouraged to consider

Parametric hazard-based regression models with the application of modified flexible

baseline continuous probability distributions as an alternative to the Cox PH model”

(Rubio et al., 2019).

2.6 Bayesian and Frequentist Approaches

All of the parametric hazard-based regression models determine a probabilistic mech-

anism that leads to survival data. The mechanism depends further on a vector of

unknown parameters, denoted by θ, which represents the relevant information we

wish to pick up from the observed data. The assumed probabilistic mechanism to-

gether with the observed data determines the likelihood function, L(θ), which is the
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corner stone to draw the inference about the unknown parameter vector θ.

There are two common philosophical approaches exist in statistics of how to use

the likelihood in order to draw the inference about θ, namely the frequentist or

classical approach (deductive inferential approach) and Bayesian approach (Induc-

tive inferential approach). The frequentist approach analysis which was founded by

Prof. R. A. Fisher in a series of papers round about 1930 considers the variation

of data and derived quantities of fixed (deterministic), unknown model parameters.

While the Bayesian approach analysis which was first discovered by Thomas Bayes,

probability distributions are associated with the parameters of the likelihood, as

if the parameters were random variables. They considered the parameters of the

model as random variables (has an unknown distribution) and requires that prior

distributions specified for them and data are considered as fixed. The key differences

between the two schools is fundamentally a question of philosophy (the definition of

probability).

In frequentist approach, several techniques exist to estimate the true value of the

parameter θ, maximum likelihood estimation (MLE) being one of the most popular

ones.

2.6.1 Likelihood for Censored and Truncated Observations

The likelihood function is an important part of the inferential process. Its formula-

tion in the context of survival data analysis requires special consideration because it

is dependent on the type of truncation and censoring observations. Assuming that

lifetimes and censoring are independent, the probability function of the model’s

parameters can be formulated by including the corresponding elements such as:

i. Complete or uncensored case: when the exact survival time is known, the

density of the survival time at the observed time t, f(t).

ii. Right-censored case: In the case of a right-censored observations, the sur-
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vival function at the censoring time, S(CR).

iii. Left-censored case: In the case of left-censored observations, the cumulative

distribution function at the censoring time, F (CR) = 1− S(CR).

iv. Interval-censored case: In the case of interval-censored observation, the

difference between the survival function at times CL−S(cR) and CR−S(CR).

v. Right-truncated case: In the case of right-truncated observation in which

it is assumed that T ≤ TR, the density of the survival time at observed time t

conditional on the survival time is less than TL, f(t)/(1− S(TR))

vi. Left-truncated case: In the case of right-truncated observation in which it

is assumed that T > TL, the density of the survival time at observed time t

conditional on the survival time is greater than TL, f(t)/(1− S(TL))

For truncated data we are restricted to use conditional distribution in constructing

the likelihood. The likelihood function for truncated data, say i with truncation

interval (TL, TR) is given by

Li =



f (ti) / [S (TL)− S (TR)] if i is interval-truncated and uncensored

S (Ci) / [S (TL)− S (TR)] if i is interval-truncated and censored

f (ti) /S (TL) if i is left truncated and uncensored

S (Ci) /S (TL) if i is left truncated and censored

f (ti) / [1− S (TR)] if i is right truncated

Figure 2.10 summarized the formulation of the likelihood function for the parame-

teric survival models under censored and truncated observations.
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Figure 2.10: The formulation of the likelihood function under the pres-
ence of censored and truncated observations

2.6.2 Bayesian Inference

In this section, we present an overview of fundamental concepts and procedures of

Bayesian inference. In contrast to the frequentist approach, the Bayesian approach

treats parameters as random variables and uses data to update previous knowledge

about the parameters (Mwalili, 2006). Bayesian inference is a method for estimat-

ing parameters and analyzing data that is based on Baye’s theorem. All observable

and unobserved parameters in a statistical model are given a joint probability dis-

tribution, known as the prior and data distributions, which is unique to Bayesian

statistics.
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2.6.3 Bayes’ Theorem

All forms of uncertainty in Bayesian inference are always defined in terms of proba-

bility distributions (van de Schoot et al., 2021). A typical Bayesian workflow includes

three major steps Fig. 2.11:

i. Prior distribution π(θ): capturing available knowledge about a given pa-

rameter in a statistical model via the prior distribution, which is typically

determined before data collection. The prior distribution of the parameters

reflects prior knowledge of these parameters. A non-informative prior expresses

ambiguous knowledge about a variable, whereas an informative prior expresses

explicit or definite information about a variable. When more than one param-

eter is involved, it is common to assume that the prior distribution of each

parameter is a priori independent.

ii. Likelihood Function L(θ): determining the likelihood function using the

information about the parameters available in the observed data.

iii. Posterior distribution π(θ|D): the prior distribution can be combined with

the likelihood function using Bayes’ Theorem to yield the posterior distribu-

tion.

All of these steps are part of the Bayes’ theorem, which claims that our updated

understanding of the parameters of interest given our current data is dependent on

our past knowledge about the parameters of interest weighted by the data’s current

evidence.

2.6.4 Bayesian Research Cycle

The steps required for a Bayesian research cycle comprise those of a regular research

cycle as well as a Bayesian-specific workflow:
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a) The standard research cycle consists of reading literature, identifying a prob-

lem, and formulating the study question and hypothesis. To increase trans-

parency, the analytic strategy might be pre-registered.

b) A Bayesian-specific workflow includes formalizing prior distributions based on

prior elicitation and background knowledge, defining the likelihood function by

specifying a data-generating model and including observed data, and gaining

the posterior distribution as a function of both the defined prior and the like-

lihood function. Following the acquisition of the posterior data, conclusions

can be drawn that can then be used to initiate a new research cycle.

Although the Bayesian methodology’s foundation is basic and intuitive, its appli-

cation to complicated real-life situations in non-standard probability scenarios and

high-dimensional problems was first problematic (?). In particular, in a large num-

ber of models and applications, m(D) lacks an analytic closed expression, and hence

the posterior distribution p lacks a closed form (Ibrahim et al., 2001).

The following modelling uncertainty scenarios are handled by the Bayesian technique

(van de Schoot et al., 2021):

i. Overfitting of models

ii. Limited data

iii. If we want to model the data but the information is missing from the data and

we have to assume that some facts are more likely than others.

.

2.6.5 Numerical Methods for Bayesian Inference

It is necessary to evaluate integration problems in order to determine the normalized

joint posterior distribution, the marginal distribution for a single parameter, the
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Figure 2.11: Bayesian Research Cycle (van de Schoot et al., 2021)
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summary measures of the posterior distribution, and for many other inferential

processes. However, analytical solutions are rarely available, so numerical techniques

are unavoidable for obtaining the desired results for Bayesian statistics. According

to McElreath (2020), the most popular and widely applied numerical approaches

are:

i. Grid approximation

ii. Quadratic approximation

iii. Markov chain Monte Carlo (McMC) techniques

2.6.5.1 Grid approximation

The simplest method to approximate the posterior distribution is called grid ap-

proximation, and it is as follows:

i. To produce the grids, a finite number of equally spaced points are constructed

in the range of values for each parameter.

ii. The posterior is calculated by multiplying the prior and likelihood at the grid

points for each set of parameters.

iii. The final step in normalizing posterior involves dividing each value by the total

sum of all values.

The number of grids will be equal to 100k if there are k (let’s say) model param-

eters and 100 (let’s say) points for each parameter. The number of grids grows

exponentially as the number of points inside the range of values and the number

of parameters rises. Even for somewhat big situations, grid approximation is not a

practical solution (Christensen et al., 2010). Despite the fact that the method does

not require formulas to be derived analytically to calculate the posterior distribution.
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2.6.5.2 Quadratic Approximation

In reality, Gaussian or normal approximation is what is meant by the term ”quadratic

approximation.” Because the logarithm of a Gaussian distribution creates a quadratic

function parabola, a Gaussian approximation is known as a ”quadratic approxi-

mation.” Because of the parabola, this approximation essentially reflects any log-

posterior. The primary tenet of quadratic approximation is that a Gaussian distri-

bution can accurately represent the posterior distribution. When the posterior is

unimodal and the sample size is large, this approximation can be fairly accurate.

The posterior expectation of any function g(θ) of the random parameter θ is ap-

proximated analytically using Laplace’s approach as well. To assess the expectation,

Turkman et al. (2019) provided an analytical method:

E[g(θ)|y] =
∫
g(θ)p(θ|y)dθ (2.88)

using the Laplace method to approximate integral.

2.6.5.3 Markov chain Monte Carlo Methods

The exact posterior cannot be discovered analytically except in a few rare instances,

and determining the numerical posterior requires challenging numerical integration,

especially when there are many parameters. These are the two fundamental obsta-

cles that limit the use of Bayesian statistics (Christensen et al., 2010). However,

samples are taken from the posterior distribution and conclusions are based on these

samples rather than approximating integrals. There are two methods for simulating

samples taken from the posterior distribution: (1) the Monte Carlo (MC) simulation

method, which draws independent samples from the posterior distribution; and (2)

the Markov chain Monte Carlo (McMC), which draws dependent samples from the

posterior distribution.
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2.7 McMC Performance and Convergence Diag-

nostics

In Bayesian inference, McMC algorithms are frequently employed to simulate sam-

ples from intricate, high-dimensional posterior distributions. In Bayesian computa-

tional statistics, evaluating the chains’ performance and the McMC sampling pro-

cess’ convergence is a crucial topic. because the posterior distribution’s simulated

samples are used for all inference. When the McMC method converges, it does so

to the intended posterior density rather than to a single point (Basharat, 2019).

2.7.1 McMC Performance

Every time Markov chains are used, it is crucial to evaluate their performance. The

McMC output should be examined using at least two chains, it is recommended.

In this sub-section, crucial characteristics for evaluating the performance of Markov

chains are described.

2.7.1.1 McMC Mixing

A McMC algorithm’s mixing capacity determines how effective it is. A chain’s

mixing property describes two features (Cowles and Carlin, 1996).

i. How soon a chain forgets its original values comes first.

ii. How rapidly a chain can investigate the target distribution’s shape and full

support.

2.7.1.2 Number of Chains

In the literature, there are contrasting viewpoints on how many chains should be

employed in the McMC algorithm. While some researchers (Gelman and Rubin,
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1992) advise for numerous long chains, others only argue for one long chain. The

benefits and drawbacks of each strategy were examined by (Consul, 2016; Gilks et al.,

1994). The fundamental contention is that, even for very long chains, the chain can

wrap itself around the mode of the target distribution and remain there indefinitely.

In this situation, even though the chain does not thoroughly explore the support and

shape of the target distribution, the convergence diagnostic may nevertheless show

that the chain has converged.However, by executing numerous chains, it is possible

to guarantee that at least one of them will examine the characteristics of the target

distribution and will eliminate the impact of beginning values. In actual practice,

two or more chains are typically performed with the expectation that at least one of

them will converge to the chosen distribution and investigate all of its features. We

build three Markov chains that unavoidably converge to an underlying stationary

distribution to implement McMC for our hazard-based regression models.

2.7.1.3 Thinning

The samples produced by McMC are not independent, but rather correlated. Only

the kth sampled value is stored, discarding the remaining values in order to reduce

autocorrelation, where k > 1 is the lag time beyond which autocorrelation is mini-

mal. In most cases, a chain’s poor chain mixing can be seen in the autocorrelation’s

delayed decay. As a result, it is recommended that the inference be based on ev-

ery ith iteration of chains, with i set to a value that is sufficiently high to ensure

that subsequent draws are roughly independent (Gelman and Rubin, 1992). In the

literature, this tactic is referred to as ”thinning.”

Thinned samples have a lower autocorrelation and a larger effective sample size

(n−eff). Additionally, it reduces storage requirements and speeds up calculation

for high-dimensional problems (Cowles and Carlin, 1996). However, thinning isn’t

always effective or necessary (Basharat, 2019).
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2.7.1.4 Burn-in Period

Burn-in period is the term used to describe the initial phase, or the number of

iterations prior to convergence that are abandoned in order to minimize the impact

of the initial values. If the sample size is large enough, the impact of this time period

is reduced (McElreath, 2020). Even after running for a long time, a Markov chain’s

dependence on its starting value may continue to be stable. As a result, this reliance

may cause the chain to converge slowly if the initial values chosen are significantly

different from the posterior mode (Cowles and Carlin, 1996). The chains may need

to go through a few rounds before they reach the high probability zone, where

they are more indicative of the desired distribution. In essence, the chain is made

independent of its beginning values and converges to the target distribution quickly

by discarding the first S iterations as part of the burn in period (Gelman, 1996).

2.7.1.5 Stopping Time

A chain should typically be stopped at a specific moment after running for a long

enough amount of time to have good mixing. Making a choice about the stopping

time in practice might be challenging. Gilks et al. (1994) recommended compar-

ing the estimations (posterior means/medians) from each chain to determine the

stopping time after running numerous lengthy chains. The run length should be

extended if the estimations from other chains do not closely concur.

2.7.2 McMC Convergence Diagnostics

When all of the chains’ outputs are indistinguishable and the chains have ”lost”

their initial values, McMC convergence is achieved (Mwalili, 2006). However, it

might be difficult to decide whether it would be appropriate to assume that the

samples closely represent the Markov chain’s underlying stationary distribution. A

chain’s convergence is used to determine how well it has resembled its stationary
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distribution (Cowles and Carlin, 1996). Formal test statistics and graphical tools

are introduced in the literature to determine the convergence of the chains including

the following.

2.7.2.1 Geweke’s Convergence Diagnostic

Geweke’s diagnostic, also called Geweke’s z-score diagnostic, focuses on comparing

the first and last parts of a chain. It is, in fact, a frequentist comparison, of means,

with 95 percent of the values falling between −2 and 2 , as proposed by (Geweke

et al., 1991).

2.7.2.2 Heidelberger and Welch’s Convergence Diagnostic

Schruben (1982) and Schruben et al. (1983) proposed detecting nonstationarity in

simulation output using a spectral analysis approach to estimate the sample mean

variance. They applied the Cramer-von Mises statistic and Brownian bridge theory

to test the null hypothesis of stationarity of the Markov chain.

Heidelberger and Welch (1983) applied the aforementioned test to introduce a com-

prehensive method for generating a confidence interval of a predetermined width for

the mean of a parameter when the chain has an initial transient (a state when the

algorithm has not reached stationarity yet). They computed a test statistic (based

on the Cramer-von Mises test statistic) to reject or accept the null hypothesis that

the Markov chain belongs to a stationary distribution. A single chain was subjected

to diagnostic.

2.7.2.3 Raftery and Lewis’s Diagnostic

Raftery and Lewis (1992) proposed ”a method for a single chain that tests for chain

convergence to the target distribution and estimates the run-lengths required to

properly estimate quantiles of functions of the parameters.
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In this thesis, we applied a quantile of interest (0.025), the desired level of accuracy

of ±0.0005, and a probability of 0.95 to attain the indicated degree of accuracy

(Raftery and Lewis, 1995).

2.7.2.4 Brooks-Gelman-Rubin (BGR) Convergence Diagnostic

Gelman and Rubin (1992) proposed a convergence diagnostic technique to check the

McMC algorithms simulation and is based on within chain variance and between

chain variance. Gelman et al. Gelman et al. (2013) suggested that the limit of

acceptance of potential scale reduction factor (PSRF) to be less than 1.1.

2.7.2.5 Graphical Tools

Four frequently used graphical tools can also be used to assess a chain’s convergence

and mixing properties: (1) Ergodic mean plot, (2) Autocorrelation plot, (3) Trace

plot, (4) Density plot (Cowles and Carlin, 1996).

1. Ergodic mean plot: The Ergodic mean (also referred to running mean) is a well-

known convergence diagnostic for McMC algorithms. The Ergodic mean is defined

as the mean of all simulated sample values of up to a specific iteration (Smith and

Roberts, 1993). Ergodic mean is used to observe the convergence pattern of the

McMC chains.

2. Autocorrelation plot: Although the autocorrelation plot is not strictly a con-

vergence diagnostic tool, it does aid in indirectly assessing the convergence of the

McMC simulation process (Basharat, 2019).

(3) Density plots: Density can be compared to the fundamental shapes associated

with typical analytic distributions, and density plots can reveal behaviour in the

tails, skewness, existence of multimodal behaviour, and data outliers (Consul, 2016).

(4) Trace plot: A trace plot, often known as a time series plot, is one of the most

popular diagnostics of a McMC simulation [(Cowles and Carlin, 1996). The chain’s

mixing speed is displayed on the trace plot. The realization of the chains versus the
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iteration count is represented by a trace plot. No matter where it began, a well-

behaved chain will swiftly depart from its initial values, and the samples will jitter

around erratically in the area where the posterior density is strongest, showing that

there is no discernible pattern between any two chains. If a distinct trend can be

detected in the trace plot, it may be assumed that good chain mixing and stationary

distribution have not been attained.

2.8 Markov chain Monte Carlo Sampling

The extensive development of Markov chain Monte Carlo (McMC) sampling meth-

ods during the previous decades has made Bayesian inference a viable tool for solving

many statistical problems correctly (Mwalili, 2006). McMC simulation methods are

a type of stochastic algorithm that is used to sample from posterior distributions.

These methods allow for the selection of samples from a probability distribution

without knowing the density of the distribution.

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling

the posterior distribution based on constructing a Markov chain that has the desired

distribution as its limiting (stationary) distribution. The idea of MCMC sampling is

to simulate a random walk in the space of parameters of interest, θ = (θ1, · · · , θd)′,

which converges to the joint posterior distribution p(θ | y). The samples are drawn

sequentially, with the distribution of the sampled draws depending on the last value

drawn; hence, the draws form a Markov chain. The states of the chain after a large

number of iterations is then used as a sample from the desired posterior distribution.

As a result, we get a sample of values from the posterior rather than a closed version

of it when we use McMC. These samples can then be used to draw conclusions about

important derived quantities of interest (Jackson, 2015). In the next subsections,

we will briefly outline the most common McMC algorithms:

1. The Gibbs sampler and
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2. The Metropolis-Hastings sampling

2.8.1 Gibbs Sampler Algorithm

The Gibbs Sampler (Gilks et al., 1994; Smith and Roberts, 1993) is a multidimen-

sional McMC algorithm that has been shown to be particularly useful. It is defined

in terms of θ subvectors. The Gibbs sampler cycles over the subvectors of θ at each

iteration t, pulling θj from the conditional distribution given all of the remaining

components of θ.

Gibbs Sampler Algorithm is written as follows:

1. Choose an arbitrary initial value of θ(0) =
{
θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k

}
2. For I = 0, 1, 2, . . . ,N− 1, generate each component of θ as follows:

a. Draw θ
(I+1)
1 = fromπ (θ1 | θi2, θi3, . . . , θik, Y,X)

b. Draw θ
(I+1)
2 = fromπ

(
θ2 | θi+1

1 , θi3, . . . , θ
i
k, Y,X

)
c. θ

(I+1)
3 = fromπ

(
θ3 | θi+1

1 , θi+1
2 , θi4, . . . , θ

i
k, Y,X

)
d. . . .

e. Draw θ
(I+1)
k = fromπ

(
θ3 | θi+1

1 , θi+1
2 , . . . , θi+1

k−1, Y,X
)

3. Repeat step 2 until convergence

4. Return

θ(b+1) =
{
θ
(b+1)
1 , θ

(0b+2)
2 , . . . , θ

(b+1)
k

}
, θ

(b+2)
1 , θ

(b+2)
2 , . . . , θ

(N)
k

As a rule of thumb, the iteration should be run until the Monte Carlo error for

each parameter of interest should be less than about 5% of the sample standard

deviation.
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2.8.2 Metropolis-Hastings

Given a target posterior distribution p(θ | y), known up to a normalizing constant,

the Metropolis algorithm generates a sequence of random vectors
(
θ(1),θ(2), · · ·

)
whose distribution converges to the target distribution. Each sequence can be con-

sidered a random walk whose stationary distribution is p(θ | y).

Following are the steps in the algorithm (Gelman et al., 2013; Mwalili, 2006; Gelman

et al., 1995). Start with some initial value θ0. For t = 1, 2, · · · , obtain θ(t) from

θ(t−1) using the following steps:

1. Sample a candidate point θ∗ from a proposal distribution at time t, q
(
θ∗ | θ(t−1)

)
.

The proposal distribution distribution must be symmetric; that is, q (θa | θb) =

q (θb | θa) for all θa and θb.

2. Calculate the ratio of the densities,

r =
p (θ∗ | y)

p (θ(t−1) | y)
.

3. Set

θ(t) =


θ∗ with probablity min(r, 1),

θ(t−1) otherwise.

The algorithm requires the ability to draw θ∗ from the proposal (jumping) distribu-

tion q (θ∗ | θ) for all θ.

2.8.3 The Metropolis-Hastings Algorithm

The fundamental Metropolis algorithm mentioned above is generalized in two ways

by the Metropolis-Hastings (M-H) algorithm. First off, symmetry in the proposal

distribution q is no longer required. That is to say, it is not necessary that q (θa | θb) =
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q (θb | θa). Second, the acceptance ratio has been adjusted to account for the asym-

metry in the proposal density (Gelman et al., 1995)

r =
p (θ∗ | y) q

(
θ(t−1) | θ∗)

p (θ(t−1) | y) q (θ∗ | θ(t−1))
.

Allowing an asymmetric proposal distribution can be useful in increasing the speed

of the random walk.

2.8.4 Why the Bayesian Technique to Inference?

Real-world data sets frequently contain several confounders and necessitate compli-

cated models in order to achieve reasonable results. When we come across generally

applicable models, we frequently require complex computational approaches to suit

them. As a result, methods like Markov chain Monte Carlo (McMC), that enable

sampling from the posterior distribution when no analytical solution exists, are fre-

quently used (Mwalili, 2006). Furthermore, recent technological improvements have

supported the use of Bayesian methods for inference in the context of complex mod-

els, giving a flexible and powerful alternative to traditional frequentist approaches

(Owino, 2014).

The Bayesian technique to inference will be useful for creating flexibility in the form

of hazard dependence on covariates. By describing correlations in the prior distri-

bution between log-hazards for nearby covariate profiles, a compromise is achieved

that relaxes the assumption of a parametric form of relationship while imposing

enough structure to use the information in finite data sets. As a result, selecting a

prior distribution might be critical for deriving good posterior inferences.
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2.9 Model Comparison

2.9.1 Classical Model Comparison

The comparison between GH,AFT,AH, and PH models based on GLL baseline

hazard was evaluated using different information criterions, and the nested structure

of the GH model and its special cases was evaluated using the likelihood ratio test

(LRT) as discussed below:

2.9.1.1 Nested Models

When the models are nested, we can compare them using a likelihood ratio test

(LRT). Assuming we have two models: f = f(t | θ ∈ Θ) and f0 = f (t | θ0 ∈ Θ0 ⊂ Θ),

where dim(Θ) = m and dim (Θ0) = m−r, respectively. In other words, f is reduced

to f0 by adjusting r of its parameters to constants. The likelihood ratio test (LRT)

is expressed as follows:

LRT = −2 log
L(θ̂)

L(θ̂0)
= 2

[
ℓ(θ̂)− 2ℓ0

(
θ̂0

)]
∼ x2r, (2.89)

where θ̂ is the restricted Maximum likelihood (ML) estimates under the null hypoth-

esis (H0) and θ̂0 is the unrestricted ML estimates under the alternative hypothesis

(H1), L is the likelihood function, and ℓ is the log-likelihood function.

Under the null hypothesis, the LRT follows Chi-square distribution with degrees of

freedom (df) (dfalt − dfnull ). If the p-value is less than 0.05 the null hypothesis is

rejected. In other words, if LRT > X2
r,1−τ , we conclude that the fit provided by f

is significantly better than f0 (at the τ level of significance).
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2.9.1.2 Non-nested Model

More generally, models can be non-nested, which means that there is no parameter

configuration that makes the two models’ equivalent. As a result, we are unable to

use the likelihood ratio test. The Akaike information criterion (AIC) is one of the

most extensively used methods for comparing non-nested models. The AIC rewards

goodness of fit but penalizes the model for increasing the number of estimated

parameters and is expressed as follows:

AIC = 2(j + p)− 2l, (2.90)

where l represents the log-likelihood function evaluated as the MLEs, p the number

of covariates and j the number of distributional parameters of the assumed baseline

probability distribution (i.e., j = 3 for generalized log-logistic baseline). Burnham

and Anderson (2004) provided some basic rules of thumb for the use of AIC.

Table 2.1: Rule of Thumb for AIC Differences

∆M Level of support of Model M

0− 2 Substantial

4− 7 Considerably less

> 10 Essentially none

Other approaches for model comparison tools for both nested and non-nested mod-

els to decide which model best fits the provided data are available. Specifically,

Bozdogan’s Consistent Akaike Information Criterion (BCAIC), the Bayesian infor-

mation criteria (BIC), the CAIC (Consistent Akaike Information Criterion), and the

Hannan Quin Information Criterion (HQIC).

In scenarios where the sample size is fairly small when compared to the number of

parameters in the model, the CAIC fixes the AIC for overfitting of the data and is
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calculated as follows:

CAIC = AIC +
2(j + p)(j + p+ 1)

n− (j + p)− 1
, (2.91)

Contrary to the AIC, which is asymptotically efficient, the HQIC is frequently quoted

in the literature. It is calculated as follows:

HQIC = 2(j + p) log(log(n))− 2l, (2.92)

The BCAIC is another adjusted form of AIC which is consistent and is computed

as follows:

BCAIC = 2(j + p) log(log(n))− 2l, (2.93)

The BIC also known as Schwarz information criterion (Schwarz, 1978), is used in

the same way as AIC (we aim to minimize its value) but has a larger penalty for

complexity when n ≥ 8 (which is typically is). The BIC is computed as follows:

BIC = (j + p) log(n)− 2l, (2.94)

where l represents the log-likelihood function evaluated as the MLEs, p the number

of covariates and j the number of distributional parameters of the assumed baseline

probability distribution (i.e., j = 3 for generalized log-logistic baseline).

2.9.2 Bayesian Model Comparison

The Watanabe Akaike information criterion (WAIC), the leave-one-out information

criterion (LOOIC), and the deviation information criterion (DIC) were the three

Bayesian model selection criteria that we employed in this thesis.

In chapters 3, 4, and 5, DIC was taken into account for the Bayesian model selection,

but chapters 6, 7, and 8 take WAIC and LOOIC into account. As a general rule, the
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model with the smaller DIC is chosen as the best fitting if there is a DIC difference

between two models of greater than 3. The DIC is computed as follows:

DIC = D̄ + pD = D̂ + 2pD (2.95)

where; D̄ is a goodness of fit test for statistical model and is represented the deviane’s

posterior mean, and pD is computes as the difference between pD = D̄ − D̂, and it

is represented the effective number of model parameters.

WAIC and LOOIC were employed as full Bayesian model selection criteria in this

study. They are both techniques for calculating pointwise out-of-sample prediction

accuracy using a fitted Bayesian model. Asymptotically, they are equivalent since

WAIC is based on the series expansion of leave-one-out cross-validation (LOO). It is

helpful to be able to compute both WAIC and cross-validation because they address

different prediction questions with finite data. The log-likelihood assessed at the

posterior simulations of the parameter values can be used to directly estimate the

WAIC and an approximated LOO based on importance sampling. Compared to

more basic estimates of prediction error like AIC and DIC, LOOIC and WAIC have

a number of advantages, but they are less frequently employed in practice since they

require additional computing steps (Vehtari et al., 2017; Magnusson et al., 2020).

2.10 Total Time on Test

The theory of total time on test (TTT) transform is familiar for its use in different

fields of study such as stochastic modeling, econometrics, survival and reliability

analysis, and ordering of distributions (Nasiru, 2018). Researchers in survival and

reliability analysis are often interested in how the shape of the hrf of a given data

set looks like. The TTT-transform provides the researchers with a graphical way of

viewing the shape of the hrf.
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In the literature, the major share of the TTT-transform is concerned with survival

and reliability problems that include the characterization of aging properties, tests of

hypothesis, ordering life distributions, model identification, and defining new classes

of lifetime distributions. The method was developed by (Barlow and Doksum, 1972),

for statistical inference problems under order restrictions.

For a random variable representing a lifetime, with a distribution function F(x) and

survival function S(x), the function defined on [0, 1] by

H−1
F (p) =

∫ F−1(P )

0

S(u)du, p ∈ [0, 1] (2.96)

It is called the TTT-transform of F. Where S(u) = 1−F(u) is the survival function.

The scaled TTTtransform is computed using

φG(p) =
H−1(p)

H−1(1)
(2.97)

The curve φG(p) versus 0 ≤ p ≤ 1 is the scaled TTT-transform curve.

According to Barlow and Doksum (1972), the shape of the hrf can be classified as

one of the following using the scaled TTT-transform curve:

1. The hrf is said to be constant if the scaled TTT-transform curve is on the

450 line.

2. The hrf is increasing if the scaled TTT-transform curve is concave above the

450 line.

3. The hrf is decreasing if the scaled TTT-transform curve is convex below the

450 line.

4. The hrf exhibits a bathtub shape if the scaled TTT-transform curve is first

convex below the 450 line and then concave above the line.
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Figure 2.12: Shapes for the TTT-Plot (Ramos et al., 2014)

5. The hrf is uni-modal or inverse bathtub shape if the scaled TTTtransform

is first concave above the 450 line and then convex below the 450 line.

2.11 Concluding Remarks

The chapter provided some of the key concepts of modelling censored survival data

and a comprehensive explanation of the several methods used in order to attain the

objectives of the study.
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CHAPTER 3

Bayesian and Classical Inference for the

Generalized Log-Logistic Distribution

with Applications to Survival Data

In this chapter, we present our second published manuscript 1 about our proposed

baseline hazard named generalized log-logistic distribution with application to sur-

vival data set. Note that the materials of this chapter have been reproduced from

our article.

3.1 Introduction

Applied Statisticians use many probability distributions for reliability and survival

studies. The distributions could be applied in different fields such as medicine, en-

gineering, economy, industrial and physical fields, and so many other fields. Expo-

nential distributions, Generalized Exponential distributions, Gamma distributions,

Generalized Gamma distributions, extreme value distributions, Weibull distribu-

tions, log-logistic distributions, log-Normal distributions, Burr XII, and Generalized

Weibull distributions are among the most commonly used distributions in survival

and reliability analysis.

Typically, researchers in reliability and survival analysis are concerned with the de-

velopment of new probability models. Log-Logistic distribution (LL) is one of the

parametric distributions that can be used as a life testing distribution because of the

1Muse, A. H., Mwalili, S., Ngesa, O., Almalki, S. J., and Abd-Elmougod, G. A. (2021). Bayesian
and classical inference for the generalized log-logistic distribution with applications to survival data.
Computational intelligence and neuroscience, 2021.
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simplicity of its cumulative distribution and survival function can both be stated in

closed form and because it belongs to the Scale-Shape family (Lawless, 2011). LL

is one of the right-skewed, heavy-tailed functions that can be used as an alternative

to a log-normal distribution. It resembles the log-normal distribution in shape but

has heavier tails. Log-logistic distribution is particularly applicable to model non-

monotone (i.e., unimodal) hazard functions.

It is well understood that the log-logistic model is not appropriate for modelling

where the failure rate is monotonic when analysing time-to-event data with para-

metric models. It is suitable to use an extension of the model which has a monotone

hazard function. Departures from the monotonicity of distribution are typically

studied in terms of its shape, or more specifically in terms of its skewness (also

referred to as asymmetry) and kurtosis.

In this chapter, we focus on a modification of the log-logistic model because it re-

sembles the log-normal distribution in shape but is better suited for the application

in the analysis of survival data when dealing with incomplete data, such as censored

observations which are common in survival data analysis (Bennett, 1983b). The

presence of incomplete observations causes difficulties when using log-normal or in-

verse Gaussian models since the survival functions in these cases are complicated.

On the other hand, since the logarithms of small positive numbers are large negative

numbers, the log-normal distribution may give undue weight to very short survival

times (Lawless, 2011). For the reasons stated above, we will focus on the log-logistic

model whose hazard rate exhibits the aforementioned behaviour.

However, due to the log-logistic model’s symmetric property, it may be inadequate

for cases where the hazard rate is heavily tailed or skewed, as well as for modelling

censored survival data (Singh et al., 1988; Bennett, 1983b; Kalbfleisch and Prentice,

1973). In this study, we studied a modification (or generalization) of the log-logistic

parametric survival model and referring to this as the generalized log-logistic distri-

bution given in (Khan and Khosa, 2016). The generalized log-logistic distribution
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reflects the structure of the heavy tails and the skewness and it significantly outper-

formed the log-logistic distribution in general.

In the statistical literature, with the aim of increasing the versatility of the log-

logistic distribution in modelling survival time data, different generalized forms

of the distribution have recently been proposed and includes: a new extension of

the log-logistic distribution with applications to actuarial data sets (Alfaer et al.,

2021); Alpha power transformed log-logistic distribution (Aldahlan, 2020), (Malik

and Ahmad, 2020); transmuted four-parameters generalized log-logistic distribu-

tion (Adeyinka and Olapade, 2019; Granzotto and Louzada, 2015); a new three-

parameter of the log-logistic distribution (Shakhatreh, 2018); extended log-logistic

distribution (Lima and Cordeiro, 2017); exponentiated log-logistic geometric distri-

bution (Mendoza et al., 2016); the log-logistic Weibull distribution (Oluyede et al.,

2016); beta log-logistic distribution (Lemonte, 2014); McDonal log-logistic distribu-

tion (Tahir et al., 2014); transmuted log-logistic distribution (Aryal, 2013); Marshall-

Okin extended log-logistic distribution (Gui, 2013); the Zografos-Balakrishnan log-

logistic distribution (Hamedani, 2013); and exponential- log-logistic distribution

(Rosaiah et al., 2014). More details about the modifications and recent general-

izations of the log-logistic distribution can be found in (Muse et al., 2021b).

In addition, other authors have studied the Bayesian inference of the log-logistic

distribution and some of its generalizations. Dos Santos et al. (2018) developed

a Bayesian analysis of the transmuted log-logistic distribution. Yahaya and Dewu

(2017) studied the Bayesian estimation of the scale parameter for the log-logistic

distribution using chi-square and Maxwell priors. Abbas and Tang (2016) studied

the objective Bayesian analysis of the log-logistic distribution using the reference

and Jeffreys prior. Al-Shomrani et al. (2016) focused on the application of the

Markov chain Monte Carlo (McMC) techniques for estimating the unknown pa-

rameters of the log-logistic distribution. Guure et al. (2015) explored the Bayesian

inference of the log-logistic distribution for the interval-censored data. Kang et al.
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(2014) proposed the non-informative priors for the log-logistic distribution. Chaud-

hary (2019) studied the Bayesian estimation of the three-parameter exponentiated

log-logistic distribution. Akhtar et al. (2014) discussed the Bayesian analysis of

the log-logistic distribution using the Laplace approximation. Chaudhary (2019)

proposed the Bayesian analysis of the two-parameter exponentiated log-logistic dis-

tribution.

The log-logistic distribution has large-scale applications in analyzing time-to-event

data. The model is closed under both proportionality (multiplication) of failure

time and proportionality of odds. though, it is not a proportional hazard (PH)

model. However, regarding this issue Khan and Khosa (2016) presented generalized

log-logistic distribution that belongs to the proportional hazard models. The pro-

posed distribution has similar properties to the 2-parameter log-logistic distribution

and approaches the Weibull distribution in limit. However, its statistical and math-

ematical properties, as well as inferential procedures, have not received attention

so far. On the other hand, they discussed the classical inference of the proposed

distribution under the PH regression framework. However, much work still has to

be done. In this paper, we focused on the Bayesian and classical inference of the

generalized log-logistic distribution as a generalized distribution, not as a regression

model.

Additionally, for the applied cases, especially in the survival modelling, the GLL

model could be applicable in the following cases; (1) modelling the “asymmetric

monotonically right-skewed” heavy tail data sets; (2) modelling the “bathtub-shaped

hazard rate” data sets like data set I; (2) in “survival analysis”, the GLL distribution

could be chosen for modelling Proportional hazard frameworks; (4) in the medical

field, the GLL distribution could be considered in modelling the “Bladder cancer

data sets” which have “reversed bathtub-shaped” as illustrated in data set I; (5) in

the reliability and survival analysis, the proposed distribution can be an alternative

to the Weibull distribution since it can be closed under both accelerated failure time
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(AFT) and PH models since the Weibull distribution fails to model unimodal data.

For these based on ground reasons, we are motivated to study and introduce the

GLL distribution.

Thus, the main goal of this chapter is to propose and study a generalized log-logistic

distribution, which extends the exponential, Weibull, log-logistic, and BurrXII dis-

tributions, with the hope that the proposed distribution may have a better fit com-

pared to these distributions and other 3-parametric distributions in certain practical

situations. In addition, we would provide a comprehensive account of the mathe-

matical and statistical properties of the proposed model. The proposed model’s

formulae are simple and tractable, and with the use of modern computer software

and its numerical capabilities, the proposed model could be a great addition to the

arsenal of applied mathematicians and statisticians in the areas like medicine, en-

gineering, economics, social sciences, biology, among others. Finally, we discussed

the Bayesian model formulation of the proposed distribution

The rest of the chapter is organized as follows. Section 3.2 describes the distribution

functions for the GLL distribution, its sub-model distributions, and some of its basic

properties. Some mathematical properties of the GLL distribution are derived in

Section 3.3. Section 3.4 describes the Maximum likelihood for the estimation pa-

rameters of GLL distribution. Section 3.5 discusses the results of a simulation study

aimed at investigating and comparing the performance of the proposed estimators.

Section 3.6 presents an analysis of a real-life data set. The Bayesian Model formula-

tion for the proposed distribution is discussed in section 3.7. Section 3.8 presents the

Bayesian analysis of a real-life data set using Markov chain Monte Carlo techniques.

Finally, Section 3.9 summarizes the study with some concluding remarks.
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3.2 The Generalized Log-logistic Distribution

The generalized log-logistic distribution is a continuous probability distribution with

positive support R on a subset of (0,∞) with three parameters. It is a generaliza-

tion of the two-parameter log-logistic distribution. The generalization of log-logistic

distribution for censored survival data can be traced back to (Singh et al., 1988)

who discussed a generalized log-logistic distribution and applied it to censored sur-

vival data, and proposed a generalized log-logistic model and introduced the shape

parameter and then they used to fit a lung cancer data. Prentice (1976) proposed a

generalization for quantile response data and discussed several of its uses.

Since many continuous probability distributions are commonly applied for paramet-

ric models in survival analysis like the exponential, Gompertz, Weibull, log-normal,

log-logistic, and the gamma distribution. GLL is also applicable for survival data

analysis. There are a number of probability functions that are related to continuous

probability distributions, we will concentrate on functions that are related to the

lifetime distributions as a random variable in this study. The most common ones are;

hazard rate function (or failure rate function) hrf, survival (or reliability function),

probability density function (pdf), cumulative distribution function (cdf), cumula-

tive hazard rate function (CHF), and the reversed hazard rate function (rhrf) or

retro hazard. The advantage of these functions is that they completely describe the

lifetime distribution, and if you have any of them, determining the others is simple.

3.2.1 Hazard Rate Function

The hazard (failure) rate function plays an important role in survival analysis. It

is the most popular function for analyzing and modelling lifetime data because

of its intuitive interpretation of the amount of risk to fail associated with a unit

time t. applicable for describing the lifetime distribution of engineered and other
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components. The hazard rate is more informative than all of the other functions in

lifetime distributions. Because of this (Khan and Khosa, 2016) started their work by

defining the hazard rate of the GLL distribution. Cox and Oakes (2018) described

the reason that why the hazard rate is considering when we are dealing with the

survival data. They give a number of reasons include; hazard rate-based models

are often convenient when there is incomplete information (censoring) or there are

several types of failure rates, also hazard rate is a special form of the intensity

function, and last but not least is that hazard rate function can be derived from all

other functions that we use to describe lifetime distributions.

The hazard rate function describes how the instantaneous failure rate changes over

time. For the GLL distribution, the hazard rate function is computed as:

h(x;θ) =
αk(kx)α−1

[1 + (ηx)α]
, x ≥ 0, k, α, η > 0 (3.1)

where k > 0, β > 0, η > 0 are the distributional parameters and θ = (k, α, η)′. It

can be easily seen from Equation (3.1) that the hazard rate function is monotone

decreasing for α ≤ 1, and unimodal when α ≤ 1. That is, it initially increases to a

maximum at t =
[
α−1
λα

] 1
α , and then decreases to zero monotonically as t→ ∞. The

plots of the hrf are shown in Figure 3.1

3.2.2 Sub-Models

The proposed distribution consists of a number of important sub-models that are

widely used in parametric survival modelling. These include the log-logistic distri-

bution, the standard log-logistic distribution, the Burr XII distribution, the Weibull

distribution, and the exponential distribution. The propositions below relate the

GLL to the log-logistic, standard log-logistic, Burr XII, Weibull, and exponential

distributions.

1. Log-logistic Distribution:
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Figure 3.1: The hazard rate shapes for the GLL distribution

Proposition 3.2.1 Let X ∼ GLL(α, k, η). If η depends on k via k = η, then the

hazard rate function of Equation (3.1) reduces to the hazard rate function of the

log-logistic distribution.

Proof 3.2.1 From the hazard rate function of the generalized log-logistic distribution

given by

h(x;θ) =
αk(kx)α−1

[1 + (ηx)α]

If we replace η = k, it gives us

h(x;θ) =
αk(kx)α−1

[1 + (kx)α]
=
αk(kx)α−1

[1 + (kx)α]
(3.2)

Which is the hazard rate function form of a log-logistic distribution with the two

unknown parameters (k, α). Where θ = (k, α)′, k = 1
β
is the rate parameter.Hence,

the proof

It is easy to verify that the hazard rate function of the log-logistic distribution is
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monotone decreasing for 0 < α ≤ 1, and uni-modal for α > 1 (decreases and then

increases with the maximum at x = 1
k
(α− 1)

1
α .

2. Standard Log-logistic Distribution

Proposition 3.2.2 Let X ∼ GLL(α, k, η). If η depends on k via k = η = 1, then

the hazard rate function of Equation (3.1) reduces to the hazard rate function of the

standard log-logistic distribution.

Proof 3.2.2 From the hazard rate function of the generalized log-logistic distribution

given by

h(x;θ) =
αk(kx)α−1

[1 + (ηx)α]

If we replace η = k = 1, it gives us

h(x;θ) =
α · 1(1 · x)α−1

[1 + (1.x)α]

=
α(x)α−1

[1 + xα]

(3.3)

Which is the hazard rate function form of a standard log-logistic distribution with

one unknown parameter (α). Hence, the proof

Note that, where x > 0, is the support of the distribution, and α > 0 is the shape

parameter. It is easy to verify that the hazard rate function of the log-logistic

distribution is monotone decreasing for 0 < α ≤ 1, and uni-modal for α > 1

(decreases and then increases with the maximum at x = (α− 1)
1
α .

3. Burr-XII Distribution

Proposition 3.2.3 Let X ∼ GLL(α, k, η). If η = 1, then the hazard rate function

of Equation (3.1) reduces to the hazard rate function of the Burr-XII distribution.

Proof 3.2.3 From the hazard rate function of the generalized log-logistic distribution

given by

h(x;θ) =
αk(kx)α−1

[1 + (ηx)α]
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If we replace η = 1, it gives us

h(x;θ) =
αk(kx)α−1

[1 + (1.x)α]

=
αkxα−1

[1 + xα]

(3.4)

Which is the hazard rate function form of a Burr XII distribution with two unknown

parameters (α, k). Hence, the proof

The Burr XII hazard function is monotone decreasing for α ≤ 1, and upside-down

bathtub shapes curve for α > 1 (which means that it initially increases, attains a

maximum at x = (α− 1)
1
α , and then decreases to zero at x→ ∞).

4. Weibull Distribution

Proposition 3.2.4 Let X ∼ GLL(α, k, η). If ηα → 0. then the hazard rate function

of the GLL Equation (3.1) approaches to the hazard rate function of the Weibull

distribution.

Proof 3.2.4 If we now let If ηα → 0 then, from the hazard rate function of the GLL

given by:

h(x;θ) =
αk(kx)α−1

[1 + (ηx)α]
,

we have that

h(x;θ) =
αk(kx)α−1

[1 + (0]
,

simplifying gives,

h(t;θ) = αk(kx)α−1 (3.5)

which is a hazard function of a Weibull distribution with the unknown parameters

(α, k). This property of the GLL enables it to handle monotone increasing hazard

satisfactorily with α > 1 , and λ close to zero (very small).

It is clear from Equationn (3.5) that 0 < α < 1, the hazard rate function decreases,

for α > 1, the hazard rate function increases, for α = 1, the hazard rate function
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decreases. The distribution reduces to exponential for α = 1.

5. Exponential Distribution

Proposition 3.2.5 Similarly, if we now let α = 1, then the hazard rate function of

Equation (3.5) reduces to the hazard rate function of the exponential distribution.

Proof 3.2.5 From Equation (3.5) we have that the hazard rate function is

h(t;θ) = αk(kx)α−1

if we replace α = 1

h(t;θ) = αk(kx)α−1

simplifying gives,

h(t;θ) = k · 1(1.t)1−1

h(t;θ) = k (3.6)

which is the hazard rate function of an exponential distribution.

This property makes the exponential distribution to be inadequate to describe sur-

vival data. Hence, the proof.

The summary of the submodels for the proposed distribution are summarized in

Table 3.1.

Table 3.1: Summary of submodels from the GLL distribution.

Distributions α η k

Log-logistic distribution α η = k k = η

Weibull distribution ηα −→ 0 ηα −→ 0 k

Exponential distribution α = 1 η −→ 0 k

Standard log-logistic distribution α η = k = 1 k = η = 1

Burr XII distribution α η = 1 k
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3.2.3 The Probability Density Function

The pdf of the GLL distribution with three unknown parameters can be obtained

by applying the following equation and the plots of the pdf are shown in Figure 3.2

f(x;θ) = h(x, θ) exp

{
−
∫ x

0

h(x)dx

}
(3.7)

Simplifying gives;

f(x;θ) =
αk(kx)α−1

[1 + (ηx)α]
kα

ηα+1

, x ≥ 0, k, α, η > 0 (3.8)

Figure 3.2: The pdf shapes for the GLL distribution

3.2.4 The Survival (or Reliability) Function

The survival (reliability) function of the GLL distribution that represents the prob-

ability that observation does not fail until t is given below and its plots are shown
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in Figure 3.3 .

S(x;θ) =
f(x;θ)

h(x;θ)
(3.9)

Simplifying gives;

S(x;θ) = [1 + (ηx)α]−
kα

ηα , x ≥ 0, k, α, η > 0 (3.10)

Figure 3.3: The survival curves for the GLL distribution

3.2.5 The Cummulative Distribution Function

The cumulative distribution function (CDF) also known as the lifetime distribution

function of the GLL distribution is of the form below and the plots of the cdf are

shown in Figure 3.4

F (x;θ) =
[1 + (ηx)α]

kα

ηα − 1

[1 + (ηx)α]
kα

ηα

, x ≥ 0, k, α, η > 0 (3.11)

where k > 0, β > 0, η > 0 are parameters and θ = (k, α, η)′.
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Figure 3.4: The cdf plots for the GLL distribution

3.2.6 The Retro Hazard Function

The reversed hazard rate (also known as the retro hazard) is defined as the ratio of

pdf to the corresponding cdf. The retro hazard is written as follows:

λr(x;θ) =
f(x;θ)

F (x;θ)
, (3.12)

Reversed hazard rate function plays an important role in the analysis of censored

data and in the estimation of the survival function. The following equation gives us

the basic relatio between hazard rate function and the reversed hazard rate function.

λr(x;θ) =
h(x;θ)S(x;θ)

1− S(x;θ)
(3.13)

The applications of hazard rate function in survival analysis are well known. Re-

cently the reversed hazard rate function has gained popularity among applied statis-

ticians, for information see (Gupta and Wu, 2001; Cox and Oakes, 2018; Legrand,

2021). Block et al. (1998) showed that the hazard rate function play essential role
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in the analysis of right-censored data while the retro hazard plays an essential role

in the analysis of left-censored data. The reversed hazard rate function of the GLL

distribution takes the form

r(x;θ) =
f(x;θ)

F (x;θ)
=

[1 + (ηx)α]
kα

ηα
+1

[1 + (ηx)α]
kα

ηα

(3.14)

Simplifying gives;

r(x;θ) =
αk(kx)α−1

[1 + (ηx)α]
kα

ηα+1 − [1 + (ηx)α]
, x ≥ 0, k, α, η > 0 (3.15)

The reversed hazard rate plots are shown in Figure 3.5

Figure 3.5: The rerto hazard plots for the GLL distribution

3.2.7 The Cummulative Hazard Function

The cumulative hazard function of the GLL distribution takes the form:

H(x;θ) = − logS(x;θ) =

∫ x

0

h(x;θ)dx (3.16)
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Simplifying gives;

H(x;θ) =
kα

ηα
log [1 + (ηx)α] , x ≥ 0, k, α, η > 0 (3.17)

where k > 0, α > 0, η > 0 are parameters and θ = (k, α, η)′.

3.2.8 The Hazard Rate Average (HRA) function

The HRA function of X is expressed as;

HRA(x;θ) =
H(x;θ)

x
=

∫ x
0
h(x;θ)dx

x
, x > 0 (3.18)

Where H(x;θ) is the cumulative hazard function. An analysis of HRA(x;θ) on t

enables us to find increasing hazard rate average and decreasing hazard rate average.

3.3 Some Mathematical Properties of the Pro-

posed Distribution

In this section, we present some mathematical properties of the GLL distribution.

The functions that we discussed in section (2) are not the only ways that we can

define the GLL distribution, but there are other mathematical functions that we

can use to describe the lifetime distributions of a random variable X. These in-

clude; quantile function and its related results, moments and its related properties,

rth central moments, residual life and reversed residual life functions, and other

mathematical properties.

3.3.1 The Quantile Function and Related Results

The quantile function (which is the inverse of the CDF) is crucial in statistical and

quantitative data analysis. A probability distribution can be defined in terms of
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either the quantile function or the cumulative distribution function (Midhu et al.,

2013). The quantiles of the proposed distribution with various parameter values are

given in Table 3.2.

Theorem 3.3.1 If T ∼ GLL(k, α, η), then the quantile function, lower quartile,

median, and the upper quartile of the GLL distribution, respectively are given by

Xq=F
−1(q; k, α, η) =

{[
1

1−p

] ηα

kα − 1

} 1
α

η
, (3.19)

Xq1 =

{[
4
3

] ηα

kα − 1

} 1
α

η
, (3.20)

Xq2 = Median =

{
2

ηα

kα − 1
} 1

α

η
. (3.21)

Xq3 =

{
4

ηα

kα − 1
} 1

α

η
. (3.22)

Proof 3.3.1 The quantile function of GLL distribution is derived by finding the

value of Q for which;

1− [1 + (ηx)α]−
kα

ηα = p

Xq=F
−1(q; k, α, η) = [1 + (ηq)α]−

kα

ηα = 1− p

=
1

[1 + (ηq)α]
kα

ηα

= 1− p

= [1 + (ηq)α]
kα

ηα =
1

1− p

= 1 + (ηq)α =

(
1

1− p

) ηα

kα

= (ηq)α =

(
1

1− p

) ηα

kα

− 1
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Table 3.2: Quantiles of the proposed distribution for different parameter
values.

Quantiles (κ, α, η)
(0.5, 0.5, 0.5) (5.0, 1.5, 1.5) (4.0, 4.0, 2.5) (3.0, 2.0, 3.0) (5.0, 3.0, 2.0)

0.1 0.0247 0.0449 0.1427 0.1111 0.0945
0.2 0.1250 0.0745 0.1725 0.1667 0.1216
0.3 0.3673 0.1026 0.1945 0.2182 0.1424
0.4 0.8889 0.1314 0.2134 0.2722 0.1608
0.5 1.9999 0.1627 0.2312 0.3333 0.1783
0.6 4.4999 0.1985 0.2489 0.4082 0.1961
0.7 10.8889 0.2421 0.2681 0.4082 0.2155
0.8 32.0000 0.3006 0.2906 0.6667 0.2385
0.9 162.0000 0.3972 0.3222 1.0000 0.2707

= ηq =


[

1

1− p

] ηα

kα

− 1


1
α

∴ q =

{[
1

1−p

] ηα

kα − 1

} 1
α

η
.

where; p ∈ [0, 1).k > 0, α > 0, η > 0. Hence the proof.

Similarly, we can prove (3.20), (3.21) and (3.22) by applying the following values;

Lower quartile = 1/4, median = 2/4 = 1/2, and the upper quartile = 3/4.

Lower quartile is

Xq1 =

{[
4
3

] ηα

kα − 1

} 1
α

η

Medium is

Xq2 = Median =

{
2

ηα

kα − 1
} 1

α

η

Upper quartile is

Xq3 =

{
44

ηα

kα − 1
} 1

α

η

90



3.3.2 Skewness and Kurtosis

The following relationship defines the mathematical form of the Galton Skewness

and Moors Kurtosis of the GLL model with three parameters:

SK =
Q
(
3
4

)
+Q

(
1
4

)
− 2Q

(
2
4

)
Q
(
3
4

)
−Q

(
1
4

) , (3.23)

KM =
Q
(
7
8

)
+Q

(
3
8

)
−Q

(
5
8

)
−Q

(
1
8

)
Q
(
6
8

)
−Q

(
2
8

) (3.24)

where Q describes different quartile values.

The above equations can be determined as functions of the GLL quantile function.

The advantages of these measures are that they are less sensitive in the presence of

outliers and that they exist even when the distribution is lacking moments.

3.3.3 The Random Deviate Generation Function

Let U be a random variable with a uniform distribution (0, 1) and an inverse cdf,

F (.), Then any sample drawn from F−1(u) is assumed to have been drawn form F (.).

As a result, using GLL(k, α, η), the random deviate can be generated as follows:

x =

{[
1

1−u − 1
]λα

kα

} 1
α

λ
, 0 < u < 1 (3.25)

where u follows U(0, 1) distribution.

3.3.4 The rth Moments and Related Results.

Numerous important characteristics and properties of a probability distribution such

as mean, variance, kurtosis, and skewness can be obtained from its moments. Mo-

ments are extremely important and play a central role in statistical analysis, es-

pecially in applications. The important moment functions, such as the moments,
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rth moment, rth central moment, mean, variance, skewness, and kurtosis of the

proposed distribution, are presented.

Theorem 3.3.2 If T ∼ GLL(k, α, η), then the rth power, negative moments, and

logarithmic moments are given, respectively, by

E (T r) =
kα

ηα+r
Γ ((kα/ηα)− (r/α)) Γ((r/α) + 1)

Γ ((kα/ηα) + 1)
, for

αkα

ηα
> r, (3.26)

E
(
T−r) = λα+r

kα
Γ ((kα/ηα) + 1)

Γ ((kα/ηα)− (r/α)) Γ((r/α) + 1)
. (3.27)

Proof 3.3.2 We have

E (T r) =

∫ ∞

0

trf(t; k, α, η)dt

=

∫ ∞

0

tr
αk(kt)α−1

[1 + (ηt)α](k
α/ηβ)+1

dt

=
αk

Γ ((kα/ηα) + 1)

∫ ∞

0

tr
(kt)α−1

1 + (ηt)α
dt

=
kα

ηα+r
Γ ((kα/ηα)− (r/α)) Γ((r/α) + 1)

Γ ((kα/ηα) + 1)
, for

αkα

ηα
> r.

Similarly, we can prove (3.27)

3.3.4.1 Mean and Variance

Corollary 3.3.1 If T ∼ GLL(k, α, η), then the mean and variance are given, re-

spectively, as follows:

The mean of the GLL distribution is

µ = E(T ) =
kα

ηα
Γ ((kα/ηα)− (1/α)) Γ((1/α) + 1)

Γ ((kα/ηα) + 1)
(3.28)

This is provided that (αkα/yα) > 1.

92



The variance of the GLL distribution is

σ2 = V (T ) = E
(
T 2
)
− (E(T ))2

=
kα

ηα+2

Γ ((kα/ηα)− (2/α)) Γ((2/α) + 1)

Γ ((kα/ηα) + 1)
−
(
kα

ηα
Γ ((kα/ηα)− (1/α)) Γ((1/α) + 1)

Γ ((kα/ηα) + 1)

)2

.

(3.29)

This is provided that (αkα/yα) > 2.

3.3.4.2 The rth Central Moments

Corollary 3.3.2 If T ∼ GLL(k, α, η), then the cumulants of the first, second, and

th central moments, are given, respectively, by:

c1 =µ
′
1 = E(T ) =

kα

ηα
Γ ((kα/ηα)− (1/α)) Γ((1/α) + 1)

Γ ((kα/ηα) + 1)

c2 =µ
′
2 − µk̂1 = E

(
T 2
)
− (E(T ))2

=
kα

ηα+2

Γ ((kα/ηα)− (2/α)) Γ((2/α) + 1)

Γ ((kα/ηα) + 1)

−
(
kβ

ηα
Γ ((kα/ηα)− (1/α)) Γ((1/α) + 1)

Γ ((kα/ηα) + 1)

)2

,

cr =µ
′
r −

r−1∑
n=1

 r − 1

n− 1

 cnµ
′
r−m =

kα

ηα+r
Γ ((kα/ηα)− (r/α)) Γ((r/α) + 1)

Γ ((kα/ηα) + 1)

−
r−1∑
n=1

 r − 1

n− 1

 cn
kα

ηα+((r − n)

Γ ((kα/ηα)− ((r − n)/α)) Γ(((r − n)/α) + 1)

Γ ((kα/ηα) + 1)
.

(3.30)

Hence, from Corollary 2, we can derive the skewness and kurtosis of the GLL dis-

tribution by computing, respectively:

Skewness =
c3

(σ2)3/2
, (3.31)

Kurtosis =
c4

(σ2)2
. (3.32)
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3.3.5 Residual and Reverse Residual Life

The residual life has broader applications in survival analysis and risk management.

The residual lifetime of the GLL random variable is calculated as follows:

R(t)(x) =
S(x+ t)

S(t)
(3.33)

R(t)(x) =
[1 + (η(x+ t))α]−(k+nηα)

[1 + (ηt)α]−(kkα(ηηα)
. (3.34)

In addition, the reverse residual life of the generalized log-logistic random variable

can be calculated as follows:

R̂⟨t⟩(x) =
S(x− t)

S(t)
, (3.35)

R̂⟨t⟩(x) =
[1 + (η(x− t))α]−(k+nηa)

[1 + (ηt)α]−(kkαηα)
(3.36)

From Table 3.3, the GLL distribution is clearly numerically versatile in terms of

means and variance. Furthermore, the values of skewness (CS) show that it can be

right-skewed, nearly symmetrical, or slightly left-skewed. The kurtosis (CK) values

show that the GLL distribution can be mesokurtic, leptokurtic, or platykurtic. All

of these characteristics demonstrate the GLL distribution flexibility, which remains

appealing for modelling purposes.

The mean and variance plots for different values of alpha and kappa parameters are

shown in Figure 3.6, while the skewness and kurtosis plots are shown in Figure 3.7.
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Table 3.3: First five moments, standard deviation, skewness, and kurtosis
of the GLL distribution for some parameter values.

Moments (κ, α, η)
(0.5,0.5,0.5) (1.0,1.5,1.5) (1.5,2.0,2.5) (2.0,5.0,3.0) (1.0,1.0,2.0) (4.0,4.5,0.2) (5.0,4.0,0.5)

µ′
1 0.1034 0.2065 0.2432 0.2795 0.1547 0.2281 0.1813
µ′
2 0.0567 0.1292 0.1482 0.1741 0.0893 0.0554 0.0354
µ′
3 0.0388 0.0925 0.1036 0.1204 0.0619 0.0141 0.0073
µ′
4 0.0294 0.0715 0.0787 0.0900 0.0471 0.0037 0.0016
µ′
5 0.0237 0.0581 0.0631 0.0711 0.0380 0.0010 0.0004
SD 0.2146 0.2943 0.2984 0.3098 0.2557 0.0575 0.0509
CV 2.0743 1.4250 1.2270 1.1081 1.6529 0.2521 0.2805
CS 2.3743 1.1784 0.9109 0.6100 1.6648 -0.1784 -0.0871
CK 7.8842 3.0318 2.5240 2.0238 4.6628 2.8081 2.7479

Figure 3.6: The mean and variance plots for several combinations of alpha
and kappa parameters

Figure 3.7: The skewness and kurtosis plots for several combinations of
alpha and kappa parameters
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3.4 Maximum Likelihood Estimation

In this section, the unknown parameters of the generalized log-logistic distribution

based on a complete sample is estimated using maximum likelihood method. Let

X1, X2, . . . , Xn indicate a random sample of the complete GLL data, and then the

sample’s likelihood function is given as:

L =
n∏
i=1

f (xi, α, k, η)

L(x;α, k, η) =
n∏
i=1

[
αk (kxi)

α−1

[1 + (ηxi)
α]

kα

ηα+1

(3.37)

The log-likelihood function may be expressed as;

ℓ = n log(αk) + (α− 1)
n∑
i=1

log (kxi)−
n∑
i=1

log [1 + (ηxi)
α]

−
(
k

η

)α n∑
i=1

log [1 + (ηxi)
α] .

(3.38)

By taking the first derivatives of the log-likelihood function in Equation 3.38 with

respect to α, k, and η, and fixing the outcome to zero, we have:

∂ℓ

∂α
=
n

α
+

n∑
i=1

log (kxi)−
n∑
i=1

{
(ηxi)

α log (ηxi))

[1 + (ηxi)
α]

}
−
(
k

η

)α(
k

η

) n∑
i=1

log [1 + (ηxi)
α]

−
(
k

η

)α n∑
i=1

{
(ηxi)

α log (ηxi))

[1 + (ηxi)
α]

}
.

(3.39)

∂ℓ

∂k
=
n

k
+

(α− 1)

k
−
(α
k

)(k
η

)α n∑
i=1

log [1 + (ηxi)
α] (3.40)

∂ℓ

∂η
= −

(
α

η

) n∑
i=1

{
(ηxi)

α

[1 + (ηxi)
α]

}
+
(α
k

)(k
η

)α n∑
i=1

log [1 + (ηxi)
α]−(

α

η

)(
k

η

)α n∑
i=1

{
(ηxi)

α

[1 + (ηxi)
α]

} (3.41)
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Note that the MLE’s α̂, k̂, and η̂ of α, k, and η, respectively can be obtained by

equating the outcomes to zero and solving the system of non-linear equations nu-

merically. In order to construct confidence intervals for the parameters, the observed

information matrix J(θ) is used since the expected information matrix is compli-

cated. The observed information matrix is given by:

J(θ) = −


∂2ℓ
∂2α

∂2ℓ
∂α∂k

∂2ℓ
∂α∂η

∂2ℓ
∂2k

∂2ℓ
∂k∂η

∂2ℓ
∂2η


Where; θ = (α, k, η)′. When the usual regularity conditions are fulfilled and that the

parameters are within the interior of the parameter space, but not on the boundary.

√
n(∼= θ−θ) converges in distribution to N3 (0, I

−1(θ)), were I(θ) is the expected in-

formation matrix. The asymptotic behavior is still valid when I(θ) is replaced by the

observed information matrix evaluated at J(θ). The asymptotic multivariate nor-

mal distribution N3 (0, J
−1(θ)) can be used to construct an appropriate 100(1−τ)%

two-sided confidence intervals for the model parameters, where τ is the significant

level.

3.5 Monte Carlo Simulation Study

In this section, we assess the performance of the MLEs estimators for a finite sample

of size n using a Monte Carlo simulation study. The simulation study based on the

generalized log-logistic distribution is carried out to examine the average biases

(ABs), the mean square errors (MSEs), the root mean square errors (RMSEs), and

maximum likelihood estimates (MLEs) for the model parameters α, k, and η. The

simulation experiment was carried out using a variety of simulations with varying

sample sizes and parameter values. To generate random samples for the GLL, the

quantile function is given in Equation (3.19). The simulation study was repeated
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1500 times each with sample sizes n = 50, 100, . . . , 1500 and the following parameter

scenarios in a set I: α = 0.9, k = 0.5, and η = 2.5, and set II: α = 0.8, k = 0.4, and

η = 2.0.

The MLEs of the GLL model are determined via the nlminb () R-function with

the argument method = ”BFGS”; see supplementary materials. For each piece of

simulated data, say, (α̂, k̂, η̂) for i = 1, 2, . . . , 1000, and the AB, RMSE, and CP of

the parameters were computed by:

AB =
1

N

N∑
i=1

(θ̂i − θ), (3.42)

MSE =
1

N

N∑
i=1

(θ̂i − θ)2, (3.43)

RMSE =

√√√√ 1

N

N∑
i=1

(θ̂i − θ)2, (3.44)

where θ = α, k and η.

The MLE, AB, and RMSE values of the parameters α, k, and η are displayed from

various sample sizes. Based on these findings, we conclude that the MLEs perform

quite well in estimating the model parameters and that the estimates are fairly

stable and are nearer to the true values for these sample sizes. The Table 3.4 and

Figures 3.8 to 3.11 show that as the sample size increases, the MSE and RMSE

decrease as expected. Furthermore, as the sample size increases, the AB decreases.

In addition, the MLEs of the parameters of the model are very close to the true

value. As a result, the maximum likelihood estimates and their asymptotic results

can be applied to construct confidence intervals for the model parameters even for

a small sample size.
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Table 3.4: Monte Carlo simulation results for the GLL distribution: MLE,
AB, MSEs, and RMSEs

Figure 3.8: Plots for MLEs and biases of the GLL model for set I of the
table.
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Figure 3.9: Plots for MSEs and RMSEs of the GLL distribution for the
values of set I in the table

Figure 3.10: Plots for MLEs and biases of the GLL distribution for the
values of set II in the table.

Figure 3.11: Plots for MSEs and RMSEs of the GLL distribution for the
values of set II in the table.
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3.6 Applications to Real-life Data

In this section, the proposed distribution is fully applied to real-world data set

which is taken from literature to demonstrate the ability of the new model. We

compare the proposed distribution with the other three parametric survival distri-

butions including (gamma, log-normal, log-logistic, exponentiated Weibull, and the

Weibull distribution). Also, we have compared the GLL distribution with some of

its sub-models with two-parameter distribution namely; Weibull, log-logistic, and

the BurrXII distributions.

The density functions of the fitted models are:

1. Weibull

f(t) = αk(kt)α−1 exp {−(kt)α} , (3.45)

2. Log-logistic

f(t) =
αk(kt)α−1

[1 + (kt)α]2
(3.46)

3. Burr-XII distribution

f(t) =
αktα−1

[1 + tα]−k−1
, (3.47)

4. Exponentiated Weibull

f(t) = αkλ(kt)α−1 (1− exp {−(kt)α})λ−1 exp {−(kt)α} , (3.48)

5. Three parameter log-logistic (or shifted log-logistic distribution)

f(t) =

α
β

(
t−µ
β

)α−1

[
1 +

(
t−µ
kβ

)α]2 (3.49)
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6. Three parameter log-normal

f(t) =
α

β

(
t− µ

β

)α−1

exp

{
−
(
t− µ

kβ

)α}
, (3.50)

7. Three parameter Weibull

f(t) =

exp

{
−1

2

(
log(t−µ)−α

β

)2}
√
2πβ(x− µ)

(3.51)

8. Three parameter Gamma

f(t) =
(t− µ)α−1 exp−

(
t−µ
β

)
βαΓ(α)

(3.52)

Where; t > µ. Certain analytical measures are taken into account in order to

determine which distribution best fits the applied data. These analytical mea-

sures include four discrimination measures: AIC (Akaike Information Criterion),

CAIC (Consistent Akaike Information Criterion), BIC (Bayesian Information Crite-

rion), and HQIC (Hannan Quin Information Criterion). In addition, there are two

goodness-of-fit tests: Anderson-Darlin ( A∗), and Cramervon Mises (W∗ ).

The AIC is

AIC = 2k − 2l (3.53)

The BIC is

BIC = k ln(n)− 2l (3.54)

The CAIC is

CAIC =
2nk

n− k − 1
− 2l (3.55)

The HQIC is

HQIC = 2k ln(ln(n))− 2l, (3.56)
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where; l represents the log-likelihood function evaluated as the MLEs, n the sample

size and k the number of model parameters The goodness-of-fit measures under

consideration are as follows:

The Anderson-Darlin (A∗) test statistic is given by

A∗ = −n− 1

n

n∑
i=1

(2l − 1)× [lnG (Xi) + ln {1−G (Xn−i+1)}] (3.57)

The Cramer-von Mises (W∗) test statistics is given by

W ∗ =
1

12n
+

n∑
i=1

[
2i− 1

2n
+G (Xi)

]2
(3.58)

Where; xi is the ith observation in the sample and n is the sample size, xi calculated

when the data is sorted in ascending order.

The best model is the one with the lowest AIC, BIC, CAIC, and HQIC, also the

A*, W∗, and K−S tests. Moreover, the best model is also chosen as the one having

the highest value of the log-likelihood function, and p-values for the K−S statistics.

are also used to compare the competitive models.

3.6.1 Likelihood Ratio Test for Sub-Models

The GLL distribution has five sub-models, namely; log-logistic distribution, Weibull

distribution, Burr-XII distribution, exponential distribution, and the standard log-

logistic distribution. Hence, we have employed the likelihood ratio criterion to test

the following hypotheses:

1. H0 : ηα → 0, that is the sample is from Weibull distribution. H1 : ηα −→
not

0,

that is the sample is GLL

2. H0 : η = k, that is the sample is from log-logistic distribution. H1 : η ̸= k,

that is the sample is GLL
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3. H0 : η = 1, that is the sample is from Burr XII distribution. H1 : η ̸= 1, that

is the sample is GLL

4. H0 : η = k = 1, that is the sample is from the Standard log-logistic distribu-

tion. H1 : η ̸= 1, k ̸= 1, that is the sample is GLL

5. H0 : η = 0&α = 1, that is the sample is from an exponential distribution.

H1 : η ̸= 0&α ̸= 1, that is the sample is GLL

The likelihood ratio test (LRT) is given by:

LR = −2 ln
L(θ̂∗;x)
L(θ̂;x)

, (3.59)

Where; θ̂∗ is the restricted Maximum likelihood estimates under the null hypothesis

H0 and θ̂ is the unrestricted Maximum likelihood estimates under the alternative

hypothesis H1. Under the null hypothesis, the LRT follows Chi-square distribution

with degrees of freedom (df) (dfalt − dfnull ). If the p-value is less than 0.05 the null

hypothesis is rejected.

3.6.2 An Application to Bladder Cancer Data Set

The following real-world data set is used to demonstrate the proposed methodology.

The data in Table 3.5 below show the remission times (in months) of a sample of

128 bladder cancer patients. The data set is available in (Lee and Wang, 2003). The

descriptive statistics for the data set are shown in Table 3.6 and the likelihood ratio

test statistics for the data set are given in Table 3.7.

Table 3.6: Descriptive statistics of the Bladder cancer data set

Mean Median Mode Variance Skewness Kurtosis Minimum Maximum

9.365 6.395 5.00 110.435 3.286 15.481 0.08 79.05
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Table 3.5: The remission times (in months) of a sample of 128 bladder
cancer patients

3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66,
1.05,2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12,
46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63,
0.20, 2.23, 3.5, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80,
25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28,

9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 11.79, 18.10,
1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37,12.02, 2.02, 3.31,
4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.00, 3.36, 6.93, 8.65,

12.63, 22.69 .

Table 3.7: Likelihood ratio test statistic for bladder cancer data set

Distribution Hypothesis LRT p values

W2 H0 : η
∗ −→ 0 vs H1 : H0 is false 8.676 0.003

L.2 H0 : η
α = k vs H1 : H0 is false 10.819 0.001

Burr XII H0 : kλ
−(1/α), λ > 0 vs H1 : H0 is false 87.472 < 0.001

Ex H0 : η = 08α = 1 vs H1 : H0 is false 9.182 0.010

Standard LL H0 : η = k = 1 vs H1 : H0 is false 190.150 < 0.001

For data set, the asymptotic variance-covariance matrix for the estimated GLL

parameters is given by

J−1 =


3.0929× 10−4 1.7255× 10−3 5.8513× 10−4

1.7255× 10−3 3.1612× 10−2 5.9347× 10−3

5.8513× 10−4 5.9347× 10−3 1.5958× 10−3


The information criterion values in Table 3.8 and the goodness-of-fit tests in Table

3.9 both demonstrate the superiority of the proposed model over the other competing

models. The estimated pdf and CDF of the proposed distribution corresponding to

the real-world data set are shown in Figure 3.12 and the Kaplan-Meier and PP plots

for the proposed distribution are shown in Figure 3.13.
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Table 3.8: Information criterion for the bladder cancer data set.

Dist AIC BIC CAIC HQIC
GLL 825.564 834.120 825.756 829.040
LN3 826.723 835.279 826.916 830.199
LL2 826.937 835.641 827.033 829.254

ExpW 827.393 835.949 827.586 830.869
LL3 827.458 836.014 827.651 830.934
G3 831.955 840.511 832.148 835.431
W2 832.163 837.868 832.259 834.481
W3 832.665 841.221 832.858 836.141

Burr XII 910.959 916.663 911.055 913.276

Figure 3.12: Estimated pdf and CDF of the GLL distribution correspond-
ing to bladder data set.

Figure 3.13: PP and Kaplan–Meier plots of the GLL distribution corre-
sponding to bladder data set.
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Table 3.9: MLE estimators of the model parameters, the log-likelihood,
and goodness-of-fit statistics for data set I.

3.6.2.1 TTT Plot

The TTT and box plots of the data set are presented in Figure 3.14. These plots

indicate that the empirical hazard rate function of the 1st data set is a reverse

bathtub shape.

Figure 3.14: TTT and Box plots for the bladder cancer data set

The estimated fitted pdfs and CDFs of data set I for the competitive models are

shown in Figure 3.15.
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Figure 3.15: Estimated density and cumulative distribution functions for
the competitive models

3.7 Bayesian Model Formulation

Given a set of data x = (x1, x2, . . . , xn) from GLL (α, k, η), the likelihood function

of the model is given by

L(α, k, η | x) = (αk)n
n∏
i=1

(kxi)
α=1

n∏
i=1

[1 + (ηxi)
α]

−((kn/ηn)+1)
. (3.60)

The Bayesian model is built by specifying the prior distribution for the model pa-

rameters α, k and η and then multiplying with the likelihood function L(α, k, η | x)

for the given data x = (x1, x2, . . . , xn) to obtain the posterior distribution function

using the Bayes theorem. The prior distribution of α, k and η is denoted as p(α, k, η).

The joint posterior is

p(α, k, η | x) ∝ L(α, k, η | x)p(α, k, η). (3.61)

3.7.1 Prior Distribution.

We assumed independent noninformative gamma priors for the parameters of the

proposed model in this study due to the flexibility of gamma distributions in accom-
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modating many possible shapes for the types of parameters involved in the proposed

distribution. Furthermore, they enable efficient posterior calculations and the re-

covery of the noninformative distribution for each parameter. Many research papers

in the literature consider taking these priors into account (see (Alvares et al., 2021;

Lázaro Hervás, 2018; Danish and Arshad, 2017; Danish, 2016)).

For the model parameters, we assume independent gamma priors: α ∼ G (a1, b1) , k ∼

G (a2, b2), and η ∼ G (a3, b3).

p(α) =
b
a1
1

Γ(a1)
αa1−1 exp (−b1α) , α > 0, a1 > 0, b1 > 0,

p(k) =
b
a2
2

Γ(a2)
ka2−1 exp (−b2k) , α > 0, a2 > 0, b2 > 0,

p(η) =
b
a3
3

Γ(a3)
ηa3−1 exp (−b3η) , η > 0, a3 > 0, b3 > 0.

(3.62)

Hence, we have

p(α, k, η) = p(α)p(k)p(η). (3.63)

3.7.2 Posterior Distribution

The posterior expression can be obtained, up to proportionality, by multiplying the

likelihood by the prior, and this can be written as:

p(α, k, η | x) ∝ αa1+n−1ka2+n−1ηa3+n−1e−(b1α+b2k+b3η)L1, (3.64)

where

L1 = (αk)n
n∏
i=1

(kxi)
α−1

n∏
i=1

[1 + (ηxi)
α]

−((kα/nn)+1)
. (3.65)

The posterior is complicated, and there are no closedform inferences. As a result, we,

propose using McMC techniques to simulate samples from the posterior, allowing

for simple sample-based inferences.
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3.8 Bayesian Analysis

In this work, we assumed the independent gamma priors for α ∼ G (a1, b1), κ ∼

G (a2, b2), and η ∼ G (a3, b3) with hyperparameter values (a1 = b1 = a2 = b2 = a3 = b3 = 1.0).

3.8.1 Convergence Diagnostics

The proposed model is built with the goal of calculating Bayesian estimates for

GLL parameters using the McMC method. Due to the Ergodic property of the

Markov chain, all inferences are based on the assumption that it will converge.

Hence, the McMC convergence diagnostic is crucial. If the simulated sample gives

an acceptable approximation for the posterior density, the inferences are correct.

Several convergence diagnostic analyses are used to determine whether the chains

have converged, including the following.

3.8.1.1 Geweke’s Convergence Diagnostic

The Geweke’s diagnostic plot for the model parameters are shown Figure 3.16 which

indicates that the convergence was achieved

Figure 3.16: Geweke’s diagnostic plot for alpha, eta, and kappa parame-
ters
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3.8.1.2 Autocorrelation Diagnostics

The autocorrelation plot for the parameters is shown in Figure 3.17.

Figure 3.17: Autocorrelation plot for the alpha, eta, and kappa parame-
ters

3.8.1.3 Brooks-Gelman-Rubin (BGR) Convergence Diagnostic

The fact that the lines for all of the parameters are close to 1 indicates convergence

from BGR plots as shown in Figure 3.18.

Figure 3.18: BGR plots for the alpha, eta, and kappa parameters

3.8.1.4 Some Common Statistical Convergence Diagnostic Tests

In this section, a summary of some common statistical convergence diagnostics tests

is provided in Table 3.10.
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Table 3.10: Summary of some statistical convergence diagnostic tests

Parameter
Geweke’s diagnostic

Pr >|z|

Raftery and Lewis

Total no. of samp.
p-value

Heidelberger-Welch

Stationarity test
Halfwidth test

alpha -1.1992 3823 0.072 Passed Passed

eta -0.5711 4338 0.690 Passed Passed

kappa 0.4144 4106 0.980 Passed Passed

3.8.1.5 Ergodic Mean Plot

Figure 3.19 shows a time-series graph of each parameter and it displays the running

mean (or ergodic mean) plots for the three parameters of the GLL distribution. The

running mean plots of alpha, eta, and kappa show that the chains converge to the

values in Table 3.11 after N iterations.

Figure 3.19: Ergodic mean plots for the alpha, eta, and kappa parameters

3.8.2 Posterior Analysis

In this section, we present numerical and visual summaries of the posterior distribu-

tion for each of the three chains. The joint posterior distribution for the proposed

model was estimated using the JAGS software (Plummer et al., 2019). For each

proposed model, we ran three parallel chains with 50,000 iterations and a burn-in of

5,000 . Chains were thinned by storing every fifth iteration to reduce autocorrelation

in the sample. The use of various convergence diagnostic tools ensured convergence

to the joint posterior.
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3.8.2.1 Numerical Summary

We have considered different quantities of interest and their numeric data based

on an McMC sample of posterior properties for generalized log-logistic distribution.

The McMC simulation results include the results of of the posterior mean, posterior

standard deviation, näıve standard error, time-series standard error, Markov chain

error, the posterior five-point summary statistics (minimum, lower quartile (Q1),

median (Q2), upper quartile (Q3), and maximum), the posterior skewness, posterior

kurtosis, 2.5th percentile, 97.5 th percentile, and the credible interval followed by

the highest probability density (HPD).

The naive standard error is defined as a measure of simulation error in the mean

rather than posterior uncertainty.

naive SE =
posterior SD√

n
. (3.66)

The time-series SE adjusts the ”näıve” SE for autocorrelation. The posterior prop-

erties of the model parameters are summarized in Table 3.11

3.8.2.2 Visual Summary

In this subsection, we have considered different graphs for a visual summary of the

posterior properties; those include the box plot, density strip plots, histogram, and

trace plots for the parameters. These graphs and plots provide a nearly complete

picture of the parameters’ posterior uncertainty (Fernández-i Maŕın, 2016). We

applied the posterior sample
(
α(j), k(j) and η(j)

)
, j = 1, . . . , 15000, to draw these

graphs.

(1) Box Plots. The boxes in Figure 3.20 represent interquartile ranges, and the line

in the middle of each box is the median; the arms of each box extend to encompass

the central 95 percent of the distribution, and their ends thus correspond to the 2.5
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Table 3.11: Numerical summaries of posterior properties for the GLL
model with gamma priors based on an McMC sample.

percent and 97.5 percent quartiles, respectively.

Figure 3.20: The box plots for the alpha, eta, and kappa parameters

(2) Density and Histogram Plots. Histogram can provide information about the

behaviour in the tails, skewness, data outliers, and the presence of multimodal

behaviour. The graphs in Figure 3.21 can provide us with a nearly complete picture

of the posterior uncertainty about the GLL parameters, while the graphs in Figure

3.22 show a comparison of the full density and partial density of the parameters.
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Figure 3.21: Histogram and Kernel density plots for the alpha, eta, and
kappa parameters.

Figure 3.22: Density plots for the parameters comparing the whole chains
with their last parties.

(3) Trace Plots. A trace plot, also known as ”a time-series plot,” is a representation

of the iteration number versus the value of the parameter drawn at each iteration.

Because the plots do not show long-term increasing or decreasing trends but rather

resemble a horizontal band in Figure 3.23, we can conclude that the chains have

converged.
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Figure 3.23: Trace plots for the alpha, eta, and kappa parameters

3.9 Conclusions

This chapter introduced and presented results on the mathematical and statistical

properties of the generalized log-logistic distribution. The GLL model contains sev-

eral parametric survival sub-models that could be used in a variety of statistics and

probability applications. Statistical properties such as quantile function and their

related results, moments and their related results, rth central moments, and residual

and reversed residual life were derived. We have also considered the Bayesian and

classical inference of the unknown parameters of the proposed distribution when

the data is uncensored or complete. The Bayesian estimates are obtained using

the Gibbs sampling method under the assumption of independent gamma priors on

the shape and scale parameters. It is worth noting that when prior information

is available, Bayes estimates clearly outperform maximum likelihood estimates. To

assess the behaviour of the estimators, Monte Carlo simulations are run. The pro-

posed distribution was also applied to a real-world data set and provided a better

fit than its submodels and other common parametric survival distributions based on

goodness-of-fit statistics, log-likelihood function, and information criterion values.

As a result, we conclude that the GLL is the most appropriate model among the

distributions considered and it is a very competitive model for explaining lifetime

phenomena.
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CHAPTER 4

A Flexible Bayesian Parametric

Proportional Hazard Model: Simulation

and Applications to Right-Censored

Healthcare Data

In this chapter, we present our third published manuscript 1 about a flexible Bayesian

parametric proportional hazard model. Note that the materials of this chapter have

been reproduced from our article.

4.1 Introduction

The statistical analysis of survival data is an essential topic in many fields, includ-

ing medicine, biology, environmental science, healthcare, economics, engineering,

social science, and epidemiology, among others. Probability distributions serve as

the foundation for survival models. The family of distributions can be parametric,

semi-parametric, or non-parametric. The parametric survival models lead to more

efficient and smaller standard errors of the estimates than semi-parametric and non-

parametric models (Collett, 2015). If the distributional assumption is correct, to be

more specific.

In analyzing survival data, parametric survival models are crucial. The benefits of

using parametric survival models include: (1) handling all types of censored data

(left, right, interval, double, and middle); (2) application of survival analysis in a

1Muse, A. H., Ngesa, O., Mwalili, S., Alshanbari, H. M., & El-Bagoury, A. A. H. (2022). A
Flexible Bayesian Parametric Proportional Hazard Model: Simulation and Applications to Right-
Censored Healthcare Data. Journal of Healthcare Engineering, 2022

117



healthcare care problem , and (3) producing better estimation when you have a the-

oretical expectation of the baseline hazard, also (4) they can apply random effects

– frailty models, and can also be used to estimate expected lives, not only hazard

ratios like the accelerated failure time models (Lawless, 2011).

The proportional hazards (PH) model, in which covariates affect the hazard rate

function, and the accelerated failure time (AFT) model, in which covariates affect

both the hazard rate and time scale, are the two most common methods for de-

veloping parametric regression models for survival data (Christensen et al., 2010).

However, other class of models have also been proposed such as the accelerated

hazard (AH) model (Rubio et al., 2019), and the proportional odds (PO) model

(Legrand, 2021).

One of the first steps in using a parametric approach to model survival data is to

choose a suitable baseline distribution that can capture significant features of the

observations of interest. Certain probability distributions are widely used in the

modelling of survival data. Only a few are closed under the proportional hazard

model, and none are flexible enough to describe a wide range of survival data (Khan

and Khosa, 2016). Most of the distributions closed under the PH assumption fails

to model a non-monotone (i.e., bathtub and unimodal) survival data sets.

The log-logistic (LL) distribution has a wide range of applications in survival data

analysis and can accommodate unimodal survival data sets. The distribution is

closed under both proportionality odds (PO) and multiplication of failure time

(AFT) frameworks (Lawless, 2011). It is not a PH model, but rather an AFT

model. However, when the log-logistic distribution is generalized, it has the appeal-

ing feature of being a member of all classes of parametric hazard-based regression

models of the survival analysis because its failure rate function is quite versatile and

its cumulative hazard function (chf) has a tractable form.

Extensive efforts have been made over the last decades to extend classical distri-

butions to use as a baseline distribution for parametric hazard-based regression
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models. Many modifications to the LL distribution have been introduced to make

it more adaptable to a wide range of hazard shapes (Cordeiro et al., 2020), and

(Muse et al., 2021b). The generalized log-logistic distribution (GLL) is one such

model, which modifies the log-logistic distribution by inducing an additional shape

parameter (Muse et al., 2022a). The model is tractable and closed under the PH

assumption and can account for both non-monotone and monotone hazard rates

(Khan and Khosa, 2016). On the other hand, recent computational advances have

advocated for the use of Bayesian techniques in the field of survival and reliability

analysis.

The motivating ideas behind our work on Bayesian parametric proportional hazard

(PH) model with GLL baseline hazard are as follows: (i) despite the fact that there

are some classical distributions closed under the PH framework, none of which is

flexible enough to incorporate both monotone and non-monotone hazard rate; (ii)

Bayesian inference does not rely on asymptotic approximation for statistical infer-

ence; (iii) the availability of software makes Bayesian implementation for hazard-

based complicated models relatively more straightforward and simple than classical

inference [18]; (iv) parametric PH model may lead to more precise estimates than

semi-parametric PH model; and, last but not least, (v) the use of generalized distri-

butions that can capture both monotone and non-monotone hazard rate functions

is what makes our work unique and more appealing to biostatisticians, epidemiolo-

gists, healthcare workers as well as other applied researchers in multiple disciplines.

To the best of author’s knowledge, no Bayesian inferences study has been conducted

on the PH model with generalized log-logistic baseline hazard. As a result, in this pa-

per, we consider the Bayesian inference for the generalized log-logistic proportional

hazard model, beginning with the PH model formulation and assumptions, revising

the generalized log-logistic distribution, and verifying that the GLL distribution is

closed under the PH framework. In addition, we discuss the inferential procedures

and how to obtain the classical and Bayesian estimators for the model’s parameters.

119



We also compare the proposed model to other existing distributions closed under

the PH framework, and one interesting feature of this model is that it can incor-

porate different hazard rate shapes. Hence, the formulation of the parametric PH

model and its lifetime function, the inferential procedures using both classical and

bayesian approaches, and the development of the computational algorithms to fit

the proposed PH model and its competing models using rjags in r software are the

novelty of this study.

The chapter is structured as follows: the PH model formulation, assumptions and

its probabilistic functions are discussed in Section 4.2. Section 4.3 revises the most

common probability distributions closed under the PH model. The GLL distribution

under the PH model is presented in Section 4.4. Section 4.5 discusses the inferential

procedures of the proposed model. In Section 4.6, we present an McMC simula-

tion study to assess the performance of the proposed model. Section 4.7 presents

the application of the proposed model to two right-censored cancer data sets with

monotone and non-montone hazard rates. In addition the convergence diagnostics

of the McMC techniques were discussed. The Bayesian Model selection criterion is

presented in Section 4.8. Finally, in the final portion, the chapter’s concluding notes

are offered.

4.2 PH Model Formulation and Assumptions

The parametric PH model is given with the similar form to the Cox PH model. It

is the parametric form of the Cox PH models (Collett, 2015) and is formulated as

follows:

4.2.1 PH Formulation

The parametric proportional hazard (PH) models are formulated using a defined

baseline hazard and a link function ψ (x′β) for the covariates which is defined as
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follows:

i. ψ (x′β) > 0,∀x ̸= 0.

ii. ψ (x′β) is is a monotone function that has a one-to-one correspondence,

iii. ψ(0) = 1.

The most commonly found option for the link function ψ (x′β) is the exponentialexp

(x′β) (or log-linear) function. In this work, we define the PH model with the

assumption that ψ (x′β) = exp (x′β).

4.2.2 PH Assumptions

The PH model assumption is that the effect of covariates is to increase or decrease

the hazard rate function by a proportionate amount which does not depend on t.

The assumption of the PH model can be defined as:

h(t;x) = h0(t)ψ (x′β) = h0(t) exp (x
′β) = h0(t)e

x′β (4.1)

where h0(t) is called the baseline hazard, simplifying we get;

h(t | x) = h0(t) exp (β1x1 + β2x2 + · · ·+ βpxp) . (4.2)

The main difference between the Cox PH model and the parametric PH model is

that the baseline hazard function is assumed to follow a specific distribution when

it is fitted to the data. Using Equation 4.1 we can see that the hazard ratio (HR)

comparing any two specifications of the covariates, for example (x and x∗), is

HR (x,x∗, h0,β) =
h(t | x,β)
h (t | x∗,β)

=
h0(t | x) exp (βx′)

h0(t | x) exp (βx∗′)
= exp

[(
x′ − x∗′

)T
β

]
(4.3)
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The above equation shows us that the baseline hazards cancel each other from this

ratio, so the hazard rate for one individual is proportional to the hazard rate for any

other individual. On the other hand, the proportionality constant is independent of

time which makes the main assumption of this model (Collett, 2015). As a result,

the model is known as the proportional hazard (PH) model in the literature.

Unlike most parametric regression models including accelerated failure time (AFT)

models, PH models does not include an intercept (Christensen et al., 2010). More

properly, the vector X in the PH model is not assumed to have x ≡ 1. An intercept

would get confounded with the baseline hazard function (h0).

4.2.3 Functions Describing PH Model

The five frequent representatives of a lifetime distribution function that are used to

characterize the PH model are addressed in this subsection.

4.2.3.1 Hazard Rate Function of the PH Model

The hrf of the PH model is of the form

h(t;x) = h0(t)ψ (x′β) = h0(t) exp (x
′β) = h0(t)e

x′β (4.4)

4.2.3.2 Cumulative Hazard Function of the PH Model

The chf of a PH model takes the following form:

H(t | x) =
∫ t

0

h(s;x)ds = ex
′β

∫ t

0

h0(s)ds = ex
′βH0(t) (4.5)

4.2.3.3 Survival Function of the PH Model

The survivor function (sf ) for a PH model can be derived using the following

relationship between survival function and the hazard rate function. Hazard function
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is given by:

h(t | x) = f(t | x)
S(t | x)

(4.6)

Cumulative hazard function:

H(t | x) =
∫ t

0

h(u)du =

∫ t

0

f(u)

S(u)
du =

∫ t

0

−dS(u)

S(u)
du

= − log{S(t)},

f(t | x) = h(t | x)S(t | x) = h(t | x) exp{−H(t | x)}.

(4.7)

Using the above expressions, we can easily find

S(t | x) = exp{−H(t | x)},

S(t | x) = exp{−H(t | x)} = exp

{
−
∫ t

0

ψ(x)h0(t)dt

}
,

= exp

{
−ψ(x)

∫ t

0

h0(t)dt

}
,

=

[
exp

{
−
∫ t

0

h0(t)dt

}]ψ(x)
,

= [S0(t)]
ψ(x) , ψ(x) > 0.

(4.8)

4.2.3.4 Cumulative Distribution Function of the PH Model

The cdf of the PH model, also known as the lifetime distribution function, is given

by

F (t) = 1− S(t) = 1− exp{−H(t)},

F (t) = 1− [S0(t)]
ψ(x) .

(4.9)

4.2.3.5 Probability Density Function of the PH Model

The pdf or the failure density function of the PH model is defined as

f(t) = f0(t)ψ(x) [S0(t)]
ψ(x)−1 . (4.10)
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The five representatives used here were chosen for their special meaning for lifetime

data, their intuitive appeal, their utility in survival data analysis, and, last but not

the least, their popularity in probability theory and statistics.

The PH model can be formulated without assuming a probability distribution for

survival times, and this leads to the well-known Cox PH model (Cox, 1972). On

the other hand, assuming a probability distribution for survival times leads to the

fully parametric PH model. The most common parametric survival models used are

as follows: exponential, Weibull, Gompertz, log-logistic, log-normal, gamma, and

the generalized gamma distributions. Only the exponential, Weibull, and Gompertz

distributions are used for the PH model. The log-logistic and the log-normal dis-

tributions are not closed under the PH framework. Weibull distribution is the only

one that is closed under both parametric AFT and PH models.

4.3 Distributions Closed under PH Framework

In this section, we present most common parametric distributions that are closed

under the PH framework and are used to analyze survival data. These distributions

have been studied and used in various contexts in the literature (Lawless, 2011).

4.3.1 Exponential PH Model.

For the PH model, the exponential baseline hazard is

h(t) = k. (4.11)

So, according to the formulation of the PH framework in Equation (4.1), the hazard

rate for an individual with covariate vector x and link function ψ(x) is

h(t) = h0(t)ψ(x) = k · ψ(x) (4.12)
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Applying the log-linear function ψ (x′β) = exp (x′β), we can simplify into hEPH(t) =

k · exp(xβ) = k · exp (β1x1 + β2x2 + . . .+ βpxp). In this equation, the hrf has the

exponential distribution with scale parameter k. exp (x′β) which indicates that the

PH assumption is satisfied with the exponential distribution. It is worth mentioning

that the exponential distribution is often found to be inadequate to describe survival

data. This makes the applicability of this distribution fairly limited. The other

lifetime distributions of the exponential PH model are as follows.

The survival function of the exponential PH model is

SEPH (t) = [exp{−kt}]exp(x′β).

The pdf of the exponential PH model is

fEPH(t) = k exp{−kt} exp (x′β) [exp{−kt}]exp(x′β)−1.

The cdf of the exponential PH model is

FEPH(t) = 1− [exp{−kt}]exp(x′β).

The chf of the exponential PH model is:

HEPH(t) = kt exp (x′β) .

4.3.2 Gompertz PH Model.

For the PH model, the Gompertz baseline hazard rate function is given by

h(t) = αketk (4.13)
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So, according to the formulation of the PH framework in Equation (4.1),, the hazard

rate for an individual with covariate vector x and link function ψ(x) is

h(t) = h0(t)ψ(x) = αk · etk · ψ(x). (4.14)

Applying the log-linear function ψ (x′β) = exp (x′β), we can simplify into

hGoPH(t) = αk.etk · exp (x′β) = αk.etk. exp (β1x1 + β2x2 + . . .+ βpxp) . (4.15)

In the above equation, it is straightforward that the PH property is satisfied. How-

ever, the Gompertz PH model is rarely used in the real-life applications.

The other lifetime distributions of the Gompertz PH model are as follows:

The survival function of the Gompertz PH model is

SGoPH(t) =
[
exp

{
−α
(
etk − 1

}]exp(x′β)
. (4.16)

The pdf of the Gompertz PH model is

fGoPH (t) = αk · etk exp
{
−α
(
etk − 1

}
exp (x′β)

[
exp

{
−α
(
etk − 1

}]exp(x′β)−1
.

(4.17)

The cdf of the Gompertz PH model is

FGoPH(t) = 1−
[
exp

{
−α
(
etk − 1

}]exp(x′β)
(4.18)

The chf of the Gompertz PH model is

HGoPH(t) = exp (x′β)α
(
etk − 1

)
. (4.19)
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4.3.3 Weibull PH Model.

For the PH model the Weibull baseline hazard is

h(t) = αk(kt)α−1. (4.20)

So, according to the formulation of the PH framework in Equation (4.1), the hazard

rate for an individual with covariate vector x and link function ψ(x) is

h(t) = h0(t)ψ(x) = αk(kt)α−1ψ(x). (4.21)

Applying the log-linear function ψ (x′β) = exp (x′β), we can simplify into

hWPH(t) = αk(kt)α−1 exp (x′β)

= αk(kt)α−1 exp (β1x1 + β2x2 + . . .+ βpxp)

(4.22)

In this equation, the model has the Weibull distribution with rate parameter k.

exp (x′β) and shape parameter α which indicates that the PH assumption is satisfied

with the Weibull distribution with constant α.

The other lifetime distributions of the PH Weibull model are as follows: the survival

function of the Weibull PH model is

SWPH(t) = [exp {−(kt)α}]exp(x
′β) (4.23)

The pdf of the Weibull PH model is

fWPH(t) = αk(kt)α−1 exp {−(kt)α} exp (x′β) [exp {−(kt)α}]exp(x
′β)−1 . (4.24)
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The cdf of the Weibull PH model is

FWPH (t) = 1− [exp {−(kt)α}]exp(x
′β) . (4.25)

The chf of the Weibull PH model is

HWPH(t) = exp (x′β) (kt)α (4.26)

4.4 The Proposed PH Model

For the PH model, the generalized log-logistic baseline hazard is

h(t) =
αk(kt)α−1

[1 + (ηt)α]
. (4.27)

So, according to 4.1, the hazard rate for an individual with covariate vector x and

link function ψ(x) is

h(t) = h0(t)ψ(x) =
αk(kt)α−1

[1 + (ηt)α]
ψ(x). (4.28)

Applying the log-linear function ψ (x′β) = exp (x′β), we can simplify into

hGLLPH(t) =
αk(kt)α−1

[1 + (ηt)α]
exp (x′β)

=
αkαtα−1

[1 + (ηt)α]
exp (x′β)

=
α
(
k · exp (x′β)1/α

)α
tα−1

[1 + (ηt)α]

=
αk∗αtα−1

[1 + (ηt)α]

(4.29)

In this equation, the hrf can be recognized as a generalized log-logistic distribution

as well, but contrary to (4.27), the rate parameter is k∗ = k. exp (x′β)1/α and shape
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parameters are α and η which indicates that the PH assumption is satisfied with

the GLL distribution and the proposed model is closed under the PH framework.

The other lifetime distribution functions for the GLL PH model are as follows: the

survivor function of the GLL PH model is:

SGLLPH(t) =
[
[1 + (ηt)α]−k

α/ηα
]
exp (x′β) (4.30)

The pdf of the GLL PH model is

fGLLPH(t) =
αk(kt)α−1

[1 + (ηt)α]
kα

ηα
+1

exp (x′β)
[
[1 + (ηt)α]k

α/ηβ
]exp(x′β)−1

. (4.31)

The cdf of the GLL PH model is

FGLLPH(t) = 1−
[
[1 + (ηt)α]−k

α/ηα
]
exp (x′β) . (4.32)

The chf of the GLL PH model is

HGLLPH(t) = exp (x′β)
kα

ηα
log [1 + (ηt)α] (4.33)

4.5 Model Inference

We discuss the classical approach (using MLE) and Bayesian approach (assuming

non-informative priors) estimation techniques for the proposed parametric PH model

parameters in this section.

4.5.1 MLE for Right-Censored Survival Data

We examine the challenge of estimating the proposed model’s distributional param-

eters and regression coefficients for right-censored survival data in this sub-section.

Because of its appealing qualities, such as consistency, asymptotic efficiency, asymp-
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totic unbiasedness, and asymptotic normality, MLE is one of the most common

strategies for estimating the parameters of hazard-based regression models. Let

there be n individuals with lifetimes represented by T1, T2, . . . , Tn. Assuming that

the data are subject to right censoring, we observe ti = min (Ti, Ci), where Ci > 0

corresponds to a potential censoring time for individual i. Allowing δi = I (Ti, Ci)

that equals 1 if Ti ≤ Ci and 0 otherwise.

Suppose that a right-censored random sample with dataD = (ti, δi,xi) , i = 1, 2, . . . , n,

is available, where ti is a censoring time or a survival time according to whether

δi = 0 or 1 , respectively and xi = x1, x2, . . . , xn is an n× 1 column vector of exter-

nal covariates for the ith individual, ϑ is the vector of parameters associated with

the baseline distribution, and β is the vector of regerssion coefficients. When para-

metric PH model is considered the censored likelihood function can be expressed

as:

L(ϑ,β | D) =
n∏
i=1

[f (ti | ϑ,β,x)]δi [s (ti | ϑ,β,x)]1−δi

=
n∏
i=1

[h (ti | ϑ,β,x) .S (ti | ϑ,β,x)]δi [s (ti | θ,β,x)]1−δi

=
n∏
i=1

[h (ti | ϑ,β,x)]δi [s (ti | ϑ,β,x)]

=
n∏
i=1

[h (ti | ϑ,β,x)]δi exp
[
−
∫ t

0

h(u)du

]
=

n∏
i=1

[h (ti | ϑ) exp (x′β)]
δi exp [− [H (ti | ϑ) exp (x′β)]]

(4.34)

An iterative optimization procedure (e.g., Newton-Raphson algorithm) can be used

to obtain the maximum likelihood estimation ϑ̂of ϑ. Hypothesis testing and interval

estimations of model parameters are possible due to the MLEs’ approaching nor-

mality [7]. The natural logarithm of the likelihood function, so-called log-likelihood
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function can be written as follows:

ℓ(ϑ,β | D) =
n∑
i=1

δi log [h0 (ti | ϑ) + x′
iβ]−

n∑
i=1

H0 (ti | ϑ) exp (x′
iβ) , (4.35)

where; β is a vector of the regression coefficients, and ϑ′ = (k, α, η) is the vec-

tor of the baseline distributional parameters In our case; if we assume that a =∑n
i=1 δi, pi = exp (x′

iβ) and qi = (ηti)
k. Using Eqn. (50) for the h0(.) and noting

that H0(t;θ) =
∫ t
0
h(u)du is the baseline cumulative hazard rate function as given

by Eqn. (51). The full loglikelihood function of the GLL PH model can be expressed

as follow:

ℓ(ϑ | t) = alogα + aαlog k + (α− 1)
n∑
i=1

δi log ti

−
n∑
i=1

δi log (1 + qi) + a log pi

−
(
κ

η

)α n∑
i=1

pi log (1 + qi)

(4.36)

To obtain the MLE’s of θ′ = (k, α, η) and β′, we can maximize (58) directly with

respect to (k, α, η) and β′. or we can solve the non-linear equations below or the 1st

derivative of the log-likelihood function. The 1st derivatives of the log-likelihood

function are

∂ℓ(τ | t)
∂α

=
a

α
+ a log pi +

n∑
i=1

δi log ti −
1

α

n∑
i=1

δiqi

[
log qi

(1 + qi)

]
−
(
k

η

)α(
1

α

) n∑
i=1

piqi

[
log qi

(1 + qi)

]
−
(
k

η

)α
log

(
k

η

) n∑
i=1

pi log (1 + qi)

(4.37)

∂ℓ(τ | t)
∂η

=−
(
α

η

) n∑
i=1

δi

[
qi

1 + qi

]
−
(
α

η

)(
k

η

)α n∑
i=1

pi

[
qi

1 + qi

]
−
(
α

η

)(
k

η

)α n∑
i=1

pi log

(
1−

[
qi

1 + qi

]) (4.38)
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∂ℓ(τ | t)
∂k

=
aα

k
−
(α
k

)(k
η

)α n∑
i=1

pi log (1 + qi) (4.39)

∂ℓ(τ | t)
∂βj

=
n∑
i=1

δiZij −
(
k

η

)α n∑
i=1

pi log (1 + qi)Zij for j = 1, 2, . . . , p (4.40)

To maximize log-likelihood functions, many software packages are available including

proven optimization algorithms.

4.5.2 Bayesian Inference

In this sub-section, Bayesian inference was used to estimate distributional parame-

ters and regression coefficients using objective (or non-informative) priors to obtain

proper posterior distributions.

1. Prior Distribution

The specification of a prior distribution is a crucial aspect of any Bayesian infer-

ence. In parametric survival regression models, this is especially true. As a re-

sult, the prior scenario is built in this study using a non-informative independent

prior for the parameters. The marginal prior distribution for every regression co-

efficient βm,m = 1, . . . , 5, is prompted as a normal distribution centred at zero

and with a small precision, N(0, 0.001); on the other hand, a gamma distribution,

Gamma (10, 10), is chosen as the marginal prior distribution for the parameters of

the GLL PH model due to the versatility of gamma distribution that include the

non-informative priors (uniform) on the shape parameters. Many research publica-

tions in the literature, such as Danish and Arshad (2017) considered the assumption

of the gamma priors for the baseline hazard parameters of PH models. Alvares et al.

(2021) take the assumption of independent gamma priors for the baseline hazard

parameters of eight different parametric survival models, Muse et al. (2022a) used

the assumption of independent gamma priors for the baseline hazard parameters of

the of the generalized loglogistic AFT model, and other researchers take these priors

into account.
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For the baseline parameters of the GLL-PH model, we assume independent gamma

priors.

p(α) ∼ G (a1, b1) =
ba11

Γ (a1)
αa1−1e−b1α; a1, b1, α > 0 (4.41)

p(η) ∼ G (a2, b2) =
ba22

Γ (a2)
ηa2−1e−b2η; a2, b2, η > 0 (4.42)

p(κ) ∼ G (a3, b3) =
ba33

Γ (a3)
ka3−1e−b3k; a3, b3, k > 0 (4.43)

Prior to that, we had the regression coefficients (assuming a normal distribution).

p (β′) ∼ N (a4, b4) (4.44)

The density function of the combined prior distribution of all unknown parameters

and the regression coefficients are given us:

p (α, k, η,β′) = p(α)p(η)p(k)p (β′) (4.45)

2. Likelihood Function

Unfortunately, the likelihood function of this generalized model is not implemented

in BUGS and JAGS syntax. To generate the likelihood function we use the ”Zero’s

trick” method that become popular in survival analysis and relies on Poisson mod-

elling of expanded or reconstructed data (Alvares et al., 2021). The zero’s trick

approach works on the assumption that perhaps the contribution of a Poisson ( λ )

observable of zero is exp(−λ); if we set λ = − log (f (ti | ϑ,β,x)) with observable

data as a vector of 0′s, we receive the right contributions of the proposed model

(Christensen et al., 2010).

3. Posterior Distribution

The joint posterior density function is equal to the multiplication of the prior distri-

bution p (α, k, η,β′) and the likelihood function the joint posterior density function
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of the parameters α, k, η, and β′ of GLL PH model given the data can be expressed

using Bayes’ Theorem as:

p (α, k, η,β′ | x) ∝ p (α, k, η,β′)L (α, k, η,β′)

p (α, k, η,β′ | x) ∝ p(α)p(η)p(k)p (β′)L (α, k, η,β′)

(4.46)

where; the first four terms on the equation represent the prior specification for the

unknown parameters and are assumed to be independent, the L (α, κ, η,β′) is the

likelihood function expressed as follows:

L (α, k, η,β′) =
n∏
i=1

[
αk(kx)α−1

[1 + (ηt)α]
exp (x′β)

]δi [
exp (x′β)

kα

λα
log [1 + (λx)α]

]
(4.47)

p (α, k, η,β′ | x) ∝

{
p∏
j=0

π (βj)

}
αa1+n−1ηa2+n−1ka3+n−1e−(b1α+b2η+b3k)L (α, k, η,β′)

(4.48)

The marginal distributions of the model parameters and the normalising joint poste-

rior density function are difficult to calculate analytically, requiring high-dimensional

integration and no close form inferences. To obtain estimates, we use McMC simula-

tion methods, which involve sampling from the posterior distribution through using

the Metropolis-Hastings Algorithm.

4.6 Simulation Study

In this section, we undertake an extensive simulation investigation to demonstrate

the proposed parametric proportional hazard model’s good Bayesian features. The

parameter values are chosen to construct situations that mimic cancer population

studies using a cancer that is severe (with a lower five-year survival rate), such as

lung cancer (Rubio et al., 2019). We demonstrate parame-ter estimation, the effect

of censoring proportions and sample sizes on inference in more detail.
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4.6.1 Generating Survival Data from PH Model

To simulate survival data for the GLL PH model, we use the inversion technique

(Bender et al., 2005; Austin, 2012) to generate survival data. This strategy is based

on the link between a survival random variable’s cumulative hazard rate function

and a standard uniform random variable. When the cumulative hazard rate function

has a closed form expression, it may be immediately applied, inverted, and readily

implemented with R (Team, 2019). The censoring rates were estimated using ad-

ministrative censorship at (1) Tc = 5 years, which resulted in around 20% censoring

in all sets, and (2) Tc = 3 years, which resulted in about 30% censoring in all sets.

For the purposes of this simulation, we assume that survival times are distributed

using the generalized log-logistic distribution GLL(α, η, k). Using the reverse chf

given in Eqn [48], lifetimes data can be simulated as follows:

T = H−1
0


(
e(

η
k)

α
[
− log(1−U)

eβxi

]
− 1

) 1
α

η

 (4.49)

Where; α, η, and k > 0.

4.6.2 Simulation Design

The simulation analysis was carried out by conducting a series of simulations with

different sample sizes ( n = 100, and 300 ) sets and censoring proportions ( Tc = 20

and 30 percentages), all based on the PH model in equation (4.29). The GLL PH

model’s true parameter vector is set as follows:(1) Set I: distributional parameter

values (α = 1.5, k = 0.75, and η = 1.25), and covariates β = (0.75,−0.75, 0.5),

(2) Set II: distributional parameter values (α = 1.5, k = 0.95, and η = 1.5), and

Covariates β = (0.75,−0.75, 0.5).

The values of the covariates were simulated as follows: (1) combination of uniform
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distributions with 0.25 probability on (30, 65), 0.35 probability on (65, 75), and 0.40

probability on (75, 85) years old was used to simulate the continuous covariate ”age”,

and (2) the binary covariates ”treatment” and ”gender” were both simulated using

a 0.5 binomial distribution. We recommend that the reader go to for further details

(Rubio et al., 2019).

4.6.3 Posterior Analysis of the Simulated Data

We fitted the proposed PH model with GLL baseline hazard to assess its Bayesian

properties in the simulation sets. With all censoring rates and different sample sizes,

each simulation set was used to estimate the proposed PH model. JAGS software

(Plummer et al., 2003) was used to approximate posterior distributions using three

parallel chains with 40,000 iterations each plus another 3,000 for the burn-in period.

To minimize autocorrelation in the sequences, the chains were thinned further by

storing every 10th draw.

4.6.4 Measures of Performance

The actual mean, standard deviation (SD), Naive standard error, bias, percentage of

bias, coverage probability (CP), potential scale reduction factor (R̂), and the effec-

tive number of separate simulation draws were used to test the posterior distribution

stability for the suggested PH model.

4.6.4.1 Evaluating the Performance of the Estimators

We calculate the bias of the estimators using:

Bias(θ̂) =
1

N

N∑
i=1

(θ̂ − θ). (4.50)
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An underestimation is indicated by a negative bias, whereas an overestimation is

shown by a positive bias.

4.6.5 Accuracy of the Estimators

The mean square error (MSE) is a good indicator of overall accuracy and is calcu-

lated as follows:

MSE(θ̂) =
1

N

N∑
i=1

(θ̂ − θ)2 (4.51)

This metric determines how accurate the estimates are as follows. The lower the

MSE, the more accurate the estimations of impacts.

The Naive standard error, which is calculated by dividing the posterior standard

deviation by the square root of the sample size, is another accuracy metric. As a

result, the smaller the standard error, the larger the sample size. The Näıve SE

incorporates simulation error rather than posterior uncertainty.

Naive SE =
posterior SD√

n
. (4.52)

4.6.5.1 Coverage

The 95 percent coverage probability (CP) is the percentage of N simulated data sets

in which the true estimates were included in the 95 percent confidence interval. The

more precise the estimations are, the closer the outcome is to a 95 percent coverage

probability. The following is how CP is expressed:

CP = θ̂ ∓ 1.96× SE(θ̂) (4.53)

4.6.5.2 Convergence Diagnostics

Quantitatively, Gelman (1996) recommended that the acceptable limit of multivari-

ate potential scale reduction factor (MPSRF) and potential scale reduction factor
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(PSRF) be near 1R̂ < 1.1, and the effective number of sample size simulation draws

be greater than or equal to 100 for checking the convergence of McMC simulations.

It is clear from the summary characteristics in Tables 4.1 to 4.4 that the PSRF is less

than 1.1, that number of sample size simulation draws is larger than 100, and that

Naive SE is smaller than the standard deviations (SD) for all of the distributional

parameters and regression coefficients, as expected, indicating that the McMC al-

gorithm has converged to the posterior distribution. Trace plots, auto-correlation

plots, and Gelman plot diagnostics are the most common ways to judge the conver-

gence of a McMC simulation graphically (Basharat, 2019). The McMC simulation

has been achieved as evidenced by the trace plot, density plot, autocorrelation plot,

and Gelman diagnostic plots for each distributional parameter and regression coef-

ficients. That is, the McMC simulation for the GLL PH model explores the target

posterior distribution appropriately.

4.6.6 Simulation Results

Tables 4.1-4.4 shows the simulation results for the posterior mean, bias, Naive stan-

dard error (SE), mean square error (MSE), coverage probability (CP), Gelman-

Rubin diagnostic (R̂), and the number of sample size simulation draws (No. of Eff)

of the proposed PH model, and Figure 2-Figure 5 shows the visual summary for the

convergence diagnostics.
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Table 4.1: Simulation results from a GLL PH framework with dis-
tributional parameters (α = 1.5, k = 0.75, and η = 1.25), covariates
β = (0.75,−0.75, 0.5), and n = 100

Posterior properties

True (θ̂) Value Posterior mean (θ̂) Bias Näıve SE MSE CP R̂ No. of eff
C = 20%

α = 1.50 1.506 0.006 0.001 0.032 0.032 1.000 3782
β1 = 0.75 0.872 0.122 0.002 0.072 0.880 1.000 3823
β2 = –0.75 – 0.727 0.023 0.001 0.008 0.945 1.001 3761
β3 = 0.50 0.501 0.001 0.002 0.060 0.997 1.000 3700
η = 1.25 1.575 0.325 0.002 0.193 0.851 1.002 3865
k = 0.75 0.567 – 0.183 0.001 0.045 0.911 1.000 4084

C = 30%
α = 1.50 1.463 – 0.037 0.001 0.029 0.935 1.000 3802
β1 = 0.75 0.726 −0.024 0.001 0.023 0.954 1.000 3660
β2 = −0.75 −0.752 0.002 0.000 0.004 0.975 1.001 3802
β3 = 0.50 0.445 −0.055 0.001 0.023 0.937 1.001 3802
η = 1.25 1.437 0.187 0.002 0.123 0.911 1.002 4434
k = 0.75 0.847 0.097 0.001 0.023 0.907 1.003 4792

Table 4.2: Simulation results from a GLL PH framework with dis-
tributional parameters (α = 1.5, k = 0.75, and η = 1.25), covariates
β = (0.75,−0.75, 0.5), and n = 300

Posterior properties

True (θ̂) Value Posterior mean (θ̂) Bias Näıve SE MSE CP R̂ No. of eff

C = 20%

α = 1.50 1.449 −0.001 0.001 0.017 0.991 1.000 4017

β1 = 0.75 0.712 −0.038 0.001 0.019 0.946 1.000 3700

β2 = −0.75 −0.723 0.027 0.000 0.003 0.956 1.000 3761

β3 = 0.50 0.483 −0.017 0.001 0.016 0.962 1.000 3782

η = 1.25 1.309 0.059 0.002 0.070 0.923 1.001 4609

k = 0.75 0.731 −0.019 0.001 0.012 0.941 1.001 4609

C = 30%

α = 1.50 1.527 0.027 0.001 0.021 0.945 1.000 4174

β1 = 0.75 0.726 −0.024 0.001 0.023 0.954 1.000 3660

β2 = −0.75 −0.752 0.002 0.000 0.004 0.975 1.001 3802

β3 = 0.50 0.445 −0.055 0.001 0.023 0.937 1.001 3802

η = 1.25 1.437 0.187 0.002 0.123 0.911 1.002 4434

k = 0.75 0.847 0.097 0.001 0.023 0.907 1.003 4792
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Table 4.3: Simulation results from a GLL PH framework with dis-
tributional parameters (α = 1.75, k = 0.95, and η = 1.5), covariates
β = (0.75,−0.75, 0.5), and n = 100

Posterior properties

True (θ̂) Value Posterior mean (θ̂) Bias Näıve SE MSE CP R̂ No. of eff
C = 20%

α = 1.75 1.718 – 0.032 0.002 0.038 0.942 1.000 3865
β1 = 0.50 0.523 0.023 0.002 0.051 0.955 1.000 3823
β2 = –0.85 – 0.817 – 0.033 0.001 0.010 0.946 1.000 3720
β3 = 0.50 0.489 – 0.011 0.002 0.050 0.981 1.000 37402
η = 1.50 1.441 – 0.059 0.002 0.068 0.931 1.000 4084
k = 0.95 0.828 – 0.122 0.001 0.147 0.925 1.001 4084

C = 30%
α = 1.75 1.717 – 0.033 0.002 0.044 0.939 1.000 3802
β1 = 0.50 0.577 0.077 0.002 0.063 0.943 1.000 3823
β2 = –0.85 – 0.833 – 0.017 0.001 0.009 0.971 1.000 3761
β3 = 0.50 0.474 – 0.026 0.002 0.058 0.952 1.000 3700
η = 1.50 1.625 0.125 0.002 0.143 0.919 1.002 3865
k = 0.95 0.778 – 0.172 0.001 0.213 0.908 1.001 4084

Table 4.4: Simulation results from a GLL PH framework with dis-
tributional parameters (α = 1.75, k = 0.95, and η = 1.5), covariates
β = (0.75,−0.75, 0.5), and n = 300

Posterior properties

True (θ̂) Value Posterior mean (θ̂) Bias Näıve SE MSE CP R̂ No. of eff

C = 20%

α = 1.75 1.756 0.006 0.001 0.023 0.978 1.000 3951

β1=0.50 0.503 0.003 0.001 0.040 0.991 1.000 3761

β2 = –0.85 – 0.827 – 0.023 0.000 0.003 0.963 1.000 3761

β3 = 0.50 0.505 0.005 0.000 0.045 0.987 1.000 3740

η = 1.50 1.519 0.019 0.002 0.107 0.942 1.000 4458

k = 0.95 0.973 0.023 0.001 0.013 0.941 1.001 4458

C = 30%

α = 1.75 1.811 0.061 0.001 0.091 0.935 1.000 4011

β1 = 0.50 0.612 0.112 0.001 0.129 0.880 1.000 3978

β2 = –0.85 – 0.815 – 0.035 0.000 0.004 0.945 1.000 4011

β3 = 0.50 0.521 0.021 0.001 0.063 0.997 1.000 3789

η = 1.50 1.531 0.031 0.002 0.171 0.851 1.001 4458

k = 0.95 0.990 0.040 0.002 0.145 0.911 1.002 4565
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Figure 4.1: Gelman diagnostics from a GLL PH framework with dis-
tributional parameters (α = 1.5, κ = 0.75, andη = 1.25), and covariates
β = (0.75,−0.75, 0.5),and n = 300, and censoring proportion for 20 per-
centage.

Figure 4.2: Trace plots from a GLL PH framework with distribu-
tional parameters (α = 1.5, κ = 0.75, andη = 1.25), and covariates β =
(0.75,−0.75, 0.5),and n = 300, and censoring proportion for 20 percentage.
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Figure 4.3: Kernel density plots from a GLL PH framework with dis-
tributional parameters (α = 1.5, κ = 0.75, andη = 1.25), and covariates
β = (0.75,−0.75, 0.5),and n = 300, and censoring proportion for 20 per-
centage.

Figure 4.4: Autocorrelation plots from a GLL PH framework with dis-
tributional parameters (α = 1.5, κ = 0.75, andη = 1.25), and covariates
β = (0.75,−0.75, 0.5),and n = 300, and censoring proportion for 20 per-
centage.

Based on these findings, we may deduce that as the sample size grows, the biases

and MSE of the estimators decrease; also, the censoring proportion impacts the

bias and MSE of the estimators, with larger censoring rates increasing the bias and

MSE. The Gelman-Rubin diagnostic, on the other hand, as well as the number of

efficiency sample size draws, show that convergence has been attained. While the

estimators’ coverage probability was close to 95%.
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4.7 Practical Illustrations

In this section, two real-life survival data sets dealing with right-censored cancer data

were considered to demonstrate the flexibility and applicability of the proposed GLL

PH in modelling different survival data sets with different hazard rate shapes.

4.7.1 Data Set I: Lung Cancer Data

4.7.1.1 Data Description

In this subsection, we reanalyse the data set reported in (Kalbfleisch and Prentice,

2011) which is available in the R package survival. The Veterans Administration

Lung Cancer Study Group followed up on n=137 patients in this data set. For this

clinical investigation, the censorship rate is around 6.5 percent (9 observations out

of 137 were censored). The response and exploratory factors in this clinical trial

are the time until death (in days), the number of months from diagnosis to study

enrolment (diagt), age (in years), a history of previous lung cancer therapy (prior),

and the trt= (treatment = conventional chemotherapy).

4.7.1.2 Hazard Rate Shape

The hazard rate function appears to be unimodal or decreasing in Figure 1 based

on the TTT plot (careful inspection reveals a slight indication of unimodality). The

data could be evaluated with a model like the log-logistic distribution, which can

accommodate decreasing or unimodal hazard rate forms. However, because the

classical LL distribution is not closed under the PH framework, we employ the GLL

distribution, which is closed and can encompass various hazard rate shapes. The

box plot, histogram and TTT plots are shown in Figure 4.5.
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Figure 4.5: TTT plot, box plot, and the histogram for the survival times
of the lung cancer data sets

4.7.1.3 Proportionality Assumption

There are two widely used methods for assessing the PH assumption: (1) graphical

diagnostics based on (a) time-dependent variables, and (b) standardized Schoenfeld

residuals, and (2) statistical tests (Khosa, 2019). The Standardized Schoenfeld

residuals are used in this section to evaluate the PH assumption of the Cox model

for each covariate included in the model. Based on Figure 4.6 and the significance

threshold of 5%, there is no evidence to reject the proportional hazards assumption.

As a result, we anticipate that the GLL PH model will provide a good fit when

compared to the other existing parametric PH model employed in this study.

4.7.1.4 Posterior Analysis

In this paper, we assume the noninformative independent framework with a normal

prior N(0, 0.001) for β/s (regression coefficients) and an independent gamma prior

for the distributional parameters α ∼ G (a1, b1) , η ∼ G (a2, b2), and k ∼ G (a3, b3)

with hyperparameter values (a1 = b1 = a2 = b2 = a3 = b3 = 10).

(1) Numerical Summary. We looked at various quantities of interest and their nu-

merical values using the McMC sample of posterior properties for the generalized
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Figure 4.6: The Standardized Schoenfeld residuals from the data I - lung
cancer data set, taking the test p-value for each covariate into ac-count.

log-logistic proportional hazard model using the lung cancer data in this section.

The posterior summaries for the generalized log-logistic PH model parameters using

Veterans lung cancer data sets are illustrated in Table 4.5 . The probability that

the corresponding parameter is +ve is given in the last row of Table 4.5. A pos-

terior probability of 0.5 indicates that a positive parameter value is as likely as a

negative one. Once we’ve saved the posterior sample for each model parameter, we

can compute the posterior probability, for example, for β1, using mean (β1 > 0).

(2) Visual Summary. We looked at trace plots, Gelman-Rubin diagnostic plots,

and Ergodic mean diagnostic plots in this section to get a visual description of

the posterior properties. These plots and graphs provide a nearly comprehensive

representation of the parameters’ posterior uncertainty for the application of the

lung cancer data sets. Figure 4.7 shows that the McMC sampling process converges

to the joint posterior distribution with no periodicity. As a result, we can say that

the chains have converged. Figure 4.8 shows us that both PSRF and MPSRF are

less than 1.1.
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Figure 4.7: The time series plots for the baseline hazard parameters and
the regression coefficients for the Veterans lung cancer data..

Figure 4.8: PSRF of the baseline hazard parameters and the regression
coefficients for the Veterans lung cancer data.

Figure 4.9 shows us the Ergodic mean plots for the regression coefficients and the

baseline hazard parameters. It is quite clear from the running mean time-series plots

that the chains converge after N iterations to their mean values. However, these

plots display only at the mean of the baseline hazard parameters and the regression

coefficients and therefore are inadequate.
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Table 4.5: Numerical summaries of posterior characteristics based on
McMC sample of the GLL-PH model for the lung cancer data set.

Pars
Characteristics Alpha β1 (diagt) β2( age ) β3 (prior) β4( trt ) Eta Kappa
Mean 1.317 0.002 −0.024 −0.015 −0.151 0.042 0.103
SD 0.173 0.010 0.008 0.021 0.178 0.015 0.049
Näıve SE 0.001 0.0001 0.0001 0.0002 0.001 0.0001 0.0004
Time series SE 0.003 0.0001 0.0001 0.0001 0.002 0.0002 0.001
Minimum 0.813 −0.046 −0.054 −0.109 −0.890 0.007 0.019
2.5 th percentile 1.023 −0.020 −0.040 −0.057 −0.500 0.019 0.040
Q1 1.194 −0.005 −0.029 −0.029 −0.271 0.031 0.068
Medium (Q2) 1.302 0.003 −0.024 −0.015 −0.150 0.040 0.092
Q3 1.422 0.010 −0.018 −0.0003 −0.029 0.051 0.125
97.5 th percentile 1.697 0.021 −0.007 0.027 0.193 0.078 0.231
Maximum 2.324 0.032 0.006 0.082 0.511 0.143 0.658
Mode 1.250 0.003 −0.028 −0.015 −0.150 0.035 0.075
Variance 0.030 0.0001 0.0001 0.001 0.032 0.0002 0.002
Skewness 0.550 −0.361 0.082 −0.058 −0.027 0.957 1.656
Kurtosis 0.558 0.152 0.011 0.001 −0.009 1.510 4.992
95% credible interval 1.023, 1.697) −0.020.0.021) (−0.040,−0.007) (−0.057, 0.027) (−0.500, 0.193) (0.019, 0.078) (0.040, 0.231)
P (. > 0|data) 1.000 0.598 0.003 0.244 0.199 1.000 1.000

Figure 4.9: The running mean plots for the baseline hazard parameters
and regression coefficients for the Veterans lung cancer data set.

4.7.2 Data Set II: Larynx Cancer Data

4.7.2.1 Data Description

Lifetimes for 90 patients with larynx-cancer, according to the stage of cancer tumour

(stages 1-4) are given in Table 7. The study time or time to death are recorded in

months (where, * shows us the censored time). Alvares et al. (2021); Christensen

et al. (2010); Wang et al. (2018b) discussed the data from different aspects under

different hazard-based regression models, and the data were first reported by (Kar-
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Table 4.6: Survival times (in months) of patients with larynx cancer
according to stages of tumour (1–4).

Stages Survival time (∗ = indicating censoring)
Stage I (33 patients) 0.6, 1.3, 2.4, 2.5∗, 3.2, 3.3∗, 3.5, 3.5, 4.0,

4.0, 4.3, 4.5∗, 4.5∗, 5.3, 5.5∗, 5.9∗, 5.9∗, 6.0∗, 6.1∗, 6.2∗,
Stage II (17 patients) 6.4, 6.5, 6.5∗, 6.7∗, 7.0∗, 7.4, 7.4∗, 8.1∗, 8.1∗,

9.6∗, 10.7∗

Stage III (patients) 0.2, 1.8, 2.0, 2.2∗, 2.6∗, 3.3∗, 3.6, 4.0∗, 4.3,
4.3∗, 5.0∗, 6.2, 7.0, 7.5∗, 7.6∗, 9.3∗

Stage IV (13 patients) 0.3, 0.3, 0.5, 0.7, 0.8, 1.0, 1.3, 1.6, 1.8, 1.9, 1.9, 3.2,
3.5, 3.7∗, 4.5∗, 4.8∗, 4.8∗, 5.0∗, 5.0∗, 5.1∗, 6.3, 6.4, 6.5

daun, 1983). The survival times (in months) of patients is illustrated in Table 4.6.

The other covariates of the data are as follows: (1) age (in years) at diagnosis and

(2) the year of diagnosis. One goal of this study was to see if the age, year of diag-

nosis, and stage of cancer were associated with the death of patients with laryngeal

cancer.

4.7.2.2 Hazard Rate Shape

Based on the TTT plot in Figure 4.10, the hazard rate function is an increasing

hazard in Figure 13. The data could be analyzed using a model such as the Weibull

distribution, which can handle monotone hazard rate forms. We adopt the GLL dis-

tribution, which would be represented by the PH framework and can accommodate

a variety of hazard rate shapes to see its applicability of the monotone (increasing)

hazard rates. Figure 4.10 shows the box plot, histogram, and TTT plots.
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Figure 4.10: TTT plot, box plot, and the histogram for the survival times
of the larynx cancer data set.

4.7.2.3 Proportionality Assumption

We investigated if the proportional hazards model could be used with this data set.

The underlying assumption of the Cox model for each explanatory variable utilized

in the model is depicted in Figure 4.11. With a significance level of 5%, there is no

evidence to reject the PH assumption. As a result, we anticipate that the parametric

PH model will provide a strong fit.

Figure 4.11: The standardized Schoenfeld residuals from the data II lar-
ynx cancer data set, taking the test p value for each covariate into ac-
count.

4.7.3 Posterior Analysis

In this chapter, we assume the noninformative independent framework withN(0, 0.001)

for β ’s (regression coefficients) and an independent gamma prior for the distribu-
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Table 4.7: Numerical summaries of posterior characteristics based on
McMC sample for GLL PH model for the larynx cancer data.

Characteristics Pars
Alpha β1 (stage 2) β2 (stage 3) β3 (stage 4) β4 (age) β5 (diagyr) Eta Kappa

Mean 1.539 -0.182 0.376 1.222 0.187 -0.111 0.869 0.336
SD 0.215 0.454 0.337 0.411 0.144 0.149 0.247 0.077
Näıve SE 0.002 0.004 0.003 0.004 0.001 0.001 0.002 0.001
Time series SE 0.002 0.004 0.003 0.004 0.001 0.001 0.003 0.001
Minimum 0.847 -1.975 -0.902 -0.531 -0.373 -0.730 0.197 0.112
2.5 th percentile 1.157 -1.108 -0.289 0.396 -0.091 -0.403 0.457 0.207
Q1 1.389 -0.480 0.152 0.952 0.089 -0.212 0.691 0.282
Medium (Q2) 1.524 -0.170 0.377 1.230 0.187 -0.112 0.846 0.328
Q3 1.668 0.128 0.605 1.498 0.284 -0.012 1.020 0.382
97.5 th percentile 2.005 0.667 1.030 2.010 0.476 0.181 1.412 0.507
Maximum 2.701 1.648 1.770 2.848 0.817 0.509 2.131 0.763
Mode 1.550 -0.100 0.300 1.300 0.150 -0.150 0.850 0.325
Variance 0.046 0.207 0.113 0.169 0.021 0.022 0.061 0.006
Skewness 0.447 -0.173 -0.041 -0.086 0.081 0.023 0.595 0.604
Kurtosis 0.511 0.068 0.010 0.070 0.102 0.027 0.514 0.656
95% (1.157, (-1.108, (-0.289, (0.396, (-0.091, (-0.730, (0.197, (112,
Credible interval 2.005) 0.667) 1.030) 2.010) 0.476) 0.181) 1.412) 0.507)
P 1.000 0.352 0.870 0.998 0.906 0.227 1.000 1.000

tional parameters α ∼ G (a1, b1), η ∼ G (a2, b2), and k ∼ G (a3, b3) with hyperpa-

rameter values (a1 = b1 = a2 = b2 = a3 = b3 = 10).

4.7.3.1 Numerical Summary.

We looked at various quantities of importance as well as their numerical values using

the McMC sample of posterior properties for the generalized log-logistic proportional

hazard model considering the larynx data in this section.

The posterior summaries for the GLL-PH model parameters using larynx cancer

data are illustrated in Table 4.7. The probability that the corresponding parameter

is +ve is given in the last row of Table 4.7.

4.7.3.2 Visual Summary

We looked at autocorrelation plots in Figure 4.12, and Ergodic mean plots in Figure

4.13 for the proposed model parameters which shown us that the convergence was

attained.
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Figure 4.12: Autocorrelation plots for all the baseline hazard parameters
and regression coefficients for the larynx cancer data.

Figure 4.13: The Ergodic mean plots for the baseline hazard parameters
and regression coefficients for the larynx cancer data..

4.7.4 Hazard Ratio

One of the most intriguing aspects of PH models is that the regression coefficients

can be interpreted using the hazard ratio, which is preferred by many clinicians.

A key feature for PH models is the hazard ratio (HR), also known as the relative

risk, between two individuals with covariate vectors x1 and x2. The HR is defined

as:

HR (x1,x2, h0,β) =
h (t | x1, h0,β)

h (t | x2, h0,β)
= exp

[
(x1 − x2)

T β
]

(4.54)
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Table 4.8: Posterior characteristics of the hazard ratio between two men
of the same age and diagnosis year but in different tumour stages

Posterior Stages 3 and Stages 2 and Stages 2 and
Properties 4 4 3
Mean 0.467 0.280 0.638
Standard 0.203 0.149 0.298
deviation
Näıve SE 0.001 0.001 0.002
Time series SE 0.002 0.001 0.002
2.5% percentile 0.197 0.088 0.218
Q1 0.326 0.175 0.423
Medium (Q2) 0.425 0.250 0.585
Q3 0.564 0.349 0.791
97.5 percentiles 0.967 0.648 1.366

which does not depend on time t. the hazard function in the numerator is equal to

this constant HR times the hazard in the denominator, i.e.,

h (t | x1, h0, β) = HRxh (t | x2, h0, β)

Hence, the name ”proportional hazards model” (Christensen et al., 2010). For

example, the posterior distributions of the HR between two individuals of the same

age and diagyr (year of diagnosis) but in different stages can be easily summarized.

Table 4.8 depicts the posterior characteristics of the hazard ratio between two men

of the same age and diagnosis year (diagyr) but in different stages.

4.8 Bayesian Model Selection

In this study, we used the deviance information criterion (DIC) to distinguish be-

tween the proposed models.
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4.8.1 Data Set I

Table 4.9 displays some posterior characteristics for the three PH models (gen-

eralized log-logistic, Gompertz, and Weibull). Even though the estimates of the

regression coefficient are significant compared, the flexibility provided by the GLL

distribution’s additional shape parameter contributes to its ultimate superiority over

the Gompertz and Weibull models and the DIC shows us its goodness-of-fit and ver-

satility comparing to the competing parametric PH models.

Table 4.9: Posterior properties summaries and the information criterion
values for the considered GLL PH model and its competing models for
the lung cancer data.

4.8.2 Data Set II

Table 4.10 displays some posterior characteristics for the three PH models (gen-

eralized log-logistic, Gompertz, and Weibull). Even though the estimates of the

regression coefficient are significant compared, the flexibility provided by the GLL

distribution’s additional shape parameter contributes to its ultimate superiority over

the Gompertz and Weibull models and the DIC demonstrates us ts goodness-of-fit

and versatility comparing to the competing parametric PH models.
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Table 4.10: Posterior properties summaries and the information criterion
values for the considered GLL PH model and its competing models for
the larynx cancer data..

4.9 Concluding Remarks

In this chapter, we explored how to derive Bayesian estimates of the baseline hazard

parameters and the regression coefficients of the parametric proportional hazard

model with generalized log-logistic baseline hazard using right-censored survival data

utilizing McMC approaches. The McMC techniques offer an alternative technique

for estimating the parameters of the proposed model that is more flexible than

frequentist techniques such as maximum likelihood estimation. Bayesian Inference

was performed with a variety of priors, and the convergence pattern was investigated

using various diagnostic procedures.

To test the performance of the proposed parametric PH model, a comprehensive

McMC simulation study was conducted. According to the simulation results, the

PH model produces better results, with fewer absolute biases and MSEs for most

regression coefficients and baseline distributional parameters. The behavior of the
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PH model in a generic PH regression situation comprising numerous covariates was

also examined using synthetic right-censored data sets. Our findings indicate that

the PH model performs well when handling with multiple factors.The paper’s final

analysis focused on a real-world application involving two well-known right-censored

survival data sets for lung cancer and laryngeal cancer patients. In conclusion,

the findings of the proposed parametric PH model show that it performs better

and is superior to the other competing PH model, as well as indicating significant

distributional parameters and regression coefficients.

Furthermore, for both simulation and real-data analysis, the regression coefficients

were assumed to have a normal prior, and the baseline distribution parameters

were assumed to have an independent gamma prior to compute the quantities of

importance derived from the proposed model’s posterior distribution. It has been

attempted to create a visual summary and other essential graphs to aid in the

interpretation of results and decision making. Finally, we hope that this paper will

be an extension of the work of Khan and Khosa (2016) and will encourage researchers

who employ parametric hazard-based regression models to conduct their analyses

using the Bayesian approach from the BUGs codes with the help of the R software’s

rjags package.
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CHAPTER 5

Bayesian and Frequentist Approaches for

the Generalized Log-logistic Accelerated

Failure Time Model

In this chapter, we present our fourth published manuscript 1 about the Bayesian

and frequentist approaches for the generalized log-logistic accelerated failure time

model. Note that the materials of this chapter have been reproduced from our

article.

5.1 Introduction

Certain continuous probability distributions are extensively applied to model sur-

vival data. The most frequently used parametric survival models are the log-normal,

log-logistic, gamma and Weibull distributions. The acceptance of these distributions

in time-to-event analysis is largely due to their (i) tendency to adequately model

data which are frequently encountered in time-to-event analysis, (ii) model close-

ness, (iii) readily available statistical software package, (iv) common structure, since

all of these distributions are of the log-location-scale class, (v) straight forwardness

of the approach (Khosa, 2019). The log-logistic and the log-normal families are used

to model non-monotone (or unimodal) hazard rates, whereas the Weibull family is

widely applied to model monotone hazard functions (Lawless, 2011).

The log-logistic distribution is by far the most popular used model for analyzing

1Muse, A. H., Mwalili, S., Ngesa, O., Alshanbari, H. M., Khosa, S. K., and Hussam, E. (2022).
Bayesian and frequentist approach for the generalized log-logistic accelerated failure time model
with applications to larynx-cancer patients. Alexandria Engineering Journal, 61(10), 7953-7978.

156



and modeling survival times with unimodal hazard shapes. Its major weakness is

its inability to incorporate monotone failure rates (i.e., in particular increasing fail-

ure rates). This has led to the need to seek modifications and generalizations of

the log-logistic distribution. Due to the restriction of the log-logistic distribution in

analyzing data with monotone hazard rate function. Muse et al. (2021c) proposed a

new two-parameter LL model that accommodate for both monotone and unimodal

hazard shapes using the tangent function; Aldahlan (2020) proposed the Alpha

power transformed LL distribution; Adeyinka and Olapade (2019) introduced the

transmuted four-parameters generalized LL distribution; Lima and Cordeiro (2017)

extended the LL distribution by applying the exponentiated generalized generator

approach; Mendoza et al. (2016) developed an exponentiated log-logistic geomet-

ric distribution, among others. The failure rate function allows for incorporating

constant, monotonically decreasing, monotonically increasing, bath-tub shaped and

unimodal hazard rates when the classical LL model was modified by adding extra

shape parameters (Cordeiro et al., 2020). More details about the extensions and

recent modifications of the LL distribution can be found in (Muse et al., 2021b).

The applications of the generalized distributions in the context of parametric sur-

vival models have been widespread. Many generalizations and modifications of the

log-logistic, Weibull and even other common classical distributions have been devel-

oped to make these more flexible in fitting a range of failure rate shapes (Cordeiro

et al., 2020; Muse et al., 2021c; Nasiru et al., 2019; Ahmad et al., 2019; Muse et al.,

2021b; Tahir and Nadarajah, 2015; Tahir and Cordeiro, 2016; Dey et al., 2021). One

such model is the generalized log-logistic distribution which extends the log-logistic

by adding an extra shape parameter Khan and Khosa (2016). The model is flexi-

ble and sparse in the sense that it fitted to data sets whose failure rate function is

monotone and non-monotone and has some models including the Weibull, Burr XII,

log-logistic and exponential distributions, see (Muse et al., 2021a). It could also be

used to examine the goodness of fit of sub-models such as log-logistic, Burr XII,
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exponential and Weibull .

Parametric hazard-based regression models focus on the association between hazard

rates or survival time random variables and the explanatory variables (risk factors, or

predictor variables, or covariates). There are two popular approaches for parametric

regression of survival data: proportional hazard (PH) models and accelerated failure

time (AFT) models (Wang et al., 2018b). There are other two approaches for

parameteric survival models: accelerated hazard model (Chen and Wang, 2000),

and the proportional odds model (Bennett, 1983a). AFT model is a more realistic

and valuable alternative to the parametric PH model in some situations and also

under some probability distributions and their generalizations (Khan and Basharat,

2021).

The underlying shapes that commonly employed parametric AFT models may cap-

ture are limited (Crowther, 2014). Many researchers are currently focusing on

the construction of flexible parametric AFT models utilizing various methodologies

(Pang, 2020).The development of new modified distributions as a baseline hazard

function for an AFT model is one of the most prevalent methods. Khan (2018)

introduced the exponentiated Weibull AFT model, which can handle monotone and

non-monotone hazard rate forms. Using Bayesian inference, Ashraf-Ul-Alam and

Khan (2021) developed the generalized Topp-Leone Weibull AFT model. These dis-

tributions frequently have a small number of sub-models. Furthermore, our proposed

baseline hazard distribution includes both Weibull and Log-logistic AFT models as

a special cases, as well as it has the ability to accommodate various hazard rate

forms. Hence, in this study, we extend the generalized log-logistic PH model (Khan

and Khosa, 2016) into a generalized log-logistic AFT model to be a convenient al-

ternative to the classical Weibull distribution since it can accommodate for both

monotone and non-monotone hazard rates, as well as it is closed under both PH

and AFT frameworks.

Weibull distribution is the only probability distribution that is closed under both
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PH and AFT families (Kalbfleisch and Prentice, 2011). The LL distribution has

wide applications in analyzing time-to-event data. The model is closed under both

accelerated failure time (AFT) and proportionality of odds (PO) but it is not closed

under the proportional hazard (PH) framework. However, when it is generalized

it has the attractive feature to of being a member of all hazard-based regression

models because its cumulative distribution function (cdf) has a closed form and its

hazard rate function is quite flexible. Therefore, Khan and Khosa (2016) developed

a generalized log-logistic that is closed under the PH framework.

Hence, the main goal of this chapter is to develop a generalized log-logistic AFT

model. The Bayesian and maximum likelihood estimation approaches for estimating

the model parameters are considered to estimate the distributional parameters and

covariates of the proposed model. We evaluated the performance of the generalized

log-logistic AFT model in comparison with the most frequently used lifetime AFT

models, namely log-logistic, and Weibull. Furthermore, convergence diagnostic tech-

niques based on the McMC approach were used.

As a result, in light of the above discussion, and the growing need to include ex-

planatory varaibles in the analysis of survival data we primarily focus on parametric

AFT models which need a distributional assumption for T given a vector of explana-

tory variables X. In particular, we present AFT approach based on the generalized

log-logistic distribution. The most appealing aspects of this technique may be its

flexibility in accepting both monotone and non-monotone failure rate functions,

as well as the fact that it can do so at the low cost of estimating one additional

parameter compared to other frequently used parameteric regression models (e.g.,

log-normal, Weibull, and log-logistic) and also the distribution is closed under the

PH framework.

Hence, proposing and showing that the generalized log-logistic is also closed under

the AFT framework is a great contribution to the field of survival analysis. Estimat-

ing the model’s parameters using both Bayesian and maximum likelihood estimation
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techniques and developing an extensive simulation study to assess the model’s per-

formance by comparing the proposed model’s fit to the fits of other frequently used

parametric regression models including log-logistic and Weibull model in analyzing

various types of survival data with monotone and non-monotone failure rate shapes

under different censoring proportions is the novelty of this work.

The rest of the chapter is classified as follows. Section 5.2, presents the AFT model

formulation and its assumptions. In Section 5.3, we show that the generalized log-

logistic distribution is closed under the AFT framework. Based on this outcome, we

then derive the common lifetime distribution functions of the generalized log-logistic

AFT model. The common sub-models closed under the proposed model are also dis-

cussed. The inferential procedures of the proposed model including the maximum

likelihood estimation and the Bayesian approach for inference is also discussed in

Section 5.4. An extensitve simulation study is presented in Section 5.5. In Section

5.6, the generalized log-logistic AFT model is applied into a real-life survival data

relatig to larynx-cancer patients and the posterior characteristics summaries and

graphs of the parameters and the regression coefficients are provided with the sup-

port of the ggmcmc package (Fernández-i Maŕın, 2016). The model comparison is

presented in Section 5.7 by comparing its sub-models Weibull, and log-logistic. In

Section 5.8, Markov chain Monte Carlo (McMC) algorithm (Gelman et al., 1995)

for the proposed AFT model is demonstrated using BUGS syntax (Gilks et al.,

1994), with the assistance of JAGS (Plummer et al., 2003) and the rjags package

(version 4-10) (Plummer et al., 2019; Qi et al., 2020), for the R language (version

4.0.2) (Team, 2019) and the convergence diagnostics were discussed briefly. Some

remarkable conclusion of our findings in Section 5.9.
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5.2 The AFTModel Formulation and Its Assump-

tions

The Formulation of the parametric AFT model using a defined baseline distribution

and a link function for covariates is defined as follows:

h(t;x) = h0(t)ψ(x
′β) (5.1)

where the h0 is the baseline hazard and the most popular natural choice for the

link function ψ (x′β) is the log-linear (or exponential) function exp (x′β). In this

chapter, we describe the AFT model assuming that ψ (x′β) = exp (x′β)

5.2.1 Assumptions

The assumption of the AFT model is that the effect of covariates acts multiplicative

on the survival time. The assumption of the AFT model can be defined as,

S(t | x) = S0[tψ(x)] for t ≥ 0 (5.2)

where; S0[tψ(x)] is the baseline survival function (i.e., survival function for an indi-

vidual with x = 0), S(t | x) is the survival function at the time t, and the ψ(x) is

the link function. The covariates are linked to the lifetime by ψ(x), satisfying

ψ(0) = 1 and ψ(x) > 0∀x ̸= 0

with these attributes of ψ(x), x = 0 implies S(t | x) = S0(t | x).

ψ(x) = exp
(
β/x
)

(5.3)
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The vector β represents regression coefficients and x is a vector of non-random

regressors. With 5.3 the covariates accelerate (β′x > 0) or decrease (β′x < 0) the

rate at which a unit moves through time with respect to the baseline case.

5.2.2 Lifetime Distribution Functions for the AFT Model

In this sub-section, we derive the common probabilistic functions of the accelerated

failure time model. The AFT model can be expressed as:

S(t | x) = S0

(
tex

∗′β∗
)
fort ≥ 0 (5.4)

Other, less popular choices for the link function are

ψ(x) = β′x and ψ(x) = (β′x)
−1

With these two choices it may happen that ψ(x) < 0 for some value of β resulting

into a negative lifetime.

The other four common life time distribution representatives for an AFT model with

5.4 can be expressed as: The cumulative distribution function of the AFT model is

given by:

F (t) = 1− S(t) = 1− S0[tψ(x)] = 1− S0

(
exp

(
β/x
)
t)fort ≥ 0 (5.5)

The probability density function of the AFT model can be obtained by using:

f(t) = ψ(x)f0[tψ(x)] = ex
∗′β∗

f0

[
tex

∗′β∗
]
fort ≥ 0 (5.6)

The hazard rate function of the AFT model is given by:

h(t) =
f(t)

S(t)
= ψ(x)

f0[tψ(x)]

S0[tψ(x)]
= ψ(x)h0[tψ(x)] = ex

∗′β∗
h0

[
tex

′′β∗
]
, (5.7)
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The cumulative Hazard rate function of the AFT model is given by:

H(t) = − log (S0[tψ(x)]) = H0[tψ(x)] = H0

[
tex

∗′β∗
]
, (5.8)

where; F0(.), f0(.), h(.) andH0(.) are the baseline cdf, pdf, hrf and cumulative hazard

functions, respectively.

From the above equations 5.2 up to 5.8 we can see that the explanatory variables

act multiplicatively on survival time so that there is to decelarate or accelerate the

time to failure, hence the name of the model. For an AFT model we are interesting

to measure the direct effect of the covariates on the survival time.

5.3 Generalized Log-logistic Accelerated Failure

Time Model

The parameteric survival regression models can be expressed in a variety of ways.

One such method involves the AFT model formulation.

Using ψ(x) = exp (−β′x) in Equation (5.2), the GLL regression model can be ex-

pressed in an AFT model. Let us β∗ =
(
β∗
1 , β

∗
2 , · · · , β∗

p

)′
be the column vector of

regression coefficients, and x∗ = (x1, x2, · · · , xp)′ be the corresponding vector of p

covariates. Under the accelerated failure time assumption, the probability of an

individual (with explanatory variables x∗ ) surviving to time t is the same with the

probability of a reference individual (i.e., x∗ = 0 ) surviving to time tex
x′β∗

(Lawless,

2011). The failure rate function under the AFT assumption is given by:

h(t) = ex
′βh0

[
tex

′β
]

This is reference to the notion that explanatory variables work multiplicatively on

time, causing the time to failure to accelerate (or decelerate). Starting with a gener-
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alized loglogistic baseline survivor function. Suppose that T has a GLL distribution

with parameters α, η, and k. The hazard function with covariate vector x is witten

as follow:

h(t;x) = h0

[
tex

′
β
]
ex

x′β

=

(
αk
(
ktex

′β
)α−1

[1 + (ηtex′β)α]

)
ex

′β

= αkαtα−1

( (
ex

′β′)α−1

[1 + (ηtex′β)α]

)
ex

′β

= αkαtα−1

( (
ex

′β′)α
[1 + (ηtex′β)α]

)
.

=
αtα−1

(
kex

′β
)α

[1 + (tηex′β)α]

=
αtα−1 (k∗)α

[1 + (tη∗)α]
,

(5.9)

which is again the generalized log-logistic hazard function with k∗ = kex
′β and

η∗ = ηex
′β.

Furthermore, using Equation (5.4), S (t;x∗) = S0

(
tex

′β′)
, where; S0(.) is the baseline

survivor function. We get

S0 (t;x) =
[
1 +

(
ηtex

′β∗
)α]−κα

ηα

= [1 + (η∗t)α]
−κα

ηα (5.10)

Which is again the generalized log-logistic survivor function with η∗ = ηer
′β∗

. This

verifies that the generalized log-logistic is closed under the AFT family.

The other lifetime distribution functions of the generalized log-logistic AFT model

are given by:

The cumulative distribution function for the GLL-AFT model is given by:

F (t;x) = 1− S0

(
tex

′β∗
)
= 1−

[
1 +

(
ηtex

′β
)xx]−κα

ηα

(5.11)
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The probability density function for the GLL-AFT model can be obtained by using:

f (t;x) = ex
′β∗
f0

[
tex

′β∗
]

(5.12)

The cumulative hazard rate function for the GLL-AFT model is given by:

H (t;x) = − log
(
S0

[
tex

′β∗
])

= H0

[
tex

′β∗
]

=
kα

ηα
log
[
1 +

(
ηtex

′β∗
)]
.

(5.13)

Note that, using similar arguments, the Weibull, loglogistic, and log-normal distri-

butions are all belong to the AFT family.

5.3.1 Sub-Models

The proposed model has two sub-models that are also closed under the AFT frame-

work.

5.3.1.1 Sub-model I: η = k

When we put η = k in Equations (5.9), then it shall be referring to the hazard rate

of the loglogistic AFT model, the mathematical forms are expressed as:

h(t;x) =
αtα−1

(
kex

c′β∗
)α[

1 +
(
tηexx

′β∗)α] =
αtα−1

(
kex

x′β∗
)α[

1 +
{
t
(
kexx

′β∗)}α] (5.14)

Which is again the log-logistic hazard function with k∗ = kex
′β∗

.
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5.3.1.2 Sub-model II: ηα → 0.

If we replace ηα → 0 in the Equation (5.9), then the derived hazard rate function

will stand for Weibull AFT model, the mathematical forms are described as:

h(t;x) =
αtx

α−1
(
kex

x′β∗
)α[

1 +
(
tηext

′β∗)α] =
αtα−1

(
kex

′β∗)
α

[1 + (tex′β)α · 0]
= αtα−1

(
kex

′β∗
)α

(5.15)

which is the Weibull hazard with k∗ = kex
x′β′

. This verifies that the generalized

log-logistic and its sub-models are closed under the AFT family.

5.4 Inferential Procedures

In this section, we discuss the frequentist (via maximum likelihood estimation) and

Bayesian Inference (applying independent gamma priors for the distributional pa-

rameters and normal prior for the regression coefficients) estimation procedures for

the generalized log-logistic accelerated failure time model parameters.

5.4.1 MLE for Right-Censored Survival Data

In this section, we consider the problem of estimating the parameters of the proposed

model for right-censored sample measurements. Suppose there be n individuals

with survival times denoted by T1, T2, · · · , Tn. Let that the data are subject to

right censoring, we observe ti = min (Ti, Ci), where Ci > 0 refers to a potential

censoring time for individual i. Letting δi = I (Ti, Ci) that equals 1 if Ti ≤ Ci and

0 otherwise. Let that a right-censored random sample consisting of data (ti, δi,xi),

i = 1, 2, · · · , n, is available, where ti is a censoring time or a lifetime according to

whether δi = 0 or 1 , respectively and xi = x1, x2, · · · , xn is an n× 1 column vector

of external covariates for the ith individual. We assume non-informative censoring,

in which the survival time distribution offers no information about the censoring
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time distirbution, and vice versa.

The assumption non-informative censoring is justifiable when censoring is indepen-

dent (i.e., censoring is assumed random within any subgroup of interest) and/or ran-

dom (i.e., hazard rates for censored and uncensored observations who remain in the

risk set are equal); For more details about the non-informative censoring [1]. Under

non-informative censoring, ti, and δi are random variables with P (ti = ci, δi = 0) =

P (Ti > Ci) = S (ti) and P (ti, δi = 1) = f (ti). Then, the joint probability density

function of ti and δi is [f(t)]
δi [S(t)]1−δi , which is the contribution of the ith individ-

ual to the likelihood function. Thus, individual i contributes f (ti) to the likelihood

function if an event occurs at time ti, and contributes S (ti) if the individual is cen-

sored at ti. Combining the information from the censored observations, we obtain

the likelihood function.

L(ϑ) =
n∏
i=1

[f(t)]δi [S(t)]1−δi (5.16)

where; ϑ is a vector of parameters characterizing the distribution of Ti. Using the

definition of the probability density function in terms of hazard rate and survival

functions as below:

f(t) = h(t)S(t) (5.17)

The likelihood function can also be defined as:

L(ϑ) =
n∏
i=1

[h(t)S(t)]δi [S(t)]1−δi , (5.18)

By simplifying, we get

L(ϑ) =
n∏
i=1

[h(t)]δi [S(t)] (5.19)

If a parametric AFT model is considered, the log-likelihood function can be written
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using (5.19) as follows:

ℓ(θ) =
n∑
i=1

δi log [h (t;xi)] +
n∑
i=1

log [S (t;xi)] (5.20)

where; θ = (ϑ,β),ϑ is a vector of the distributional parameters, and β is a vector

of the regression coefficients. This can be maximized directly using the Newton-

Raphson optimization algorithm and the hypothesis testing and interval estimates

of the model parameters can proceed under the approximate normality of the MLE

estimators (Lawless, 2011).

In GLL AFT model, the likelihood function is given by

L(θ) =
n∏
i=1

αtα−1
(
kex

x′β∗
)α[

1 +
(
tηexx

′β∗)α]
δi n∏

i=1

[[
1 +

(
tηex

x′βx
)α]− kx

ηx

]
(5.21)

In our case; if we assume that d =
∑n

i=1 δi. Applying the likelihood for the gen-

eralized log-logistic AFT model, the full log-likelihood function can be expressed

as:

ℓ(θ) = d lnα + (α− 1)d ln ti + αd ln
(
kex

x′β∗
)

− d ln
(
1 +

(
tηex

x′β∗
)α)

−
(
k

η

)α n∑
i=1

ln
(
1 +

(
tηex

x′β∗
)α) (5.22)

where; θ denotes all the model parameters collectively. For our model, includes

the distributional parameters ϑ′ = (α, η, k) that characterize the baseline hazard

and survival functions h0(t) and S0(t) and the regression coefficients β, leading to

θ = (ϑ′,β′)

To obtain the MLE’s of θ′ = (α, η, k) and β′, we can maximize (29) directly with

respect to (α, η, k) and β′. or we can solve the first derivative of the log-likelihood
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function (non-linear equations below):

∂ℓ(θ)

∂α
=
d

α
+ d ln ti + d ln

(
kex

x′β∗
)

−
d
(
tiηe

xx
′
β∗
)α

ln
[(
tiηe

xx
′
β∗
)]

1 +
(
tiηex

x′β∗)α −
(
k

η

)α
ln

(
k

η

) n∑
i=1

ln
(
1 +

(
tiηe

αx′β∗
)α)

−

(
k
η

)α∑n
i=1

(
tiηe

x′β′)α
ln
[(
tiηe

xx
′
β∗
)]

1 + (tiηex
′β∗)α

(5.23)

∂ℓ(θ)

∂k
=
αd

k
−

(
k
η

)α
α
∑n

i=1 ln
(
1 +

(
tiηe

xx
′
β∗
)α)

k
, (5.24)

∂ℓ(θ)

∂η
= −

(
α

η

)
d


(
tiηe

xx′β∗
)α

1 +
(
tiηex

x′β∗)α


+

(
α

η

)(
k

η

)α n∑
i=1

ln
(
1 +

(
tiηe

xx
′
β∗
)α)

−
(
α

η

)(
k

η

)α n∑
i=1

( (
tiηe

x′β∗)α
1 + (tiηex

′β∗)α

)
,

(5.25)

∂ℓ(θ)

∂βm
= αdxim − dαxim


(
tiηe

xx
′
β∗
)α

1 +
(
tiηex

x′β∗)α
−

(
k

η

)α
αxim

×
n∑
i=1

(
tiηe

xx
′
β′
)α

1 +
(
tiηex

x′β′)α ,m
= 1, 2, · · · , r

(5.26)

It is important to know that the θ′ = (α, η, κ, β′) cannot be solved analytically. In

order, to solve these equations, numerical integration methods, such us the Newton-

Raphson algorithm are used.
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5.4.2 Bayesian Approach

In this sub-section, we assume non-informative priors in setting up the Bayesian

framework for estimating the parameters. For each regression coefficients βk, k =

1, 2, . . . , k the marginal prior distribution is assumed as a normal distribution with

mean zero and a minimal precision, N(0, 0.001). Gamma priors are chosen as the

marginal prior distributions for the generalized log-logistic parameters α : G (a1, b1) ,

κ : G (a2, b2), and η : G (a3, b3) because of the flexibility of the gamma priors and its

popularity under a non-informative prior framework.

The Bayesian model is implemented by specifying a prior distribution with their cor-

responding parameters and regression coefficients of the model and then multiplying

with the likelihood function.

5.4.2.1 The likelihood function

The likelihood function is an important part of the inferential process. The construc-

tion of survival data requires special attention in the area of survival data analysis

because it is dependent on the type of censoring observations. Assuming that life-

times and censoring are independent, the likelihood of the model’s parameters can

be written by incorporating elements such as: (i) When the exact lifetime is un-

known, the pdf of the survival time at the observed time t, f(t); (ii) In the case of

right-censored observation; the sf at the censoring time, S(t); (iii) In the case of a

left-censored observation, the cdf at the interval-censored observation, the difference

between the ff at times left-censoring and right-censoring. The likelihood function
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for our proposed model is given us:

L(ϑ | D) =
n∏
i=1

[f (ti | α, η, k, β, x)]δi [S (ti | α, η, k, β, x)]1−δi

=
n∏
i=1

[
f (ti | α, η, k, β, x)
S (ti | α, η, k, β, x)

]δi
[S (ti | α, η, k, β, x)]

=
n∏
i=1

[h (ti | α, η, k, β, x)]δi [S (ti | α, η, k, β, x)]

=
n∏
i=1

[f (ti | ϑ, x)]δi [S (ti | ϑ, x)]1−δi

(5.27)

where; f (ti | α, η, k, β, x) , h (ti | α, η, k, β, x) , ), and S (ti | α, η, k, β, x) of GLL AFT

model are given in Eqs. (15), (16), (18), ϑ = (α, η, k, β), and D = (t, δ,X), where

δ is the censoring indicator (δ = 1, iftheobservationisfailedand δ = 0 iftheobserva-

tioniscensored ), t is the survivor time, and X is the matrix of covariates which is

formulated as desing or model matrix.

The likelihood function of our proposed model is not implemented in JAGS, so

the ”zeros trick” method of specifying it indirectly using a Poisson distribution has

been utilized (Christensen et al., 2010; Alvares et al., 2021; Alvares and Rubio, 2021;

Lázaro Hervás, 2018). The idea behind this method is that the contribution of a Pois-

son (φ) observation of zero is exp(−φ); if we set φi = − log f (ti | α, η, k, β, x) , i =

1, 2, · · · , n, with observed data as vector of 0 ’s, than we get the correct contribu-

tions.

5.4.2.2 Prior distribution

In this sub-section, we have assumed normal priors for the covariates and indepen-

dent gamma priors for the distributional parameters. because of the flexibility of

gamma distribution. These priors are considered in many research papers in the

literature such as (Alvares et al., 2021; Lázaro Hervás, 2018). Let us propose the
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independent gamma priors for the parameters

p(α)G (a1, b1) =
ba11

Γ (a1)
αa1−1e−b1α; a1, b1, α > 0 (5.28)

p(k)G (a2, b2) =
ba22

Γ (a2)
ka2−1e−b2i; a2, b2, k > 0 (5.29)

p(η)G (a3, b3) =
ba33

Γ (a2)
ηa3−1e−b3η; a3, b3, η > 0 (5.30)

The regression coefficients (taking as a normal distribution) we have

p (βm)N
(
µ, σ2

)
(5.31)

The joint prior distribution of the distributioanl parameters and regression coeffi-

cients is given by

p (α, k, η,βm) = p(α)p(η)p(k)p (βm) (5.32)

5.4.2.3 Posterior distribution

The joint posterior density function of α, k, η, and β ’ given data is given by

p (α, k, η,βm | x) ∝ p (α, k, η,β′)L (α, k, η,βm)

p (α, k, η,βm | x) ∝ p(α)p(k)p(η)

{
m∏
i=0

p (βm)

}
L (α, k, η,βm)

(5.33)

where; the first four terms on the right hand side of Equation (5.33) corresponds

to the prior specifications for α, k, η, and βm and L (α, k, η,βm) is the likelihood

function for the generalized log-logistic AFT model.

The posterior density function is complicated and no close form inferences are avail-

able. Therefore, the Markov chain Monte Carlo (McMC) techniques are used to do

Bayesian approach, in which we sample from the posterior distribution using the

Metropolis within Gibbs algorithm [53]. In our implementation each component
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of the distributional parameters and regression coefficients is updated applying the

independence sampler (Smith and Roberts, 1993).

5.5 Simulation Study

We conduct a thorough simulation study in this section to demonstrate the proposed

model’s inferential properties. In particular, we demonstrate parameter estimation,

the tendency to recover baseline hazard shapes using the Akaike information cri-

terion (AIC) to choose models that accuratley reflect the underlying hazard rate

shape, and the effect of censoring proportions on inferencial properties of the model.

5.5.1 Data Generation and Simulation Designs

Breifly, in the design of the simulation study, we simulated N = 1000 data sets

assuming the AFT regression framework given in equation (5.8).

In the case of covariates, four covariates are considered in the simulation study.

Two continuous covariates (x1 and x2) were generated using the standard nor-

mal distribution, while two binary covariates (x3 , and x4) were generated using

the Bernoulli (0.5) distribution. The values for the AFT regression coefficients

are chosen to be (−2, 0.5,−0.5, 0.75,−0.75) corresponding to the covariate vector

x = (1, x1, x2, x3, x4)
T .

In the lifetime and censored data generation, we used the exponentiated Weibull

(EW) distribution to simulate lifetime data from the AFT framework using the

inverse transform method (Leemis et al., 1990), and assuming effects of the covariates

and the intercept in the regression equation. Additionally, for censored data we

assume an adminstrative censoring.

The probability density function (pdf) of the exponentiated Weibull distribution is
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expressed as follows:

f(t;α, k, η) = αkη(kt)α−1 (1− exp {−(kt)α})η−1 exp {−(kt)α} , (5.34)

The exponentiated Weibull (EW) distribution can incorporate all five basic shapes

of the hazard rate function including; constant, decreasing, increasing, unimodal

and bathtub shapes. The EW distribution is also closed under the AFT regression

framework in equation (5.4).

The chf for the exponentiated Weibull model are given as:

H0(t;α, k, η) = − log
{
1−

(
1− e−(kt)α

)η}
, (5.35)

The reversed chf is expressed as follows:

H0
−1(u;α, k, η) = −

log
[
(e−u − 1)

1/η − 1
] 1

α

k
, (5.36)

where, t > 0, and α, k, η > 0 are the parameters.

5.5.2 Simulation Algorithm

1. First we specify the initial values for the model parameters

2. Generate the lifetimes data using the inverse transform method by inverting

the cumulative hazard rate function for the proposed model.

3. Evaluate the values of the estimates using the different estimates

4. Evaluate the inferential properties of the estimates including Bias and MSEs.

5. Selecting the best superior model using AIC criterion
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5.5.3 Simulation Scenarios

To assess the performance of generalized log-logistic AFT model in comparison with

its sub-models log-logistic and Weibull AFT models, as well as the exponentiated

Weibull distribution, we conducted three simulation scenarios based on the shape

of the failure rate function (non-monotone (unimodal), monotone (increasing) and

decreasing) to explore the affect of the baseline hazard rate shape specification in

the infrential properties of the AFT model.

5.5.3.1 Scenario 1: non-monotone (or unimodal) hazard rate function

In the Scenario 1, the lifetimes data were generated from the exponentiated Weibull

model using the parameter values for (α = 1.75, k = 0.70, and η = 2.5) and the cen-

sored data were generated from assuming adminstrative censoring (a) Tc = 5, which

induced approximaley 20% censoring, (b) Tc = 8, which induced approximately 30%

senting from light to heavy censoirng cases.

5.5.3.2 Scenario 2: monotone increasing hazard rate function

In the Scenario 2, the lifetimes data were generated from the exponentiated Weibull

model using the parameter values for (α = 1.0, k = 2.50, and η = 1.0) and the

censored data were generated from assuming adminstrative censoirng (a) Tc = 14,

which induced approximaley 20% censoring, (b) Tc = 10, which induced approxi-

mately 30% censoirng, representing from light to heavy censoirng cases.

5.5.3.3 Scenario 3: monotone decreasing hazard rate function

In the Scenario 3, the lifetimes data were generated from the exponentiated Weibull

model using the parameter values for (α = 0.50, k = 0.50, and η = 0.85) and the

censored data were generated from assuming adminstrative censoring (a) Tc = 8.0,
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which induced approximaley 20% censoring, (b) Tc = 5, which induced approxi-

mately 30% censoirng, representing from light to heavy censoirng cases.

5.5.4 Simulated Data Analysis

To evaluate the inferential properties of the proposed models in all simulation sce-

narios, we fitted the AFT model with GLL baseline hazard (Generalized log-logistsic

AFT), as compared to the corresponding true generating model from the exponen-

tiated Weibull AFT model. Furthermore, the stability of the estimators for the

regression coefficients of each model were evaluated by using the average bias (AB),

the mean square error (MSE) and the relative bias (RB). We also fitted the sub-

models in each scenario.

AB =
1

N

N∑
i=1

(θ̂i − θ) (5.37)

MSE =
1

N

N∑
i=1

(θ̂i − θ)2 (5.38)

Relative Bias:

RB =
1
N

∑N
i=1(θ̂i − θ),

θ
(5.39)

where θ = α, η, κ, andβT Since our goal was to analyze the estimator’s qualities

rather than the characteristics of the optimization process, we applied the values of

the parameters of the generating model as starting points in the optimization step in

all situations.The analysis was carried out using the R programming language.The

optimization stage was carried out with the help of the R program ”nlminb().”

5.5.5 Measures of Performance

In this study, the flexibility of the models for the covariates were assessed by using

the measures including; the mean, the bias, the mean (estimated) standard error

(MSE), and the letative bias. In addition, for model comparion, we used the Akaike
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Information Criterion (AIC). The AIC is expresesd as:

AIC = 2(k + p)− 2l, (5.40)

where; k is the number of parameters for the model, p is the number of covariates,

and l represents the log-likelihood function computes as the MLEs.

In general, the best model has the lowest AIC values. A good rule of thumb is that

if ∆AIC = AICM − AICmin > 2, then Model M has significantly less support than

the model with the lowest AIC [56-58].

5.5.6 Simulation Results

The simulation results are presented in Tables 5.1 to 5.6.

5.5.6.1 Scenario 1 Results

For Scenario 1, the adequacy of a model’s fit appears to be dependent on the amount

of censoring. Overall, the GLL model outperforms the LL, and the Weibull model,

while it is closer to the exponentiated Weibull models in terms of AIC criterion.

As shown in Table 5.1, the three main competing models are the GLL, LL and

the exponentiated weibull model, since the Weibull doesnot incorportate unimodal

failure rate functinons theoretically and it has the highest AIC value, as expected..

The same happens in Table 5.2 where the censoring proportions increased to 30%

censoring case. In terms of MSEs, for continous covariates (x1 and x2), the GLL

model had the smallest MSE, whereas for binary covariates (x3 and x4) ,GLL,LL

and exponentiated Weibull were roughly equivalent, and all are superior to Weibull.

Furthermore, in terms of the intercept, LL and Weibull models produce estimates

with lower bias and MSE values than the GLL and the true generating (exponen-

tiated Weibull) models, and both are superior to GLL and exponentiated Weibull

models. Furthermore, the results were roughly equivalent to the MSE results dis-
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Table 5.1: Simulation results for Scenario 1 (n = 1000) with about 20%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 -4.122 1.108 -3.204 -0.554
(AIC = 1842.540) β1 0.50 0.611 0.111 0.123 0.222

β2 -0.50 -0.436 0.064 -0.060 -0.128
β3 0.75 0.763 0.013 0.020 0.017
β4 -0.75 -0.765 -0.015 0.185 0.153
α 1.75 1.428
κ 0.70 0.478
η 2.50 2.223

EW-AFT β0 -2.0 2.507 4.508 2.289 -2.254
(AIC = 1841.818) β1 0.50 0.663 0.163 0.189 0.326

β2 -0.50 -0.505 -0.005 0.005 -0.010
β3 0.75 0.863 0.113 0.182 0.151
β4 -0.75 -0.960 -0.210 0.359 0.280
α 1.75 0.181
κ 0.70 0.187
η 2.50 4.193

W-AFT β0 -2.0 -2.230 -0.230 0.975 0.116
(AIC = 1863.423) β1 0.50 0.723 0.223 0.273 0.446

β2 -0.50 -0.613 -0.113 0.125 0.226
β3 0.75 0.881 0.131 0.214 0.175
β4 - 0.75 -1.067 -0.317 0.576 0.423
α 1.75 2.401
κ 0.70 0.554

LL-AFT β0 -2.0 -2.200 0.200 -0.760 -0.100
(AIC = 1854.482) β1 0.50 534 0.035 0.036 0.070

β2 -0.50 -0.498 0.002 -0.002 -0.004
β3 0.75 0.853 0.103 166 0.137
β4 -0.75 -0.659 0.091 -0.128 -0.121
α 1.75 2.294
κ 0.70 1.192

cussed above in terms of bias and relative bias. Finally, when it comes to censoring,

the GLL model outperforms the other competing models except the true generating

model.

5.5.6.2 Scenario 2 Results

In the AIC values for Scenario 2, the Weibull, exponentiated Weibull, and GLL

models were roughly close to each other and all were superior to the Log-logistic

model as shown in Tables 5.3 to 5.4. Because LL cannot theoretically accommodate

increasing failure rates, it has the highest AIC value, as expected. Except for the

intercept variable, where the Weibull and exponentiated Weibull perform better

than the other competing models in terms of bias, MSE, and relative bias, all of the

models produce small values and are roughly close to each other. Overall, the GLL
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Table 5.2: Simulation results for Scenario 1 (n = 1000) with about 30%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 -0.487 1.513 3.763 -0.756
(AIC = 2671.365) β1 0.50 0.616 0.116 0.129 0.232

β2 -0.50 -0.437 0.063 0.059 -0.126
β3 0.75 0.800 0.050 0.078 0.067
β4 -0.75 -0.912 -0.162 0.270 0.216
α 1.75 1.428
κ 0.70 0.478
η 2.50 2.223

EW-AFT β0 -2.0 8.4587 10.458 67.573 -5.229
(AIC = 2670.107) β1 0.50 0.713 0.214 0.259 0.428

β2 -0.50 -0.543 -0.043 0.045 0.086
β3 0.75 0.990 0.240 0.418 0.320
β4 -0.75 -1.041 -0.291 0.521 0.388
α 1.75 0.113
κ 0.70 0.121
η 2.50 4.493

W-AFT β0 -2.0 -2.317 -0.317 1.369 0.158
(AIC = 2705.119) β1 0.50 0.826 0.326 0.432 0.652

β2 -0.50 -0.685 -0.185 0.219 0.370
β3 0.75 1.082 0.332 0.608 0.443
β4 - 0.75 -1.202 -0.452 0.881 0.603
α 1.75 0.773
κ 0.70 0.543

LL-AFT β0 -2.0 -1.800 0.200 0.760 -0.100
(AIC = 2686.816) β1 0.50 557 0.057 0.060 0.114

β2 -0.50 -0.511 0.011 0.011 -0.022
β3 0.75 0.861 0.111 0.179 0.148
β4 -0.75 -0.683 0.082 0.116 -0.109
α 1.75 0.000
κ 0.70 0.953

model outperforms the LL, Weibull, and exponentiated Weibull models in terms of

AIC criterion for both cases of censoring.

5.5.6.3 Scenario 3 Results

In case of Scenario 3, In theory, all of the fitted models can account for decreasing

failure rate shapes. In terms of regression coefficients, except for the intercept, where

the GLL model produced the highest values, all four models produced estimates with

very close bias and MSE values for both continuous and binary covariates as shown

in Tables 5.5 to 5.6. In terms of AIC values, the GLL model outperforms the others,

including the true model (exponentiated Weibull).

Finally, in all scenarios involving heavy censoring, the LL model outperforms the

other competing models.As expected, LL model has a cdf with a tractable closed-

form expression which makes it to be useful for censored survival data.
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Table 5.3: Simulation results for Scenario 2 (n = 1000) with about 20%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 -2.905 -0.905 4.440 -0.452
(AIC = 3955.988) β1 0.50 0.584 0.084 0.091 0.168

β2 -0.50 -0.553 0.053 0.055 -0.106
β3 0.75 0.847 0.097 0.155 0.129
β4 -0.75 -0.881 -0.131 0.213 0.175
α 1.00 2.337
κ 2.50 2.262
η 1.00 0.708

EW-AFT β0 -2.0 -1.994 0.006 0.025 -0.003
(AIC = 3955.517) β1 0.50 0.583 0.083 0.090 0.166

β2 -0.50 -0.553 -0.053 0.055 0.106
β3 0.75 0.846 0.096 0.153 0.128
β4 -0.75 -0.881 -0.131 0.214 0.175
α 1.00 1.029
κ 2.50 1.997
η 1.00 1.235

W-AFT β0 -2.0 -2.055 -0.055 0.224 0.028
(AIC = 3954.917) β1 0.50 0.581 0.081 0.087 0.162

β2 -0.50 -0.554 -0.054 0.056 0.108
β3 0.75 843 0.093 0.149 0.124
β4 -0.75 -0.881 -0.131 0.213 0.175
α 1.00 1.053
κ 2.50 2.264

LL-AFT β0 -2.0 -1.452 0.548 1.891 -0.274
(AIC = 4013.810) β1 0.50 581 0.081 0.088 0.162

β2 -0.50 -0.534 -0.034 0.035 -0.068
β3 0.75 0.832 0.082 0.129 0.109
β4 -0.75 -0.863 -0.113 0.183 0.151
α 1.00 0.452
κ 2.50 0.322

Table 5.4: Simulation results for Scenario 2 (n = 1000) with about 30%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 -2.965 -0.965 4.792 -0.482
(AIC = 3471.332) β1 0.50 0.623 0.123 0.139 0.246

β2 -0.50 -0.589 -0.089 0.097 0.178
β3 0.75 0.908 0.158 0.263 0.211
β4 -0.75 -0.965 -0.215 0.369 0.287
α 1.00 1.104
κ 2.50 1.085
η 1.00 2.605

EW-AFT β0 -2.0 -2.071 -0.071 0.287 -0.035
(AIC = 3471.261) β1 0.50 0.622 0.122 0.137 0.244

β2 -0.50 -0.553 -0.053 0.055 0.178
β3 0.75 0.907 0.157 0.260 0.209
β4 -0.75 -0.965 -0.215 0.368 0.287
α 1.00 1.055
κ 2.50 1.936
η 1.00 1.160

W-AFT β0 -2.0 -2.077 -0.077 0.313 0.038
(AIC = 3469.869) β1 0.50 0.619 0.119 0.133 0.238

β2 -0.50 -0.589 -0.089 0.097 0.178
β3 0.75 0.904 0.154 0.255 0.205
β4 -0.75 -0.963 -0.213 0.365 0.284
α 1.00 1.114
κ 2.50 2.123

LL-AFT β0 -1.488 -2.077 0.512 1.786 -0.256
(AIC = 3524.605) β1 0.50 0.625 0.125 0.141 0.250

β2 -0.50 -0.575 -0.075 0.081 -0.150
β3 0.75 0.897 0.147 0.243 0.196
β4 -0.75 -0.949 -0.199 0.338 0.265
α 1.00 0.488
κ 2.50 0.354
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Table 5.5: Simulation results for Scenario 3 (n = 1000) with about 20%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 -0.413 1.587 -3.829 -0.793
(AIC = 2869.376) β1 0.50 0.678 0.178 0.210 0.356

β2 -0.50 -0.393 -0.106 -0.095 0.212
β3 0.75 0.778 0.028 0.043 0.037
β4 -0.75 -0.912 -0.162 0.269 0.216
α 0.50 0.532
κ 0.50 1.167
η 0.85 1.291

EW-AFT β0 -2.0 2.820 4.820 3.950 -2.410
(AIC = 2886.507) β1 0.50 0.745 0.245 0.306 0.490

β2 -0.50 -0.486 0.014 -0.014 -0.028
β3 0.75 0.896 0.146 0.240 0.195
β4 -0.75 -1.032 -0.282 0.503 0.376
α 0.50 0.774
κ 0.50 0.178
η 0.85 4.059

W-AFT β0 -2.0 -2.123 -0.123 0.507 0.062
(AIC = 2923.193) β1 0.50 0.789 0.289 0.372 0.578

β2 -0.50 -0.581 -0.081 0.088 0.162
β3 0.75 0.921 0.171 0.286 0.228
β4 -0.75 -1.094 -0.345 0.636 0.460
α 0.50 0.573
κ 0.50 0.370

LL-AFT β0 -1.488 -1.500 0.500 -1.750 -0.250
(AIC = 2958.007) β1 0.50 0.582 0.082 0.089 0.164

β2 -0.50 -0.467 0.033 -0.032 -0.066
β3 0.75 0.992 0.242 0.422 0.323
β4 -0.75 -0.535 -0.215 -0.277 -0.287
α 0.50 0.000
κ 0.50 1.820

In conclusion, the simulation study demonstrated that the GLL AFT model has

the potential to be a very useful parametric AFT hazard-based regression model

for adequately describing different types of survival data with different hazard rate

shapes and censoring proportions.

5.6 Applications to Larynx Cancer Patients Data

In this section, we considered a real-life right-censored data for larynx cancer patients

to illustrate the flexibility and usefulness of the generalized log-logistic AFT model.
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Table 5.6: Simulation results for Scenario 3 (n = 1000) with about 30%
censoring for model comparison and performance.

Models Parameters (True value) Mean AB MSE RB
30% Censoring

GLL-AFT β0 -2.0 0.367 2.367 -3.865 -1.184
(AIC = 2391.542) β1 0.50 0.692 0.192 0.229 0.384

β2 -0.50 -0.369 -0.131 -0.114 0.262
β3 0.75 0.747 -0.003 -0.005 0.004
β4 -0.75 -0.995 -0.245 0.427 0.327
α 0.50 0.558
κ 0.50 0.772
η 0.85 1.996

EW-AFT β0 -2.0 5.188 7.188 22.902 -3.594
(AIC = 2396.594) β1 0.50 0.798 0.298 0.387 0.596

β2 -0.50 -0.490 0.009 -0.009 -0.018
β3 0.75 0.918 0.168 0.280 0.224
β4 -0.75 -1.155 -0.405 0.771 0.540
α 0.50 0.113
κ 0.50 0.121
η 0.85 43.493

W-AFT β0 -2.0 -2.179 -0.179 0.748 0.090
(AIC = 2471.964) β1 0.50 0.873 0.373 0.511 0.746

β2 -0.50 -0.616 -0.116 0.130 0.232
β3 0.75 0.954 0.204 0.347 0.272
β4 -0.75 -1.254 -0.504 1.010 0.672
α 0.50 0.700
κ 0.50 0.343

LL-AFT β0 -1.488 -1.500 0.500 -1.750 -0.250
(AIC = 2472.403) β1 0.50 0.618 0.118 0.132 0.236

β2 -0.50 -0.470 0.030 -0.029 -0.060
β3 0.75 0.990 0.240 0.417 0.320
β4 -0.75 -0.558 -0.192 -0.251 -0.256
α 0.50 0.000
κ 0.50 1.890

5.6.1 Data Set: Larynx Data

5.6.1.1 Description:

The data set contains an observation of 90 male larynx-cancer patients, who were

treated and diagnosed between 1970 and 1978 and was first collected by (Kardaun,

1983), and analyzed by (Klein et al., 2014) and applied to a Bayesian AFT model

by (Christensen et al., 2010). The data consist of survival times in months from

diagnosis to death or censoring and covariates including; (1) The stage of the cancer

(1−4) the stage variable is recorded into indicators Si for stages 1, 2, 3, 4; (2) time to

death or on-study time (in months) from the first treatment until death, or the end

of study; (3) The age at diagnosis (in years) of larynx-cancer data; (4) The year of

diagnosis (diagyr) of larynx cancer; and (5) the death indicator (’delta’; 0 = alive,

1 = dead). In the study, we also standardize the age and year before using them.
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5.6.2 Data Analysis

In this study, we assume the independent gamma priors for the distributional pa-

rameters: α : G (a1, b1), κ : G (a2, b2), and η : G (a3, b3) with hyper-parameter values

(a1 = b1 = a2 = b2 = a3 = b3 = 10.0) and the marginal prior distribution for each of

the regression coefficient βk, k = 1, 2, · · · k. is assumed as a normal distribution

N(0, 0.001) and our link function is:

ψ (x′β) = exp (x′β)

= exp (β1( intercept ) + β2I( stage = 2) + β3I( Stage = 3)

+β4I( stage = 4) + β5 age + β6 year )

where; β1 is the intercept; ( I( stage =.) is an indicator variable for stages = 2, 3, and

4 with regression coefficients β2, β3, and β4, respectively; β5, and β6 are regression

coefficients for the age of patient and diagnosis year. In addition, Stage = 1 is used

as a reference category.

In this study, we started three parallel chains for a sufficiently large number of itera-

tions until convergence was achieved. The convergence was achieved at 50,000 with

a burn-in of 1000 . Finally, a posterior sample of size 5000 is used with a thinning

interval of ten, i.e., every hundredth outcome is sorted. As a result, we have the

posterior sample (αi, ki, ηi, β1i, β2, β3i, β4i, β5i, β6i) , i = 1 · · · 5000 drawn from chain

1, chain 2, and chain 3. Since simulation-based Bayesian rize posterior distributions

or compute any relevant statistical rize posterior distributions or compute any rele-

vant statistical three Markov chains are combined using the function (as. mcmc ),

and the posterior samples of every parameter are derived from that function. All

numerical summaries, visual summaries, and convergence diagnostics are designated

for that function.

183



5.6.2.1 Numerical Summary

In this sub-section, we look at different quantities of interest and their numerical

values for a generalized log-logistic accelerated failure time model using a McMC

sample of posterior properties. The McMC simulation results of the posterior mean,

posterior standard deviation, time series standard error, Näıve standard error, five-

point summary statistics, 2.5% percentile, 97.5% percentile, variance, mode, skew-

ness, kurtosis, and the credible interval following by the highest probability den-

sity (HPD) interval and the posterior probability that the associated parameter

is positive. The näıve standard error is defined as the mean standard error that

incorporates simulation error rather than posterior uncertainty.

naiveSE =
posterior SD√

n
(5.41)

The time series SE adjusts the ”näıve” SE for autocorrelation.

The posterior summary for the generalized log-logistic AFT model parameters based

on larynx data set are shown in Table 5.7. The posterior probability that the

associated parameter is positive is shown in the last row of Table 5.7. A probability

of 0.5 suggests that a positive and a negative value of the parameter is equally likely.

Once we have stored the posterior sample of each parameter, we can use mean (betal

> 0 ). to calculate the posterior probability, for example for β1.
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Table 5.7: Numerical summaries of the posterior properties for GLL AFT
model under non-informative priors.

Characteristics Pars

alpha betal beta 2 beta 3 beta4 beta5 beta 6 eta kappa

Mean 1.216 −2.312 0.148 0.882 1.918 0.192 −0.085 0.933 1.063

SD 0.167 0.461 0.507 0.418 0.530 0.174 0.183 0.275 0.298

Time series SE 0.002 0.005 0.004 0.004 0.005 0.001 0.002 0.002 0.003

Näıve SE 0.001 0.003 0.004 0.003 0.004 0.001 0.001 0.002 0.002

Maximum 2.149 −0.410 2.215 2.688 4.631 0.904 0.606 2.365 2.653

97.5th percentile 1.577 −1.388 1.144 1.731 3.017 0.547 0.259 1.525 1.732

Q3 1.318 −2.009 0.480 1.156 2.255 0.306 0.039 1.109 1.239

Medium (Q2) 1.203 −2.316 0.157 0.868 1.905 0.187 −0.079 0.909 1.034

Q1 1.101 −2.626 −0.188 0.598 1.558 0.073 −0.201 0.734 0.847

2.5th percentile 0.926 −3.202 −0.872 0.087 0.924 −0.141 −0.463 0.463 0.579

Minimum 0.724 −4.137 −2.400 −0.876 −0.017 −0.545 −0.958 0.157 0.295

Mode 1.150 −2.300 0.250 0.900 1.750 0.150 0.050 0.900 0.900

Variance 0.028 0.213 0.034 0.175 0.280 0.030 0.033 0.076 0.089

Skewness 0.507 0.050 −0.178 0.150 0.200 0.120 −0.205 0.495 0.662

Kurtosis 0.664 0.089 2.215 0.150 0.174 0.179 0.218 0.355 0.662

95% credible (0.926, (−3.202, (−0.872, (0.087, (0.924, (−0.141, (−0.463, (0.463, (0.579,

interval 1.577) 1.388) 1.144) 1.731) 3.017) 0.547) 0.259) 1.525) 1.732)

95% HPD (0.913, (−3.200, (−0.844, (0.075, (0.898, (−0.141, (−0.454, (0.439, (0.545,

interval 1.553) −1.386) 1.157) 1.715) 2.982) 0.545) 0.266) 1.483) 1.676)

P(. ¿ 0 data) 1.000 0.000 0.629 0.986 0.999 0.868 0.331 1.000 1.000

5.6.3 Relative Medium (RM)

For survival data, the median survival time is an essential summary measure for

time-to-event data (Christensen et al., 2010). Any accelerated failure time model

may simply estimate this quantiy. The relative medium (RM) of two individuals

with explanatory variables x1andx2 is the most popular effect measure obtained

from the median survival time.

The RM compares the median of both individuals’ survival times and is expressed

as:

RM (x1,x2,β) = exp
{
(x1 − x2)

T β
}
.

For patients with same age and year of diagnosis, we are interested in the median

survival times for individuals in stages 2,3 or 4 relatives to stage 1 . Table 5.8 ,
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Table 5.8: Comparison between the relative medium between two men
of the year of diagnosis (diagyr) and same age but in different stages.

Posterior Stages 3 and Stages 4 and Stages 4 and
Properties 2 3 2
Mean 2.369 3.222 6.98
Standard 1.378 1.853 4.942
deviation
Näıve SE 0.011 0.015 0.040
Time series SE 0.011 0.014 0.040
2.5% percentile 0.779 1.043 1.928
Q1 1.461 2.007 3.935
Medium (Q2) 2.038 2.806 5.720
Q3 2.891 3.949 8.516
97.5 percentiles 5.886 7.957 19.243

illustrates the posterior properties of the relative medium between two men of the

same year of diagnosis (diagyr) and same age but in different stages.

5.7 Model Comparison

We performed a comparison of the proposed models for both Bayesian and frequen-

tist approaches. The comparison considered the generalizd log-logistic AFT model,

and its special cases. Addtitionally, we recommend using multi-parameter hazard-

based regression, rather than the traditional approach of having a single covariate-

dependent (scale) -parameter, in line with our proposed flexible baseline distribution.

While there are many options, we recommend using covariate-dependent choice to

manage the baseline distribution selection across all distributional parameters, which

covers the AFT framework.

5.7.1 Frequentist Model Comparison

In this sub-section, we used the AIC to compare the frequentist approach fits (i.e.,

MLE) approach for the proposed models see Table 5.9.
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Table 5.9: GLL, Weibull, and LL AFT fits for the Larynx cancer data
set.

Summaries
Models GLL-AFT Weibull-AFT Log-logistic-AFT

( AIC = 294.737) ( AIC = 296.759) ( AIC = 297.231)
Beta 1 (intercept) −1.116 −1.918 0.000
Beta 2 (stage 2) 0.157 0.162 0.182
Beta 3 (stage 3) 0.635 0.593 0.645
Beta 4 (stage 4) 1.632 1.587 1.754
Beta 5 (age) 0.184 0.186 0.255
Beta 6 (diagyr) −0.041 −0.042 −0.035
Alpha 1.167 1.121 1.465
kappa 0.585 0.603 0.467
Eta 0.125

5.7.2 Bayesian model selection

To give some preferenes to the alternatives. It is desirable to select an accept-

able approximation model. The most frequently used tool for model comparison

in Bayesian inference is Deviance Information Criterion (DIC) (Spiegelhalter et al.,

2014). The DIC values for the GLL-AFT model and two of its sub-models including

the LL-AFT and W-AFT are given in Table 5.10. Table 5.10 illustrates that the

flexibility provided by an additional shape parameter of the GLL distribution leads

to its overall superiority over the Weibull and loglogistic baseline models.

Table 5.10: Bayesian model comparison for the GLL-AFT, its special
cases

Model DIC

GLL-AFT 292.521

LL-AFT 296.776

W-AFT 299.560
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Table 5.11: PSRF and MPSRF for the distributional parameters and the
regression coefficients.

Parameter Point estimate Upper C.I.
Alpha 1.0 1.01
Beta 1 (intercept) 1.0 1.01
Beta 2 (stage 2) 1.0 1.0
Beta 3 (stage 3) 1.0 1.0
Beta 4 (stage 4) 1.0 1.0
Beta 5 (age) 1.0 1.0
Beta 6 (diagyr) 1.0 1.0
Eta 1.0 1.0
Kappa 1.0 1.0
Multivariate PSRF 1.0

5.8 McMC Convergence Diagnostics

The McMC convergence of the model parameters are checked by using Gelman-

Rubin diagnostic test as illustrated in Table 5.11and graphical tools including au-

tocorrelation, running mean, density and trace plot as shown in Figures 5.1 to 5.4.

Figure 5.1: Autocorrelation plots of the regression coefficients and dis-
tributional parameters for the generalized log-logistic AFT model.
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Figure 5.2: The running mean plots of the regression coefficients and
distributional parameters for the generalized log-logistic AFT model.

Figure 5.3: Density plots of the regression coefficients and distributional
parameters for the generalized log-logistic AFT model.

Figure 5.4: Trace plots of the regression coefficients and distributional
parameters for the generalized log-logistic AFT model.
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5.9 Concluding Remarks

In this chapter, we proposed the three-parameter generalized log-logistic distribu-

tion. It is a straightforward modification of the LL distribution. The proposed

model modifies several classical distributions commonly used in the literature of

survival analysis, such as the exponential, Weibull, LL, and Burr XII distributions.

It has greater flexibility than the Weibull, LL, Burr XII, and exponentiated Weibull

models. We propose a generalized LL AFT regression model that is more suitable

for analyzing and modeling complete and incomplete (i.e., censored) survival data

based on this proposed distribution, which is also closed under the PH regression

framework. The proposed AFT model serves as an essential modification to several

existing AFT models and could be a valuable addition to the literature. Hence, we

developed the frequentist (using MLE) and Bayesian estimation technique for infer-

ence. Several simulation studies are performed for considering different hazard rate

shapes, different parameter settings, and different censoring percentages. A com-

parative study was conducted to investigate the tendency of generalized log-logistic

in modeling survival data, and the results show that it is a more accurate fit than

its sub-models or either comparable. A real-world data relating to larynx-cancer pa-

tients showed that the proposed model could be valuable in appropriately describing

various shapes of survival data and can be a good alternative to the Weibull dis-

tribution, which is also the only probability distribution that is closed under the

PH and AFT regression models and the log-logistic AFT regression model. These

findings led us to conclude that the generalized log-logistic AFT regression model,

as introduced in this paper, has the potential to be a very helpful survival regression

model in describing various forms of survival data and can be of interest in reliabil-

ity and survival applications, since we can adopt goodness-of-fit tests for the several

widely known AFT models as special cases.
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CHAPTER 6

A Flexible Parametric Accelerated

Hazard Model: An Application to

Censored Lifetime Data with Crossing

Survival Curves

In this chapter, we present our fifth manuscript 1 about a flexible parametric accel-

erated hazard model. Note that the materials of this chapter have been reproduced

from our article which is under review.

6.1 Introduction

In the analysis of lifetime data, hazard-based regression models have played a pivotal

role. Such models produce a much more versatile framework for modeling survival

data. They also make it conceivable to easily interpret the parameters from a

practical perspective. When using regression models to analyze lifetime data, the

Cox proportional hazard (PH) (Cox, 1972; Kalbfleisch, 1978) model is the most

widely assumed semi-parametric framework. The PH model’s main assumption is

that the hazard ratios are proportional over time. When such assumptions are not

validated by data, alternative survival regression models, such as the accelerated

failure time (AFT) (Buckley and James, 1979; Komárek and Lesaffre, 2008), and

proportional odds (PO) (Bennett, 1983a) models might be applied in the analysis.

However, none of them are appropriate for capturing lifetime data with crossing

1Muse, A. H., Chesneau, C., Ngesa, O., & Mwalili, S. (2022). Flexible Parametric Accelerated
Hazard Model: Simulation and Application to Censored Lifetime Data with Crossing Survival
Curves. Mathematical and Computational Applications, 27(6), 104.
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survival and hazard curves (Demarqui and Mayrink, 2021).

This kind of issue is frequently associated with clinical trials, including control and

treatment groups. The survival function (SF) of one group may degrade swiftly while

the SF of the other group decays slowly. The curves tend to meet at some point,

resulting in an inversion in terms of who is on the bottom/top. The study of this

change is essential in many clinical studies because determining the crossing time

reveals when the target treatment for an illness can be judged beneficial (Demarqui

and Mayrink, 2021).

In practice, time-to-event data with crossing survival curves can occur for a variety

of reasons. Crossing survival curves, according to Breslow et al. (1984), may occur

when a treatment has an early rapid benefit and then becomes equally or worse

than placebo treatment after such a time period. Additionally, as described in Diao

et al. (2013), crossing survival curves may occur in clinical studies when a particular

intensive treatment (i.e., surgery) may have negative consequences at first but show

good results in the long term.

Several techniques have been presented in the literature to handle this crossover

feature in time-to-event data. The most often used are based on regression coeffi-

cients that change over time; see, for instance, Egge and Zahl (1999), Putter et al.

(2005), Shyur et al. (1999), and (Zhang et al., 2018). Two recent works considering

the modeling and analysis of time-to-event data with crossing survival curves are

(Demarqui and Mayrink, 2021; Demarqui et al., 2019). For this type of problem,

Chen and Wang (2000) developed a semi-parametric two-sample framework. The

two-sample feature refers to a scenario in which there is a control, and a treatment

group, which can be readily represented by a binary variable. The AH model is an

intriguing choice because it formulates similarly to the PH and AFT models. In

their model, they leave the baseline hazard rate function (hrf) undefined. As an

alternative to the PO or AFT models, their model relaxes the proportional haz-

ard assumption while still allowing for the inclusion of both time-independent and
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time-dependent factors.

Although they offered an exploratory visual examination of the model’s suitability,

they did not completely cover statistical model checking of the proposed model.

Chen et al. (2003) presented the AH model and its applicability to censored survival

data. They used the AH model to analyze real data from a randomized clinical

study of biodegradable carmustine polymers for the treatment of brain cancer. This

analysis illustrated the model’s useful applications and the recommended test statis-

tics.

The semi-parametric AH model estimators, on the other hand, include the un-

known distribution in the asymptotic variance. Thus, numerically demanding ap-

proaches are required to make an inference about this parameter. As a result, Lee

(2009) suggested a straightforward estimation method for the semi-parametric AH

model in which estimators are asymptotically normal with a distribution-free asymp-

totic variance. This also yields several lack-of-fit tests. These tests are similar to

Gill–Schumacher tests in that the estimating functions are assessed at two sepa-

rate weight functions, generating two estimators that are close to each other. They

demonstrated that the estimators and tests perform well for some weight functions

using numerical experiments. For more information about the estimators and tests

for the semi-parametric AH model, we refer to (Lee, 2016).

Cox (1972) pioneered the use of semi-parametric hazard-based regression models for

univariate time-to-event data with the PH model. Rubio et al. (2019) and Khan

(2018) presented two influential papers that propose the use of extended lifetime

distributions to substitute the baseline hazard in a time-to-event analysis. The for-

mulation of parametric hazard-based regression models is a central issue in Lawless

(2011). The authors explored the benefits of using parametric hazard-based regres-

sion models. It is noticed that the baseline-modified distribution should be chosen

based on its flexibility to incorporate varied failure rate shapes. A few examples in-

clude: Muse et al. (2022d), Muse et al. (2022g), Ashraf-Ul-Alam and Khan (2021),
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Alvares and Rubio (2021), Muse et al. (2022a), Al-Aziz et al. (2022), and Khan and

Khosa (2016).

Despite the numerous advantages of the semi-parametric AH framework, its imple-

mentation in applications appears to be restricted, owing to the technical difficulties

in implementing theoretical breakthroughs. Estimation for the covariance matrices

is challenging when the data are censored because the asymptotic covariance ma-

trices for the regression estimators in this model involve the unknown baseline hrf

and its derivative. However, censored data present a new technological barrier.

Numerically demanding approaches, such as resampling techniques, can be used to

approximate the covariance matrices. However, they are inefficient in actual settings

due to their high computing cost (Chen et al., 2014).

The current study presents a fully parametric hazard-based regression model to fit

the AH model to address the aforementioned concerns. The fundamental idea is to

represent the baseline hazard by using a generalized log-logistic (GLL) distribution

that is closed under both the AFT (Muse et al., 2022a) and PH (Muse et al.,

2022g) frameworks and may incorporate various hazard rate shapes data including

monotone and non-monotone shapes. Another advantage of the baseline is that

it encompasses some of the most parametric distributions used in reliability and

survival studies, such as log-logistic (LL), Burr XII with both 2-parameter and 3-

parameter cases, Weibull, and exponential distributions. The shared tractability

of parametric regression models and the adaptability of semi-parametric regression

models is another appealing aspect of the suggested parametric AH model.

Thus, the main contribution of this study is to introduce and study a novel, flexible,

parametric AH model to incorporate right-censored lifetime data with crossing sur-

vival curves. This is done by assuming the GLL lifetime distribution to deal with the

baseline hazard in the parametric AH model. To the best of the author’s knowledge,

we emphasize that using the parametric AH model with GLL baseline distribution

hazard to extend the original AH semi-parametric model has never been consid-
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ered in the literature. The methods are studied by using the classical and Bayesian

frameworks for a more comprehensive presentation of models for all statistical audi-

ences to consider. A detailed simulation study is also being developed. This entails

introducing one binary and one continuous covariate into the baseline hazard. The

reader should be aware that the majority of the single covariate scenarios have been

researched in prominent references, such as (Diao et al., 2013).

Additionally, the following are some significant benefits of the methodology proposed

here.

i. It possesses the adaptability of parametric survival regression models.

ii. It offers a continuous sf that makes it simple to find where two survival curves

overlap.

iii. It allows different shapes for the hrf and has the tractability of a parametric

survival regression model.

The following is how the chapter is structured. Section 6.2 discusses the formu-

lation of the parametric AH model and associated probabilistic functions. The

proposed parametric AH model with generalized log-logistic baseline hazard and its

sub-models are presented in Section 6.3. Section 6.4 discusses the model inferential

procedures. Section 6.5 performs the simulation studies. Section 6.6 demonstrates

a real-life, right-censored cancer dataset with crossed survival curves. Section 6.7

concludes the study with some farewell remarks and suggests future research.

6.2 Model Formulation

Let T be a non-negative random variable representing the time until the occurrence

of an event of interest. In order to accommodate survival data with crossing of haz-

ard and survival curves, Chen and Wang (2000) proposed a hazard-based regression
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model known as the accelerated hazard model that is expressed as follows:

h(t;x) = h0 (tψ (x′
iβ)) = h0

(
tex

′
iβ
)

(6.1)

where; ψ (x′
iβ) = ex

′
iβ is the link function of the covariates, xi = (x1, x2, . . . , xp) is a

set of covariates, and β′ = (β1, β2, . . . , βp) is a vector of regression coefficients, and

h0(t) corresponds to the baseline hazard function.

In this model, ex
′
iβ characterizes how the covariates xi alter the time scale of the

underlying hazard function. For example, β < 0 or β > 0 imply deceleration

or acceleration of the time scale for the hazard, respectively. As an example, if

there exists one covariate, xi, that takes a value of 0 for a control group, and 1

for a treatment group, then eβ = 1
2
means that the hazard of the treatment group

progresses in half the time as those in the control group. Similarly, eβ = 2 means

that the hazard of the treatment group progresses in twice the time as those in the

control group eβ = 1 implies no differences between the groups.

The AH model offers some appealing and intriguing characteristics. The AH model,

unlike the AFT and PH models, can handle the crossing of survivor and hazard

curves (Zhang and Peng, 2009). Furthermore, the AH framework enables both the

control and treatment groups’ hazard curves to begin at the same time point. This

is especially beneficial in randomized controlled trials, because it is more reasonable

to hypothesize that the risk or hazard between groups is comparable at t = 0.

The inability of the AH model to handle situations where the hazard function is

constant over time is a limitation that is not shared by the AFT, and PH models

(e.g., exponential distribution) (Chen et al., 2014). As a result, before implementing

this model, it is crucial to assess for non-constancy of the baseline function. The

AH model, like the AFT and PH models, has coincidences when the baseline hazard

rate is a Weibull distribution (Chen and Jewell, 2001).

Alternatively, the parametric AH model can be written in terms of the cumulative
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hazard rate function as follows:

H(t | x) = H0

(
tex

′β
)
e−x

′β (6.2)

The other probabilistic functions for the parametric AH model, associated with

Equation (6.2), can be expressed as follows:

The sf for the parametric AH model is

S(t;x) =
[
S0

(
tex

′β
)]e−x′β

, (6.3)

where S0(t) denotes the baseline sf. The cumulative distribution function (cdf) for

the parametric AH model is

F (t;x) = 1−
[
S0

(
tex

′β
)]e−x′β

. (6.4)

The probability density function (pdf) for the parametric AH model is

f(t;x) = f0

(
tex

′β
) [
S0

(
tex

′β
)]e−x′β

, (6.5)

where f0(t) denotes the baseline pdf.

6.3 The Proposed Model

There are several approaches to expressing parametric hazard-based regression mod-

els. The AH model formulation is one such strategy. The GLL hazard-based regres-

sion model can be written in the context of the AH framework by substituting the

exponential function for the link function in Equation (6.1). We recall that the hrf
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under the AH framework is computed as follows:

h(t) = h0

(
tex

′β
)
.

We begin with the GLL baseline distribution hrf with parameters α, η, and k (with

the AH model notations). The hrf with an explanatory variable vector x is as follows:

h(t; θ, β, x) = h0

(
tex

′β; θ
)
=
αk (kt∗)α−1

1 + (ηt∗)α
, (6.6)

which is the GLL hrf with t∗ = tex
′β once more. In addition, the other survival

probabilistic functions for the GLL–AH framework are expressed as follows.

The sf for the GLL–AH model is

S(t; θ, β, x) =
[
S0

(
tex

′β; θ
)]e−x′β

=
[
1 +

(
ηtex

′β
)α] kαe−x′β

ηα

. (6.7)

The cdf for the GLL–AH model is

F (t; θ, β, x) = 1−
[
S0

(
tex

′β; θ
)]e−x′β

= 1−
[
1 +

(
ηtex

′β
)α] kαe−x′β

ηα

. (6.8)

The chf for the GLL–AH model is

H(t; θ, β, x) = H0

(
tex

′β; θ
)
e−x

′β =

(
kα

ηα
log
[
1 +

(
ηtex

′β
)α])

e−x
′β. (6.9)

The pdf for the GLL-AH model:

f(t;x) = f0

(
tex

′β
) [
S0

(
tex

′β
)]e−x′β

=
αk
(
ktex

′β
)α−1

[1 + (ηtex′β)α]
kα

ηα
+1

[
1 +

(
ηtex

′β
)α] kαe−x′β

ηα

(6.10)
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6.3.1 Submodels

The proposed parametric hazard-based GLL–AH model framework has three sub-

models that are also closed under the AH framework.

6.3.1.1 Submodel I: η = 1

If we put η = 1 in Equation (6.6), we get the hrf of the BXII–AH model, which is

expressed mathematically as

h(t;x) =
αk
(
ktex

′β
)α−1

1 + (tex′β)α
. (6.11)

6.3.1.2 Submodel II: η = k

If we put η = k in Equation (6.6), we are referred to the hrf of the LL–AH model,

which is stated mathematically as

h(t;x) =
αk
(
ktex

′β
)α−1

1 + (ktex′β)α
. (6.12)

6.3.1.3 Submodel III: ηα → 0.

If we put ηα → 0 in Equation (6.6), we are referred to the hrf of the W–AH model,

which is stated mathematically as

h(t;x) = αk
(
ktex

′β
)α−1

. (6.13)

6.4 Inferential Procedures

In this section, the unknown parameters of the proposed parametric accelerated

hazard model with generalized log-logistic baseline hazard are estimated using clas-

sical approach (via maximum likelihood method) and Bayesian approach using non-
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informative priors.

6.4.1 Classical Approach

We are concerned in this subsection with a full likelihood function for the pro-

posed parametric AH model. The likelihood function is an important component

not only in the Bayesian approach but also in classical inference, in which the stan-

dard approach for estimating parameters involves maximizing it. Consider both

noninformative and independent (right) censorship.

Suppose there are n individuals with survival times denoted by T1, T2, . . . , Tn. As-

suming that the data are subject to right censoring, we observe ti = min (Ti, RCi),

where RCi > 0 being the censoring time for individual i. Letting δi = I (Ti ≤ RCi)

that equals 1 if Ti ≤ RCi and 0 otherwise, the observed data for individual i consists

of {ti, δi, xi} , i = 1, 2, . . . , n, where ti is a survival time or censoring time according

to whether δi = 1 or 0 , respectively, and xi = (xi1, xi2, . . . , xip)
′ is a p × 1 column

vector of external covariates.

When considering a parametric AH model, the censored likelihood function can be

written as follows:

L(θ, β;D) =
n∏
i=1

[f (ti; θ, β, xi)]
δi [S (ti; θ, β, xi)]

1−δi

=
n∏
i=1

[
h (ti; θ, β, xi)

S (ti; θ, β, xi)

]δi
[S (ti; θ, β, xi)]

1−δi

=
n∏
i=1

[h (ti; θ, β, xi)]
δi S (ti; θ, β, xi)

=
n∏
i=1

[h (ti; θ, β, xi)]
δi exp [−H (ti; θ, β, xi)]

=
n∏
i=1

[
h0

(
tie

x′iβ; θ
)]δi

exp
[
−H0

(
tie

x′iβ; θ
)
e−x

′
iβ
]
,

(6.14)

where D = (ti, δi, xi, i = 1, 2, . . . , n) represents the observed data, which includes
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survival times, censoring time, and covariates. In our expression, we recall that θ is

the vector of baseline distributional parameters, and β is the regression coefficients.

An iterative optimization approach can be used to produce the MLE (e.g., the

Newton–Raphson algorithm). Because the MLEs are approaching normalcy, various

hypothesis tests and interval constructions of model parameters are conceivable.

The log-likelihood function is expressed as follows:

ℓ(θ, β;D) =
n∑
i=1

δi log
[
h0

(
tex

′
iβ; θ

)]
−

n∑
i=1

H0

(
tie

x′iβ; θ
)
e−x

′
iβ. (6.15)

The GLL–AH model’s full log-likelihood function is expressed as follows:

ℓ(θ, β;D) =
n∑
i=1

δi log(α) +
n∑
i=1

δiα log(k) + (α− 1)
n∑
i=1

δi log
(
tie

x′iβ
)

−
n∑
i=1

δi log
[
1 +

(
ηtie

x′iβ
)α]

−
(
k

η

)α n∑
i=1

e−x
′
iβ log

[
1 +

(
ηtie

x′iβ
)α]

.

(6.16)

To obtain the MLE of θ′ = (k, α, η), and β, we can directly maximize Equation (6.16)

with respect to (k, α, η), and β. Alternatively, we can express the first derivative of

the log-likelihood function in order to solve the nonlinear equations below for the

log-likelihood function’s first derivative.

With this aim, let us set φ = (k, α, η, β). Then the first derivatives of the log-
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likelihood functions are as follows:

∂ℓ(φ)

∂α
=

1

α

n∑
i=1

δi +
n∑
i=1

δi log(k) +
n∑
i=1

δi log
(
tie

x′iβ
)

−
n∑
i=1

δi

(
ηtie

x′iβ
)α

log
(
ηtie

x′iβ
)

1 +
(
ηtiex

′
iβ
)α

−
(
k

η

)α
log(k)

n∑
i=1

e−x
′
iβ log

[
1 +

(
ηtie

x′iβ
)α]

+

(
k

η

)α
log(η)

n∑
i=1

e−x
′
iβ log

[
1 +

(
ηtie

x′iβ
)α]

−
(
k

η

)α n∑
i=1

e−x
′
iβ
(
ηtie

x′iβ
)α

log
(
ηtie

x′iβ
)

1 +
(
ηtiex

′
iβ
)α ,

(6.17)

∂ℓ(φ)

∂η
= −

(
α

η

) n∑
i=1

δi

(
ηtie

x′iβ
)α

1 +
(
ηtiex

′
iβ
)α

+

(
α

η

)(
k

η

)α n∑
i=1

e−x
′
iβ log

[
1 +

(
ηtie

x′iβ
)α]

−
(
α

η

)(
k

η

)α n∑
i=1

e−x
′
iβ
(
ηtie

x′iβ
)α

1 +
(
ηtiex

′
iβ
)α ,

(6.18)

∂ℓ(φ)

∂k
=
(α
k

) n∑
i=1

δi −
(α
k

)(k
η

)α n∑
i=1

e−x
′
iβ log

[
1 +

(
ηtie

x′iβ
)α]

(6.19)

and
∂ℓ(φ)

∂βj
= (α− 1)

n∑
i=1

δixij − α
n∑
i=1

δixij

(
ηtie

x′iβ
)α

1 +
(
ηtiex

′
iβ
)α

+

(
k

η

)a n∑
i=1

xij log
[
1 +

(
ηtie

x′iβ
)α]

.

(6.20)

6.4.2 Bayesian Approach

In this subsection, the prior distributions for the parameters of the proposed model

are first established, and these distributions are then multiplied by the likelihood

function to create the Bayesian model.
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6.4.2.1 Prior Distribution

The formulation of a prior distribution is a crucial step in every Bayesian approach.

This is especially true for fully parametric survival regression models. Because

we lack prior knowledge from historical data or from prior experiments, we set the

prior scenario in this study using a noninformative independent gamma distribution,

Gamma (10, 10), as the baseline distribution parameters. Gamma distributions are

flexible and include noninformative priors (uniform) and the marginal priors distri-

bution for each regression coefficient is taken as a normal distribution centered at

zero with a wide known variance (0, 100). Numerous study articles in the literature,

such as (Muse et al., 2022g,a; Khan, 2018; Al-Aziz et al., 2022; Alvares and Rubio,

2021), take these priors into account. Here, we consider

π(α) ∼ G (a1, b1) =
ba11

Γ (a1)
αa1−1e−b1α; a1, b1, α > 0, (6.21)

π(η) ∼ G (a2, b2) =
ba22

Γ (a2)
ηa2−1e−b2η; a2, b2, η > 0, (6.22)

π(k) ∼ G (a3, b3) =
ba33

Γ (a3)
ka3−1e−b3k; a3, b3, k > 0. (6.23)

From historical data of the baseline distribution, it is simple to determine the hy-

perparametric values of the prior distributions (Muse et al., 2021a). When the

explanatory variables are assumed to have a prior normal distribution, we have the

following regression coefficients:

π (β′) ∼ N (a4, b4) . (6.24)

The joint prior distribution of all unknown parameters has a pdf given by

π (α, k, η, β′) = π(α)π(η)π(k)π (β′) . (6.25)
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6.4.2.2 Likelihood Function

The likelihood function for the GLL general hazard model is computed as follows:

LGLL−AH (θ, β;D) = =
n∏
i=1

[
h0

(
tie

x′iβ; θ
)]δi

exp
[
−H0

(
tie

x′iβ; θ
)
e−x

′
iβ
]

=
n∏
i=1

[
αk
(
ktie

x′iβ
)α−1

1 +
(
ηtiex

′
iβ
)α
]δi

exp

[
−
{
kα

ηα
log
[
1 +

(
ηtie

x′iβ
)α]}

e−x
′
iβ

]
.

(6.26)

6.4.2.3 Posterior Distribution

The joint posterior pdf is expressed as the multiplication of the likelihood function

in Equation (6.26) and the prior distribution in Equation (6.25):

p (α, k, η, β; t) ∝
n∏
i=1

[
αk
(
ktie

x′iβ
)α−1

1 +
(
ηtiex

′
iβ
)α
]δi

exp

[
−
{
kα

ηα
log
[
1 +

(
ηtie

x′iβ
)α]}

e−x
′
iβ

]
× π (α, k, η, β′) ,

(6.27)

where the prior specification for the unknown parameters is represented by the first

four terms on the right-hand side of the equation.

The joint posterior pdf is analytically intractable because of how challenging it is

to integrate. Therefore, the inference can be supported by the Markov chain Monte

Carlo (McMC) simulation methods, including the Gibbs sampler and Metropolis–

Hastings algorithms, which can be used to generate samples from which features of

the relevant marginal distributions can be inferred.
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6.5 Simulation Study

In this section, we offer a thorough Monte Carlo (MC) simulation analysis to assess

how well the suggested model performs in terms of estimating the parameters of

the baseline distribution and the regression coefficients. There are two inferential

techniques used in the analysis.

I. Procedure I: An MLE estimate technique.

II. Procedure II: A Bayesian estimation technique with independent gamma priors

for the baseline distribution parameters and a normal prior for the regression

coefficients, as well as non-informative priors.

Two explanatory variables in an AH regression framework were considered in all

simulations: one binary covariate (x1) generated from Bernoulli (0.5) distribution

and one continuous covariate (x2) generated from the standard normal distribution.

Regression parameter values were chosen to be β = (0.75, 0.5) corresponding to the

covariate vector x = (x1, x2)
′.

The GLL baseline distribution hazard was used to generate the survival data, and

the exponential distribution with a rate parameter equal to the censoring proportion

of 10% was used to generate the censoring times.

We were particularly interested in the performance and accuracy of the proposed

model’s estimators in the simulation exercise, specifically the bias, standard error,

and mean square error. The simulation’s findings were derived from 500 replications

with 50, 100, 300, and 500 samples for each parameter value. The results are

shown in Table 6.1, which includes the mean estimate (est), standard error (SE),

average bias (AB), mean square error (MSE), and coverage probability for the MLE

estimates for both inferential techniques. The estimates’ averages are extremely

close, and generally, the AB and MSE are less as sample size rises. Additionally, as

sample sizes are increased, estimates for all evaluated parameters perform better.
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Table 6.1: Simulation study for GLL-AH Regression Model. True values
(True), Estimates (Est.), standard error (SE), average bias (AB), mean
square error (MSE) and coverage probability (CP 95%) are presented for
the parameters.

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set I n = 50

M2 MLE approach Bayesian
β1 0.75 0.800 0.100 0.050 0.037 93.85 0.790 0.002 0.040 0.036 1.002
β2 0.5 0.558 0.042 0.058 0.024 94.50 0.512 0.003 0.012 0.011 1.002
α 1.50 1.590 0.010 0.090 0.008 95.20 1.505 0.001 0.005 0.003 1.000
k 0.75 0.900 0.435 0.150 0.063 92.05 0.850 0.005 0.100 0.045 1.002
η 1.20 1.265 0.011 0.065 0.046 94.25 1.212 0.000 0.012 0.004 1.003

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set II n = 100

M2 MLE approach Bayesian
β1 0.75 0.790 0.100 0.040 0.036 94.10 0.770 0.001 0.020 0.018 1.000
β2 0.5 0.530 0.030 0.030 0.024 94.80 0.510 0.002 0.010 0.010 1.001
α 1.50 1.610 0.040 0.110 0.087 93.40 1.553 0.001 0.053 0.041 1.003
k 0.75 0.850 0.250 0.100 0.056 93.20 0.800 0.004 0.050 0.037 1.002
η 1.20 1.250 0.008 0.050 0.034 94.80 1.205 0.000 0.005 0.003 1.001

Set III n = 300

True Est. SE AB MSE CP Est. SE AB MSE R̂
M2 MLE approach Bayesian
β1 0.75 0.78 0.092 0.030 0.032 94.40 0.768 0.001 0.018 0.016 1.000
β2 0.5 0.525 0.013 0.025 0.021 93.90 0.503 0.001 0.003 0.002 1.000
α 1.50 1.592 0.021 0.042 0.030 93.85 1.506 0.001 0.006 0.006 1.001
k 0.75 0.844 0.212 0.094 0.049 93.46 0.798 0.003 0.048 0.036 1.000
η 1.20 1.252 0.008 0.052 0.034 94.60 1.205 0.000 0.005 0.003 1.001

True Est. SE AB MSE CP Est. SE AB MSE R̂
Set IV n = 500

M2 MLE approach Bayesian
β1 0.75 0.775 0.065 0.025 0.017 95.10 0.752 0.000 0.002 0.002 1.000
β2 0.5 0.526 0.013 0.026 0.021 94.00 0.503 0.001 0.003 0.002 1.000
α 1.50 1.550 0.040 0.050 0.037 94.70 1.503 0.001 0.003 0.001 1.000
k 0.75 0.825 0.110 0.075 0.048 94.07 0.780 0.003 0.030 0.027 1.001
η 1.20 1.205 0.005 0.005 0.003 95.04 1.203 0.000 0.003 0.001 1.001

We also note that, compared to MLE estimates, Bayesian estimates have a lower

SE.

Similar results were obtained from a simulation analysis with around 20% censored

observations for each dataset (data not shown). In conclusion, our simulation work

has shown that the suggested parametric AH model may prove to be a highly helpful

parametric hazard-based regression model to accurately represent survival data with

or without crossover survival curves.

6.6 Applications

This section examines a right-censored dataset from an oncology clinical trial with

crossover survival curves to show how the proposed parametric AH model can be
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used to model lifetime data with crossing survival curves. First, the Rstan package’s

Bayesian analysis of the AH model and its competing models, such as the PH, PO,

and AFT models, is provided. After performing a traditional analysis with the

MLE technique, add model comparison. Next, by using a frequentist estimation

approach, regression analyses were conducted by using the proposed baseline hazard

(GLL), power generalized Weibull (PGW), generalized gamma (GG), exponentiated

Weibull (EW), log-logistic (LL), and Weibull (W) distributions as a baseline to AH

models, and the fits were compared by using information criteria (Akaike information

criterion (AIC), Consistent AIC (CAIC), and Hannan–Quinn information criterion

(HQIC)). The GLL–AH and its submodels are then used to do a Bayesian analysis.

6.6.1 Gastric Cancer Dataset

We look at the Gastrointestinal Tumor Study Group’s gastric cancer data collection

(1982). This dataset has frequently been used in studies involving crossing survival

curves, particularly in the field related to survival analysis. A few instances include

Demarqui and Mayrink (2021) and Diao et al. (2013). The dataset is freely accessible

under the label ”gastric” by using the R package AmoudSurv (MUSE et al., 2022).

This oncology clinical trial includes 90 patients who have been diagnosed with lo-

cally advanced gastric cancer. The patients were randomly assigned to the following

groups: (i) a control group, which included 45 patients who got chemotherapy; and

(ii) a treatment group, which included 45 patients who received radiation therapy

along with chemotherapy. In this study, these patients were followed for around 5

years. For each patient, three variables are reported in the datasets: the response

time, which indicates failure (time to death) or right censoring (the censoring pro-

portion in this data set is around 12.22%), a binary failure indicator, which identifies

patients who experienced the event of interest, and a group binary indicator with 1,

indicating the type of treatment.
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Figure 6.1 shows the overall survival curve for the gastric cancer dataset as well as

the survival curves for the two types of therapies (chemotherapy vs. chemotherapy

mixed with radiotherapy) used to treat locally unresectable gastric cancer. Close

inspection reveals crossovers and crossings between the curves, which supports the

AH model’s efficacy and suitability for this data analysis. The fundamental non-

parametric plots for the survival time of the gastric cancer dataset are presented in

Figure 6.2.

Figure 6.1: Overall survival and the survival curves for the two types of
treatments of the gastric cancer data set.
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Figure 6.2: Fundamental plots for the survival time of the gastric cancer
data set.

6.6.2 Classical Analysis

The MLE estimates for baseline distribution parameters and coefficients of regression

for the proposed AH model with different baseline distributions and other survival

regression models with the GLL baseline distribution are provided in Tables 6.2 and

6.3.

Table 6.2 summarizes the statistics for the GLL–AH model and other survival regres-

sion models, including the PH, PO, and AFT models with all GLL baseline distri-

butions. Based on the information criterion values, we conclude that the GLL–AH

model has the lowest AIC, CAIC, and HQIC values compared to the other sur-

vival regression models, which indicates that the GLL–AH model outperforms its

competing models.
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Table 6.2: Results from the fitted proposed fully-parametric accelerated
hazard regression model and other survival regression models with all
GLL baseline distribution to gastric cancer data set

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351

α 1.505 0.040

κ 0.542 0.036

η 0.133 0.022

GLL-PO β 0.750 0.101 251.816 250.522 255.848

α 1.382 0.100

κ 0.650 0.074

η 0.500 0.042

GLL-PH β 0.130 0.241 255.565 254.345 259.598

α 1.302 0.140

κ 0.759 0.136

η 0.580 0.222

GLL-AFT β 0.540 0.135 252.139 250.851 256.171

α 1.545 0.127

κ 0.557 0.106

η 0.728 0.231

The statistics summary under the GLL–AH model, and other AH models with

different baseline distributions are presented in Table 6.3. Based on the information

criteria values, we deduce that the GLL–AH model beats its rival AH models becaue

it has the lowest AIC, CAIC, and HQIC values when compared to the other AH

models with various baseline distributions.
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Table 6.3: Results from the fitted proposed fully-parametric accelerated
hazard regression model with different baseline distributions to gastric
cancer data set

Models Parameter(s) Estimate SE AIC CAIC HQIC

GLL-AH β 2.690 0.021 244.318 242.845 248.351

α 1.505 0.040

κ 0.542 0.036

η 0.133 0.022

PGW-AH β 1.930 0.082 251.186 249.878 255.218

α 1.687 0.142

κ 0.821 0.066

η 2.226 0.102

GG-AH β 2.688 0.130 252.645 251.368 256.677

α 1.821 0.122

κ 0.482 0.236

η 0.737 0.042

EW-AH β 2.066 0.110 252.667 251.390 256.699

α 0.789 0.212

κ 0.911 0.086

η 2.283 0.052

LL-AH β 1.097 0.020 247.492 246.686 250.517

α 1.913 0.052

κ 1.213 0.019

LN-AH β 0.261 0.120 263.830 263.197 266.854

α 0.065 0.101

κ 1.260 0.032

BXII-AH β 0.923 0.142 249.144 248.359 252.168

α 0.880 0.119

κ 1.890 0.120

W-AH β 2.581 0.214 256.776 256.078 259.800

α 1.013 0.049

κ 1.818 0.112

G-AH β 2.367 0.430 255.121 254.406 258.145

α 1.495 0.039

κ 1.252 0.123
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6.6.3 Likelihood Ratio Test

The proposed AH model with the GLL baseline distribution is compared to its

submodels, which include the log-logistic AH, Burr-XII AH, and Weibull AH models,

by using the likelihood ratio test (LRT). It is required to reduce the number of

parameters in a model and evaluate how this affects the model’s capacity to match

the data in order to draw thorough statistical conclusions about the model. In

Table 6.4, statistics and related P-values demonstrate that the GLL–AH model fits

the gastric dataset with crossing survival curves better than its submodels.

Table 6.4: LRT test for the GH model and its sub-models

Model Hypothesis LRT P-value

GLL-AH vs. BXII-AH H0 : η = 1, H1 : H0 is false, 6.999 0.008

GLL-AH vs. LL-AH H0: η = κ,H1 : H0 is false, 5.347 0.021

GLL-AH vs. W-AH H0: η
α → 0, H1 : H0 is false , 14.533 <0.001

6.6.4 Bayesian Analysis

We used Bayesian analysis to compare the proposed GLL–AH model with its com-

peting models, such as the GLL–PH, GLL–AH, and GLL–AFT models, and some of

its submodels, including the LL–AH, BXII–AH, and W–AH regression models. The

baseline distribution parameters α ∼ G (a1, b1) , η ∼ G (a2, b2), and k ∼ G (a3, b3)

with hyperparameter values (a1 = b1 = a2 = b2 = a3 = b3 = 10) are assumed to have

separate gamma priors that are independent and noninformative normal prior with

a value of N(0, 100) for β′s (regression coefficients). The Rstan package was utilized

for our analysis (Carpenter et al., 2017).
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6.6.4.1 Numerical Summary

In this section, we used the McMC sample of posterior properties for the proposed

fully parametric AH, PO, AFT, and PHmodels with the GLL baseline distribution in

Table 6.5 to examine several posterior characteristics of interest and their numerical

values. The submodels of the GLL baseline distribution using the AH model are

also examined in Table 6.6 to assess several posterior characteristics of interest and

their numerical values.

Table 6.5: Results for the posterior properties of the GLL-AH, GLL-PO,
GLL-PH and GLL-AFT models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Neff R̂

GLL-AH β 1.016 0.009 0.476 0.030 1.027 1.909 2684 1.001

α 0.836 0.002 0.106 0.648 0.829 1.064 3097 1.002

κ 1.553 0.004 0.196 1.205 1.544 1.969 2714 1.001

η 0.674 0.003 0.191 0.353 0.653 1.105 3023 1.001

GLL-PO β 0.565 0.006 0.353 -0.135 0.562 1.268 3617 1.001

α 1.414 0.003 0.156 1.136 1.405 1.741 3257 1.000

κ 0.804 0.002 0.115 0.600 0.796 1.054 2951 1.001

η 0.806 0.004 0.214 0.429 0.792 1.262 2918 1.000

GLL-PH β 0.106 0.004 0.224 -0.330 0.107 0.540 3216 1.000

α 1.341 0.002 0.146 1.077 1.332 1.646 3588 1.001

κ 0.876 0.002 0.122 0.662 0.869 1.134 3068 1.001

η 0.837 0.004 0.221 0.452 0.820 1.315 3239 1.001

GLL-AFT β 0.418 0.005 0.269 -0.116 0.415 0.949 3396 1.000

α 1.435 0.003 0.177 1.124 1.423 1.804 3373 1.000

κ 0.809 0.002 0.114 0.609 0.801 1.060 2963 1.000

η 0.850 0.004 0.210 0.479 0.836 1.311 2728 1.000
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Table 6.6: Results for the posterior properties of the sub-models of the
GLL-AH model including LL-AH, W-AH, and BXII-AH models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Neff R̂

LL-AH β 0.764 0.007 0.385 -0.073 0.800 1.421 3228 1.001

α 1.636 0.004 0.197 1.261 1.629 2.039 2930 1.000

κ 0.879 0.002 0.107 0.688 0.873 1.109 3681 1.001

W-AH β -0.007 0.014 0.949 -1.850 -0.019 1.860 4377 1.000

α 0.984 0.001 0.085 0.821 0.982 1.152 3521 1.000

κ 0.559 0.001 0.068 0.437 0.554 0.702 3875 1.001

BXII-AH β 0.678 0.007 0.378 -0.135 0.697 1.345 3291 1.000

α 1.627 0.004 0.209 1.247 1.620 2.062 3099 1.000

κ 0.949 0.002 0.115 0.740 0.943 1.186 3932 1.000

6.6.4.2 Visual Summary

Figures 6.3–6.9 provide the trace and autocorrelation (AC) plots for the baseline

distribution parameters and regression coefficients of the proposed AH model and

its submodels, plus other competing survival regression models, including the GLL–

PH, GLL–PO, and GLL–AFT models, indicating convergence of the chains.

Figure 6.3: Trace plots for the GLL-AH model parameters
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Figure 6.4: Trace plots for the GLL-PH model parameters

Figure 6.5: Trace plots for the GLL-PO model parameters

Figure 6.6: Trace plots for the GLL-AFT model parameters
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Figure 6.7: Trace plots for the LL-AH model parameters

Figure 6.8: Trace plots for the W-AH model parameters

Figure 6.9: Trace plots for the BXII-AH model parameters

6.6.4.3 Posterior Predictive Checks

If a fitted Bayesian parametric hazard-based regression model predicts future obser-

vations that are consistent with the current data, it is considered sufficient or per-

forming well. By using the Bayesplot R package, posterior predictive check (PPC)
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plots are used to visually evaluate model fit. It can be seen from PPC in Figure

6.10, that the GLL–AH model fits the data quite well.

Figure 6.10: The empirical cdf, the dotted line and the cdf of the fitted
model, the smooth curve, show that the fitted GLL-AH model predicts
the future observations that are consistent with the current data.

6.6.4.4 McMC Convergence Diagnostics

We applied both numerical and visual methods to evaluate the convergence of the

McMC algorithm for the proposed models and their special cases. The McMC

algorithm HMC-NUTS has converged to the joint posterior distribution, as shown

by the summary results in the above table, because the potential scale reduction

factor hatR is 1, the effective sample size (neff ) is greater than 400, and the MC

error (SE) is less than 0.05 of the posterior standard deviations for all parameters.

Visually assessing convergence is often done by using AC and trace graphs (Ashraf-

Ul-Alam and Khan, 2021). Figures 6.3–6.9 show a stationary pattern fluctuating

within a band, demonstrating the convergence of the McMC algorithm. Figure

6.11, showing the AC plot, demonstrates how the AC rapidly decreases to zero

as the period of lag increases, indicating good mixing and the convergence of the

algorithm to the desired posterior distribution. Finally, Figure 6.12 indicates the

pdf plots for the GLL-AH model posterior parameters.
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Figure 6.11: Auto-correlation plots for the GLL-AH model parameters

Figure 6.12: Density plots for the GLL-AH model parameters

6.6.4.5 Bayesian Model Selection

We implemented two information criteria, the Watanabe–Akaike information crite-

rion (WAIC), proposed by Watanabe (2013), for the Bayesian model comparison,

and the leave-one-out information criterion (LOOIC) proposed by Vehtari et al.

(2017). A model may be said to be best suited if it has the lowest WAIC and

LOOIC values for both information criteria. In addition to Stan fitting, posterior

predictive check (PPC) and determining WAIC and LOOIC are performed by using
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Table 6.7: Bayesian model comparison for the GLL-AH, GLL-PO, GLL-
AFT, and GLL-PH models

Model WAIC LOOIC
GLL-AH 243.20 243.20
GLL-PO 251.40 251.42
GLL-AFT 251.80 251.90
GLL-PH 254.80 254.82

Table 6.8: Bayesian model comparison for the GLL-AH and its special
cases including LL-AH, W-AH, and BXII-AH models

Model WAIC LOOIC
GLL-AH 243.20 243.20
LL-AH 249.30 249.40
W-AH 255.01 255.00
BXII-AH 247.05 247.08

the R package loo (Vehtari et al., 2017). Table 6.7 below shows that, when compared

to its rival models, the GLL–AH model is the most effective. In addition, Table 6.8

demonstrates that, when compared to its sub-models, again the GLL–AH model is

the superior one. Figure 6.13 indicates the Kaplan-Meier estimate and the survival

estimate curve for the proposed GLL-AH model parameters.

Figure 6.13: Kaplan-Meier and fitted survival curve for the GLL-AH
model of the gastric cancer data set.
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Figure 6.13 indicates the Kaplan–Meier estimate and the sf estimate for the proposed

GLL–AH model parameters.

Figures 6.14 and 6.15 demonstrate the Kaplan–Meier estimate and the survival

estimate curves for the proposed regression models with GLL baseline distribution

and the AH model with various baseline hazards. In Figure 6.14, the GLL–AH

model survival curve is closer to the KM survival curve compared to all other survival

regression models. The same thing occurred in Figure 6.15.

Figure 6.14: Kaplan-Meier and Estimated Survival Plots for the compet-
itive Regression models with GLL baseline of the gastric cancer data set.
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Figure 6.15: Kaplan-Meier and Estimated Survival Plots for the compet-
itive AH models of the gastric cancer data set.

6.7 Conclusions

This chapter proposes a fully parametric AH model for dealing with censored lifetime

data with crossover survival curves as an extension of the semi-parametric AH model

(Chen and Wang, 2000). The primary distinction between this modification and

others is that we used a modified baseline distribution that can capture different

hazard rate shapes to provide a more flexible depiction of the baseline hazard. By

adopting a flexible parametric baseline distribution like the GLL distribution, we

showed that it is possible to carry out both Bayesian and classical likelihood inference

using the rstan package of the R programming language.

This also defines the chapter’s key contribution, as no other study combining these
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two characteristics (AH model and a modified baseline distribution) can be found in

the time-to-event analysis field. Furthermore, employing both Bayesian and classical

inference via MLE will address the semi-parametric AH model’s limited use due to

a lack of efficient and trustworthy estimation methods. Additionally, using the

GLL distribution as a baseline hazard offers several benefits as compared to other

parametric baseline distributions that may accept different hazard rate shapes, such

as the gamma, GG, Weibull, EW, PGW, LL, Bur-XII, and LN distributions.

Following the simulation study, the chapter gave a real-world demonstration involv-

ing a well-known dataset with crossover survival curves and was concerned with a

clinical study for patients with gastric cancer. In summary, the GLL–AH model

outperforms the other competing parametric AH models with various baseline haz-

ards and other survival regression models with the same baseline hazard. Finally,

we developed an R package, “AHSurv”, to fit the proposed model in this study as

an addendum to this paper; the source code is accessible at (Muse et al., 2022e).

222



CHAPTER 7

Bayesian and Frequentist Approaches for

a Tractable Parametric General Class of

Hazard-Based Regression Models: An

Application to Oncology Data

In this chapter, we present our sixth manuscript 1 about a tractable parametric

general hazard model. Note that the materials of this chapter have been reproduced

from our article which is under review.

7.1 Introduction

One of the main goals of censored time-to-event data analysis with covariates is

to find and quantify the relationship between the baseline hazard rate function

and the covariates so that the covariates can be employed in disease prevention

and management (Zhou and Hanson, 2015; Alvares et al., 2021; Rubio et al., 2019;

Demarqui and Mayrink, 2021; Rubio et al., 2021). The assumption leads to hazard-

based regression models, and the study’ goal is to estimate a vector of regression

coefficients for the components of covariates.

Cox Cox (1972) developed a hazard-based regression model in which the covariate

has a multiplicative relationship with the hazard rate function, and is called the

proportional hazard (PH) model. The PH is without a doubt the most widely

used in practice. Let h(t;x) be the hazard rate function for a subject with x =

1Muse, A. H., Mwalili, S., Ngesa, O., Chesneau, C., Al-Bossly, A., & El-Morshedy, M. (2022).
Bayesian and Frequentist Approaches for a Tractable Parametric General Class of Hazard-Based
Regression Models: An Application to Oncology Data. Mathematics, 10(20), 3813.
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(x1, x2, . . . , xp)
T variables, and h0(t) be the baseline hazard rate function for those

with x = 0. The following is a formula for the Cox PH model:

h(t;x) = h0(t) · ψ(β · x) = h0(t)e
x′β. (7.1)

where ψ is a positive link function with ψ(0) = 1, most often the exponential function

is used to represent the link function of the covariates; β = (β1, β2, . . . , βp)
T is the

vector of the regression coefficients, eβj denotes the hazard ratio resulting from an

increase in the jth covariate by one unit. The Cox PH model leads to the estimation

of β by means of a ”partial likelihood” approach Lawless (2011).

The Cox PH model is usually used to model censored lifetime data. However, there

may be some benefits to using parametric PH models for such data. According to

Hjort Hjort (1992), the success of the Cox PH regression model may have had the

unintended consequence of practitioners paying too little attention to the baseline

hazard. If proved to be acceptable, a parametric version of the Cox model would

allow for more exact estimation of survival probability while also contributing to a

better understanding of the phenomenon under investigation. Parametric PH mod-

els, for example, which might be a challenge with the Cox PH model, can sometimes

be handled simply, and visualizations of the hazard rate function are considerably

easier. To accommodate variable hazard rate forms, modifications to the log-logistic

and Weibull models are presented. For example, exponentiated-Weibull Mudholkar

and Hutson (1996), sine Kumaraswamy-Weibull Chesneau and Jamal (2020), arctan-

Weibull Alkhairy et al. (2021), exponentiated generalized cosine-Weibull Mahmood

et al. (2022), secant kumaraswamy-Weibull Souza et al. (2022), tan log-logistic Muse

et al. (2021c) and the generalized log-logistic Muse et al. (2021a) models.

When the Cox PH model proportionality assumption is not satisfied, flexible para-

metric non-proportional hazards can be relaxed. For example, the accelerated fail-

ure time (AFT) model can be considered Kalbfleisch and Prentice (2011). The AFT
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model can be written as:

h(t;x) = h0

(
tex

′β
)
ex

′β. (7.2)

The AFT assumption in Equation 7.2 postulates that the covariates have time-

dependent and non-proportional effects on the hazard rate, while PH assumption in

Equation 7.1 postulates that the covariates have time-independent and proportional

effects.

The PH and AFT models have been widely employed in a variety of time-to-event

analysis applications. These models, despite their popularity, are unsuitable for

handling time-to-event data with crossed survival and hazard curves Demarqui et al.

(2019). Chen and Weng Chen and Wang (2000) presented a new class of hazard-

based regression models, known as the accelerated hazard (AH) model, that may be

used to analyze crossing survival curves. The AH model can be written as:

h(t;x) = h0

(
tex

′β
)
. (7.3)

To describe the shift in hazard progression across time, assumption 7.3 assumes

that the covariates have a time-scale change to the hazard rate function. The AH

model has the advantage of being non-proportional, it can accept the phenomenon

of identical hazards at time t = 0, which is common in randomized clinical trials.

As a result, the relationship between covariates and baseline hazard can be described

as follows: covariates with a ”proportional” effect on the hazard rate function must

be time-independent and able to scale up the baseline hazard function, whereas

covariates with a ”non-proportional” effect on the hazard rate function must be

time-dependent or interact with time in the baseline hazard function. As a result,

whereas the influence of a time-independent covariate on the hazard rate varies over

time, the effect of a time-independent covariate on the hazard rate function remains

constant.
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Hence, when creating the link between the covariates and the hazard rate function,

we have four options: time-dependent or time-independent, proportional or non-

proportional. As a result, neither the AFT, AH, or PH models can enable some

factors to have proportional and time-dependent impacts on the hazard while others

have non-proportional and time-dependent effects in one model Wang et al. (2018a).

To solve this issue, the goal of this chapter is to introduce a tractable parametric

general class of hazard-based regression models for overall survival data that includes

the AFT, AH, and PH as special cases, which will subsequently be used to model

right-censored cancer data sets with or without crossover survival curves.

The motivating ideas behind our work on Bayesian and frequentist approaches for

the general class of hazard-based regression models with GLL baseline distribution

are as follows: (i) The baseline continuous probability distributions closed under the

PH and AFT frameworks have drawbacks in that most of them are not adaptable

enough to take into account both monotone and non-monotone hazard rates; (ii)

For statistical inference, the Bayesian approach does not depend on asymptotic ap-

proximations; and to the author’s knowledge, there are no previous studies for the

Bayesian inference of the general class of parametric hazard-based regression mod-

els; (iii) due to the accessibility of software, Bayesian application for hazard-based

complex models is considerably easier and simpler than the frequentist approach;

(iv) if the baseline hazard distribution is valid and correct, parametric hazard-based

regression models may yield more accurate estimates than semi-parametric hazard-

based regression models; and, last but just not least, (v) what sets our work apart

and appeals to healthcare professionals, epidemiologists, bio-statisticians, and other

applied researchers in numerous fields is the use of modified distributions that may

accommodate different hazard rate shapes data.

Based on the above-mentioned motivations and discussions, the main purpose of

this paper is to introduce a general parametric hazard-based regression model with

a generalized log-logistic baseline distribution. So, presenting the parametric general
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hazard (GH) class of hazard-based regression models and their special cases using

GLL baseline hazard, deriving the probabilistic functions for the GH model, formu-

lating and interpreting all the special cases, applying the Bayesian and frequentist

inference procedures, developing computational algorithms to fit the proposed GH

model, estimating the covariate effect on the hazard rate, and applying it to a right-

censored cancer data set is the novelty of the study.

The rest of this chapter is folded as follows: Section 7.2 describes the proposed

general hazard (GH) model formulation, assumptions, its nested structure, and its

probabilistic functions. Section 7.3 lists the special cases of the general hazard

model and their probabilistic functions. The parameter interpretations of the sub-

models are discussed in Section 7.4. Section 7.5 presents the proposed general hazard

model with generalized log-logistic baseline distribution. Section 7.6 presents the

inferential approaches of the proposed GH model. Two extensive simulation studies

are presented in Section 7.7. Section 7.8 displays two right-censored cancer data

sets, one of which contains crossover survival curves. The final Section 7.9 contains

the major conclusion, final remarks, and discussion of future work.

7.2 Model Formulation

7.2.1 Review of Current Literature and Recent Research

Prior to the model formulation, we discuss the state of scientific progress in the

context of current survival models. Specifically, we look at the work that has been

done in relation to the closely related extended hazard (EH) and generalized hazard

(GH) models. The EH model is actually very similar to the GH model; the only

distinction is that the EH was developed before the development of the AH model.

In the study of censored lifetime data with covariates, Ciampi and Etezadi-Amoli

(1985) constructed a universal model for evaluating the PH and the AFT hypothesis.
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Then, using spline approximation, Etezadi-Amoli and Ciampi (1987) proposed an

EH model for censored lifetime data with variables.

Following the research done by Etazadi-Amoli and Ciampi, Louzada-Neto (1997)

proposed an EH regression model that permits the spread parameter to rely on co-

variates. For EH models, Louzada-Neto (2001) presented a simple Bayesian analysis.

Then, after the development of the AH model, Chen and Jewell (2001) developed

the GH model, which combines the EH model with the AH model, another hazard-

based model. An extended linear EH model with applicability to time-dependent

covariates was proposed by (Elsayed et al., 2006). Tong et al. (2013) addressed a

few inferential research questions in the semi-parametric GH model. The modifi-

cation of the GH model was discussed by (Wang et al., 2018a) in the context of

time-independent and time-dependent factors.

The majority of the work developed in relation to GH models dealt with semi-

parametric models. The parametric GH regression models for the relative survival

data were recently examined by (Rubio et al., 2019). Other efforts, for the GH

models were discussed by Li et al. (2015) by extending the GH to a spatial model.

Finally, a mixed-effect GH model was created by Rubio Alvarez and Drikvandi

(2022) to model for clustered survival data.

There is a research gap following the current literature that needs to be filled. Both

the application of the GHmodel to the overall survival data and the field of statistical

inference for the Bayesian approach are unresolved issues that need to be resolved.

Here, we suggest a parametric GH model to close that gap, and we estimate the

model’s parameters using both maximum likelihood estimation (MLE) and Bayesian

methods.
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7.2.2 Model Formulation

The hazard rate function (hrf) and the cumulative hazard function (chf), rather than

the probability density function (pdf) and the cumulative distribution function (cdf)

are typically used to interpret the most common parametric hazard-based regression

models.

Assume that x is a vector of covariates, T is a non-negative random variable that

represents the amount of time till the occurrence of an event of concern, and ψ(x) is

the link function for the covariates, which is most often employed as an exponential

or (log-linear function) ex
′
β, where β is a vector of regression coefficients. Ciampi and

Etezadi-Amoli (1985) developed a generalized version of the PH, and AFT models

to incorporate more versatile interaction terms in terms of the covariates and time.

The hrf and chf of the general class of hazard-based regression models are expressed

as follows:

hGH(t;x) = h0 (tψ (x′β1))ψ (x′β2) = h0

(
tex

′β1
)
ex

′β2 . (7.4)

HGH(t;x) = H0 (tψ (x′β1))ψ (−x′β1 + x′β2) = H0

(
tex

′β1
)
ex

′β2−x′β1 . (7.5)

where h0(t) andH0(t) are called the baseline hazard and the baseline cumulative haz-

ard rates respectively; hGH(t;x) is the hazard rate function at time t, and HGH(t;x)

is the cumulative hazard rate function at time t.

7.2.3 Nested Structure of the GH Model

The importance of the general class of parametric hazard-based regression model is

that it represents a GH structure that contains, as special cases, the proportional

hazard (PH), accelerated hazard (AH), and the accelerated failure time ( AFT)

models. To be more precise,
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i. If β1 = 0, then GH = PH;

ii. If β2 = 0, then GH = AH; and

iii. If β1 = β2, then GH = AFT.

Hence, the GH model can be used as a numerical tool to determine which of them

is more appropriate for a given censored survival data. The nested structure of

the model illustrates the richness of the GH class and motivates its investigation

Etezadi-Amoli and Ciampi (1987).

7.2.4 Model Assumption

The basic assumption of the general class of parametric hazard-based regression

models is that the effect of covariates on the hazard rate function is identified as

having two separate components, namely:

i. A time-scale change in the hazard rate function, and

ii. A relative hazards ratio

hGH(t;x) = h0

(
tex

′β1
)
ex

′β2

In other words, the model has both

i. time-dependent and time-independent (time-fixed) covariates

ii. proportional and non-proportional hazards separately,

for evaluating the hazard function and hazard ratio over time Chen and Jewell

(2001).

The assumption of the special cases is different in nature. For instance, the PH

framework postulates that the covariates multiply the hazard rate function, causing

the hazard function to fluctuate in level (Rezaei et al., 2014). The AH framework
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postulates that that each covariate has a time-dependent effect since it states that

the effect of a unit change in a covariate affects the time scale of the baseline hazard

rate (Co, 2010). In the AFT framework, it is postulated that the covariates have

an effect both on the hazard and the time scale (Khan, 2018). Note that, the AH,

AFT, and PH models coincide for the case when the baseline hazard is the Weibull

distribution (Rubio et al., 2019).

7.2.5 Probabilistic Functions for the GH Model

In this section, we derive the most common probabilistic functions for the GH model.

The other probabilistic functions for the model with equations 7.4 and 7.5 are com-

puted as follows:

The survival function (sf) of the GH model is computed as follows:

SGH(t;x) = S0

(
tex

′β1
)ex′β2−x′β1

. (7.6)

where S0(.) is the baseline survival function.

The cdf of the GH model is expressed as follows:

FGH(t;x) = 1− SGH(t;x) = 1− S0

(
tex

′β1
)ex′β2−x′β1

. (7.7)

The pdf of the GH model can be obtained by using:

fGH(t;x) = h0

(
tex

′β1
)
ex

′β2S0

(
tex

′β1
)ex′β2−x′β1

. (7.8)

7.3 Special Cases of the GH Model

In this section, the three common sub-models for the general class of the hazard-

based regression models are discussed.
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7.3.1 Proportional Hazard Model

In the GH model framework, if β1 = 0, then GH = PH framework. Hence, the hrf

is expressed as follows:

hPH(t;x) = h0(t)e
x′β. (7.9)

The chf is expressed as:

HPH(t;x) = H0(t)e
x′β. (7.10)

The sf of the PH model is computes as follows:

SPH(t;x) = S0(t)
ex

′β
. (7.11)

The cdf of the PH model is expressed as follows:

FPH(t;x) = 1− SPH(t;x) = 1− S0(t)
ex

′β
. (7.12)

The pdf of the PH model can be obtained by using:

fPH(t;x) = f0(t)e
x′βS0(t)

ex
′β−1

(7.13)

7.3.2 Accelerated Hazard Model

In the GH model framework, if β2 = 0, then GH = AH framework. Hence, the hrf

is expressed as follows:

hAH(t;x) = h0

(
tex

′β
)
. (7.14)

The chf is expressed as:

HAH(t;x) = H0

(
tex

′β
)
e−x

′β. (7.15)
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The sf of the AH model is computed as follows:

SAH(t;x) = S0

(
tex

′β
)e−x′β

. (7.16)

The cdf of the AH model is expressed as follows:

FAH(t;x) = 1− SAH(t;x) = 1− S0

(
tex

′β
)e−x′β

. (7.17)

The pdf of the AH model can be obtained by using:

fAH(t;x) = f0

(
tex

′β
)
S0

(
tex

′β
)e−x′β

. (7.18)

7.3.3 Accelerated Failure Time Model

In the GH model framework, if β1 = β2, then GH = AFT framework. Hence, the

hrf is expressed as follows:

hAFT (t;x) = h0

(
tex

′β
)
ex

′β. (7.19)

The chf is expressed as:

HAFT (t;x) = H0

(
tex

′β
)
. (7.20)

The sf of the AFT model is computed as follows:

SAFT (t;x) = S0

(
tex

′β
)

(7.21)

The cdf of the AFT model is expressed as follows:

FAFT (t;x) = 1− SAFT (t;x) = 1− S0

(
tex

′β
)
. (7.22)
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The pdf of the AFT model can be obtained by using:

fAFT (t;x) = f0

(
tex

′β
)
ex

′β. (7.23)

The GH model is a general class that includes the PH,AFT, and AH models as

special examples. More specifically, if β1 = 0, then GH = PH; if β2 = 0, then

GH = AH; and if β2 = β1, then GH=AFT (Rubio et al., 2019; Etezadi-Amoli and

Ciampi, 1987; Ciampi and Etezadi-Amoli, 1985).

7.4 Parameter Interpretation for the Parametric

Hazard-based Regression Models

In this section, it is crucial to determine if a positive coefficient of a covariate can

monotonically raise the time scale or lower the hazard in order to ensure that the

broad class of hazard-based regression models has a plausible interpretation.

7.4.1 Proportional Hazard Model

In this sub-section, we start the interpretation of the parameters of the PH model,

as this will facilitate the interpretation of the general class model. if β1 = 0, then

the GH model is the same as that in a PH model:

h(t;x) = h0(t)e
x′β (7.24)

H(t;x) = H0(t)e
x′β (7.25)

dH(t;x)

dx
= βex

′βH0(t) (7.26)

where H0(t) is an increasing function that takes a value greater than 0 . When β >

0, dH(t;x)
dx

> 0, showing that when the covariate x increases, the hazard increases and
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the survival time decreases.

7.4.2 Accelerated Failure Time Model

In the GH model, if the covariate β2 = β1, the GH model is the same as the AFT

model. Hence,

h(t;x) = h0

(
tex

′β
)
ex

′β (7.27)

H(t;x) = H0

(
tex

′β
)

(7.28)

dH(t;x)

dx
= βtex

′βH ′
0

(
tex

′β
)

(7.29)

Since H0(.) is an increasing function, H ′
0(.) Is greater than 0 . When β > 0, dH(t;x)

dx
>

0, showing that when the covariate x increases, the hazard increases and the survival

time decreases.

7.4.3 Accelerated Hazard Model

In the GH model, if the covariate β2 = 0, the GH model is the same as the AH

model. Hence,

h(t;x) = h0

(
tex

′β
)

(7.30)

H(t;x) = e−x
′βH0

(
tex

′β
)

(7.31)

dH(t;x)

dx
= −βe−x′β

[
H0

(
tex

′β
)
− tex

′βH ′
0

(
tex

′β
)]

(7.32)

No matter whether the β is less than or greater than zero, when t =
H0

(
tex

′β
)

ex′βH′
0(tex

′β)
′ ,

dH(t;x)
dx

= 0. Thus, with the increase of t, the sign of dH(t;x)
dx

may change. The time

when the sign changes depend on the form H0(.) Function. It means that x with a

positive coefficient does not always increase the duration when it increases, which

results in a challenge to interpret the sign of a variable coefficient.

Hence, the AH model also has the merit of being applicable to the crossing of hazards
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Table 7.1: Summary of Parameter interpretation and comparison of PH,
AH, and AFT Models

AH Model PH Model AFT Model
effect βAH > 0 treatment βPH > 0 treatment βAFT > 0 treatment

accelerates the hazard proportionally increases decelerates failure
by a factor of hazard by a factor time of the survivor

eβAH of eβPH function by a factor
of eβAFT

βAH < 0 treatment βPH < 0 treatment βAFT < 0 treatment
decelerates the hazard proportionally decreases accelerates failure

by a factor of hazard by a factor time of the survivor
eβAH of eβPH function by a factor

of eβAFT

β’s interpretation Hazard progression hazard ratio Survival time
time ratio ratio

limited to crossover No Yes Yes
in hazards

limited to crossover No Yes No
in survival

and survivor functions. In other circumstances, this benefit may make it difficult to

comprehend the parameters accurately (Co, 2010; Qing Chen, 2001). As a result,

rather than providing merely the survival functions, showing the hazards according

to distinct covariate patterns is recommended to assist in illustrating the survival

time process (Chen and Jewell, 2001). In fact, GH and AH are suitable for the

analysis of crossover survival and hazard functions (Zhang and Peng, 2009).

In general, the parameter interpretation depends on the shape of the baseline hazard,

which we classify here as monotone (decreasing or increasing) or non-monotone

(bathtub or unimodal). A summary of parameter interpretation for the AFT, AH,

and PH models is presented in Table 7.1 below. N.B. βAH = βPH = βAFT =

0, treatment does not have an effect
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7.5 Generalized Log-logistic General Hazard Model

For the GH model, the generalized log-logistic baseline hazard is

h(t) =
αk(kt)α−1

⌈1 + (ηt)α⌉
,

so, according to Equation (7.4) the hazard rate for an individual with covariate

vector x and link function ψ(x) is

hGLL−GH (t;θ, β1, β2) = h0 (tψ (x′β1))ψ (x′β2) =
αk (ktψ (x′β1))

α−1

⌈1 + (ηtψ (x′β1))
α⌉
ψ (x′β2)

(7.33)

applying the log-linear function ψ (x′β) = exp (x′β), we can simplify into

hGLL−GH (t;θ, β1, β2) = h0 (tψ (x′β1))ψ (x′β2) =
αk
(
ktex

′β1
)α−1

[1 + (ηtex′β1)α]
ex

′β2 , (7.34)

The chf of the GLL-GH model using Equation (7.5) is obtained as follows:

HGLL−GH (t;θ, β1, β2) = ex
′β2−x′β1 k

α

λα
log
[
1 +

(
λtex

′β1
)α]

, (7.35)

7.6 Model Inference

In this section, we discuss the classical approach (via maximum likelihood estimation

technique) and Bayesian inference (assuming non-informative priors for both base-

line hazard parameters and regression coefficients) for the general class of hazard-

based regression models with generalized log-logistic baseline.
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7.6.1 Classical Inference

The general class of hazard-based regression models is considered in this sub-section

with a fully parametric specification. To obtain the frequentist inference about the

vector of model parameters, we assume that the time-to-event data is right-censored

and that the censoring mechanism is non-informative. The censored likelihood func-

tion can be defined as follows when a parametric general class of hazard-based re-

gression model is considered:

L (θ, β1, β2 | D) =
n∏
i=1

[f (ti;θ, β1, β2, x)]
δi [S (ti;θ, β1, β2, x)]

1−δi

=
n∏
i=1

[
h (ti;θ, β1, β2, x)

S (ti;θ, β1, β2, x)

]δi
[S (ti;θ, β1, β2, x)]

1−δi

=
n∏
i=1

[h (ti;θ, β1, β2, x)]
δi S (ti;θ, β1, β2, x)

=
n∏
i=1

[h (ti;θ, β1, β2, x)]
δi exp [−H (ti;θ, β1, β2, x)] ,

=
n∏
i=1

[
h0

(
tie

xi
′β1 ,θ

)
exiβ2

]δi
exp

[
−H0

(
tie

x′iβ1 ,θ
)
ex

′
iβ2−x′iβ1

]
,

(7.36)

where θ is the vector of distributional parameters with the baseline hazard, and

D = (ti, δi, xi, i = 1, 2, . . . , n) denotes the observed data including ti = survival

time, δi = censoring time, and xi = covariates respectively. The maximum like-

lihood estimation can be obtained via an iterative optimization process (e.g., the

Newton-Raphson algorithm). Hypothesis testing and interval estimations of model

parameters are possible due to the MLEs’ approaching normalcy. The likelihood

function’s natural logarithm, often known as the log-likelihood function, is expressed

as follows:

ℓ (θ, β1, β2 | D) =
n∑
i=1

δi log
[
h0

(
texi

′β1 | θ
)
+ xi

′β2

]
−

n∑
i=1

H0

(
tie

xi
′β1 | θ

)
e−xiβ1+xi

′β2 ,

(7.37)
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Using Equation (??) for the h0(.) and Equation (??) for the H0(.) as the baseline

hazard and cumulative hazard functions respectively for the GLL-GH model. The

full log-likelihood function of the GLL-GH model can be expressed as follows:

ℓ (θ, β1, β2 | D) =
n∑
i=1

δi log(α) +
n∑
i=1

δiα log(k) + (α− 1)
n∑
i=1

δi log
(
tie

x′iβ1
)

−
n∑
i=1

δi log
[
1 +

(
ηtie

x′iβ1
)α]

+
n∑
i=1

δi log
[
ex

′
iβ2
]

−
(
k

η

)α n∑
i=1

e−x
′
iβ1+xiβ2 log

[
1 +

(
ηtie

x′iβ1
)α]

(7.38)

To obtain the MLE’s of θ′ = (k, α, η), β1, and β2, we can maximize (47) directly

with respect to (k, α, η), β1, and β2. or we can solve the first derivative of the log-

likelihood function (non-linear equations below). Let us ω = (k, α, η, β1 , and β2),

then the first derivatives of the log-likelihood functions are as follows:

∂ℓ(ω)

∂α
=

1

α

n∑
i=1

δi +
n∑
i=1

δi log(k) +
n∑
i=1

δi log
(
tie

xi
′β1
)

+
n∑
i=1

δi

(
ηtie

xi
′β1
)α

log
(
ηtie

xi
′β1
)

[1 + (ηtiexiβ1)
α]

−
(
k

η

)α
log(k)

n∑
i=1

e−x
′
iβ1+x

′
iβ2 log

[
1 +

(
ηtie

xi
′β1
)α]

+

(
k

η

)α
log(η)

n∑
i=1

e−xi
′β1+xi′β2 log

[
1 +

(
ηtie

xi
′β1
)α]

−
(
k

η

)α n∑
i=1

e−x
′
iβ1+x

′
iβ2
(
ηtie

x′iβ1
)α

log
(
ηtie

xiβ1
)

[1 + (ηtiexi
′β1)α]

(7.39)

∂ℓ(ω)

∂η
= −

(
α

η

) n∑
i=1

δi

(
ηtie

xi
′β1
)α

[1 + (ηtiexi
′β1)α]

+

(
α

η

)(
k

η

)α n∑
i=1

e−xi
′β1+xi′β2 log

[
1 +

(
ηtie

xi
′β1
)α]

−
(
α

η

)(
k

η

)α n∑
i=1

e−x
′
iβ1+x

′
iβ2
(
ηtie

x′iβ1
)α

[1 + (ηtiexiβ1)
α]

(7.40)
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∂ℓ(ω)

∂β1,j
= (α− 1)

n∑
i=1

δixij − α

n∑
i=1

δixij

(
ηtie

xi
′β1
)α

[1 + (ηtiexi
′β1)α]

+

(
k

η

)α n∑
i=1

xij log
[
1 +

(
ηtie

x′iβ1
)α]

−
(
k

η

)α
α

n∑
i=1

xij
e−xi

′β1+x′iβ2
(
ηtie

xi
′β1
)α

[1 + (ηtiexi ′β1)
α]

+ for j = 1, 2, . . . , p,

(7.41)

∂ℓ(ω)

∂β1,j
= (α− 1)

n∑
i=1

δixij − α

n∑
i=1

δixij

(
ηtie

xi
′β1
)α

[1 + (ηtiexi
′β1)α]

+

(
k

η

)α n∑
i=1

xij log
[
1 +

(
ηtie

x′iβ1
)α]

−
(
k

η

)α
α

n∑
i=1

xij
e−xi

′β1+x′iβ2
(
ηtie

xi
′β1
)α

[1 + (ηtiexi ′β1)
α]

+ for j = 1, 2, . . . , p,

(7.42)

∂ℓ(ω)

∂β2,j
=

n∑
i=1

δixij

−
(
k

η

)α n∑
i=1

xij

[
1 +

(
ηtie

x′iβ1
)α]

e−x
′
iβ1+x

′
iβ2 for j = 1, 2, . . . , p,

(7.43)

By adjusting the initial partial derivatives, the MLEs for the unknown distributional

parameters are obtained for θ′ = (k, α, η), and the regression coefficients β1, and β2,

by solving the non-linear equations ∂ℓ(ω∗)
∂α∗ = 0, ∂ℓ(ω

∗)
∂η∗

= 0, ∂ℓ(ω
∗)

∂k∗
= 0, ∂ℓ(ω

∗)
∂β1,j∗∗ = 0, and

∂ℓ(ω∗)
∂β2,j∗

= 0 iteratively. To maximize log-likelihood functions, many software packages

include proven optimization algorithms. We utilized the function nlminb to optimize

our computer code, which was written in R software.

The approximate normality of the maximum likelihood estimators is used in the

tests and interval estimates for the model distributional parameters and regression

coefficients. The asymptotic distribution of ω̂∗ is roughly a (p+ 3) - variate normal

distribution having mean ω∗ and covariance matrix I (ω̂∗)−1 where is the observed

information matrix (p+3)× (p+3). The observed information matrix is utilized to

build confidence intervals for the model parameters because the expected informa-

tion matrix is difficult. The following is a representation of the observed information
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matrix:

J (ω̂∗) = −



∂ℓ2(ω∗)
∂α∗2

∂ℓ2(ω∗)
∂α∗∂k∗

∂ℓ2(ω∗)
∂α∗∂η∗

∂ℓ2(ω∗)
∂α∗∂β1,j∗

∂ℓ2(ω∗)
∂α∗∂β2,j∗

∂ℓ2(ω∗)
∂k∗2

∂ℓ2(ω∗)
∂k∗∂η∗

∂ℓ2(ω∗)
∂k∗∂β1,j∗

∂ℓ2(ω∗)
∂k∗∂β2,j∗

∂ℓ2(ω∗)
∂η∗2

∂ℓ2(ω∗)
∂η∗∂β1,j∗

∂ℓ2(ω∗)
∂η∗∂β2,j∗

∂ℓ2(ω∗)
∂β1,j∗2

∂ℓ2(ω∗)
∂β1,j∗∂β2,j∗

∂ℓ2(ω∗)
∂β2,j∗


The asymptotic distribution is likewise nearly normal using the multivariate delta

technique, with mean ω∗ and covariance matrix D
∑
D′, where D is the (p + 3) ×

(p + 3) diagonal matrix diag(θ̂, 1, 1, . . . , 1), I (ω̂∗)−1 . As a result, for the model pa-

rameters, the asymptotic multivariate normal distribution N5

(
0, I (ω̂∗)−1) can be

utilized to create 100(1 − φ)% two-sided confidence intervals. The significant level

is denoted by the letter φ.

7.6.2 Bayesian Inference

As an alternative, we apply the Bayesian approach, which enables the incorpora-

tion of prior understanding of the model parameters using informative prior density

functions. In the absence of this knowledge, a noninformative prior may be taken

into account. The information pertaining to the model parameters is retrieved using

a posterior marginal distribution in the Bayesian technique. Two problems typically

result from this. The first speaks of obtaining a marginal posterior distribution, and

the second, of computing the important moments. In both situations, numerical in-

tegration frequently does not offer an analytical answer. Here, we utilize the Gibbs

sampler and Metropolis-Hastings’s algorithm as part of the Markov chain Monte

Carlo (McMC) simulation approach.

By defining the prior distributions for model unknown parameters, followed by mul-

tiplying by the likelihood function, the Bayesian model is created.
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7.6.2.1 Priors for the Parameters

An essential component of every Bayesian inference is the specification of a prior

distribution. This is particularly true for parametric hazard-based regression mod-

els. Due to the flexibility of gamma distributions, which include non-informative

priors (uniform) and the marginal prior distribution for each regression coefficient

(m, )m = 1, . . . ,,5, the prior scenario is set in this study using a non-informative

independent gamma distribution, Gamma (10, 10), as the baseline distribution pa-

rameters because we have no prior information from historical data or from previous

experiments and a normal distribution with zero mean and a wide known variance

(0, 100) for the regression coefficients. These priors are taken into consideration in

numerous study publications in the literature, including (Alvares et al., 2021; Khan

and Basharat, 2022; Muse et al., 2022g,a). Here,

π(α) ∼ G (a1, b1) =
ba11

Γ (a1)
αa1−1e−b1α; a1, b1, α > 0 (7.44)

π(η) ∼ G (a2, b2) =
ba22

Γ (a2)
ηa2−1e−b2η; a2, b2, η > 0 (7.45)

π(k) ∼ G (a3, b3) =
ba33

Γ (a2)
ka3−1e−b3k; a3, b3, k > 0 (7.46)

The hyper-parametric values of the prior distributions may be simply determined

from historical data of the baseline distribution (Muse et al., 2021a). For the re-

gression coefficients prior (taken as a normal distribution), we have

π (β′
1) ∼ N (a4, b4) (7.47)

π (β′
2) ∼ N (a5, b5) (7.48)

The joint prior distribution of all unknown parameters has a density function given
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by

π (α, k, η,β′
1,β

′
2) = π(α)π(η)π(k)π (β′

1) π (β
′
2) (7.49)

7.6.2.2 Likelihood Function

The likelihood function for the generalized-log-logistic general hazard model is com-

puted as follows:

LGLL−GH (θ, β1, β2 | D) =
n∏
i=1

[
h0

(
tie

x′iβ1 | θ
)
ex

′
iβ2
]δi

exp
[
−H0

(
tie

x′iβ1 | θ
)
ex

′
iβ2−x′iβ1

]

=
n∏
i=1

[
αk
(
ktie

x′iβ1
)α−1[

1 +
(
ηtiex

′
iβ1
)α]ex′iβ2

]δi
exp

[
−
{
kα

ηα
log
[
1 +

(
ηtie

xi
′β1
)α]}

ex
′
iβ2−x′iβ1

]
(7.50)

7.6.2.3 Posterior Distribution

The joint posterior density function is expressed as the multiplication of the likeli-

hood function in Equation (7.50) and the prior distribution in Equation (7.49):

p (α, k, η,β1
′,β2

′ | t)

∝
n∏
i=1

[
αk
(
ktie

x′iβ1
)α−1[

1 +
(
ηtiex

′
iβ1
)α]ex′iβ2

]δi
exp

[
−
{
kα

ηα
log
[
1 +

(
ηtie

xi
′β1
)α]}

ex
′
iβ2−x′iβ1

]
× π (α, k, η,β′

1,β2
′)

(7.51)

where the prior specification for the unknown parameters is represented by the first

four terms on the right-hand side of the equation.

Due to the difficulty of integrating the joint posterior density, the joint posterior

density is analytically intractable. The inference can therefore be based on McMC

simulation techniques, including the Gibbs sampler and Metropolis-Hastings algo-
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rithms, which can be used to provide samples from which properties of the marginal

distributions of interest can be inferred.

7.7 Simulation Study

We provide two simulation experiments in this section that illustrate the inferential

properties, model suitability, nested structure, and estimator performance of the

suggested model.

7.7.1 Simulation Study I: Comparative Study

Simulation studies I discuss the proposed model’s classical approach as well as their

special cases, which include the AH, AFT, and PH models. The goal of this study is

to show how the proposed model’s nested structure compares to the most commonly

used parametric approaches for survival data analysis. We use information criterion

such as AIC and CAIC to choose models that accurately reflect the underlying model

structure as well as the effects of censoring percentage and sample size on parameter

estimation.

7.7.1.1 Data Generation from the Hazard-Based Regression Models

We employed the inversion method to generate survival data from the general class

of hazard-based regression models and their special cases such as AH, AFT, and

PH. This technique is based on the relationship between the cumulative hazard

function (chf) of a survival random variable and a standard uniform random variable.

Whenever the chf has a closed form solution, it may be applied, inverted, and easily

implemented in R (Team et al., 2013).

Since the Cox PH model is the most widely used in survival analysis, we took into

consideration the method of Bender et al. (Bender et al., 2005) that they used to

simulate data from the Cox regression model. We also thought about the Leemis et
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al. (Leemis et al., 1990) methods for simulating survival data from an AFT model,

and we used the same method for the rest of the AH and our proposed GH model

(Austin, 2012).

The cdf is deduced from the survival function from the following formula:

F (t;x) = 1− S(t;x) (7.52)

As a result, for lifetime data generation, if Y is a random variable that follows a cdf

F , then U = F (Y ) follows a uniform distribution on the interval [0, 1], and (1− U)

also follows a uniform distribution U [0, 1]. We eventually get that

1− U = S(t) = exp {−H0(t;x)} (7.53)

Then,

exp {−H0(t;x)} = 1− U (7.54)

Taking into account the cumulative hazard function for the GH model in Equation

(7.5) it follows as:

exp
{
−H0

(
tex

′β1
)
ex

′β2−x′β1
}
= 1− U (7.55)

The generation of survival times for the proposed model and its special cases can

be described in the following general structural form:

T =
1

ex′β1
H−1

0

(
− log(1− U)

ex′β2−x′β1

)
(7.56)
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With

(ex
′β1 , ex

′β2) =



β1, β2 = 0 for the AH model

β1 = β2 for the AFT model

β1 = 0, β2 for the PH model

β1, β2 for the GH model

If the baseline hazard rate is strictly positive for all t,then baseline cumulative hazard

rate can be inverted, and we can express the lifetime data of each of the hazard-based

regression models considered (PH, AFT, PH and GH) model from H−1
0 (u).

In our case, the cumulative hazard rate for the GLL distribution is of the form:

H(t;α, η, k) =
kα

ηα
log [1 + (ηt)α] , t ≥ 0, k, α, η > 0

Consequently, the inverse of the cumulative hazard function is expressed as follows:

H−1
0 (U ;α, η, k) =

(
eη

αk−αU − 1
) 1

α

η

In this study, we used the baseline cumulative hazard rate function and its reverse

(H0(t) and H−1
0 (t)

)
to generate the survival data.

Case I: GH Model

In case 1 , the lifetimes of the GH model is expressed as follows:

T =
1

ex′β1
H−1

0

(
− log(1− U)

ex′β2−x′β1

)
.

For this simulation, we consider that the survival times follow a GLL baseline,

therefore the survival times can therefore be simulated from:

T =

(
e
ηαk−α

(
− log(1−u)e−x′β2

)
. − 1

) 1
α

ηex′β2−x′β1
.
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Case II: AFT Model

In case 2, we generate the survival data from an AFT model as follows:

T =
H−1

0 {− log(1− U)}
ex′β

.

Using GLL baseline:

T =

(
eη

αk−α(− log(1−u)
)
− 1)

1
α

ηex′β
.

Case III: AH Model

In case 3 , we generate the survival data from an AH model as follows:

T =
1

ex′β
H−1

0

(
− log(1− U)

e−x′β)

)
.

Using GLL baseline:

T =

(
e
ηαk−α

(
− log(1−u)ex′β

)
. − 1

) 1
α

ηe−x′β
.

Case IV: PH Model

In case 4 , we generate the survival data from a PH model as follows:

T = H−1
0

(
− log(1− U)

ex′β

)
.

Using GLL baseline:

T =

(
e
ηα

α
k−α

(
− log(1−u)e−x′β

)
− 1

) 1
α

η
.
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7.7.1.2 Simulation Design

Using a severe cancer (with a reduced five-year survival rate), such as lung cancer,

the initial values of the parameters are set to create scenarios that imitate cancer

population studies (Rubio et al., 2019, 2021).

i. The administrative censorship at Tc = 5 years, which produced an average of

20percent censoring in all data sets.

ii. an extra random samples censorship (drop out) utilizing exponential distri-

bution with the rate parameter r were employed to estimate the censoring

rates.

In the second scenario, we select r values that will cause censoring of roughly 40

percent. Based on the GH model in Equation (7.4), a series of simulations with

N = 10000 data sets of various sample size (n = 5000, and 10000) set and censoring

percentages ( Tc = 20 and 40 percentages) were conducted.

The covariates’ values were simulated as follows: (1) the continuous covariate ”age”

was simulated using a collection of uniform distributions with 0.25 probability on

(30, 65), 0.35 probability on (65, 75), and 0.40 probability on (75, 85) years old; as

well as (2) the binary covariates ”treatment” and ”gender” were simulated using

a 0.5 binomial distribution. For more information, we advise the reader to visit

(Rubio et al., 2019, 2021; Muse et al., 2022g; Rubio et al., 2022).

7.7.1.3 Simulation Scenarios

To compare the nested structure of the proposed GH model with generalized log-

logistic baseline hazard to its special cases, the AH, PH, and AFT regression models.

We conducted four simulation scenarios based on the types of hazard-based regres-

sion model frameworks (AH, AFT, PH, and GH).

Scenario 1: GH Framework
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In Scenario 1, the survival times data were obtained from a general hazard (GH)

framework with a GLL baseline hazard using the distributional parameter values for

(k = 0.625, α = 1.50, and η = 1.0) and the covariates values for (β = 0.75, 0.85, 0.95,

βH = 0.35, 0.45, 0.55).The censored times data were produced from assuming admin-

istrative censoring (a) Tc = 5, which generated about 20% censoring, (b) an extra

independent random censoring (i.e., dropout) using an exponential distribution with

rate parameter r and we select values for r to generate about 40% censoring.

Scenario 2: AFT Framework

In Scenario 2, the survival times data were obtained from an AFT framework with

a GLL baseline hazard using the using the distributional parameter values for

(k = 0.675, α = 1.50, and η = 1.0) and the covariates values for

(β = 0.75, 0.85, 0.95, βH = 0.75, 0.85, 0.95).

The censored times data were produced from assuming administrative censoring (a)

Tc = 5, which generated about 20% censoring, (b) an extra independent random

censoring (i.e., dropout) using an exponential distribution with rate parameter r

and we select values for r to generate about 40% censoring.

Scenario 3: PH Framework

In Scenario 3, the survival times data were obtained from a PH framework with a

GLL baseline hazard using the using the distributional parameter values for

(k = 0.65, α = 1.50, and η = 1.0) and the covariates values for

(β = 0, 0, 0, βH = 0.15, 0.25, 0.35). The censored times data were produced from as-

suming administrative censoring (a) Tc = 5 , which generated about 20% censoring,

(b) an extra independent random censoring (i.e., dropout) using an exponential dis-

tribution with rate parameter r and we select values for r to generate about 40%

censoring.

Scenario 4: AH Framework

In Scenario 4, the survival times data were obtained from an AH framework with

a GLL baseline hazard using the distributional parameter values for (k = 0.80, α =
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1.50, and η = 1.0) and the covariates values for (β = 0.15, 0.25, 0.35, βH = 0, 0, 0).

The censored times data were produced from assuming administrative censoring (a)

Tc = 5, which generated about 20% censoring, (b) an extra independent random

censoring (i.e., dropout) using an exponential distribution with rate parameter r

and we select values for r to generate about 40% censoring.

7.7.1.4 Results for Scenario 1

For Scenario 1, the degree of censoring seems to affect how well a model fits the

data. The GH model performs better than the AFT, PH, and AH models overall.

The AFT outperforms the other hazard-based models, including PH and AH, in

terms of information criteria. Generally speaking, it appears that the AH has the

most information criteria. As can be seen in Figures 7.1 through 7.4, the AFT and

PH models suit the data the best, while the AH model fits the data the least well.

Although it appears that the AFT is overestimated and the PH is underestimated,

both of them suit the data better than the AH model. As seen in Table 7.2, ev-

ery competing model demonstrates how the censoring proportions’ increase has an

impact on the model’s performance in terms of information criteria. The identical

thing takes place in Table 7.3. The PH outperforms better than the AFT and AH

in Table 7.3 for the lighter censoring, while when the censoring becomes heavier, the

AFT is the one that outperforms better compared to the PH and AH models. In

general, AFT is the one that is superior after the GH model, since the covariates of

the model effect are for both hazard and time scale.
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Figure 7.1: Estimated baseline hazard functions with censoring propor-
tion of 20% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a GH structure

Table 7.2: Simulation results from GH model with (k = 0.625, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.75, 0.85, 0.95, β2 = 0.35, 0.45, 0.55 )
and n = 5, 000 with about 20% censoring. AIC, CAIC, and HQIC values
for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-GH Model 9068.327 9068.705 9088.884

GLL-AFT Model 9202.449 9202.656 9216.154

GLL-AH Model 12264.223 12264.149 122277.928

GLL-PH Model 9222.095 9222.307 9235.800

40% censoring

GLL-GH Model 5463.519 5463.598 5484.077

GLL-AFT Model 5505.834 5505.872 5519.540

GLL-AH Model 7424.734 7424.799 7438.440

GLL-PH Model 5548.739 5548.777 5562.444
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Figure 7.2: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a GH structure

Figure 7.3: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a GH structure

252



Table 7.3: Simulation results from GH model with (k = 0.625, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.75, 0.85, 0.95, β2 = 0.35, 0.45, 0.55 )
and n = 10, 000 with about 20% censoring. AIC, CAIC, and HQIC values
for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-GH Model 17567.525 175672 17589.491

GLL-AFT Model 17843.352 17843.429 17857.996

GLL-AH Model 24035.240 24035.198 24049.884

GLL-PH Model 17818.738 17818.184 17833.382

40% censoring

GLL-GH Model 10719.862 10719.901 10741.828

GLL-AFT Model 10809.107 10809.125 10823.751

GLL-AH Model 14662.298 14662.330 14676.942

GLL-PH Model 10913.655 10913.673 10928.299

Figure 7.4: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a GH structure
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7.7.1.5 Results for Scenario 2

In Scenario 2, a simulation is generated using an AFT framework. The GLL-GH

model and the true generated GLL-AFT model were all superior to the GLL-PH

and GLL-AH models for the information criteria values, such as the AIC and CAIC

values for Scenario 2. This demonstrates how the AFT model is a specific case of

the GH framework. The generated model has the lowest AIC, CAIC, and HQIC

values as would be predicted given that it is an AFT framework.

The GLL-GH model has the lowest AIC and CAIC values when the sample size and

censoring fraction increase to n = 10000 and 40% censoring, respectively, as shown

in Tables 7.4 and 7.5. This shows that the GH structure performs better than its

special cases when there is heavy censoring of the data. However, from the visual

representations, it is clear that the GLL-GH and GLL-AFT models exhibit certain

similarities and provide the best fit when compared to the other two rival models.

We can therefore deduce from Scenario 2 that the AFT model is a sub-model of the

GH model, as illustrated in Figures 7.5 to 7.8.
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Table 7.4: Simulation results from AFT model with (k = 0.675, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.75, 0.85, 0.95, β2 = 0.75, 0.85, 0.95)
and n = 5, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

AIC CAIC HQIC

20% Censoring

GLL-AFT Model 9710.030 9710.583 9723.735

GLL-GH Model 9713.632 9714.807 9734.190

GLL-AH Model 12766.930 12766.869 12780.635

GLL-PH Model 10241.712 10240.974 10255.417

40% Censoring

GLL-AFT Model 6119.325 6119.367 6133.030

GLL-GH Model 6122.154 6122.246 6142.711

GLL-PH Model 6500.689 6500.739 6514.394

GLL-AH Model 8259.059 8249.154 8262.764

Figure 7.5: Estimated baseline hazard functions with censoring propor-
tion of 20% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AFT structure
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Figure 7.6: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AFT structure

Table 7.5: Simulation results from AFT model with (k = 0.675, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.75, 0.85, 0.95, β2 = 0.75, 0.85, 0.95)
and n = 10, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-AFT Model 19192.366 19192.571 19207.011

GLL-GH Model 19195.876 19196.313 19217.842

GLL-AH Model 25043.290 12766.257 25057.934

GLL-PH Model 20201.167 20200.269 20215.811

40% censoring

GLL-AFT Model 12214.303 12214.324 12228.947

GLL-GH Model 12211.367 12211.413 12233.332

GLL-PH Model 13036.386 13036.410 13051.030

GLL-AH Model 16233.077 16233.122 16247.721
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Figure 7.7: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AFT structure

Figure 7.8: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AFT structure

7.7.1.6 Scenario 3 Results

In Scenario 3, a PH framework is used to generate simulation data. For information

criteria values like the AIC and CAIC values for Scenario 3, the GLL-GH model and

the true generated GLL-PH model were all superior to the GLL-AH and GLL-AFT

257



models. This explains how the GH framework is used specifically in the PH model.

Since the model created from the data was closed using the PH framework, the

resultant GLL-PH model has the lowest AIC, CAIC, and HQIC values as would be

expected.

As demonstrated in Table 7.6 and 7.7, the GLL-GH model’s AIC and CAIC values

are comparable when the censoring fraction is increased to 40%. This demonstrates

that when there is severe data censoring, the GH structure outperforms its special

cases. But it is obvious from the visual representations in Figures 7.9 to 7.12 that

the GLL-GH and GLL-PH models share several characteristics and offer the best fit

when compared to the other two competing models. As we may infer from Scenario

3, the PH model is a sub-model of the GH model.

Table 7.6: Simulation results from PH model with (k = 0.65, α = 1.50,
and η = 1.0), covariates values for (β2 = 0.15, 0.25, 0.35, β1 = 0.0, 0.0, 0.0) and
n = 5, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

Model AIC CAIC HQIC

20 % Censoring

GLL-PH Model 14941.383 14941.349 14955.088

GLL-GH Model 14947.070 14946.997 14967.627

GLL-AFT Model 15037.394 15037.361 15051.100

GLL-AH Model 15224.134 15224.102 15237.840

40%

GLL-PH Model 10966.406 10966.229 10980.111

GLL-GH Model 10966.497 10966.116 10987.054

GLL-AFT Model 11038.579 11038.415 11052.284

GLL-AH Model 11206.019 11205.877 11219.724
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Figure 7.9: Estimated baseline hazard functions with censoring propor-
tion of 20% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a PH structure

Figure 7.10: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a PH structure
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Table 7.7: Simulation results from PH model with (k = 0.65, α = 1.50,
and η = 1.0), covariates values for (β2 = 0.15, 0.25, 0.35, β1 = 0.0, 0.0, 0.0) and
n = 10, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

Model AIC CAIC BIC

20% Censoring

GLL-PH Model 29768.943 29768.927 29783.588

GLL-GH Model 29772.045 29772.008 29794.011

GLL-AFT Model 29969.703 29969.686 29984.345

GLL-AH Model 30321.478 30321.462 30336.123

40% Censoring

GLL-PH Model 22085.485 22085.404 22100.129

GLL-GH Model 22088.317 22088.143 22110.283

GLL-AFT Model 22219.687 22219.611 22234.331

GLL-AH Model 22560.893 22560.828 22575.538

Figure 7.11: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a PH structure
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Figure 7.12: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from a PH structure

7.7.1.7 Scenario 4 Results

In the context of Scenario 4, some proximity can be accounted for by the visual

representation in Figures 7.13 to 7.16 of all the fitted models. Nevertheless, as

anticipated, the GLL-GH and GLL-AH models outperform the two other rival mod-

els, the GLL-AFT and GLL-PH models. When compared to the other models, the

GLL-GH model is the most similar to the actual created model, demonstrating that

the GH framework is a general instance of the AH framework. As demonstrated in

Tables 7.8 and 7.9, GLL-AH has the lowest value for information criteria because it

is the generated model from simulation data.
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Table 7.8: Simulation results from AH model with (k = 0.80, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.15, 0.25, 0.35, β2 = 0.0, 0.0, 0.0) and
n = 5, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

Model AIC CAIC HQIC

20% Censoring

GLL-AH Model 15084.818 15084.785 15098.523

GLL-GH Model 15086.243 15086.172 15106.801

GLL-PH Model 15161.428 15161.396 15175.133

GLL-AFT Model 15212.691 15212.658 15226.396

40% Censoring

GLL-AH Model 11154.225 11154.078 11167.930

GLL-GH Model 11156.478 11156.161 11177.035

GLL-PH Model 11229.268 11229.130 11242.974

GLL-AFT Model 11252.678 11252.542 11266.382

Figure 7.13: Estimated baseline hazard functions with censoring propor-
tion of 20% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AH structure
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Figure 7.14: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 5000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AH structure

Table 7.9: Simulation results from AH model with (k = 0.80, α = 1.50,
and η = 1.0), covariates values for (β1 = 0.15, 0.25, 0.35, β2 = 0.0, 0.0, 0.0) and
n = 10, 000 with about 20% and 40% censoring. AIC, CAIC, and HQIC
values for the competitive models.

Model AIC CAIC HQIC

20 % Censoring

GLL-AFT Model 30458.953 30458.937 30473.597

GLL-GH Model 30463.451 30463.416 30485.416

GLL-AH Model 30664.667 30664.651 30679.310

GLL-PH Model 30741.659 30741.644 30756.303

40 % Censoring

GLL-AFT Model 22592.371 22592.306 22607.015

GLL-AFT Model 22598.029 22597.890 22619.996

GLL-GH Model 22776.538 22776.477 22791.182

GLL-AH Model 22822.921 22822.861 22837.565
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Figure 7.15: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AH structure

Figure 7.16: Estimated baseline hazard functions with censoring propor-
tion of 40% and a sample size of n = 10000. The dashed and solid curves
indicate the estimated and true hazard rate functions, accordingly. The
data generated from an AH structure

From the data in Tables 7.2 - 7.7, the GH model may have a better performance, but

it is hard to say that improvements for the GH model is significant. The GH model,

as expected, has a nested structure with a versatile closed-form expression, making

it more suitable for censored lifetime data analysis. Finally, the simulation results

noted that the GH model has the ability to be a very valuable tractable parametric
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hazard-based model for sufficiently describing various types of lifetime data from

various failure rate shapes and censoring percent-ages, as well as a numerical tool

for making comparisons between the three different approaches for hazard-based

models, namely, the AH, PH, and AFT structures.

7.7.2 Simulation Study II: Performance Study

The Bayesian methodology of the proposed model is addressed in Simulation Study

II. The aim of this analysis is to illustrate the Bayesian inferential properties of

the estimators in the proposed model. In particular, we show how sample size and

censoring percentages affect the proposed model’s Bayesian inferential properties.

7.7.2.1 Measures of Performance

The posterior mean, absolute bias (AB), mean square error (MSE), effective number

of different simulations draws (neff ), coverage probability (CP), and potential scale

reduction factor (R̂) were used to evaluate the Bayesian inferential features of the

proposed GH model.

The estimators’ bias is determined as follows:

Bias(θ̂) =
1

N

N∑
i=1

(θ̂i − θ) (7.57)

The MSE is a useful indication of overall correctness and is computed as:

MSE(θ̂) =
1

N

N∑
i=1

(θ̂i − θ)2 (7.58)

where θ = α, κ, η, β
′
.

The following is a description of CP :

CP = θ̂ ∓ 1.96× SE(θ̂) (7.59)
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According to Gelman et al. Gelman et al. (1995), the effective number of sample

size simulation draws should be more than or equal to 400 in order to verify the

convergence diagnostics of McMC simulations. The maximum permitted limit of

(R̂) should also be close to 1(R̂ < 1.10).

7.7.2.2 Posterior Analysis of Simulation Study II

In the simulation sets, we incorporated the proposed parametric GH model with

the GLL baseline distribution to examine its Bayesian inferential characteristics.

Each simulation set was utilized to estimate the suggested GH model with various

censoring rates and sample sizes. Three parallel chains with 60,000 iterations each

plus additional 6,000 for the burn-in time were utilized to approximate posterior

distributions using JAGS software Denwood (2016). The chains were shortened

further by storing every 10th draw to reduce auto-correlation in the sequences.

7.7.2.3 Simulation Results of Simulation Study II

Based on these findings reported in Tables 7.10 and 7.11, we can infer that the es-

timators’ biases and MSE decrease with sample size, and that the estimators’ bias

and MSE are also influenced by the censoring %, with greater censoring proportions

increasing MSE and absolute bias (AB). The Gelman-Rubin diagnostic (potential

scale reduction factor) and the number of efficiency sample size draws, on the other

hand, illustrate that convergence has been reached. The estimators’ coverage prob-

ability was close to 95%.
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Table 7.10: Results of the McMC Simulation for Study II (Bayesian
inference). GLL-GH framework with baseline hazard parameter val-
ues of (α = 1.40, k = 0.80, and η = 1.20); covariate values of β1 =
(0.25, 0.35, 0.45), β2 = (0.55, 0.65, 0.75); sample size of 100 ; and two censoring
proportions for rates of 20 and 40%

True Value (θ̂) Posterior Mean AB MSE CP n-eff R̂

20% Censoring

β11 = 0.25 0.260 0.010 0.005 94.13 5232 1.002

β12 = 0.35 0.378 0.028 0.014 93.96 4313 1.002

β13 = 0.45 0.475 0.025 0.010 94.60 4717 1.000

β21 = 0.55 0.595 0.045 0.015 93.88 3987 1.000

β22 = 0.65 0.714 0.064 0.026 92.37 3243 1.000

β23 = 0.75 0.822 0.072 0.032 95.03 3456 1.000

α = 1.40 1.425 0.025 0.011 94.50 5404 1.001

κ = 0.80 0.833 0.033 0.025 94.23 5039 1.002

η = 1.20 1.224 0.024 0.021 95.67 4788 1.002

30% Censoring

β11 = 0.25 0.292 0.042 0.007 92.47 5032 1.003

β12 = 0.35 0.386 0.036 0.015 92.55 4519 1.004

β13 = 0.45 0.483 0.033 0.012 93.41 4788 1.001

β21 = 0.55 0.606 0.056 0.018 94.69 3987 1.001

β22 = 0.65 0.720 0.070 0.023 96.82 3832 1.001

β23 = 0.75 0.831 0.081 0.033 94.45 4156 1.000

α = 1.40 1.436 0.036 0.013 96.32 5122 1.002

κ = 0.80 0.847 0.047 0.028 91.60 5039 1.001

η = 1.20 1.232 0.032 0.024 93.09 5188 1.001
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Table 7.11: Results of the McMC Simulation for Study II (Bayesian
inference). GLL-GH framework with baseline hazard parameter val-
ues of (α = 1.40, k = 0.80, and η = 1.20); covariate values of β1 =
(0.25, 0.35, 0.45), β2 = (0.55, 0.65, 0.75); sample size of 300 ; and two censoring
proportions for rates of 20 and 40%

True Value (θ̂) Posterior Mean AB MSE CP n-eff R̂

20% Censoring

β11 = 0.25 0.258 0.008 0.004 95.14 4898 1.000

β12 = 0.35 0.368 0.018 0.012 95.03 4020 1.000

β13 = 0.45 0.470 0.020 0.008 94.93 5676 1.000

β21 = 0.55 0.590 0.040 0.013 95.80 5413 1.000

β22 = 0.65 0.704 0.054 0.024 94.80 5213 1.000

β23 = 0.75 0.802 0.052 0.030 95.04 5093 1.000

α = 1.40 1.425 0.025 0.010 95.12 5003 1.000

κ = 0.80 0.803 0.003 0.002 95.07 4937 1.000

η = 1.20 1.204 0.004 0.003 94.92 4953 1.000

30% Censoring

β11 = 0.25 0.292 0.042 0.006 94.00 5099 1.000

β12 = 0.35 0.386 0.036 0.014 95.25 5676 1.001

β13 = 0.45 0.483 0.033 0.011 94.763 55122 1.000

β21 = 0.55 0.606 0.321 0.013 95.43 3056 1.002

β22 = 0.65 0.720 0.70 0.020 95.55 3898 1.001

β23 = 0.75 0.831 0.081 0.031 94.34 4454 1.000

α = 1.40 1.436 0.036 0.012 96.32 4989 1.001

κ = 0.80 0.847 0.047 0.026 95.00 5006 1.000

η = 1.20 1.232 0.032 0.020 96.05 5012 1.001

7.8 Application

The most commonly used type of censored data in oncology studies is right-censored

survival data. In these analyses, the time-to-event is commonly the time between

survival and death. This section focuses on the use of parametric hazard-based

regression models to reanalyze two real-world right-censored oncology data sets that

have previously been addressed in the literature. The purpose of this study is to
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compare the parametric general hazard (GH) regression model to its special cases,

which include the PH, AFT, and AH frameworks, with the generalized log-logistic

baseline. In the first of the two data sets, there are crossing survival curves, but

there are no crossover survival curves in the second.

7.8.1 Colon Cancer Data Set

7.8.1.1 Data Description

In this section, we take a look at a genuine survival time data set for people with

colon cancer that is openly accessible using the R package survival under the label

of colon (Therneau and Lumley, 2013). Initially, Laurie et al. (1989) described the

study. Moertel et al. (1990) contains the main report. The final Moertel report’s

data set and this one are most similar (Moertel et al., 1995). Lin’s paper (Lin,

1994) made use of a version of the data with fewer follow-up times. This colon

cancer data set has gained widespread use in the literature on survival analysis,

and it is particularly simple to locate in research involving parametric hazard-based

regression models.

This clinical trial’s experiment involved 1858 patients. These findings come from

one of the earliest trials of adjuvant treatment for colon cancer that was successful.

Levamisole is a low-toxicity drug formerly utilized to treat worm infestations in

animals, while 5-FU is a chemotherapy drug that is moderately toxic (as these

things go). Each individual has two records: one for recurrence and one for death.

The following variables were taken into account for each patient (i = 1, . . . , 1858) :

i. ti : time until event or censoring

ii. status: censoring status ( 1 = observed lifetime, 0 = censored)

iii. age: age of the patient in years

iv. surg: time from surgery to registration (1=long, 0 = short)
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v. etype: type of event (1 = recurrence, 2 = death)

The total number of patients whose surgery takes a long time are 494 patients

(26.59%), among whom 247(50%) died. The Kaplan-Meier plot for the surgery

variable is reported in Figure 7.18 .

7.8.1.2 Visual Representation of the Data

Analysis: The non-parametric plots for the survival time of colon cancer patients

are reported in Figure 7.17. TTT plot for the survival time indicates an increasing

hazard rate pattern.

Figure 7.17: Nonparametric plots for the survival time data of colon
cancer patients
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Figure 7.18: Kaplan-Meier survival plot for the variable surgery sta-
tus(1=long, 0=short).

7.8.2 Classical Analysis

For the proposed GH model and its sub-models, including PH,AH, and AFT with

GLL baseline distribution, the MLE estimates for baseline distribution parameters

and regression coefficients are provided in Table 7.12

Figure 7.19: Estimated Hazards for the competitive models of the colon
cancer data set.
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Table 7.12: Results from the fitted parametric hazard-based regression
models to Colon cancer data se

Models Parameter(s) Estimate SE Z-value P-value L-95% U-95%

GLL-GH β11 0.065 0.038 0.593 0.553 -0.053 0.171

β12 -0.171 0.129 -1.331 0.183 -0.423 0.081

β13 -1.549 0.118 -13.185 <0.001 -1.780 -1.139

β21 0.012 0.039 0.316 0.752 -0.065 0.090

β22 0.161 0.087 1.850 0.064 -0.010 0.331

β23 -0.890 0.072 -12.339 <0.001 -1.032 -0.749

α 1.938 0.127 8.932 <0.001 1.690 2.187

κ 0.009 0.001 15.290 <0.001 0.007 0.011

η 0.039 0.006 6.697 <0.001 0.028 0.187

GLL-AFT β1 0.023 0.038 0.593 0.553 -0.053 0.098

β2 0.100 0.089 1.131 0.258 -0.074 0.274

β3 -0.970 0.058 -16.864 <0.001 -1.083 -0.857

α 2.381 0.139 17.175 <0.001 2.161 2.653

κ 0.008 0.001 10.986 <0.001 0.011 0.009

η 0.019 0.002 11.213 ¡0.001 0.042 0.022

GLL-PH β1 -0.064 0.033 -1.936 0.043 -0.129 0.001

β2 0.167 0.072 2.323 0.020 0.026 0.309

β3 -0.518 0.052 -9.978 <0.001 -0.620 -0.417

α 1.938 0.127 8.932 <0.001 1.690 2.187

κ 0.009 0.001 15.290 <0.001 0.007 0.011

η 0.039 0.006 6.697 <0.001 0.028 0.187

GLL-AH β1 0.029 0.047 0.620 0.535 -0.062 0.120

β2 0.-464 0.108 -4.288 <0.001 -0.676 -0.252

β3 -1.139 0.090 -12.648 <0.001 -1.315 -0.962

α 2.113 0.084 25.226 <0.001 2.161 2.277

κ 0.004 0.000 17.158 <0.001 0.011 0.005

η 0.024 0.003 9.495 <0.001 0.042 0.029

7.8.3 Frequentist Model Comparison

We take into account the Akaike information criteria (AIC), the Hannan-Quin in-

formation criterion (HQIC), and the Corrected Akaike information criterion (CAIC)
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when comparing frequentist models. The proposed GH model is the most effective

model when compared to its rival models, according to the estimates of the AIC,

CAIC, and HQIC in Table 7.13.

Table 7.13: Results for some frequentist inofrmation criterions for the
hazard-based regression models

Model AIC CAIC HQIC

GH 16276.09 16276.07 16294.43

PH 16415.50 16415.50 16427.74

AH 16384.96 16384.94 16397.94

AFT 16294.36 16294.35 16306.58

7.8.3.1 Likelihood Ratio Test

To form a comprehensive statistical inference about a model, it is necessary to lower

the number of parameters and assess how this impacts the model’s ability to match

the data. The likelihood ratio test (LRT) is used to compare the GH model to its

sub-models, which include the PH, AFT, and AH hazard-based regression models.

The LRT statistic and its accompanying P-values in Table 7.14 show that the GH

model fits better than its sub-models for the colon cancer lifetime data set.

Table 7.14: LRT test for the GH model and its sub-models

Model Hypothesis LRT P-value

GH vs. PH H0: β2=0, H1 : H0 is false, 145.424 < 0.001

GH vs. AH H0: β1=0, H1 : H0 is false, 114.863 < 0.001

GH vs. AFT H0: β1=β2,H1 : H0 is false , 24.268 < 0.001

7.8.4 Bayesian Analysis

We used Bayesian analysis to compare the proposed GLL-GH model with its com-

peting models, such as the GLL-PH, GLL-AH, and GLL-AFT models. The baseline
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Table 7.15: Results for the posterior properties of the competitive mod-
els.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% Neff R̂
GLL-GH β11 0.086 0.001 0. -0.016 0.087 0.187 4013 1.001

β12 -0.172 0.002 0.122 -0.412 -0.174 0.067 4049 1.001
β13 -1.500 0.003 0.129 -1.752 -1.497 -1.264 2174 1.004
β21 0.009 0.001 0.040 -0.070 0.009 0.086 4772 1.000
β22 0.161 0.001 0.087 -0.004 0.158 0.333 4151 1.001
β23 -0.925 0.002 0.088 -1.097 -0.925 -0.756 2410 1.003
α 2.166 0.002 0.138 1.909 2.161 2.449 4951 1.001
κ 0.011 0.000 0.002 0.008 0.011 0.016 2174 1.004
η 0.044 0.000 0.009 0.029 0.042 0.064 2016 1.004

GLL-AFT β1 0.021 0.001 0.038 -0.057 0.021 0.095 5059 1.001
β2 0.101 0.001 0.089 -0.073 0.100 0.271 5069 1.000
β3 -1.012 0.002 0.081 -1.168 -1.012 -0.855 2685 1.001
α 2.282 0.002 0.134 2.033 2.277 2.554 4304 1.000
κ 0.008 0.000 0.001 0.006 0.008 0.011 2426 1.001
η 0.020 0.000 0.003 0.015 0.020 0.027 2470 1.001

GLL-PH β1 -0.029 0.000 0.034 -0.096 -0.029 0.039 5944 1.000
β2 0.238 0.001 0.071 0.099 0.238 0.374 5490 1.000
β3 -0.245 0.001 0.066 -0.374 -0.245 -0.116 4336 1.000
α 1.997 0.002 0.000 -1.767 1.993 2.242 3623 1.001
κ 0.002 0.000 0.122 0.002 0.002 0.002 2912 1.002
η 0.004 0.000 0.000 0.004 0.004 0.005 3235 1.001

GLL-AH β1 0.071 0.001 0.043 -0.013 0.072 0.157 5046 1.000
β2 -0.283 0.001 0.098 -0.479 -0.282 -0.094 4320 1.000
β3 -0.744 0.002 0.096 -0.932 -0.744 -0.554 3425 1.001
α 2.218 0.002 0.132 1.970 2.216 2.487 3258 1.000
κ 0.003 0.000 0.000 0.003 0.003 0.004 2728 1.001
η 0.014 0.000 0.002 0.010 0.014 0.018 2904 1.001

distribution parameters α ∼ G (a1, b1) , η ∼ G (a2, b2), and k ∼ G (a3, b3) with hyper-

parameter values (a1 = b1 = a2 = b2 = a3 = b3 = 10) are assumed to have separate

gamma priors that are independent and non-informative normal prior with a value

of N(0, 100) for β′s (regression coefficients). Rstan package was utilized for our

analysis (Carpenter et al., 2017).

7.8.4.1 Numerical Summary

In this section, we used the McMC sample of posterior properties for the generalized

log-logistic general hazard (GLL-GH) model and its special cases including GLL-

PH, GLL-AH, and GLL-AFT Table 7.15 to examine several posterior properties of

interest and their numerical values.
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7.8.4.2 Visual Summary

Figures 7.20 to 7.24 provide the trace and autocorrelation (AC) plots for the baseline

distribution parameters and regression coefficients of the proposed GH model and

its sub-models, indicating convergence of the chains.

Figure 7.20: Trace plots for the GLL-PH model parameters

Figure 7.21: Trace plots for the GLL-AH model parameters

Figure 7.22: Auto-correlation plots for the GLL-AFT model parameters
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Figure 7.23: Auto-correlation plots for the GLL-GH model parameters

7.8.4.3 McMC Convergence Diagnostics

We applied both numerical and visual methods to evaluate the convergence of the

McMC algorithm for the proposed models and their special cases. As can be seen

from the summary results in the above table, the McMC algorithm HMC-NUTS has

converged to the joint posterior distribution because the potential scale reduction

factor R̂ is 1 , the effective sample size (neff ) is greater than 400, and the Monte

Carlo error (SE) is less than 5% of the posterior standard deviations for all of the

parameters.

Visually assessing convergence is often done using auto-correlation and trace graphs

(Ashraf-Ul-Alam and Khan, 2021). Figures 7.20 to 7.23 trace plot displays a station-

ary pattern fluctuating within a band, demonstrating the convergence of the McMC

algorithm. Figure ?? auto-correlation plot demonstrates how auto-correlation rapidly

decreases to zero as the period of lag increases, indicating good mixing and the con-

vergence of the algorithm to the desired posterior distribution.
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Figure 7.24: Auto-correlation plots for the GLL-GH model parameters

7.8.4.4 Bayesian Model Selection

We implemented two information criteria, Watanabe Akaike information criterion,

proposed by (Watanabe, 2013), for the Bayesian model comparison, and the Vehtari

et al. (2017) proposed Leave-one-out information criteria. A model may be said to be

best suited if it has the lowest WAIC and LOOIC values for both information criteria.

In addition to Stan fitting, posterior predictive check (PPC) and determining WAIC

and LOOIC are performed using the R package loo (Vehtari et al., 2021). Table 7.16

below shows that when compared to its rival models, the GLL-GH model is the most

effective.

Table 7.16: Bayesian model comparison for the GLL-GH and its special
cases

Model WAIC LOOIC

GH 16274.00 16274.01

PH 16360.20 16360.21

AH 16345.80 16345.90

AFT 16295.75 16295.80
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7.9 Conclusions

The PH, AFT, and AH models are three ways to develop hazard-based regression

models for survival data. Because of the relative risk interpretation of the regres-

sion coefficients and the existence of a semi-parametric PH model that is robust

against the distributional assumption of the survival time, PH models are particu-

larly popular in clinical trials and oncology investigations. The goal of this study

was to generalize the hazard-based regression models stated above to include both

time-independent and time-dependent covariates in a single model, dubbed the GH

model. The main goal of this model is to distinguish scenarios in which covariates

have a time-independent or time-dependent effect on the hazard rate when modelling

survival data, with a focus on parametric models.

In general, if the underlying distributional assumption is relatively true, a para-

metric model is chosen in statistical data analysis. In survival data analysis, para-

metric hazard-based regression models can provide more accurate estimations of the

regression coefficients than semi-parametric hazard-based regression models (Collet,

2015). Other essential values, such as quantiles, the hazard function, and survival

probabilities, can also be easily estimated using parametric models. It’s worth not-

ing that the hazard function is a key part of the time course of a disease process,

therefore it’s a focus of many clinical investigations.

The Cox PH model does practically all of the modelling of censored survival data.

The non-proportional hazard models, such as the AFT and AH models, are chosen

as an alternative once the proportionality assumption is discarded. On the other

hand, AFT and AH models can only include covariates with time-dependent and

non-proportional effects on the hazard overtime, whereas a PH model can only have

time-independent and proportional effects. The GH model established in this work

can accept a variety of covariates, some of which may have time-independent and
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proportional impacts on the hazard value, while others may have time-dependent

and non-proportional effects. Another advantage of the model is that it may be

used to predict when survival and hazard rates will cross.

A detailed simulation study was conducted to evaluate the performance of the sug-

gested GH model. The findings show that the GH model produces better outcomes,

with fewer biases detected for the majority of parameters. The layered structure of

the GH model in comparison to the PH, AFT, and AH models for a broad regres-

sion setting containing various covariates prevalent in cancer epidemiology studies

was further explored using simulated data sets. The results demonstrate the GH

model’s nested structure and tractability once more. Following the simulation study,

this paper shows a real-world data application with right-censored cancer data sets

from a patient clinical trial. When the information criterion used in this study was

evaluated, the GLL-GH model outperformed the GLL-PH, GLL-AH, and GLL-AFT

models.
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CHAPTER 8

Amoud Class for Hazard-based and

Odds-based Regression Models: An

Application to Oncology Studies

In this chapter, we present our seventh manuscript 1 about Amoud Class for hazard-

based and odds-based regression models. Note that the materials of this chapter

have been reproduced from our article which is under review.

8.1 Introduction

During the last few decades, the semi-parametric Cox proportional hazard (PH)

model has dominated survival data analysis. While Cox’s original research paper

discussed extensions to remove the assumption of PH (Cox, 1972), much work has

been carried out to improve the flexibility of survival regression frameworks by using

tractable functions for both the baseline and the inclusion of covariates, primarily us-

ing probability distributions, splines, or fractional polynomials (Rubio et al., 2019).

As a matter of fact, the hazard rate and odds functions are two probabilistic func-

tions with significant practical value in survival analysis. They both take into ac-

count the hazard rate or odds for a reference level associated with a link function

of the covariates, which is often represented by a log-linear or a multiplicative term

exp(x′iβ). Each covariate’s associated parameters are represented by the vector β.

Given a design matrix X and a subject i, i ∈ {1, . . . , n}, the vector xi, represents

covariate values. The subject i with all of its covariate values equal to zero (xi = 0)

1Muse, A. H., Ngesa, O., & Mwalili, S., (2022). Amoud Class for Hazard-based and Odds-based
Regression Models: An Application to Oncology Studies. Axioms, MDPI, 2022
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represents the reference level.

So, based upon the type of probabilistic function utilized as a baseline function,

the survival regression model classes can be divided into two primary groups: hazard-

based regression models and odds-based regression models. However, the general

design of those models did not change; the hazard or odds function was expressed

as a baseline function multiplied by the link function of the covariates to either the

baseline function, the time scale, or both of them.

Because of the most well-known Cox PH model, hazard-based regression models

are the most prevalent survival regression model classes in the field of survival

analysis. Consequently, there are four widely used hazard-based regression models:

proportional hazard (PH) (Cox, 1972; Kalbfleisch, 1978), accelerated hazard (AH)

(Chen and Wang, 2000), accelerated failure time (AFT) (Buckley and James, 1979;

Komárek and Lesaffre, 2008), and general hazard (GH) (Ciampi and Etezadi-Amoli,

1985; Etezadi-Amoli and Ciampi, 1987; Louzada-Neto, 1997; Chen and Jewell, 2001).

The odds-based regression models, which are created using a probabilistic function

that has recently received more attention and is known as the odds function, are

another family of survival regression model classes. Although the odds function

is used in epidemiological case-control research, the proportional odds (PO) model

class that was presented by Bennett (1983a) is the first to apply it in survival models.

AFT model is another odds-based regression model (Kalbfleisch, 1978). As a result,

just like hazard-based regression models, odds-based models are divided into four

primary categories: PO (Bennett, 1983a), accelerated odds (AO), AFT (Buckley

and James, 1979), and general odds (GO) models.

There are other survival regression models as well, which combine hazard-based

and odds-based regression models and are built by taking into account both hazard

rate and odds functions. For instance, Yang and Prentice (2005) developed the

Yang-Prentice model, a semi-parametric survival regression model that can include

crossover survival curves. In order to describe survival data with crossed survival
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curves, Demarqui and Mayrink (2021) modified the Yang-Prentice (YP) model using

a piecewise exponential baseline distribution. Both the PH and PO models are

included as sub-models in the YP model. A generalized odds-rate hazards model

was developed by Banerjee et al. (2007) and includes the PH, PO, and AFT models

as special cases.

For censored lifetime data, Royston and Parmar (2002) presented a flexible paramet-

ric model based on the PH and PO models. On the other hand, Huang et al. (2008)

also introduced a general class of regression model called the PH-PO model, which

includes PH and PO models as sub-models. Huang and Jiang (2009) proposed an

extension of the PH-PO model into a more generalized model that takes into account

time scale changing effects and time varying coefficient effects. A semi-parametric

super model containing six popular survival regression models, including the PH,

PO, AFT, AH, YP, and GH models, was recently proposed by Zhang et al. (2019).

Davis (2018) has recommended the development of further new families that com-

bine hazard-based and odds-based regression models. For additional details, please

see (Zhou and Hanson, 2015).

The absence of a general class of odds-based and hazard-based regression models

that encompasses all hazard-based and odds-based regression frameworks is an issue

that needs to be addressed. Each of the hazard-based and odds-based regression

model classes mentioned above can capture different aspects of survival data. On the

other hand, choosing which hazard-based or odds-based regression model is the most

suitable and precise in reflecting the link between baseline (hazard or odds) and

covariates, is an issue and an important research problem that must be addressed.

To explicitly nest simpler models and to address the issue, we propose a novel,

general, flexible, fully parametric class of hazard-based and odds-based regression

framework named “Amoud class (AM)”.

In contrast, there are three categories of survival regression model classes: non-

parametric, semi-parametric, and parametric models. Compared to non-parametric
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and semi-parametric methods, parametric models are more informative. They can

be used to forecast survival times, hazard rates, as well as mean and median survival

times in addition to computing relative effect estimates (Lawless, 2011). They can

also be used to plot covariate-adjusted survival curves and forecast absolute risk

over time. Semi-parametric models lack the power of parametric models when the

parametric form is incorrectly stated. Additionally, they are more effective, resulting

in estimates with reduced standard errors and greater accuracy (Khan, 2018; Khan

and Khosa, 2016). In addition, parametric techniques use full maximum likelihood

to estimate parameters. Parametric model residuals often take the form of the

discrepancy between what was observed and what was expected (Collett, 2015).

Considering the discussion above, the current study proposes a fully parametric

class of regression models that comprises formally nested special cases of the PH,

PO, AH, AO,AFT, GH, and GO survival regression models. As a result, model

selection among these models can be accomplished by conducting approximate like-

lihood ratio tests using the frequentist approach. To describe baseline hazard or

baseline odds, a generalized log-logistic (GLL) distribution containing some of the

most frequent parametric baseline distributions used in survival analysis, such as

the log-logistic (LL), Bur-XII, exponential, and Weibull distributions, is employed.

A right-censoring mechanism is considered, and the proposed model’s parameters

are evaluated using maximum likelihood estimation and Bayesian estimation tech-

niques. A real-world right-censored survival dataset with a crossing survival curve

is utilized to demonstrate how the proposed AM class can be employed.

Hence, the novelty of this research chapter is to introduce and investigate a novel,

general, tractable, fully-parametric class of hazard-based and odds-based regression

model for dealing with right-censored survival data with or without crossing survival

curves. This is accomplished by assuming the GLL distribution in the proposed

class to cope with the baseline distribution. To the author’s best knowledge, no one

has ever contemplated employing the parametric AM class of parametric hazard-
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based and odds-based regression models in general, and with GLL baseline hazard

in particular. This class is an extension of the most common hazard-based and

odds-based regression frameworks in the literature. On the other hand, another

area of interest that has yet to be addressed in the context of the AM class is the

use of both the inferential procedures, Bayesian and frequentist approaches. As a

result, the strategies are investigated utilizing the frequentist approach using the

MLE method and the Bayesian approach using non-informative priors.

The structure of the chapter is as follows: Section 8.2 presents a review of the hazard-

based, and odds-based regression models in the context of survival, duration, and

reliability analysis. The formulation of the AM Class, its associated probabilistic

functions, and sub-models of the class are discussed in Section 8.3. Section 8.4

presents the baseline distribution under examination in this study, as well as some

of its special circumstances. Section 8.5 presents the estimation of the proposed

class parameters using both classical and Bayesian estimation approaches. Section

8.6 shows a real-world, right-censored cancer data set with crossing survival curves.

Section 8.7 finishes the study with a farewell address and recommendations for future

research.

8.2 Recent Literature Review and State of Art

In this section, we review the studies completed in the framework of the hazard-

based and odds-based regression models that are closely related to the proposed

class in order to illustrate the state of scientific development in the context of current

survival, duration, and reliability models.

8.2.1 Hazard-Based Regression Models

In general, survival datasets are highly skewed and can be censored for some sub-

jects, possibly even the most. Standard linear regression models cannot fit them,
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and they also only allow for the interpretation of regression coefficients in terms of

the mean of time. However, different models can be applied to survival data to gen-

erate different interpretations. Observed times’ functions rather than the observed

times themselves are used for this. The hazard rate and the odds functions, in par-

ticular, are two probabilistic functions that are extremely important practically in

survival analysis.

There are four major types of hazard-based regression models proposed in the lit-

erature to fit survival time data in medical investigations, namely, PH, AH, AFT,

and GH models. These models can be used to analyze real-world data in domains

other than medicine, such as economics, marketing, engineering, social science, crim-

inology, and education. The modeling approach differs depending on the researcher’s

event of interest; the general notion is to watch time until the event occurs; however,

for some subjects, the event never occurs.

The formulation and construction of four hazard-based regression models are re-

viewed and discussed in this section. We define the alternative structures below

using the hazard rate function (hrf), odds function, survival (complementary dis-

tribution) function (sf), and cumulative (or integrated) hazard function (chf) in

relation to time t and a vector of covariates x. We suppose that the vector of co-

variates lacks an intercept to avoid concerns about identifiability. The unknown

regression coefficients are represented by the vector β.

8.2.1.1 PH Model

The semi-parametric PH model introduced by Cox (1972) is one of the most well-

known hazard-based regression models in survival analysis. The hrf is multiplica-

tively affected by the impact of the covariates in this model. Different researchers

have examined and analyzed studies relating to the parametric PH model utilizing

various baseline distributions and inferential techniques. A parametric PH model,

with an extended exponential geometric baseline distribution was developed and
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evaluated by Rezaei et al. (2014). A parametric PH with GLL baseline distribution

was also proposed by (Khan and Khosa, 2016). A modified PH model and a re-

versed PH model employing the Marshal-Olkin baseline distribution were examined

by (Balakrishnan et al., 2018). Muse et al. (2022g) have investigated the Bayesian

analysis of the PH model with a GLL baseline distribution.

The PH model’s hrf, odds, sf, and the chf can be stated as follows:

hPH(t; β, x) = H0(t)e
x′β, (8.1)

RPH(t; β, x) = R0(t)
ex

′β
, (8.2)

SPH(t; β, x) = S0(t)
ex

′β
, (8.3)

HPH(t; β, x) = H0(t)e
x′β, (8.4)

whereH0, R0, S0, andH0 are the baseline hazard rate, odds, survival and cumulative

hazard functions.

8.2.1.2 AFT Model

The PH model is the most popular hazard-based regression model in survival anal-

ysis, but it can only be used in situations in which the PH assumption holds. An al-

ternative to the PH model is the AFT model (Kalbfleisch, 1978; Buckley and James,

1979). The AFT model is analogous to a hazard-based regression model in which

covariates measured on an individual are assumed to act multiplicatively on the

time-scale, influencing the rate at which the individual advances along the time

axis. Numerous scholars have studied and discussed studies involving the paramet-

ric AFT model using various baseline hazards and statistical inference techniques.

A parametric AFT model with an exponentiated Weibull baseline distribution was

presented and analyzed by (Khan, 2018). A parametric AFT with a log-exponential

power baseline distribution was also proposed by (Olosunde and EJIOFOR, 2021).
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Ashraf-Ul-Alam and Khan (2021) used a generalized Top-leone-Weibull baseline dis-

tribution to study a parametric AFT model. A parametric AFT model with a GLL

baseline distribution was recently proposed by (Muse et al., 2022a).

The hrf, odds, sf, and chf of the AFT model are defined by:

hAFT (t; β, x) = H0

(
tex

′β
)
ex

′β, (8.5)

RAFT (t; β, x) = R0

(
tex

′β
)
, (8.6)

SAFT (t; β, x) = S0

(
tex

′β
)
, (8.7)

HAFT (t; β, x) = H0

(
tex

′β
)
. (8.8)

8.2.1.3 AH Model

AFT and PH models have been widely applied to deal with lifetime data in different

disciplines of knowledge. Despite being widely used, such hazard-based regression

models are not suitable to handle survival data with crossing survival curves. Chen

and Wang (2000) proposed a semi-parametric hazard-based regression model, named

the AH model, allowing the analysis of crossing survival curves. In the context of

a parametric AH model, different baseline hazards are available in the AHSurv

package (Muse et al., 2022f).

The hrf, odds, sf, and chf of the AH model are defined by:

hAH(t; β, x) = H0

(
tex

′β
)
, (8.9)

RAH(t; β, x) = R0

(
tex

′β
)e−x′β

, (8.10)

SAH(t; β, x) = S0

(
tex

′β
)e−x′β

, (8.11)

HAH(t; β, x) = H0

(
tex

′β
)
e−x

′β. (8.12)
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8.2.1.4 GH Model

Ciampi and Etezadi-Amoli (1985) introduced a general model for testing the PH

and the AFT hypothesis in the analysis of censored lifetime data with the presence

of covariates. Then, Etezadi-Amoli and Ciampi (1987) extended their work by the

application of the splines as a baseline function. Chen and Jewell (2001) introduced

a general class of semi-parametric hazard-based regression models by following the

same procedure to (Ciampi and Etezadi-Amoli, 1985) just by adding the AH frame-

work.

The hrf, odds, sf, and chf of the GH model are expressed as follows:

hGH (t; β1, β2, x) = H0

(
tex

′β1
)
ex

′β2 , (8.13)

RGH (t; β1, β2, x) = R0

(
tex

′β1
)ex′(β2−β1)

, (8.14)

SGH (t; β1, β2, x) = S0

(
tex

′β1
)ex′(β2−β1)

, (8.15)

HGH (t; β1, β2, x) = H0

(
tex

′β1
)
ex

′(β2−β1), (8.16)

where β1 and β2 denote the unknown regression parameters.

8.2.1.5 Special Cases of the GH Model

All of the hazard-based regression models listed above are incorporated into the GH

model of hazard-based models as special cases. The GH model can be used to derive

the PH,AH, and AFT, models, according to the following theorem.

Theorem 8.2.1 Suppose h(t;x) is given by Equation (8.13). Then, we have the

following results:

1. If β2 = β1, then

h (t; β, x) = ho

(
tex

′β
)
ex

′β
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giving the AFT model.

2. If β1 = 0, then

h (t; β, x) = ho (t) e
x′β

giving the PH model.

3. If β2 = 0, then

h (t; β, x) = ho

(
tex

′β
)

giving the AH model.

Proof 8.2.1 (Proof of Theorem 1) The proof of Theorem 1 is straightforward.

Figure 8.1 illustrates the relationship between the hazard-based regression models

and their formulations using hazard rate and cumulative hazard functions.

Figure 8.1: Visual graph illustrating the relationship between the hazard-
based regression models and their formulation in terms of hazard function
including the general hazard (GH), accelerated hazard (AH), accelerated
failure time (AFT), and proportional hazard (PH) models
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8.2.2 Odds-Based Regression Models

To fit survival time data in medical research, two primary types of odds-based

regression models have been proposed in the literature: proportional odds and AFT

models. Two more innovative odds-based regression models proposed in this study

are the accelerated odds and general odds models. In fields other than medicine, such

as economics, marketing, engineering, social science, criminology, and education,

these models can be utilized to examine actual data.

The odds function indicates how much more likely it is that a particular event will

occur for a given period t. As a result, the odds function is denoted by R(t; θ), and

its mathematical expression is given by the relationship between the cumulative

distribution function and its complementary (survival function):

R(t; θ) =
F (t; θ)

S(t; θ)
=

1− exp[−H(t; θ)]

exp[−H(x; θ)]
= exp[H(t; θ)]− 1, (8.17)

where R(t; θ), F (t; θ), S(t; θ), and H(t; θ) are the odds, cdf, survival and cumulative

hazard functions respectively, and the θ = is the vector of distributional parameters.

The associated derivative of the odds function is expressed as follows:

r(t; θ) =
dR(t; θ)

d(t)
=
h(t; θ)

S(t; θ)
=

f(t; θ)

S(t; θ)2
, (8.18)

where r(t; θ), h(t; θ), and f(t; θ) are the derivative of odds, hrf, and pdf functions

respectively.

In this section, we review two odds-based regression models that have been explored

in the literature along with their formulation. On the other hand, based on the

author’s knowledge, we present two novel odds-based regression models that have

never been used before in the literature. We define the alternative structures below

with respect to time t and a vector of covariates x using the odds function R(.),

derivative of odds function r(.), hazard function h(.), and survival function S(.).
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We assume that the covariate vector is free of an intercept. to ease issues about

identifiability. The vector β is used to represent the unknown regression coefficients.

8.2.2.1 Proportional Odds Model

The proportional odds (PO) model originally introduced by Bennett (1983a), is

an odds-based regression model. According to Bennett (1983a), the PO model is

structurally similar to the proportional hazards model of Cox and may be used in

similar situations. Although the PO model represents an attractive alternative to

the PH model.

The odds function of this model is expressed as follows:

RPO(t; β, x) = R0(t)e
x′β, (8.19)

where R0(t) is the baseline odds function. The associated derivative of the odds

function of the PO model is computed as follows:

rPO(t; β, x) = r0(t)e
x′β, (8.20)

where r0(t) is the baseline derivative odds function.

The hrf, and sf of the PO model are computed as follows:

hPO(t; β, x) =
r0(t)e

x′β

1 +R0(t)ex
′β
, (8.21)

In terms of the baseline hazard, it can be expressed as follows using Equation (8.18):

hPO(t; β, x) =

[
h0(t)
S0(t)

]
ex

′β

1 +
[
F0(t)
S0(t)

]
ex′β

=
h0(t)e

x′β

F0(t)ex
′β + S0(t)

(8.22)
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SPO(t; β, x) =

[
1

1 +R0(t)ex
′β

]
=

 1

1 +
[
F0(t)
S0(t)

]
ex′β

 =

[
1 +

[
F0(t)

S0(t)

]
ex

′β

]−1

(8.23)

Now, we’ll put forth two new models that employ methods related to the hazard-

based regression models. All of the odds-based regression models in this section

will be generalized as well. The model formulation put forward by Chen and Wang

(2000) served as inspiration for the initial proposed approach. Their model includes

accelerated hazards, but we propose a model with accelerated odds. This is how

our models differ from theirs. The model formulation proposed by Chen and Jewell

(2001) served as the basis for the second proposed model. The PH, AH, and AFT

models are included in their model as sub-models. In contrast to their model, ours

includes the PO, AFT, and AO models as sub-models. General odds model is the

name of this model.

8.2.2.2 Accelerated Forms

The second parametric method of taking into account the effect of covariates, known

as the accelerated form, presupposes that the covariates directly rescale time. Ac-

celerated effects of covariates come in two varieties: Two examples of this are the:

i. Accelerated failure time (AFT) model and

ii. Accelerated odds model.

The accelerated types of the odds-based regression models can be formulated in two

different ways, the first of which is similar to the AFT model. The AFT model is the

only parametric survival regression framework that belongs to both the hazard-based

and odds-based regression models, and both the continuous probability distributions

that are closed under the hazard-based regression models and those closed under the

odds-based regression models are consistent with the AFT model. For instance, the

Weibull and Log-logistic distributions, we will explore these distributions in Section
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8.4 of this study. Based on what the authors know, the formulation 2, give us a new

survival regression model that has never been used previously.

The formulation one belongs to the AFT framework and can be expressed as follows:

RAF (t; β, x) = R0

(
tex

′β
)

(8.24)

The associated derivative of the odds function of the AFT model is computed as

follows:

rAF (t; β, x) = r0

(
tex

′β
)
ex

′β (8.25)

The hrf and sf are expressed as follows respectively

hAF (t; β, x) =
R′

0

(
tex

′β
)

1 +R0 (tex
′β)

=

[
h0

(
tex

′β
)

S0(tex′β)

]
ex

′β

1 +

[
F0(tex′β)
S0(tex′β)

]
=

h0
(
tex

′β
)
ex

′β

F0 (tex
′β) + S0 (tex

′β)

= h0

(
tex

′β
)
ex

′β

(8.26)

SAF (t; β, x) =

[
1

1 +R0 (tex
′β)

]−1

=

 1

1 +

[
F0(tex′β)
S0(tex′β)

]


−1

=
[
S0

(
tex

′β
)]

(8.27)

This model as you can see after its derivation and simplification is similar to the

AFT model. As a result, we can remark that the AFT model is the only one of the

survival regression models that holds true for both hazard-based and odds-based

regression models.
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8.2.2.3 Accelerated Odds Model

A novel parametric odds-based regression model that can incorporate censored life-

time data sets with crossing survival curves is introduced here and named ”accel-

erated odds (AO)” model. This model is formulated using the odds function and

by using the same procedure to the AH Model, we got the following parametric

odds-based regression model that is a new one and not done in the literature so far:

RAO(t; β, x) = R0

(
tex

′β
)
e−x

′β, (8.28)

The associated derivative of the odds function of the AO model is computed as

follows:

rAO(t; β, x) = r0

(
tex

′β
)
, (8.29)

The hrf and sf are expressed as follows:

hAO(t; β, x) =
R′

0

(
tex

′β
)

1 +R0 (tex
′β)

=
h0
(
tex

′β
)

F0 (tex
′β) e−x′β + S0 (tex

′β)
(8.30)

SAO(t; β, x) =

 1

1 + e−x′β
[
F0(tex′β)
S0(tex′β)

]
 =

{
1 + e−x

′β

[
F0

(
tex

′β
)

S0 (tex
′β)

]}−1

(8.31)

8.2.2.4 General Odds Model

Another novel general survival regression model, termed the ”general odds (GO)”

model, is introduced here and consists of three odds-based regression models as

special cases, namely: proportional odds (PO), accelerated failure time (AFT), and

accelerated odds (AO) models.

The odds function of this model can be computed as follows:

RGO (t; β1, β2, x) = R0

(
tex

′β1
)
ex

′(β2−β1) (8.32)
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The associated derivative of the odds function of the GO model corresponding to

the odds function in Equation (8.32) is computed as follows:

rGO (t; β1, β2, x) = r0

(
tex

′β1
)
ex

′β2 (8.33)

The hrf and sf of the GO model corresponding to Equation (8.32) are expressed as

follows:

hGO (t; β1, β2, x) =
h0
(
tex

′β1
)
ex

′β2

ex′(β2−β1)F0 (tex
′β1) + S0 (tex

′β1)
(8.34)

SGO (t; β1, β2, x) =

[
1 + ex

′(β2−β1)Fo
(
tex

′β1
)

S0 (tex
′β1)

]−1

(8.35)

In terms of the odds function, the survivor function in Equation (8.35) of the GO

model can be computed as follows:

SGO (t; β1, β2, x) =
[
1 +R0(t)e

x′(β2−β1)
]−1

(8.36)

8.2.2.5 Special Cases of the GO Model

All of the odds-based regression models listed above are incorporated into the GO

model of odds-based models as special cases. The GO model can be used to derive

the PO, AO, and AFT, models, according to the following theorem.

Theorem 8.2.2 Suppose r(t;x) is given by Equation (8.33). Then, we have the

following results:

1. If β1 = β2, then

r (t; β, x) = ro

(
tex

′β
)
eβx

′

giving the AFT model.

2. If β2 = 0, then

r (t; β, x) = ro (t) e
x′β
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giving the PO model.

3. If β1 = 0, then

r (t; β, x) = ro

(
tex

′β
)

giving the AO model.

Proof 8.2.2 (Proof of Theorem 2) The proof of Theorem 2 is straightforward.

Figure 8.2 illustrates the relationship between the odds-based regression models and

their formulations using odds function and the derivative of the odds function.

Figure 8.2: Visual graph illustrating the relationship between the odds-
based regression models and their formulation in terms of odds function
including the general odds (GO), accelerated failure time (AFT), accel-
erated odds (AO), and proportional odds (PO) models.
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8.3 The Proposed Class

8.3.1 Why AM Class of Hazard-Based and Odds-Based Re-

gression Models?

All of the hazard-based and odds-based regression models discussed in the preceding

Section 8.2 can model different aspects of time-to-event data. However, determining

which model is the most accurate and precise in revealing the correlation between

explanatory variables and the baseline hazard (or the baseline odds) is a challenging

issue and a significant research question that must be addressed.

In real life, we must decide between hazard-based regression models and odds-based

regression models when provided with a dataset. A popular technique would be

to fit one model to each of them, and then test the model to determine where it

falls well short. However, the possibility of verifying the model assumptions may be

constrained due to the finite sample size and other data characteristics. Additionally,

if the right time-dependent covariates are taken into account, both the hazard-based

models, such as the PH, AFT, AH, and GH models, and the odds-based models, such

as the PO, AO, AFT, and GO models, may be able to fit the data relatively well.

Another issue with time-to-event data is that lifetimes can be censored in a variety

of ways, including left, right, interval, double, and middle censoring, as well as

survival data with crossover survival or hazard curves. Furthermore, a general class

containing all of the preceding eight hazard-based and odds-based regression models

is required. As a result, it is difficult to address all of the aforementioned open topics

using both frequentist and Bayesian methods.

To address the aforementioned problems and to fill the gap, we introduce the AM

class of hazard-based and odds-based survival regression models, a unique, novel,

tractable, universal, parametric class of survival regression models that encompasses

all hazard-based and odds-based regression models to help applied statisticians to
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decide which model to fit in a given censored survival dataset. We estimate the

model parameters using both frequentist and Bayesian approaches, and we evaluate

the proposed model’s nested structure using a likelihood ratio test.

In this section, we introduce the new survival regression model, its main probabilistic

functions, and some special cases.

8.3.2 Model Formulation

Let T be a non-negative random variable that represents the length of time until

an event of interest occurs. As already sketched, a universal class for hazard-based

and odds-based regression models called the “Amoud Class (AM)” has the following

closed form in order to accommodate survival data with or without the crossover of

the hazard and survival curves:

RAM (t; β1, β2, β3, x) = ex
′(β2−β1)Ro

(
tex

′β1
)ex′(β3−β1)

, (8.37)

where Ro(.) is the baseline odds function. This generality is attained using a struc-

ture resembling the general class of hazard-based regression models, with the addi-

tion that the baseline odds function is multiplied to a link function (i.e., log-linear

function) for the covariates.

The sf for the AM model corresponding to the odds function in Equation (8.37) is

expressed as follows:

SAM (t; β1, β2, β3, x) =

[
1 + ex

′(β2−β1)Fo
(
tex

′β1
)

S0 (tex
′β1)

]−ex′(β3−β1)

. (8.38)

The hrf for the AM model corresponding to Equation (8.37) is computed as follows:

hAM (t; β1, β2, β3, x) =
ex

′(β2+β3−β1)H0

(
tex

′β1
)

ex′(β2−β1)F0 (tex
′β1) + S0 (tex

′β1)
. (8.39)
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8.3.3 Probabilistic Functions for the Amoud Class Model

In terms of odds function, the sf for the AM model in Equation (8.38) can be

expressed as follows:

SAM (t; β1, β2, β3, x) =
[
1 + ex

′(β2−β1)Ro

(
teβ1x

′
)]−ex′(β3−β1)

. (8.40)

The derivative of the odds function for the AM model is expressed as follows:

rAM (t; β1, β2, β3, x) = ro

(
tex

′β1
)
ex

′(β2+β1)Ro

(
teβ1x

′
)ex′(β3−β1)−1

. (8.41)

The cdf for the AM model is computed as follows:

FAM (t; β1, β2, β3, x) = 1−

[
1 + ex

′(β2−β1)Fo
(
tex

′β1
)

S0 (tex
′β1)

]−ex′(β3−β1)

, (8.42)

where the baseline hazard, odds, survival, cumulative distribution, and the derivative

of the odds functions are H0(.), R0(.), S0(.), F0(.), and r0(.), respectively.

8.3.4 Special Sub-Models of the Proposed Class

All of the hazard-based and odds-based regression models listed above are incorpo-

rated into the AM Class of hazard-based and odds-based survival models as special

cases. The AM class can be used to derive the PH, PO, AH, AO, AFT, GH, and GO

models, according to the following theorem:

Theorem 8.3.1 Suppose R(t;x) is given by Equation (8.38). Then, we have the

following results:

1. If β2 = β1, then

R (t; β1, β2, x) = Ro

(
tex

′β1
)ex′(β2−β1)

giving the GH model.
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2. If β3 = β1, then

R (t; β1, β2, x) = Ro

(
tex

′β1
)
ex

′(β2−β1)

which is the GO model.

3. If β3 = β2 = β1, then

R (t; β, x) = Ro

(
tex

′β
)

giving the AFT model.

4. If β3 = β1 = 0, then

R (t; β, x) = Ro (t) e
x′β

which is the PO model.

5. If β2 = β1 = 0, then

R (t; β, x) = Ro (t)
ex

′β

giving the PH model.

6. If If β3 − β1 = 0, β2 = 0, then

R (t; β, x) = Ro

(
tex

′β
)e−x′β

which is the AO model.

7. If β2 − β1 = 0, β3 = 0, then

R (t; β, x) = Ro

(
tex

′β
)
e−x

′β

giving the AH model.

Proof 8.3.1 (Proof of Theorem 3) The proof of Theorem 3 is straightforward.

Figure 8.3 illustrates the relationship between the proposed AM class and its sub-

models including the GH, GO, AFT, AO, AH, PO, and PH models.
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Figure 8.3: Visual graph illustrating the relationship between the pro-
posed Amoud Class (AM) and its sub-models including the proportional
hazard (PH), general odds (GO), general hazard (GH), accelerated fail-
ure time (AFT), accelerated odds (AO), and proportional odds (PO).

8.4 Baseline Distribution

The Weibull distribution, LL distribution, and a GLL distribution that combines

both of them are three different baseline distributions that are presented in this

section. The closeness of the Weibull distribution under hazard-based regression

models and the closeness of the LL distribution under odds-based regression models

were also proven. When applied to censored survival data, the closeness of the dis-

tributions is what causes the regression models to produce comparable findings. We

proposed the use of a modified baseline distribution that demonstrates the differ-

ences between the survival regression models taken into consideration in this study
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because the Weibull and LL distributions have limitations and give the same results

under different survival regression models.

8.4.1 Weibull Baseline for Hazard-Based Regression Models

The Weibull distribution is widely used as a baseline distribution in survival and

reliability regression models. Its hrf is monotone. Moreover, hrf and sf can be de-

rived analytically, and as such, censored data can be analyzed easily. Because of the

tractability and flexibility of hazard and survival functions, the Weibull model is

popular among researchers in survival and reliability analysis. However, the Weibull

distribution has the limitation of not capable of accommodating non-monotone uni-

modal and bathtub-shaped hazard functions (?Alkhairy et al., 2021). Another issue

is that Weibull distribution is not a PO model, but this is the only distribution

closed under the hazard-based regression models. This means that the PH, AH,

and AFT models coincide when the baseline hrf is that of the Weibull distribution.

This also means that the GH model is not identifiable.

The hrf and chf of the Weibull distribution are expressed as follows:

hW (t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0, (8.43)

HW (t; k, α) = (kt)α, t ≥ 0, k, α > 0, (8.44)

where k > 0 and α > 0 are the rate and shape parameters, respectively.

The odds function for the Weibull distribution is expressed as follows:

RLL(t; k, α) = exp [HW (t; k, α)]− 1 = exp((kt)α)− 1, t ≥ 0, k, α > 0. (8.45)

The associated derivative of the odds function of the Weibull distribution is as
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follows:

rW (t; k, α) = hW (t; θ) exp [HW (t; θ)] = αk(kt)α−1 exp((kt)α), t ≥ 0, k, α > 0.

(8.46)

The Weibull accelerated failure time (W-AFT) model is defined as follows:

hW−AFT (t; β, x) = H0

(
tex

′β
)
ex

′β = ex
′βαk

(
ktex

′β
)α−1

=
(
ex

′βk
)α
αtα−1 = αk∗tα−1.

(8.47)

In Equation (8.47), we can observe the hrf for the Weibull in Equation (8.43).

As mentioned, the scale parameter differs between groups and we can write it as:

Ti ∼ Weibull
(
k∗ =

(
ex

′βk
)α
, α
)
, with scale k∗ and shape α.

On the other hand, if a Weibull distribution is assumed for Ti under the PH frame-

work (W-PH) in Equation (8.1), it then follows that Ti ∼ Weibull
(
k∗ = ex

′βkα, α
)
,

with scale k∗ and shape α. The hrf for the W-PH model is rewritten as follows:

hW−PH(t; β, x) = r0(t)e
x′β = αk(kt)α−1ex

′β = ex
′βkααtα−1 = αk∗tα−1. (8.48)

Technically, it is possible to compare both models in terms of the resulting scale

parameter k∗. This proves that the Weibull baseline is the only baseline distribution

that is closed under all hazard-based regression models.

8.4.2 Log-Logistic Baseline for Odds-Based Regression Mod-

els

The LL distribution is a frequently used baseline distribution in survival and relia-

bility regression models. Its hrf is monotone decreasing hazard and non-monotone

unimodal. The LL model hazard and density shapes are similar to those of the log-

normal distribution. but it has explicit algebraic expressions for the hazard rate and

survival functions which makes it more suitable for the analysis of censored lifetime
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data than the log-normal distribution (Muse et al., 2021b,c). The LL distribution

has the limitation of not being capable of accommodating monotone increasing and

bathtub shaped hrfs. Another issue is that the LL distribution is not a PH model,

but is the only distribution closed under the odds-based regression models. This

means that PO, AO, and AFT models coincide when the baseline hazard is LL.

This also makes the GO model not identifiable.

The cdf and sf of the LL distribution are expressed as follows:

FLL(t; k, α) =
(kt)α

1 + (kt)α
, t ≥ 0, k, α > 0, (8.49)

SLL(t; k, α) =
1

1 + (kt)α
, t ≥ 0, k, α > 0, (8.50)

where k > 0, and α > 0 are the rate and shape parameters, respectively.

The odds function for the LL distribution is expressed as follows:

RLL(t; k, α) =
FLL(t; k, α)

SLL(t; k, α)
=

(kt)α

1+(kt)α

1
1+(kt)α

= (kt)α, t ≥ 0, k, α > 0. (8.51)

The associated derivative of the odds function of the LL distribution is as follows:

rLL(t; k, α) = R′
LL(t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0. (8.52)

It is obvious that the odds function for the LL distribution and its derivative are

comparable to the chf and hrf functions for the Weibull distribution, respectively.

Therefore, it is simple to illustrate that the odds-based regression models simply

consider the LL distribution as a closed baseline distribution. the PO and AFT

models, as examples.

According to Lawless Lawless (2011), the LL distribution can be used to support a

parametric AFT model, allowing scale parameter to differ between groups. For this,

we need to keep the AFT structure that we mentioned above in the odds-based
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regression model formulation and adopt the derivative odds function of the LL dis-

tribution for Equation (8.52) for the reference group.

The log-logistic AFT (LL-AFT) is defined as follows:

rLL−AFT (t; β, x) = r0

(
tex

′β
)
ex

′β = ex
′βαk

(
ktex

′β
)α−1

=
(
ex

′βk
)α
αtα−1 = αk∗tα−1.

(8.53)

In Equation (8.53), we can observe the derivative of the odds structure for the LL

in (8.52). As mentioned, the scale parameter differs between groups and we can

write it as Ti ∼ log− logistic
(
k∗ =

(
ex

′βk
)α
, α
)
, with scale k∗ and shape α.

On the other hand, if a LL distribution is assumed for Ti under the PO framework

(LL-PO) in Equation (8.20) it then follows that Ti ∼ log− logistic
(
k∗ = ex

′βkα, α
)
,

with scale k∗ and shape α. The derivative of the odds function for the LL-PO model

is rewritten as follows:

rLL−pO(t; β, x) = r0(t)e
x′β = αk(kt)α−1ex

′β = ex
′βkααtα−1 = αk∗tα−1. (8.54)

Technically, it is possible to compare both models in terms of the resulting scale

parameter k∗. This proves that the log-logistic distribution is the only baseline

distribution that is closed under all odds-based regression models.

8.4.3 Generalized Log-Logistic Baseline for All Models

The GLL distribution (Al-Aziz et al., 2022; Muse et al., 2022a,g, 2021a; Khan and

Khosa, 2016) is an example of a baseline distribution that can incorporate both

monotone and non-monotone hrfs, as well as be closed under both odds-based and

hazard-based regression models, and has the benefit of including both the Weibull

and LL models as sub-models (Muse et al., 2021a).
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The hrf and the odds function of the GLL distribution are expressed as follows:

hGLL(t; k, α, η) =
αk(kt)α−1

[1 + (ηt)α]
, t ≥ 0, k, α, η > 0, (8.55)

RGLL(t; k, α, η) = [1 + (ηt)α]
kα

ηα − 1, t ≥ 0, k, α, η > 0, (8.56)

where k > 0, α > 0, and η > 0 are the distributional rate and shape parameters,

respectively.

The hrf in Equation (8.55) consists of different sub-models of the GLL distribution

(Muse et al., 2021a).

- Log-logistic (LL) distribution: when k = η, Equation (8.55) reduces to the hrf of

an LL distribution, which is

hLL(t; k, α) =
αk(kt)α−1

[1 + (kt)α]
, t ≥ 0, k, α > 0. (8.57)

-Burr-XII (BXII) distribution: when η = 1, Equation (8.55) reduces to the hrf of a

BXII-2 distribution, which is

hBXII(t; k, α) =
αk(kt)α−1

[1 + tα]
, t ≥ 0, k, α > 0. (8.58)

- Weibull (W) distribution: when η → 0, Equation (8.55) reduces to the hrf of the

W distribution, which is

hW (t; k, α) = αk(kt)α−1, t ≥ 0, k, α > 0. (8.59)
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8.5 Estimation Based on Frequentist and Bayesian

Approaches

In this section, the unknown parameters of the proposed fully parametric AM class

with GLL, LL and Weibull baseline distributions are estimated using frequentist

(maximum likelihood estimation (MLE)) and Bayesian approaches.

8.5.1 MLE for Right-Censored Data

As was earlier indicated, not always an observed time will be a survival time: the

subject is observed up to a particular time and is no longer followed up for a reason

unrelated to the event occurrence. This is an illustration of a right-censored observed

time, which was taken into consideration in this work and is the most common type

of censoring in oncology studies. The same survival likelihood functions are reached

despite the fact that there are many right-censoring techniques (Lawless, 2011).

This ensures the identifiability of the distribution of the observed times under the

further assumption that the survival times are independent random variables for all

subjects (random censoring) and that the censoring times depend on no parameter

associated with the survival function (non-informative censoring) (Collett, 2015).

These presumptions allow for the formulation of a general expression for the sur-

vival likelihood function. Assuming that a survival time Ti = ti or a censored

time Ci = ci are recorded for each subject, i, 1 ≤ i ≤ n. Assume also that

survival (censoring) times are independent among all subjects, i.e., T1, . . . , Tn ∼

FT (t; θT ) (C1, . . . , Cn ∼ FC (c; θC)). The actual observable time is defined by Yi =

min (Ti, Ci), whose distribution is indexed by a vector θ (θT , θC) of parameters.

Then, the information of a subject i is given by the pair (Yi, δi), where δi = ITi<ci be-

ing the censoring indicator random variable. For a pair (Yi = ti, δi = 1 ) (a survival
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observed time), the likelihood contribution is given by:

lim
ε→0+

1

2ε
P (yi − ε < Yi < yi + ε, δi = 1; θ) = lim

ε→0+

1

2ε
P (yi − ε < Ti < yi + ε, Ti ≤ Ci; θ)

= lim
ε→0+

1

2ε

∫ yi+ε

yi−ε

∫ ∞

t

dFC (c; θC) dFT (t; θT ) (independence)

= lim
ε→0+

1

2ε

∫ yi+ε

yi−ε
[1− FC (c; θC)] dFT (t; θT )

= [1− FC (yi; θC)] fT (yi; θT ) .

(8.60)

On the other hand, the likelihood contribution for a pair (Yi = ci, δi = 0) (right

censored observed time), the likelihood contribution is provided by

lim
ε→0+

1

2ε
P (yi − ε < Yi < yi + ε, δi = 0; θ) = lim

ε→0+

1

2ε
P (yi − ε < Ci < yi + ε, Ti > Ci; θ)

= [1− FT (yi; θT )] fC (yi; θC) .

(8.61)

Thus, under a random right censoring, the survival likelihood function for a sample

y = (y1, ..., yn) of size n has the following expression:

L(θ; y) =
n∏
i=1

{[1− FC (yi; θC)] fT (yi; θT )}δi {[1− FT (yi | θT )] fC (yi; θC)}1−δi .

(8.62)

Assuming that censoring is non-informative, i.e., the distribution of the censoring

times does not depend on the parameters θT from the survival function, the factors

[1− FC (yi; θC)]
δi and [fC (yi; θC)]

1−δi do not give any information for inference and

can be dropped from Equation (8.62). Thereby, θ = θT and a simpler survival
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likelihood function is given by

L(θ, β;D) =
n∏
i=1

[f (ti; θ, β, x)]
δi [S (ti; θ, β, x)]

1−δi

=
n∏
i=1

[
h (ti; θ, β, x)

S (ti; θ, β, x)

]δi
[S (ti; θ, β, x)]

1−δi

=
n∏
i=1

[h (ti; θ, β, x)]
δi S (ti; θ, β, x)

=
n∏
i=1

[h (ti; θ, β, x)]
δi exp [−H (ti; θ, β, x)] ,

(8.63)

where D = (ti, δi, xi, i = 1, 2, . . . , n) represents the observed data including ti = sur-

vival time, δi = censoring time, θ is the vector of baseline distributional parameters,

and xi = covariates. The maximum likelihood estimation can be generated via an

iterative optimization method (e.g., the Newton-Raphson algorithm).

The above formulation in Equation (8.63) is useful for modelling hazard-based re-

gression models, like the PH, AH, and GH models. An alternative version can be

obtained only in terms of the odds function and its derivative as follows:

L(θ, β;D) =
n∏
i=1

[f (ti; θ, β, x)]
δi [S (ti; θ, β, x)]

1−δi

=
n∏
i=1

[
r (ti; θ, β, x)S (ti; θ, β, x)

2]δi [S (ti; θ, β, x)]
1−δi

=
n∏
i=1

[r (ti; θ, β, x)]
δi [S (ti; θ, β, x)]

1−δi

=
n∏
i=1

[
r (ti; θ, β, x)

1 +R (ti; θ, β, x)

]δi
[S (ti; θ, β, x)] ,

=
n∏
i=1

[
r (ti; θ, β, x)

1 +R (ti; θ, β, x)

]δi
exp [−H (ti; θ, β, x)]

=
n∏
i=1

[
r (ti; θ, β, x)

1 +R (ti; θ, β, x)

]δi [ 1

1 +R (ti; θ, β, x)

]
.

(8.64)
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The log-likelihood function corresponding to Equation (8.63) is written as follows:

ℓ(θ, β;D) =
n∑
i=1

δi log [H0 (ti; θ, β, x)]−
n∑
i=1

H0 (ti; θ, β, x) . (8.65)

8.5.2 The Log-Likelihood Functions

Let θ = (α, k)′,Ξ = (β′
1, β

′
2, β

′
3)

′ ,Ω = (θ′,Ξ′)′ , ai = ex
′
i(β2+β3−β1), bi = ex

′
i(β2−β1), ci =

ex
′
i(β3−β1), and di = ek.ti.x

′
iβ1 and assume the Weibull baseline distribution, then the

log-likelihood function for the Weibull-AM (W-AM) model is

ℓ(Ω) =
n∑
i=1

δiα +
n∑
i=1

δik + (α− 1)
n∑
i=1

δi log di

+
n∑
i=1

δi log ai −
n∑
i=1

δi log [{bi (1− di)}+ di]

−
n∑
i=1

log

[
ci

(
1 + bi

{
1− di
di

})]
.

(8.66)

The log-likelihood function for the LL baseline distribution under the AM class can

be expressed as follows:

ℓ(Ω) =
n∑
i=1

δiα +
n∑
i=1

δik + (α− 1)
n∑
i=1

δi log (log di)−
n∑
i=1

δi log [1 + log di]

+
n∑
i=1

δi log ai −
n∑
i=1

δi log

[{
bi

(
log di

1 + log di

)}
+ (1 + log di)

]
−

n∑
i=1

log [ci (1 + bi {log di})] .

(8.67)

Moreover, assuming θ = (α, k, η)′, and regarding the GLL baseline distribution
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under the AM class, the log-likelihood function can be expressed as follows:

ℓ(Ω) =
n∑
i=1

δiα +
n∑
i=1

δik + (α− 1)
n∑
i=1

δi log (log di)−
n∑
i=1

δi log [1 +mi]

+
n∑
i=1

δi log ai −
n∑
i=1

δi log
[{
bi

(
1− {1 +mi}−(κ

η )
α
)
)}

+
(
{1 +mi}−(κ

η )
α
)
]

−
n∑
i=1

log
[
ci

〈
1 + bi {1 +mi}(

κ
η )

α

− 1
〉]
.

(8.68)

8.5.3 Bayesian Inference

In this section, we offer general guidelines for prior selection of the regression coef-

ficients associated with covariates and baseline distribution parameters. We exam-

ined a prior independent scenario between the baseline parameters in H0(t) (baseline

hazard) or R0(t)(baseline odds) and the regression coefficients. Additionally, we de-

termined the prior independence of the regression coefficients in a non-informative

scenario with normal distributions of zero mean and a large known variance (Lázaro

et al., 2021) as

π (H0, β1, β2, β3) = π (H0) π(β1, β2, β3) = π (H0)
J∏
j=1

N
(
βj | 0, σ2

j

)
, (8.69)

where π (H0) is the prior distribution of all baseline parameters and hyperparameters

in H0(t).

For the baseline hazard parameter θ in baseline distributions, we consider the

following priors:

π(α) ∼ G (a1, b1) =
ba11

Γ (a1)
αa1−1e−b1α; a1, b1, α > 0, (8.70)

π(η) ∼ G (a2, b2) =
ba22

Γ (a2)
ηa2−1e−b2η; a2, b2, η > 0, (8.71)
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π(k) ∼ G (a3, b3) =
ba33

Γ (a3)
ka3−1e−b3k; a3, b3, k > 0. (8.72)

The values of the hyper-parameters values of the prior distributions are selected

from the historical data of the baseline distribution (Muse et al., 2021a).

For the regression coefficients prior, we have

π (β′
1) ∼ N (a4, b4) , (8.73)

π (β′
2) ∼ N (a5, b5) , (8.74)

π (β′
3) ∼ N (a6, b6) . (8.75)

The joint prior distribution for the distributional parameters and coefficient of re-

gression expressed as follows:

π (α, k, η, β′
1, β

′
2) = π(α)π(η)π(k)π (β′

1) π (β
′
2)π (β

′
3) . (8.76)

The model must be supplied with data D = {(ti, δi,xi) , i = 1, . . . , n}, where ti is the

observed lifetime time for the i th individual, δi is the censoring status taking 1 if the

event of interest has occurred and 0 otherwise, and xi are the explanotory variables.

Prior knowledge and experimental data are combined in the posterior distribution

via the Bayes’ theorem, and we get

π (H0, β1, β2, β3;D) ∝ L (H0, β1, β2, β3) π (H0, β1, β2, β3) , (8.77)

where L (H0, β) is the likelihood function of (H0, β1, β2, β3) given in Equation (8.63).

This study uses Markov chain Monte Carlo (McMC) techniques for Bayesian infer-

ence, and the Metropolis within the Gibbs algorithm is used to sample from the

posterior distribution (Smith and Roberts, 1993). In our implementation, the inde-

pendence sampler is used to update each parameter component (Vines et al., 1996).
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8.6 Practical Illustrations

A clinical trial right-censored oncology dataset is examined in this section to demon-

strate the applicability and tractability of the proposed models, including the fully-

parametric AM Class, GO, and AO models with three different baseline distribu-

tions, including Weibull, LL, and GLL baseline distributions in modelling right-

censored survival data with crossing survival curves. We compared the proposed

AM class with its sub-models that contain both hazard-based regression models,

including PH, AH, AFT, and GH models, and the odds-based regression models,

including PO, AO, AFT, and GO models, using both the MLE frequentist approach

(MLE) estimation technique and Bayesian approaches using noninformative priors.

The class and its sub-models were compared using different information criteria,

including the classical ones (AIC, BIC, BCAIC, CAIC, and HQIC), Bayesian model

selection (WAIC, and LOOIC), and checking the nested structure of the AM class

using the LRT test.

8.6.1 IPASS Clinical Trial Data Set

In order to show the applicability of the proposed models, we re-analyzed a large

dataset from a randomized clinical trial called IPASS for this study. In a randomized

controlled trial, gefitinib vs. carboplatin-paclitaxel was compared for progression-

free survival in patients with advanced pulmonary adenocarcinoma. An unadjusted

PH model was used to examine the main outcome. Despite the implicit violation of

the PH assumption represented by the crossing of the two survival curves, the study’s

findings were published using this model (Mok et al., 2009).

Argyropoulos and Unruh (2015) reconstructed and re-published the IPASS dataset,

and it is now freely available in an AHSurv R package (Muse et al., 2022e). The

features stated in the references are all still there in this reconstructed dataset,
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which is also accessible to the clinical trial’s results. The months of March 2006

through April 2008 are covered by the database. The main objective of the trial is to

evaluate the effects of gefitinib versus carboplatin/paclitaxel doublet chemotherapy

on progression-free survival (in months) in a subset of patients with non-small-cell

lung cancer (NSCLC). According to the trial’s design, n = 1207 previously untreated

individuals in East Asia with advanced lung adenocarcinoma and who were non-

smokers or previous light smokers were randomly assigned to either carboplatin +

paclitaxel (608 patients) or gefitinib (608 patients) (609 patients). The observations

show 965 occurrences of the event of interest (79.3 percent), with 449 (73.7 percent)

relating to patients receiving gefitinib and 516 (84.9 percent) related to patients

receiving carboplatin+paclitaxel.

The primary goal of this section is to appropriately assess the rebuilt IPASS data

and estimate the regression coefficients using the proposed fully-parametric AM class

provided in Section 8.3. For the proposed model, we evaluate both the maximum

likelihood and the Bayesian estimating approaches to achieve this goal.

We fit all hazard-based and odds-based regression models as well as the general

proposed AM class using three different baseline distributions, namely Weibull,

LL, and GLL distributions, letting xi = I(treatment = chemotherapy), which

equals 1 if the treatment involves gefitinib and 0 if the treatment involves car-

boplatin/paclitaxel. Tables 8.1–8.3 provide a summary of the numerical results.

Figure 8.4 displays the total time on test (TTT) plot for the survival time and the

survival curves of the two types of drugs where crossing between the curves can

be seen, which confirms the efficacy of the proposed novel models in this study,

including the AM, GO, and AO models, plus some other existing models in the

literature, including the GH, and AH models, and that it is appropriate for the

analysis of survival data with crossover survival curves.
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Figure 8.4: Illustrating the total time on test (TTT) plot, and the crossing
survival curves for the two types of drugs determined using the Kaplan-
Meier method for the IPASS dataset.

The parameters and related standard errors from the various hazard- and odds-based

regression models employing the Weibull baseline distribution and five different in-

formation criterion estimations are shown in Table 8.1. The TTT plot in Figure 8.4

shows that the data’s increasing hazard rate points to the theoretical use of the

Weibull baseline distribution. According to the findings, the Weibull-Amoud class

has the lowest values for each information criterion when compared to all other

competing regression models, demonstrating its superiority over other hazard-based
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and odds-based regression models. Another crucial aspect that restricts the use of

the Weibull baseline distribution is the fact that all hazard-based regression models

yield the same result, which is a weakness of the Weibull baseline.

All hazard-based regression models, including the AH, PH, AFT, and GH models,

produce the same findings when compared to the Weibull baseline as illustrated

in Table 8.1. The LL baseline distribution was used to fit and compare all of the

regression models after we looked at an alternate baseline distribution. Using the

LL baseline distribution and five different information criteria, Table 8.2 provides

estimates of the parameters and related standard errors from the various hazard-

based and odds-based regression models. According to the AIC values in Table 8.2,

there is no clear preference for one model over the other. The fact that all odds-

based regression models yield the same result is a significant factor that restricts

the applicability of the LL baseline distribution.
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Table 8.1: Results from the fitted proposed fully-parametric odds-based
and hazard-based regression models with W baseline distribution to
IPASS data set

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

W-AM β1 0.167 0.008 5552.888 5583.409 5578.409 5552.849 5562.495

β2 -1.346 0.109

β3 2.815 0.129

α 1.845 0.002

κ 7.003 0.009

W-GH β1 1.398 0.007 5686.968 5711.385 5707.385 5686.943 5694.653

β2 -0.862 0.129

α 1.362 0.129

κ 6.613 0.129

W-GO β1 -2.574 0.008 5609.716 5634.133 5630.133 5609.691 5617.402

β2 1.921 0.011

α 1.596 0.003

κ 6.870 0.005

W-AH β -0.875 0.005 5684.474 5702.787 5699.787 5684.460 5690.239

α 1.365 0.004

κ 6.762 0.003

W-PH β -0.320 0.007 5684.474 5702.787 5699.787 5684.460 5690.239

α 1.365 0.004

κ 6.762 0.003

W-AO β -0.567 0.001 5652.746 5671.058 5668.058 5652.731 5658.510

α 1.419 0.003

κa 6.515 0.002

W-PO β -0.003 0.017 5708.640 5726.952 5723.952 5708.625 5714.404

α 1.341 0.010

κ 7.594 0.006

W-AFT β -0.234 0.009 5684.474 5702.787 5699.787 5684.460 5690.239

α 1.365 0.004

κ 6.762 0.003

When the Weibull distribution is used as the baseline distribution, all hazard-based

regression models exhibit coincidence as shown in Table 8.1. On the other hand,

when the baseline distribution is an LL distribution, all odds-based regression models

exhibit coincidence as illustrated in Table 8.2.

These two points recommend looking for and utilizing a modified baseline distribu-
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tion, which can provide us with various results for all survival regression models,

regardless of whether they are hazard-based, odds-based, or a combination of both.

We used the GLL baseline distribution, where a sub-model of the Weibull distribu-

tion that yields different results for all the regression models taken into consideration

in this study, to close the gap and compare the seven different hazard-based and

odds-based regression models that are currently in use.

Table 8.2: Results from the fitted proposed fully-parametric odds-based
and hazard-based regression models with LL baseline distribution to
IPASS data set

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

LL-AM β1 2.185 0.030 5690.051 5720.572 5715.572 5690.014 5699.658

β2 -0.361 0.009

β3 -0.171 0.011

α 2.291 0.022

κ 5.498 0.006

LL-GH β1 1.074 0.018 5688.051 5712.468 5708.468 5688.027 5695.737

β2 -0.088 0.019

α 2.291 0.029

κ 5.498 0.109

LL-GO β1 -0.845 0.038 5757.552 5781.968 5777.968 5757.527 5765.237

β2 0.726 0.129

α 1.801 0.129

κ 5.478 0.129

LL-AH β 1.119 0.014 5687.976 5706.289 5703.289 5687.961 5693.740

α 2.259 0.008

κ 5.614 0.009

LL-PH β -0.128 0.013 5751.598 5769.911 5766.911 5751.584 5757.362

α 1.832 0.010

κ 5.156 0.009

LL-AO β 0.061 0.007 5755.552 5773.864 5770.864 5755.537 5761.316

α 1.801 0.009

κ 5.478 0.010

LL-PO β 0.049 0.004 5755.552 5773.864 5770.864 5755.537 5761.316

α 1.801 0.009

κ 5.478 0.010

LL-AFT β 0.027 0.009 5755.552 5773.864 5770.864 5755.537 5761.316

α 1.801 0.009

κ 5.478 0.010
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Table 8.3: Results from the fitted proposed fully-parametric odds-based
and hazard-based regression models with GLL baseline distribution to
IPASS data set

Models Parameter(s) Estimate SE AIC BCAIC BIC CAIC HQIC

GLL-AM β1 0.179 0.003 5554.864 5591.489 5585.489 5554.810 5566.392

β2 -1.344 0.001

β3 2.824 0.002

α 1.853 0.129

κ 0.143 0.129

η 0.010 0.129

GLL−GH β1 2.049 0.001 5605.079 5635.600 5630.600 5605.041 5614.686

β2 -0.835 0.002

α 1.818 0.129

κ 0.151 0.129

η 0.045 0.129

GLL−GO β1 -0.635 0.002 5645.507 5676.028 5671.028 5645.470 5655.114

β2 0.339 0.001

α 1.364 0.129

κ 0.145 0.129

η 0.000 0.129

GLL− AH β 1.545 0.001 5656.576 5680.993 5676.993 5656.551 5664.262

α 1.886 0.129

κ 0.154 0.129

η 0.101 0.129

GLL− PH β -0.064 0.014 5686.187 5710.604 5706.604 5686.162 5693.872

α -0.171 0.129

κ -0.171 0.129

η -0.171 0.129

GLL− AO β -0.708 0.002 5661.339 5685.755 5681.755 5661.314 5669.024

α 1.482 0.129

κ 0.158 0.129

η 0.000 0.129

GLL− PO β -0.008 0.021 5708.832 5733.249 5729.249 5708.808 5716.518

α 1.406 0.129

κ 0.139 0.129

η 0.031 0.129

GLL-AFT β -0.166 0.014 5688.582 5712.999 5708.999 5688.557 5696.267

α 1.359 0.129

κ 0.143 0.129

η 0.000 0.129

For the proposed AM class and seven different hazard- and odds-based regression

models with GLL baseline distribution, the parameter estimates and their associated
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standard errors are shown in Table 8.3. We see that for the eight competing models,

the estimates of the baseline distribution parameters and their standard errors are

quite similar and within a reasonable range. The GLL-AM model appears to be

preferred above the other competing models and provided the best-fitting model,

according to the values of the five distinct information criteria. The results also

showed that the GH and GO models are preferred over their sub-models. Finally,

the results indicate that the only basic survival regression models that can be used

to model and analyze survival data with crossing survival curves are the AH and

AO models.

The GLL-AM regression model is the best model compared to the others, according

to the likelihood ratio test (LRT) results in Table 8.4. The previously stated result

is supported by the plots of the estimated hazards in Figure8.7.

Table 8.4: LRT Values for the Amoud class and its sub-models using
IPASS Data Set

Model Hypothesis LRT Statistic P-value

GH H0 : β2 = β1, H1 : H0 is false, 52.214 <0.0001

GO H0: β3 = β1, H1 : H0 i is false, 92.644 <0.0001

AH H0: β2 − β1 = 0, β3 = 0, H1 : H0 is false, 105.712 <0.0001

AO H0 : β3 − β1=0,β2=0, H1 : H0 is false, 135.322 <0.0001

PH H0 : β1 = β2=0, H1 : H0 i s false, 110.474 <0.0001

PO H0: β1 = β3=0, H1 : H0 is false, 157.968 <0.0001

AFT H0 : β1 = β2 = β3, H1 : H0 is false, 137.718 <0.0001

According to the likelihood ratio test (LRT) results in Table 8.5, the GLL-GH regres-

sion model is the most effective of the alternatives hazard-based regression models.
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Table 8.5: LRT Values for the GH Model and its sub-models using IPASS
Data Set

Models Hypothesis LRT Statistic P-value

GH vs. AH H0 : β2=0, H1 : H0 i is false, 53.498 <0.0001

GH vs. PH H0 : β1=0, H1 : H0 i is false, 83.108 <0.0001

GH vs. AFT H0 β1 = β2, H1 : H0 is false, 85.504 <0.0001

According to the likelihood ratio test (LRT) results in Table 8.6, the GLL-GO re-

gression model is the most effective of the alternatives odds-based regression models.

Table 8.6: LRT values for the GO Model and its sub-models using IPASS
Data Set

Models Hypothesis LRT Statistic P-value

GO vs. AO H0 : β2=0, H1 : H0 is false, 17.830 <0.0001

GO vs. PO H0 : β1=0, H1 : H0 is false, 65.324 <0.0001

GO vs. AFT H0 : β1 = β2, H1 : H0 is false, 45.074 <0.0001

The W-AM model is the best model among the others, according to the hazard

plots of the estimated hazard rates in Figure 8.5, while other hazard-based models

with Weibull baseline distributions fitted similarly and there was no more difference

at all. According to the plots in Figure 8.6, there is no model that is preferred

over the others when the baseline distribution is the LL distribution, and there

is no difference between any of the odds-based regression models that were fitted.

Finally, as illustrated in Figure 8.7, the GLL-AM is the superior compared to the

other competitive models.
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Figure 8.5: Estimated hrfs for the competitive models of the IPASS
dataset.

Figure 8.6: Estimated hrfs for the competitive models of the IPASS
dataset.
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Figure 8.7: Estimated hrfs for the competitive models of the IPASS
dataset.

8.6.2 Bayesian Analysis

We performed all Bayesian survival inferential procedures resulting from the combi-

nation of the aforementioned generic baseline distribution specifications with various

prior scenarios in baseline parameters as well as regression coefficients related to ex-

planatory variables. Using the Rstan package in R (Carpenter et al., 2017), the

joint posterior distribution for each model was approximated. We performed four

parallel chains with 3,000 iterations and a burn-in of 1,000 for each estimated model.

To lessen autocorrelation in the sample, chains were also trimmed by storing after

every fifth iteration. With a prospective scale reduction factor close to 1 and an

actual number of separate simulation draws more than 400, convergence to the joint

posterior distribution was assured (Ashraf-Ul-Alam and Khan, 2021; Alvares et al.,

2021).

The posterior distribution’s numerical summary characteristics are displayed in Ta-
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ble 8.7. According to the summary results, the McMC algorithm has converged to

the joint posterior distribution because the potential scale reduction factor (R̂) is 1,

the effective sample size (n−eff) is greater than 400, and the Monte Carlo standard

error (SE) is less than 5percent of the posterior standard deviations (SD) for all of

the parameters. For visually examining convergence, use trace graphs. The trace

plots in Figures 8.8 to 8.16 demonstrate a stationary pattern fluctuating inside a

band, demonstrating convergence of the McMC algorithm. For the proposed Amoud

class, density and autocorrelation graphs are also employed in Figures 8.17 and 8.17

respectively, and both show that the McMC algorithm has converged. Table 8.8

displays the computed models’ WAIC and LOOIC values. In comparison to the

other fitted models, including the GLL-AH, GLL-AO, GLL-PO, GLL-AFT, GLL-

GH, GLL-GO, and GLL-PH models, the GLL-AM model performs better based on

the WAIC and LOOIC values. The worst performance is displayed by the most

popular survival regression models, such as the PH, PO, and AFT models. This

proves that, despite their frequent application, these models are not appropriate for

handling survival data with crossing survival curves.

Figure 8.8: Trace plots for the GLL-AM model parameters.

324



Table 8.7: Results for the posterior properties of the competitive models.

Models Par (s) Estimate SE SD 2.5% Medium 97.5% n− eff R̂
GLL-AM β1 0.293 0.003 0.166 -0.032 0.291 0.618 4108 1.000

β2 -1.287 0.002 0.096 -1.473 -1.288 -1.096 3309 1.000
β3 2.810 0.004 0.242 2.349 2.811 3.279 3431 1.000
α 1.953 0.001 0.072 1.818 1.952 2.095 3477 1.000
κ 0.151 0.000 0.004 0.143 0.151 0.160 4309 1.001
η 0.052 0.000 0.010 0.032 0.052 0.073 3613 1.001

GLL-GH β1 1.839 0.005 0.219 1.444 1.828 2.296 2068 1.001
β2 -0.672 0.003 0.139 -0.968 -0.663 -0.425 2232 1.000
α 1.851 0.001 0.075 1.712 1.849 2.004 2672 1.002
κ 0.155 0.000 0.005 0.145 0.155 0.165 2431 1.001
η 0.059 0.000 0.013 0.036 0.059 0.087 1739 1.002

GLL-GO β1 -0.395 0.001 0.065 -0.524 -0.395 -0.263 3169 1.001
β2 0.157 0.001 0.077 0.005 0.158 0.307 3303 1.001
α 1.450 0.001 0.041 1.371 1.450 1.533 3576 1.000
κ 0.145 0.000 0.004 0.137 0.145 0.154 3523 1.001
η 0.008 0.000 0.007 0.000 0.007 0.027 3664 1.000

GLL-AH β 1.448 0.003 0.143 1.163 1.445 1.728 3090 1.000
α 1.912 0.002 0.089 1.742 1.911 2.087 2446 1.000
κ 0.159 0.000 0.006 0.148 0.159 0.170 2406 1.000
η 0.112 0.000 0.013 0.088 0.112 0.137 1989 1.000

GLL-PH β -0.294 0.001 0.066 -0.427 -0.294 -0.168 3606 1.000
α 1.526 0.001 0.054 1.425 1.524 1.635 3214 1.001
κ 0.167 0.000 0.007 0.155 0.167 0.180 3082 1.000
η 0.000 0.016 0.042 0.071 0.104 2693 1.002

GLL-AO β -0.557 0.001 0.092 -0.740 -0.556 -0.378 4181 1.000
α 1.481 0.001 0.041 1.403 1.480 1.561 3743 1.001
κ 0.163 0.000 0.005 0.153 0.163 0.174 3575 1.001
η 0.042 0.000 0.011 0.022 0.042 0.067 3654 1.002

GLL-PO β -0.011 0.002 0.105 -0.214 -0.011 0.196 2226 1.001
α 1.412 0.002 0.059 1.308 1.408 1.537 1028 1.003
κ 0.140 0.000 0.007 0.128 0.140 0.156 837 1.003
η 0.033 0.001 0.019 0.003 0.032 0.075 726 1.004

GLL-AFT β -0.188 0.001 0.054 -0.291 -0.190 -0.078 3662 1.000
α 1.481 0.001 0.051 1.388 1.479 1.584 3041 1.000
κ 0.161 0.000 0.006 0.150 0.161 0.174 2976 1.000
η 0.061 0.000 0.016 0.032 0.060 0.095 2601 1.000

Table 8.8: Bayesian Model selection between the proposed AM class and
its sub-models using the GLL baseline distribution.

Model WAIC LOOIC
GLL-AM 5559.50 5559.54
GLL-GH 5608.30 5608.28
GLL-GO 5651.76 5651.69
GLL-AH 5657.40 5697.43
GLL-PH 5692.50 5692.51
GLL-AO 5666.60 5666.61
GLL-PO 5708.60 5708.62
GLL-AFT 5698.00 5698.04
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Figure 8.9: Trace plots for the GLL-GH model parameters.

Figure 8.10: Trace plots for the GLL-GO model parameters.

Figure 8.11: Trace plots for the GLL-PH model parameters.
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Figure 8.12: Trace plots for the GLL-AH model parameters.

Figure 8.13: Trace plots for the GLL-PO model parameters..

Figure 8.14: Trace plots for the GLL-AO model parameters..
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Figure 8.15: Trace plots for the GLL-AFT model parameters.

Figure 8.16: Density plots for the GLL-AM model parameters.
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Figure 8.17: Autocorrelation plots for the GLL-AM model parameters.

8.7 Conclusions

We investigated a novel, general, flexible, fully parametric class for hazard-based

and odds-based regression models, named the AM class, with a GLL baseline dis-

tribution that can incorporate the basic shapes of the failure rate and contains,

as specific cases, the main survival regression models of interest in time-to-event

analysis: PO, PH, AO, AH, AFT, GO, and GH models. However, the AH, AO,

and GO models’ restricted utility is mostly due to a lack of reliable and efficient

estimating methods. We demonstrated that both classical and Bayesian inference

may be performed using existing optimization techniques by adopting a flexible

parametric baseline distribution.

The proposed AM class framework is quite adaptable and can easily be applied

to a wide range of reliability and survival analysis applications. This framework

specifically incorporates and generalizes the practically significant PH, AFT, AH,

GH, PO, AO, and GO survival regression models. Additionally, the GLL baseline

model, which only requires one additional parameter, accounts for the main hrf
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shapes (monotone and non-monotone) within some of the most common baseline

distributions (Burr type XII, LL, Weibull, and exponential distributions).

The combination of such adaptable parametric odds-based and hazard-based regres-

sion models with the AM class structure is a potent tool for modeling survival times.

Although we concentrated on overall survival models, the proposed tractable fully

parametric AM class is equally useful in excess hazard (relative survival) models.

In the AM class, we used the GLL distribution as a baseline distribution; however,

other versatile parametric distributions, such as the generalized Weibull, exponenti-

ated Weibull, power generalized Weibull, and generalized gamma distributions, can

also accommodate the basic shapes of the hrf including constant, monotone and

non-monotone shapes.

We only used the GLL distribution in this case since it allows for a simple im-

plementation, makes parameter interpretation easier, and the accompanying MLEs

and Bayesian estimators are consistent and asymptotically normal in the presence of

right-censored observations. Finally, an R package called AmoudSurv was developed

to fit the odds-based regression models (Muse et al., 2022b).

In the future, we want to develop an R package to fit the most common parametric

hazard-based and odds-based regression models, such as the AH, AO, AFT, PH,

PO, GO, GH, and AM models, with different baseline distributions that can repre-

sent varied hazard rates. This study’s technique can also be extended to numerous

event scenarios, such as the multi-state model, competing risk model, and to include

lifetime data with cure proportion rate and frailty characteristics. It is also possible

to adapt it to joint model frameworks, spatial models, mixed effects models, and ex-

cess hazard models. Other strategies for censoring observations, such as interval

censoring, left censoring, middle-censoring, and double-censoring, could be utilized

in future investigations. This is beyond the focus of this study, but it will be covered

in many others.
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CHAPTER 9

Conclusions, Contributions and Future

Work

9.1 Introduction

This chapter presents the summary of the dissertation, main contributions and rec-

ommendations for future work.

9.2 Conclusions

Right-censored survival data arise naturally in many oncology studies. The existing

literature in right-censored survival data analysis mainly focuses on the estimation

of the distribution function of the lifetime variate without presence of covariates,

small studies used the PH and AFT models. There are many situations where the

lifetime data are observed along with covariates.

The existing statistical methods for various censoring schemes such as right, left,

interval, middle and double censoring are not enough in such contexts and therefore

new flexible Bayesian parametric hazard-based regression models along with modi-

fied baseline distributions are required for the analysis of such a data. In view of this,

in this thesis, we have proposed several flexible Bayesian Parametric hazard-based

regression models for right-censored survival data.

In chapter 3, we studied the mathematical and statistical properties of the baseline

distribution considered in this thesis. The proposed baseline hazard parametesr are

estimated using both classical via MLE and Bayesian approaches. An extensive

Monte Carlo simulation is used to assess the performance of the estimators. A real-
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life oncology data set related to bladder cancer patients is used to demonstrate the

applicability and flexibility of the baseline distribution.

In chapter 4, we presented a flexible Bayesian parametric proportional hazard model

and the model parameters are estimated via the Bayesian approach using non-

informative priors. Extensive simulation studies were carried out to asses the perfor-

mance of the proposed model’s estimators under finite sample setting. The proposed

model was applied to a right-censored cancer data set.

In chapter 5, we have proposed accelerated failure time model in parametric context

using generalized log-logistic baseline and the model parameters are estimated using

both Bayesian (via non-inforamtive priors) and frequentist approach (via MLE). Ex-

tensive simulation studies were carried out to assess the performance of the proposed

model’s estimators under finite sample setting. The proposed model was applied to

a right-censored larynx cancer patients data.

In chapter 6, we have introduced a flexible Bayesian parametric accelerated hazard

model with generalized log-logistic baseline hazard. The proposed model’s param-

eters are estimated using both classical and Bayesian inference. An extensive sim-

ulation study was carried out to assess the performance of the proposed model’s

estimators. The proposed model was well demonstrated using right-censored can-

cer data set with crossover survival curves that the PH and AFT models arenot

appropriate to model.

Furthermore, in Chapter 7, We have extended the proposed models in chapters 4,5,

and 6 to a general class of hazard-based regression models in parametric context.

The proposed model’s parameters were estimated using both Classical (via MLE),

and Bayesian approach via non-informative priors. Simulation studies were carried

out to assess the proposed model’s estimators and the proposed model was applied

to real-life right-censored cancer data set.

Finally, in Chapter 8, we combined the models described in Chapters 4, 5, 6, and

7, as well as three more prevalent techniques, proportional odds, accelerated odds
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and general odds models, to build a univeral class of survival regression models

in a parametric framework named Amoud Class. The parameters of the proposed

class were estimated using both Bayesian and frequentist approaches, and the nested

structure of the Amoud class was evaluated using the likelihood ration test. The

proposed model was applied to real-life right-censored cancer data set.

9.3 Contributions

The initial goal was to provide simply a flexible Bayesian parametric AFT model

with a generalized log-logistic (GLL) baseline distribution, but we recognize that

with a larger number of parametric hazard-based regression models, there would be

a bigger range of applicability. Since we obtained the formulation, interpretation,

inference, and applications for each parametric hazard-based regression model using

GLL baseline distribution.

This thesis contributes to the statistical science with some novel parametric hazard-

based and odds-based regression models:

i. The Bayesian parametric PH model with GLL baseline hazard is the first

contributed model.

ii. The second contribution is a computational study in which we created an

R package called ”CoxSurv” to fit a flexible parametric proportional hazard

(PH) utilizing at least 15 distinct baseline distributions that can accommodate

diverse hazard rate shapes and mixed effects proportional hazard (MEPH)

models for the application of clustered and spatial survival data sets.

iii. The third contribution comes from the AFT, in which we applied both Bayesian

and frequentist techniques and used the GLL as a baseline hazard.

iv. The fourth contribution comes from the AH framework, where we used the

GLL as a baseline hazard, similar to the previous two. We used both Bayesian
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and classical inferences. Whereas the PH and AFT cannot be used to examine

survival data with crossing survival curves, the AH model can.

v. The fifth contribution is based on computational work in which we created

an R package named ”AHSurv” to fit flexible parametric accelerated hazards

(AH) regression models with 13 different baseline hazard distributions for both

net and relative survival frameworks.

vi. The sixth contribution stems from the extension and modification of the pre-

vious three (PH, AFT, and AH) models into a nested general class of hazard-

based regression models that all use the same GLL baseline distribution.

vii. The seventh contribution is also based on computational work in which we

created an R package named ”AmoudSurv” to fit tractable parametric odds-

based regression models, including the proportional odds, accelerated failure

time, and two novel models developed in this study in Chapter 8, named ac-

celereted odds (AO), and general odds (GO) models with 17 different baseline

distributions that can accommodate diverse hazard rate shapes. This package

enables other researchers to use the approaches in their own datasets that are

related to the dissertation aims.

viii. Last but not least, we looked for a universal class named Amoud Class that

nested most of the survival regression models, including hazard-based regres-

sion (PH, AH, AFT, and GH) models, odds-based regression (PO, AO, AFT,

GO) models, to make it easier to compare them and choose which one is

acceptable for the different survival data sets..

9.4 Future Work

This thesis has attempted to relax the assumptions in Section 1.3. We would suggest

some simple modifications to the parametric hazard-based regression models we
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employed in the thesis that may give place to future work. These, as well as some

additional extensions are summarized below:

i. The data sets used in this dissertation were right-censored samples. However,

other types of censoring data sets may arise in different disciplines of studies.

Therefore, further studies should be consider the use of other types of cen-

sored data in demonstrating the applications of the developed hazard-based

regression models.

ii. Another important area is when we have more than one event times. In many

occasions, there may arise multiple causes of failure, which can be observed

along with covariates. Competing risks models can be employed in such con-

texts. Hence, the proposed hazard-based regression models can be extended

to this setup, which merits a future research.

iii. The paradigm described in Chapter 3 is applicable to other distributions.

In fact, we recommend the development of new flexible distributions using

parameter induction technique. Also, assessing the flexibility of the proposed

distribution using censored data point out another research line.

iv. The parametric hazard-based regression models which we have considered in

the chapters 4, 5, 6, 7, and 8 can be extended by choosing other modified

baseline distributions that can incorporate all the basic shapes for the hazard

rate function.

v. Chapter 8, suggests a couple of extensions. For instance, the study of other

general parametric classes of hazard-based and odds-based regression models.

vi. Another area for future work could be using the reversed hazard rate function

instead of hazard rate. The reverse hazard rate function is applicable for

modeling and analysis of left censored survival data sets.
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vii. In many applications of time-to-event data analysis, the patients are either

treated at various medical facilities or are part of various clusters based on

geographic or administrative regions. Accounting for between-cluster variabil-

ity is necessary for the study of such data. Ignoring this variability would

force the analysis to rely on irrational assumptions and might have an impact

on how the statistical models are influenced. Consequently, another future

research avenue could be the development of novel parametric mixed-effects

hazard- and odds-based models, which are especially well suited for the study

of clustered survival data.

viii. Throughout this dissertation, we assumed that the survival time variate and

censoring interval are independently distributed, given covariates. In practice,

this assumption may seem to be restrictive and in such instances one can relax

this requirement, which leads to a dependent setup. The parametric hazard-

based regression models for right-censored data under such a dependent setup

can be explored in future research.
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