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ABSTRACT 

The availability of more cost-effective sources of energy is a key driver of any economic 

development more so for a developing country like Kenya. The interest in biofuels is 

motivated by: the fluctuating oil prices and recognizing that the global fossil fuel reserves 

are exhausting fast; concern about fossil fuel emissions polluting the environment and 

resultant environmental change due to such emissions. Biodiesel, as a clean and renewable 

combustible, is a good alternative to replace mineral diesel. The main objective of this 

study was to apply Genetic Algorithm (GA) in the optimization of microalgae cultivation 

conditions in a locally assembled flat plate perspex photobioreactor (FPPPBR) at pilot 

plant scale. An optimization model was developed using GA to predict the biomass yield 

of microalgae incubated in a FPPPBR. Samples from which microalgae were isolated 

were collected aseptically in February 2021. Isolation was done by streaking, pour plate 

and serial dilution methods in Marine Biological Laboratory media at 27 oC, under 

continuous light intensity of 15 μmolphotonsm-2s-1. The model was validated using the 

strain that possessed a higher growth rate incubated in FPPPBR under 400-700 nm 

wavelength.  As the validation process was ongoing, the influence of light quality and type 

of strain on yield was being investigated concurrently. This was replicated thrice. The 

validation of the simulation model was done by comparing simulated and experimental 

data. The statistical parameters used were: mean square error (MSE), mean absolute 

percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE), 

correlation coefficient (R) and student’s t-test. Statistical analyses were performed using 

IBM SPSS statistics 25 software, Design expert 13 and MATLAB R2016a. The simulation 

results produced optimum microalgae yield as: 0.250715±0.001608 gmolphotons-1 and 

optimal cultivation conditions as; biomass concentration of 0.1 gL-1, microalgae growth 

rate of 0.0102 h-1, photon flux density of 100 µmolphotonsm-2s-2, volume of reactor of 

192 L and illuminated PBR surface area of 2.16 m2. Two strains were obtained and 

investigated namely, Chlorella emersonii and Chlorella vulgaris, whose growth rate was 

found to be 0.16 day-1 and 0.244 day-1 respectively. The experimental biomass yield was 

0.438423±0.027122 gmolphotons-1 and the RMSE value for the optimization model was 

0.1889, the MSE, MAE and MAPE were; 0.0357, 0.2717 and 42.67% respectively, R 

value of 0.231 and t-value of -165.091 at 5% level of significance. The C. vulgaris yielded; 

9.30±0.57 g, 8.32±0.48 g and 7.78±0.67 g under 400-700, 430-480 and 610-680 nm 

wavelength, respectively. The corresponding values for the C. emersonii were; 5.88±0.26 

g, 5.46±0.20 g and 5.12±0.14 g. The %lipids produced by the C. vulgaris were; 43.61, 

35.87 and 34.56 respectively, under 430-480, 610-680 and 400-700 nm wavelengths. The 

C. emersonii yielded 33.50, 29.80 and 28.03 %lipids under 610-680, 430-480 and 400-

700 nm wavelengths, respectively. C. vulgaris has potential for microalgae cultivation for 

biomass and biofuel production. A new optimization model was developed to predict 

microalgal biomass yield and the strains grown in this study produced the highest biomass 

under 400-700 nm wavelength. C. vulgaris produced highest lipids (43.61%) under 430-

480 nm whereas C. emersonii yielded highest lipids (33.50%) under 610-680 nm. GA and 

RSM could be used to optimize microalgae cultivation conditions.  
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CHAPTER ONE 

 INTRODUCTION 

1.1 Background of the Study 

Increased interest in biofuels is mainly driven by the fluctuating oil prices and recognition 

of the fact that the global fossil fuel reserves are getting exhausted fast (Mata et al., 2010; 

Martin, 2013; Behera et al., 2015). Also, concerns about environmental pollution and 

resultant environmental change due to fossil fuel emissions, the requirements of the Paris 

Agreement of 2015 of “net zero emissions of carbon” as a long-term global goal between 

2050 and 2100, the provision of alternative outlets for agricultural producers (Mukabane, 

2015) and foreign exchange savings (Demirbas, 2008). Owing to endless and increasing 

combustion of fossil carbon, the amount of greenhouse gas, particularly CO2 has increased 

(Höök & Tang, 2013). As a consequence, global warming and climate change are 

threatening food security, ecological stability and social welfare (Chisti, 2008; 

Christenson & Sims, 2011). Globally, biofuels development is to address energy security, 

poverty mitigation and economic development (Gheewala et al., 2013). According to 

Mitchell (2011), biofuel production in Africa will increase national energy security and 

foreign exchange saving by reducing oil imports. Biofuels have the potential to provide 

socio-economic benefits like having industrial plants in rural areas, creating employment, 

encouraging other economic activities and influencing other related industries (Gilio & 

Moraes, 2016; Moraes et al., 2016). The transportation and energy sector are the two 

leading sources globally, responsible for the generation of 20% and 60% of greenhouse 

gases (GHG) emissions, respectively (Stephens et al., 2010; Khatiwada, 2013; 

International Energy Agency [IEA], 2015). It is projected that with the development of 

emerging economies the global consumption of energy will rise considerably and this will 

lead to more environmental devastation (Stephens et al., 2010). 

Sustainable development addresses humanity’s aspirations for an improved life. The 

Sustainable Development Goals (SDGs) guarantee a better and sustainable future for all, 
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balancing the economic, social and environmental development (Fonseca & Carvalho, 

2019). Access to clean and affordable energy (SDG7) is an indispensable component of 

achieving other SDGs such as SDG1 (No poverty), SDG2 (Zero hunger), SDG3 (Good  

Health and well-being), SDG8 (Decent work and economic growth) and SDG13 (Climate 

action) (Fonseca et al., 2020). SDG1 targets to end poverty, SDG2 to end hunger and 

realize food security, SDG3 to safeguard healthy lives, SDG8 to promote economic 

growth and fruitful employment, and SDG13 to take urgent action to combat climate 

change and its impacts (Fonseca et al., 2020). Biofuels are anticipated to be clean and 

affordable sources of energy. Thus the production of biodiesel, a biofuel, will achieve 

SDG7 and thus simultaneously achieve the other SDGs (Machandi, 2021). 

Global biofuel production has been increasing rapidly over the last decade, but the 

expanding biofuel industry has recently raised pertinent concerns. In particular, the 

sustainability of many first-generation biofuels, fuels made from edible sugars and starch, 

has been increasingly questioned over concerns such as reported displacement of food 

crops, effects on the environment and climate change (IEA, 2008). In general, there is 

growing consensus that if significant emissions reductions in the transport sector are to be 

achieved, biofuel technologies must become more efficient in terms of net lifecycle 

greenhouse gas emission reduction while at the same time be socially and environmentally 

sustainable. It is increasingly understood that most first-generation biofuels, with the 

exception of sugarcane ethanol, will likely have a limited role in the future transport fuel 

mix (IEA, 2008).     

Biodiesel is a mixture of fatty acid alkyl monoesters derived from vegetable oils and fats. 

It can be used as a replacement of fossil oil derived diesel because of their structural 

similarity.  Biodiesel, a major biofuel, is produced using vegetable oil, plant oil, and 

animal fat. Biodiesel is an alternative fuel for diesel and most diesel engines can use 100% 

biodiesel (Cheng, 2010).  The main feedstock currently used for biodiesel production 

includes: soybean, canola seed, rapeseed, sunflower, palm, coconut, jatropha, karanja, 

used fried oil and animal fats (Khan et al., 2009). A great challenge of using vegetable 
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oils for biodiesel production is the availability of crop land for oil production to produce 

enough biodiesel that significantly replaces the current fossil fuel consumption. Chisti 

(2007) estimated that it would take 24% of the existing crop land in the US to grow oil 

palm that is considered as a high yield oil crop or over three times of the current cropland 

in the US to grow soybean to produce enough biodiesel that would replace 50% of the 

transportation fuel in the US. There are research activities on using alternative oils such 

as waste oils from kitchens and restaurants and microalgal oils for biodiesel production. 

Miao and Wu (2006) studied biodiesel production from heterotrophic microalgal oil. Shah 

et al. (2007) investigated the utilization of restaurant waste oil as  

a precursor for sophorolipid and biodiesel production. Zhang et al. (2003) evaluated the 

Biodiesel production from waste cooking oil including economic analysis. A great 

advantage of using microalgal oil over vegetable oils for biodiesel production is that the 

production of algal oil does not necessarily need cropland. Furthermore, it has a much 

higher oil yield per acre of land because the microalgae can be grown in 3 dimensions in 

photo-reactors (Cheng, 2010). However, a big challenge of biodiesel production using 

algal oil is that the cost of algal oil production is prohibitively high.            

The cost of energy is a threat to Kenya’s realization of Vision 2030 strategic plan, whereby 

Kenya wants to be a middle income nation by this period. Kenya’s production energy mix 

include 52.1% of hydro, 32.5% of fossil fuels, 13.2% geothermal energy, 1.8% of biogas 

cogeneration, and 0.4% of wind. Gasoline, hydro and geothermal powers are unable to 

meet Kenya’s energy demand. This coupled with fossil fuel price fluctuations due to 

political situation in producing countries may reduce Kenya’s economic growth 

expectations. This is currently being worsened by the ongoing war between Russia and 

Ukraine. As a consequence nowadays, the tendency is to turn to biofuels to fill the gap 

between energy demand and supply. 
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Biofuels are divided into three categories (Larson, 2008; Luque et al., 2008; Ahmad et al., 

2011): 

i. First-generation biofuels made largely from edible sugars and starches, such as 

sugar cane and corn. 

ii. Second-generation biofuels made from non-edible lignocellulosic materials, for 

example maize stover, wheat straw, saw dust, sugar cane bagasse and sweet 

sorghum bagasse. 

iii. Third-generation biofuels made from algae and microbes.  

iv. Fourth-generation-fuel cells. 

Biofuels can also be classified as: 

i. Simple sugar based like those from sugar cane and sweet sorghum 

ii. Starch based –maize, cassava and microalgae 

iii. Lignocellulose based- stalks, straws, grass and other agricultural wastes  

iv. Microorganism based biodiesel 

1.2 Statement of the Problem 

Kenya’s demand for energy has increased to outstrip supply. This has continued to push 

the prices of fossil fuels and hydroelectricity higher up. The consequence of this is that it 

has led to the increase of prices of crucial goods and services thus lowering the standard 

of living of most Kenyans. If this trend continues, it will reduce economic and industrial 

growth hence jeopardizing the realization of Vision 2030. Sustainable production of 

renewable energy is being debated globally since it is increasingly understood that first 

generation biofuels, primarily produced from food crops and mostly oil seeds, compete 

for arable land, freshwater or biodiverse natural landscapes and are limited in their ability 

to achieve targets for biofuel production (Kalpesh et al., 2012). Due to continuous and 

increasing combustion of fossil carbon, the amount of greenhouse gases has increased. As 
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a result, global warming and climate change are threatening ecological stability, food and 

nutritional security and social welfare (Chisti, 2008; Christenson & Sims, 2011). The 

transportation and energy sector are the two major sources responsible for the generation 

of 20% and 60% of greenhouse gases (GHG) emissions respectively; and it is expected 

that with the development of emerging economies, the global consumption of energy will 

rise considerably and this will lead to more environmental damage (Stephens et al., 2010). 

These concerns have increased the interest in developing second and third generation 

biofuels such as lignocellulosics and microalgae, respectively, which potentially offer 

great opportunities in the longer term and do not need to compete for arable land and 

precious freshwater (Chisti, 2007; Schenk et al., 2008). 

The two main methods of infrastructure considered suitable for cultivation of microalgae 

are open raceway ponds (ORPs) and photobioreactors (PBRs) (Jorquera et al., 2010). 

Photobioreactors are more generally used for growing microalgae for high value 

commodities or for experimental work at a small scale. However, they have been 

considered for producing algal biomass on a large scale as they are capable of providing 

optimal conditions for the growth of the microalgae (Jorquera et al., 2010; Soratana & 

Landis, 2011). PBRs provide very high productivity rates compared to raceway ponds. 

The reason why PBRs however have not become widespread is due to the energy and cost 

intensity of production and operation. PBRs require a far higher surface area for the 

volume of algal broth compared to alternative infrastructure. Much higher volumes of 

material are therefore required which in turn necessitates a higher capital energy input and 

increases environmental impacts (Soratana & Landis, 2011). The biomass production cost 

should fall below 400 USD/ton for it to be economically viable which is very far from 

reported full-scale production costs (Bilad et al., 2012). The costs depicted from a study 

on a medium-scale plant showed that the production costs of microalgal biomass is still 

173 times higher than the targeted value (Acien et al., 2012).  

Optimization can be defined as the process of finding the conditions that give the 

maximum or minimum value of a function (Rao, 2009). In recent years, some optimization 

techniques that are conceptually different from the traditional mathematical programming 
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methods have been developed. These techniques are labeled as modern or nontraditional 

methods of optimization. Most of these techniques are based on certain characteristics and 

behavior of biological, molecular, swarm of insects, and neurobiological systems. These 

techniques are: 1. Genetic algorithms 2. Simulated annealing 3. Particle swarm 

optimization 4. Ant colony optimization 5. Fuzzy optimization and 6. Neural-network-

based methods. These techniques are emerging as popular methods for the solution of 

complex engineering problems. Most require only the function values (and not the 

derivatives). The genetic algorithms are based on the principles of natural genetics and 

natural selection (Rao, 2009).  

Countless practical optimum design problems are described by; mixed continuous– 

discrete variables, and discontinuous and nonconvex design spaces. If standard nonlinear 

programming methods are used for this type of problem, they will be inefficient, 

computationally expensive, and, in most cases, find a relative optimum that is closest to 

the starting point. Genetic algorithms (GAs) are well suited for solving such problems, 

and in most cases they can find the global optimum (minimum) solution with a high 

probability (Rao, 2009). Therefore to substantially lower the production costs, significant 

improvements should be applied by optimizing many different aspects of the cultivation 

process. 

1.3 Justification 

One of the pillars of Kenya’s Vision 2030 is economic development which cannot be 

achieved without a secure, reliable and sustainable energy source. The vision of the Kenya 

Government Biofuel Policy is to increase access to energy through sustainable biofuel 

production, and reduce dependence on fossil fuels by 25% in volume by the year 2030 

(Kenya’s energy policy, 2012).  

In comparison with other sources, for example, animal fat, oleaginous grain crops and oil 

palm, there are remarkable advantages of biodiesel from microalgae as an alternative 

energy source for the future. Advantages include the following: (i) real growth rate and 
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oil productivity of microalgae per unit of land use are much higher than those of other 

biofuel crops; (ii) algae grow in a wide range of environments. Fresh, brackish and saline 

waters are ideal environments for growth of different algae species. Even in municipal 

and other types of wastewater, algae grow well by using inorganic (NH4
+, NO3

-, PO4
3-) as 

well as organic sources of nutrients (Wang et al., 2008; Garbowski et al., 2020; Metsoviti 

et al., 2020; Alvarez et al., 2021); (iii) microalgae absorb carbon dioxide 

photosynthetically and convert it into chemical energy and biomass. The removal of 

carbon dioxide from the atmosphere (and possibly industrial flue gases) may play an 

important role in global warming mitigation by replacing fossil fuel emissions (Sheehan 

et al., 1998; Wang et al., 2008). Producing 100 tons of algal biomass fixes roughly 183 

tons of carbon dioxide from the atmosphere (Chisti, 2007); (iv) microalgae can provide  

raw materials for different types of fuels such as biodiesel, ethanol, hydrogen and/or 

methane which are rapidly biodegradable and may perform more efficiently than fossil 

fuels; (v) products extracted from algal biomass can be used as sources for organic 

fertilizers or high value products, such as omega-3 fatty acids, sterols, carotenoids and 

other pigments and antioxidants, and could be amenable to a zero waste biorefinery 

concept (Wang et al., 2008). Therefore, microalgae have been regarded as possibly the 

only route to sustainable displacement of high proportions of fossil oil consumption. 

This study therefore developed a computer optimization model to simulate the yield of 

microalgae in a flat plate photobioreactor. The data generated will assist in optimizing the 

growth conditions of microalgae at pilot plant scale, hence leading to optimum yields. 

Furthermore microalgae strains were isolated and characterized. This will help in 

identifying local strains of microalgae that have the potential for biomass and biodiesel 

production. Finally, the effect of white, blue and red wavelengths on the biomass and lipid 

yields of microalgae was investigated. Therefore the data obtained will be used to advise 

policy especially in a world faced by unpredictable and complex challenges on energy. 
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1.4 Hypotheses 

1. The results of biomass yield estimation using optimization model have no 

significant difference with experimentally produced yields of microalgae grown 

in a flat plate perspex photobioreactor.  

2. There is no significant difference in specific growth rate and doubling time 

between strains of microalgae. 

3. Light wavelength and strain of microalgae has no influence on biomass yields of 

microalgae grown in flat plate perspex photobioreactor. 

4. Light wavelength and strain of microalgae has no effect on lipid yields of 

microalgae grown in flat plate perspex photobioreactor.  

1.5.1 Main Objective 

To apply Genetic Algorithm in the optimization of microalgae cultivation conditions in a 

locally assembled flat plate perspex photobioreactor at pilot plant scale. 

1.5.2 Specific Objectives 

The main objective was achieved via the following specific objectives:  

1. To develop a computer optimization model to simulate the biomass yield of 

microalgae in a flat plate photobioreactor at pilot plant scale. 

2. To isolate and characterize strains of microalgae from local aquatic ecosystems 

that can be used in biomass and lipid production. 

3. To validate the performance of the developed computer simulation model using a 

flat plate perspex photobioreactor at pilot plant scale under white wavelength. 

4. To investigate the effect of light of various wavelengths and strain on the biomass 

and lipid yield of microalgae grown in the flat plate perspex photobioreactor. 
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1.6 Research Questions 

1. Is there a significant difference between results of biomass yield estimation using 

optimization model and those experimentally produced of microalgae grown in a 

flat plate perspex photobioreactor?  

2. Can strains of microalgae be isolated and characterized from local aquatic 

ecosystems for biodiesel production? 

3. Does light wavelength and strain of microalgae have influence on biomass yields 

of microalgae grown in flat plate perspex photobioreactor? 

4. Does light wavelength and strain of microalgae have effect on lipid yields of 

microalgae grown in flat plate perspex photobioreactor? 

1.7 Scope of Study 

The study was confined to flat plate photobioreactors, and their application in the growing 

of microalgae at pilot plant level. Two strains used in this research namely; C. emersonii 

and C. vulgaris were isolated from water samples collected in local aquatic ecosystems. 

The isolated strains were grown in three PBRs using light with various wavelengths. The 

optimization model was validated by the biomass yield of the strain that had a higher 

growth rate and a shorter doubling time i.e., C. vulgaris, grown under white wavelength 

supplied by light emitting diodes (LEDs). The biomass and lipid yields produced under 

the different light wavelengths were then compared statistically. 

1.8 Limitations of the Study 

The study sought to apply Genetic Algorithm in the optimization of microalgae cultivation 

conditions in a locally assembled flat plate perspex photobioreactor at pilot plant scale. 

There was no existing literature on optimization of microalgae cultivation systems using 

modern optimization methods especially GA.  Furthermore, for every experimental run, 

approximately 600 litres of sterilized MBL media was required whereas the autoclave 

available could sterilize only a maximum of 12 litres of culture media at a time for 3 hours. 
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Last but not least, non-probability sampling was applied to collect water samples from 

local aquatic ecosystems. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

According to International Energy (IEA) Statistics for the year 2010, the Africa and the 

World consumed 3.4 and 85.7 million barrels of petroleum fuel respectively. It is 

speculated that the current rate of consumption of the petroleum fuel is 2.7% of the 

reserves, and the petroleum stocks may be depleted within the next 50 years or so 

(Taufiqurrahmi & Bhatia, 2011). Use of petroleum fuel is considered to have a negative 

environmental impact. Petroleum is a mixture of a number of organic compounds and 

some of which are toxic. Combustion of petroleum hydrocarbons lead to a net increase in 

carbon dioxide, a factor assumed to be responsible for global warming and climate change 

(Kumar, 2015). Adequate energy supply, not only dramatically increases human 

capabilities and opportunities; they are integral to poverty alleviation and environmentally 

sound social and economic development (Ahuja & Tatsutani, 2009; Kamau et al., 2015). 

The continuous reduction of fossil fuel reserves which are non-renewable source and 

limited in supply, global concern on climate change as well as threats to energy security 

have led to interest in the exploration, production and exploitation of biofuels in household 

and transport sector. Apart from that, as energy predicament is beginning to hit almost 

every part of the world due to rapid industrialization and population growth, the quest for 

renewable energy sources has become the key challenge in this century in order to 

stimulate a more sustainable energy development for the future. Renewable energy 

sources such as solar, wind, hydro, geothermal and energy from biomass and waste have 

been effectively developed and used by different nations to limit the use of fossil fuels 

(Lam & Lee, 2012). Nevertheless, based on a recent study from (IEA), only energy 

produced from combustible renewables and waste has the utmost potential among other 

renewable sources (IEA, 2010). From the report, combustible renewables and waste 

accounted for 10.0% of the total primary energy supply, compared to hydro energy 2.2% 

and other 0.7% (geothermal, solar, wind and heat). Hence, it was predicted that renewable 
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energy from combustible sources such as biodiesel will play a more critical role as an 

alternative renewable energy in the near future to further diversify the global energy 

sources. Biofuels production and use reduce reliance on fossil fuel and contribute to rural 

and sustainable development (Demirbas, 2008; Ben-Iwo et al., 2016). Energy security, 

environmental concerns, foreign exchange and socio-economic well-being of rural people 

are some of the causes that have led to promotion of biofuels (Demirbas, 2008). 

Global biofuel production has been increasing rapidly over the last decade, but the 

expanding biofuel industry has recently raised pertinent concerns. In particular, the 

sustainability of many first-generation biofuels; fuels made from food and feed crops and 

mainly vegetable oil, has been increasingly questioned over concerns such as reported 

displacement of food crops, effects on the environment and climate change (Cheng, 2010). 

In general, there is growing consensus that if significant emissions reductions in the 

transport sector are to be achieved, biofuel technologies must become more efficient in 

terms of net lifecycle greenhouse gas emission reduction while at the same time be 

environmentally and socially sustainable. It is increasingly understood that most first-

generation biofuels, except sugarcane ethanol, will likely have a limited role in the future 

transport fuel mix (IEA, 2008).     

Biodiesel is a mixture of fatty acid alkyl monoesters (FAMEs) derived from vegetable fats 

and oils. It can be used as a replacement of fossil diesel because of their structural 

similarity. Biodiesel is currently being acknowledged as a green and alternative renewable 

diesel fuel that has attracted enormous interest from researchers, governments, and local 

and international traders. Some of the benefits of using biodiesel instead of fossil diesel 

are that it is a non-toxic fuel, is biodegradable and has lower emission of GHG when 

burned in diesel engine (Dermirbus, 2009). Biodiesel is produced using vegetable oil, 

plant oil, and animal fat. Biodiesel is an alternative fuel for diesel and most diesel engines 

can use 100% biodiesel (Cheng 2010). The main feedstock currently used for biodiesel 

production includes palm oil, sunflower, rapeseed, soybean, and canola seed. A great 

challenge of using vegetable oils for biodiesel production is the availability of crop land 

for oil production to produce enough biodiesel that significantly replaces the current fossil 
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fuel consumption. Chisti (2007) estimated that it would take 24% of the existing crop land 

in the US to grow oil palm that is considered as a high yield oil crop or over three times 

of the current cropland in the US to grow soybean to produce enough biodiesel that would 

replace 50% of the transportation fuel in the US. Thus, second generation biodiesel 

derived from non-edible oils such as Jatropha curcas L. seem as an attractive alternative 

feedstock for the biodiesel industry. In fact, the use of jatropha oil in existing biodiesel 

plant does not require major alteration on the equipment and process flow, mainly because 

the oil has similar properties to edible oils. However, jatropha oil does contain higher 

concentration of free fatty acid (FFA) that may require an additional pre-treatment step. 

Another merit of using jatropha oil is that jatropha trees can grow easily on non-arable or 

wasteland. Nevertheless, regular irrigation, heavy fertilization and good management 

practices are required to ensure high oil yield (Lam et al., 2009). Due to these weaknesses, 

the pursuit for a more sustainable biodiesel feedstock continues and now focuses on 

microalgae.  

Several studies have been conducted on using alternative oils such as waste oils from 

restaurants and kitchens and microalgal oils for biodiesel production (Cheng 2010). Shah 

et al. (2007) investigated the utilization of restaurant waste oil as a precursor for 

sophorolipid and biodiesel production. Zhang et al. (2003) evaluated the Biodiesel 

production from waste cooking oil including economic analysis. Miao and Wu (2006) 

studied biodiesel production from heterotrophic microalgal oil. A great advantage of using 

microalgal oil over vegetable oils for biodiesel production is that the production of algal 

oil does not need cropland and has much higher oil yield per acre of land because the 

microalgae can be grown in 3 dimensions in photobioreactors (Cheng 2010). However, a 

big challenge of biodiesel production using algal oil is that the cost of algal oil production 

is extremely high (Cheng 2010). This review paper provides information on where we 

have come since the first research on algal cultivation and energy recovery was initiated, 

what is currently hampering the commercial application of the concept and where we need 

to go from here. Continued research will allow us to recover the maximum potential from 
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algal biomass which will provide an increasingly vital resource for use in the future as 

predicted by Oswald (2003).   

2.2 Microalgae as a Feedstock for Biodiesel Production 

Microalgae are a diverse group of aquatic photosynthetic microorganisms that grow very 

fast and have the ability to yield large quantities of lipids adequate for biodiesel production 

(Li et al., 2008; World Watch Institute (WWI), 2007). Algae as a potential source of fuel 

was initially investigated during the gas scare of the late 1970s (Li et al., 2008). The 

National Renewable Energy Laboratory (NREL) in the United States started its algae 

feedstock studies in the late 1970s, but their research program was halted in 1996. Recent 

renewed interest has led the NREL to restart their research in algae (Donovan & Stowe, 

2009). The potential for microalgae to provide biomass for biodiesel production is now 

widely accepted (Miguel et al., 2010). Further, microalgae are recognized among the most 

efficient for this purpose, and some studies, for instance, by Chisti (2007), assert it is the 

“only source of biodiesel that has the potential to completely displace fossil diesel” (Table 

2.1). The superiority of microalgae as a feedstock for biodiesel production compared with 

the other conventional oil crops such as soybeans are (Wu et al., 2012):  

(1) Microalgae have simple structures, but high photosynthetic efficiency with a growth 

doubling time as short as 24 h (Tredici, 2010). Moreover, microalgae can be grown all 

year round. (2) The species abundance and biodiversity of microalgae over a broad range 

of climates and geographic regions make seasonal and geographical restrictions much less 

of a concern compared with other lipid feedstock. Microalgae may be cultivated on fresh 

water, saltwater lakes with eutrophication, oceans, marginal lands, deserts, etc., hence 

reducing or eliminating the competition for land with conventional agriculture (Khan et 

al., 2009) and opening economic opportunities in arid or salinity affected regions of the 

world (Schenk et al., 2008). (3) Microalgae can effectively remove nutrients such as 

phosphorus and nitrogen, and heavy metals like lead, from wastewaters (Munoz & 

Guieysse, 2006). (4) Microalgae sequester a large amount of carbon dioxide from the 

atmosphere via photosynthesis, for example, the CO2 fixation efficiency of C. vulgaris 
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was up to 260 mg.L-1.h-1 in a membrane photobioreactor (Cheng et al., 2006). Utilization 

of CO2 from thermal power plants by large-scale microalgae production facilities can 

reduce a great deal of the greenhouse gas emissions blamed for global warming (Cheng 

et al., 2006; Verawaty et al., 2017). (5) The production and use of microalgae biodiesel 

contribute near zero net CO2 and sulfur to the atmosphere. (6) Microalgae can produce a 

number of valuable products, such as proteins, polysaccharides, pigments, animal feeds, 

fertilizers etc. (Priyadarshani & Rath, 2012; Ting et al., 2017). Furthermore, annual oil 

production from high-oil microalgae can be in the range of 58,700 to 136,900 litres per 

hectare (Chisti, 2007). If this microalgal oil is used for biodiesel production, it would take 

approximately 1.0 – 2.5% of the current cropland in the US to meet 50% of the US 

transportation fuel needs, which is much more feasible than the current oil crops (Cheng, 

2010). In summary, microalgae are a largely untapped biomass resource for renewable 

energy production (Lam & Lee, 2012; Wu et al., 2012). 

However, commercialization of microalgae biomass and biofuel production is still facing 

significant obstacles due to high production costs and poor efficiency of the cultivation 

systems. In face of these challenges, researchers are undertaking profound efforts to 

improve microalgae biomass production and lipid accumulation and lower downstream 

processing costs (Wu et al., 2012). 

Table 2.1: Comparison of Some Sources of Biodiesel 

Source: (Chisti, 2007) 

Crop Oil yield (L.ha-1) 

Corn 172 

Soybean 446 

Canola 1,190 

Jatropha 1,892 

Coconut 2,689 

Oil palm 5,950 

Microalgae (70% oil in biomass) 136,900 

Microalgae (30% oil in biomass) 58,700 
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From Table 2.1, it can be observed that microalgae yield more oil per tonne, hence 

researchers ought to focus on them to avoid competition with food and feed crops. 

2.2.1 Species and Strains of Microalgae and Lipid Composition  

The lipid content of microalgae varies among different species and strains (Table 2.2) 

(Singh et al., 2011 a, b). The lipid content of microalgae is usually in the range of 20% - 

50% (dry basis) (Wu et al., 2012), and can be as high as 80% under certain circumstances. 

Selecting high lipid content and fast-growing microalgae is an important step in the overall 

success of biodiesel production from microalgae (Wu et al., 2012; Del Río et al., 2015). 

Lipid content and lipid productivity are two different concepts. The former refers to lipid 

concentration within the microalgae cells without consideration of the overall biomass 

production. However, the latter takes in account both the lipid concentration within cells 

and the biomass produced by these cells. Therefore, lipid productivity is a more reasonable 

indicator of a strain’s performance in terms of lipid production (Wu et al., 2012). 
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Table 2.2: Lipid Content of Various Species of Microalgae 

Species Lipid content (% dry weight) 

Anabaena cylindrical 4-7 

Botyococcus braunii 25-80 

Chlamydomonas reinhardtii 21 

C. emersonii 28-32 

Chlorella protothecoides 57.9 

Chlorella pyrenoidosa 2 

Chlorella vulgaris 14-22 

Crypthecodinium cohnii 20 

Cylindrotheca sp. 16-37 

Dunaliella bioculata 8 

Dunaliella primolecta 23 

Dunaliella salina 6 

Dunaliella tertiolecta 35.6 

Euglena gracilis 14-20 

Hormidium sp. 38 

Isochrysis sp. 25-33 

Monallanthus salina › 20 

Nannochloris sp. 30-50 

Nannochloropsis sp. 31-68 

Neochloris oleoabundans 35-54 

Nitzschia sp. 45-47 

Phaeodactylum tricornutum 20-30 

Pleurochrysis carterae 30-50 

Porphyridium cruentum 9-14 

Prymnesium parvum 22-38 

Scenedesmus dimorphus 16-40 

Scenedesmus obliquus 12-14 

Schizochytrium sp. 50-77 

Spirogyra sp. 11-21 

Spirulina maxima 6-7 

Spirulina platensis 4-9 

Synechoccus sp. 11 

Tetraselmis maculate 8 

Tetraselmis sueica 15-23 

Source: (Singh et al., 2011 a, b) 

Based on data presented in Table 2.2 the promising strains for biodiesel production are: 

Botyococcus braunii, C. emersonii, Chlorella protothecoides, Cylindrotheca sp., 
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Dunaliella tertiolecta, Hormidium sp., Nannochloris sp., Nannochloropsis sp., 

Nannochloropsis sp., Neochloris oleoabundans, Nitzschia sp., Pleurochrysis carterae, and 

Schizochytrium sp. Since some of the most productive strains/species as per Singh et al., 

(2011 a, b) are spread globally, it was thought necessary to isolate the strains locally and 

test their viability. 

2.2.2 Fatty Acid Profile of Various Microalgae Strains 

In addition to increasing the oil content and productivity of microalgae, it is also crucial 

to improve the quality of the biodiesel produced (Abomohra et al., 2016). Although the 

fatty acid profile does not appear to have a major impact on the transesterification 

biodiesel production process, it does affect the properties of the fuel produced (Abomohra 

et al., 2016). For example, the high proportion of saturated fatty acids enhances the 

oxidative stability and cetane number of the biodiesel, but with poor low-temperature 

properties and it behaves as a coagulant at ambient temperatures. Conversely, biodiesel 

produced from feedstocks with high proportion of polyunsaturated fatty acids (PUFAs) 

shows good cold-flow properties but with lower cetane number and poor oxidative 

stability during prolonged storage (Abomohra et al., 2016).  

The most important fuel properties that evaluate the potential of biodiesel as a substitute 

of fossil diesel are: kinematic viscosity, specific gravity, cetane number, cold filter 

plugging point (CFPP) and iodine value (Knothe, 2010; Georgianna & Mayfield, 2012). 

High cetane number is one of the most important fuel indicators of easier engine start-up, 

low nitrous oxide emissions, thus environmentally friendly, and better combustion 

(Knothe, 2008; Mandotra et al., 2014). The cetane number is frequently influenced by the 

structure of fatty acids, the saturated fatty acid content, and the length of the carbon chains 

in a fuel. Longer carbon chains associated with a higher saturated fatty acid content result 

in a higher cetane number (Ramadhas et al., 2006). On the other hand, higher iodine values 

may result in the deposition of lubricant in the engine and polymerization of glycerides 

(Franscisco et al., 2010). The melting point of unsaturated fatty acids is always lower than 

that of saturated fatty acids. Therefore, when the oil contains mostly saturated FAMEs 
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(very low iodine value), crystallization may occur at the engine operation temperature 

(Franscisco et al., 2010) leading to poor CFPP (Abomohra et al., 2016). 

Kinematic viscosity is directly related to the impinging distance, lubricity, atomization 

and burning efficiency of a liquid fuel (Cherng-Yuan & Yi-Wei, 2012). Biodiesel 

generally has a higher viscosity than mineral diesel, and thus has inferior atomization and 

spray, resulting in a larger mean liquid droplet diameter and a longer ignition delay 

(Hoekman et al., 2012).  

Density is an important parameter for diesel fuel injection systems. It is the weight of a 

unit volume of fluid. A higher density results in the delivery of a slightly greater mass of 

fuel since fuel injection equipment operates on a volume metering system (Giwa et al., 

2010). 

2.2.3 Fatty Acid Methyl ester (FAME) Composition 

A systematic analysis of the FAME composition and comparative fuel properties is very 

important for species selection for biodiesel production (Islam et al., 2013). The most 

common fatty acids of microalgae are Linolenic acid (octadecatrienoic- C18:3), Linoleic 

acid (octadecadienoic- C18:2), Oleic acid (octadecenoic- C18:1), Stearic acid 

(octadecanoic- C18:0), and Palmitic acid (hexadecanoic- C16:0) (Knothe, 2009). Most 

algae have only small amounts of eicosapentaenoic acid (EPA) (C20:5) and 

docosahexaenoic acid (DHA) (C22:6) (Knothe, 2009), however, in some species of 

particular genera these PUFAs can accumulate in appreciable quantities depending on 

cultivation conditions (Huerlimann et al., 2010). In general, eustigmatophytes and 

diatoms make appreciable amounts of EPA, while dinoflagellates and haptophytes 

typically produce both EPA and DHA, with DHA being often dominant over EPA. It has 

been suggested that, the higher the degree of unsaturation of FAMEs of biodiesel, the 

higher the tendency of the biodiesel to oxidize (Islam et al., 2013). There are, however, 

other parameters which also define the oxidation stability of the fuel, for instance free 

fatty acid content and natural anti-oxidant (Knothe, 2005; Lapuerta et al., 2009 Hoekman 
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et al., 2012). A good quality biodiesel should have a 5:4:1 mass fat acid ratio of C16:1, 

C18:1 and C14:0, as recommended by Schenk et al. (2008). 

2.3 Metabolic Pathways 

Microalgae may use one or more of the three main metabolic pathways depending on 

carbon conditions and light: photoautotrophy, heterotrophy, and mixotrophy (Chojnacka 

& Noworyta, 2004). Most microalgae are capable of photoautotrophic growth. 

Photoautotrophic cultivation in open ponds is a simple and low-cost method for large-

scale production; however, the biomass density is low because of contamination by other 

species or bacteria, limited light transmission and low organic carbon concentration 

(Greenwell, 2010). Commercially, growing microalgae for value-added products is 

usually conducted in open ponds (raceways) or closed photobioreactors (PBRs) under 

autotrophic (making complex organic nutritive compounds from simple inorganic sources 

by photosynthesis) or heterotrophic (cannot synthesize its own food) conditions at 

relatively warm temperature (20 – 30 0C) (Cheng, 2010; Lam & Lee, 2012). In autotrophic 

microalgal cultivation, the microalgae need sunlight (energy source), CO2 (carbon source) 

and nutrients (P, N and minerals) for their photosynthesis and generate oxygen. The main 

difference of growing heterotrophic microalgae from autotrophic ones is the carbon 

source. The former requires organic carbon source such as glucose to support its growth. 

Normally autotrophic microalgae are grown for biodiesel production, mainly because they 

use CO2 as their carbon source for growth (Cheng, 2010). Therefore, the whole cycle of 

growing microalgae for biodiesel production and combustion of biodiesel as fuel would 

generate zero net carbon dioxide emission to the atmosphere. However, sometimes 

heterotrophically grown microalgae can make much more oil than autotrophic ones. Miao 

and Wu (2006) reported the heterotrophic growth of Chlorella protothecoides resulted in 

a significant increase of oil content of microalgae from 14.5% under the original 

autotrophic growth to 55.2% (dry weight). 

Heterotrophic cultivation has drawn increasing attention and it is regarded as the most 

practical and promising way to increase the productivity (Chen, 1996; Li et al., 2007; 
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Doucha & Lívansky, 2012). Currently, research on heterotrophic cultivation of microalgae 

is mainly focused on Chlorella (Wu et al., 2012). Cell densities as high 104.9 g.L-1(dry 

cell weight, Chlorella pyrenoidosa) have been reported (Wu & Shi, 2006). Microalgae 

can adapt to different organic matters such as sucrose, xylan, glycerol and organic acids 

in slurry after acclimatization (Heredia-Arroyo et al., 2011). The ability of heterotrophic 

microalgae to utilize a wide variety of organic carbons provides an opportunity to reduce 

the overall cost of microalgae biodiesel production since these organic substrates can be 

found in the waste streams such as municipal and animal wastewaters, effluents from 

anaerobic digestion, food processing wastes, etc. (Wu et al., 2012). On the basis of 

heterotrophic cultivation, researchers have carried out studies of mixotrophic cultivation 

which can greatly enhance the growth rate because it realizes the combined effects of 

photosynthesis and heterotrophy (Wu et al., 2012). After examining the biomass and lipid 

productivities characteristics of fourteen microalgae, Park et al. (2012) found that lipid 

and biomass productivities were boosted by mixotrophic cultivation. Andrade and Costa 

(2007) studied the effects of molasses concentration and light levels on mixotrophic 

growth of Spirulina platensis, and found that biomass production was stimulated by 

molasses, which suggested that this industrial by-product could be used as a low-cost 

supplement for the growth of this species. Bhatnager et al. (2011) found that the 

mixotrophic growth of Chlamydomonas globosa, Chlorella minutissima and Scenedesmus 

bijuga resulted in 3-10 times more biomass production compared with that obtained under 

phototrophic growth conditions. The maximum lipid productivities of Phaeodactylum 

tricornutum in mixotrophic cultures with glucose, acetate and starch in medium were 

0.053, 0.023 and 0.020 g.L-1.day-1, which were respectively, 4.6-, 2.0-, and 1.7-fold of 

those obtained in the corresponding photoautotrophic control cultures (Wang et al., 2012).  

Therefore, researchers should choose strains that use photoautotrophic metabolic pathway 

because they utilize carbon dioxide from the surrounding to synthesize their own food. In 

so doing, they act as carbon sink hence reducing the amount of CO2 in the atmosphere 

which is responsible for global warming and climate change. 
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2.4 Techniques for Producing Axenic Microalgal Cultures 

2.4.1 Streak Plate Method 

Streaking is an enrichment process that is widely used to separate a strain from a mixture 

of microorganisms for further examination and identification. It begins by inserting a 

sterile inoculation loop into the liquid sample or pinching a morphologically different 

colony from the filter membrane surface using a sterile pin tool and a dissecting 

microscope. After that, the sample is distributed over a new agar plate using a specified 

pattern (Black, 2008). The area that is first inoculated will contain too many 

microorganisms to be able to select a single colony. As the metallic gadget travels to the 

next location, fewer cells are deposited. The goal is that by the last quadrant, cells are 

placed in such a way that they are far enough from one another and thus the colony is 

product of a single cell, i.e. pure isolate. At this stage, single microalgal species can be 

easily distinguished based mainly on morphological (size/shape/colour) differences of the 

colonies and the latter are again chosen and streaked until no additional microorganisms 

can be found in the successive agar plates (Black, 2008). A single colony from the agar 

plate should then be chosen and placed in a drop of sterile culture medium on a glass slide 

to ensure that the target microbe has been isolated and is pure (CSIRO, 2013). When a 

pure strain is obtained, it is pinched one final time and streaked on an agar slant for stock 

establishment. 

The technique is based on the idea that each individual colony on the agar surface is the 

result of a single dividing cell. While it may appear trivial, this is not always the case, 

particularly with some microalgae whose growth is dependent on symbiotic relationships 

and cannot be separated without jeopardizing growth (Alanίs, 2013). 

2.4.2 Dilution in Liquid Media 

The serial dilution protocol is a technique for reducing the concentration of microscopic 

organisms or cells in a liquid sample. This will allow one of the higher dilution tubes to 
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become the growing medium for an axenic culture (Alanίs, 2013). If a few distinct species 

are still present in high dilution tubes, additional methods can be used concurrently to 

produce pure cultures. It begins by setting up a series of test tubes with a certain volume 

of liquid media (i.e. 9 mL). From the concentrated inoculum, 1 mL is taken, diluted in the 

second test tube (10−1) and mixed. Then, 1 ml is taken from the first dilution and placed 

in the third test tube (10−2). This is repeated till all remaining tubes have been used; if ten 

test tubes were used then the last one will represent a 10−10 dilution (Figure 2.1). 

Lastly, only the most diluted tubes are cultured in specific pre-set conditions and 

microscopical observations are made after 2 − 4 weeks. In parallel, agar plates can be 

prepared by streaking a sample from each dilution. By doing this, the higher the dilution, 

the higher is the probability of getting individual colonies in the agar plate (Alanίs, 2013). 

.  

Figure 2.1: Serial Dilution Block Diagram 

Source: (Alanίs, 2013) 
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2.4.3 Fluorescence Activated Cell Sorting 

With the use of a laser beam and a fluid stream, single particles can have their many 

physical properties examined using a technique called flow cytometry. Particle size, 

granularity, and fluorescence intensity are a few examples of the characteristics that can 

be measured (Biosciences, 2000). Using the flow cytometry principle as a guide, Bonner 

et al. (1972) created the Fluorescence Activated Cell Sorting (FACS) system, which sorts 

living cells in a heterogeneous mixture one at a time according to their unique light 

scattering and fluorescent properties. Electrical signals are produced by the cells' 

fluorescence as they are successively passed via a laser beam. After that, the stream is 

changed to produce a sequence of drops with one cell in each that are all the same size 

downstream of the laser. The drops are given the proper electrostatic charges by the 

fluorescent signals, which allow them to flow between two charged plates and be deflected 

into the proper containers (Figure 2.2).  

Despite being a very quick and effective way to isolate particular types of organisms from 

complex cell mixtures, cell sorters are generally costly and require a skilled, committed 

technician to operate efficiently. The acquisition of this equipment is not warranted in 

many laboratories where isolations are not performed frequently; therefore, alternative 

techniques must be used (Alanίs, 2013). 
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Figure 2.2: Fluorescence Activated Cell Sorting Method for Particle Separation 

Based on Differential Fluorescent Rendering of Cells in the Stream 

 Source: (ABCAM, 2013) 

2.4.4 Micromanipulation 

The initial step in the micromanipulation technique is to heat and pull out a micropipette 

from both ends of a capillary tube. The diameter of the narrow end must be at least twice 

that of the cell that is to be micromanipulated. Under a microscope, the researcher can 

extract a single cell from the enrichment medium by attaching a silicone tube to the thick 

end of the micropipette (Alanίs, 2013). The sucking-obtained cell is then placed in a sterile 

medium drop. After sterilizing the micropipette, the cell is selected and moved to a fresh 

drop. To ‘wash’ the cell clean of bacteria, the procedure is repeated (Figure 2.3). Repeated 

washings of the cell can lower the likelihood of bacterial infection. Nonetheless, there is 

a greater chance of cell damage the more times a cell is handled. Therefore, the type of 

algae will determine the ideal number of washes. The cell is then finally put in culture 
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medium under the right circumstances to grow. This approach should produce axenic 

cultures (Alanίs, 2013). 

 

Figure 2.3: Micromanipulation of an Enrichment Sample with a Capillary 

Micropipette to Obtain a Uni-Algal Culture  

 Source: (Alanίs, 2013) 

2.4.5 Density Centrifugation 

Microalgae separation was the first application of the technology (Whitelam et al., 1983). 

Based on density gradient centrifugation in colloidal silica sol Percoll, it achieves 

separation through variations in the buoyant densities of the mixture's cells. The Percoll 

instrument was created by Pertoft et al. (1978) with the aim of achieving improved density 

separation in the field of biochemistry. By using density centrifugation, viruses, cells, 
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organelles, or cells can be isolated. Polyvinylpyrrolidone (PVP)-coated colloidal silica 

particles, measuring 15–30 nm in diameter (23% w/w), make up Percoll. 

Percoll is not toxic to cells, and it also has low viscosity and low osmolarity (the number 

of osmoles of solute per litre of solution), which are two characteristics that make it a good 

choice for biological separation experiments, as shown by (Whitelam et al., 1983). Cells 

separate into distinct bands at specific gradient locations following centrifugation. 

Fractionation can be used to readily separate the bands that the various cells formed if 

they are somewhat widely apart from one another. Furthermore, the scientists discovered 

that this approach has no effect on the photosynthetic activity and subsequent growth of 

microalgae (Whitelam et al., 1983). 

2.4.6 Ultra Violet Radiation 

The majority of microalgae strains have a marginally higher UV radiation resistance than 

bacteria (Richmond, 2008). Therefore, pure algal culture devoid of bacterial 

contamination could be produced by subjecting the sample to ultraviolet (UV) irradiation, 

washing, diluting, and streaking it on selective agar. 

2.4.7 Addition of Antibiotics 

Obtaining microalgae isolates may need the use of antibiotics after all other basic 

microbiological isolation techniques have been exhausted. Since mutant clones may be 

created that do not always represent populations in the wild, this strategy is generally not 

advised when isolating strains that will be used for physiological or ecological 

investigations (Alanίs, 2013). 

Antibiotics directed against Gram (+) and/or Gram (−) bacteria that impede cell growth 

by blocking the synthesis of proteins or cell walls are frequently employed. Penicillin G 

and other members of the penicillin family are examples of cell wall inhibitors. The beta-

lactam family of antibiotics causes the bacterial cell wall to become more permeable by 

rupturing it. Aminoglycosides, such as gentamycin, kanamycin, neomycin, and 
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streptomycin, work by permanently binding to bacterial ribosomes to impede protein 

synthesis. A few antifungal drugs that are utilized to isolate cyanobacteria are Nystatin 

(100 µgmL-1), cycloheximide (100 µgmL-1), and amphotericin B (Alanίs, 2013). 

2.5 Microalgae Cultivation Systems  

The two key methods of infrastructure considered appropriate for cultivation of algae are 

open raceway ponds (ORPs) and photobioreactors (PBRs) (Jorquera et al., 2010). 

Raceway ponds are analogous to oxidation ditches used in wastewater treatment systems 

being big, open basins of shallow depth and a length at least several times greater than 

that of the width. Raceway ponds are normally constructed using a concrete shell lined 

with polyvinyl chloride (PVC) with dimensions ranging from 10 to 100 m in length and 1 

to 10 m in width with a depth of 10 to 50 cm (Jorquera et al., 2010; Slade & Bauen, 2013). 

Photobioreactors are more generally used for growing microalgae for high value 

commodities or for experimental work at a small scale. However, they have been 

considered for producing algal biomass on a large scale as they are capable of providing 

optimal conditions for the growth of the microalgae (Jorquera et al., 2010; Soratana & 

Landis, 2011). A closed reactor allows species to be protected from bacterial 

contamination, shallow tubing allows efficient light utilization, and bubbling CO2 offers 

high efficiency carbon uptake and water loss is lessened. PBRs provide very high 

productivity rates compared to raceway ponds (Table 2.3). In their life-cycle assessment 

(LCA) study, Jorquera et al. (2010) estimated volumetric productivity to be at least eight 

times higher in flat plate and tubular PBRs. The reason why PBRs however have not 

become widespread is due to the energy and cost intensity of production and operation. 

PBRs require a far higher surface area for the volume of algal broth compared to 

alternative infrastructure. Much higher volumes of material are therefore required which 

in turn necessitates a higher capital energy input and increases environmental impacts 

(Soratana & Landis, 2011). During operation, algal biomass must be kept in motion to 

provide satisfactory mixing and light exploitation. This increases productivity; however, 

it requires additional energy for pumping. So far in comparison to raceway ponds the 

benefits of PBRs do not outweigh the indispensable energy requirements identified in the 
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LCA study published by Jorquera et al. (2010). A net energy ratio (i.e., energy 

produced/energy consumed) of 8.34 has been reported for raceway ponds as compared to 

a net energy ratio of 4.51 and 0.20 for flat-plate and tubular photobioreactors, respectively 

(Jorquera et al., 2010). It is likely that ponds will continue to provide the most effective 

infrastructure for algal cultivation due to their low impact design and low input energy 

requirement. PBRs will continue to be important however, for laboratory work, 

developing cultures and producing biomass with high economic value. As research 

continues it may also be possible to develop infrastructure that will provide the benefits 

of both PBRs and open ponds together (Aitken & Antizar-Ladislao, 2012). 

The frequently studied process for algal biomass production is outdoor photoautotrophic 

cultivation, due to the straightforwardness of scalability and the added benefit of CO2 

sequestration. The primary bottleneck that limits the productivity of all photoautotrophic 

cultivation systems is the light penetration (Masojidek et al., 2003; Perez-Garcia et al., 

2011) and absence of light at night (Edmundson & Huesemann, 2015). Light penetration 

is often poor inside PBRs and ORPs and the penetration further falls with increasing cell 

density and depth due to self-shading effects. Light/dark cycle is also inevitable for 

outdoor cultivation, and it was reported that respiratory effect at night causes a decrease 

in the biomass produced in the day period (Edmundson & Huesemann, 2015). In addition, 

the outdoor cultivation systems also suffer from inconsistent biomass productivity due to 

the fluctuations of light intensity and temperature across the day/night cycle and seasonal 

changes (De Bhowmick et al., 2014; Perez-Lopez et al., 2017). Furthermore, most 

common outdoor cultivation systems such as open raceway ponds frequently suffer from 

contamination problems. Due to the nature of open systems, it is nearly impossible to 

maintain a monoculture of a single target microalgal strain due to the high susceptibility 

of these systems to be contaminated with undesirable foreign species (Xu et al., 2009). 

Initial capital investments are undoubtedly higher for photobioreactors, but they can 

provide higher overall productivity due to better contaminant management and improved 

utilization of photosynthetically active radiation, carbon dioxide and other nutrients 

(Sforza et al., 2012). Cheng et al. (2006) constructed a 10 L photobioreactor integrated 
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with a hollow fiber membrane module which increased the gas bubbles retention time 

from 2 s to more than 20 s, increasing the CO2 fixation rate of C. vulgaris from 80 to 260 

mgL-1h-1. The design of closed systems must be carefully optimized for each individual 

microalgal strains, according to its specific physiological and growth characteristics. 

Apparently, major technical and economic challenges still prevent the selection of an 

optimal reactor type at the commercial scale (Kunjapur & Eldridge, 2010). Several 

researchers worldwide claim to possess technologies for the commercial production of 

biodiesel from microalgae, and many new companies have been recently developed 

(Grobbelaar, 2010; Singh & Gu, 2010; Zijffers et al., 2010; Jo et al., 2020). However, a 

number of technical challenges remain unresolved, including questions concerning large-

scale microalgae recovery and oil separation processes. For these reasons, in spite of quite 

large scientific, technological and commercial interest, no industrial plants finalized to 

produce oil from microalgae are operated in the world (Singh & Gu, 2010). Microalgae 

cultivation systems work well at the laboratory and small pilot/demonstration levels, but 

the process feasibility has not been demonstrated for large scale production yet (Singh & 

Gu, 2010). 

High volumetric productivities and high biomass yields on light used are required to 

decrease production system volumes and to lower production costs. This can be achieved 

by cultivating the microalgae in photobioreactors with a high surface to volume ratio, i.e., 

a short light path, such as panel reactors (Zijffers et al., 2010). Panel photobioreactors 

have been demonstrated to be promising photobioreactors for the controlled cultivation of 

microalgae (Hu et al., 1998b; Hu et al., 1998c; Tredici & Zittelli, 1998; Degen et al., 

2001). Furthermore, such panels can be integrated in photobioreactors in which advanced 

optical engineering is used to dilute light (Gordon, 2002; Zijffers et al., 2008). The flat-

plate PBR has a large illuminated specific surface area, a short light path, a small site area 

requirement, and low energy consumption (Sierra et al., 2008; Morweiser et al., 2010). 
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Table 2.3: A Comparison of Growing Microalgae in Open Ponds and 

Photobioreactors  

 Raceway Pond Photobioreactor 

Estimated productivity 

 (g.m-2.day-1) 

11 27 

Advantages Low energy Pure algal culture 

 Simple technology High volumetric productivity 

 Inexpensive High controllability 

 Well researched Small area required 

  Concentrated biomass 

Disadvantages Low productivity High energy 

 Contamination Expensive 

 Large area required Less researched 

 High water use  

 Dilute biomass  

Source: (Cheng, 2010). 

Thus, selection of an energy and cost-efficient production model could play a very vital 

role in achieving competitive biodiesel production. This comprises: (1) the selection of 

high lipid-producing algae, (2) suitable farming locations, (3) efficient cultivation and 

harvesting methods and (4) oil extraction procedures. Here, we focus on the third step, the 

optimization of cultivation conditions to maximize the microalgae yield in a flat plate 

photobioreactor at pilot scale relevant for commercial biodiesel production. 

2.6 Harvesting 

As the biomass cannot be used efficiently at low concentrations in media, the first step in 

the biomass processing stage is harvesting the algae for subsequent processing (Chen et 

al., 2010; Aitken & Antizar-Ladislao, 2012). The method to be used depends very much 

upon the type of algae which is under cultivation. Microalgae require more intensive 

harvesting methods in comparison to macroalgae, because of their cell size. Microalgae 

cells are small (normally in the range of Φ 2-70 µm) and the cell densities in culture broth 

are low (typically in the range of 0.3 – 5 gL-1) (Wu et al., 2012).  Depending upon the 
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characteristics of microalgae (such as density and size) and the target products, often a 

series of harvesting methods is required to produce a final biomass below a desired 

moisture content (Wu et al., 2012). Common methods of harvesting of algae are: gravity 

sedimentation, microfiltration, flotation, centrifugation, flocculation and electrophoresis 

(Grima et al., 2003; Uduman et al., 2010).  Filtration using micro-filters is one of the most 

effective methods (Aitken & Antizar-Ladislao, 2012). This method of filtration uses a 

rotary drum covered with a filter to capture the biomass as the influent passes through 

from the centre outwards (Benemann et al., 1980). Initial harvesting tests in the 1960s 

tested micro-filters but found that most of the algal cells simply passed through majority 

of the filter types (Golueke & Oswald, 1965). It was later suggested that micro-filtration 

was suitable for strains of algae with a cell size greater than 70 µm and was not suitable 

for those species with cell sizes lower than 30 µm (Brennan & Owende, 2010). The size 

of the opening in the filter mesh and that of biomass cells dictate what percentage of 

biomass is captured. The pore size also affects the amount of pressure required to facilitate 

the flow of water through the filter which eventually affect the amount of energy 

consumed (Uduman et al., 2010). The concentration of the algae in suspension influences 

also the efficiency of removal as highly concentrated biomass will foul the filter very 

quickly leading to reduced performance and a requirement for backwashing. This 

increases energy consumption (Aitken & Antizar-Ladislao, 2012). If filtration is to be 

used, it is important that the method suits the species of algae which is being harvested; 

otherwise, the filtration will be ineffective and provide low yields of biomass (Aitken & 

Antizar-Ladislao, 2012). If the cultivated algal species allows for filtration (e.g., Spirulina, 

Spirogyra, Coelastrum), the filtration method can prove to be a very efficient and cost-

effective method of harvesting (Aitken & Antizar-Ladislao, 2012).  Mohn (1980) for 

instance found that gravity filtration using a microstainer and vibrating screen both 

provided good initial harvesting of Coelastrum up to a total suspended solid of 6% with 

low energy consumption (0.4 kWhm-3). Mohn (1980) also investigated pressure filtration 

of Coelastrum which provided even higher total solids of concentrate up to 27%, although 

requiring more than twice the energy. Clearly inexpensive and low energy harvesting of 
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biomass is possible with filtration, so long as the dominant algae being harvested is of a 

suitable cell size and optimal concentration level (Aitken & Antizar-Ladislao, 2012). 

Flotation and sedimentation have been proven as viable options for harvesting algal 

biomass with no requirement for specific cell size (Aitken & Antizar-Ladislao, 2012). 

Both sedimentation and flotation rely on biomass density to facilitate the process. Both 

processes are aided by flocculation and flotation is aided further by bubbling (Aitken & 

Antizar-Ladislao, 2012). Sedimentation was considered a viable method of biomass 

removal in the 1960s due to its prominence in wastewater treatment and its low energy 

requirement (Golueke & Oswald, 1965). Due to the low specific gravity of algae, the 

settlement process is slow but, under certain conditions, the self-flocculation of some 

strains of algae is possible. Carbon and nutrient limitation and pH adjustment appear to 

be methods of auto-flocculation of algae which may provide a low-cost solution to the 

initial harvesting process (Benemann et al., 1980; Spilling et al., 2009). Recent studies 

have focused upon bio-flocculation which occurs as a result of using several bacteria or 

algal strains to flocculate with the desired algal biomass to allow settlement. Gutzeit et al. 

(2005) discovered that gravity sedimentation was possible using bacterial-algae flocs 

developed in wastewater for the removal of nutrients, and reported that the flocs of C. 

vulgaris were stable and settled quickly. Other approaches investigated the combined use 

of autoflocculating microalgae (A. falcatus, Scenedesmus obliquus and T. suecica) to 

allow for flocculation of non-flocculating oil-accumulating algae (C. vulgaris and 

Neochloris oleoabundans) (Salim et al., 2011), which resulted in a faster sedimentation 

as well as a higher percentage of biomass harvested. This method of harvesting seems 

viable due to its low energy inputs and it does not rely on chemicals, thus allowing the 

water to be discharged or recycled without further treatment. However, it should be noted 

that this method of flocculation may not be suitable for all types of algae. Therefore, 

further research is required in this area (Aitken & Antizar-Ladislao, 2012).  

Conventional methods of flocculation using flocculants common to wastewater treatment 

such as ferric chloride, alum, ferric sulphide, chitosan among other commercial products 

are likely to provide a more consistent and effective solution to flocculation (Aitken & 
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Antizar-Ladislao, 2012). Much research has been conducted upon the removal of algae 

using flocculants with varying degrees of success (Table 2.4). For instance, a complete 

removal of freshwater microalgae, Chlorella and Scenedesmus, using 10 mgL-1 of 

polyelectrolytes while 95% removal using 3 mgL-1 of polyelectrolites has been reported 

(Golueke & Oswald, 1965). A comparative study where alum and ferric chloride were 

used as flocculants for three species of algal biomass (C. vulgaris, I. galbana and C. 

stigmatophora) indicated the low dosages of alum (25 mgL-1) and ferric chloride (11 mgL-

1) were sufficient for optimal removal of C. vulgaris. Higher dosages of alum and ferric 

chloride were required for the removal of marine cultures I. galbana (225 mgL-1 alum; 

120 mgL-1 ferric chloride) and C. stigmatophora (140 mgL-1 alum; 55 mgL-1 ferric 

chloride) (Sukenik et al., 1988). It has also been reported that the combined use of chitosan 

at low concentrations (2.5 mgL-1) and ferric chloride provided much quicker flocculation 

of the algal cells, Chlorella vulgaris, I. galbana and C. stigmatophora, and reduced the 

requirement of ferric chloride (De Godos et al., 2009). The use of chitosan as a flocculant 

for the removal of freshwater algae (Spirulina, Oscillatoria and Chlorella) and brackish 

algae (Synechocystis) has been investigated (Divakaran & Pillai, 2002), and chitosan has 

been found to be a very effective flocculant, at pH 7.0 and maximum concentrations of 15 

mgL-1, removing about 90% of algal biomass. The use of conventional and polymeric 

flocculants for the removal of algal biomass in piggery wastewater has been recently 

investigated (De Godos et al., 2009): ferric sulphate and ferric chloride were found to be 

effective flocculants at high doses (150–250 mgL-1) providing removal rates greater than 

90%. Polymeric flocculants required less dosing (5–50 mgL-1), but provided lower 

biomass recoveries. Chitosan performed poorly at both low and high dosages for each of 

the algal species types with a maximum removal of 58% at a dose of 25 mgL-1 for a 

conglomerate of Chlorella (Aitken & Antizar-Ladislao, 2012). 

  



35 

Table 2.4: Maximum Removal Rates of Various Flocculants for the Removal of Algal 

Biomass 

Flocculant Algae Removal 

(%) 

Dosage 

(mgL-1) 

Media type 

FeCl3 Chlorella 98 250  

S. obliquus 95 100  

FeCl3 Chlorococcum sp. 90 150 Piggery 

wastewater Chlorella 90 250 

Fe2(SO4)3 S. obliquus 98 150  

C. sorokiniana 98 250  

Chitosan Spirulina, Oscillatoria, 

Chlorella 

› 90 15 Nutrient 

media 

Polyelectrolyte 

(Puriflocs 601 & 

602) 

Chlorella, Scenedesmus 95 3 Sewage 

Source: (Golueke & Oswald, 1965; Divakaran & Pillai, 2002; De Godos et al., 2009) 

2.6.1 Sedimentation 

Sedimentation of algal biomass is a method of biomass removal but requires prior 

flocculation for high removal efficiencies. Sedimentation can be carried out with some 

species without flocculation, but removal efficiency is considered poor (Shelef et al., 

1984). Flocculation can be used to increase cell dimensions allowing improved 

sedimentation. If carried out in combination with flocculation, a sedimentation tank can 

provide a reliable solution for biomass recovery (Shelef et al., 1984).  

2.6.2 Flotation 

Flotation was a method of harvesting considered in the 1960s (Golueke & Oswald, 1965), 

however the recoverability of biomass was found to be poor with a wide range of reagents 

tested. It has been reported that using dissolved air, flotation mixed algal species could be 

harvested up to a slurry of 6% total solids (Shelef et al., 1984). Electro-flotation, which 

creates air bubbles through electrolysis which then attach to the algal cells, mixed algal 
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species could be harvested up to a slurry of 5%, but this approach required a significant 

energy input (Golueke & Oswald, 1963).  Dispersed air flotation which uses froth or foam 

to capture the algal cells resulted also in similar results (Golueke & Oswald, 1963). 

Existing research indicates that flotation offers a quicker alternative to sedimentation 

following algal flocculation, but more energy is required and hence it is not cost 

competitive but provides a final product with lower total solids content (Aitken & Antizar-

Ladislao, 2012).  

2.6.3 Centrifugation  

Perhaps the most effective method of biomass removal, with very high recovery rates, is 

centrifugation (Golueke & Oswald, 1963; Rawat et al., 2011). Compared with the other 

alternative methods, centrifugation was considered a feasible option in early algal biomass 

dewatering work in the 1960s (Aitken & Antizar-Ladislao, 2012). Golueke and Oswald 

(1963) investigated various methods of dewatering algae further to provide a biomass with 

sufficiently low moisture content. One of the method they looked at was centrifugation 

and three of the four centrifuges that they tested proved to be extremely effective 

producing a maximum removal of 79% and a biomass with solids content of 11.5% and 

maximum of 18.2%. Further research was conducted by Mohn (1980) in the area of 

harvesting algal biomass using centrifugation and he focused on suitability of algal strains, 

cost and energy use.  Mohn found centrifuges to be very effective for the removal of 

Scenedesmus and Coelastrum, particularly the Westfalia self-cleaning plate separator and 

the Westfalia nozzle centrifuge (Mohn, 1980). This was in agreement with Golueke and 

Oswald. The centrifuges provided biomass with total solids content of 2%–22% with a 

minimum energy consumption of 0.9 kWhm-3 (Mohn, 1980). Table 2.5 provides a 

summary of Mohn’s findings indicating the possible harvesting methods, effectiveness, 

energy requirements and reliability of several harvesting methods. Mohn’s (1980) results 

suggest filtration provides the best harvesting strategy in terms of high concentration of 

solids with low energy requirements. 
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Table 2.5: Harvesting Methods, Effectiveness and Energy Requirements 

Algae species Harvesting 

method 

%TSS of 

concentrate 

Concentration 

factor 

Energy 

Requirement 

kWh 

Reliability 

Coelastrum Gravity 

filtration 

6 60 0.4 Good 

Coelastrum Pressure 

filtration 

22-27 245 0.88 Very high 

Scenedesmus, 

Coelastrum 

Proboscideum 

Centrifuge 

(Westfalia 

self-

cleaning) 

12 120 1 Very high 

Scenedesmus, 

Coelastrum 

Proboscideum 

Centrifuge 

(Westfalia 

screw) 

22 11 8 Very high 

Source: (Mohn, 1980). 

Even though centrifugation is an effective method of concentrating biomass, the energy 

requirements are much higher than that of filtration. However, clearly the choice of 

harvesting depends heavily upon the biomass type, if the cell size is large enough, then 

filtration is probably the most effective and economically viable option. Otherwise, it is 

likely that a process stream involving flocculation, sedimentation, flotation or 

centrifugation is necessary (Aitken & Antizar-Ladislao, 2012). There is little parallel 

between the effectiveness of common flocculants for harvesting algae in research 

conducted. It can be observed that there are many effective flocculants for algae removal 

however suggested optimal dosages vary significantly between studies. Ferric chloride 

can be considered a viable option potentially combined with chitosan to improve yield 

and reduce time and material input. Further research is necessary for individual scenarios 

to choose the most effective method of flocculation and consequent harvesting (Aitken & 

Antizar-Ladislao, 2012).  
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2.7 Pilot-Scale Microalgae Production 

There are numerous pilot-scale biodiesel production facilities using microalgal biomass 

in operation in the last few years (Cheng, 2010). Aurora Biofuels, Inc., a bioenergy firm 

in California, USA, has run a pilot microalgal biodiesel production facility in Florida, 

USA since 2007 (www.americanfuels.info/2009/03/aurora-biofuels-pilot-algae-

plant.html). In this facility, microalgae with high oil content have been grown on seawater 

in open ponds on non-arable land. The company has developed efficient technologies in 

microalgae harvesting and oil extraction. Engineers and scientists at Old Dominion 

University built an algal farm to produce biodiesel in Virginia, USA in 2008 (Cheng, 

2010). A one-acre open algal pond has been established to produce algal biomass for 

biodiesel production. Treated wastewater has been used to grow microalgae in the pond. 

Algal oil has been extracted from the biomass to produce 3,000 gallons of biodiesel fuel 

per year (www.odu.edu/ao/news/index.php?todo=details&id=12031). Renewable Energy 

Group (REG), a biodiesel production company based in Iowa, USA developed a pilot-

scale biodiesel production technology using the oil from a variety of microalgae in 2008 

(Cheng, 2010). The pilot plant can produce a huge amount of high-quality biodiesel from 

microalgae. The company has developed a pretreatment technology that cleanses the crude 

oil from microalgae. The clean oil is then used for transesterification to produce biodiesel 

(www.hydrocarbons-technology.com/projects/algae-biodiesel/). 

2.8 Challenges for Commercialization of Microalgal Biodiesel 

In principle, producing biodiesel from microalgae has been proven economically viable. 

The land area required to produce the same amount of oil from microalgae is only a small 

portion of that for oil crops. Biodiesel production from microalgal biomass or the 

advanced biodiesel technology has a potential for biofuel production to substitute fossil 

fuel without serious competition for arable land against food and feed production (Cheng, 

2010). However, the prime challenge of the advanced biodiesel production is its high cost 

(Grobbelaar, 2013). The present microalgae production and the separation of the 

microalgal biomass from the growing media are too costly (Ruffing, 2011; Dutta et al., 
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2014; Gerchman et al., 2016; Tan et al., 2020). An estimated cost to produce a kilogram 

of microalgal biomass with a mean oil content of 30% is $2.95 and $3.80 for 

photobioreactors and open ponds, respectively, assuming that carbon dioxide is available 

and free (Chisti, 2007). Taking account of 30% oil content in the microalgal biomass and 

the cost of oil extraction from the microalgae, the cost to produce a kilogram 

(approximately 1.14 liters) of crude microalgal oil is more than three times of that of 

producing a kilogram microalgal biomass (Cheng, 2010). This cost is much higher than 

vegetable oil production, e.g. the market price for crude palm oil which is possibly the 

cheapest vegetable oil was only $0.52/liter in the US in 2006. It would be more 

discouraging if compared with mineral diesel production cost (the retail price of mineral 

diesel including taxes in the US in 2006 was only between $0.66 and $0.97 per liter) 

(Cheng, 2010). As of late 2008, Darzins (2008) indicated that seven US government 

laboratories, thirty US universities, and around sixty biofuels companies were conducting 

study in this area. Passionate efforts are also taking place in other parts of the world 

including (among many others) Australia, Europe, the Middle East, and New Zealand 

(Pienkos & Darzins, 2009).  

2.9 Optimization 

Optimization is the act of finding the best result under given circumstances. In design, 

construction, and maintenance of any engineering system, engineers have to take many 

technological and managerial decisions at several stages. The ultimate goal of all such 

decisions is either to minimize the effort (input) required or to maximize the desired 

benefit (output). Since the effort required or the benefit desired in any practical situation 

can be written as a function of certain decision variables, optimization can be defined as 

the process of finding the conditions that give the maximum or minimum value of a 

function. Also, optimization can be taken to mean minimization since the maximum of a 

function can be found by seeking the minimum of the negative of the same function (Rao, 

2009).  
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The classical methods of optimization are useful in finding the optimum solution of 

continuous and differentiable functions. These methods are analytical and make use of the 

techniques of differential calculus in locating the optimum points. Since some of the 

practical problems involve objective functions that are not continuous and/or 

differentiable, the classical optimization techniques have limited scope in practical 

applications. In recent years, some optimization techniques that are conceptually different 

from the traditional mathematical programming methods have been developed. These 

techniques are labeled as modern or nontraditional methods of optimization. Most of these 

techniques are based on certain characteristics and behavior of biological, molecular, 

swarm of insects, and neurobiological systems. These techniques are: 1. Genetic 

algorithms 2. Simulated annealing 3. Particle swarm optimization 4. Ant colony 

optimization 5. Fuzzy optimization and 6. Neural-network-based methods. These 

techniques are emerging as popular methods for the solution of complex engineering 

problems. Most require only the function values (and not the derivatives). The genetic 

algorithms are based on the principles of natural genetics and natural selection (Rao, 

2009).  

Countless practical optimum design problems are described by; mixed continuous– 

discrete variables, and discontinuous and nonconvex design spaces. If standard nonlinear 

programming methods are used for this type of problem, they will be inefficient, 

computationally expensive, and, in most cases, find a relative optimum that is closest to 

the starting point. Genetic algorithms (GAs) are well suited for solving such problems, 

and in most cases they can find the global optimum (minimum) solution with a high 

probability (Rao, 2009). 

2.9.1 Genetic Algorithms 

Natural selection and natural genetics are the foundation of genetic algorithms. The 

genetic search process makes use of reproduction, crossover, and mutation—the 

fundamental components of natural genetics. The following are some ways that GAs vary 

from conventional optimization techniques (Rao, 2009): 
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1. The process is started using a population of points (trial design vectors) rather 

than a single design point. If the number of design variables is 𝑛, usually the size 

of the population is taken as 2𝑛 to 4𝑛. Since several points are used as candidate 

solutions, GAs are less likely to get trapped at a local optimum. 

2. GAs use only the values of the objective function. The derivatives are not used in 

the search procedure.  

3. The design variables in GAs are expressed as binary variable strings that match 

the chromosomes in natural genetics. As a result, the search approach can be used 

to solve both discrete and integer programming issues. The string length for 

continuous design variables can be adjusted to reach any required resolution. 

4. The objective function value corresponding to a design vector plays the role of 

fitness in natural genetics. 

5. Every new generation of strings is created via crossover from the previous 

generation (old set of strings) and randomized parents selection. GAs are not just 

random search methods, even though they are randomized. In order to identify a 

new generation with higher fitness or an objective function value, they effectively 

explore new combinations using the knowledge at their disposal. 

2.9.1.1 Representation of Design Variables 

The binary values 0 and 1 are used to denote the design variables in GAs. For example, if 

a design variable 𝑥𝑖 is denoted by a string of length four (or a four-bit string) as 0 1 0 1, 

its integer (decimal equivalent) value will be (1) 2 0 + (0) 2 1 + (1) 2 2 + (0) 2 3 = 1 + 0 + 

4 + 0 = 5. If each design variable 𝑥𝑖, 𝑖 = 1, 2, … , 𝑛 is coded in a string of length 𝑞, a design 

vector is represented using a string of total length 𝑛𝑞 (Rao, 2009). 

2.9.1.2 Representation of Objective Function and Constraints 

Genetic algorithms aim to optimize a function known as the fitness function since they are 

predicated on the idea that the strongest organisms survive. GAs are therefore ideally 

suited to handle unconstrained maximization problems. The fitness function, 𝐹(𝑿), can 
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be taken to be same as the objective function 𝑓(𝑿) of an unconstrained maximization 

problem so that 𝐹(𝑿) = 𝑓(𝑿). Prior to using the GAs, a minimization problem can be 

converted into a maximization problem. Typically, a nonnegative fitness function is 

selected. The transformation that is typically applied to change an unconstrained 

minimization issue into a fitness function is given by (Rao, 2009) 

𝐹(𝑿) =
1

1+𝑓(𝑿)
     Equation 2.1 

It is evident that Equation (2.1) transforms the minimization problem into an analogous 

maximization problem rather than changing the location of the minimum of 𝑓(𝑿). A 

general constrained minimization problem can be stated as 

Minimize 𝑓(𝑿) 

subject to 

𝑔𝑖(𝑿) ≤ 0, 𝑖 = 1, 2, … , 𝑚      Equation 2.2 

and 

ℎ𝑗(𝑿) = 0, 𝑗 = 1, 2, … , 𝑝 

With the use of the penalty function idea, this problem can be transformed into an 

equivalent unconstrained minimization problem as 

Minimize  Ø(𝑿) = 𝑓(𝑿) + ∑ 𝑟𝑖(
𝑚
𝑖=1 𝑔𝑖(𝑿))2 + ∑ 𝑅𝑗(𝑝

𝑗=1 ℎ𝑗(𝑿))2           Equation 2.3 

Where 𝑟𝑖 and 𝑅𝑗 are the penalty parameters associated with the constraints 𝑔𝑖(𝑿) and 

ℎ𝑗(𝑿) whose values are usually kept constant throughout the solution process. In Equation 

2.3, the function 〈𝑔𝑖(𝑿)〉, called the bracket function, is defined as 
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〈𝒈𝒊(𝑿)〉 = {
𝑔𝑖(𝑿)  𝑖𝑓 𝑔𝑖(𝑿) > 0
   0  𝑖𝑓  𝑔𝑖(𝑿) ≤ 0

       Equation 2.4 

Generally speaking, it is believed that the penalty parameters connected to each inequality 

and equality requirement are the same constants as 

𝑟𝑖 = 𝑟, 𝑖 = 1,2, … , 𝑚 and 𝑅𝑗 = 𝑅, 𝑗 = 1, 2, … , 𝑝   Equation 2.5 

Where r and R are constants. The fitness function, F(X), to be maximized in the GAs can 

be obtained, similar to Equation 2.1, as  

 𝐹(𝑿) =  
1

1+Ø(𝑿)
       Equation 2.6 

Equations (2.3) and (2.4) show that the penalty will be proportional to the square of the 

amount of violation of the inequality and equality constraints at the design vector X, while 

there will be no penalty added to 𝑓(𝑿) if all the constraints are satisfied at the design 

vector X (Rao, 2009). 

2.9.1.3 Genetic Operators  

A population of random strings representing many design vectors is the first step in the 

GAs' optimization problem solving process. The population size in GAs (𝑛) is usually 

fixed. Each string (or design vector) is evaluated to find its fitness value. The population 

(of designs) is operated by three operators—reproduction, crossover, and mutation—to 

produce a new population of points (designs). The new population is put through 

additional analysis to determine its fitness values and convergence of the process. In GAs, 

a generation is defined as one cycle of crossover, mutation, and reproduction together with 

the assessment of fitness values. The population is iteratively operated by the three 

operators, and the resulting new population is assessed for fitness values if the 

convergence requirement is not met. Until the convergence requirement is met and the 

process is stopped, it is repeated over a number of generations (Rao, 2009). 
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2.9.1.3.1 Reproduction 

The first process that is used on a population to choose suitable strings (designs) to create 

a mating pool is reproduction. Because it chooses the best strings within the population, 

the reproduction operator is also known as the selection operator. Using a probabilistic 

process, the reproduction operator selects above-average strings from the current 

population and places additional copies of those strings in the mating pools. In a 

commonly used reproduction operator, a string is selected from the mating pool with a 

probability proportional to its fitness. Thus if 𝐹𝑖 denotes the fitness of the 𝑖𝑡ℎ string in the 

population of size 𝑛, the probability for selecting the 𝑖𝑡ℎ string for the mating pool (𝑝𝑖) is 

given by (Rao, 2009) 

𝑝𝑖 =
𝐹𝑖

∑ 𝐹𝑗
𝑛
𝑗=1

; 𝑖 = 1, 2, … , 𝑛    Equation 2.7 

2.9.1.3.2 Crossover 

The crossover operator is applied after reproduction. By sharing information between 

strings in the mating pool, crossover aims to create new strings. The majority of crossover 

operators include the random selection of two distinct strings (or designs) from the mating 

pool created by the reproduction operator and some portions of the strings are exchanged 

between the strings. In the commonly used process, known as a  single-point crossover 

operator, a crossover site is selected at random along the string length, and the binary 

digits (alleles) lying on the right side of the crossover site are swapped (exchanged) 

between the two strings. The two strings selected for participation in the crossover 

operators are known as parent strings and the strings generated by the crossover operator 

are known as child strings (Rao, 2009). 

2.9.1.3.3 Mutation 

The primary operator used to generate new strings with improved fitness values for the 

upcoming generations is the crossover. The new strings with a particular tiny mutation 
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probability, 𝑝𝑚, are subjected to the mutation operator. The mutation operator changes the 

binary digit (allele’s value) 1 to 0 and vice versa. The mutation operator can be 

implemented in a number of ways. In a single-point mutation, a random mutation site is 

chosen along the length of the string, and with a probability of 𝑝𝑚, the binary digit at that 

site is changed from 1 to 0 or 0 to 1. In the bit-wise mutation, each bit (binary digit) in the 

string is considered one at a time in sequence, and the digit is changed from 1 to 0 or 0 to 

1 with a probability 𝑝𝑚. In terms of numbers, the procedure can be carried out as follows: 

A random number is generated, or selected, between 0 and 1. The binary digit is altered if 

the random integer is less than 𝑝𝑚 . If not, Rao (2009) states that the binary digit remains 

unchanged. 

It should be mentioned that the three operators; mutation, crossover, and reproduction, are 

easy to use. The crossover operator recombines the substrings of the mating pool's good 

strings to form strings (the next generation of the population), the mutation operator 

modifies the string locally, and the reproduction operator chooses good strings for the 

mating pool. By applying these three operators in turn, new generations with higher 

population average fitness values are produced. It has been discovered that the process 

converges to the objective function's optimal fitness value, even though the improvement 

in the strings' fitness over successive generations cannot be demonstrated mathematically. 

Keep in mind that the reproduction operator in the following generation will remove any 

bad strings that are produced at any point during the process. Numerous optimization 

problems have been effectively resolved by GAs in the literature (Rao, 2009). 

2.9.1.4 Algorithm  

The following steps can be used to describe the computational procedure in optimizing 

the fitness function 𝐹( 𝑥1, 𝑥2, 𝑥3 , … , 𝑥𝑛) in the genetic algorithm (Rao, 2009): 

1. A suitable string length 𝑙 = 𝑛𝑔 is chosen to represent the 𝑛 design variables of the 

design vector 𝑿. Suitable values for the following parameters are assumed: 
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population size 𝑚, crossover probability 𝑝𝑐, mutation probability 𝑝𝑚, permissible 

value of standard deviation of fitness values of the population (𝑠𝑓)𝑚𝑎𝑥 to use as 

a convergence criterion, and maximum number of generations (𝑖𝑚𝑎𝑥) to be used 

as a second convergence criterion. 

2. A random population of size 𝑚 is generated each consisting of a string of length 

𝑙 = 𝑛𝑔. The fitness values 𝐹𝑖 , 𝑖 = 1, 2, … , 𝑚 of the 𝑚 strings is then evaluated. 

3. The process of reproduction is executed. 

4. The crossover probability, 𝑝𝑐, is used to perform the crossover operation 

5. The new generation of 𝑚 strings is determined by the mutation process by 

applying the mutation probability 𝑝𝑚. 

6. For each of the m strings in the new population, the fitness values 𝐹𝑖 , i= 1, 2, … , 𝑚, 

are assessed. The standard deviation of the 𝑚 fitness values is then calculated. 

7. The process or algorithm's convergence is evaluated. If 𝑠𝑓 ≤ (𝑠𝑓)𝑚𝑎𝑥, the process 

can be terminated as the convergence requirement is met. If not, proceed to step 8. 

8. A test is conducted on the generation number. The procedure can be terminated if 

𝑖 = 𝑖𝑚𝑎𝑥, indicates that the calculations have been completed for the maximum 

number of generations that are permitted. If not, the generation number is set as 

𝑖 = 𝑖 + 1 and go to step 3 (Rao, 2009). 

2.9.1.5 Advantages of Genetic Algorithms  

They can be summarized as (Mwakabuta & Sekar, 2008):  

1. Works well with discrete or continuous variables. 

2. Conducts multiple simultaneous searches across a large sample of the search 

surface. 

3. Handles a considerable amount of variables. 

4. Offers a list of the best variables rather than simply one answer. 

5. Optimizes variables with incredibly intricate cost surfaces.  
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6. The variables might be encoded so that the encoded variables are used for 

optimization. 

7. Uses analytical functions, experimental data, or data created numerically.   

2.9.2 Simulated Annealing 

The simulation of thermal annealing of solids heated to critical temperatures forms the 

basis of the simulated annealing (SA) technique. The atoms in a metal move freely with 

regard to one another when it is heated to a high temperature, causing it to become molten. 

However, when the temperature drops, atoms' motions become more constrained. Atoms 

tend to become more organized as the temperature drops, eventually forming crystals with 

the least amount of internal energy (Rao, 2009). The rate of cooling is the primary 

determinant of the crystal formation process. The molten metal may not be able to reach 

the crystalline state if its temperature is lowered quickly; instead, it may form a 

polycrystalline state with a higher energy state than the crystalline state. Rapid cooling 

can induce internal material flaws in engineering applications. In order to ensure 

appropriate solidification with a highly ordered crystalline form that corresponds to the 

lowest energy state (internal energy), the temperature of the heated solid (molten metal) 

needs to be reduced at a slow and regulated rate. Annealing is the term for this gradual 

cooling process (Rao, 2009). 

2.9.2.1 Procedure 

The simulated annealing method simulates the process of slow cooling of molten metal to 

attain the minimum function value in a minimization problem. By introducing and 

regulating a temperature-like parameter, the cooling phenomena of the molten metal is 

reproduced by the use of Boltzmann's probability distribution principle. According to the 

relation, the energy (𝐸) of a system in thermal equilibrium at temperature 𝑇 is distributed 

probabilistically, as per the Boltzmann's probability distribution (Rao, 2009). 

𝑃(𝐸) = 𝑒−𝐸/𝑘𝑇        Equation 2.8 
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where 𝑃(𝐸) represents the probability of achieving the energy level 𝐸, and 𝑘 is called the 

Boltzmann’s constant. Equation (2.8) demonstrates that at high temperatures the system 

has nearly a uniform probability of being at any energy state; however, at low 

temperatures, the system has a small probability of being at a high-energy state. This 

suggests that the temperature 𝑇 can be adjusted to regulate the simulated annealing 

algorithm's convergence when the search process is considered to follow Boltzmann's 

probability distribution. In the context of function minimization, Metropolis et al. (1953) 

method of implementing Boltzmann's probability distribution in simulated 

thermodynamic systems can also be applied (Rao, 2009). 

In the case of function minimization, let the current design point (state) be 𝑿𝑖, with the 

corresponding value of the objective function given by 𝑓𝑖 = 𝑓(𝑿𝑖). Similar to the energy 

state of a thermodynamic system, the energy 𝐸𝑖 at state 𝑿𝑖 is given by 

𝐸𝑖 = 𝑓𝑖 = 𝑓(𝑿𝑖)     Equation 2.9 

Then, according to the Metropolis criterion, the probability of the next design point (state) 

𝑿𝑖+1 depends on the difference in the energy state or function values at the two design 

points (states) given by 

∆𝐸 = 𝐸𝑖+1 − 𝐸𝑖 = ∆𝑓 = 𝑓𝑖+1 − 𝑓𝑖 ≡ 𝑓(𝑿𝑖+1) − 𝑓(𝑿𝑖)        Equation 2.10 

The new state or design point 𝑿𝑖+1 can be found using the Boltzmann’s probability 

distribution: 

𝑃[𝐸𝑖+1] = 𝑚𝑖𝑛{1, 𝑒−∆𝐸/𝑘𝑇}      Equation 2.11 

The Boltzmann’s constant serves as a scaling factor in simulated annealing and, as such, 

can be chosen as 1 for simplicity. Note that if ∆𝐸 ≤ 0, Equation (2.11) gives 𝑃[𝐸𝑖+1] = 1 

and hence the point 𝑿𝑖+1 is always accepted. This is a logical choice in the context of 



49 

minimization of a function because the function value at 𝑿𝑖+1, 𝑓𝑖+1, is better (smaller) 

than at 𝑿𝑖, 𝑓𝑖, and hence the design vector 𝑿𝑖+1 must be accepted. On the other hand, when 

∆𝐸 > 0, the function value 𝑓𝑖+1 at 𝑿𝑖+1 is worse (larger) than the one at 𝑿𝑖. According to 

most conventional optimization procedures, the point 𝑿𝑖+1 cannot be accepted as the next 

point in the iterative process. Nevertheless, the probability of accepting the point 𝑿𝑖+1, in 

spite of its being worse than 𝑿𝑖 in terms of the objective function value, is finite (although 

it may be small) according to the Metropolis criterion , (Metropolis et al., 1953). Note that 

the probability of accepting the point 𝑿𝑖+1 

𝑃[𝐸𝑖+1] = {𝑒−∆𝐸/𝑘𝑇}       Equation 2.12 

is not same in all situations. As can be seen from Equation (2.12), this probability depends 

on the values of ∆𝐸 and. If the temperature 𝑇 is large, the probability will be high for 

design points 𝑿𝑖+1 with larger function values (with larger values of ∆𝐸 = ∆𝑓). Thus at 

high temperatures, even worse design points 𝑿𝑖+1 are likely to be accepted because of 

larger probabilities. However, if the temperature 𝑇 is small, the probability of accepting 

worse design points 𝑿𝑖+1 (with larger values of ∆𝐸 = ∆𝑓 ) will be small. Thus as the 

temperature values get smaller (that is, as the process gets closer to the optimum solution), 

the design points 𝑿𝑖+1 with larger function values compared to the one at 𝑿𝑖 are less likely 

to be accepted (Rao, 2009). 

2.9.2.2 Algorithm 

The SA algorithm can be summarized as follows: Starting with an initial design vector 𝑿1 

(iteration number 𝑖 = 1) and a high value of temperature 𝑇. A new design point is 

generated randomly in the vicinity of the current design point and the difference in 

function values is found (Rao, 2009): 

∆𝐸 = ∆𝑓 = 𝑓𝑖+1 − 𝑓𝑖 ≡ 𝑓(𝑿𝑖+1) − 𝑓(𝑿𝑖)    Equation 2.13 
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If 𝑓𝑖+1 is smaller than 𝑓𝑖 (with a negative value of ∆𝑓), point 𝑿𝑖+1is accepted as the next 

design point. Otherwise, when ∆𝑓 is positive, then point 𝑿𝑖+1is accepted as the next design 

point only with a probability 𝑒−∆𝐸/𝑘𝑇. This means that if the value of a randomly generated 

number is larger than 𝑒−∆𝐸/𝑘𝑇, the point 𝑿𝑖+1 is accepted; otherwise, the point 𝑿𝑖+1 is 

rejected. This completes one iteration of the SA algorithm. If the point 𝑿𝑖+1 is rejected, 

then the process of generating a new design point 𝑿𝑖+1 randomly in the vicinity of the 

current design point, evaluating the corresponding objective function value 𝑓𝑖+1, and 

deciding to accept 𝑿𝑖+1 as the new design point, based on the use of the Metropolis 

criterion, Equation (2.12), is continued. To simulate the attainment of thermal equilibrium 

at every temperature, a predetermined number (𝑛) of new points 𝑿𝑖+1 are tested at any 

specific value of the temperature 𝑇 (Rao, 2009). 

Once the number of new design points 𝑿𝐼+1 tested at any temperature 𝑇 exceeds the value 

of 𝑛, the temperature 𝑇 is reduced by a prespecified fractional value 𝑐 (0 < 𝑐 < 1) and 

the whole process is repeated. The procedure is assumed to have converged when the 

current value of temperature 𝑇 is sufficiently small or when changes in the function values 

(∆𝑓) are observed to be sufficiently small.  

The initial temperature 𝑇, the number of iterations 𝑛 prior to lowering the temperature, 

and the temperature reduction factor 𝑐 are critical decisions that affect how well the SA 

algorithm converges. For example, more temperature reductions are needed for 

convergence if the initial temperature 𝑇 is too high. However, the search procedure can 

be insufficient if the starting temperature is set too low, since it might not fully explore 

the design space to find the global minimum prior to convergence (Rao, 2009). The impact 

of the temperature reduction factor 𝑐 is similar. A value of 𝑐 that is excessively high (like 

0.8 or 0.9) necessitates excessive computing work in order to reach convergence. 

However, using a value of  𝑐 that is too small (e.g., 0.1 or 0.2) could cause the temperature 

to drop more quickly and prevent a full investigation of the design space in order to find 

the global minimum solution. Similar to this, a high value for 𝑛 will increase the 

computing effort required to reach a quasiequilibrium condition at any temperature. 
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Conversely, a smaller value of 𝑛 could lead to either a local minimum or an early 

convergence (since the design space for the global minimum would not have been 

sufficiently explored) (Rao, 2009). Sadly, there is not a single set of values for 𝑇, 𝑛, and 

c that will be ideal for every situation. Nonetheless, there are several rules that can be 

followed while choosing these values. The average value of the objective function 

calculated at several randomly chosen sites in the design space can be used to determine 

the beginning temperature𝑇. Depending on the available computer power and the required 

level of solution accuracy, the number of iterations (𝑛) can be selected between 50 and 

100. For a reasonable temperature reduction strategy (also known as the cooling schedule), 

the temperature reduction factor 𝑐 can be selected between 0.4 and 0.6. 

In the literature, more intricate cooling schedules based on predicted mathematical 

convergence rates have been applied to solve challenging real-world optimization issues 

(Atiquillah & Rao, 1995). The selection of the starting temperature 𝑇, the number of 

iterations 𝑛 at any given temperature, and the temperature reduction factor (or cooling 

rate) 𝑐 remain an art and typically require a trial-and-error process to find suitable values 

for solving any particular type of optimization problems, despite all the research being 

done on SA algorithms. The SA procedure is shown as a flowchart in Figure 2.4. 
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Figure 2.4: Simulated Annealing Procedure  

Source: (Rao, 2009) 
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2.9.2.3 Features of the SA Method 

Some of the features of simulated annealing are as follows (Rao, 2009): 

1. The initial assumptions have no effect on the quality of the eventual solution; the 

only possible effect is that a worse starting design may require more computational 

work. 

2. The convergence or transition characteristics are independent of the functions' 

continuity or differentiability due to the discrete nature of the function and 

constraint assessments. 

3. The feasible space's convexity has no bearing on the convergence. 

4. The design variables need not be positive.  

5. Discrete, continuous, or mixed-integer problems can all be resolved using this 

method. 

6. Similar to evolutionary algorithms, an equivalent unconstrained function must be 

defined for issues with behavior restrictions (along with lower and upper bounds 

on the design variables). 

2.9.3 Particle Swarm Optimization 

The behavior of a colony or swarm of insects, such as ants, termites, bees, and wasps; a 

flock of birds; or a school of fish, serves as the basis for particle swarm optimization 

(PSO). According to Rao (2009), the PSO algorithm emulates the actions of these social 

creatures. The term "particle" refers to things like a bird in a flock or a bee in a colony. A 

swarm's individual particles act in a distributed manner, drawing on both their individual 

intelligence and the collective intelligence of the group. Because of this, even if a particle 

in the swarm is located far away, the other particles will be able to follow the good path 

to food promptly if one of them finds it. Swarm intelligence-based optimization 

techniques are referred to as behaviorally inspired algorithms, whereas genetic algorithms 

are considered evolution-based procedures. Kennedy and Eberhart (1995) were the first 

to propose the PSO algorithm. 
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Inside the framework of multivariable optimization, it is presumed that the swarm 

possesses a fixed or determined size, with every particle initially situated at random points 

inside the multidimensional design space. It is considered that every particle possesses 

two attributes: a position and a velocity. Every particle roams around the design space, 

remembering the optimal location it finds for the food source or objective function value. 

The particles exchange information, or good positions, with one another and modify their 

respective velocities and positions in response to the information they get about the good 

locations. 

The actions of a flock of birds is used as an illustration. Even though each bird is only 

somewhat intelligent, they all adhere to the same basic principles (Rao, 2009): 

1. It makes an effort to avoid getting too close to other birds. 

2. It follows the general path taken by other birds. 

3. It makes an effort to find the "average position" among the other birds in the flock, 

avoiding large gaps. 

Therefore, a combination of three straightforward elements determines how the flock or 

swarm behaves: 

1. Cohesion: remain unified.  

2. Separation: Keep your distance from each other. 

3. Alignment: adhere to the flock's main heading. 

The PSO was created using the following model as a foundation (Rao, 2009): 

1. A single bird instantly notifies the others of its location when it finds food or a 

target, or when it reaches the maximum of the objective function. 

2. All other birds, though not directly, move toward the target or food (or the 

maximum of the objective function). 

3. Every bird has a portion of its own autonomous thought process in addition to its 

past memory. 
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As a result, the model mimics a random search for the objective function's highest value 

throughout the design space. Consequently, the birds approach the target (or maximum of 

the objective function) gradually over a large number of iterations. 

2.9.3.1 Computational Implementation of PSO 

Let's look into an unrestricted maximizing problem: 

  Maximize 𝑓(𝑿) 

With 𝑿(𝑙) ≤ 𝑿 ≤  𝑿(𝑢)     Equation 2.13 

where 𝑿(𝑙) and 𝑿(𝑢) denote the lower and upper bounds on 𝑿, respectively. The following 

stages can be used to implement the PSO process (Rao, 2009): 

1. It is assumed that the swarm has a size of 𝑁 particles. The swarm must be assumed 

to be lower in size in order to minimize the total number of function evaluations 

required in order to discover a solution. However, if the swarm size is too small, 

it can take longer to discover a solution or, in certain situations, it might not find 

one at all. As a compromise, a size of 20 to 30 particles is typically assumed for 

the swarm. 

2. Initial population of 𝑿 is generated in the range 𝑿(𝑙) and 𝑿(𝑢) randomly as 

𝑿1, 𝑿2, … , 𝑿𝑁. Hereafter, for convenience, the particle (position of) 𝑗 and its 

velocity in iteration 𝑖 are denoted as 𝑿𝑗
(𝑖)

 and 𝑽𝑗
(𝑖)

, respectively. Thus the particles 

generated initially are denoted 𝑿1(0), 𝑿2(0), … , 𝑿𝑁(0). The vectors 𝑿𝑗(0) (𝑗 =

1, 2, … , 𝑁) are called particles or vectors of coordinates of particles (similar to 

chromosomes in genetic algorithms). The objective function values corresponding 

to the particles are evaluated as 𝑓[𝑿1(0)], 𝑓[𝑿2(0)], … , 𝑓[𝑿𝑁(0)]. 
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3. Calculations are made regarding particle velocities. Every particle will have a 

velocity and travel to the ideal location. All particle velocities are initially assumed 

to be zero. The iteration number is set as 𝑖 = 1. 

4. In the ith iteration, the following two important parameters used by a typical 

particle 𝑗 are calculated: 

(a) The historical best value of 𝑿𝑗(𝑖) (coordinates of 𝑗𝑡ℎ particle in the current 

iteration 𝑖), 𝑃𝑏𝑒𝑠𝑡,𝑗, with the highest value of the objective function, 𝑓[𝑿𝑗(𝑖)], 

encountered by particle 𝑗 in all the previous iterations. The historical best value 

of 𝑿𝑗(𝑖) (coordinates of all particles up to that iteration), 𝐺𝑏𝑒𝑠𝑡, with the highest 

value of the objective function 𝑓[𝑿𝑗(𝑖)], encountered in all the previous 

iterations by any of the 𝑁 particles. 

(b) The velocity of particle 𝑗 in the 𝑖𝑡ℎ iteration is calculated as follows: 

𝑽𝑗(𝑖) =  𝑽𝑗(𝑖 − 1) + 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡,𝑗 − 𝑿𝑗(𝑖 − 1)] 

+𝑐2𝑟2[𝐺𝑏𝑒𝑠𝑡 − 𝑿𝑗(𝑖 − 1)]; 𝑗 = 1,2, … , 𝑁     Equation 2.14 

Where 𝑐1 and 𝑐2 are the cognitive (individual) and social (group) learning 

rates, respectively, and 𝑟1 and 𝑟2 are uniformly distributed random numbers 

in the range 0 and 1. The parameters 𝑐1 and 𝑐2 denote the relative 

importance of the memory (position) of the particle itself to the memory 

(position) of the swarm. The values of 𝑐1 and 𝑐2 are usually assumed to be 

2 so that 𝑐1𝑟1 and 𝑐2𝑟2 ensure that the particles would overfly the target 

about half the time. 

(c) The position or coordinate of the 𝑗𝑡ℎ particle in 𝑖𝑡ℎ iteration is calculated  as 

𝑿𝑗(𝑖) =  𝑿𝑗(𝑖 − 1) + 𝑽𝑗(𝑖);   𝑗 = 1, 2, … , 𝑁      Equation 2.15 
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Where a time step of unity is assumed in the velocity term in Equation (2.15). 

The objective function values corresponding to the particles are then evaluated 

as 𝑓[𝑿1(𝑖)], 𝑓[𝑿2(𝑖)], … , 𝑓[𝑿𝑁(𝑖)]. 

5. Next, the existing solution's convergence is examined. The approach is considered 

to have converged if all particle positions converge to the same set of values. If the 

convergence criterion is not satisfied, step 4 is repeated by updating the iteration 

number as 𝑖 = 𝑖 + 1, and by computing the new values of 𝑃𝑏𝑒𝑠𝑡,𝑗 and 𝐺𝑏𝑒𝑠𝑡. The 

iterative process is continued until all particles converge to the same optimum 

solution (Rao, 2009). 

2.9.3.2 Improvement to the Particle Swarm Optimization method 

It was discovered that, in most cases, the particle velocities increase too quickly, skipping 

the objective function's maximum (Rao, 2009). Therefore, to lower the velocity, an inertia 

term, 𝜃, is introduced. Typically, as the iterative process advances, the value of 𝜃 is 

supposed to vary linearly from 0.9 to 0.4. The velocity of the 𝑗𝑡ℎ particle, with the inertia 

term, is assumed as 𝑽𝑗(𝑖) = 𝜃𝑽𝑗(𝑖 − 1) + 𝑐1𝑟1[𝑃𝑏𝑒𝑠𝑡,𝑗 − 𝑿𝑗(𝑖 − 1)] 

+ 𝑐2𝑟2[𝐺𝑏𝑒𝑠𝑡 − 𝑿𝑗(𝑖 − 1)]; 𝑗 = 1, 2, … , 𝑁    Equation 2.16 

When compared to the original PSO algorithm with Equation (2.14), the swarm was able 

to converge more precisely and efficiently, thanks to the introduction of the inertia weight 

𝜃 by Shi and Eberhart (1999). Equation (2.16) represents a formulation of adapting 

velocity that enhances its ability to be fine-tuned during solution search. A larger value of 

𝜃 encourages global exploration, while a smaller value encourages local search, as seen 

by equation (2.16). Therefore, a high value of 𝜃 causes the algorithm to fail in finding the 

genuine optimality since it constantly explores new areas without doing much local 

search. In order to accelerate convergence to the true optimum, a linearly decreasing 

inertia weight has been employed to strike a balance between global and local exploration: 
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𝜃(𝑖) = 𝜃𝑚𝑎𝑥 − (
𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
) 𝑖     Equation 2.17 

where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the initial and final values of the inertia weight, respectively, 

and 𝑖𝑚𝑎𝑥 is the maximum number of iterations used in PSO. The values of 𝜃𝑚𝑎𝑥 = 0.9 

and 𝜃𝑚𝑖𝑛 = 0.4 are commonly used (Rao, 2009). 

2.9.4 Ant Colony Optimization 

2.9.4.1 Basic Concept 

The cooperative behavior of actual ant colonies, which can determine the quickest route 

from their nest to a food supply, serves as the foundation for ant colony optimization 

(ACO). Dorigo and his colleagues created the technique in the early 1990s (Colorini et 

al., 1992; Dorigo et al., 1996). The optimization problem can be represented as a 

multilayered graph, as illustrated in Figure 2.5, where the number of layers corresponds 

to the number of design variables and the number of nodes within a given layer to the 

number of discrete values allowed for the associated design variable. This approach 

explains the ACO process. As a result, a design variable's allowable discrete value is 

linked to each node. A problem with six design variables and eight allowable discrete 

values for each design variable is shown in Figure 2.5 (Rao, 2009). 

The following is an explanation of the ACO process: Let us say there are 𝑁 ants in the 

colony. In each cycle or iteration, the ants begin at the home node, move through the layers 

from the first layer to the last or final layer, and finish at the destination node. As per 

Equation (2.18), each ant can choose only one node per layer based on the state transition 

rule. A potential solution is represented by the nodes that an ant has chosen to visit along 

its way (Rao, 2009). 

For example, Figure 2.5 displays thick lines that represent an ant's typical journey. The 

solution (𝑥12, 𝑥23, 𝑥31, 𝑥45, 𝑥56, 𝑥64) is represented by this path. After the path is finished, 

the ant deposits some pheromone on the path based on the local updating rule given by 
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Equation (2.19). Equations (2.18) and (2.19) of the global updating rule are used to update 

the pheromones on the globally optimal path when every ant has completed their path 

(Rao, 2009). 

 

Figure 2.5: Graphical Representation of the Aco Process in the Form of a Multi-

Layered Network 

Source: (Rao, 2009) 

At the onset of the optimization procedure (that is, during iteration 1), an equal quantity 

of pheromone is initialized for each edge or ray. Because of this, in iteration 1, every ant 
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begins at the home node and ends at the destination node, where they choose a node at 

random from each layer. If a better solution is not found in a predetermined number of 

consecutive cycles or iterations, or if the predetermined maximum number of iterations is 

reached, the optimization process is discontinued. The elements of the ideal solution 

vector are the values of the design variables indicated by the nodes on the path with the 

greatest concentration of pheromone. Generally speaking, all ants follow the same optimal 

(converged) path at the optimal solution (Rao, 2009). 

2.9.4.2 Ant searching behaviour 

An ant 𝑘, when located at node 𝑖, uses the pheromone trail 𝜏𝑖𝑗 to compute the probability 

of choosing 𝑗 as the next node (Rao, 2009): 

𝑃𝑖𝑗
(𝑘)

=  {

𝜏𝑖𝑗
𝛼

∑ 𝜏𝑖𝑗
𝛼

𝑗𝜖 𝑁
𝑖
(𝑘)

   0        𝑖𝑓 𝑗 ∉  𝑁𝑖
(𝑘)

 

𝑖𝑓 𝑗 ∈  𝑁𝑖
(𝑘)

        Equation 2.18 

where 𝛼 represents the degree of significance of the pheromones and 𝑁𝑖
(𝑘)

 designates the 

set of neighborhood nodes of ant 𝑘 when located at node 𝑖. The neighborhood of node 𝑖 

comprises all the nodes directly connected to node 𝑖 except the predecessor node (i.e., the 

last node visited before 𝑖). This will hinder the ant from returning to the same node visited 

immediately before node 𝑖. Until it reaches the goal node—the food node—an ant moves 

from node to node (Rao, 2009).  

2.9.4.3 Path retracing and pheromone updating 

Upon visiting an arc, the 𝑘𝑡ℎ ant drops ∆𝜏(𝑘) of pheromone before heading back to its 

home node (reverse node). According to Rao (2009), the pheromone value 𝜏𝑖𝑗 on the 

traversed arc (𝑖, 𝑗) is updated as follows: 

𝜏𝑖𝑗 ← 𝜏𝑖𝑗 + ∆𝜏(𝑘)     Equation 2.19 
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The likelihood that the approaching ants will choose this arc will rise due to the 

pheromone's growth (Rao, 2009).   

2.9.4.4 Pheromone Trail Evaporation  

After an ant 𝑘 moves to the next node, the pheromone evaporates from all the arcs 𝑖𝑗 

according to the relation (Rao, 2009) 

𝝉𝒊𝒋 ← (𝟏 − 𝒑)𝝉𝒊𝒋;  ∀(𝒊, 𝒋) ∈ 𝑨          Equation 2.20 

where  𝒑 ∈  (0, 1) is a parameter and 𝑨 denotes the segments or arcs traveled by ant 𝑘 in 

its path from home to destination. The search process is aided by the exploration of 

alternative routes due to the drop in pheromone strength. This encourages the removal of 

bad path selection decisions. This aids in limiting the highest value that the pheromone 

trails can achieve. An iteration is a full cycle that includes the movement of ants, the 

evaporation and deposit of pheromones. When every ant has returned to its home node, or 

nest, the pheromone data is updated in accordance with the relation (Rao, 2009) 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
(𝑘)𝑁

𝑘=1    Equation 2.21 

where 𝜌 ∈  (0, 1) is the evaporation rate (also known as the pheromone decay factor) and 

∆𝜏𝑖𝑗
𝑘  is the amount of pheromone deposited on arc 𝑖𝑗 by the best ant 𝑘. The aim of 

pheromone update is to increase the pheromone value associated with good or promising 

paths. The pheromone deposited on arc 𝑖𝑗 by the best ant is taken as 

∆𝜏𝑖𝑗
𝑘 =  

𝑄

𝐿𝑘
     Equation 2.22 

Where 𝑄 is a constant  and 𝐿𝑘 is the length of the path traveled by the 𝑘𝑡ℎ ant (in 

the case of the travel from one city to another in a traveling salesman problem). Equation 

(2.22) can be implemented as (Rao, 2009) 
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∆𝜏𝑖𝑗
(𝑘)

=  {
𝜁𝑓𝑏𝑒𝑠𝑡

𝑓𝑤𝑜𝑟𝑠𝑡
;  𝑖𝑓 (𝑖, 𝑗) ∈ 𝑔𝑙𝑜𝑏𝑎𝑙 𝑏𝑒𝑠𝑡 𝑡𝑜𝑢𝑟

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  Equation 2.23 

Where 𝑓𝑤𝑜𝑟𝑠𝑡 is the worst value and 𝑓𝑏𝑒𝑠𝑡 is the best value of the objective function among 

the paths taken by the 𝑁 ants, and ζ is a parameter used to control the scale of the global 

updating of the pheromone. The larger the value of ζ, the more pheromone deposited on 

the global best path, and the better the exploitation ability. The purpose of Equation (2.23) 

is to provide a greater amount of pheromone to the tours (solutions) with better objective 

function values. 

2.9.4.5 Algorithm 

The following is a summary of the ACO algorithm's step-by-step process for resolving a 

minimization problem (Rao, 2009): 

1. An appropriate number of ants in the colony (𝑁) is assumed. A set of permissible 

discrete values for each of the 𝑛 design variables is assumed. The permissible 

discrete values of the design variable 𝑥𝑖  are denoted as 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝  (𝑖 =

1, 2, … , 𝑛). Equal amounts of pheromone 𝜏𝑖𝑗
(1)

 are initially assumed along all the 

arcs or rays (discrete values of design variables) of the multilayered graph shown 

in Figure 2.2. The superscript to 𝜏𝑖𝑗 signifies the iteration number. For simplicity, 

𝜏𝑖𝑗
(1)

= 1 can be assumed for all arcs 𝑖𝑗. The iteration number is set as 𝑙 = 1. 

2. (a) The probability (𝑝𝑖𝑗) of selecting the arc or ray (or the discrete value) 𝑥𝑖𝑗 is 

calculated as 

𝑝𝑖𝑗 =  
𝜏𝑖𝑗

(𝑙)

∑ 𝜏𝑖𝑚
(𝑙)𝑝

𝑚=1

; 𝑖 = 1, 2, … , 𝑛; 𝑗 = 1, 2, … , 𝑝                         Equation 2.24 

which is the same as Equation (2.18) with 𝛼 = 1. A larger value can also be used 

for α. 
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(b) The specific path (or discrete values) chosen by the 𝑘𝑡ℎ ant can be determined 

using random numbers generated in the range (0, 1). For this, the cumulative 

probability ranges can be found associated with different paths of Figure 2.2 based 

on the probabilities given by Equation (2.24). The specific path chosen by ant 𝑘 

will be determined using the roulette-wheel selection process in step 3(a). 

3. (a) 𝑁 random numbers are generated 𝑟1, 𝑟2, … , 𝑟𝑁 in the range (0, 1), one for each 

ant. The discrete value or path assumed by ant 𝑘 is determined for variable 𝑖 as the 

one for which the cumulative probability range [found in step 2(b)] includes the 

value 𝑟𝑖. 

(b) Step 3(a) is repeated for all design variables 𝑛𝑖 = 1, 2, … , 𝑛. 

(c) The objective function values are assessed corresponding to the complete paths 

(design vectors 𝑿(𝑘) or values of 𝑥𝑖𝑗 chosen for all design variables 𝑖 = 1, 2, … , 𝑛 

by ant 𝑘, 𝑘 = 1, 2, … , 𝑁): 

 𝑓𝑘 = 𝑓(𝑿(𝑘)); 𝑘 = 1, 2, … , 𝑁      Equation2.25 

The best and worst paths are determined among the 𝑁 paths chosen by different 

ants using Equations (2.26) and (2.27): 

𝑓𝑏𝑒𝑠𝑡 =  {𝑓𝑘}𝑘=1,2,..,𝑁
𝑚𝑖𝑛      Equation 2.26 

𝑓𝑤𝑜𝑟𝑠𝑡 =  {𝑓𝑘}𝑘=1,2,…,𝑁
𝑚𝑎𝑥     Equation 2.27 

4. The convergence of the process is then verified. The process is assumed to have 

converged if all 𝑁 ants take the same best path. If convergence is not realized, it 

is assumed that all the ants return home and start again in search of food. The new 

iteration number is set as 𝑙 = 𝑙 + 1, and the pheromones on different arcs updated 

(or discrete values of design variables) as 

𝜏𝑖𝑗
(𝑙)

=  𝜏𝑖𝑗
(𝑜𝑙𝑑)

+  ∑ ∆𝜏𝑖𝑗
(𝑘)

𝑘     Equation 2.28 



64 

where 𝜏𝑖𝑗
(𝑜𝑙𝑑)

 𝑑enotes the pheromone amount of the previous iteration left after 

evaporation, which is taken as 

𝜏𝑖𝑗
(𝑜𝑙𝑑)

=  (1 − 𝜌)𝜏𝑖𝑗
(𝑙−1)

    Equation 2.29 

and ∆𝜏𝑖𝑗
(𝑘)

 is the pheromone deposited by the best ant 𝑘 on its path and the 

summation extends over all the best ants 𝑘 (if multiple ants take the same best 

path). Note that the best path involves only one arc 𝑖𝑗 (out of 𝑝 possible arcs) for 

the design variable𝑖. The evaporation rate or pheromone decay factor ρ is assumed 

to be in the range 0.5 to 0.8 and the pheromone deposited ∆𝜏𝑖𝑗
(𝑘)

 is computed using 

Equation (2.23). 

With the new values of 𝜏𝑖𝑗
(𝑙)

 , one goes to step 2. Steps 2, 3, and 4 are repeated until 

the process converges, that is, until all the ants choose the same best path. In some 

cases, the iterative process is terminated after completing a prespecified maximum 

number of iterations (𝑙𝑚𝑎𝑥) (Rao, 2009). 

2.9.5 Optimization of Fuzzy Systems 

In traditional designs, the optimization problem is expressed precisely in mathematical 

terms. Nevertheless, the design data, objective function, and constraints are stated in vague 

and linguistic terms in many real-world problems. For instance, the statement, “This beam 

carries a load of 1000 𝑙𝑏 with a probability of 0.8” is not precise because of randomness 

in the material properties of the beam. Conversely, the statement, “This beam carries a 

large load” is imprecise because of the fuzzy meaning of “large load” (Rao, 2009). In the 

same vein, when designing a machine component optimally, the induced stress (𝜎) is 

constrained by an upper bound value (𝜎𝑚𝑎𝑥) as 𝜎 ≤ 𝜎𝑚𝑎𝑥. If 𝜎𝑚𝑎𝑥 = 30,000 𝑝𝑠𝑖, it 

implies that a design with 𝜎 = 30, 000 𝑝𝑠𝑖 is acceptable whereas a design with 𝜎 =

30, 001 𝑝𝑠𝑖 is not acceptable (Rao, 2009).  



65 

On the other hand, designs with 𝜎 = 30, 000 𝑝𝑠𝑖 and 30, 001 𝑝𝑠𝑖 do not differ 

significantly. It seems more sensible to have a phase of transition from total permission to 

total impermission. This suggests that the constraint should be expressed in fuzzy terms. 

Systems incorporating ambiguous and imprecise information can be modeled and 

designed using fuzzy theories (Rao, 1987; Rao et al., 1992; Dhingra et al., 1992). 

2.9.5.1 Fuzzy Set Theory 

Let 𝑋 be a classical crisp set of objects, called the universe, whose generic elements are 

designated by 𝑥. Membership in a classical subset 𝐴 of 𝑋 can be viewed as a characteristic 

function 𝜇𝐴 from 𝑋 to [0, 1] such that (Rao, 2009) 

𝜇𝐴 = {
1 𝑖𝑓 𝑥 ∈ 𝐴
0 𝑖𝑓 𝑥 ∉ 𝐴

     Equation 2.30 

The set [0, 1] is called a valuation set. A set 𝐴 is called a fuzzy set if the valuation set is 

allowed to be the whole interval [0, 1]. The fuzzy set 𝐴 is characterized by the set of all 

pairs of points represented as 

𝐴 = {𝑥, 𝜇𝐴(𝑥)}, 𝑥 ∈ 𝑋    Equation 2.31 

Where 𝜇𝐴(𝑥) is known as the membership function of 𝑥 in 𝐴. The closer the value of 

𝜇𝐴(𝑥) is to 1, the more 𝑥 belongs to 𝐴. For example, let 𝑋 =

{62 64 66 68 70 72 74 76 78 80} be possible temperature settings of the thermostat 

(℉) in an air-conditioned building. Then the fuzzy set 𝐴 of “comfortable temperatures 

for human activity” may be defined as (Rao, 2009) 

𝐴 = {
(62, 0.2), (64, 0.5), (66, 0.8), (68, 0.95), (70, 0.85), (72, 0.75),

(74, 0.6), (76, 0.4), (78, 0.2), (80, 1.0)
}  Equation 2.32 
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Where a grade of membership of 1 implies complete comfort and 0 implies complete 

discomfort. In general, if 𝑋 is a finite set, {𝑥1, 𝑥2, … , 𝑥𝑛} the fuzzy set on 𝑋 can be 

expressed as 

𝐴 = 𝜇𝐴(𝑥1)|𝑥1
+  𝜇𝐴(𝑥2)|𝑥2   + ⋯ + 𝜇𝐴(𝑥𝑛)|𝑥𝑛 

=  ∑ 𝜇𝐴(𝑥𝑖)|𝑥𝑖

𝑛
𝑖=1   Equation 2.33 

Or in the limit, 𝐴 can be expressed as 

𝐴 = ∫
𝑥

𝜇𝐴(𝑥)|𝑥    Equation 2.34 

2.9.5.2 Optimization of fuzzy systems 

Conventional optimization techniques focus on choosing the design variables that 

maximize an objective function while meeting the specified constraints. This definition of 

optimization needs to be updated for fuzzy systems. A design (decision) can be seen as 

the intersection of the fuzzy objective and constraint functions since in a fuzzy system, 

the membership functions characterize the objective and constraint functions (Rao, 2009). 

For illustration, the objective function considered was: “The depth of the crane girder (𝑥) 

should be substantially greater than 80 𝑖𝑛.” This can be represented by a membership 

function, such as 

𝜇𝑓(𝑥) = {
0                        𝑖𝑓  𝑥 < 80 𝑖𝑛.

 [1 + (𝑥 − 80)−2]−1, 𝑖𝑓   𝑥 ≥ 80 𝑖𝑛.
   Equation 2.35 

Let the constraint be “The depth of the crane girder (𝑥) should be in the vicinity of 83 𝑖𝑛.” 

This can be explained by a membership function of the type 

𝜇𝑔(𝑥) =  [1 + (𝑥 − 83)4]−1   Equation 2.36 

Then the design (decision) is described by the membership function, 𝜇𝐷(𝑥), as (Rao, 

2009) 
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𝜇𝐷(𝑥) =  𝜇𝑓(𝑥) ∧  𝜇𝑔(𝑥)  

          = {
0                     𝑖𝑓 𝑥 < 80 𝑖𝑛.

min{[1 + (𝑥 − 80)−2]−1, [1 + (𝑥 − 83)4]−1  }   𝑖𝑓 𝑥 ≥ 80 𝑖𝑛.
    Equation 2.37 

This relationship is shown in Figure 2.6. 

 

 

Figure 2.6: Concept of Fuzzy Decision 

Source: (Rao, 1987) 

Typically, the traditional optimization problem is expressed as follows: 

  Find 𝑿 which minimizes 𝑓(𝑿) 

subject to 

𝑔𝑗
(𝑙)

≤ 𝑔𝑗(𝑥) ≤  𝑔𝑗
(𝑢)

, 𝑗 = 1, 2, … , 𝑚       Equation 2.38 
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Where the superscripts 𝑙 and 𝑢 denote the lower and upper bound values, respectively. 

The optimization problem of a fuzzy system is stated as follows: 

  Find 𝑿 which minimizes 𝑓(𝑿) 

subject to  

𝑔𝑗(𝑿) ∈  𝐺𝑗 ,     𝑗 = 1, 2, … , 𝑚      Equation 2.39 

where 𝐺𝑗 denotes the fuzzy interval to which the function 𝑔𝑗(𝑿) should belong. Thus the 

fuzzy feasible region, 𝑆, which denotes the intersection of all 𝐺𝑗, is defined by the 

membership function (Rao, 2009) 

𝜇𝑆(𝑿) =  {𝜇𝐺𝑗
[𝑔𝑗(𝑿)]}

𝑗=1,2,..,𝑚

𝑚𝑖𝑛
    Equation 2.40 

Since a design vector 𝑿 is considered viable when 𝜇𝑆(𝑿) > 0, the optimum design is 

characterized by the maximum value of the intersection of the objective function and the 

feasible domain: 

𝜇𝐷(𝑿∗) = max 𝜇𝐷(𝑿) ,   𝑿 ∈ 𝐷    Equation 2.41 

where  

𝜇𝐷(𝑿) = 𝑚𝑖𝑛 {𝜇𝑓(𝑋),  𝜇𝐺𝑗
[𝑔𝑗(𝑿)]𝑗=1,2,…,𝑚

𝑚𝑖𝑛   }    Equation 2.42 

2.9.5.3 Computational procedure 

The membership functions of 𝑓 and 𝑔𝑗 can be used to find the solution of a fuzzy 

optimization problem. In real-world scenarios, the membership functions are constructed 

with the help and collaboration of seasoned engineers in specific cases. Based on the 

anticipated fluctuations of the objective and constraint functions, linear membership 
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functions are frequently employed in the absence of additional information. Once the 

membership functions are known, the problem can be posed as a crisp optimization 

problem as (Rao, 2009) 

  Find 𝑿 and 𝜆 which maximize 𝜆 

subject to 

𝜆 ≤ 𝜇𝑓(𝑿) 

   𝜆 ≤ 𝜇𝑔𝑗

(𝑙)(𝑿),         𝑗 = 1, 2, … , 𝑚 

   𝜆 ≤ 𝜇𝑔𝑗

(𝑢)(𝑿),       𝑗 = 1,2, … , 𝑚   Equation 2.43 

2.9.6 Neural-Network-Based Optimization 

The nervous system's extraordinary computing capacity to address perception-related 

issues in the face of copious amounts of sensory data has been linked to its parallel 

processing ability. In recent years, optimization problems have been solved with neural 

computing algorithms (Berke & Hajela, 1992; Dhingra & Rao, 1992). A neural network 

is a massively parallel network of interconnected basic processors, or neurons, where each 

neuron computes an output that is propagated to the output nodes after accepting a set of 

inputs from other neurons. As a result, the individual neurons, network connectivity, 

weights corresponding to the connections between neurons, and activation function of 

each neuron can all be used to characterize a neural network. An input vector is mapped 

by the network from one space to another. Although not stated, the mapping is learned 

(Rao, 2009). 

For example, a single neuron is shown in Figure 2.7. The neuron accepts a set of 𝑛 inputs, 

𝑥𝑖 , 𝑖 = 1, 2, … , 𝑛, from its adjacent neurons and a bias whose value is equal to 1. Each 

input has a weight (gain) 𝑤𝑖 associated with it. The weighted sum of the inputs determines 
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the state or activity of a neuron, and is given by 𝑎 = ∑ 𝑤𝑖𝑥𝑖 =𝑛+1
𝑖=1 𝑾𝑇𝑿, where 𝑿 =

{𝑥1𝑥2 … 𝑥𝑛1}𝑇. A simple function is now used to provide a mapping from the 

 

Figure 2.7: Single Neuron and Its Output  

Source: (Dhingra and Rao, 2009) 

𝑛-dimensional space of inputs into a one-dimensional space of the output, which the 

neuron sends to its neighbors. The output of a neuron is a function of its state and can be 

denoted as 𝑓(𝑎). Ordinarily, no output will be produced except the activation level of the 

node exceeds a threshold value. The output of a neuron is generally described by a sigmoid 

function as (Rao, 2009) 

𝑓(𝑎)
1

1+𝑒−𝑎    Equation 2.44 

which is shown graphically in Figure 2.4. Both big and tiny input signals can be handled 

by the sigmoid function. The available gain is represented by the slope of the 
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function 𝑓(𝑎). A neuron can be thought of as a distinct processor that runs in parallel with 

other neurons as its output is solely dependent on its inputs and the threshold value. 

Finding values for the weights 𝑤𝑖 that result in the best possible association between the 

neural network's inputs and outputs is the learning process (Rao, 2009). 

Numerous neural network topologies have been developed to mimic the fundamental 

properties of a single neuron, including the Hopfield and Kohonen networks. The amount 

of neurons in the network, the kind of threshold functions, the connectivities between the 

different neurons, and the learning processes all vary between these architectures. 

Figure 2.8 depicts a typical architecture called the multilayer feedforward network. The 

unidirectional feedforward communication links between the neurons are represented by 

the arcs in this picture. Each of these connections has a weight or gain that regulates the 

output that flows through it. Depending on whether a given neuron is excitatory or 

inhibitory, the weight may be positive or negative. The strengths of the various 

interconnections (weights) act as repositories for knowledge representation contained in 

the network (Rao, 2009). 
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Figure 2.8: Multilayer Feedforward Network  

Source: (Dhingra & Rao, 1992) 

2.10 Optimizing the Biomass Yield of Microalgae Using Genetic Algorithm 

2.10.1 Genetic Algorithm Solver Options  

2.10.1.1 Population Options 

i. Population type- Specifies the type of the input to the fitness function. 

ii. Population size- Specifies how many individuals there are in each generation. 

iii. Creation function- Specifies the function that creates the initial population. 

iv. Initial population enables you to specify an initial population for the genetic 

algorithm. If you do not specify an initial population, the algorithm creates one 

using the creation function. 

v. Initial scores enables you to specify scores for the initial population. 
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vi. Initial range specifies lower and upper bounds for the entries of the vectors in the 

initial population for the uniform creation function (R2016a). 

2.10.1.2 Fitness Scaling 

The scaling function converts raw fitness scores returned by the fitness function to values 

in a range that is suitable for the selection function. The scaling function specifies the 

function that performs the scaling. 

i. Rank scales the raw scores based on the rank of each individual, rather than its 

score. The rank of an individual is its position in the sorted scores. The rank of 

the fittest individual is 1, the next fittest is 2 and so on. 

ii. Proportional makes the expectation proportional to the raw fitness score. 

iii. Top scales the individuals with the highest fitness values equally. 

iv. Shift linear scales the raw scores so that the expectation of the fittest individual 

is equal to a constant, which can be specified as the maximum survival rate, 

multiplied by the average score. 

v. Custom enables you to write your own scaling function (R2016a).  

2.10.1.3 Selection  

The selection function chooses parents for the next generation based on their scaled values 

for the fitness scaling function. 

i. Stochastic uniform lays out a line in which each parent corresponds to a section 

of the line of length proportional to its expectation. The algorithm moves along 

the line in steps of equal size, one step for each parent. At each step, the 

algorithm allocates a parent from the section it lands on. 

ii. Remainder assigns parents deterministically from the integer part of each 

individual’s scaled value and then uses roulette selection on the remaining 

fractional part. 
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iii. Uniform select parents at random from a uniform distribution using the 

expectations and number of parents. 

iv. Shift linear scales the raw scores so that the expectation of the fittest individual 

is equal to a constant, which can be specified as maximum survival rate 

multiplied by the average score. 

v. Roulette simulates a roulette wheel with the area of each segment proportional 

to its expectation. The algorithm then uses a random number to select one of 

the sections with a probability equal to its area. 

vi. Tournament selects each parent by choosing individuals at random, the number 

of which can be specified by Tournament size, and then choosing the best 

individual out of the set to be a parent. 

vii. Custom enables one to write one’s own selection function (R2016a). 

2.10.1.4 Reproduction 

Reproduction options determine how the GA creates children at each new generation. 

i. Elite count specifies the number of individuals that are guaranteed to survive to 

the next generation. Set Elite count to be a positive integer less than or equal to 

population size. 

ii. Crossover fraction specifies the fraction of the next generation that crossover 

produces. Mutation produces the remaining individuals in the next generation. 

Set crossover fraction to be a fraction between 0 and 1 (R2016a). 

 2.10.1.5 Mutation 

Mutation functions make small random changes in the individuals in the population, 

which provide genetic diversity and enable the genetic algorithm to search a broader 

space. 
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i. Constraint dependent chooses Gaussian if there are no constraints or otherwise 

Adaptive feasible. These choices ensure that feasible parents give rise to 

feasible children, where feasibility is with respect to bounds and linear 

constraints. 

ii. Gaussian adds a random number to each vector entry of an individual. This 

random number is taken from Gaussian distribution centered on zero. The 

standard deviation of this distribution can be controlled with two parameters. 

The Scale parameter determines the standard deviation at the first generation. 

The Shrink parameter controls how standard deviation shrinks as generation go 

by.  If the Shrink parameter is 0, the standard deviation is constant. If the Shrink 

parameter is 1, the standard deviation shrinks to 0 linearly as the last generation 

is reached. 

iii. Uniform is a two-step process. First, the algorithm selects a fraction of the 

vector entries of an individual for mutation, where each entry has the same 

probability as the mutation rate of being mutated. In the second step, the 

algorithm replaces each selected entry by a random number selected uniformly 

from the range for that entry. 

iv. Adaptive feasible randomly generates directions that are adaptive with respect 

to the last successful or unsuccessful generation. A step length is chosen along 

each direction so that linear constraints and bounds are satisfied. 

v. Custom enables one to write one’s own mutation function that satisfies any 

constraints specified (R2016a). 

2.10.1.6 Crossover 

Crossover combines two individuals, or parents, to form a new individual, or child, for 

the next generation. 

i. Constraint dependent chooses Scattered when there are no linear constraints, 

and chooses Intermediate when there are linear constraints. These choices 



76 

ensure that feasible parents give rise to feasible children, where feasibility is 

with respect to bounds and linear constraints. 

ii. Scattered creates a random binary vector. It then selects the genes where the 

vector is a 1 from the first parent, and the genes where the vector is a 0 from 

the second parent, and combines the genes to form the child. 

iii. Single point chooses a random integer n between 1 and number of variables, 

and selects the vector entries numbered less than or equal to n from the first 

parent, selects genes numbered greater than n from the second parent, and 

concatenates these entries to form the child. 

iv. Two point selects two random integers m and n between 1 and number of 

variables. The algorithm selects genes numbered less than or equal to m from 

the first parent, selects genes numbered from m+1 to n from the second parent, 

and selects numbered greater than n from the first parent. The algorithm then 

concatenates these genes to form a single gene. 

v. Intermediate creates children by a random weighted average of the parents. 

vi. Heuristic creates children that randomly lie on the line containing the two 

parents, a small distance away from the parent with the better fitness value, in 

the direction away from the parent with the worse fitness value. 

vii. Arithmetic creates children that are a random arithmetic mean of two parents, 

uniformly on the line between the parents. 

viii. Custom enables one to write one’s own crossover function that specifies any 

constraints specified (R2016a). 

2.10.1.7 Migration 

Is the movement of individuals between subpopulations, which the algorithm creates if 

the population size is set to be a vector of length greater than 1. Every so often, the best 

individuals from one subpopulation replace the worst individuals in another 

subpopulation. Migration is controlled by the following parameters: 

i. Direction – specifies the direction in which migration can take place. 
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ii. Fraction controls how many individuals move between subpopulations 

iii. Interval controls how many generations pass between migrations. If you set 

interval to 20, for instance, migration between subpopulations takes place every 

20 generations (R2016a). 

2.10.1.8 Stopping Criteria 

Stopping criteria determines what causes the algorithm to terminate. 

i. Generations-specifies the maximum number of iterations the generic algorithm 

performs. 

ii. Time limit-specifies the maximum time in seconds the GA runs before 

stopping. 

iii. Fitness limit- If the best fitness value is less than or equal to the value of fitness 

limit, the algorithm stops. 

iv. Stall generations- If the average change in the fitness function value over stall 

generations is less than function tolerance, the algorithm stops. 

v. Stall time limit- If there is no improvement in the best fitness value for an 

interval of time in seconds specified by stall time limit, the algorithm stops. 

vi. Stall test- Determines whether the definition of “stall” is average change over 

the last stall generations, or is the geometric weighted average change, where 

the geometric weighting factor is (1/2)N for N generations from the end. 

vii. Function tolerance- If the average change in the fitness function value over stall 

generations is less than function tolerance, the algorithm stops. 

viii. Constraint tolerance- Tolerance for the maximum nonlinear constraint violation 

(R2016a). 

2.10.1.9 Plot Functions 

Plot functions enable one to plot various aspects of the GA as it is executing. Each one 

draws in a separate axis on the display window. 
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i. Plot interval- specifies the number of generations between successive updates 

of the plot. 

ii. Best fitness- plots the best function value in each generation versus iteration 

number. 

iii. Distance- plots the average distance between individuals at each generation. 

iv. Best individual- plots the vector entries of the individual with the best fitness 

function value in each generation. 

v. Expectation- plots the expected number of children versus the raw scores at 

each generation. 

vi. Genealogy- plots the genealogy of individuals. Lines from one generation to 

the next are colour-coded. Red lines indicate mutation children. Blue lines 

indicate crossover children whereas black one indicate elite individuals. 

vii. Range- plots the minimum, maximum and mean fitness function values in each 

generation. 

viii. Scores- plots the scores of the individuals at each generation. 

ix. Score diversity- plots a histogram of the scores at each generation. 

x. Selection-plots a histogram of the parents. This shows which parents are 

contributing to each generation (R2016a). 

2.10.1.10 Display to Command Window 

Level of display specifies the amount of information displayed in the MATLAB® 

command window when the algorithm is run. 

i. Off- Display no output. 

ii. Iterative-Display information at each iteration of the algorithm. 

iii. Diagnose-Display information at each iteration. In addition, the diagnostic lists 

some problem information and the options that are changed from the defaults. 

iv. Final- Display only the reason for stopping at the end of the run (R2016a). 
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2.11 Research Gaps 

To improve the economics of microalgal biodiesel production, more research and 

development are compulsory to reduce the costs of growing microalgae and the separation 

of microalgal biomass from the growth media, and to competently control culture 

contamination when grown in open ponds. The research and development efforts probably 

need to focus on the following areas as illustrated in Table 2.6. 

Table 2.6: Research Gaps 

S/NO. Literature Findings Research Gap 

1 Chisti, 2007 Oil-rich microalgal species can be 

enhanced through cultivation and 

genetic engineering to increase the oil 

content in their biomass without 

compromising the biomass production 

rate 

Selection and 

development of high-

yield, oil-rich 

microalgae 

2 Chisti, 2007 Most microalgae prefer to grow at the 

temperatures of 20-30 oC. When the 

temperature is higher than 30 oC, 

which happens very frequently during 

the sunny days in photobioreactors, 

heat exchangers have to be operated to 

cool down the microalgal culture to 

sustain a high microalgae growth 

Enhancement of the 

tolerance oil-rich 

microalgae to high 

and/or low 

temperatures 

3 Chisti, 2007 When microalgae grow under 

autotrophic conditions, they produce 

oxygen that dissolves in water to yield 

a super saturated dissolved oxygen 

concentration in the media, sometimes 

4-5 times of the air saturation value. A 

combination of high dissolved oxygen 

with intense sunlight impedes the 

growth of the microalgae and destroys 

the microalgal cells 

Enhancement of the 

tolerance of oil-rich 

microalgae to the 

high concentration of 

oxygen 

4 Chisti, 2007 In open pond microalgae production, 

the contamination of wild algae and 

bacteria is very challenging. If the 

growth media is contaminated by wild 

algae and/or bacteria, the wild algae 

and bacteria will devour the nutrients 

Improvement of the 

competitiveness of 

oil-rich microalgae 

against wild algae and 

bacteria 



80 

S/NO. Literature Findings Research Gap 

in the media and significantly diminish 

the yield of the desired microalgae 

5 Chisti, 2007 When microalgae grow in tubular 

photobioreactors, some of them stick 

on the wall of the tubes, significantly 

decreasing the penetration of light to 

the growth media and resulting in a 

lower yield of the microalgal biomass. 

Cost-effective materials which inhibit 

the microalgae from attaching to the 

surface should be explored to maintain 

a high growth rate of the microalgae 

Improvement of the 

engineering of the 

microalgae growth 

systems 

6 Chisti, 2007 Harvesting microalgal biomass 

contributes markedly to the total costs 

of the biomass production. Current 

technologies ordinarily involve 

coagulation, filtration and 

centrifugation, which are costly 

Development of cost-

effective microalgae 

harvesting systems 

7 Chisti, 2007 Microalgal biomass contains lipids 

(oil), carbohydrates, proteins and other 

minor components such as minerals 

and vitamins. Oil is used for biodiesel 

production. Other constituents can be 

processed into value-added products. 

After oil extraction, the residues which 

are rich in carbohydrates, proteins and 

minor nutrients can be used to produce 

animal feed. They can also be utilized 

for biogas production through 

anaerobic digestion. Special high-

value organic chemicals could be 

extracted from the residues and should 

be explored to increase the revenue of 

the microalgae-to-biodiesel process. 

All these byproducts have capabilities 

to improve the economics of the 

microalgae-to-biodiesel process 

Application of the 

biorefinery model to 

microalgal biodiesel 

production system 

The present study therefore capitalizes on some of the gaps presented here. In particular, 

the improvement of the engineering of the microalgae cultivation systems where GA as 

one of the modern optimization techniques, is employed to solve the growth inefficiencies 

in photobioreactors 
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2.12 Conceptual Framework 

The conceptual framework is as shown in Figure 2.9. 

 

Figure 2.9: Conceptual Framework 
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CHAPTER THREE 

 MATERIALS AND METHODS 

3.1 Introduction 

In this chapter, the materials and methods used to meet the research objectives have been 

presented. Initially the experimental design and PBR tank design and dimensions are 

presented. Then, the study design is presented which is divided into four sections: The 

first section describes the development of a computer optimization model to simulate the 

biomass yield of microalgae in a flat plate photobioreactor at pilot plant scale; The second 

section describes the isolation and characterization of strains of microalgae from local 

aquatic ecosystems that can be used in biomass and lipid production; The third section 

describes the validation of the performance of the developed computer simulation model 

using a flat plate perspex photobioreactor at pilot plant scale under white wavelength; And 

the last section describes the determination of the effect of light of various wavelengths 

and strain on the biomass and lipid yield of microalgae grown in the flat plate perspex 

photobioreactor. Finally the chapter ends with presentation of data analysis and 

presentation methods. 

3.2 Research Design 

The study adopted experimental design to test the hypotheses. 

3.2.1 Experimental Design 

The experimental design consisted of a randomized complete block design (RCBD) with 

three replications. 
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3.3 Photobioreactor Tanks Design and Dimensions 

A vertical flat-plate PBR set up was designed and built by Ondimu et al. (2019) at the 

Agricultural and Biosystems Engineering Department (ABED) of the School of 

Biosystems and Environmental Engineering (SoBEE) of JKUAT. The PBRs are three in 

number and made up of transparent materials (Perspex) for maximum utilization of light 

energy, as shown in Figures 3.1 and 3.2. Perspex was chosen for construction due to its 

favourable optical and mechanical properties: light transmittance of >92%, minimal light 

diffraction and intensity loss, refractive index of 1.92, tensile strength of >62 MPa, 

softening temperature of >110 oC (Ojo et al., 2015). The thickness of the panel is 10 mm 

and total effective internal volume of each PBR is 216 L (120 cm long, 20 cm wide and 

90 cm high). The mixing in the culture is ensured by an air- flux fed through two quarter 

inch tubes placed through the top and held at the bottom of each PBR by a weight of 

concrete wrapped in a white polythene bag and connected to a 6 W air pump. Light is 

continuously provided by 12, 10 W (6 on each side) light emitting diodes (LEDs) (MDL 

Ltd, China) with the first tank having white (400-700 nm) LEDs, second tank, red (610-

680 nm) LEDs and finally the third one with blue (430-480) LEDS. The source of power 

was the National grid or eighteen, 200 W solar panels connected to six 12 V solar batteries. 
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(a)                                                              (b) 

Figure 3.1: Illustration of the PBR System 

a: Pictorial representation, b: Front view  

Source: (Ondimu et al., 2019) 

Control and 
Monitoring System

Nutrient System

PBR Tanks
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Figure 3.2: Flat Plate Perspex Photobioreactor Used in the Study 

The pH, content’s temperature and ambient temperature at the end of the loop are 

measured using sensors (pH meter (SKU:SENo161, ELECbee, China); Temperature 

sensor (DPH7, China)), connected to a control-transmitter unit (Arduino Me 2560, Crison 

Instruments, Spain), in turn connected to a PC control unit, allowing complete monitoring 

and control of the facility. 
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3.4 Study Design 

The study was divided into four broad areas; 

i. Development of a computer optimization model to simulate the biomass yield of 

microalgae in a flat plate photobioreactor at pilot plant scale, 

ii. Isolation and characterization of strains of microalgae from local aquatic 

ecosystems that can be used in biomass and lipid production, 

iii. Validation of the performance of the developed computer simulation model using 

a flat plate perspex photobioreactor at pilot plant scale under white wavelength, 

iv. Determination of the effect of light of various wavelengths and strain on the 

biomass and lipid yield of microalgae grown in the flat plate perspex 

photobioreactor. 

3.4.1 Computer Optimization Model for Simulating the Biomass Yield of 

Microalgae  

There are a number of variables that determine the biomass yield of microalgae. These 

are: light intensity, light duration, light wavelength (quality), pH of culture medium, 

temperature, strain of microalgae, rate of mixing, biomass concentration, nutrients, 

vitamins and trace elements, etc. It is therefore important to develop a computer 

optimization model to simulate the yield of microalgal biomass. This will assist in 

determining the optimal cultivation conditions by experimenting with equations. This is 

cost-effective and saves on time, compared with experimenting with actual equipment. 

The knowledge generated will help microalgae researchers and producers in scaling up 

microalgae production from laboratory scale to pilot scale and eventually commercial 

production. 

3.4.1.1 Optimization Model for Simulating the Biomass Yield of Microalgae  

The optimization model for biomass yield is given by equation 3.1 (Zijffers et al., 2010), 
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                                    Equation 3.1 

Where   Y  is the yield in gmolphotons-1 

 
xC  is the biomass concentration in gL-1 

 
V  is the volume of the reactor content in L 

   is the growth rate per hour 

 A  is the illuminated reactor surface area in m2 

 
inPFD is the photon flux density in µmolphotonsm-2s-1 

A program in Matrix Laboratory (MATLAB R2016a) programming language was 

developed to simulate the microalgae biomass yield, 𝑌. The input variables in the 

simulation of 𝑌 are 𝐶𝑥, 𝜇, 𝑉, 𝐴 and 𝑃𝐹𝐷𝑖𝑛. Inputs 𝐴 and 𝑉 were obtained from the designed 

and fabricated FPPPBR in the School of Biosystems and Environmental Engineering 

(SoBEE) of JKUAT. The 𝑃𝐹𝐷𝑖𝑛 on the reactor surface was measured using a quantum 

sensor (RS485, BGT Technology Co., Ltd, Beijing, China). The values of 𝐴 and 𝑉 are 

constant as per the FPPPBR design and are 2.16 m2 and 192 L, respectively.  

3.4.1.2 Computer Model to Simulate Biomass Yield of Microalgae using Genetic 

Algorithm 

To simulate the biomass yield of microalgae, the optimization model, equation 3.1, had to 

be written in the editor window (Figure 3.3) of MATLAB® as a function MATLAB file 

(Figure 3.4), and the objective function was made negative because it is a maximization 

as the Global Optimization Tool Box of MATLAB® does minimization.  

 

 
 1
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Figure 3.3: MATLAB® Desktop Window 

Then click on the “APP” icon on the menu bar and Figure 3.5 will appear. After it appears, 

click on the optimization icon and Figure 3.6 will appear that has various options for 

solvers and click on “GA” and Figure 3.7 will show up.  

 

Figure 3.4: The Objective/Fitness MATLAB Function 
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Figure 3.5: Graphics User Interface for MATLAB® Showing Tool Bar for the 

“APP” Icon 

Figure 3.7 has spaces where the fitness function or objective function has to be filled 

starting with a handle “@” and also the number of variables in the optimization model. 

Also spaces for constraints are available. Whether linear inequalities, linear equalities, 

bounds, nonlinear constraint function and integer variable indices. Once these are filled, 

as summarized in Table 3.1, one goes to “options” Figure 3.8 and fills them also. 
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Figure 3.6: Graphics User Interface for MATLAB® Showing the Optimization Tool 

Table 3.1: Lower and Upper Bounds of Optimization Model Variables 

Symbol Variable Lower 

bound 

Upper 

bound 

Units Reference 

X1 Biomass 

Concentration  

0.001 0.1 gL-1 From current 

study 

X2 Microalgae 

growth rate 

0.0067 0.0102 h-1 From current 

study 

X3 Volume of 

reactor 

content 

192 192 L From the FPPBR 

X4 Photon flux 

density 

100 300 µmolphotonsm-2s-1 Alanίs,  (2013), 

From the FPPBR 

X5 Illuminated 

reactor surface 

area 

2.16 2.16 m2 From the FPPBR 
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Figure 3.7: Graphics User Interface for MATLAB® Showing GA Solver 
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Figure 3.8: Graphics User Interface for MATLAB® Showing GA Solver Options 

The options chosen are as shown in Table 3.2. Then run solver by clicking on the ‘Start’ 

icon in Figure 3.7 and execution is done. But remember the file having the function 

‘my_yield.m’ (Figure 3.4) should be on the path line or current directory in the MATLAB 

desktop for it to be executed. 
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Table 3.2: Values for the GA Options 

S/No. OPTION CHOICE 

1 Population type Double vector 

2 Population size 50 

3 Creation function Constraint dependent 

4 Initial population [ ] 

5 Initial scores [ ] 

6 Initial range [-10; 10] 

7 Scaling function Rank 

8 Selection function Stochastic uniform 

9 Elite count 0.05*Population size 

10 Crossover fraction 0.8 

11 Mutation function Constraint dependent 

12 Mutation rate 0.01 

13 Crossover function Constraint dependent 

14 Migration direction Forward 

15 Migration fraction 0.2 

16 Migration interval 20 

17 Nonlinear constraint algorithm Augmented Langrangian 

18 Initial penalty 10 

19 Penalty factor 100 

20 Hybrid function None 

21 Generations 150 

22 Time limit Inf 

23 Fitness limit Inf 

24 Stall generations 50 

25 Stall time limit Inf 

26 Stall test Average change 

27 Function tolerance 1e-6 

28 Constraint 1e-3 

29 Plot interval (Best fitness) 1 

30 Level of display Iterative 

31 Evaluate fitness and constraint 

functions 

In serial 

3.4.1.3 Experimental Design and Optimization Using Response Surface Methodology 

3.4.1.3.1 Response Surface Methodology  

Response surface methodology (RSM) is a collection of mathematical and statistical 

techniques useful in modeling and analysis of problems in which a response of interest is 
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influenced by several variables and the objective is to optimize this response (Vicente et 

al., 1998; Jeong & Don-Hee Park, 2009; Montgomery, 2013). RSM is used for design and 

collection of experimental data which allows fitting a general quadratic equation for data 

smoothing and prediction, regression analysis, and examination of fitted data which is 

usually done graphically through response surface plots. 

3.4.1.3.2 Experimental Design  

A Box-Wilson Central Composite Design (CCD), commonly called a ‘Central Composite 

Design’, contains an imbedded factorial or fractional factorial design with centre points 

that is augmented with a group of `star points' that allow estimation of curvature. If the 

distance from the center of the design space to a factorial point is ±1 unit for each factor, 

the distance from the center of the design space to a star point is ±𝛼 with |𝛼| > 1. The 

precise value of 𝛼 depends on certain properties desired for the design and on the number 

of factors involved. Similarly, the number of centre point runs, the design is to contain 

also depends on certain properties required for the design. A central composite design 

always contains twice as many star points as there are factors in the design. The star points 

represent new extreme values (low and high) for each factor in the design. The number of 

experimental runs is given by the formula 

𝑁 = 2𝑛 + 2𝑛 + 𝑛𝑐       Equation 3.2 

where 𝑁 is the number of runs 

 𝑛 is the number of factors 

 𝑛𝑐 is the number of centre points usually between 2 and 5. 

To maintain rotatability, the value of 𝛼 depends on the number of experimental runs in 

the factorial portion of the central composite design: 𝛼 =

[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟𝑖𝑎𝑙 𝑟𝑢𝑛𝑠]1/4. If the factorial is a full factorial, then 𝛼 = [2𝑘]1/4. For 

a 3 factor design, 𝑘 = 3, 𝛼 = [23]1/4 = 1.682 (Engineering Statistics Handbook, 2006). 
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Box and Behnken have proposed some three-level designs for fitting response surfaces. 

These designs are formed by combining 2𝑘 factorials with incomplete block designs. The 

resulting designs are usually very efficient in terms of the number of required runs, and 

they are either rotatable or nearly rotatable. Box-Behnken design is a spherical design, 

with all points lying on a sphere of radius √2 (Montgomery, 2013). 

From the optimization model, equation 3.1, the independent factors affecting biomass 

yield are; biomass concentration, growth rate, volume of reactor content, illuminated 

photobioreactor area and photon flux density. Biomass concentration, specific growth 

rate, and photon flux density were varied whereas volume of reactor content and 

illuminated photobioreactor area were kept constant. A five-level, three-factor Central 

Composite Design (CCD) was used to optimize these 3 independent variables to achieve 

maximum biomass yield. Table 3.3 gives the independent variables and levels used for 

experimental design. 

Table 3.3: Independent Variables and Their Levels in CCD 

Independent variable Code Variable levels 

  -α=-1.682 -1 0 1 +α=1.682 

Growth rate (h-1) A 0.0055 0.0067 0.0085 0.0102 0.0114 

Biomass concentration 

(gL-1) 
B -0.0327 0.001 0.0505 0.1 0.1337 

Photon flux density 

(µmolphotonsm-2s-1) 
C 31.8207 100 200 300 368.179 

From Table 3.3, the – 𝛼 value for biomass concentration is -0.0327, which is not logical 

as concentration cannot be negative, hence it was replaced by 0.0005. Table 3.4 was then 

generated which was used in the experimental design. 

  



96 

Table 3.4: Independent Variables and Their Levels in CCD with Outlier Removed 

Independent variable Code Variable levels 

  -α=-1.682 -1 0 1 +α=1.682 

Growth rate (h-1) A 0.0055 0.0067 0.0085 0.0102 0.0114 

Biomass concentration 

(gL-1) 
B 0.0005 0.001 0.0505 0.1 0.1337 

Photon flux density 

(µmolphotonsm-2s-1) 
C 31.8207 100 200 300 368.179 

A total of 20 simulations, including 6 replications at the centre point, were conducted. 

Replicates at the centre point give pure error. Reactor content and illuminated area were 

kept constant at 192 L and 2.16 m2, respectively. A sofware program, Design Expert 13.0 

(Stat-Ease, Inc., MN, USA), was used for the regression analysis, analysis of variance 

(ANOVA), drawing of surface plots and model adequacy checking.  

3.4.2 Isolation and Characterization of Strains of Microalgae  

3.4.2.1 Sample Collection 

Sampling was done as per Muruga (2015). Four water samples were collected aseptically 

from sites that appeared to contain algal blooms within Jomo Kenyatta University of 

Agriculture and Technology, Main campus, Juja (1o  05ʹ 33ʺ S, 37o 00ʹ 46ʺ E, 1526 m) and 

near Park-Road, Nairobi (1˚ 16ʹ 22ʺ S 36˚ 50ʹ 2ʺ E, 1,659 m). Temperature was measured 

in situ with an infrared thermometer (Model: BAFX3783). The pH was measured with a 

portable pH meter (InLab 738-1SM). Samples were put in sterile one litre bottles, labeled 

and transported to the laboratory immediately in an ice filled cooler box. Storage was done 

in a refrigerator at 4 oC.  

3.4.2.2 Preparation of the Culture Media 

3.4.2.2.1 Nutrient Agar and Peptone Water 

Nutrient agar plates and peptone water were prepared according to Cappuccino and 

Sherman (2014). Distilled water was used to prepare culture media; 15 g of peptone water 
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and 28 g of nutrient agar were separately weighed by difference using an analytical 

weighing balance (Model CS 200, OHAUS Corporation, USA) and each dissolved in one 

litre of distilled water. Each solution was heated to boil with frequent agitation using a 

magnetic stirrer (Model: HS4T-Pro, Infitek Co., Ltd, Shandong, China) to completely 

dissolve the medium. Sterilization of the media was done by autoclaving in a vertical 

pressure steam sterilizer (Model LS-B75L-I, Yancheng, Jiangsu, China) at 121 oC for 15 

minutes. It was allowed to cool to 45-50 oC before  dispensing in petri dishes placed in the 

biosafety cabinet (Model: BSC-IIA2-950) to solidify. 

3.4.2.2.2 Marine Biological Laboratory (MBL) Medium  

Marine Biological Laboratory (MBL) Medium Woods-Hole (Nichols, 1973) adapted for 

freshwater microalgae was used and prepared according to Cappuccino and Sherman 

(2014). It has the following components and their concentration (gL-1) as shown in Table 

3.5. 
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Table 3.5: Components of the MBL Medium 

Stock solutions Concentrations per litre of distilled water (gL-1) 

1.CaCl2·2H2O 36·76 

2.MgSO4·7H2O 36·97 

3.NaHCO3 12·60 

4.K2HPO4 8·71 

5.NaNO3 85·01 

6.Na2SiO3·9H2O 28·42 

7.Na2EDTA 4·36 

8.FeCl3·H2O 3·15 

9.Metal mix CuSO4·H2O 0·01 

ZnSO4·7H2O 0·022 

CoCl2·6H2O 0·01 

MnCl2·4H2O 0·18 

Na2MoO4·2H2O 0·006 

10.Vitamin 

stock 

Cyanocobalamin(vitamin 

B12) 

0·0005 

Thiamine HCL(vitamin B1) 0·10 

Biotin 0·0005 

11. Tris stock 250·0 

The stock solutions produced were then stored at 4 oC in the refrigerator. To prepare MBL 

medium, 1 mL of each stock solution was added to 1 L of distilled water. The pH was 

then adjusted to 7.2 using dilute hydrochloric acid (HCl). The medium was sterilized using 

an autoclave (Model LS-B75L-I, Yancheng, Jiangsu, China) at 121 oC (15 PSI) for 15 

minutes (Nichols, 1973) and then allowed to cool to room temperature.  

3.4.2.3 Isolation, Purification and Identification of Microalgae 

Isolation was done according to Cappuccino and Sherman (2014). Approximately 1 mL 

of microalgal sample was suspended in 9 mL of sterile distilled water and vortexed 

thoroughly. From this stock solution of 10 mL, serial dilutions were performed to 10−8 

using peptone water as the culture media as illustrated in Figure 3.9. Aliquots of 100 μL 

(0.1 mL) from the stock solution were drawn separately, plated on sterile agar medium 

aseptically, and spread using a glass rod. The plates in triplicates were incubated at 27 °C 

until visible colonies appeared (Black, 2008). A morphologically distinct colony was 

pinched with a sterile pin tool and sub cultured in MBL media (Figure 3.10).The 

incubation at 27 oC, under continuous light intensity of 15 μmolphotonsm-2s-1 (RS485, 

BGT Technology Co., Ltd, Beijing, China) supplied by 60 cm fluorescent lamp with the 
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light and dark cycle of 8:16 h. The tubes were in tube racks that were placed on an orbital 

shaker (Rotabit, J.P. Selecta, Abrera, Spain) rotating at 85 rpm. Sub culturing in MBL 

media continued till axenic microalgae cultures were obtained (Duong et al., 2012). 

Morphological characterization based on shape was done by observing under binocular 

microscope (Model No. XSZ-107BN, China) at magnification of X4, X40 and X100. 

Pictures were taken by a smartphone (Infix S4, 23MP). 

 

Figure 3.9: Experimental Setup for Initial Isolation Using Nutrient Agar and 

Peptone Water 
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Figure 3.10: Experimental Setup for Isolation by Serial Dilution Method in MBL 

3.4.2.4 Maintaining Microalgae Stocks 

Axenic microalgae were obtained from the higher dilution test tubes by withdrawing 1 

mL aliquot and diluting in 1 litre liquid MBL medium contained in 2 L polyethylene 

terephthalate (PET) bottles. Subculturing rounds were done every three months into fresh 

MBL medium (Alanίs, 2013). In this case, media was replaced every month. They were 

all stored at 26 oC, no agitation, 8:16 h light/dark photoperiod and 50 µmolphotonsm-2s-1 

light intensity supplied by a twin 120 cm white fluorescent tube (T8 TUBE 18 W, 

Microlite LTD, UK) as shown in Figure 3.11.  

Tubes 

containing 

MBL 

medium 

Tube rack 

Orbital 

shaker 



101 

 

Figure 3.11: Experimental Setup for Maintaining Microalgae Stocks 

3.4.2.5 Screening Microalgae for Biomass Production  

Microalgae cultures were screened for biomass yield considering their specific growth 

rate, doubling time and dry cell weight. The growth traits of the two isolates cultivated in 

batch culture were observed gravimetrically and spectrophotometrically (Thangavel et al., 

2018). Biomass yield was quantified using dry weight. For quantitative analysis and 

computation of doubling time as well as the specific growth rate, the optical densities at 

680 nm were measured (Abubakar, 2012; Lee et al., 2014; Puspanadan et al., 2018; 

Vasker et al., 2021 ) (denoted as OD 680) using PD-3000UV spectrophotometer (APEL 

Co. LTD, Japan).  The OD is a simple and effective means of measuring the growth curve.  

To determine the growth profile, the isolated microalgae cultures were grown in 1500 mL 

PET bottles with 1000 mL of autoclaved MBL medium by inoculation with 25 mL starter 

culture. The bottles were incubated at 26 ± 1 °C under continuous lighting set to a 16:8 h 

light-dark cycle with a timer for 20 days (Thangavel et al., 2018) (Figure 3.12). A third 
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Microalgae 

stocks 
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bottle with MBL medium only served as a control. A twin 120 cm white LED tube (T8 

TUBE 18 W) provided light intensity of between 30-45 μmolphotonsm-2s-1. The bottles 

were placed in reciprocating shaker (Type: OLS 200, Grant Instruments (Cambridge) Ltd, 

England). About 35 mL of the sample was drawn after every four days and stored in a 

refrigerator at 4 oC awaiting analysis.  

The specific growth rate (𝜇) and doubling time (𝑇𝑑) of the microalgae were computed 

according to values of OD 680 nm recorded using equations 3.2 and 3.3 as follows 

(Ibifubara et al., 2019): 

𝜇 =
(𝑙𝑛𝑂𝐷𝑡−𝑙𝑛𝑂𝐷0)

∆𝑡
                                                                       Equation 3.2 

  𝑇𝑑 =
𝑙𝑛2

𝜇
                                                                                      Equation 3.3 

Where 𝑂𝐷𝑡 and 𝑂𝐷0 refer to optical density at time t (day) and time zero, respectively, 

and ∆𝑡 is the change in time (days).  

For the dry weight measurement, approximately 10 mL of a 20-day old microalgae 

suspension was filtered using Whatman No. 1 filter paper. The algae pellet was washed 

twice with distilled water to eradicate the salts and then oven dried (Mitamura Riken 

Kogyo, INC., Tokyo, Japan) at 105 °C until it attained constant weight and the dry 

biomass was expressed as gL−1 (Thangavel et al., 2018).   

3.4.2.6 Biomass Growth for Inoculation into Flat PBRs 

For the biomass growth for inoculation, the isolated axenic microalgal cultures were 

grown in four 2000 mL PET bottles containing each 1000 mL of autoclaved MBL medium 

by inoculating with 25 mL starter culture of the same strain. The bottles were incubated 

at 26 ± 1 °C under uninterrupted illumination set on a 16:8 h light and dark cycle with a 

timer for 10 days (Figure 3.12). Light intensity of between 30-45 μmolphotonsm-2s-1 was 
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provided by a twin 120 cm white LED tube (T8 TUBE 18 W). The bottles were placed in 

an orbital shaker (Rotabit, J.P. Selecta, Abrera, Spain) rotating at 85 rpm.  

 

Figure 3.12: Experimental Setup for the Determination of Growth of the Two 

Isolated Unialgal Microalgae and for Biomass Growth for Inoculation into PBRs 

3.4.2.7 Optical Density (OD680) Standardization  

Standardization based on the OD680 of isolate stocks was carried out prior to inoculation 

in the three PBRs with white, red and blue wavelengths for yield test. 
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Equation 3.4 was used to calculate the proper dilutions needed so that the initial OD680 

for both isolates in all conditions tested was the same at the beginning of the yield 

experiments.  

1 1 2 2m v m v                                                                           Equation 3.4  

Where 𝑚1 equals the OD680 measured in the spectrophotometer, 𝑚2 represents the 

concentration wanted in each PBR at the beginning of the experiment, 𝑣2 represents the 

total volume that will be used for each PBR during the experiment and 𝑣1 is the unknown, 

representing the amount of stock volume that needs to be added to accomplish a standard 

OD680. Finally, the amount of media needed per PBR is calculated by subtracting 𝑣1 from 

the total reaction volume (Alanίs, 2013). 

3.4.3 Validation of the Performance of the Developed Computer Simulation Model 

3.4.3.1 Microalgae Growth in the FPPPBRs 

The entire PBR system used in this study is located inside a workshop shade in SoBEE 

where the experimental runs were carried out. This flat-plate perspex PBR was used in 

batch mode where both the inoculum and the nutrients were loaded into the bioreactor at 

the beginning, and no inlet nor outlet streams operated during the run, except for the air 

flow (Figure 3.13).  
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Figure 3.13: Experimental Set-Up 

The media (MBL) used for isolation was the same one used for the microalgal growth in 

the PBRs. Once the MBL media was prepared as explained in 3.4.2.2.2, it was autoclaved 

(WAC-100, DAIHAN Scientific CO, Ltd, Korea) at 121 oC for 15 minutes and stored in 

hot water sterilized 20 L jerricans at room temperature. When approximately 600 L of 

MBL had been autoclaved, it was loaded into the PBRs with a working volume of each 

PBR of 192 L (length: 120 cm, width: 20 cm and height: 80 cm). Two isolates that had 

been isolated according to 3.4.2.3 and pre-cultured as described in 3.4.2.4 were each 

separately inoculated into each PBR at a concentration of 0.1 gL-1and initial volume of 

approximately 1 litre. The PBRs were then covered with a black polythene paper to cut 

off any interference from the natural light. The system was set to operate at optimal 
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conditions that had been established by the simulation of the optimization model 

(Equation 3.1). The photoperiod was set at 12:12 hours of light and dark cycle and each 

incubation/run took 15 days. The measurement of the net irradiance outside and inside of 

the flat panel without contents was performed by a photosynthetic active radiation sensor 

(RS485, BGT Technology Co., Ltd, Beijing, China). The measurements were taken at the 

top, bottom and middle and nine positions in total per PBR. The irradiance inside the PBR 

was the one used in the research. 

3.4.3.2 Growth Monitoring in the FPPPBRs 

The culture growth in the FPPPBRs was estimated by measuring the optical density at 680 

nm using PD-3000UV spectrophotometer (APEL Co. LTD, Japan). The samples for OD 

measurement were taken on 2nd, 4th, 6th, 8th, 10th, 12th and 14th day for each experimental 

run. 

3.4.3.3 Harvesting the Microalgae and Drying 

After the incubation period was over, the system was switched off and the contents left to 

settle overnight. Harvesting was done by filtration using a cheese cloth (46x54 threads per 

inch) that was folded four times and held firmly in position by a 200 mesh sieve. The 

cheese cloth was then washed and the resulting microalgae put in 5 L clear pre-weighed 

plastic buckets and placed in a biomass greenhouse for drying (Figure 3.14). The drying 

was carried out at a temperature of between 50 to 60 oC until constant weight was attained. 

The resulting yield (Figure 3.15) was then obtained by subtracting the tare weight of the 

empty buckets from the weight of buckets plus the dried microalgae. 
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Figure 3.14: Drying of Harvested Microalgae in a Biomass Greenhouse 

 

Figure 3.15: Dried Microalgae Biomass 
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3.4.3.4 Model Validation 

The validation of the performance of the developed computer simulation model was 

carried out by comparing simulated and experimental data. The statistical tools used in the 

validation (Equations 3.5–3.8) include; mean square error (MSE), mean absolute 

percentage error (MAPE), mean absolute error (MAE), root mean square error (RMSE) 

and correlation coefficient (R). These tools are frequently used to measure the difference 

between values predicted by a model and the values actually observed from an 

experimental setup (Zhang, 2003; Zhang, 2007; Hamzacebi, 2008). For a good prediction, 

the obtained error values should be as small as possible while R should be high (Ibifubara 

et al., 2019). The expressions are given as follows: 

Mean square error: 

          Equation 3.5 

Root mean squared error:  

       Equation 3.6 

Mean absolute error: 

                                               Equation 3.7 

Mean absolute percentage error: 
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     Equation 3.8 

Where Xobs is observed values, Xmodel is modelled values at time/place i, and n is the 

number of experimental data points. Also the student’s t-test was performed on the data. 

3.4.4 Investigation of the Effect of Light Wavelength and Strain on the Biomass and 

Lipid Yield 

To investigate the influence of light wavelength and strain on the biomass and lipid yield 

of microalgae, the system was operated as explained in Section 3.4.3.1 under the following 

wavelengths; 400-700 nm (white), 430-480 nm (blue) and 610-680 nm (red).  Strains used 

were C. vulgaris and C. emersonii. This was so because the control and monitoring system 

is designed to operate the three PBRs concurrently. Thus as the validation of the 

optimization model was ongoing using white wavelength, the influence of blue and red 

wavelengths on the biomass and lipid yield of microalgae was happening simultaneously. 

3.4.4.1 Lipid Extraction from Microalgae 

Dried microalgae were analyzed for lipid/oil content by a procedure adapted from Bligh 

and Dyer (1959). About 5 g of the sample, after milling, was weighed and put into 

centrifuge (falcon tubes) bottles. Approximately 20 mL of methanol - chloroform mixture 

in the ratio 2:1 v/v was added. This was shaken for about an hour using electronic shaker 

(KS 250B, IKA LABORTECHNIK, GmbH & CO., Austria). The mixture was then 

filtered using Whatman filter paper No.1 and 20 mL of pure chloroform added to the 

filtrate. This was vortexed (TTM-1, Shibata Science Co., Ltd, Hong Kong) for a few 

seconds, then cold water added and vortexed again to obtain a homogeneous solution. This 

solution was centrifuged (Werk NC D-78532, Tuttlingen, Germany) at 7000 rpm for 10 

minutes. Two layers were formed viz. organic and inorganic. The organic layer containing 

the fats was transferred into pre-weighed clean and dried reflux flasks. Then dried in an 

oven (Mitamura Riken Kogyo, INC., Tokyo, Japan) at 105 oC for an hour. It was then 

, mod , ,1
( ( ) / ))

100

n

obs i el i obs iiMAPE X
n

X X X
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weighed and this weight recorded as W1. The contents were evaporated using rotary 

evaporator (Bibby Sterilin Ltd, RE 100B, UK) to obtain the residue. The residue was 

transferred back in the oven to dry for another hour at 105 oC and the resulting weight 

recorded as W2. The percent lipid content was then calculated according to equation 3.6 

and the dried residue dissolved in 7 ml of 5% methanolic: HCl awaiting fatty acid 

profiling. 

 %Lipid content (w/w)   =
(𝑊2−𝑊1)

𝑠𝑎𝑚𝑝𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 100                                  Equation 3.6 

3.5 Statistical Analysis 

Statistical analyses were performed using IBM SPSS statistics 25 software, Design expert 

13, Microsoft office excel 2016 and MATLAB R2016a. All data presented in tables and 

figures are expressed as the mean ± standard deviation (SD). The biomass and lipid yields 

were analyzed using a two-way analysis of variance (ANOVA). Differences were 

considered significant at p < 0.05. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction 

This chapter presents the obtained results and is organized into four sections. The first 

section presents the results of the optimization model, the second section presents the 

results on isolation and characterization of strains of microalgae for biomass and lipid 

production. The third section presents results on validation of the optimization model and 

finally the fourth section presents the findings on the effect of blue, red and white 

wavelength and strain of microalgae on the biomass and lipid yield of microalgae.   

4.2 Computer Optimization Model for Simulating Microalgae Biomass Yield 

From the computer optimization model equation 3.1 and applying Genetic Algorithm 

(GA) and the limits in Table 3.1 and values for the GA options in Table 3.2, after 87 

generations, in a 3.06GHz, 512MB RAM computer, the optimum microalgae yield was 

0.250715±0.001608 gmolphotons-1 (Figure 4.1) and the optimal cultivation conditions 

were as in Table 4.1, that is to say, biomass concentration of 0.1 gL-1, microalgae growth 

rate of 0.0102 h-1 (i.e., is the amount of microalgae created in 1 unit of time divided by 

the total amount of original microalgae) and photon flux density of 100 µmolphotonsm-

2s-2.  
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Figure 4.1: Results of Simulation Model Equation 3.1 

Table 4.1: Optimal Cultivation Conditions According to Equation 3.1 Using GA 

Symbol Variable Optimal value Units 

X1 Biomass concentration 0.1 gL-1 

X2 Microalgae growth rate 0.0102 h-1 

X3 Volume of reactor content 192 L 

X4 Photon flux density 100 µmolphotonsm-2s-1 

X5 Illuminated reactor surface area 2.16 m2 

Note: The physical meaning of the growth rate is the amount of algae created in 1 unit of 

time divided by the total amount of original algae (growth rate = number of new algae per 

unit time / number of old algae). The units of growth rate can vary with the experiment or 

model, growth rate µ is found in units of s−1, h−1 and d−1 (Arragon, 2014). 
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According to the best knowledge of the researcher, there was no other research findings 

to compare with the findings of this research. 

4.2.1 Optimization Using Response Surface Methodology and Genetic Algorithm 

Table 4.2 gives the details of a set of 20 experiments in terms of actual and coded levels 

as per CCD, and simulated biomass yields. 

Table 4.2: CCD Matrix with Simulated Biomass Yields 

  Level of factors[actual(coded)]  

STD RUN Factor 1 

A: Growth 

rate (h-1) 

Factor 2 

B: Biomass 

concentration (gL-1) 

Factor 3 

C: Photon flux 

density 

(µmolphotonsm2s-1) 

Simulated yield  

(gmol/photons) 

19 1 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

3 2 0.0067 (-1) 0.1 (1) 100 (-1) 0.165432 

7 3 0.0067 (-1) 0.1 (1) 300 (1) 0.055144 

1 4 0.0067 (-1) 0.001 (-1) 100 (-1) 0.00165432 

17 5 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

2 6 0.0102 (1) 0.001 (-1) 100 (-1) 0.00251852 

16 7 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

8 8 0.0102 (1) 0.1 (1) 300 (1) 0.0839506 

13 9 0.00845 (0) 0.0505 (0) 31.8207 (-1.682) 0.331118 

4 10 0.0102 (1) 0.1 (1) 100 (-1) 0.251852 

6 11 0.0102 (1) 0.001 (-1) 300 (1) 0.000839506 

9 12 0.00550686 (-

1.682) 

0.0505 (0) 200 (0) 0.0343329 

12 13 0.00845 (0) 0.133749 (1.682) 200 (0) 0.139528 

10 14 0.0113931 

(1.682) 

0.0505 (0) 200 (0) 0.0710311 

5 15 0.0067 (-1) 0.001 (-) 300 (1) 0.00055144 

18 16 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

11 17 0.00845 (0) 0.0005  

(-1.682) 

200 (0) 0.000521605 

15 18 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

20 19 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

14 20 0.00845 (0) 0.0505 (0) 368.179 (1.682) 0.0286177 

Data in Table 4.2 were tested for fit for a linear, two-factor interaction (2FI), quadratic 

and cubic polynomials. The results are as shown in Table 4.3. 
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Table 4.3: Summary for Model Fit- Sequential Model Sum of Squares 

Source Sequential  

p-value 

Lack of Fit p-

value 

Adjusted 

R² 

Predicted 

R² 

 

Linear 0.0006 
 

0.5867 0.3628 Suggested 

2FI 0.3168 
 

0.6085 0.2961 
 

Quadratic 0.0072 
 

0.8396 0.2791 Suggested 

Cubic 
  

1.0000 
 

Aliased 

Sequential Model Sum of Squares [Type I] 

Source Sum of 

Squares 

df Mean 

Square 

F-

value 

p-

value 

 

Mean vs Total 0.1100 1 0.1100 
   

Linear vs Mean 0.0937 3 0.0312 9.99 0.0006 Suggested 

2FI vs Linear 0.0115 3 0.0038 1.30 0.3168 
 

Quadratic vs 2FI 0.0264 3 0.0088 7.24 0.0072 Suggested 

Cubic vs 

Quadratic 

0.0121 5 0.0024 
  

Aliased 

Residual 0.0000 5 0.0000 
   

Total 0.2537 20 0.0127 
   

Looking at R2 values, Cubic model had the highest value (R2 =1.0000) but it is aliased, so 

should not be selected. Next highest R2 was for a Quadratic model (R2 = 0.8396), which 

was the suggested model. Criterion of p-value, Prob > F, was less than 0.0500, indicating 

that the Quadratic model terms were significant. Therefore, the Quadratic model was 

selected as it had the highest order polynomial where the model terms were significant 

and the model was not aliased. 

A full quadratic model for yield (Equation 4.1) was tested. 

𝑌 =  𝑏0 + 𝑏1𝐴 + 𝑏2𝐵 + 𝑏3𝐶 + 𝑏12𝐴𝐵 + 𝑏13𝐴𝐶 + 𝑏23𝐵𝐶 + 

𝑏11𝐴2 + 𝑏22𝐵2 + 𝑏33𝐶2     Equation 4.1 

Table 4.4 gives Analysis of Variance (ANOVA) for the Response Surface Quadratic 

model. 
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Table 4.4: ANOVA for Response Surface Quadratic Model 

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value 
 

Model 0.1316 9 0.0146 12.05 0.0003 Significant 

A-Growth rate 0.0023 1 0.0023 1.91 0.1966 
 

B-Biomass 

concentration 

0.0488 1 0.0488 40.22 < 0.0001 
 

C-Photon flux 

density 

0.0457 1 0.0457 37.64 0.0001 
 

AB 0.0016 1 0.0016 1.34 0.2738 
 

AC 0.0004 1 0.0004 0.3488 0.5679 
 

BC 0.0095 1 0.0095 7.81 0.0189 
 

A² 0.0003 1 0.0003 0.2713 0.6138 
 

B² 0.0019 1 0.0019 1.53 0.2445 
 

C² 0.0235 1 0.0235 19.36 0.0013 
 

Residual 0.0121 10 0.0012 
   

Lack of Fit 0.0121 5 0.0024 
   

Pure Error 0.0000 5 0.0000 
   

Cor Total 0.1437 19 
    

    

Std. Dev. 0.0348 R² 0.9156 

Mean 0.0742 Adjusted R² 0.8396 

C.V. % 46.97 Predicted R² 0.2791 
  

Adeq Precision 12.1133 

The Model F-value of 12.05 implies the model is significant. There is only a 0.03% chance 

that an F-value this large could occur due to noise. P-values less than 0.0500 indicate 

model terms are significant. In this case B, C, BC and C² are significant model terms. 

Values greater than 0.1000 indicate the model terms are not significant. In this case A, 

AB, AC, A2 and B2. Since, there are many insignificant model terms (not counting those 

required to support hierarchy), model reduction may improve the model. 

The Predicted R² of 0.2791 is not as close to the Adjusted R² of 0.8396 as one might 

normally expect; i.e. the difference is more than 0.2. This may indicate a large block effect 

or a possible problem with the model and/or data. Things to consider are model reduction, 

response transformation, outliers, etc. When the model was tested for adequacy, run 9 was 
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found to be an outlier and the PFD was adjusted from 31.8207 to 55 by trial and error 

method. Table 4.5 shows the CCD matrix with outlier removed. 

Table 4.5: CCD Matrix with Simulated Biomass Yields and Outlier Removed 

  Level of factors[actual(coded)]  

STD RUN Factor 1 

A: Growth rate (h-1) 

Factor 2 

B: Biomass 

concentration 

(gL-1) 

Factor 3 

C: Photon flux 

density 

(µmolphotonsm2s-1) 

Simulated yield  

(gmol/photons) 

19 1 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

3 2 0.0067 (-1) 0.1 (1) 100 (-1) 0.165432 

7 3 0.0067 (-1) 0.1 (1) 300 (1) 0.055144 

1 4 0.0067 (-1) 0.001 (-1) 100 (-1) 0.00165432 

17 5 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

2 6 0.0102 (1) 0.001 (-1) 100 (-1) 0.00251852 

16 7 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

8 8 0.0102 (1) 0.1 (1) 300 (1) 0.0839506 

13 9 0.00845 (0) 0.0505 (0) 55 (-1.682) 0.191571 

4 10 0.0102 (1) 0.1 (1) 100 (-1) 0.251852 

6 11 0.0102 (1) 0.001 (-1) 300 (1) 0.000839506 

9 12 0.00550686 (-1.682) 0.0505 (0) 200 (0) 0.0343329 

12 13 0.00845 (0) 0.133749 

(1.682) 

200 (0) 0.139528 

10 14 0.0113931 (1.682) 0.0505 (0) 200 (0) 0.0710311 

5 15 0.0067 (-1) 0.001 (-) 300 (1) 0.00055144 

18 16 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

11 17 0.00845 (0) 0.0005  

(-1.682) 

200 (0) 0.000521605 

15 18 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

20 19 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 

14 20 0.00845 (0) 0.0505 (0) 368.179 (1.682) 0.0286177 

Data in Table 4.5 were tested for fit for a linear, two-factor interaction (2FI), quadratic 

and cubic polynomials. The results are as shown in Table 4.6. 
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Table 4.6: Summary for Model Fit- Sequential Model Sum of Squares for Modified 

Data 

Source Sequential p-

value 

Lack of Fit p-

value 

Adjusted 

R² 

Predicted 

R² 

 

Linear < 0.0001 
 

0.7308 0.5832 
 

2FI 0.0111 
 

0.8550 0.7491 
 

Quadratic 0.0038 
 

0.9478 0.7807 Suggested 

Cubic 
  

1.0000 
 

Aliased 

Sequential Model Sum of Squares [Type I] 

Source Sum of 

Squares 

df Mean 

Square 

F-

value 

p-value 
 

Mean vs Total 0.0903 1 0.0903 
   

Linear vs Mean 0.0700 3 0.0233 18.20 < 

0.0001 

 

2FI vs Linear 0.0115 3 0.0038 5.56 0.0111 
 

Quadratic vs 2FI 0.0065 3 0.0022 8.71 0.0038 Suggested 

Cubic vs 

Quadratic 

0.0025 5 0.0005 
  

Aliased 

Residual 0.0000 5 0.0000 
   

Total 0.1808 20 0.0090 
   

The highest order polynomial (quadratic) was selected where the additional terms were 

significant and the model was not aliased.  

A full quadratic model for yield (Equation 4.1) was tested and the Analysis of Variance 

(ANOVA) for the Response Surface Quadratic model is as shown in Table 4.7. 
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Table 4.7: ANOVA for Response Surface Quadratic Model with Outlier Removed 

Source Sum of 

Squares 

df Mean 

Square 

F-value p-value 
 

Model 0.0880 9 0.0098 39.36 < 0.0001 Significant 

A-Growth rate 0.0023 1 0.0023 9.35 0.0121 
 

B-Biomass 

concentration 

0.0455 1 0.0455 183.24 < 0.0001 
 

C-Photon flux 

density 

0.0241 1 0.0241 96.87 < 0.0001 
 

AB 0.0016 1 0.0016 6.55 0.0284 
 

AC 0.0004 1 0.0004 1.70 0.2210 
 

BC 0.0095 1 0.0095 38.16 0.0001 
 

A² 0.0000 1 0.0000 0.0718 0.7942 
 

B² 0.0004 1 0.0004 1.78 0.2118 
 

C² 0.0061 1 0.0061 24.58 0.0006 
 

Residual 0.0025 10 0.0002 
   

Lack of Fit 0.0025 5 0.0005 
   

Pure Error 0.0000 5 0.0000 
   

Cor Total 0.0905 19 
    

    

Std. Dev. 0.0158 R² 0.9725 

Mean 0.0672 Adjusted R² 0.9478 

C.V. % 23.46 Predicted R² 0.7807 
  

Adeq Precision 23.8239 

The Model F-value of 39.36 implies the model is significant. There is only a 0.01% chance 

that an F-value this large could occur due to noise. P-values less than 0.0500 indicate 

model terms are significant. In this case A, B, C, AB, BC, C² are significant model terms. 

Values greater than 0.1000 indicate the model terms are not significant. In this case AC, 

A2 and B2 are not significant. Hence, these terms were removed to improve the model. 

Table 4.8 shows the ANOVA results for the reduced quadratic model. 
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Table 4.8: ANOVA for Reduced Quadratic Model 

Source Sum of 

Squares 

df Mean 

Square 

F-

value 

p-value 
 

Model 0.0871 6 0.0145 56.03 < 0.0001 Significant 

A-Growth rate 0.0023 1 0.0023 8.96 0.0104 
 

B-Biomass 

concentration 

0.0474 1 0.0474 182.95 < 0.0001 
 

C-Photon flux 

density 

0.0240 1 0.0240 92.43 < 0.0001 
 

AB 0.0016 1 0.0016 6.28 0.0263 
 

BC 0.0095 1 0.0095 36.59 < 0.0001 
 

C² 0.0060 1 0.0060 23.28 0.0003 
 

Residual 0.0034 13 0.0003 
   

Lack of Fit 0.0034 8 0.0004 
   

Pure Error 0.0000 5 0.0000 
   

Cor Total 0.0905 19 
    

       

Std. Dev. 0.0161 R² 0.9628 

Mean 0.0672 Adjusted R² 0.9456 

C.V. % 23.96 Predicted R² 0.8508   
Adeq Precision 26.7783 

The Model F-value of 56.03 implies the model is significant. There is only a 0.01% chance 

that an F-value this large could occur due to noise. P-values less than 0.0500 indicate 

model terms are significant. In this case A, B, C, AB, BC, C² are significant model terms. 

Values greater than 0.1000 indicate the model terms are not significant. All model terms 

are significant, hence no further model improvement. The Predicted R² (a measure of the 

amount of variation in new data explained by the model) of 0.8508 is in reasonable 

agreement with the Adjusted R² of 0.9456; i.e. the difference is less than 0.2. Adeq 

Precision measures the signal to noise ratio. A ratio greater than 4 is desirable. The ratio 

of 26.778 indicates an adequate signal. This model can be used to navigate the design 

space. Table 4.9 gives the values of coefficients for the Reduced Quadratic Model. 
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Table 4.9: Coefficients for the Reduced Quadratic Model in Terms of Coded factors 

Factor Coefficient 

Estimate 

df Standard 

Error 

95% CI 

Low 

95% CI 

High 

VIF 

Intercept 0.0510 1 0.0047 0.0408 0.0611 
 

A-Growth rate 0.0130 1 0.0044 0.0036 0.0225 1.0000 

B-Biomass 

concentration 

0.0634 1 0.0047 0.0532 0.0735 1.00 

C-Photon flux 

density 

-0.0434 1 0.0045 -0.0531 -0.0336 1.02 

AB 0.0143 1 0.0057 0.0020 0.0266 1.0000 

BC -0.0344 1 0.0057 -0.0467 -0.0221 1.0000 

C² 0.0226 1 0.0047 0.0125 0.0327 1.02 

The coefficient estimate represents the expected change in response per unit change in 

factor value when all remaining factors are held constant. The intercept in an orthogonal 

design is the overall average response of all the runs. The coefficients are adjustments 

around that average based on the factor settings. When the factors are orthogonal the 

Variance Inflation Factor (VIFs) are 1; VIFs greater than 1 indicate multi-colinearity, the 

higher the VIF the more severe the correlation of factors. As a rough rule, VIFs less than 

10 are tolerable. In the present study, VIF is unity hence there is no multi-colinearity. 

The final equation in terms of coded factors (Equation 4.2) was used to make predictions 

about the response for given levels of each factor (Table 4.10). By default, the high levels 

of the factors are coded as +1 and the low levels are coded as -1. The coded equation is 

useful for identifying the relative impact of the factors by comparing the factor 

coefficients. 

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑦𝑖𝑒𝑙𝑑 = +0.0510 + 0.0130𝐴 + 0.0634𝐵 − 0.0434𝐶 + 0.0143𝐴𝐵 

−0.0344𝐵𝐶 + 0.0226𝐶2    Equation 4.2 
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Table 4.10: CCD Matrix with Simulated and Predicted Biomass Yields 

LEVEL OF FACTORS[ACTUAL(CODED)] 

STD RUN Factor 1 

A: Growth 

rate (h-1) 

Factor 2 

B: Biomass 

concentration 

(gL-1) 

Factor 3 

C: Photon flux 

density 

(µmolphotonsm2s-1) 

Simulated yield  

(gmol/photons) 

Predicted yield 

(gmol/photons) 

Equation 4.2 

19 1 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

3 2 0.0067 

 (-1) 

0.1 (1) 100 (-1) 0.165432 0.1874 

7 3 0.0067 

 (-1) 

0.1 (1) 300 (1) 0.055144 0.0318 

1 4 0.0067 

 (-1) 

0.001 (-1) 100 (-1) 0.00165432 0.0203 

17 5 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

2 6 0.0102 (1) 0.001 (-1) 100 (-1) 0.00251852 0.0179 

16 7 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

8 8 0.0102 (1) 0.1 (1) 300 (1) 0.0839506 0.0864 

13 9 0.00845 (0) 0.0505 (0) 55 (-1.682) 0.191571 0.1613 

4 10 0.0102 (1) 0.1 (1) 100 (-1) 0.251852 0.2420 

6 11 0.0102 (1) 0.001 (-1) 300 (1) 0.000839506 0.0003 

9 12 0.00550686  

(-1.682) 

0.0505 (0) 200 (0) 0.0343329 0.0290 

12 13 0.00845 (0) 0.133749 

(1.682) 

200 (0) 0.139528 0.1575 

10 14 0.0113931 

 (1.682) 

0.0505 (0) 200 (0) 0.0710311 0.0729 

5 15 0.0067  

(-1) 

0.001 (-) 300 (1) 0.00055144 0.0024 

18 16 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

11 17 0.00845 (0) 0.0005  

(-1.682) 

200 (0) 0.000521605 0.0130 

15 18 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

20 19 0.00845 (0) 0.0505 (0) 200 (0) 0.0526821 0.0510 

14 20 0.00845 (0) 0.0505 (0) 368.179 (1.682) 0.0286177 0.0418 

Equation 4.3 shows the final equation in terms of actual factors. 

Biomass yield = 0.100364 − 0.860835Growth rate 

+1.27995 Biomass concentration 

−0.000985 Photon flux density 

+164.60943(Growth rate)(Biomass concentration) 

−0.006955(Biomass concentration)(Photon flux density) 
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+2.25586 × 10−6(𝑃ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥 𝑑𝑒𝑛𝑠𝑖𝑡𝑦)2                          Equation 4.3  

The equation in terms of actual factors can be used to make predictions about the response 

for given levels of each factor. Here, the levels should be specified in the original units 

for each factor. This equation should not be used to determine the relative impact of each 

factor because the coefficients are scaled to accommodate the units of each factor and the 

intercept is not at the center of the design space. The positive and negative sign in each 

part of the equation (Equation 4.2) show the increasing and decreasing effects of the 

parameters on each response, respectively. Therefore, an increase in growth rate (A) and 

biomass concentration (B) each, has a positive effect whereas an increase in photon flux 

density (C) has a negative effect on the microalgae yield. Also, simultaneous increase of 

growth rate and biomass concentration lead to positive increase in yield, whereas 

simultaneous  increases in photon flux density and biomass concentration lead to negative 

effects on the microalgae yield (note the negative coefficient mark). As shown in Table 

4.10, the highest yield of 0.2420 gmolphotons-1 occurred at 0.0102 h-1of growth rate, 0.1 

gL-1 of biomass concentration and 100 µmolphotonsm-2s-1 of photon flux density. 

4.2.1.1 Model Adequacy Checking 

It is important to check the adequacy of the fitted model in order to ascertain its validity. 

Figure 4.2 shows that the normal plot of residuals (i.e., the difference between simulated 

and predicted responses) for the response was normally distributed, as they lie 

approximately on a straight line and shows no deviation of the variance. The same applies 

to Figure 4.3. The results of all the other plots (Figure 4.4-4.8) indicated that developed 

model is adequate to describe the response, as all the points lay within the upper and lower 

limits and were structureless (i.e., did not form any particular pattern). 
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Figure 4.2: Normal Probability of Externally Studentized Residuals 

 

Figure 4.3: A Graph of Predicted Microalgae Yield against Simulated Microalgae 

Yield 
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Figure 4.4: A Graph of Externally Studentized Residuals against Run Number 
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Figure 4.5: A Graph of Externally Studentized Residuals against Predicted Values 
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Figure 4.6: A Graph of Externally Studentized Residuals against Growth Rate 
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Figure 4.7: A Graph of Externally Studentized Residuals against Biomass 

Concentration 
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Figure 4.8: A Graph of Externally Studentized Residuals against Photon Flux 

Density 

Predicted biomass yield obtained from Equation 4.2 is given in Table 4.10. Equation 4.2 

was used to plot response surface plots and contour plots.  
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it can be observed that the microalgae yield increases with simultaneous increase in 

biomass concentration and specific growth rate whereas in Figure 4.10 decrease in photon 

flux density leads to increase in microalgae yield. Figure 4.11 gives a plot for yield as a 

function of photon flux density and biomass concentration. The optimum lies at a biomass 

concentration of 0.1 gL-1 and photon flux density of 100 µmolphotonsm-2s-1. Figure 4.12 

gives a plot for yield as a function of biomass concentration and growth rate. The 

observations made in the RSM plots therefore confirm that the simulation values were in 

good agreement with the predicted values. The optimum lies at a growth rate of 0.0102 h-

1 and biomass concentration of 0.1 gL-1. The optimum yield obtained by RSM was 0.2420 

gmolphotons-1whereas the global optimum got by GA was 0.2507 gmolphotons-1. This 

was a marginal difference of 3.4%. The results obtained in this study are in agreement 

with those obtained by Kumar et al., (2015) although the marginal difference was 4.5% 

and the GA simulated value was higher than the RSM one. The same applies in the present 

study i.e., the optimum yield obtained by GA is slightly higher than that obtained by RSM. 

Also, the findings in this study are in agreement with the results of Banerjee et al., (2016). 

In their study, optimum biomass productivity by GA was 0.77 gL-1 whereas that by RSM 

was 0.75 gL-1. That is to say a marginal difference of 2.6%. 
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Figure 4.9: Contour Plot for Biomass Concentration against Growth Rate 
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Figure 4.10: Contour Plot for Photon Flux Density against Biomass Concentration 

 

0.001 0.012 0.023 0.034 0.045 0.056 0.067 0.078 0.089 0.1

100

150

200

250

300
Biomass yield (gmol per photons)

B: Biomass concentration (grams per litre)

C
: 
P
h
o

to
n
 f

lu
x
 d

e
n
si

ty
 (

m
ic

ro
m

o
lp

h
o

to
n
s 

p
e
r 

sq
u
a
re

 m
e
tr

e
 p

e
r 

se
c
o

n
d

)

0

0.05

0.1

0.15

0.2

6

Factor Coding: Actual

Biomass yield (gmol per photons)

Design Points

0.000521605 0.251852

X1 = B

X2 = C

Actual Factor

A = 0.00845



132 

 

Figure 4.11: RSM Plot: Effect of Photon Flux Density and Biomass Concentration 

on Microalgae Yield 
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Figure 4.12: RSM Plot: Effect of Biomass Concentration and Growth Rate on 

Microalgae Yield 

4.3 Isolation and Characterization of Strains of Microalgae  

4.3.1 Abiotic Properties of Water Samples Collected 

The insitu metadata collected for water sample before sampling were temperature and pH. 

The values were as shown in Table 4.11.  
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The sampling sites characterize aquatic environments of temporal and shallow water 

bodies. The water bodies are shallow with neutral pH and modest temperatures. The 

shallowness allowed light to infiltrate easily to the bottom of the culture and remain evenly 

distributed, while the moderate temperature was to avoid overheating which impedes algal 

growth. Renaud et al. (2002) accredited the higher growth rate of Chaetoceros sp. to an 

increase in temperature from 25 to 30 oC. Buck and Smith (1995) and Burja et al. (2002) 

proposed that microalgae can adapt to fluctuating pH conditions, whereas Thornton (2009) 

reported that the photosynthetic efficiency of some algae decreases as the environment 

surrounding the cells becomes more acidic. The strains from aquatic environments are 

expected to be potential starting seed for open system cultivation (Thangavel et al., 2018). 

The microclimate at these sampling sites regularly varies from conducive (optimal) 

growth conditions to unconducive conditions (high and low light intensity, high and low 

temperature, high and low rainfall, and cold, hot, or dry weather). Thus, sampling at these 

locations was deemed beneficial as the microalgae exposed to unfavorable conditions 

could accrue more starch or lipid to mitigate the conditions (Thangavel et al., 2018). Thus, 

the abiotic parameters under which the cultivation is carried out represent an ideal 

condition that does not have a negative effect on the growth rate of the microalgae. 

4.3.2 Isolation 

The isolation protocol by Cappuccino and Sherman (2014) was an efficient method of 

microalgae isolation and transfer from the natural environment into laboratory conditions. 

At the same time, the streak plate and serial dilution methods for microalgae enrichment, 

although slow, proved to be exceptional approaches for the isolation of green phototrophic 

microorganisms. 

At the end of the isolation process (June 2021), 2 slants were produced; each considered 

to be a different isolate. A representative sample of the isolated microorganisms is shown 

in Figure 4.13. Microalgae strains were identified using the keys given in (Komarek & 

Fott, 1983; Hindak, 1988). Morphological comparison of isolated axenic cultures with 

other described microalgae indicated that these strains belong to the same division, 
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Chlorophyta. And these strains are, Chlorella emersonii (i.e., the oval strain) and 

Chlorella vulgaris (i.e., the round strain), respectively. There was a strain known as 

filamentous green algae (Spirogyra sp.), which could not survive until the end of the 

isolation process. This could be attributed to decrease in nutrients and fluctuations in pH. 

  

   a      b 

Figure 4.13: Microscope Images Showing Different Morphologies of the Microalgae 

Obtained at the End of the Isolation Process (X10-X100)  

Key: a) Round one (C. vulgaris), b) Oval one (C. emersonii) 

4.3.3 Comparison of Growth Pattern of Microalgal Isolates 

The microalgal cultures were grown in batch culture for up to 20 days at a temperature of 

26 ± 1 oC.  This served to ascertain and compare the growth pattern of the isolated strains 

in terms of; biomass yield, doubling time, and specific growth rate (Thangavel et al., 
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2018). A typical microbial growth curve, Figure 4.14, showed; the lag, log, stationary and 

decline phases (Prabuthas et al., 2011).  

 

Figure 4.14: Growth Pattern for Strains: Chlorella Emersonii and Chlorella Vulgaris 
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new environment might be the reason for the absence of lag phase in this culture under 

study. The exponential growth continued until day 12 for the Chlorella emersonii and up 

to day 16 for the Chlorella vulgaris. After day 12, the decline in growth was sharp for the 

Chlorella emersonii whereas for the Chlorella vulgaris, the exponential growth continued 

until around day seventeen when it reached its peak and then stagnated before starting to 

decline. The decline in growth rate can be attributed to a progressive light limitation by 

the denser culture, combined with nutrient exhaustion (Mahapatra et al., 2013; Blair et al., 

2014).  Removing some medium from the photobioreactor and adding the fresh medium 

may help in regrowth of cyanobacteria and take the peak after some days (Anderson et 

al., 2016). 

The specific growth rate was 0.16 and 0.244 per day (Table 4.12) for the Chlorella 

emersonii and Chlorella vulgaris respectively.  Therefore, Chlorella vulgaris grows 

almost twice the rate of the Chlorella emersonii. The doubling time is 4.30 and 2.84 days 

respectively, for the Chlorella emersonii and Chlorella vulgaris. Therefore, Chlorella 

vulgaris accumulates mass faster than Chlorella emersonii, about half the time it takes the 

Chlorella emersonii to double its mass. 

Table 4.12: Growth Characteristics of the Microalgal Strains 

Algal strain Growth rate μ 

(day-1) 

Doubling time 

(day) 

Dry cell weight (20 

day old cultures) 

(gL−1 ) 

 Chlorella emersonii  0.16±0.000577 4.30±0000 1.1243±0.0073 

Chlorella vulgaris 0.244±000000 2.84±0.0000 1.5261±0.0389 

 Values are presented as Mean ± SD, n=3 

The results in Table 4.12, i.e., growth rate, doubling time and dry cell weight, were 

subjected to Student’s t-test to determine if there is a significant difference between the 

results of the two microalgal strains. Results obtained indicate that there was a significant 

difference in specific growth rate between Chlorella emersonii and Chlorella vulgaris at 

p<0.05. Therefore, it can be deduced that specific growth rate of microalgae is strain 
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specific. Moreover, there was significant difference between doubling time and dry cell 

weight of the two-microalgal strains. Therefore, it can be deduced that doubling time and 

dry cell weight are tagged to particular strains. 

One of the most vital decisions in obtaining biomass and oil from microalgae is the choice 

of species. Accordingly; both the two purified strains were screened for their mass 

productivity (Table 4.12). The dry cell weight was 1.1243±0.0073 and 1.5261±0.0389 gL-

1 respectively, for the Chlorella emersonii and Chlorella vulgaris. These findings are in 

agreement with what Mahmoud et al. (2015) observed when they screened at laboratory 

scale Chlorella vulgaris, Scenedesmus quadricauda and Trachelomonas oblonga and 

obtained 1.23, 1.09 and 0.9 gL-1 respectively.  Also, Thangavel et al. (2018) obtained 

values of between 1.43±0.033 to 1.55±0.036 gL-1 for 16 days old cultures when they 

studied Chlorella sp. The doubling time of 2.84 days of Chlorella sp. obtained in this 

study is faster than that obtained by Thangavel et al. (2018) of 4.0±0.2 day when studying 

growth characteristics of the same strain. The increase in doubling time could be attributed 

to MBL media used in this study, slightly higher temperature of 26 oC and the source of 

light, i.e., LED tubes instead of fluorescence ones. Hence, the locally isolated autotrophic 

strains have the potential of biomass production. 

4.4 Validation of the Performance of the Developed Computer Simulation Model 

4.4.1 Biomass Yield on Light Energy 

Chlorella vulgaris was chosen for model validation because it had a higher growth rate of 

0.244 day-1 and a shorter doubling time of 2.84 days (Table 4.12) compared to the other 

isolated strain, hence good for microalgae cultivation for biomass and biofuel production. 

Table 4.13 shows the yield, both for the experiment and simulation, in grams and in 

gmolphotons-1 (yield on light energy or photosynthetic efficiency) obtained after 

incubating Chlorella vulgaris in the FPPPBR for 15 days. The microalgal yield obtained 

on light energy for the experimental run and simulation was 0.438423±0.027122 
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gmolphotons-1 and 0.250715±0.001608 gmolphotons-1 respectively. The corresponding 

yield in grams is, respectively, 9.30±0.57 and 5.32±0.03. The experimental yield obtained 

is equal to 20-30% of the theoretical attainable maximum biomass yield on light energy 

of 1.5 to 1.8 gmolphotons-1 for growth on nitrate and urea, respectively as calculated in 

Appendix A1 (Zijffers et al., 2010). The yield on light energy obtained in this study, is 

almost half of the results obtained by Zijffers et al. (2010) of 0.78 and 0.75 gmolphotons−1 

for Dunaliella tertiolecta and Chlorella sorokiniana, respectively. May be this low yield 

could be attributed to inadequate mixing and low CO2 in the air used, since it was 

atmospheric air. 

Table 4.13: Biomass Yield for the Simulation and Experiment 

 Yield (grams) Yield (gmolphotons-1) 

Experimental 9.30±0.57 0.438423±0.027122 

Simulation 5.32±0.03 0.250715±0.001608 

Values are presented as Mean ± SD, n=3 

The yield on light energy of 0.438423±0.027122 gmolphotons-1 obtained in this study is 

the same as that achieved by Meiser et al. (2004) of maximum yield of 0.5 gmolphotons-

1 for the diatom Phaeodactylum tricornutum at a light intensity of 1,000 µmolphotonsm−2 

s−1. This low yield could be attributed to high irradiance, since according to the 

optimization model equation 3.1, when irradiance increases the yield decreases. 

Furthermore increase in irradiance leads to photoinhibition. The same reasoning applies 

to Hu et al. (1998b) who obtained a yield of 0.5 gmolphotons−1 cultivating the microalga 

Chlorococcum littorale at a light intensity of 2,000 µmolphotonsm−2s−1. Richmond et al. 

(2003) obtained a maximum yield of 0.6 gmolphotons−1 cultivating the microalga 

Nannochloropsis sp. at a light intensity of 2,000 µmolphotonsm−2s−1. Monodus 

subterraneus showed a maximum yield of 1.0 gmolphotons−1 (Hu & Richmond, 1996). 

This productivity was obtained at an increased level of turbulence compared to Meiser et 

al. (2004) and Hu et al. (1998b).  
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Record productivity was obtained during cultivations of the cyanobacterium Arthrospira 

platensis in short light path, 1.3 and 2.8 cm, panel PBRs that were turbulently mixed (Hu 

& Richmond 1996; Hu et al. 1996, 1998a, b). The photosynthetic efficiency exhibited a 

maximum value of approximately 1.5 g of biomass (dry matter) produced per mole of 

photons (gmolphotons−1) at incident light intensities of up to 2,000 µmolphotons.m−2..s−1. 

This high efficiency was attributed to short exposure times to oversaturating light 

intensities at the PBR surface due to turbulent mixing. The biomass yield of Arthrospira 

platensis reported by these researchers is close to the theoretical attainable maximum 

biomass yield on light energy (Appendix A1). 

Other researchers (Hu et al., 1996, 1998c; Degen et al., 2001; Richmond & Cheng-Wu 

2001; Cuaresma et al., 2009) studied the cultivation of eukaryotic microalgae: Monodus, 

Chlorococcum, Chlorella, and Nannochloropsis in short light path PBRs. Based on the 

data given, Zijffers et al. (2010) estimated the biomass yields for microalgae to be in the 

range of 0.3 to 1.0 gmolphotons−1. Therefore, the yield on light energy (gmolphotons−1) 

obtained in this study augurs well with the findings of other researchers. 

The yield obtained in the current study of 0.438423±0.027122 gmolphotons-1 differed 

from the theoretical maximum of 1.5 and 1.8 gmolphotons−1 as calculated in Appendix 

A1. The difference between the biomass yield and this theoretical maximum could most 

likely be related to heat dissipation of absorbed light energy in the photosynthetic antenna 

complex of the microalgae by processes collectively called non-photochemical quenching 

(Muller et al., 2001; Horton & Ruban, 2005). Furthermore, not attaining the theoretical 

maximum yield could be explained assuming that a significant fraction of the available 

light energy is not used for biomass formation but it is used for basic physiological 

maintenance. These include processes such as; cell motility, osmoregulation, defense 

mechanisms, and proofreading and internal turnover of macromolecular compounds (van 

Bodegom, 2007). However, it should be noted that this physiological maintenance term is 

relatively high in cultures with relatively high biomass concentrations/densities (Zijffers 

et al., 2010). 
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4.4.2 Validation of the Optimization Model 

In order to validate the model, a comparison of experimental and simulated data for growth 

of Chlorella vulgaris in FPPPBR was done. In order to validate this model, error analyses 

were carried out on the simulation results using different statistical tools namely RMSE, 

MSE, MAE and MAPE, as expressed in Equations (3.6–3.9). The results obtained are 

shown in Table 4.14. The RMSE value for the optimization model was 0.1889, the MSE, 

MAE and MAPE were 0.0357, 0.2717 and 42.67% respectively. For a good model, the 

closer the values of MSE, MAE and RSME are to zero, the better and more acceptable is 

the model (Hyndman & Koehler, 2006; Archontoulis & Miguez, 2015; Ibifubara et al., 

2019). The values of RMSE, MSE and MAE for the simulation model were not very small, 

hence further statistical tests were done to ascertain if the model was valid and was a good 

predictor of the PBR photosynthetic efficiency.  

Table 4.14: Validation of Model Results 

MSE RMSE MAE MAPE (%) 

0.0357 0.1889 0.2717 42.67 

Key: MSE – Mean Squared Error; RMSE – Root Mean Squared Error; MAE – Mean 

Absolute Error; MAPE – Mean Absolute Percentage Error. 

Further, correlation analysis was done between the experimental and predicted data and 

the results are as shown in Table 4.15. The model and experimental values have a very 

low positive coefficient of correlation (R) of 0.231 and two-tailed p-value of 0.852. 

Although there is a positive correlation between model values and experimental values, 

the Pearson correlation coefficient between model values and experimental values is 

statistically insignificant at 5% significance level (R= 0.231, p >0.05). This shows that 

there is statistical difference between the simulation and experimental values. 
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Table 4.15: Correlation Results for the Model and Experimental Values 

 Model values Experimental values 

Model values 1  

Experimental values 0.231 1 

*Correlation is not significant at the 0.05 level (2-tailed), p =0.852 

The model values were further subjected to the student’s t-test and the results in Table 

4.16 were obtained. The null hypothesis set was that the mean of the model values was 

equal to that of the experimental values whereas the alternative hypothesis declared that 

the two means are not equal. 

Table 4.16: Student’s t-Test Results for Model Values 

One-Sample Test 

 

Test Value = 0.438423 

T Df 

Sig. (2-

tailed) 

Mean 

Difference 

95% Confidence Interval of 

the Difference 

Lower Upper 

Model 

value 

-

165.091 

2 .000 -

.187708000 

-.19260012 -.18281588 

*Difference is significant at the 0.05 level (2-tailed), p =0.000 

From the results in Table 4.16, the t-value is -165.091 and the p value is less than 0.05 

i.e., p = 0.000<0.05. Therefore, since p = 0.000, the difference in means of the model and 

experiment is quite significant at 5% significance level, hence the null hypothesis of 

equality of means between model and experiment values is not accepted. Furthermore, the 

values of RMSE, MSE and MAE for the simulation model were not very small and 

coefficient of correlation was not high, and the student’s t-test showed that there was a 

significant difference between the mean of model and that of the experimental values. 

Therefore, the model under-predicts the PBR microalgal yield on light (photosynthetic 

efficiency).  
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4.4.3 Modification of the Optimization Model 

The under-prediction of the yield by the simulation model could be due to the fact that the 

light that is not utilized in the initial stages when the culture media is dilute was not 

factored in when the optimization model was being developed (Zijffers et al., 2010). 

Therefore, the optimization model requires modification for it to predict accurately 

microalgal yield. After factoring in the unused light when the culture is dilute, and using 

the experimental yield obtained in the current study of 0.438428 gmolphotons-1, a new 

model was developed (Equation 4.1). 

𝑌 =
𝐶𝑥𝜇𝑉

𝑃𝐹𝐷𝑖𝑛.𝐴.2070×10−6  𝑔𝑚𝑜𝑙𝑝ℎ𝑜𝑡𝑜𝑛𝑠−1    Equation 4.1 

where 𝑌 is the microalgal yield ( gmolphotons-1) 

 𝜇 is the specific growth rate (hour-1) 

 𝐶𝑥 is the biomass concentration (gL-1) 

 𝐴 is the illuminated reactor surface area (m2) 

 𝑃𝐹𝐷𝑖𝑛 is the photon flux density (μmolphotonsm-2s-1) 

 𝑉 is the volume of the PBR content (L) 

4.5 Effect of Light Wavelength and Strain on the Biomass and Lipid Yield of 

Microalgae 

4.5.1 Effect of Light Wavelength and Strain on the Biomass Yield of Microalgae 

To investigate the influence of light wavelength and strain on the biomass yield of 

microalgae, the system was operated as explained in Section 3.4.3.1. The results in Table 

4.17 were obtained. C. vulgaris yielded; 9.30±0.57 g, 8.32±0.48 g and 7.78±0.67 g under 

white, blue and red wavelength, respectively. On the other hand, the corresponding values 

for C. emersonii were; 5.88±0.26 g, 5.46±0.20 g and 5.12±0.14 g. For both the strains, 
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white wavelength produced the highest yield, followed by blue wavelength. The least 

yield for both strains was produced by the red wavelength. 

Table 4.17: Yield (g) of Microalgae under Different Light Wavelengths 

Strain of 

microalgae 

Light quality 

White (400-700 nm) Blue (430-480 nm) Red (610-680 nm) 

C. vulgaris 9.30±0.57 8.32±0.48 7.78±0.67 

C. emersonii 5.88±0.26 5.46±0.20 5.12±0.14 

Values are presented as Mean ± SD, n=3 

4.5.1.1 Growth Profiles of Microalgae in the FPPPBRs  

Figures 4.15, 4.16 and 4.17 show the growth patterns of C. vulgaris and C. emersonii in 

the FPPPBRs under white wavelength, blue wavelength, and red wavelength, 

respectively.  

 

Figure 4.15: Growth Profile of Microalgae Strains under White Wavelength 

A typical microbial growth curve according to Prabuthas et al. (2011), should show; the 

lag, log, stationary and decline phases. Immediately after the inoculation, an exponential 
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growth (log phase) was observed in C. emersonii, whereas C. vulgaris exhibited a lag 

phase till day 3 when exponential growth commenced. This was the case under all the 

three wavelengths. The lag phase may have occurred because microalgae take some times 

to acclimatize to the new environmental condition (Rolfe et al., 2012). Ordinarily, an 

inoculum from a healthy log phase culture displays very short lag phase (Thangavel et al., 

2018), when transferred into a fresh medium under same growth conditions. Furthermore, 

the faster adaptability of the C. emersonii to a new environment might be the reason for 

the absence of lag phase in this culture under study. 

 

Figure 4.16: Growth Profile of Microalgae Strains under Blue Wavelength 
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Figure 4.17: Growth Profile of Microalgae Strains under Red Wavelength 

The exponential growth continued until day 12 for the C. emersonii and up to day 10 for 

the Chlorella vulgaris (Figure 4.15). After day 12, the decline in growth was sharp for the 

C. emersonii whereas for the C. vulgaris, the stationary phase commenced. The drop in 

growth rate can be credited to a progressive light limitation by the denser culture, 

combined with nutrient exhaustion (Mahapatra et al., 2013; Blair et al., 2014). For C. 

vulgaris under blue and red wavelength, by day 14 (Figure 4.16 and 4.17), the stationary 

phase had not been reached. This implies that the strain was still growing when the process 

was stopped. This could be attributed to the cultivation conditions favouring its growth. 

The mass, nutritional value and growth of microalgae depend on different physico-

chemical factors such as CO2 content, light intensity, temperature, pH, and nutrient 

composition of culture medium (Sandnes et al., 2005; Patil et al., 2007; Metsoviti et al., 

2020). Among them, light intensity is one of the main factors that affect algal physiology 

and photosynthesis kinetics (Khoeyi et al., 2012). Photoautotrophic algae rely upon light 

to acquire energy and convert it into synthetic energy such as adenosine triphosphate 

(ATP) and nicotinamide adenine dinucleotide phosphate (NADP). Photosynthetic light is 

absorbed via pigments bound chlorophyll and the color of the incident light should match 
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with the pigment absorption band (Matthijs et al., 1996). Therefore, colors of light quality 

and quantity demonstrate the energy level in the photosynthetic organisms to carry out 

their metabolism (Latasa, 1995; Khoeyi et al., 2012). Previous studies suggest that 

pigment content, proximate composition, and PUFAs content varies in response to 

different wavelengths of light intensity and color (Brown & Hohmann, 2002; Carvalho & 

Malcata, 2005; Seyfabadi et al., 2011; Khoeyi et al., 2012). However, the chlorophyll 

pigments band in microalgae might be obscured by the ordinary fluorescent light source 

(Matthijs et al., 1996; Seyfabadi et al., 2011; Khoeyi et al., 2012; Wahidin et al., 2013; 

Metsoviti et al., 2020;). This explains the reason for using LEDs in this study. 

Conventionally microalgae are grown under an indoor environmental condition with the 

presence of direct sunlight or external white light (Devaraja et al., 2017). Some reports 

mention that at least PAR of 100 − 276 µmolphotons.m-2s-1 are needed for proper 

cultivation of microalgae (Lavens & Sorgeloos, 1996; Alanίs, 2013; Atta et al., 2013; 

Blair et al., 2014; Hultberg et al., 2014) and must be provided to avoid growth inhibition. 

Many light spectra have a positive influence on microalgal growth (Al-Qasmi et al., 2012). 

For the cultivation of microalgae, light-emitting diodes (LEDs) have emerged as an 

appropriate choice with multiple merits over ordinary fluorescence light (Kim & Choi, 

2014)). With the advances in LED technology, it can be utilized as suitable light source 

for indoor mass microalgal cultivation for their specific wavelength, mini chip size, and 

limited energy consumption as heat (Wang et al., 2007). The LED can efficiently convert 

electric energy to light energy for the production of microalgae (Pattanaik et al., 2018). It 

can be used as a promising source of light energy to enhance the economic viability of 

microalgae-based products. The LED emits monochromatic light with highly saturated 

colors that is useful for the growth of microalgae (Pattanaik et al., 2018). Green 

microalgae contain chlorophyll-a and chlorophyll-b (ratio 3:1), which have two identical 

absorption peaks for blue and red color. Chlorophyll-a absorption peaks are around 430 

nm (blue) and 660 nm (red), and chlorophyll-b absorption peaks are 460nm (blue) and 

630nm (red) (Devaraja et al., 2017).  
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According to Max Planck’s electromagnetic theory, light, which appears to be in a 

continuous range of frequencies or wavelengths, is actually emitted in separate packets of 

energy, called quanta, which can only take on certain discrete values. As such, the energy 

emitted is inversely proportional to the wavelength of light. This infers that shorter 

wavelengths have higher energy, whereas longer wavelengths have lower energy per 

photon (a particle representing a quantum of light). The wavelength of blue light is 470 

nm, and that of red light is 660 nm. In effect, a photon of blue light has more energy than 

one of red light, hence, blue light photons should produce higher microalgal biomass than 

red light (Ibifubara et al., 2019). 

Microalgae absorb different types of wavelength depending on the species (Blair et al., 

2014). The intensity of each wavelength of light in this experiment were kept constant at 

approximately 100 µmolphotons.m-2s-1 because different light intensities could affect the 

microalgae cell growth, biomass, lipid production and starch production (Pandey & 

Tiwari, 2010; Pandey et al., 2011; Blair et al., 2014;). The results obtained indicated that 

C. vulgaris yielded highest biomass under white wavelength (9.30±0.57 g) (Table 4.17) 

and least biomass (7.78±0.67 g) under red wavelength. On the other hand, C. emersonii 

yielded highest biomass (5.88±0.26 g) under white wavelength and least biomass 

(5.12±0.14 g) was detected under red wavelength. The results obtained indicated that both 

the strains grew well with the white illumination. This could be due to the fact that white 

wavelength has more energy than both blue and red wavelength. Furthermore, of the three 

wavelengths used, red wavelength has the longest wavelength and hence the least energy. 

The results obtained in this study on the influence of LED light wavelength on microalgal 

yield agree with the findings of Puspanadan et al. (2018) who found out that microalgae 

yield was highest under white light followed by blue light. The biomass yield obtained in 

this study is far much lower than the value obtained by Lam and Lee (2014) of 28 g when 

they studied cultivation of Chlorella vulgaris in 100 L sequential baffled PBR. Therefore, 

the not so high yield in this study could be due to inadequate CO2 and mixing.  

Mixing can inhibit high-light, free-radical-induced damage by reducing the duration of 

algal exposure to excessive light. Furthermore, as the microalgae move through the 
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culture, cells are exposed to fluctuating light that, under certain conditions, could 

significantly affect photosynthesis (Abu-Ghosh et al., 2015; Abu-Ghosh et al., 2016; Iluz 

& Abu-Ghosh, 2016; Abu-Ghosh et al., 2018). Mixing also hinders algal sedimentation 

that causes the settled algae to be in the dark and have no access to nutrients. The settled 

microalgae thus die and decompose creating a harmful anaerobic layer (Iluz et al., 2008). 

Results in Table 4.17 were used for the two-way analysis of variance (ANOVA) with 

blocking and the findings in Table 4.18 were obtained. From the ANOVA Table 4.18, the 

differences concerning different light wavelengths are insignificant at 5% level as the 

calculated F-ratio of 8.521 is less than the table value of 19.00. The biomass yields due to 

microalgae strain differences are significant as the computed F-ratio of 171.702 is more 

than the table value of 18.51. This therefore implies that the quality of light used has no 

significant influence on the amount of biomass yield to be obtained. On the other hand, 

the strain of microalgae grown has a significant impact on the amount of biomass 

produced.  

Table 4.18: ANOVA Table for Microalgal Biomass Yield with Blocking 

Source of 

variation 

Sum of 

squares 

(SS) 

Degrees of 

freedom 

(d.f.) 

Mean 

Square 

(MS) 

F-ratio 5% F-limit 

(Table 

values) 

Between 

columns (i.e., 

between lights) 

1.322 2 0.661 8.521 F(2,2)= 

19.00 

Between rows 

(i.e., between 

strains) 

13.321 1 13.321 171.702 F(1,2)= 

18.51 

Residual or error    0.155 2 0.077   

Total 14.798 5    

Analysis of variance was also carried out on the biomass yield assuming two factors i.e., 

light quality and strains of microalgae without blocking, and the results in Table 4.19 were 

obtained. From the ANOVA Table 4.19, the differences concerning different light 

wavelengths are significant at 5% level as the calculated F-ratio of 9.822 is more than the 

table value of 3.88. Also, the microalgae strain differences are significant as the computed 
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F-ratio of 197.150 is more than the table value of 4.75. Furthermore, interaction between 

the light quality and the strains is insignificant as the computed F-ratio of 1.227 is less 

than the table value of 3.88. It can therefore be deduced that when growing microalgae in 

PBRs, particular strains are not tagged to particular light quality in which they yield best 

biomass i.e., there is no interaction between strain and light quality as far as microalgae 

biomass yield is concerned. 

Table 4.19: ANOVA Table for Microalgal Biomass Yield without Blocking 

Source of 

variation 

Sum of 

squares 

(SS) 

Degrees of 

freedom 

(d.f.) 

Mean 

Square 

(MS) 

F-ratio 5% F-limit 

(Table 

values) 

Between columns 

(i.e., between 

lights) 

3.988 2 1.994 9.822 F(2,12)= 

3.88 

Between rows 

(i.e., between 

strains) 

40.021 1 40.021 197.150 F(1,12)= 

4.75 

Interaction 0.498 2 0.249 1.227 F(2,12)= 

3.88 

Within samples 

or error 

   2.436 12 0.203   

Total 46.943 17    

4.5.2 Effect of Light Wavelength and Strain on the Lipid Yield of Microalgae 

On investigating the influence of light wavelength and strain on the yield of lipids of 

microalgae, the results obtained are shown in Table 4.20.  

Table 4.20: Lipids (%) Produced by Microalgae under Different Light Wavelengths 

Strain Light quality 

 400-700 nm 

(White) 

610-680 nm (Red) 430-480 nm (Blue) 

C. vulgaris  34.56±3.31 35.87±1.16 43.61±2.23 

C. emersonii 28.03±1.60 33.50±1.60 29.80±0.86 
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Values are presented as Mean ± SD, n=3 

The C. vulgaris produced 43.61, 35.87 and 34.56 % lipids respectively, under blue, red 

and white wavelengths. On the other hand, C. emersonii strain yielded 33.50, 29.80 and 

28.03 % lipids under red, blue and white wavelengths, respectively. C. vulgaris produced 

the highest percent lipids of 43.61 under blue wavelength whereas C. emersonii produced 

the highest percent lipids of 33.50 under the red wavelength. Both strains produced the 

least percent lipids under white wavelength. The values of percent lipids obtained in this 

study are higher than that obtained by Ren et al. (2017) of 23.6% when they grew 

Chlorella vulgaris in a pilot-scale photobioreactor with waste glycerol (i.e., mixotrophic 

cultivation). The lipid content obtained in this study is lower than that obtained by Park et 

al. (2019) of 60.9 wt% when they were studying photoautotrophic growth of Nephroselmis 

sp. at pilot plant scale in a flat plate/panel PBR under red wavelength. The %lipids 

obtained in this study is more than double that obtained by Metsoviti et al. (2020). The 

%lipid yield obtained in this study are in agreement with the results of (Manikan et al., 

2015; Wen et al., 2016). Arief et al. (2009) reported that the content of lipid in microalgae 

increased with increasing CO2 concentration. Therefore, the not so high yield of lipid 

content in this study could be due to inadequate CO2, because in this study atmospheric 

air was used as a source of CO2 which has 0.03% CO2.  

Light and temperature are the two most vital factors that affect microalgae biomass 

productivity. The energy for growing algae is provided by light via photosynthesis. 

Sufficient light energy must be effectively utilized to achieve higher biomass productivity 

(Munir et al., 2015). Temperature affects the rates of all chemical reactions related to algal 

growth and its metabolism (Sandnes et al., 2005). Change in temperature affects the 

biochemical composition of the cells specifically lipids and proteins. Thus, light and 

temperature have a significant influence in the metabolism, enzyme activities and cell 

composition of algae. Algae cultivation also depends on pH levels and optimum pH 

influences the carbon availability, metabolism and biochemical composition of cells 

(Richmond, 2000). Furthermore, the effectiveness of the various organic carbons in 
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supporting cell growth and oil accumulation depends on the strain and other culture 

conditions (Rodolf et al., 2009; El-Kassas 2013; Eroglu et al., 2015).  

A two-way ANOVA with blocking was done to determine if there is a significant 

difference in percent yields of lipids between lights and between strains and the results in 

Table 4.21 were obtained. 

Table 4.21: ANOVA Table for Lipid Yield under Different Light Wavelengths with 

Blocking 

Source of 

variation 

Sum of 

squares 

(SS) 

Degree of 

freedom 

(d.f.) 

Mean 

square 

(MS) 

F-

ratio 

5% F-limit 

(Table 

values) 

Between columns 

(i.e., between 

lights) 

29.8937 2 14.9469 0.8916 F(2, 2)= 

19.00 

Between rows 

(i.e., between 

strains) 

85.9573 1 85.9573 5.1272 F(1, 2)= 

18.51 

Residual or Error 33.5296 2 16.7648   

Total 149.3806 5    

The differences concerning effect of different light wavelengths on lipid yield are 

insignificant at 5% level as the calculated F-ratio of 0.8916 is less than the table value of 

19.00. Also the differences concerning influence of the different strains on lipid yield are 

not significant at 5% level as the computed F-ratio of 5.1272 is less than the table value 

of 18.51. Therefore, a logical conclusion is that there is interaction between light quality 

and strain in relation to yield of microalgae lipids. This therefore implies that the yield of 

microalgal lipids depends both on microalgal strain and light quality simultaneously and 

not in isolation on these independent variables. 

Analysis of variance was also carried out on the percent lipid yield assuming two factors 

i.e., light quality and strains of microalgae without blocking, and the results in Table 4.22 

were obtained. From the ANOVA Table 4.22, the differences concerning different lights 

are significant at 5% level as the calculated F-ratio of 11.6089 is more than the table value 
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of 3.88. Also, the microalgae strain differences are significant as the computed F-ratio of 

66.8223 is more than the table value of 4.75. Furthermore, interaction between the light 

quality and the strains is significant as the computed F-ratio of 128.9870 is more than the 

table value of 3.88. It can therefore be concluded that when growing microalgae in 

FPPPBRs, the effect of light quality and the type of strain on the percent lipid yield is 

significant. Also, there is a significant interaction between light quality and type of strain 

in affecting the percent lipid yield of microalgae. From these findings, it can be deduced 

that type of strain and light quality influence lipid yield, hence each microalgae strain 

should be optimized with light quality. This contradicts the results for biomass yield where 

there is no interaction between light quality and type of strain in determining biomass 

yield, thus optimum design of photobioreactors should be based on lipid yield and not on 

the biomass quantity. 

All microalgae contain carbohydrates, proteins, lipids, and nucleic acids in varying 

proportions. Many microalgae are very rich in lipids, which can be converted into 

biodiesel. The lipid and fatty acid content of microalgae varies depending on culture 

conditions. Lipid content in microalgae can exceed 70% by weight of dry biomass (Mata 

et al., 2010). Lipid content of between 20 and 50% is quite common. However, low lipid  
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Table 4.22: ANOVA Table for Lipid Yield under Different Light Wavelengths 

without Blocking  

Source of 

variation 

Sum of 

squares (SS) 

Degree of 

freedom 

(d.f.) 

Mean 

square(MS) 

F-ratio 5% F-

limit 

Between 

columns (i.e., 

between lights) 

89.5730 2 44.7865 11.6089 F(2,12)= 

3.88 

 

Between rows 

(i.e., between 

strains) 

257.7964 1 257.7964 66.8230 F(1,12)= 

4.75 

Interaction 995.2488 2 497.6244 128.9884 F(2,12)= 

3.88 

Within samples 

(Error) 

46.2953 12 3.8579   

Total 1,388.9135 17    

productivity is often associated with high lipid content of microalgae. Lipid productivity 

is the mass of lipids produced per unit volume of the culture per unit time; it depends on 

the algal growth rate and the lipid content of the biomass (Chen et al., 2014). Several 

factors affect the lipid content of microalgae, including light (quality and quantity), 

temperature, nutrient concentration, O2, CO2, pH, salinity, and toxic chemicals. Light and 

temperature are the major cultivation factors that influence overall biomass productivity 

and biochemical composition of microalgae (Carvalho & Malcata, 2003; Carvalho et al., 

2009). The effects of light and temperature are synergistic in nature. Sandnes et al. (2005) 

observed that growth rates of Nannochloropsis oceanica increased with higher light 

intensity at temperatures of up to 28 oC. At low light intensity, the growth rate is less 

influenced by temperature. Renaud et al. (2002) studied the growth and nutritional content 

of four tropical Australian microalgal species and reported that the optimum temperature 

for growth was 25–27 oC for Rhodomonas sp. and 27– 30 oC for Prymnesiophyte NT19, 

Cryptomonas sp., Chaetoceros sp., and Isochrysis sp. Chaetoceros sp. had the highest 

percentage of lipid when cells were cultured at 25 oC, whereas Rhodomonas sp., 

Cryptomonas sp., Prymnesiophyte NT19, and Isochrysis sp. had significantly higher 

amounts of lipid at temperatures within the range of 27–30 oC. Therefore, the optimum 
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lipid content and growth rate of microalgae may vary from species to species (Chen et al., 

2014). 

From this study, C. vulgaris is better than C. emersonii in yielding percent lipids because 

it had higher percent lipids under blue, red and white wavelengths. Furthermore, its growth 

rate and doubling time were higher than those of C. emersonii. When considering light 

quality, blue wavelength produced the highest percent lipids for Chlorella sp. and red 

wavelength produced the highest percent lipids for the C. emersonii. Therefore, C. 

vulgaris absorbs better the blue wavelength compared to the other wavelengths. On the 

other hand, C. emersonii absorbs better the red wavelength compared to the other 

wavelengths. This could be due to the fact that the pigments bound chlorophyll and the 

colour of the incident light match with the pigment absorption band (Matthijs et al., 1996; 

Devaraja et al., 2017). 
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CHAPTER FIVE 

 CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

1. A computer optimization model to simulate the yield of microalgae in a flat plate 

photobioreactor was developed and the optimum microalgae yield was found to be 

0.250715±0.001608 gmolphotons-1 and the optimal microalgal cultivation conditions 

were established by the simulation model to be: biomass concentration 0.1 gL-1, 

microalgae growth rate 0.0102 h-1, photon flux density 100 µmolphotonsm-2 s-2, 

volume of reactor 192 L and illuminated PBR surface area 2.16 m2. Also, RSM could 

be used to optimize microalgae cultivation conditions. 

2. A total of two microalgal strains were isolated and characterized from the samples 

collected from local aquatic ecosystems. These strains were morphologically 

identified as C. emersonii and C. vulgaris, and had specific growth rate of 0.16 and 

0.244 day-1, and a doubling time of 4.30 and 2.84 days, respectively. C. vulgaris has 

a higher growth rate of 0.244 day-1 and a shorter doubling time of 2.84 days compared 

to C. emersonii, hence good for microalgae cultivation for biomass and biofuel 

production.  

3. The developed computer optimization model was validated. The simulation and 

experimental yield was 0.250715±0.001608 (5.32 g) and 0.438423±0.027122    (9.30 

g) gmolphotons-1, respectively. The RMSE value for the optimization model was 

0.1889, the MSE, MAE and MAPE were 0.0357, 0.2717 and 42.67% respectively. 

The model had coefficient of correlation (R) of 0.231 and student’s t-test (p = 

0.000<0.05) proved that there was a significant difference between model and 

experimental values. Thus, the model was underpredicting. The simulation model was 

modified and a new optimization model developed. 
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4. Chlorella vulgaris yielded; 9.30±0.57 g, 8.32±0.48 g and 7.78±0.67 g under white, 

blue and red wavelengths, respectively whereas, the corresponding values for the 

Chlorella emersonii were; 5.88±0.26 g, 5.46±0.20 g and 5.12±0.14 g. The quality of 

light used has no significant influence on the amount of biomass yield to be obtained, 

but, the strain of microalgae grown has. Chlorella vulgaris produced 43.61, 35.87 and 

34.56 % lipids respectively, under blue, red and white wavelengths. On the other 

hand, Chlorella emersonii yielded 33.50, 29.80 and 28.03 % lipids under red, blue 

and white wavelengths, respectively. There is interaction between light quality and 

strain in relation to yield of microalgae lipids.  

5.2 Recommendations 

5.2.1 Recommendations from the Study 

1. Genetic Algorithm and Response Surface Methodology can be used to optimize 

microalgae cultivation conditions. 

2. Chlorella vulgaris should be cultivated for biomass and biofuel production. 

3. The developed simulation model should be used to optimize microalgae 

cultivation conditions. 

4. Chlorella vulgaris should be grown under blue wavelength whereas chlorella 

emersonii should be grown under red wavelength in order to yield high lipids. 

5. If interested in biomass only, then the microalgae should be grown under white 

wavelength. 

5.2.2 Recommendations for Further Studies 

1. Phylogenetic identification should be done to identify the molecular identity of the 

two strains isolated. 

2. Isolation and characterization of samples from local aquatic ecosystems using 

multi media/recipes should be explored. 
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3. An energy balance should be carried out to determine the amount of energy 

required to produce 1 kg of microalgal biomass and 1 kg of lipids. 

4. Explore various methods of enhancing circulation and minimizing dead zones in 

the flat plate perspex photobioreactor. 

5. The impact of other photoperiods like 16:8 and 14:10 on biomass and lipid yields 

at pilot scale, should be investigated. 

6. Other metabolic pathways, like heterotrophic and mixotrophic, of growing 

microalgae in flat plate perspex photobioreactor should be investigated. 

7. The impact of inoculum size (volume) on the microalgae yield should be 

investigated. 

8. Investigations should be carried out on the impact of enriched air with CO2 on 

biomass and lipids yield. 
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APPENDICES 

Appendix I: Determination of Photosythetic Efficiency 

Appendix IA: Determination of theoretical biomass yield on light energy 

The theoretical biomass yield on light energy was calculated based on the stoichiometric 

reaction equations for the formation of biomass on carbon dioxide, water, and the nitrogen 

source used in the cultivation (Duboc et al., 1999): 

For growth on nitrate:  

CO2 (g) + 0.95·H2O (l) + 0.12·NO3
- 

(aq) 

                CH1.78O0.36N0.12 (s) + 1.415·O2 (g) + 0.12·OH- 
(aq) 

For growth on urea:  

0.94·CO2 (g) + 0.77·H2O (l) + 0.06·CH4ON2 (aq)     CH1.78O0.36N0.12 (s) + 1.175·O2 (g) 

The yield of the light reactions is assumed to be 0.1 mol of oxygen per mole of photons 

within the PAR spectrum. This value represents the maximal quantum yield as determined 

under low light by several independent researchers over the past decades (Zijffers et al., 

2010).  

Assuming the Chlorella sp. (round strain) isolated and used in the model validation has 

the same elemental composition of C1.78O0.36 N0.12 as found for Chlorella Spain sp. (Duboc 

et al. 1999), the molecular mass of a C-mol biomass is 21.22 gmol−1. To form one C-mol 

of biomass, 14.15 or 11.75 mol of photons are required to evolve the required amount of 

oxygen for growth on nitrate and urea, respectively, following the stoichiometric reaction 

equations. This leads to a theoretical biomass yield of 1.5 and 1.8 gmol.photons−1 for 

growth on nitrate and urea, respectively. 
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Appendix II: Analysis of Variance 

Appendix IIA: TWO-WAY ANOVA technique in context of two-way design when 

repeated values are not present 

The various steps involved are as follows (Kothari, 2004): 

i. The total number of the values of individual items was taken in all the samples and 

denoted by T. 

ii. The correction factor was then worked out as under:  

a. Correction factor 

2( )T

n
   

iii. The square of all the item values was calculated one by one and then took its total. 

Then subtracted the correction factor from this total to get the sum of squares of 

deviations for total variance. Symbolically, this can be write as:  

a. Sum of squares of deviations for total variance or total SS 

b.   

2
2 ( )
ij

T

nX 
  

iv. Took the total of different columns and then obtained the square of each column        

total and divided such squared values of each column by the number of items in 

the concerning column and took the total of the result thus obtained. Finally, 

subtracted the correction factor from this total to obtain the sum of squares of 

deviations for variance between columns or (SS between columns). 

v. Took the total of different rows and then obtained the square of each row total and 

divided such squared values of each row by the number of items in the 

corresponding row and took the total of the result thus obtained. Finally, subtracted 

the correction factor from this total to obtain the sum of squares of deviations for 

variance between rows (or SS between rows). 
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vi. Sum of squares of deviations for residual or error variance were worked out by 

subtracting the result of the sum of (iv)th and (v)th steps from the result of (iii)th 

step stated above. In other words, 

a. Total SS – (SS between columns + SS between rows) = SS for residual or 

error variance.  

vii. Degrees of freedom (d.f.) were worked out as under: 

a. d.f. for total variance    = (c.r – 1), 

b. d.f. for variance between columns  = (c – 1), 

c. d.f. for variance between rows  = (r – 1), 

d. d.f. for residual variance   = (c – 1) (r – 1)  

e. Where   c = number of columns 

1. r = number of rows  

viii. ANOVA table was then set up in the usual fashion as shown in Table B-1. 
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Table B-1: Analysis of Variance Table for Two-way ANOVA 

Source of 

variation 

Sum of 

squares (SS) 

Degrees of 

freedom 

(d.f.) 

Mean square (MS) F-ratio 

Between 

columns 

treatment 

2 2

j

j
n

T T
n

  
( 1)c   

 

1

SS between columns

c 

 

MS between columns

MS residual

 

Between 

rows 

treatment 

2 2

i

i
n

T T
n

  

1r   

1

SS between rows

r 
 MS between rows

MS residual

 

Residual or 

error 

Total SS-(SS 

between 

columns + SS 

between rows) 

( 1)( 1)c r 
 

Re

( 1)( 1)

SS sidual

c r 
 

 

Total 2
2 ( )
ij

T

nX 
 

. 1c r     
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