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ABSTRACT 

One of the top machine learning algorithms for image classification is Convolutional 

Neural Networks, according to experts. Convolutional Neural Networks has been 

extensively used in the agriculture sector for a variety of solutions, including identifying 

plant diseases, forecasting crop production, and categorizing land cover, among others. 

Unfortunately, creating Convolutional Neural Networks models requires a significant 

amount of data, which is extremely difficult to come by in agriculture. In this study, we 

suggest combining the Convolutional Neural Networks and Multitask Learning 

techniques since it has been shown to be a good algorithm to use when there isn't enough 

data by utilizing its ability to share layers. Additionally, Multitask Learning enabled us to 

simultaneously identify pathogens and diseases that affect maize, which is not possible 

when using a single Convolutional Neural Networks model. Indeed, recognizing pathogen 

may help at preventing the disease to spread throughout the whole field. Multitask 

Learning helped in improving the performance of our model by reducing overfitting. In 

this research, we combined Multitask Learning with other regularization techniques for a 

better performance. Indeed, the test accuracy of the overfitting model increases from 

60.08% for the single maize disease model to 74.48% when combining the maize disease 

identification model with the maize pathogen identification model in one model using 

Multitask Learning. The accuracy rises to 77.44% while combining Multitask Learning to 

the early stopping method. However, the test accuracy goes up to 85.22 % when Multitask 

Learning is combined with Early Stopping and Transfer Learning. 

Keywords: Multitask learning, Convolutional Neural Networks, Overfiting, Image 

Classification, and Regularization Methods.
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Computer science and its distinctive subjective knowledge such as Artificial 

Intelligence, Machine Learning, Deep Learning, Computer vision, Image processing, 

have previously undergone significant advancements in various aspect of real life.  

Deep Learning (DL) methods are relatively emerging Machine Learning algorithms and 

are applied in different domains. Deep Learning models may be supervised, semi-

supervised, or unsupervised as will be detailed in the next chapter. Deep Learning is 

based on human brain modeling. Compared to other Machine Learning algorithms, Deep 

Learning are the best because of their robustness, generalization and scalability, they can 

be applied to almost all fields of science indeed (Alom et al., 2019). The most popular 

Deep Learning methods are: 

1. Convolutional Neural Network (CNN): are a specialized kind of ANNs that use 

convolution in place of general matrix multiplication in at least one of their 

layers. Convolutional Neural Networks involve many connections, and the 

architecture is typically comprised of different types of layers, including 

convolution, pooling and fully-connected layers, and realize form of 

regularization(Namatēvs, 2018). 

2. Recurrent Neural Network (RNN) are NN which are capable of modelling 

sequential data for sequence recognition and prediction(Salehinejad et al., 2017). 

They include Long Short-Term Memory (LSTM) capable of learning long term 

sequences, and Gated Recurrent Units (GRU) is the Recurrent Neural Network 

(RNN) appropriate for regression modeling of deep learning tasks such as 

prediction(Kirori & Ireri, 2020). It is like a long short-term memory (LSTM) 

with a forget gate, but has fewer parameters than LSTM. 
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3. Auto-Encoder (AE): aims at learning an identity mapping on a given dataset with 

a bottleneck latent dimension. They are suitable at learning compressed, 

interpretable, and structured data representations.(Cosentino et al., 2021). 

4. Deep Belief Network (DBN): method of solving the problems from neural 

network with deep layers, such as low velocity and the overfitting phenomenon 

in learning.(Yuming et al., 2015) 

5. Generative Adversarial Network (GAN), and  

6. Deep Reinforcement Learning (DRL). (Alom et al., 2019)&(H. Wang & Raj, 

2017) 

Convolutional Neural Networks algorithms, the subject of this study, are used to solve 

graph problems, image processing and computer vision, speech processing, and medical 

imaging, etc. 

In their study, (Tyr Wiesner‑Hanks et al., 2017) showed that Convolutional Neural 

Networks are a class of Machine Learning models that can be trained to detect objects 

accurately in images, making them the current standard for object recognition.(Stewart 

et al., 2019). 

Specifically, in agriculture domain, many researchers have since recently proposed and 

adapted Convolutional Neural Networks to implement crop cultivation, weather 

forecasting, yield prediction, insect detection, distinguishing weeds from crops, 

detecting the absolute environment to grow plants perfectly, and so on. 

(Andreas K. and Francesc X. P.-B, 2018). noticed that Deep Learning offers better 

performance in solving various agricultural problems related to computer vision and 

image analysis, including classification or prediction.(Kamilaris & Prenafeta-Boldú, 

2018) 
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In their study, (Ji et al., 2018) built a three-dimensional (3D) Convolutional Neural 

Networks based approach that classifies crops automatically from spatio-temporal multi-

spectral remote sensing images. 

Deep Convolutional Neural Networks model has been proposed by (Nagasubramanian 

et al., 2018) for plant disease (the charcoal rot of soybeans) identification using 

hyperspectral data. 

(Lottes, Behley, Milioto, & Stachniss, 2018) proposed a crop-weed classification system 

based on a fully convolutional network with an encoder-decoder structure and 

incorporating spatial information through the use of sequential data 

For image processing, distinct techniques such as image segmentation(Sartin et al., 

2014), image filtering(Sansao et al., 2012), image histogram analysis(Wu et al., 2014), 

image background extraction(Eerens et al., 2014) have been proposed by many 

researchers to face agricultural challenges.  

1.2 Problem Statement 

Maize, a critical global food source, is susceptible to various diseases caused by 

pathogens that significantly impact crop yield and food security. The identification of 

both the maize disease and its causative pathogen is crucial for implementing targeted 

and effective agricultural interventions. Current methods for disease and pathogen 

classification often involve separate analyses, leading to increased complexity and 

resource requirements. 

Traditional approaches to disease and pathogen identification in maize are labor-

intensive, time-consuming, and rely heavily on expert knowledge. Leveraging the power 

of Convolutional Neural Networks (CNNs) presents an opportunity to automate this 

process, offering a scalable and efficient solution.  
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However, building an integrated model for the simultaneous classification of maize 

diseases and their associated pathogens using multitask learning remains an 

underexplored area of research as illustrated below by the models proposed in the past. 

(Khatib et al., 2022) built a maize leaf disease identification model based on 

Convolutional Neural Networks. They achieved an accuracy of 98.3% using AlexNet 

architecture.  

(Bedi & Gole, 2021) proposed a hybrid model based on Convolutional Autoencoder 

(CAE) network and Convolutional Neural Network (CNN) applied to detect Bacterial 

Spot disease present in peach plants using leaf images. The testing accuracy achieved 

98.38%. The model can be used for any plant disease detection.  

This research aimed to address this gap by proposing an innovative Maize Disease and 

Pathogen Classification Model based on Multitask Learning-Convolutional Neural 

Networks. 

Classically, a single Convolutional Neural Networks model is dedicated to a single task, 

whereas our goal is to classify both the disease and its pathogen. Fortunately, Multitask 

Learning allows for the learning of multiple tasks in a single model at the same time 

(Huq, Gani, Sherif, & Abid, 2021).  

The Multitask Learning method was then combined with convolutional Neural Networks 

to classify the disease and its pathogen at the same time images. Furthermore, in the 

agricultural field, it is nearly impossible to find large labelled datasets required for the 

best Convolutional Neural Networks model performance. Multitask Learning is also a 

good technique to use when there is a lack of data. Indeed, Multitask Learning makes 

use of useful information from related tasks to address the data sparsity issue (Y. Zhang 

& Yang, 2018). Finally, Multitask Learning is one of the regularization techniques used 

to avoid overfitting while training a Convolutional Neural Networks model; it has been 
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combined with other regularization techniques to improve the proposed model's 

performance. 

1.3 Objectives 

1.3.1 Global Objective 

The broad objective of this research thesis is to build a Multitask Learning-

Convolutional Neural Networks model for maize disease identification. 

1.3.2 Specific Objectives 

i. Analyze how multilayer perceptron is used in deep learning to establish complex 

relationships among entities. 

ii. Evaluate different regularization methods used in deep learning to minimize the 

loss function. 

iii. Develop an appropriate multitask Learning-Convolutional Neural Networks 

based model for identification of maize disease. 

iv. Test and validate the proposed model. 

1.4 Research Question 

The goal of this study is to answer the following questions: 

i. How the multilayer perceptron is used in deep learning to establish complex 

relationships among entities? 

ii. Which current regularization methods are used in deep learning to minimize the 

loss function? 

iii. How shall an appropriate Multitask Learning-Convolutional Neural Networks 

based model be developed for maize diseases classification? 

iv. What are the test results of the proposed model? 
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1.5 Justification 

Maize is an important cereal for humans and animals all over the world. It can be 

transformed into a variety of food and industrial products, such as scratch sweeteners, 

oil, beverages, glue, industrial alcohol, and fuel ethanol (Ranum, Peña-Rosas, & Garcia-

Casal, 2014). 

Agriculture employs a large portion of Kenya's population, as it does in many African 

countries. Kenya also has a diverse plant diversity due to a variety of habitats. In fact, 

Kenya has an estimated 7,500 plant species (Kainyu, 2014), and maize can grow in 90% 

of the Kenya region (Wambuga, P.W. and Muthamia, 2009) as shown in Figure 1. It is 

commonly consumed in the form of ugali, uji, mahindi, choma, and githeri. Kenya was 

a major exporter of maize until the 1990s (Barmao & Tarus, 2019), and the amount 

imported has increased exponentially since then.  

This shift from exporter to importer is the result of numerous challenges, including the 

impact of climate change and persistent biotic and abiotic stresses, a lack of good maize 

production policies, and a lack of power technology and strategy (Ray, 2013).  

One of the main challenges faces the maize crop is the presence of diseases, both in the 

field and in the storage. Foliar diseases range from fungal, bacterial and viral and include 

maize rust, maize smut, northern leaf blight (NLB), ear rots, gray leaf spots (GLS), maize 

streak disease and the Maize lethal necrosis disease (Kainyu, 2014) are the most 

frequently encountered diseases in Kenya. Yield losses due to GLS range from 10 to 

70% though during epidemics, 90 to 100% losses have been reported (Charles, Muiru, 

Miano, & Kimenju, 2019).  
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Figure 1.1: Maize Production in Kenya 2018  

 Source: ((Dienya, 2020) 

Note that data for Mandera County is missed (see Appendix 1 for the data used to draw 

this map)) 

Some of these diseases are spreading so quickly that they must be identified sooner in 

order to be managed. For example, GLS, one of the most common maize diseases in 

Kenya, is spreading so quickly that an entire field can be considered diseased in just one 
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month (Subedi, 2015). (Charles et al., 2019) found in their research that most farmers 

were unable to identify the various diseases without the assistance of experts. 

This study proposed a classification model for maize disease, which could be a solution 

to the decrease in maize production by assisting farmers in identifying the various 

diseases without the assistance of expensive experts who are not always available. We 

proposed a model for identifying maize diseases using Convolutional Neural Networks. 

Recognizing the plant pathogen may allow for earlier intervention because some 

pathogens may not require chemical treatment. In the case of a virus, for example, the 

best solution is to remove the infected plant(Lamp’l, 2013) and identifying the disease 

may aid with the selection of resistant seeds the following season. However, a traditional 

CNN cannot classify the disease and its pathogen within a single model. As a result, we 

propose a Multitask Neural Networks Convolutional Learning model that allows for the 

training of a single model for multiple tasks. 

 Furthermore, as previously stated, Multitask Learning is a good technique to use when 

the dataset is not large, which is still a real issue in the agricultural field. Multitask 

Learning is also a regularization technique used to avoid overfitting, which happens 

when the model fails to generalize to previously unseen data. In this research, we 

combined Multitask Learning with other regularization methods to enhance the 

performance of the proposed model. 

1.6 Scope of the Research 

Several Machine Learning algorithms are used in agricultural issues, but this study 

focused on the Multitask Learning-Convolutional Neural Networks algorithm for 

identifying maize disease. Our principal interest was on model regularization. Different 

deep learning regularization methods were compared and combined to improve the 

model's performance. Only image data from maize diseases commonly reported in 

Kenya were considered. 
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1.7 Thesis Organization 

This thesis is divided into five chapters. Chapter 1 is an introductory chapter which 

started with a brief history of deep learning and computer vision. This chapter describes 

the problem statement, research objectives, justification, scope of the research and finally 

the thesis organization.  

The second chapter begins with an introduction to Machine Learning and associated 

algorithms, followed by a discussion of Machine Learning applications in agriculture. 

The description of the Multilayer Perceptron in Deep Learning and the Convolutional 

Neural Networks structure with regularization techniques follows. The chapter next 

discusses loss functions and performance metrics in Convolutional Neural Networks 

before concluding by examining similar studies and identifying research gaps. 

Chapter 3 presents the methodology used in this study. After the introduction of the 

chapter, then present the data to be used. The proposed model design and concept is then 

defined, followed by an explanation of the implementation the proposed model. 

Experiments and results are covered in Chapter 4. It begins with outlining data 

processing, then proceeds to explain the four experiments carried out in this study, and 

concludes with a description of the results. 

Chapter 5 summarizes this study and provides a general conclusion, followed by a 

recommendation for further work. 
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CHAPTER TWO 

LITTERATURE REVIEW 

2.1 Introduction 

Machine learning (ML) is a subset of Artificial Intelligence (AI) that can automatically 

acquire, integrate, and develop knowledge from large-scale data, and then autonomously 

expand the acquired knowledge by discovering new information, without really being 

explicitly programmed to do so. ML and AI are usually used interchangeably, but the 

reality is that not all AI is ML, as illustrated in Figure 2, along with DL, which is a subset 

of ML, and Convolutional Neural Networks, which is a subset of DL. 

In this section, we review research on ML algorithms and studies on ML in agriculture, 

as well as the Multilayer Perceptron (MLP) structure in DL, Convolutional Neural 

Networks and its regularization methods, loss functions, and performance metrics for 

Convolutional Neural Networks model construction, before explaining our research gaps 

after reviewing related works. 

2.2 Machine Learning Algorithms 

Machine Learning is one of the most rapidly growing areas of computer science. 

Currently, numerous researchers have proposed various Machine Learning algorithms 

to address a wide range of real-world challenges. 

Machine Learning aims to enable machines to make predictions, cluster data, extract 

patterns, and make decisions. The ML techniques are mainly grouped in four categories 

as following (Malinowski et al., 2019; Sarker, 2021; Series, 2021): 

 The supervised learning: the model learns from labeled data; for example, 

regression 
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 Unsupervised leaning: the model learns from unlabeled data; for example, 

clustering 

 Semi-supervised learning: the model learns from the mixture of labeled and 

unlabeled data; for example, classification 

 Reinforced learning: the model learns based on reward or penalty and then with 

no data. 

 

Figure 2.1: AI vs ML vs ANN vs DL vs CNN  

Source: ( Zhang et al., 2022) 

2.3 Machine Learning in Agriculture 

Various Machine Learning algorithms have been used in agri-technology for a variety 

of solutions ranging from pre-harvesting, harvesting, and post-harvesting tasks, 

Artificial 

Intelligence 

Machine Learning 

Artificial Neural 

Networks 

Deep 

Learning 

Convolutiona

l Neural 

Networks 
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predicting harvest production, detecting disease in advance, recommending fertilizer for 

specific crops, and so forth. 

(Thi et al., 2020) created and compared three different models for time series forecasting 

using the Keras toolkit: artificial neural network (ANN), recurrent neural network 

(RNN), and long short-term memory (LSTM). They discovered that the LSTM model 

outperformed the other tested models for long time scales in summer and spring. 

A study on crop yield prediction was conducted by (Cedric et al., 2022). They built three 

models: a decision tree, a multivariate logistic regression model, and a k-nearest 

neighbor model, all of which were trained on rice, maize, cassava, seed cotton, yams, 

and banana crops from West African countries using climatic, weather, agricultural 

yield, and chemical data variables. The decision tree algorithm outperformed the other 

two algorithms.  

(Fabio et al., 2022) developed a hybrid model based on M5P and Support vector 

regression for precipitation forecasting. The four metrics they used to evaluate the 

models' performance were coefficient of determination (R2), mean absolute error 

(MAE), root square mean error (RSME), and relative absolute error (RAE). The hybrid 

model outperformed the two models trained and tested separately. 

Deep learning is one of the most widely used ML algorithms for a variety of agricultural 

problems. (Lottes et al., 2018) proposed a crop-weed classification system based on a 

fully convolutional network with an encoder-decoder structure and spatial information 

incorporated via sequential data. They trained their model on data from various growth 

ranges to distinguish crops at different stages, giving 96.1 recall and 96.6 precision. The 

sequential model also generalizes well to previously unknown fields. As a result, the 

experiment revealed that changing the visual appearance of the image data reduced the 

model's performance. 
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Recurrent Neural Networks were used to classify land cover using multi-temporal spatial 

data derived from a time series of satellite images (Ienco et al., 2017). They used two 

different datasets and applied one LSTM layer to both pixel-based and object-based 

classification. They discovered that their method worked well for underrepresented and 

difficult classes, but the accuracy was only 75.15 percent. 

According to (Liakos, Busato, Moshou, Pearson, & Bochtis, 2018), farm management 

systems are evolving into real-time artificial intelligence enabled programs that provide 

recommendations and insights for farmer decision support by applying machine learning 

to sensor data. 

 In 2019, (Jha, Doshi, Patel, & Shah, 2019) examined the Machine Learning algorithms 

used in a variety of precision agriculture applications. They discovered that by applying 

machine learning to sensor data, farm management systems are evolving into true AI 

systems, providing optimal insights for decision-making and action. The authors 

developed a plant and weed distinguishing technique using machine learning and image 

processing techniques to successfully manage weed separation from crops. It is an 

important study because weed management is critical in the crop harvesting field. They 

used the Local Binary Pattern (LBP) algorithm to extract textural features from crop 

leaves and the Support Vector Machine (SVM) algorithm to classify the multiclass plant. 

(Khaki & Wang, 2019) proposed a Deep Neural Networks model for crop yield 

prediction that outperformed other popular methods such as Lasso, shallow neural 

networks (SNN), and regression tree (RT). They trained the model using crop genotype, 

yield performance, and corn hybrid environment data. 

A deep convolutional neural networks model were proposed by (Liu et al., 2018) for 

detecting four common apple leaf diseases: mosaic, rust, brown spot, and Alternaria leaf 

spot. They used an AlexNet-based architecture and a dataset of 13,689 images of 

diseased apple leaves. They achieved an accuracy of 97.62% by implementing the model 

in the Caffe framework on the GPU platform. 
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Bayesian algorithms(Amatya et al., 2016), decision trees(Veenadhari et al., 2011), 

ensemble learning(Kung et al., 2016), and support vector machines(Han et al., 2020) are 

examples of other Machine Learning algorithms used in agriculture 

2.4 Multilayer Perceptron in Deep Learning 

The architecture of Artificial Neural Networks was inspired by the architecture of the 

human brain, which is made up of a massive number of neurons and synapses. In the 

field of Neural Networks, a perceptron represents a single neuron and neurons are 

connected together to form a layer. A multilayer perceptron (MLP) (Aleshin-Guendel & 

Alvarez, 2017) is an ANN architecture made up of one input, one or more hidden, and 

one output layers whereas Deep Learning is a type of ANN that has more than one hidden 

layer. Figure  illustrates an MLP that has two hidden layers. The nodes are linked 

together by links, and each link has a numerical weight assigned to it (Russell & Norvig, 

2010). 

 

 

 

 

 

Figure 2.2: Two Hidden Layer MLP Architecture 

The weights are real numbers that represent the importance of each input to the output 

(Nielsen, 2015). The perceptron learns by adding the bias (b) to the sum of inputs (x) 

multiplied by their weights (w). It is shown mathematically in equation 1. 

𝑦 = ∑ 𝑥𝑖𝑤𝑖 + 𝑏𝑖    ( 1) 

Input layer 
Output 

Hidden layer Hidden layer 
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The feedforward network is formed when each layer feeds into the layer above until the 

output is produced. There are no loops; each node receives input from upstream nodes 

and sends output to downstream nodes. Through the activation function, the MLP 

converts the hidden layer output (Czum et al., 2020). Rectified Linear Unit function, 

softmax function, tanh function, and Sigmoid function are examples of common 

activation functions. 

2.3.1 Rectified Linear Unit Function 

Rectified Linear Unit function (ReLU) allows the network to converge rapidly. It is a 

derivative function, which permits backpropagation. It computes the following function: 

 𝑓(𝑥) = max(0, 𝑥)  (2) 

This function returns x if x is positive and 0 otherwise. 

The disadvantage of using the ReLU function is that the network will die if the inputs 

approach zero or are negative. (Agarap, 2018). 

2.3.2 Softmax Function 

The softmax function is used to calculate probability distribution from a vector of real 

numbers. It is usually used for classification tasks typically at the output layer.(Chigozie 

N. et al., 2018). Softmax function is able to handle multiple-class models where it returns 

probabilities of each class. It is defined by equation 3 below. 

𝑓(𝑥𝑖) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗

𝑗
   (3) 

2.3.3 Sigmoid Function 

The output of a sigmoid function is bounded (Y. Wang et al., 2020) between 0 and 1 

what is called squashing function. It is useful in probability prediction. The equation 4 

describes the sigmoid function. Its computation is expensive. 
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𝑓(𝑥) =
1

1+𝑒−𝑥
   (4) 

2.3.4 Tanh Function 

The tanh function is a sigmoid function, which is bounded between 1 and -1(Feng & Lu, 

2019). It is symmetric and centred on zero. The tanh function is given by equation 5. For 

a very high or very low value of x, the vanish gradient problem may occur. 

𝑓(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
   (5) 

2.3.5 CNN Structure 

Convolutional Neural Networks (ConvNets/CNN) are Deep Learning (DL) techniques 

used to solve computer vision problems. As previously stated, Neural Networks take a 

single vector as input and transform it through a series of hidden layers. Each hidden 

layer consists of a set of neurons, each of which is fully connected to all neurons in the 

previous layer, and neurons in a single layer function are completely independent and do 

not share any connections. The "output layer" is the final fully-connected layer. In 

addition to the input layer, Convolutional Neural Networks architecture mainly consists 

of three layers: convolutional, pooling, and fully connected. Figure illustrates a 

convolutional Neural Networks with two convolution layers, two max pooling layers 

and two fully connected layers. 

2.3.6 Convolutional Layer 

This is the first layer used to extract the different features from the input images. This 

layer performs the mathematical operation of convolution between the input image and 

a filter of size MxM. The dot product between the filter and the parts of the input image 

with respect to the size of the filter (MxM) is calculated by sliding the filter over the 

input image. The output is known as the Feature map, and it contains information about 



17 

the image such as its corners and edges. This feature map is then fed to other layers, 

which learn several other features from the input image. 

The convolutional filter is in charge of underlying the local image patch (Q. Zhang et 

al., 2019). For controlling the number of parameters, it has two shared parameters: kernel 

and scalar bias. Each neuron is only connected to a small portion of the input volume. 

The hyper-parameters that control the size of the output volume are depth, stride, and 

zero-padding. 

2.3.7 Pooling Layer 

The pooling layer is located between two convolutional layers. Its role is to combine the 

outputs of the neuron clusters and gradually reduce the spatial size of the representation 

to reduce the amount of parameters and computation in the network, and thus to control 

overfitting (Singh et al., 2017). The Pooling Layer operates independently on each depth 

slice of the input and spatially resizes it. The following are two common functions used 

in the pooling operation: 

Max Pooling selects the maximum element from each of the feature map's windows. As 

a result, the output of the max-pooling layer would be a feature map containing the most 

dominant features of the previous feature map. 

Average Pooling Average Pooling computes the average of the elements present in the 

filter's feature map region. It simply takes the features from the feature map and averages 

them. 

2.3.8 Fully Connected Layer 

The fully connected layers act as classifiers(Kamilaris & Prenafeta-Boldú, 2018). Their 

role is to understand the patterns generated by the previous layers (Ferreira & Giraldi, 

2017). Neurons in a fully connected layer have full connections to all activations in the 
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previous layer, as seen in regular Neural Networks. These layers are usually placed 

before the output layer and form the last few layers of a CNN Architecture.  

 

Figure 2.3: Example of Convolutional Neural Network structure 

Source: (Murphy, 2016)) 

2.3.9 Popular Convolutional Neural Networks Architectures 

There are no set rules for how many layers are required to build a Convolutional Neural 

Networks model or how the layers are connected to one another, but there are popular 

architectures that have proven to be successful over time: 

 LeNet: developed by LeCun et al. in 1998, LeNet is made up of seven layers, 

including two convolution layers, two sub-sampling layers, two fully connected 

layers, and an output layer. 

 AlexNet: The architecture was very similar to LeNet, but it was deeper, with 

more filters per layer, and with stacked convolutional layers. It included 

convolutions, max pooling, dropout, data augmentation, ReLU activations, and 

SGD with momentum.  
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 GoogleNet: The network was inspired by LeNet but added a new element known 

as an inception module. Batch normalization, image distortions, and RMSprop 

were all used. This module relies on a series of very small convolutions to 

drastically reduce the number of parameters. Their architecture included a 22-

layer deep Convolutional Neural Networks, but the number of parameters was 

reduced from 60 million (AlexNet) to 4 million. 

 VGGNet: Visual Geometry Group is a network of 16 convolutional layers that is 

appealing due to its very uniform architecture. Similar to AlexNet, only 3x3 

convolutions are used, but there are many filters. 

 ResNet: so-called Residual Neural Network, ResNet has been implemented by 

Kaiming He et al, 2016. They proposed a novel architecture with "skip 

connections" and heavy batch normalization. These skip connections, also 

known as gated units, are similar to recent successful RNN elements. They were 

able to train a NN with 152 layers while remaining less complex than VGGNet 

using this technique. 

 DenseNet: refers to Densely Connected Convolutional Networks, was proposed 

by (Gao et al., 2018). It is a type of convolutional neural network that uses Dense 

Blocks to connect all layers directly with each other. To maintain the feed-

forward nature, each layer receives additional inputs from all preceding layers 

and sends its own feature-maps to all subsequent layers.  

 FractalNet: It is a type of convolutional neural network proposed by (Larsson et 

al., 2017) that foregoes residual connections in favor of a "fractal" design. They 

entail repeatedly applying a simple expansion rule to generate deep networks 

with precisely truncated fractal structural layouts. These networks have 

interacting subpaths of varying lengths but no pass-through or residual 

connections. 

 CapsuleNet (G. Hinton et al., 2018): are networks that can retrieve spatial 

information and other important features in order to overcome the information 

loss seen in pooling operations. It focuses on replicating biological neural 

networks in order to improve recognition and segmentation. 
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2.4 Regularization Techniques in Deep Learning 

Regularization is a machine learning technique that allows an algorithm to generalize 

well on previously unseen data (Courville, 2016). It refers to any changes made to the 

learning algorithm in order to reduce its generalization error (Goodfellow et al, 2016). 

Deep learning uses several regularization methods, the most common of which are as 

follows: 

2.4.1 L2 Parameter Regularization 

Commonly known as weight decay, L2 regularization is a method which aims to reduce 

the loss by adding a regularization term R(w) to the objective function L(w). 

�̂�(𝑤) = 𝐿(𝑤) + 𝑅(𝑤) (6) 

𝑅(𝑤) =
𝜆

2
‖𝑤‖2₂  (7) 

Where λ is the weighting term controlling the regularization over the 

consistency(Kukačka et al, 2017).  

2.4.2 Data Augmentation 

In practice, the amount of data available is limited, whereas deep learning algorithms 

generalize better when trained on larger amounts of data. Thus, data augmentation is a 

method of increasing the size of the training set. To augment data, common techniques 

include Translation, rotation, flipping, brightness adjustment, zoom in/zoom out, 

cropping, noise injection, and so on ((Shorten & Khoshgoftaar, 2019),(Mikołajczyk & 

Grochowski, 2018)). This method, however, is not applicable to all tasks. For example, 

it is effective for image recognition but not for density estimation. (Ian et al., 2016). 

There exist two types of data augmentation: 
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 Online Data Augmentation: it is the technique where images from training data 

are randomly selected and data augmentation techniques are used. The model is 

then trained using the original data, which includes randomly augmented images. 

The augmented images are never saved anywhere in this case, and it is impossible 

to tell which image is augmented.  

 Offline Data Augmentation:  this method allows to generate new data that are 

saved on the disk. After applying data augmentation technique to each and every 

training image, augmented images are obtained. This expands the dataset and 

strengthens the model. Such a method that can be used to increase the number of 

images in a dataset. 

2.4.3 Multi-Task Learning 

This is a method for regularizing a model by leveraging important information contained 

in related tasks. A Multitask Learning model is split into two parts: shared layers and 

task-specific layers. There are two common Multitask Learning methods used in Deep 

Learning: one is hard parameter sharing, which involves sharing hidden layers across all 

tasks while maintaining task-specific output layers. The alternative method is soft 

parameter sharing, in which each task has its own model with its own set of parameters 

(Thung & Wee, 2018). Given T number of tasks and an objective function L with a 

regularization term Ω, the regularized function is shown in equation (8). 

�̂�(𝑤1,… ,𝑤𝑇) = ∑ 𝐿(𝑤𝑡) + Ω(𝑤1,… ,𝑤𝑇)𝑇
𝑡=1   (8) 

2.4.4 Transfer Learning 

Transfer learning(Shrivastava et al., 2019) is a machine learning method in which a 

model developed for one task is reused as the foundation for another model developed 

for a different task. It is the process of improving one's learning in a new task by 

transferring knowledge from a previously learned related task. Transfer learning can be 

applied in two ways, as explained below: 
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 Feature Extraction: Taking advantage of features learned by a model previously 

trained on a larger dataset in the same domain is a common practice. As the name 

implies, it is all about using the representations learned by a previous network to 

extract meaningful features from new samples by training a new classifier on top 

of the pre-trained model so that you can repurpose the feature maps learned 

previously for the dataset. This technique is recommended when working with a 

small dataset. 

 Fine-tuning: This technique entails fine-tuning the top-level layers of the pre-

trained models to the new dataset in order to improve performance even further. 

In this case, the weights were adjusted so that the model learned high-level 

dataset features. When the training dataset is large and very similar to the original 

dataset on which the pre-trained model was trained, this technique is usually 

recommended. 

2.4.5 Early Stopping 

Early stopping is one of the most common regularization methods used in deep learning 

to prevent overfitting. This happens at the Optimal Stopping Point, and that is the point 

at which the validation loss begins to rise while the training loss falls. The stopping 

criterion is a predicate that indicates when to discontinue training (Karlsruhe, 2015).  

2.4.6 Dropout 

Dropout(G. E. Hinton et al, 2012) is a method that prevents overfitting and allows for 

the efficient combination of increasingly diverse networks (Hinton et al , 2014). At each 

iteration, this technique involves randomly removing some nodes from the networks. 

Dropout is a data-dependent regularizer as well. (Z. Li et al, 2016).  

2.5 Loss Functions in Deep Learning 

The loss function is a method of assessing the performance of a machine learning model 

by calculating the difference between the predicted and actual output. Deep Learning 
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has several loss functions that are used depending on the type of problem to solve. Some 

popular loss functions are as follows: 

2.5.1 Cross-Entropy Losses 

Cross entropy is measured by the distance between the output probabilities and the actual 

values as illustrated by the following equation 9.  

𝐿𝐶𝐸 = −∑ 𝑥𝑖
𝑛
𝑖=0 log(𝑝𝑖) (9) 

Source : (Kiprono E., 2020) 

Where n the number of classes, 𝑥𝑖 the true label and 𝑝𝑖 the softmax probability for the 

𝑖𝑡ℎ class. Categorical Cross Entropy Loss is used for multi-class classification problems 

and binary Cross Entropy Loss for binary classification problems. 

2.5.2 Hinge Loss 

The hinge loss is a loss function used usually for binary classification problems.  For x 

inputs and y outputs, the Hinge Loss (HL) is given by equation 10: 

𝐻𝐿 = max(0,1 − 𝑦 ∗ 𝑓(𝑥))  (10) 

Source: (Varma, 2018) 

2.5.3 Mean Squared Error (MSE) Loss 

The mean squared Error is a regression loss function used as the average of the difference 

of the predictions and the real value squared across the whole dataset. It is given by the 

equation 10: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖  (11) 



24 

Where n is the number of samples, y the actual value and ŷ the predicted value for the 

𝑖𝑡ℎ class (Dufourq & Bassett, 2017). 

2.3.4 Kullback Leibler Divergence Loss 

Kullback Leiber Divergence (or KL Divergence) also called relative entropy is used 

especially in multiclass classification problem by comparing two probability 

distributions as shown in equation 11. KL Divergence calculates how much a given 

distribution is away from the true distribution 

𝐷𝐾𝐿 =∑ 𝑝(𝑥)𝑙𝑜𝑔
𝑝(𝑥)

𝑞(𝑥)𝑥𝜖𝑋  (12) 

source: (Nelken & Shieber, 2006) 

2.5.5 Performance Metrics 

Metrics are used to monitor and measure a model's performance. Evaluation Following 

training, metrics are used to assess overall performance. 

2.5.6 Accuracy 

The accuracy is calculated by multiplying the number of correctly classified data items 

by the total number of observations by 100. It is also the most widely used metric for 

evaluating model performance in classification problems. 

2.5.7 Precision  

Precision is defined as the fraction of true positives to total positives predicted (equation 

13). It simply displays "how many of the selected data items are relevant." In other 

words, how many of the observations predicted by an algorithm to be positive are 

actually positive. 

𝑇𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (13) 
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Where TP is the true positives and FP, the false positives. 

2.5.8 Recall 

The recall is the ratio of true positives to all positives in the ground truth. It displays "the 

number of relevant data items selected." In other words, how many of the observations 

that are actually positive have been predicted by the algorithm. It equals to true positives 

(TP) divided by the sum of true positives and false negatives (FN) as shown by equation 

14. 

𝑇𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (14) 

2.5.9 F1-Score 

F1-score utilizes a combination of precision and recall. The F1 score is really the 

harmonic mean of the two. The basic formula for the two is as follows: 

𝐹1 =
2

1

𝑃
+
1

𝑅

   (15)  

With P being the precision and R the recall. 

A high F1 score now indicates high precision as well as high recall. It has a strong blend 

of precision and recall and performs well on unbalanced classification issues. 

2.5.10 AU-ROC 

AUC stands for "Area under the ROC Curve" (Yang et al., 2019). AUC, in other words, 

assesses the full two-dimensional area beneath the complete ROC curve: A receiver 

operating characteristic curve (ROC curve) is a graph that depicts the performance of a 

classification model over all classification levels. This graph depicts two parameters: 

 True Positive Rate 
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 False Positive Rate 

 

2.6 Related Works and Gaps 

Convolutional Neural Network (CNN) is a deep learning architecture inspired by living 

creatures' natural visual perception mechanisms. Image classification, object detection, 

object tracking, pose estimation, text detection, visual saliency detection, action 

recognition, scene labeling, speech and natural language processing are some of the main 

applications of CNN. 

Several researchers have worked on the maize disease classification model. In their 

research, (Da Rocha et al., 2021) proposed convolutional neural network architectures 

to classify maize leaf diseases and enhance the models' performance using Bayesian 

hyper-parameter optimization, data augmentation, and fine-tuning strategies. (DeChant 

et al., 2017) built a Convolutional Neural Networks model to identify North leaf disease 

from maize crop leaf images, and data augmentation was used as a regularization 

method.  

Many of these experiments identified maize disease using a single Convolutional Neural 

Networks algorithm. However, knowing which pathogen is causing the disease may 

assist prevent it from spreading earlier, whereas classic Convolutional Neural Networks 

(CNNs/ConvNets) were designed to solve a single task classification problem and are 

currently inadequate for multi-output classification.  

Recently, several works combining Convolutional Neural Networks to Multitask 

Learning algorithms have been proposed to permit learning multiple tasks at a time in a 

single model. Thus, Multitask Learning is a technique used to improve the performance 

of multi related learning tasks(Y. Zhang & Yang, 2018). Using Multitask Learning may 

reduce storage space and training time. Also, learning tasks simultaneously may increase 

the accuracy of each task and then reduce the risk of overfitting. 
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In their study, (Zeng & Ji, 2016) proposed a multi-instance multi-task convolutional 

neural networks (MIMT-CNN) model. The shared sub-Convolutional Neural Networks 

are connected to the input images and their outputs became the inputs of the additional 

convolutional and fully conned layers. They trained their model to mouse’s brain gene 

images. The regularization methods included L2 norm and AUC are used as performance 

measure. The loss function was given by the summation of the loss functions of the 

individual tasks. Their model outperformed the VGG pretrained model to image Net 

used as the baseline. 

A multi task learning for large scale image classification has been developed by (Kuang 

et al., 2017)/ they used soft parameter sharing method where discriminative tree 

classifier over concept ontology replaced the N-way flat softmax classifier. Three 

ontology networks based on AlexNet was built to be trained to fashion60 and 

ILSVRC2012 datasets clustered into grained groups. They found that tree classifier-

based model has advantage over storage space. In this paper, they did not mention how 

they measured performance of their model. 

Another multi-task convolutional neural network has been proposed by (C. Zhang & 

Zhang, 2014) to improve multi-view face detection. Two face and non-face examples 

datasets were trained using stochastic gradient descent, momentum, and weight decay. 

Cross entropy loss and mean squared error were minimized for the model regularization.  

(Su et al., 2019) proposed another type of multi-task learning where parameters of the 

neural network were regularized by low rank. The model was iteratively optimized by 

gradient descent. An L1 norm regularization technique was also used, and their model 

compared to other multi-task learning methods from the literature. 

The preceding studies did not indicate how Multitask Learning performed as a 

regularization technique, which is one of our research goals. The proposed model 

focused on which regularization approaches should be employed to get the best 

generalization. We relied on a hard parameter sharing architecture, which is made up of 
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two major parts: sharing parameter layers and specific-task layers. Different 

regularization techniques were combined to improve model performance and then 

compared. The purpose of this study is then to develop a regularized Multitask learning-

convolutional neural networks model for concurrently recognizing maize diseases and 

pathogens, which will assist farmers in automatically identifying different diseases 

without the assistance of an expert. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

To carry out various research activities, each successful project must have appropriate 

and approved methodology. This chapter discusses the proposed research methodology 

for the study. It starts by introducing the dataset that was used. The proposed model 

design and concept is then defined, followed by an explanation of how to implement the 

proposed model using the various tools available. 

3.2 Data Sets 

This proposed research applied use of images from several sources were collected from 

two websites, Kaggle and Plantwise, to form a single dataset The dataset consists of 2636 

images of leaves, including five classes of maize diseases divided into two pathogens as 

listed below: 

 Northern Leaf Blight (NLB) is caused by the fungus Exserohilum turcicum  

Long, narrow, tan lesions that form parallel to leaf margins are the first signs of 

NLB. As these lesions grow, the typical NLB signs such as long, oblong, or 

"cigar-shaped" tan or grey lesions will be visible. When humidity levels are high, 

the lesions generate olive-green or black fungus spores that can give them a dirty 

or dark appearance. If one looks at lesions with a hand lens, one can see the 

spores. Depending on hybrid susceptibility, the lesions can be anywhere between 

1 and 7 inches long. A leaf may develop several lesions, and lesions may combine 

to generate significant, asymmetrical patches of dead tissue(Wise, 2011). 
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Figure 3.1: Maize Leaves with NLB Disease 

 Common Rust: is fungal disease caused by Puccinia sorghi pathogen. 

Symptoms include little brown dots, Spots develop into jagged, elongated 

pustules that range in color from brick red to cinnamon brown. both the upper 

and lower leaf surfaces contain this (unlike southern rust) Late in the season, 

pustules shift from dark brown to black. occurs only on leaves; it does not affect 

husk leaves, sheaths, stalks, or ear shanks.Small, round specks that are pale and 

in clusters characterize early lesions on leaves. Small, powdery pustules that 

appear on the underside of the leaves may help identify lesions as they progress. 

Early signs of infection on leaves include brownish-red, rectangular pustules; 

later, the fungus bursts through the leaf surface (epidermis), exposing masses of 

powdery urediniospores. When walking through an infected field, spores 

produced within the pustules are easily dislodged and can be seen on a white 

shirt. Severe infections that occurred while the leaf tissue was in the whorl may 

result in the formation of a rust band closer to the base of the leaf. The entire leaf 

blade perishes as a result of band formation(Yan, 2015) . 
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Figure 3.2: Maize Leaves with Common Rust Disease       

 Gray Leaf Spot is caused by the fungus Cercospora zeae-maydis. 

On leaves, the early signs of gray leaf spot appear as tiny, pinpoint lesions 

encircled by yellow haloes. The condition can be difficult to correctly diagnose 

at this point, but when lesions progress, they become long, narrow, brown to gray 

dots. Lesions can grow 1.5 to 2 inches long and spread parallel to the leaf veins. 

Lesions could also develop on the husks and sheaths of vulnerable hybrid plants. 

The major leaf veins prevent lateral leaf lesions from expanding, giving them a 

blocky appearance. Lesions can combine to generate big, erratic regions of dead 

tissue on the leaves in the right circumstances(Elliott & Harmon, 2011). 
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Figure 3.3: Maize Leaves with Gray Leaf Spot Disease 

 Maize Lethal Necrosis (Osunga, M., Mutua, F.N., & Mugo, 2017) is a 

devastating viral disease of maize caused by double infection with Maize 

chlorotic mottle virus (MCMV) and any one of the Potyviridae family members. 

The symptoms include:  Dying leaves; leading to premature plant death; Failure 

to tassel and sterility in male plants; Malformed or no ears; Rotting cob(Tonui et 

al., 2020). 

     

Figure 3.4: Maize Leaves with MLN Disease 

 Leaf Streak is a virus is transmitted mainly by Cicadulina mbila (maize leaf 

hopper) but other leafhopper species such as C. storeyi, C.arachidis and C. 

dabrowski have also been found to transmit the virus .  

The sucking mouth parts of the leafhopper allow them to enter plant cells with 

the help of digestive and salivary enzymes as well as physical force. Plant 
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stunting and the cessation of ear formation, development, and grain filling in 

diseased plants are the main causes of yield loss. Plants may succumb to serious 

infections and die too soon. 

Very small, spherical, dispersed disease symptoms appear in the youngest leaves 

one week after infection and are the first sign of the disease. With plant growth, 

the number of spots grows, and they widen parallel to the leaf veins. In contrast 

to the dark green of typical foliage, fully extended leaves develop a chlorosis 

with broken yellow streaks along the veins. Maize that has been extensively 

diseased is shown stagger. The only insects known to spread the maize streak 

virus from one maize plant to another are Cicaduna species(Charles et al., 2019). 

   

Figure 3.5: Maize Leaves with MLS Disease 

The dataset was split into 80% and 20% for training and test sets, respectively. The 

training set was utilized to fit the classifier's parameters. To tune the parameters for the 

trained model optimization, 20% of the training set was used as a validation set. The test 

set was used to evaluate the model's performance. 

3.3 Model Design 

The goal of this study is to build a regularized Multitask Learning-based Convolutional 

Neural Network model. Multitask Learning was created to perform a model when there 

are multiple classes and/or a small dataset. Multitask Learning (Caruana et al., 1997) is 

a machine learning technique that improves learning for one task by sharing 

representations between related tasks. The proposed Multitask Learning model (see 

Error! Reference source not found.) is a hard parameter sharing model with shared 
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nd task-specific layers. The model used an image of disease maize as input to classify it 

as various maize diseases and pathogens. Feature extraction occurs at the shared layer 

level, whereas classification occurs at the task-specific layer level 

 

 

 

 

 

 

Figure 3.6: Hard Parameter Sharing Model 

3.4 Conceptual Model 

The Machine Learning workflow was followed by to develop the proposed model. The 

collected data was prepared, trained, and validated using the built Multitask Learning-

Convolutional Neural Networks model, which was then evaluated as shown in  

Images of diseased maize leaves were gathered from different online sources and 

combined to make one dataset. The collected data were then split into training and test 

set. The next step was the data was augmented using offline data augmentation. Then 

the data was normalized and rescaled.  

This research aims at solving two tasks through a single model that is classification of 

maize disease and pathogen. Then, building the model consists of choosing the algorithm 

such as Convolutional Neural Networks and Multitask Learning, create layers and apply 

loss functions and create the optimizer.  
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Figure 3.7: ML Model Workflow 

The model was trained using eighty percent of the dataset and validated with twenty 

percent of the training set. Finally, the model was evaluated with previously unseen data 

(test set), twenty percent of the dataset. 

There exist two Multitask Learning architectures (hard parameter sharing and soft 

parameter sharing), whereas we aimed to take advantage of sharing parameters, 

parameters are not shared between task models in soft parameter sharing (Crawshaw, 

2020). We then proposed a Hard parameter sharing method divided into shared and task-

specific layers. Feature extraction is done at the shared layers' level, while classification 

is done at task-specific layer. Given an input image, the model classifies it into two 

related tasks: the maize disease and its type. Figure shows the proposed model. The Input 
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layer of an image is about diseased maize in RGB color with 224X224 of size, that is 

(224, 224, 3). In CNN's models, the feature extraction is done automatically (Navamani, 

2019) at the shared layers level. We have six convolutional layers, five pooling layers, 

and three dense layers. Parameters are learned at convolutional and dense layers only. 

To calculate the number of learnable parameters, we consider the input of the 

convolutional layer from the previous layer, the kernel size, the number of filters, the 

stride, and the bias. The number of nodes from the previous layer and the bias are 

considered for the dense layer. The maize disease name corresponds to multiclass 

classification with softmax and categorical cross-entropy for activation and loss 

functions at task-specific layers. For the disease type, we have a binary classification 

task with sigmoid and binary cross-entropy for activation and loss functions, 

respectively. Adam optimizer is used for all the experiments with a learning rate of 

0.0001 with the Accuracy Metrics. 

The other objective of this Thesis is also to improve the model performance using 

different combined regularization methods. The first regularization used is Multitask 

Learning itself, as it is also the best algorithm to use in the case of training multiple 

related tasks. Because the dataset is not big enough, we use transfer learning as a 

regularization method by taking advantage of reusing a pre-trained model for the feature 

extraction. Data augmentation is also a recommended method in the case of small 

datasets; however, in this work, it has been used to solve an imbalanced data problem 

and cannot be reused on the same dataset. We also utilize Early stopping, which aids in 

the termination of model training before overfitting occurs.  

Building a model in machine learning, specifically convolutional neural networks, 

follows well-defined steps, such as data collection, pre-processing the data, building the 

multi-task neural networks-convolutional learning model, training model, then 

evaluating the model and testing the model on new data. Because mobile smartphones 

are increasingly popular among Kenyans (X. Li et al., 2020), the model could be 

implemented through a mobile application. 
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Figure 3.8: The Proposed CNN-MTL Model 

3.5 Implementation 

All experiments were carried out in Google Colaboratory (Colab), a Jupiter notebook 

environment developed by Google Brain that runs in the cloud. We used the Keras 

Functional API, a Tensorflow API that allows us to create complex models with 

flexibility, such as sharing layers, which is critical for multitask learning algorithms, 
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specifically for the hard parameter sharing proposed in this study. Indeed, this technique 

allows you to create multiple models in one model at the same time, with sharing layers 

and task-specific layers.  

Google Colab also includes a free Graphics Processing Unit (GPU) to speed up 

processing. Colab also provides free Random Access Memory (RAM) of 12GB, which 

is required to store input data, weight parameters, and activations as an input propagates 

through the network. Activations from a forward pass must be saved in training until 

they can be used to calculate error gradients in the backwards pass. Google Drive was 

used to save all of the files. 

Python is the programming language used in this study to implement the proposed 

model. Python is a scripting language that is high-level, interpreted, interactive, and 

object-oriented. Python is intended to be highly readable. Python is widely used in a 

variety of fields, including machine learning, web development, and software 

development. It is also used for data analytics. 
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CHAPTER FOUR 

RESEARCH RESULTS AND DISCUSSIONS 

4.1 Introduction 

To achieve our main goal of developing a maize disease identification model based 

multitask Learning-Convolutional Neural networks, we conducted various experiments 

ranging from data processing to model building, training, and testing, as detailed in this 

chapter. In addition, the results were thoroughly discussed.  

4.2 Experimental Setup  

All the experiments were executed in Google Colaboratory, which provides a GPU 

accelerator and the Tensorflow platform with Keras (version 2.6) Application 

Programming Interface (API). We used Keras functional API, which can handle 

complex models with non-linear topology, shared layers, and even multiple inputs or/and 

outputs. Python (version 3.7) was the Programming language used for all the 

experiments. 

4.3 Datasets 

The original dataset is imbalanced as shown by, which means that the classes are not 

well distributed. Indeed, imbalanced data is defined as a situation in which the number 

of samples assigned to each class differ widely. Imbalanced data has both majority and 

minority classes. As shown in Figure, the majority class is North leaf blight- fungus with 

988 samples and the minority class is leaf streak- virus with only 77 samples. 

The dataset is divided into 80% and 20% training and test sets, respectively. Figure 

shows that the original dataset is imbalanced, indicating that the classes are not evenly 

distributed. In fact, imbalanced data is defined as a situation in which the number of 

samples assigned to each class varies significantly. Data that is imbalanced includes both 
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majority and minority classes. The extreme majority class in our case is North leaf blight-

fungus, which has 988 samples, and the extreme minority class is leaf streak-virus, which 

has only 77 samples. 

Most machine learning techniques assume that data is evenly distributed. When there is 

a class imbalance, the machine learning classifier tends to be more biased towards the 

majority class, resulting in incorrect classification of the minority class. 

 

Figure 4.1: Imbalanced Dataset 

To solve the problem of imbalanced data, we used Oversampling, a technique for 

adjusting the class distribution of a dataset. We used the Offline data augmentation 

technique on the minor classes "Gray leaf spot-fungus," "maize fatal necrosis-virus," and 

"leaf streak-virus" after splitting the data into training and test sets. Techniques for 

artificially increasing the amount of data by generating new modified copies of current 

data are referred to as data augmentation.  
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In this research, Rotation, Width shift, Height range, Shear, Zooming, and Horizontal 

flip of the images were used (See Appendix 2 for code snippet used for offline data 

augmentation). Figure shows the balanced data after oversampling, consisting of 5077 

images. Next, the images were resized to (224, 224, 3) and the labels encoded to one 

hot-encoding after the feature being scaled. 

After data processing, building, training and testing the models are the next steps. 

 

 

Figure 4.2: Data Sets after Oversampling 

4.4 Training Using No Regularization Technique 

Our baseline consists of building disease name and disease type (pathogens) 

classification models without using any regularization techniques. The disease name 
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classification model's architecture consisted of an input layer with an input shape of 

(224,224,3), six convolutional layers, five pooling layers, four dense layers, and a flatten 

layer. Except for the output layer, where the softmax activation function was utilized, 

we used Rectified Linear Unit (ReLU) as the activation function. 

The architecture of the pathogen classification model included an input layer with the 

input shape (224,224,3), six convolutional layers, five pooling layers, four dense layers, 

and a flatten layer. Except for the output layer, where the sigmoid activation function 

was utilized, we used the Rectified Linear Unit (ReLU) as the activation function. 

The pooling size for all experiments was (2,2), and the Adam optimizer with a learning 

rate of 0.0001 was utilized. Accuracy was the performance metric (See Appendix 4 for 

the corresponding snippet). The validation set was made up of 20% of the training set. 

We utilized a batch size of 32 and 200 epochs. We trained the two models separately. 

Figure and Figure demonstrate the two model architectures. 

The disease name classification model's training accuracy reached 98%, however its 

validation accuracy did not improve in anyway. Meanwhile, as seen in Figure, the 

"disease name" classification model was overfitting. The disease type classification 

model's training and validation accuracy curves followed the same proportional pattern. 

Furthermore, the training and validation losses exhibit similar trends (see Figure). 
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Figure 4.3: Disease Name Classification Model's Architecture 
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Figure 4.4: Disease Name (Pathogen) Classification Model Architecture 

The test loss is 7.5268 and Test accuracy is 61.08% for the disease name classification 

whereas for the disease type classification, the test loss was 0.0789 and the test accuracy 

was 98.62%. 
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Figure 4.5: (a) Disease Name Classification Model’s Training Accuracy; (b) Disease 

Name Classification Model’s Training Loss 

  

(a) (b) 
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Figure 4.6: (a) Disease Type Classification Model’s Training Accuracy; (b) Disease 

Type Classification Model’s Training Loss  

4.5 Training Using Multi Task Learning Technique 

The next experiment was to create a Multitask Learning model by combining the two 

models, as shown in  

Figure. The training and validation accuracies for disease classification were increasing 

concurrently, which is a promising sign of overfitting reduction. Figure shows the similar 

scenario for their losses, which were reducing at the same period. The disease name's 

test accuracy was enhanced from 60.89% to 74.48%. Yet, there was no noticeable change 

in the disease type's training, validation, or testing data from the previous experiment 

(see Figure 4.9) 

  

(a) (b) 
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Figure 4.7: The MTL Model’s Architecture for Maize Disease Classification (See 

Appendix 3 for the Corresponding Code Snippet) 
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Figure 4.8: Training and Validation Accuracies and Losses for Disease Name 

(DiseaseN) Classification Model Using MTL  

 

Figure 4.9: Training and Validation Accuracies and Losses for Disease Type 

(DiseaseT) Classification Model Using MTL 



49 

4.6 Training using Multi Task Learning and Early Stopping Combined 

The third experiment involved adding an early stopping regularization technique to the 

MTL model with a patience of 10. Early stopping helps at ending the training process at 

the optimal point of the model performance which helps at reducing the overfitting and 

the training time (See Appendix 5 for the corresponding snippet). In our case, the optimal 

point was reached after 138 epochs, whereas the total number of epochs was 200. And 

as illustrated by Figure, the training and validation curves were increasing almost in 

parallel, indication that overfitting was reduced. The test accuracy for the disease name 

classification model rose to 77.44%. 

There was no discernible difference in the disease type's training, validation, or testing 

accuracy and loss from the previous experiment as shown by Figure. 

 

Figure 4.10: Training and Validation Accuracies and Losses for Disease Name 

(DiseaseN) Classification Models Using MTL and Early Stopping 
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Figure 4.11: Training and Validation Accuracies and Losses for Disease Type 

(DiseaseT) Classification Model Using MTL and Early Stopping 

4.7 Training Using Multi Task Learning, Early Stopping and Transfer Learning 

Combined 

The fourth and final experiment was to use a pre-trained Resnet50 model on Imagenet 

for the feature extraction as our dataset was not big enough. The pre-trained model is 

connected to our model by a Global pooling layer for shared layers. Then the output of 

the global pooling layer is connected to the specific task layers, which are about two 

output layers, one is a softmax for the five diseases and another is sigmoid for the two 

types of diseases to be classified as in the above experiments (See Appendix 6 for the 

corresponding code snippet). The optimal point was at only 30 epochs, as illustrated by 

Figure. The test accuracy jumped to 85.22% for the disease name classification model 

and 97.93% for the disease type classification model (see Figure). 
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Figure 4.12: Training And Validation Accuracies and Losses for Disease Name 

(DiseaseN) Classification Models Using MTL, Early Stopping and Transfer 

Learning Techniques Combined 
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Figure 4.13: Training and Validation Accuracies and Losses for Disease Type or 

Pathogen (DiseaseT) Classification Models Using MTL, Early Stopping and 

Transfer Learning Techniques Combined 

4.8 Summary of the Test Accuracies Results 

Figure summarizes the test accuracies of all the experiments. The overfitting disease 

name classification model demonstrates constant variation. With no regularization 

methods, the model's test accuracy was 60.89%. When the MTL method was used, it 

increased to 74.48%. The test accuracy rose to 85.22% by combining MTL with early 

stopping and transfer learning in the third experiment. The test accuracy for the disease 

type classification model remained practically constant. 

Indeed, one of the indications that overfitting had been minimized was an increase in 

test accuracy. MTL improved overall generalization by leveraging information included 

in training images of related tasks. The information learnt from related tasks improved 

the model's capacity to learn a meaningful representation of the data when using MTL, 

which decreased overfitting and improved generalization. 
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While overfitting occurs during the training process, the early stopping technique ends 

the process at the optimal point. allows you to provide an arbitrary large number of 

training epochs and to stop training whenever the model's performance on the validation 

dataset stops improving. The training error falls exponentially until the influence of 

increasing epochs on the error is no longer significant. The validation error, on the other 

hand, decreases initially with rising epochs before increasing at a certain point. This is 

the moment at which a model should be stopped because it will begin to overfit after this 

point.  

Finally, using a large amount of data may aid in preventing overfitting. However, in 

practice, gathering enough data is challenging. In this study, using a pre-trained model 

for feature extraction allowed us to take advantage of features learned by a model trained 

on a larger dataset, ImageNet. This is done by instantiating the pre-trained model and 

adding a fully-connected classifier on top. The pre-trained model is frozen and only the 

classifier weights were modified during training. In this approach, the convolutional base 

collected all of the features associated with each image, and it is the trained classifier 

that decides the image class given the extracted features, which minimize overfitting. 

This technique is called transfer learning and in this experiment, ResNet50 was used on 

ImageNet dataset. 
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Figure 4.14: Summary of the Experimental Results of Test Accuracies 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORKS 

5.1 Conclusion 

This work proposes a regularized Multitask Neural Networks Convolutional Learning 

model by combining MTL methods with other regularization methods.  

First, we build two models, one of which is overfitting as our baseline. We then construct 

an MTL model based on the two models, which increases the test accuracy of the 

overfitting model. In the subsequent experiments, we combine MTL with Early stopping 

and Transfer Learning, which increases the accuracy. MTL helped us build a multiclass 

model and a binary classification model in one model, simultaneously identifying maize 

disease and its pathogen. In hard parameter sharing, feature extraction is done at shared 

layers, which can help reduce overfitting. We realized that a good technique of 

improving a model performance is to combine different proper regularization methods. 

In our case, combining MTL, early stopping, and Transfer learning gives us better 

results. The lack of sufficient data may explain it.  

As mentioned above, maize is an important cereal for Kenyan people, and its production 

continues to decrease because of diseases. Furthermore, some diseases spread rapidly 

and must be fixed quickly as possible. Unfortunately, finding experts in the domain is 

still not easy as they are few and not always available.  

According to Ezinne et al., mobile smartphones are becoming increasingly popular 

among Kenyans; this model used through a mobile application would help maize farmers 

identify the disease and pathogen themselves earlier, which will help them at reducing 

costs and save time. Also, fighting the maize disease would increase maize production. 
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5.2 Recommendation for Future Work 

While a significant amount of data is required for the best performance of a Deep Neural 

Networks, finding large labelled datasets remains a challenge in the Agriculture field. 

Following that, future research would focus on training a combination of different 

regularization methods on more extensive and more diverse datasets with more tasks. 

Furthermore, while maize is consumed in many countries, our application was limited 

to Kenya's most common maize diseases. As a result, future work would consider 

including more diseases for more users. 

Finally, as one maize may suffer from more than one disease and pathogen, future 

research would work on maize images with multiple diseases and pathogens. 

  



57 

REFERENCE 

Agarap, A. F. (2018). Deep Learning using Rectified Linear Units (ReLU). 1, 2–8. 

http://arxiv.org/abs/1803.08375 

Aleshin-Guendel, S., & Alvarez, S. (2017). Examining the Structure of Convolutional 

Neural Networks. Boston College. 

Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, 

M., Van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A state-of-the-art 

survey on deep learning theory and architectures. Electronics (Switzerland), 8(3), 

1–67. https://doi.org/10.3390/electronics8030292 

Amatya, S., Karkee, M., Gongal, A., Zhang, Q., & Whiting, M. D. (2016). Detection of 

cherry tree branches with full foliage in planar architecture for automated sweet-

cherry harvesting. Biosystems Engineering, 146, 3–15. https://doi.org/10.1016/ 

j.biosystemseng.2015.10.003 

Bedi, P., & Gole, P. (2021). Plant disease detection using hybrid model based on 

convolutional autoencoder and convolutional neural network. Artificial Intelligence 

in Agriculture, 5, 90–101. https://doi.org/10.1016/j.aiia.2021.05.002 

Caruana, R., Mitchell, T., Pomerleau, D., Dietterich, T., & Simon, H. (1997). Multitask 

Learning (Issue September). Carnegie Mellon University. 

Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., 

& Kimpolo, C. L. M. (2022). Crops yield prediction based on machine learning 

models: Case of West African countries. Smart Agricultural Technology, 2(March), 

100049. https://doi.org/10.1016/j.atech.2022.100049 

Charles, A. K., Muiru, W. M., Miano, D. W., & Kimenju, J. W. (2019). Distribution of 

Common Maize Diseases and Molecular Characterization of Maize Streak Virus in 



58 

Kenya. Journal of Agricultural Science, 11(4), 47. 

https://doi.org/10.5539/jas.v11n4p47 

Cosentino, R., Balestriero, R., Baraniuk, R., & Aazhang, B. (2021). Deep Autoencoders: 

From Understanding to Generalization Guarantees. Proceedings OfMachine 

Learning Research, 107, 1–26. http://arxiv.org/abs/2009.09525 

Courville, A. Goodfellow, I., &  Bengio, Y., (2016). Deep Learning.[online] Deeplearningbook. 

org. 

Crawshaw, M. (2020). Multi-Task Learning with Deep Neural Networks: A Survey. 

ArXiv. http://arxiv.org/abs/2009.09796 

Koech, K. E. (2020). Cross-Entropy Loss Function. A loss function used in most… | by 

Kiprono Elijah Koech | Towards Data Science. Towards Data Science. 

https://towardsdatascience.com/cross-entropy-loss-function-f38c4ec864 

Czum, J. M. (2020). Dive Into Deep Learning. Journal of the American College of 

Radiology, 17(5), 637–638. https://doi.org/10.1016/j.jacr.2020.02.005 

Da Rocha, E. L., Rodrigues, L., & Mari, J. F. (2021). Maize leaf disease classification 

using convolutional neural networks and hyperparameter optimization. WVC 2020, 

October, 104–110. https://doi.org/10.5753/wvc.2020.13489 

DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E. L., Yosinski, J., Gore, M. A., 

Nelson, R. J., & Lipson, H. (2017). Automated identification of northern leaf blight-

infected maize plants from field imagery using deep learning. Phytopathology, 

107(11), 1426–1432. https://doi.org/10.1094/PHYTO-11-16-0417-R 

Dienya, T. (2020). Kenya Maize Production By Counties - Dataset - Kilimo Open Data. 

http://kilimodata.developlocal.org/dataset/kenya-maize-production-by-counties 

Dufourq, E., & Bassett, B. A. (2017). Automated problem identification: Regression vs 



59 

classification via evolutionary deep networks. ArXiv. 

Eerens, H., Haesen, D., Rembold, F., Urbano, F., Tote, C., & Bydekerke, L. (2014). 

Image time series processing for agriculture monitoring. Environmental Modelling 

and Software, 53, 154–162. https://doi.org/10.1016/j.envsoft.2013.10.021 

Elliott, M. L., & Harmon, P. F. (2011). Gray Leaf Spot. Edis, 2011(2), 1–4. 

https://doi.org/10.32473/edis-lh047-2011 

Fabio, D. N., Francesco, G., Quoc, B. P., & Giovanni,  de M. (2022). precipitation 

prediction.pdf. Sustainability (Switzerland). https://doi.org/10.3390/su4052663 

Feng, J., & Lu, S. (2019). Performance Analysis of Various Activation Functions in 

Artificial Neural Networks. Journal of Physics: Conference Series, 1237(2), 111–

122. https://doi.org/10.1088/1742-6596/1237/2/022030 

Ferreira, A., & Giraldi, G. (2017). Convolutional Neural Network approaches to granite 

tiles classification. Expert Systems with Applications, 84(September), 1–11. 

https://doi.org/10.1016/j.eswa.2017.04.053 

Gao, H. (Cornell U., Zhuang, L. (Tsinghua U., & Laurens van der, M. (Facebook A. R. 

(2018). Densely Connected Convolutional Networks. ArXiv. 

Han, J., Zhang, Z., Cao, J., Luo, Y., Zhang, L., Li, Z., & Zhang, J. (2020). Prediction of 

winter wheat yield based on multi-source data and machine learning in China. 

Remote Sensing, 12(2). https://doi.org/10.3390/rs12020236 

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. 

(2012). Improving neural networks by preventing co-adaptation of feature 

detectors. ArXiv, 1–18. http://arxiv.org/abs/1207.0580 

Hinton, G., Nitish, S., Alex, K., Ilya, S., & Ruslan, S. (2014). Dropout : A Simple Way 

to Prevent Neural Networks from Overfitting. Journal of Machine Learning 



60 

Research, 15, 1929–1958. 

Hinton, G., Sabour, S., & Frosst, N. (2018). Matrix capsules with EM routing. 6th 

International Conference on Learning Representations, ICLR 2018 - Conference 

Track Proceedings, 1–15. 

Ian, G., Yoshua, B., & Aaron, C. (2016). Deep Learning. MIT Press. 

https://www.deeplearningbook.org/ 

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. 

Computers and Electronics in Agriculture, 147, 70–90. 

https://doi.org/10.1016/j.compag.2018.02.016 

Karlsruhe, U. (2015). 1 Early stopping but when? March 2000. 

https://doi.org/10.1007/3-540-49430-8 

Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. 

Frontiers in Plant Science, 10(May), 1–10. 

https://doi.org/10.3389/fpls.2019.00621 

Khatib, J., Dalam, S., Satria, B., Sidauruk, A., Wardhana, R., Akbar, A. Al, Ihsan, A., 

Gama, A. M., Yogyakarta, U. A., Bengkulu, U. D., Selatan, P. A., & Kunci, K. 

(2022). Indonesian Journal of Computer Science. 11(1), 566–576. 

Kirori, Z., & Ireri, E. (2020). http://www.ijssit.com. Ijssit, V(VIII), 157–166. 

Kuang, Z., Li, Z., Zhao, T., & Fan, J. (2017). Deep Multi-task Learning for Large-Scale 

Image Classification. Proceedings - 2017 IEEE 3rd International Conference on 

Multimedia Big Data, BigMM 2017, 310–317. 

https://doi.org/10.1109/BigMM.2017.72 

Kukačka, J., Golkov, V., & Cremers, D. (2018). Regularization for Deep Learning: A 

Taxonomy. ICLR, 1–24. http://arxiv.org/abs/1710.10686 



61 

Kung, H. Y., Kuo, T. H., Chen, C. H., & Tsai, P. Y. (2016). Accuracy analysis 

mechanism for agriculture data using the ensemble neural network method. 

Sustainability (Switzerland), 8(8), 1–11. https://doi.org/10.3390/su8080735 

Lamp’l, J. (2013). Bacteria, Fungus, and Viruses, an Overview - Growing A Greener 

World®. https://www.growingagreenerworld.com/bacteria-fungus-and-viruses-an-

overview/ 

Larsson, G., Maire, M., & Shakhnarovich, G. (2017). Fractalnet: Ultra-deep Neural 

Netwprks witout residuals. 1–11. 

Li, X., Grandvalet, Y., & Davoine, F. (2020). A baseline regularization scheme for 

transfer learning with convolutional neural networks. Pattern Recognition, 98. 

https://doi.org/10.1016/j.patcog.2019.107049 

Li, Z., Gong, B., & Yang, T. (2016). Improved dropout for shallow and deep learning. 

Advances in Neural Information Processing Systems, Nips, 2531–2539. 

Liu, B., Zhang, Y., He, D. J., & Li, Y. (2018). Identification of apple leaf diseases based 

on deep convolutional neural networks. Symmetry, 10(1). 

https://doi.org/10.3390/sym10010011 

Lottes, P., Behley, J., Milioto, A., & Stachniss, C. (2018). Fully convolutional networks 

with sequential information for robust crop and weed detection in precision 

farming. IEEE Robotics and Automation Letters, 3(4), 2870–2877. 

https://doi.org/10.1109/LRA.2018.2846289 

Malinowski, E., Zimányi, E., Joseph, S. K., Warehouse, D., Inmon, B., Analytical, O., 

Olap, P., Gatziu, S., Vavouras, A., Nilsson, A. A., & Merkle, D. (2019). About the 

Tutorial Copyright & Disclaimer. Data Vault 2.0, January 1999, 1–15. 

https://doi.org/10.1007/978-3-322-94873-1 



62 

Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep 

learning in image classification problem. 2018 International Interdisciplinary PhD 

Workshop, IIPhDW 2018, May, 117–122. 

https://doi.org/10.1109/IIPHDW.2018.8388338 

Murphy, J. (2016). An Overview of Convolutional Neural Network Architectures for 

Deep Learning. 1–22. 

Namatēvs, I. (2018). Deep Convolutional Neural Networks: Structure, Feature 

Extraction and Training. Information Technology and Management Science, 20(1), 

40–47. https://doi.org/10.1515/itms-2017-0007 

Navamani, T. M. (2019). Efficient Deep Learning Approaches for Health Informatics. 

Deep Learning and Parallel Computing Environment for Bioengineering Systems, 

123–137. https://doi.org/10.1016/B978-0-12-816718-2.00014-2 

Nelken, R., & Shieber, S. M. (2006). Computing The Kullback-Leibler Divergence 

Between Probabilistic Automata Using Rational Kernels. Applied Sciences, 15. 

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press. 

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation Functions: 

Comparison of trends in Practice and Research for Deep Learning. ArXiv, 1–20. 

http://arxiv.org/abs/1811.03378 

Osunga, M., Mutua, F.N., & Mugo, R. (2017). Spatial Modelling of Maize Lethal 

Necrosis Disease in Bomet County, Kenya. 

https://api.semanticscholar.org/CorpusID:134784404 

Picking Loss Functions - A comparison between MSE, Cross Entropy, and Hinge Loss 

– Rohan Varma – machine learning, math, and other random thoughts. (n.d.). 

Retrieved January 9, 2021, from https://rohanvarma.me/Loss-Functions/ 



63 

Russell, S., & Norvig, P. (2010). Artificial Intelligence A Modern Approach Third 

Edition. In Pearson. https://doi.org/10.1017/S0269888900007724 

Salehinejad, H., Sankar, S., Barfett, J., Colak, E., & Valaee, S. (2017). Recent Advances 

in Recurrent Neural Networks. Researchgate, March. 

http://arxiv.org/abs/1801.01078 

Sansao, J. P. H., Silva, M. C., Mozelli, L. A., Pinto, F. A. C., & Queiroz, D. M. (2012). 

Weed Mapping Using Digital Images. International Conference of Agricultural 

Engineering CIGR-AgEng2012, i. 

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and 

Research Directions. SN Computer Science, 2(3). https://doi.org/10.1007/s42979-

021-00592-x 

Sartin, M. A., Da Silva, A. C. R., & Kappes, C. (2014). Image segmentation with 

artificial neural network for nutrient deficiency in cotton crop. Journal of Computer 

Science, 10(6), 1084–1093. https://doi.org/10.3844/jcssp.2014.1084.1093 

Series, I. (2021). Machine Learning Algorithms and Applications. In Machine Learning 

Algorithms and Applications (Vol. 7). https://doi.org/10.1002/9781119769262 

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for 

Deep Learning. Journal of Big Data, 6(1). https://doi.org/10.1186/s40537-019-

0197-0 

Shrivastava, V. K., Pradhan, M. K., Minz, S., & Thakur, M. P. (2019). Rice plant disease 

classification using transfer learning of deep convolution neural network. 

International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences - ISPRS Archives, 42(3/W6), 631–635. 

https://doi.org/10.5194/isprs-archives-XLII-3-W6-631-2019 



64 

Singh, M. K., Baluja, P. G. S., & Sahu, D. P. (2017). Understanding the Convolutional 

Neural Network & it ’ s Research Aspects in Deep Learning. International Journal 

for Research in Applied Science and Engineering Technology, 5(Vi), 867–871. 

Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., 

Nelson, R. J., & Gore, M. A. (2019). Quantitative Phenotyping of Northern Leaf 

Blight in UAV Images Using Deep Learning. Remote Sensing, 11(19), 1–10. 

https://doi.org/10.3390/rs11192209 

Su, F., Shang, H. Y., & Wang, J. Y. (2019). Low-rank deep convolutional neural network 

for multi-task learning. ArXiv, 2019. 

Thi, T., Tran, K., Lee, T., Shin, J., & Kim, J. (2020). Deep Learning-Based Maximum 

Temperature Forecasting Assisted with Meta-Learning for. Atmosphere, 11, 1–21. 

Tonui, R., Masanga, J., Kasili, R., Runo, S., & Alakonya, A. (2020). Identification of 

maize lethal necrosis disease causal viruses in maize and suspected alternative hosts 

through small RNA profiling. Journal of Phytopathology, 168(7–8), 439–450. 

https://doi.org/10.1111/jph.12908 

Veenadhari, S., Bharat Mishra, D., & Singh, D. C. (2011). Soybean Productivity 

Modelling using Decision Tree Algorithms. International Journal of Computer 

Applications, 27(7), 11–15. https://doi.org/10.5120/3314-4549 

Wang, H., & Raj, B. (2017). On the Origin of Deep Learning. 1–72. 

http://arxiv.org/abs/1702.07800 

Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function 

in a convolution neural network model of facial expression recognition. Applied 

Sciences (Switzerland), 10(5). https://doi.org/10.3390/app10051897 

Wise, K. (2011). Diseases of Corn: Northern Corn Leaf Blight. Purdue Extension, 6, 1–



65 

3. 

Wu, Y., Li, D., Li, Z., & Yang, W. (2014). Fast processing of foreign fiber images by 

image blocking. Information Processing in Agriculture, 1(1), 2–13. 

https://doi.org/10.1016/j.inpa.2013.05.001 

Yan. (2015). Common Rust of Corn. 

Yang, C.-K., Yeh, J. C.-Y., Yu, W.-H., Chien, L.-I., Lin, K.-H., Huang, W.-S., & Hsu, 

P.-K. (2019). Deep Convolutional Neural Network-Based Positron Emission 

Tomography Analysis Predicts Esophageal Cancer Outcome. Journal of Clinical 

Medicine, 8(6), 844. https://doi.org/10.3390/jcm8060844 

Yuming, H., Junhai, G., & Hua, Z. (2015). “Deep Belief Networks and deep learning,.” 

International Conference on Intelligent Computing and Internet of Things 

Proceedings, 1–4. https://doi.org/10.1109/ICAIOT.2015.7111524. 

Zeng, T., & Ji, S. (2016). Deep convolutional neural networks for multi-instance multi-

task learning. Proceedings - IEEE International Conference on Data Mining, 

ICDM, 2016-Janua(October), 579–588. https://doi.org/10.1109/ICDM.2015.92 

Zhang, C., & Zhang, Z. (2014). Improving multiview face detection with multi-task deep 

convolutional neural networks. 2014 IEEE Winter Conference on Applications of 

Computer Vision, WACV 2014, 1036–1041. 

https://doi.org/10.1109/WACV.2014.6835990 

Zhang, Q., Zhang, M., Chen, T., Sun, Z., Ma, Y., & Yu, B. (2019). Recent advances in 

convolutional neural network acceleration. Neurocomputing, 323, 37–51. 

https://doi.org/10.1016/j.neucom.2018.09.038 

Zhang, Y. D., Jiang, X., & Wang, S. H. (2022). Fingerspelling Recognition by 12-Layer 

CNN with Stochastic Pooling. Mobile Networks and Applications, February. 



66 

https://doi.org/10.1007/s11036-021-01900-8 

Zhang, Y., & Yang, Q. (2018). An overview of multi-task learning. National Science 

Review, 5(1), 30–43. https://doi.org/10.1093/nsr/nwx105 

 



67 

APPENDICES 

Appendix I: Maize Production in Kenya by County in 2018 

 

COUNTY 

Annual Area 

(Ha) 

Annual Quantity 

(Ton) 

Annual Production 

(Ton/Ha) 

Baringo 37,658 58,476 1.6 

Bomet  33,291  58,337  1.8 

Bungoma  93,484  295,482  3.2 

Busia  33,122  53,629  1.6 

Elgeyo 

Marakwet  30,631 92,602 3.0 

Embu  35,812 32,114 0.9 

Garissa  138  119  0.9 

Homa bay 69,055  100,742  1.5 

Isiolo  358  288  0.8 

Kajiado  16,663  18,698  1.1 

Kakamega  95,387  238,291  2.5 

Kericho  33,461  105,403  3.2 

Kiambu 29,434  32,219  1.1 

Kilifi  60,617  54,676  0.9 

Kirinyaga  30,877  33,348  1.1 

Kisii  74,162  154,182  2.1 

Kisumu  50,470  70,914  1.4 

Kitui  80,244  22,967  0.3 

Kwale  68,886  62,103  0.9 

Laikipia  26,313  48,008  1.8 

Lamu  22,704  29,025  1.3 

Machakos  130,298  81,374  0.6 

Makueni  123,311  62,759  0.5 

Mandera    

Marsabit  1,060  347  0.3 

Meru  72,012  74,726  1.0 

Migori  82,153  128,126  1.6 

Mombasa  439  309  0.7 

Murang'a 65,701  71,793  1.1 

Nairobi  804  460  0.6 
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Nakuru  86,102  238,003  2.8 

Nandi   67,451  229,736  3.4 

Narok  91,602  208,307  2.3 

Nyamira  60,101  91,041  1.5 

Nyandarua  21,295  35,705  1.7 

Nyeri  28,631  39,050  1.4 

Samburu  8,010  4,364  0.5 

Siaya  66,766  87,638  1.3 

Taita taveta  18,977  20,364  1.1 

Tana river 4,819  3,536  0.7 

Tharaka nithi 24,436  19,128  0.8 

Trans nzoia 107,681  548,197  5.1 

Turkana  4,246  3,742  0.9 

Uasin gishu 95,209  405,461  4.3 

Vihiga  25,090  35,129  1.4 

Wajir  610  1,034  1.7 

West pokot 32,172  61,840  1.9 
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Appendix II: Code Snippet for Offline Data Augmentation 
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Appendix III: Code Snippet for the MTL Model 
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Appendix IV: Code Snippet for Compiling the Model 
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Appendix V: Code Snippet for Training MTL and Early Stopping Combined 
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Appendix VI: Code Snippet for the Transfer Learning Combined to MTL 

Technique  
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Appendix VII: Publication 

Below is the link to follow for our publication: 

https://ieeexplore.ieee.org/document/9845568  

https://ieeexplore.ieee.org/document/9845568

