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ABSTRACT 
Vehicular traffic is continuously increasing around the world and the resulting congestion 

and pollution is a major concern to transportation specialists and decision makers. As 

population continues to grow it is a challenge to handle traffic demand, traffic jam, CO2 

emission, global warming and economic loss. Road capacity is not adequate. Roads and 

highways are unlikely to expand due to cost and dwindling land supply. To manage these 

issues it is critical to integrate intelligent transportation system (ITS) in the transport 

management systems. Short-term vehicle traffic flow forecasting by ITS is vital in 

proactively monitoring a vehicle traffic system. Unfortunately, effective traffic flow 

forecasting is a key problem of ITS. Therefore, performance improvement of the predictive 

models which can enhance the forecasting ability of ITS is very crucial. Hence the objective 

of this study was to develop a short-term vehicle traffic flow forecasting grey model (GM) 

for ITS performance. Hence, in this thesis the precision of the original GM is improved by 

three proposed methods namely data grouping technique (DGT), relative variable smoothing 

approach (RVSA) and a three-step approach (TSA). To further improve the GM’s precision 

these new methods were combined with existing methods such as modification of 

background value (MBV), modification of initial condition (MIC) and Fourier series error 

correction approach (FSECA). Consequently, hybrid grey models were established. The 

accuracy improvement on the conventional grey models were measured by employing 

measures of model performance, namely root mean square error (RMSE), root mean square 

percentage error (RMSPE), mean absolute error (MAE) and the mean absolute percentage 

deviation (MAPD). The evaluation results revealed that the hybrid grey models 

outperformed the conventional GM in vehicle flow modelling and short-term forecasting. 

For instance in short-term vehicle traffic flow forecasting the improved models (GGM(1,1) 

and MBVGGM(1,1)) had good accuracy in the range of  80-90% compared to the 

corresponding conventional GM(1,1) and MBVGM(1,1) which had reasonable accuracy in 

the range of 50-80%. On the other hand in validating the DGT in improving the fitting 

accuracy of the conventional GM(1,3) the accuracy was improved from 60.3270% to 

96.9706%. This was great improvement in the conventional GM(1,3)’s fitting accuracy. 

Further, the results of this research show that the proposed new methods i.e. the DGT, the 

RVSA and the TSA methods have the potential for improving the prediction accuracy of the 

conventional GMs. Hence the DGT in hybrid grey models can enhance the short-term 

forecasting ability of the ITS. A case study based on traffic data collected from Nairobi city, 

Kenya, was presented and analyzed to show the accuracy improvement in both the univariate 

(GM(1,1)) and multivariate (GM(1,3)) grey models. For instance from this case study 

computation of the RMSPE had shown that the fitting accuracy of GM(1,3) was improved 

from 69.7243% to 99.6281% by the TSA method. Thus an improved multivariate grey model 

can attain high traffic flow forecasting accuracies compared with an improved univariate 

grey model. Finally, the performance of the grouping technique based GMs on energy 

consumption and carbon dioxide emissions, outperformed the conventional GMs. From one 

of the presented empirical cases the grouping technique based multivariate GGM(1,3) 

attained an accuracy of 96.9706% against 60.3270% of the conventional GM(1,3). Thus the 

hybrid grey models developed in this thesis are multidisciplinary. However, in comparison 

with other state of the art improved GM such as the grey model with cosine term 

(GM(1,1|cos(ωt))), the performance of the proposed models was below that of the 

GM(1,1|cos(ωt)). In a recent research GM(1,1|cos(ωt)) had a mean absolute percentage error 

(MAPE) of 0.1% compared to 0.58%  of the original GM(1,1). Therefore, there is need to 

investigate the performance of the proposed models in this research in comparison with the 

GM(1,1|cos(ωt)), in the future. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background 

Road transport is the major means of mobility in major cities in the world. Cities are 

the highest populated urban areas in the world because of more births than deaths, 

availability of facilities, job opportunities or forced off rural land by natural disasters, 

skyrocketing land prices, to name a few. As population continues to grow, it is a 

challenge to handle traffic demand, traffic jam, carbon dioxide (CO2) emission and 

global warming. Road capacity is not adequate. Roads and highways are unlikely to 

expand due to cost and dwindling land supply (Toan, 2018). Therefore, better 

management of traffic demand and capacity is critical to operating the current roadway 

systems at maximum capacity. Consequently, short-term traffic flow forecasting as an 

important component of Intelligent Transportation Systems (ITS) can optimize the 

road transport system operations (Ren et al., 2021). 

An inadequate transportation system generates high costs and low customer service 

levels, which ultimately produces a negative economic impact (Zapata et al., 2013). 

Low mobility of vehicles, people and goods in urban areas is the greatest obstacle to 

economic growth and development of developing countries. Traffic congestion, 

environmental pollution, global warming and low economic growth rates are some of 

the negative impacts of this low mobility. To manage traffic congestion, ITS have been 

integrated into the transport management systems to aid the decision-making processes 

and decongest the roadways (Cheng et al., 2019). Technologies designed to capture 

and analyze the required real-time information are vital for proper management of a 

transport system (Zapata et al., 2013). Performance and safety of a transportation 

system can be improved by use of ITS. Zapata et al. (2013) defines ITS as the 

interconnection of different information systems aimed to capture, communicate, 

compute and assist decision making in order to allow smooth flow of vehicles and 

transportation means. In the past ITS have efficiently and effectively managed up the 

problem of traffic congestion around the world (Nizar, et al., 2022). Continued use of 

the current ITS in traffic management systems is likely not going to be efficient with 
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the rapid trend of urbanization. This is because effective traffic flow forecasting has 

been regarded as a key problem of ITS (Du et al., 2020; Shah et al., 2022). Thus, the 

main objective of this research is to develop a short-term vehicle traffic flow 

forecasting grey model for ITS performance. In particular this research dealt with the 

low prediction accuracy of the grey model for ITS performance. It is worthy to note 

that quantification of traffic congestion is a pre-requisite to the implementation of ITS 

in a road transport system. 

1.2 Statement of the Problem 

Traffic congestion on motorways is becoming an ever more pressing problem all over 

the world (Ren et al., 2021; Sun, et al., 2022; Toan, 2018). Road traffic jams continue 

to remain a major problem in most cities, especially in developing regions resulting in 

massive delays, increased fuel wastage, environmental pollution, accidents and 

economic losses (Jain et al., 2012). The most disturbing thing is that this congestion 

continues to intensify, without any sign of having a limit, thus becoming a nightmare 

that threatens the quality of urban life. Nairobi is among the most affected cities in the 

developing regions of the world (Mosoti & Moronge, 2015). As a case in point, Kiiru 

(2015) states that “there exists very diverse efficiency challenges in the Nairobi public 

transport provision that continually pose threats to the achievement of efficient 

transport system. Efficiency is one of the components of a vibrant transport system 

that cannot be overlooked”. Thus, there is need for efficient solutions to this traffic 

congestion problem (Chama, 2015). 

Traffic congestion is caused by many factors such as more people crowding into big 

cities but more importantly because people are moving more and frequently (Oladimeji 

et al., 2023). Most of the extra movement is done in cars. Availability of affordable 

cars has encouraged personal vehicle usage to places of work and recreational trips 

thus resulting in lesser use of public transport which has led to traffic congestion in 

urban areas. Additionally, the rapid trend of urbanization in the world, especially in 

urban areas, has come faster than the current scale of transport infrastructure 

investments and has also resulted into traffic congestion which is heavy during rush 

hours (Oladimeji et al., 2023). Therefore, there is need to cope with this increasing 
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demand for services and stay in control as urbanization causes city traffic to become 

increasingly dense.  

Currently, the lowest capacity and old infrastructure of roads do not support the amount 

of vehicle flow that cause traffic congestion (Ali et al., 2021). Managing traffic 

congestion and traffic control calls for a clear understanding of traffic systems and 

sustainable development has become a priority in the modern society. Therefore, it is 

crucial to keep mobility safe and under control by leveraging on the available 

infrastructure and road capacities, yet providing commuters and road users with the 

most efficient means of travel. Currently, construction of the bypass highways, the 

Thika Superhighway and the expressway through Kenya’s capital, Nairobi, have eased 

the traffic congestion but there still remains the problem of congestion and it is 

becoming an ever more pressing problem. Moreover, Shah et al. (2022) points out that 

despite massive investments in transportation-related infrastructure, traffic congestion 

remains a societal and public policy problem. 

Therefore, as a solution to the problem of traffic congestion, an intelligent system that 

monitors traffic systems should be in place to keep a check on the efficiency of the 

transportation systems (Ren et al., 2021). ITS have been proposed as a solution to this 

issue of traffic congestion (Shah et al., 2022). ITS can play a vital role in monitoring 

a traffic system but quantification of congestion becomes essential in checking 

congestion in order to provide a sustainable transportation system (Jain et al, 2017). 

However, effectively eliminating and relieving traffic congestion is a significant 

challenge in ITS models (Kołodziej et al., 2022). Moreover, traffic prediction methods 

for ITS have been faced with numerous problems and challenges. Complex models, 

such as neural network and combination model, have complex processes and large 

computation, which are not conducive to the practical application of short-term traffic 

prediction. Currently, the prediction step size of short-term traffic flow prediction 

research is mainly single-step prediction and the prediction interval is within 1-15 

minutes. The prediction input variables are mostly single variables and the massive 

traffic data are not effectively used (Chen & Chen, 2019). The use of machine learning 

(ML) for traffic prediction has the potential to transform ITS. In terms of estimating 

traffic volume, speed, and trip time, ML models have produced promising results. 
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However, data accessibility, model scalability and model interpretability are only a few 

of the issues that still need to be resolved (Manikandan et al., 2023). The focus of 

prediction research is to optimize the existing models, especially to improve the 

accuracy and applicability of prediction by combining models (Chen & Chen, 2019). 

Therefore, studies should concentrate on creating models that can handle traffic 

prediction model difficulties and boost the precision and efficiency of traffic forecast 

for ITS (Manikandan et al., 2023). This has motivated this research in dealing with the 

problem of limited precision of the conventional grey model, GM(1,n) in short-term 

forecasting of vehicle traffic flow using an improved GM(m,n). The accuracy 

improved GM(m,n) can enhance the performance of ITS in quantifying traffic 

congestion on roads and highways for the purpose of proactive vehicle traffic flow 

control.  

1.3 Research Objectives 

1.3.1 Main Objective 

The main objective of this study is to develop a short-term vehicle traffic flow 

forecasting grey model for intelligent transportation system performance.  

1.3.2 Specific Objectives 

In order to accomplish the development of the short-term vehicle traffic flow 

forecasting grey model, the following specific objectives are addressed in this thesis. 

1) To assess the effect of data grouping technique on short term vehicle traffic 

flow forecasting grey model performance. 

2) To investigate the effect of univariate and multivariate formulation on accuracy 

of grey models on short term vehicle traffic flow forecasting. 

3) To assess grouping technique based grey model on energy consumption and 

carbon dioxide emissions.  
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1.4 Research Questions 

1) What is the effect of data grouping technique on short term vehicle traffic flow 

forecasting grey model performance? 

2) What is the effect of univariate and multivariate formulation on accuracy of 

grey models on short term vehicle traffic flow forecasting? 

3) What is the performance of the grouping technique based grey model on energy 

consumption and carbon dioxide emissions? 

1.5 Scope and Limitations of the Study 

1.5.1 Scope 

a) Geographical Scope 

The study is majorly on the road transport system and in this research the Nairobi CBD 

was considered as the case study region. Figure 1.1 shows the study site (Google, n.d.). 

The major road network covered include University Way, Kenyatta Avenue, Haile 

Sellassie Avenue, Moi Avenue and Uhuru Highway (see section 3.5.4). The training 

and test data were collected from the intersections of these road network to capture 5-

minute pattern of traffic for the city (Sarraj, 2018). The traffic data collected included 

time series vehicle flow, pedestrian and motorcycle data passing a point of study. The 

time series data for pedestrian and motorcycle were used and considered as relative 

variables in the multivariate grey model. In addition, data was sourced from past 

research contexts as follows. Vehicle traffic flow and vehicular CO2 emission data 

were sourced from the national highway route 11 of Tokushima city, Japan. These was 

sourced from a past research study which was conducted by the author of this thesis 

(see Table 3.3).  Moreover, data from Özceylan, (2016) consists of CO2 emission (mt) 

as the dependent or output variable and energy consumption (mtoe) and number of 

motor vehicles (106) as relative or input variables. These data were as tabulated in 

Table 4.80. The energy consumption data were obtained from two sources; firstly, 

Kenya’s total electricity consumption, expressed in kilowatt-hours (kWh), for the 

period from the year 2000 to 2019. The data were retrieved from the Central 

Intelligence Agency (CIA) World Factbook (www.indexmundicom/g/g.aspx?c= 

http://www.indexmundi/
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ke&v=81) on December 29, 2019 and tabulated as in Table 4.13. Secondly, data 

sourced from Cheng et al., (2020) consists of clean energy (10,000 tons of standard 

coal) as the output variable and economic scale, GDP (CNY 0.1Billion) and population 

size (10,000 people) as the input variables. These data are as tabulated in Table 4.82. 

b) Theoretical Scope 

This research is based on the grey system theory and it focuses on the basic grey model 

(Deng 1989). The basic univariate grey model considered in this study is the single 

variable first order grey model, GM(1,1). Additionally, the multivariate grey model, 

GM(1,n), is considered. Both the univariate and multivariate grey models are 

formulated based on the proposed data grouping techniques. The developed models 

are then assessed on short term vehicle traffic flow forecasting. 

 

Figure 1.1: Study Site 

Source: Google (n.d.) 
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1.5.2 Limitation 

Time constraint was part of the limitations of this study as the author was not fully 

engaged in the research. This was because of the researcher working as a lecturer at 

the time of doing this research. However, this constraint was handled and managed 

through short vacations from the work place and the research was completed 

successfully at the end. On the same constraint of time the data collection clerks were 

students and they might have faced the challenges of being present all through to 

collect the traffic flow data in three consecutive days. However, this was an issue with 

a few of the clerks and the traffic flow data which were collected were enough 

representative of the Nairobi CBD traffic transportation network. The time constraint 

impacted negatively on the duration of the research as this research took five years to 

be accomplished instead of three years. For similar studies in the future any researcher 

need plan in time and get a study leave from the place of work and carry out data 

collection activity during holidays if students are the only available data collecting 

clerks. 

1.6 Justification of the Study 

Vehicular traffic is continuously increasing around the world. The resulting congestion 

and pollution is a major concern to transportation specialists and decision makers. As 

population continues to grow, it is a challenge to handle traffic demand, traffic jam, 

CO2 emission, global warming and economic loss. Road capacity is not adequate. 

Roads and highways are unlikely to expand due to cost and dwindling land supply. 

Inadequate transportation system generates high costs and low customer service levels, 

which ultimately produces a negative economic impact (Zapata et al., 2013). Low 

mobility of vehicles, people and goods in urban areas is the greatest obstacle to 

economic growth and development. Therefore, there is need for efficient solutions to 

these problems (Khalil et al., 2010).  

Traffic congestion is a severe problem in most cities and therefore it is time to shift 

from manual mode or fixed timer mode to an automated traffic system with decision 

making capabilities. Most of the present-day traffic light signaling systems are fixed 

time based. This renders inefficiency especially if one lane is operational than the 
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others. Sometimes higher traffic density at one side of a junction demands longer green 

time as compared to standard allotted time. To optimize such a problem an intelligent 

traffic control system is necessary (Patil et al., 2019). Further, Lu et al., (2020) asserts 

that to alleviate traffic congestion problems ITS has become the most popular and 

effective feasible solution.      

Traffic jams can cause severe damages and impact negatively on the lifes of people. 

Therefore, performance and safety of a transportation system is important and can be 

improved through anticipation of future traffic flow events. Predicting jams before 

they happen and taking actions in advance can reduce the impact or duration of the 

forecasted congestion conditions. In order to control a traffic system in a proactive 

manner, ITS must have a predictive capability in short-term traffic flow forecasting 

(Liu et al., 2022). Short-term traffic flow forecasting is a fundamental function in ITS 

(Lu et al., 2020). Accurate prediction of vehicle flow in a road transport system is of 

critical importance for efficient traffic control and management (Qin & Zhang, 2022; 

Wang et al., 2020; Young & Liu, 2015). In addition, information can be disseminated 

to other parties and road users. For instance, driver information systems, navigation 

systems and vehicle positioning systems can aid in route selection and guidance to 

travelers in order to reach the desired destinations in time (Shah et al., 2022); Zhang, 

2020). In Singapore, traffic planners receive data from global positioning system 

(GPS) devices and sensors embedded in the roadway. The information gets analyzed 

with algorithms to predict future traffic jam conditions and take pre-emptive actions 

to reduce the impact or duration of the conditions. Thus, a proactive, real-time traffic 

control system that anticipates future traffic conditions has a wide range of applications 

in vehicle navigation devices, vehicle routing, and congestion management. Indeed, 

there is need for the current research which is focused on improving the prediction 

accuracy of the conventional grey models for the performance of ITS.  

Conventional methods of traffic management such as use of police officers at road 

junctions to direct vehicle movements is problematic in nature. A police officer can get 

tired or sick and it is not always that they are in control/alert (Hakkert & Gitelman, 

2005). A policeman can be biased and cannot predict future traffic flow conditions. It 

is also difficult for a traffic police officer to monitor the whole scenario round the 
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clock. For instance, a police officer can only help when the weather permits. Police 

officers controlling traffic, at different intersections of a road, network cannot share, 

compare, take judgement and coordinate traffic conditions in real-time like an ITS can 

do. Generally, police resources are always limited (Hakkert & Gitelman, 2005). But 

traffic light signal automation can work for 24 hours without break and information 

can be disseminated to other road users unlike the police officer. Therefore, it is better 

to emulate the judgment of a traffic police officer on duty by ITS. ITS can resolve 

many traffic issues, such as traffic congestion, in order to provide an efficient traffic 

management scheme (Sayed et al., 2023). 

However, continued use of the current ITS in traffic management systems is likely not 

going to be efficient with the rapid trend of urbanization. This is because effective 

traffic flow forecasting has been regarded as a key problem of ITS (Du et al., 2020; 

Shah et al., 2022). More accurate vehicle traffic flow prediction can improve the 

efficiency of ITS (Bharti et al., 2023; Jiang & Liu, 2023). Therefore, performance 

improvement of the predictive models which can find applications in enhancing the 

forecasting ability of ITS is very crucial in this error of rapid urbanization (Bharti et 

al., 2023). The enhancement of existing tools of traffic transportation management is 

necessary in order to cope with the problem of traffic congestion (Cantarella & Fiori, 

2021). This thesis improves the precision of the GM(m,n) which has been applied, in 

the past, in short-term vehicle flow forecasting (Shen, 2022). The improved GM(m,n) 

can find application in enhancing ITS which play a vital role in traffic flow 

management. 

1.7 Significance of the Study 

In dealing with the problem of modelling and short-term forecasting of vehicle traffic 

flow for the purpose of proactive vehicle flow control, accuracy improved grey models 

(GM(m,n)) are proposed and developed in this thesis. Thus, the novelty and 

importance of this research study is as outlined below.   
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1) GM(1,n)’S Accuracy Improvement and Its Scope Extension 

In this research the new idea is to improve the prediction accuracy of the conventional 

GM(1,n), by use of various proposed techniques. A data grouping technique (DGT) 

and a relative variable smoothing approach (RVSA) are two among the proposed 

methods to improve the accuracy of the conventional GM(1,n). The technique of 

grouping time series data is introduced into GM(1,n), and this improves the GM(1,n)’s 

accuracy. Thus a hybrid model is established and referred to as Grouped data GM(m,n) 

denoted as GGM(1,n). The RVSA is vital in smoothing the relative variables of a 

multivariate grey model for improving its accuracy. Therefore, the accuracy deficiency 

of the conventional GM(1,n) is overcome and the proposed hybrid grey models have 

improved fitting and short-term forecasting precision. Consequently, this has extended 

the application scope of the GM(1,n) in time series modelling and forecasting. 

Therefore, the improved GM(1,n) can be used to enhance the performance of ITS in 

short-term traffic flow forecasting. 

2) Adherence to the New Information Prior Using Principle for Strong 

Adaptability 

The conventional GM(m,n) has the shortcoming of modelling and predicting all data 

and ignoring new information. Thus, it cannot accurately reflect the characteristics of 

the current situation of a time series system. In this research this shortcoming is 

overcome by the proposed DGT which accommodates the concept of the “new 

information prior using” principle. The process of data grouping involves dropping of 

an old data point and adding of a new data point and this is in accordance to the new 

information prior using principle (see section 3.1.2a). A new data value can be 

collected from the environment being monitored and an older data value get deleted 

so that a newer model is established. Thus, a series of new predicted values will appear 

accordingly. Hence this guarantees a strong adaptability of the system under control. 

3) Proactive Vehicle Traffic Flow Control 

The proposed improved GM(1,n) can enhance the performance of ITS in proactive 

vehicle traffic flow control. By accurately forecasting traffic congestions and taking 
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actions in advance the impact or duration of the forecasted congestion conditions can 

be reduced. This way, it becomes possible to prevent a predicted disaster, if any, before 

it actually occurs and to impose controls in a timely manner.  

4) Enhancing the Decision and Policy Making Processes  

Proper incorporation and implementation of the proposed GGM(m,n) model in ITS 

can generate accurate predicted information about a traffic system which can enhance 

the decision and policy making processes to mitigate traffic congestion (Saki et al., 

2020; Wang, 2017). Accurate forecasts can assist planners create road networks that 

can accommodate both present and future traffic demands, individuals plan their trips 

and traffic managers make knowledgeable judgements (Manikandan et al., 2023). 

Further, enhancing ITS by accurate predictive models is a way of improving the 

benefits provided by such smart transportation system. Some examples of ITS’s 

application are the optimization of routes and street lighting.   
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CHAPTER TWO 

LITERATURE REVIEW 

In this chapter the efforts to evolve the road transport sector are outlined and examined. 

In addition, traffic flow forecasting methods are discussed and compared to point out 

the research gaps. The GST is explained together with the structure of the GM(m,n) 

and its optimization least square method. The meaning of grey forecasting is explained 

and the error causal factors in GM(1,1)’s structure are pointed out. Moreover, methods 

which have been used in the past to improve accuracy of the conventional GM(m,n) 

have been discussed. Finally, the research gaps have been identified and explained. 

2.1 Evolving Road Transport Systems   

In an effort to improve and evolve road transport systems a lot of literatures have been 

written (Chitere & Kibua, 2004; Daniel, 2016; Ngichabe, 2016). All these literatures 

were concerned to improve safety, determine causes of accidents and to report road 

accidents and as much as they were explored quantization of traffic flow was not taken 

into account. It is worthy to note that in order to improve road safety and reduce the 

rate at which accidents occur on our roads determination of traffic congestion is vital. 

Steg (2007) argues that behaviour changes of individual car users may help to achieve 

sustainable transportation. The researcher suggested that people may adopt more 

energy-efficient driving styles,  change their car use, change the time of travel to avoid 

traffic jams, visit other destinations to reduce travel distance, suppress certain car trips, 

or travel with other modes of transport (such as public transport, cycling, walking or 

carpooling), replace their car by an energy efficient car or dispose of their car, and 

finally people may move residence, or look for another job location to reduce travel 

needs and distances. This is a psychological perspective aimed at providing sustainable 

transportation and it cannot be overlooked. However, combination of this perspective 

together with technological solutions can significantly reduce the negative impacts of 

road transport. Hence, in order to evolve the road transport sector, development of 

predictive models for smart transportation systems is equally vital. Nasim (2015) noted 

that the deployment of ITS is limited in the real-world application because of several 

challenges associated with its architectural design. This necessitated the study on how 
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to design a highly flexible and deployable architecture for ITS, which can utilize the 

recent technologies such as cloud computing and the publish/subscribe communication 

model. Therefore, Nasim (2015) proposed utilization of advances in Information and 

Communication Technology (ICT) in ITS to maximize the capacity of existing 

transportation systems without building new infrastructure. The use of an 

Infrastructure as a Service (IaaS) model to host large-scale ITS applications in the 

cloud, which reduces infrastructure cost, improves management flexibility and also 

ensures better resource utilization was put forth. This was a vital step towards 

improving the performance of an ITS but quantification of traffic congestion was not 

considered in the proposed ICT. So, it is important to also enhance the ITS from the 

short-term forecasting point of view as proposed in this thesis.  

On the other hand, implementation and management of traffic control systems in the 

past has mainly been by programmable logic controller (PLC) and microcontroller-

based systems (Liu & Chen, 2009; Udoakah & Okure, 2017). The PLC based methods 

offer a wide area of expansion which is essential for dynamic traffic control systems. 

In many countries urban traffic control is focused on mainly sequencing the traffic 

lights at a junction (Toroman & Mujcic, 2018; Udoakah & Okure, 2017). Many 

scholars have researched on the concept of unforeseen event handling by PLCs.  For 

instance, using a PLC a traffic control system for emergence vehicle control was 

designed by (Amir et al., 2017). The transmission of the emergence signal was Radio 

Frequency Identification (RFID) based. PLC based traffic control systems have been 

designed and implemented (Muhammad, 2011; Udoakah & Okure, 2017). Udoakah 

and Okure (2017) designed a density-based traffic light control system with a 

microcontroller and infrared (IR) sensors. Of curiosity in this area of research is how 

extensively the PLCs have been utilized to control traffic lights and hence traffic flow 

in a proactive manner. The aforementioned literatures did not study on proactive traffic 

flow control. Controlling traffic flow in a proactive manner is a new area to be 

researched, especially in Kenya. In the current research, incorporation of the improved 

grey models into a traffic flow control system is recommended for future research. 

This way vehicle traffic flow can be controlled in a proactive manner. 
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2.2 Predicting/Forecasting Methods 

Forecasting methods can be deterministic, probabilistic or stochastic methods and have 

been used in weather predictions (Barrera et al., 2005; Del et al., 2015).   

Deterministic calculations are made with discrete values. A deterministic model is a 

mathematical model in which outcomes are precisely determined through known 

relationships among states and events, without random variation. In such models given 

a particular input, will always produce the same output, with the underlying machine 

always passing through the same sequence of states. A deterministic mathematical 

model is meant to yield a single solution describing the outcome of some "experiment" 

given appropriate inputs and all data is known beforehand. Deterministic algorithms 

are by far the most studied and familiar kind of algorithm, as well as one of the most 

practical, since they can be run on real machines efficiently. The deterministic method 

has been used in traffic flow prediction as in the following literature. Boyarshinov and 

Vavilin (2021) analyzed and determined the time dependences of the traffic flow 

intensity continuously throughout a week. An approach of using the smoothing 

procedure, i.e. the moving average method, was proposed to define deterministic and 

stochastic components of the traffic flow intensity. Statistical indicators of the 

distributions of the intensities and the random components isolated from them were 

determined. The estimates of the correspondence of the obtained curves to the normal 

law of probability distribution were also carried out. It was shown that on workdays 

and weekends, the deterministic components of the traffic flow intensity were similar 

in shape and location of maximum and minimum values. Therefore, the deterministic 

method outperformed the stochastic method in traffic flow predictions. From the work 

of Boyarshinov and Vavilin (2021) it is clear that the deterministic and stochastic 

methods were not trained and tested. Moreover, the methods were not subjected to 

short-term traffic flow forecasting. Therefore, even though the deterministic method’s 

performance was good, it is doubtful if it can be effective in predicting traffic flows 

and in controlling the operation of traffic lights, as the researchers claimed. In this 

thesis the proposed methods are trained and tested for short-term traffic flow modelling 

and forecasting. 
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In probabilistic forecasting element of chance is involved. Forecasts incorporate the 

stochastic variability of the input variables, combining all the parameters according to 

their defined probability distributions to generate probabilistic cumulative distribution 

curves. A probabilistic model is meant to give a distribution of possible outcomes (i.e. 

it describes all outcomes and gives some measure of how likely each is to occur). 

Probabilistic methods use stochastic parameters such as a Monte Carlo simulation. 

Weather forecasting is a common example of probabilistic analysis. Generally, 

probabilistic forecasting has been applied in some areas as follows. Leverger et al. 

(2021) proposed forecasting (in a probabilistic way) the whole next season of a time 

series, rather than forecasting the given time series stepwise. The proposed framework 

in Leverger et al. (2021) was implemented combining several machine learning 

techniques. This framework was evaluated using a wide range of real seasonal time 

series. As demonstrated by their experiences, the proposed framework outperformed 

competing approaches by achieving lower forecasting errors. Even though their 

approach outperformed other methods, the proposed frame work has a limitation. The 

frame work is not applicable on anticipatory traffic flow control (Abdulhai et al., 

2002). Forecasting of the whole next season of a time series is not applicable to some 

situations where stepwise forecasts are required. For instance, in ITS stepwise 

forecasting is very crucial for timely traffic flow control. In this thesis the proposed 

grey forecasting models can forecast a traffic flow system in a stepwise manner. Lu et 

al. (2020) presented an effective approach to forecasting short-term traffic flow based 

on multi-regime modelling and ensemble learning. Multiple regimes of traffic flow 

were identified using a probabilistic approach. Each regime characterized a pattern that 

described a homogeneous traffic condition during the study time period. The identified 

regimes were then used as the representative features for the forecast modelling. 

Regime identification was based on probabilistic modelling. And the hidden Markov 

model (HMM) being one of the most powerful algorithms in probabilistic, was thus 

used. The experimental results had shown that the identified regimes were able to well 

explain the different traffic phases, and played an important role in forecasting. 

Furthermore, the developed forecasting model outperformed four typical models in 

terms of root mean square error (RMSE) and mean absolute percentage error (MAPE) 

on three traffic flow measures. Even though the performance of the developed model 
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was good a shortcoming of the model can be identified. In identifying the separate 

regimes, it can be deduced that the author sub-divided the traffic flow into unrelated 

traffic phases-the continuity of the data set in time series is lost. Thus, the method 

deprives the homogeneity of the whole traffic data set. Supposing the author identified 

overlapping regimes, perhaps the performance of the developed model could have 

been much better. This thesis proposes a DGT which sub-divides the traffic data set 

into overlapping groups and superimposes the group forecast results to obtain final 

forecasted result. This method maintains the continuity and homogeneity of the traffic 

data set used. 

The adjective “stochastic” implies the presence of a random variable; e.g. a stochastic 

process is one where the system incorporates an element of randomness as opposed to 

a deterministic system. A stochastic model is a tool for estimating probability 

distributions of potential outcomes by allowing for random variation in one or more 

inputs over time. The random variation is usually based on fluctuations observed in 

historical data for a selected period. A stochastic process is a random process evolving 

with time. More specifically, in probability theory, a stochastic process is a time 

sequence representing the evolution of some system represented by a variable whose 

change is subject to a random variation. Stochastic traffic flow modelling has been an 

area of interest by some researchers as is evident in the following two cases. Joubari 

et al. (2022) developed a stochastic mobility model for urban environments. The model 

was designed to reflect vehicular activities in urban environments based on vehicular 

information collected using vehicular communications. The behavior of vehicles along 

multi-lane roads and intersections was modelled as a stochastic process using queuing 

theory. Particularly, the queue system was analyzed as a continuous-time Markov 

chain (CTMC) and by calculating the steady-state probabilities, different performance 

measures were derived and analyzed under various scenarios. To validate the model, 

the forecasts were compared with a queue model and realistic traces. The results could 

show that the model was capable of reproducing the realistic behavior of traffic in 

urban roads. The obtained estimates were then used to design an actuated traffic light 

and a vehicle speed adaptor. From the simulation results, it was clear that using the 

proposed traffic forecasting model helps reduce vehicles idling and travel times. Jabari 

and Liu (2012) proposed a new stochastic model of traffic flow that addressed issues 
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of negative traffic densities and mean dynamics that are inconsistent with the original 

deterministic dynamics. They had shown that their construction implicitly ensures 

non-negativity of traffic densities and that the fluid limit of the stochastic model was 

consistent with cell transmission model (CTM) based deterministic dynamics. 

Although the expected results in Jabari and Liu (2012) and Joubari et al. (2022) were 

obtained, one can object the clumsy procedure of the proposed model in Jabari and Liu 

(2012). This thesis proposes the grey model in traffic flow modelling and forecasting. 

The grey model consists of a short and simple model structure. 

2.3 Traffic Flow Forecasting Models 

A variety of mathematical models have been explored in the past to predict traffic flow 

e.g. regression, neural network, historical average algorithms and time series analysis 

(Kumar, 2017). As mentioned by Kumar (2017) the use of autoregressive integrated 

moving average (ARIMA) or seasonal ARIMA (SARIMA) in traffic flow prediction 

requires huge flow data to develop a model and therefore cannot be used in cases where 

data is limited. For instance, on real time traffic flow forecasting the ARIMA and 

SARIMA models would require long time to collect huge data for training and 

eventually forecasting. This will delay traffic flow forecasts. That is to say instant 

traffic forecasts may not be possible. In addition, the ARIMA model procedure and 

structure are lengthy and complex. To overcome such limitations there is need for an 

alternative method which has a simple modelling structure and requires few data to 

predict future traffic flow on the roadways. In this research the proposed improved 

GM(m,n) has a simple straight forward modelling structure and requires at least four 

data points for traffic volume prediction. It implies that the GM(m,n) can forecast 

traffic flow at short intervals of time unlike the ARIMA and SARIMA models. 

Additionally, this will ensure traffic flow monitoring at every short interval of time 

and hence smooth traffic flow. Conventional statistical methods such as Kalman 

filtering, ARIMA and SARIMA have been applied to forecast short-term traffic flow 

based on past data (Kumar & Vanajakshi, 2015; Ma et al., 2017). These statistical 

techniques can achieve reasonable prediction accuracy, but may not capture the 

dynamics and nonlinearities existing in traffic flow. In addition, because of the lengthy 

and complexity of its structure, the ARIMA model is time consuming (Ma et al., 2017). 
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In addressing these issues, introduced in this research, is the concept of data grouping 

in grey modelling for predicting short-term traffic flow. The DGT can capture the 

dynamics and nonlinearities in time series traffic flow because it adheres to the ‘new 

information prior using’ principle. Yaping et al. (2015), compared the performance of 

three prediction models with real-life data in Beijing. The models included ARIMA, 

neutral network, and nonparametric regression. The nonparametric regression 

outperformed the other two models. Furthermore, the nonparametric regression model 

experiences superior accuracy and is portable. However, the K-nearest neighbor 

(KNN) (a typical nonparametric regression method) model requires more complex 

process to identify the ‘‘neighbors’’ (Rong et al., 2015). Zaki et al. (2020) discussed 

two different approaches for traffic congestion prediction. They used NeuroFuzzy 

approach with 11% prediction error and Hidden Markov Model (HMM) with a 

prediction error of 10%. This confirmed the suitability of HMM for traffic congestion 

prediction. This is because HMM is a stochastic method and traffic is stochastic in 

nature. HMM utilizes statistics such as mean speed and standard deviation to predict 

traffic conditions. However, it is rarely used in traffic prediction although traffic is a 

stochastic process (Zaki et al., 2016). Smith and Demetsky (1997) proposed four short-

term traffic volume forecasting models for the freeway traffic flow forecasting 

problem at two sites on Northern Virginia's Capital Beltway. The models were based 

on Historical Average, ARIMA Time-Series, Back-Propagation Neural Network, and 

Nearest Neighbor Nonparametric Regression models. They tested the forecasting 

accuracy for each model and the result revealed that the Nonparametric Regression 

model significantly outperformed the other three models. Moreover, the 

Nonparametric Regression model was easy to implement, and proved to be portable, 

performing well at two distinct sites (Smith & Demetsky, 1997).   

Due to the dynamics of traffic conditions and complexity of traffic networks, it is 

difficult to obtain satisfactory traffic flow prediction results with less computation cost 

(Yao et al., 2022). Thus Yao et al. (2022), proposed a novel deep learning traffic flow 

forecasting framework, termed as ensemble attention-based graph time convolutional 

networks (EAGTCN), for accurate traffic flow forecasting. Results of this work show 

that the forecasting accuracy of the EAGTCN is superior to existing models especially 

in the long-term predicting situation. Zhou et al. (2022), proposed a filter attention-
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based spatiotemporal neural network (FASTNN) for traffic flow forecasting. The 

experimental results show that the FASTNN has better prediction performance than 

various baselines and variant models. Zhuang and Cao (2022) proposed combination 

of convolutional neural network and bidirectional long short-term memory (CNN-

BILSTM) model for forecasting short-term traffic flow and the prediction precision of 

the model was found to be greater than that of the comparison model (support vector 

regression and gated recurring unit models). The aforementioned deep learning 

approaches have a limitation which is put forth by Farsi (2020) and Kashyap et al. 

(2022), who asserts that deep learning architectures have a limitation in that they 

require large amounts of historical data for training. According to Kashyap et al. 

(2022), large amounts of historical data can cause over-fitting of the model due to high 

fluctuations in traffic flow over a small-time interval. In regard to this disadvantage of 

the deep learning architectures a grey model is proposed, in this thesis, which can 

model a system with as low as 4 data points. 

Nevertheless, the grey model has been utilized in traffic flow forecasting (Duan et al., 

2017; Shen, 2022). Duan et al. (2017) proposed four new models of structural 

parameters and component parameters, inertia nonhomogeneous discrete gray models 

(referred to as INDGM), and analyzed the important properties of the model. This 

model examined the construction of the inertia nonhomogeneous discrete gray model 

from the mechanical properties of data (such as distance, acceleration, force 

combination, and decomposition), explaining the classic NDGM modelling 

mechanism. Finally, traffic-flow data was analyzed and the relationship between the 

inertia model and the traffic-flow state was studied. An optimal INDGM was selected, 

and better traffic-flow prediction results were achieved at a simulation accuracy and 

prediction accuracy of up to 0.0248 and 0.0273, respectively. Shen (2022) proposed a 

seasonal gray Fourier model based on the complex Simpson formula for short-term 

traffic flow forecasting. A seasonal GM(1, 1) model was used to optimize the 

background values first, and then the prediction results were adjusted using the Fourier 

series method. The new model was applied to the prediction of traffic flow and the 

numerical results indicated that the new model’s performance was significantly better 

than those of the traditional GM(1, 1) model and the seasonal GM(1, 1) model. 

Although better traffic flow results were obtained by the proposed models of Duan et 
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al. (2017) and Shen (2022), close examination of the constructional structure and 

procedure of the proposed models is seen to be lengthy and complex. These features 

make the proposed models to be tedious so as to cause lengthy delays in the 

computational process. And thus, this thesis proposes an improved grey model which 

is not only simple in the constructional structure but also short in its computational 

form.  

Now that the grey model is proposed in this thesis for traffic flow modelling and short-

term forecasting it is important to outline and explain its constructional structure as 

well as the historical attempts to improve its precision by other researchers. Therefore, 

the next section highlights the grey system and its application in grey modelling. 

2.4 Grey System Theory (GST) and Modelling 

The GST was introduced in 1982 (Deng, 1989; Liu et al., 2015). In all human 

endeavors almost, all systems are grey systems (systems lacking information). The 

term ‘grey’ means poor, incomplete, uncertain (Deng, 1989; Javanmardi, & Liu, 2019). 

The theory finds the law governing a grey system through processing a raw data to 

establish its corresponding mathematical model (Li et al., 2018). The GST is 

interdisciplinary and stands the test of time (Deng, 1989). The system has been applied 

in various fields such as ecology, economy, environment, engineering transportation 

etc. to analyze, estimate, forecast and model the various systems considered to be grey 

systems (Deng, 1989; Li & Lin, 2014; Li et al., 2021; Liu, 2012; Lu M., 2015; Nguyen 

et al., 2020; Wang et al., 2018; Zeng et al., 2019).    

The GST provides theory, techniques, notions and ideas for resolving (analyzing) grey 

systems, for example to build a differential model-so called grey model (GM)-by using 

at least 4 data to model a system (Javanmardi & Liu, 2019). 

The system extracts a governing relationship of a system and covers various areas such 

as grey relational space, grey generating space, grey forecasting, grey decision making, 

grey control, grey mathematics and grey theory (Deng, 1989; Li & Lin, 2014; Lu M., 

2015; Shen et al., 2016; Slavek et al., 2015).  
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The Grey Model (GM) uses a cumulative model in order to create differential 

equations and it requires a small number of data (Jiang et al., 2014). The GM is 

abbreviated as “GM(m,n)” where “m” symbolizes the degree of differential equations 

whereas “n” represents the number of variables under consideration. The basic original 

grey model is the single variable (univariate) first order differential equation prediction 

model denoted as GM(1,1) and many variants of this model such as the GM(2,1) and 

the GM(1,n)  have been developed. The GM(2,1) and GM(1,n) are referred to as the 

second order and multivariate grey models respectively. 

2.4.1 Grey Generating Techniques 

The grey generating techniques are important in turning the disorderly raw data to a 

regular series for the benefit of grey modelling (Jiang et al., 2014). Suppose the raw 

data series is presented as (Caleb et al., 2022; Jiang et al., 2022): 
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where 𝑚 is the total number of data points. Accumulating this series by (Jiang et al., 

2022; Nguyen et al., 2020): 
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Results to: 
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This generating operation can be denoted as: 

)1()0( XAGOX      (2.4) 

Which is the Accumulated Generating Operation (AGO) and is vital in grey modelling 

(Jiang et al., 2022). Thus the Inverse Accumulated Generating Operation (IAGO) is 

given as: 
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)0()1( XIAGOX        (2.5) 

So that IAGO (inverse AGO) restores the original series. 

Another grey generating concept is the Mean value Generating Operation (MGO) 

given as (Jiang et al., 2022): 
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This is mean generation of adjoining neighbors of the AGO (Nguyen et al., 2020). 

By AGO a non-negative, smooth, discrete function can be transformed into a series, 

extended according to an approximate exponential law which is called the grey 

exponential law and by which a reform to establish a suitable foundation in building a 

differential model is said to be completed. 

2.4.2 Grey Modelling 

In GST a dynamic model called grey differential model (GM) was developed. To do 

this Deng (1985) inferred that a stochastic process whose amplitudes vary with time is 

referred to as a grey process, the grey modelling is based on the generating series rather 

than on the raw one, the grey derivative and grey differential equation are defined and 

proposed in order to build a GM and to build a GM, only a few data (as few as 4) are 

needed to distinguish it. 

As mentioned earlier in grey modelling GM(m,n) stands for an m-order differential 

equation grey model with n variables under consideration (Moonchai & Rakpuang, 

2015). The basic original grey model is the single variable first order differential 

equation prediction model denoted as GM(1,1) and many variants of this model such 

as the GM(2,1) and the GM(1,n)  have been developed (Zeng et al., 2018). The 

GM(2,1) and GM(1,n) are referred to as the second order and multivariate grey models 

respectively. 
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In this concept of grey modelling a single variable first order differential equation 

prediction model based on GST is given as (Caleb et al., 2022; Guo-Dong et al., 2006; 

Tien, 2009; Luo et al., 2013): 

    btaXtX
dt

d
 11      (2.7) 

where 𝑋1(𝑡) is a background grey value at time t , 𝑎 and 𝑏 are the coefficients in GST 

terms, said to be the developing coefficient and the grey input respectively (Guo-Dong 

et al., 2006). These coefficients are obtained by the least square method (see section 

2.4.3).  

The time response equation of (2.7) is deduced as: 

 

 

 

 
,ˆ

0

1

1

1ˆ
a

b

a

b
exx

ar

r














    1,,2,1,0  mr     (2.8) 

where 
 

 

x rˆ
1

1
 is the predicted value of the data sequence (2.3) and from (2.1) and (2.4) 

the equation (Luo et al., 2013; Zhang et al., 2017): 
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is a grey differential model, called GM(1,l) as it includes only one variable, )0(X , 

where: 
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and 
)0(

)(kx  is a grey derivative which maximizes the information density for a given 

series to be modelled. 

Note that  𝑥(1)
(0)

 of (2.8) is the initial condition of the model which causes prediction 

error (Jiang et al., 2014; Jong & Liu, 2014). Also, the constructional formula for (2.10) 

is among the factors which produce simulation errors (Jiang et al., 2014; Madhi & 

Mohamed, 2022). And 𝑍(𝑘)
(1)

 in (2.10) is the background value of GM(1,1). 
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To recover the original series the IAGO is applied (Jiang et al, 2022):  
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Note that in grey modelling according to Deng (1989) the "weight" equals to 0.5 and 

GM(m,n) stands  for m-th order differential equation of  n variables. 

2.4.3 The Least Square Method 

The optimized solution of the parameters 𝑎 and 𝑏 of (2.8) is derived by the least square 

method. This method gives a way to find the best estimate of these parameters. It 

assumes that the errors (i.e. the differences from true values) are random and unbiased. 

Given observations (𝑥1, 𝑦1), (𝑥2, 𝑦2),⋯ , (𝑥𝑁 , 𝑦𝑁) (𝑁 is the number of observations), 

the error E associated to saying: 
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The goal is to find values of 𝑎 and b  that minimize the error. This requires us to find 

the values of (𝑎,b ) such that: 
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Eventually, it can be shown that: 
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where A  is the data matrix and y  is the measured vector, i.e. 𝑦 = (𝑦1, 𝑦𝑁)𝑇 (see 

references (Deng, 1989; Guo-Dong et al., 2006; Luo et al., 2013; Zou & Wu, 2012) for 

details). 
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2.4.4 Grey Forecasting 

The concept of grey forecasting is by extrapolating the modelled series of (2.8) as: 
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Hence by short-term forecast vehicle volume in the near future is determined at 

predetermined time intervals. Suppose 𝑡 is the instant at which data is collected, then 

to forecast two points into the future means estimating the traffic volume at 𝑡 + 1 and 

at 𝑡 + 2 which corresponds to 𝑚 + 1 and 𝑚 + 2 of grey forecasting, see (2.16). 

2.5 Grey Model, GM(1,n), Accuracy Improvement 

Since in this thesis an improved GM(m,n) is proposed it is important to review the 

literature behind GM(m,n))’s prediction accuracy improvement. Many scholars have 

researched on improving the accuracy of the conventional GM(1,1) by various 

approaches. Some have improved the accuracy by optimizing the initial condition, 

background value etc. For instance, aiming at the problem of determining original 

value of Non-homogeneous Grey Model NGM(1,1) Cai (2010) analyzed model-

constructing mechanism of the non-homogeneous grey GM(1,1) model and unveiled 

the cause of the problem. And in order to minimize the quadratic sum of its fitting 

error, a new initial value determining approach was proposed and the calculating 

formula for determining initial value was deduced. The grey model proposed by Cai 

(2010) was then constructed based on optimal initial value determining method and 

had the characteristic of high precision as well as high adaptability. Mahdi and 

Mohamed (2017b), aimed to improve GM(1,1)’s prediction accuracy by improving the 

initial condition in the response function of the model. They optimized the initial 

condition by a method of minimizing the error summation of the square. The results 

had shown that the modified GM(1,1) model gives a better prediction performance 

compared with traditional GM(1,1) (Mahdi & Mohamed, 2017b). Again, Mahdi and 

Mohamed (2017a), in their study improved prediction accuracy of GM(1,1) model 

through an optimization of the background value. They reconstructed the background 

value to fit the accumulated sequence. The modified model performed better than the 

traditional grey model GM(1,1). Moreover, the modified GM(1,1) model achieved the 
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objective of minimizing the forecast errors and had high accurate forecasting power 

(Mahdi & Mohamed, 2017a). Moreover, Mahdi and Mohamed (2022), in their recent 

research improved GM(1,1)’s performance by combination of optimized initial and 

background value using the medium of the time series data. At this point it is critical 

to note that combination of optimized initial and background value is data 

discriminative as it assumes the rest of the data in the series, considering only the 

medium. This shortcoming of this approach is overcome in this research by the 

proposed DGT which groups data in a non-discriminatory manner and it is based on 

the new information prior using principle (Javanmardi & Liu, 2019). Khuman et al. 

(2013), proposed a novel way of improving the overall relative accuracy of the new-

information grey model and the metabolic grey model and also improving the filter 

value accuracy, by incorporating a weight sequence that is populated by a genetic 

algorithm to minimize the error of the simulated values. The least square parameters 

)( a  and b , were then scaled by the values contained in the weight sequence, until a 

satisfactory result was obtained. They proved that the metabolic model in this instance 

is better suited for forecasting and predicting (Khuman et al., 2013). Changjun et al. 

(2011), proposed an improved error GM (1,1) model and used this model to predict 

cultivated land in Yiyang. The results show that the improved error GM (1,1) model 

has high prediction accuracy and better simulation results. In addition, the improved 

grey error model is convenient and reliable (Changjun et al., 2011). In order to further 

improve the prediction accuracy of the multivariate grey prediction model, Lao, et al. 

(2021), established a novel multivariate grey prediction model based on dynamic 

background values (abbreviated as DBGM (1, N) model) and used the whale 

optimization algorithm to solve the optimal parameters of the model. The results show 

that the prediction and fitting accuracies of the DBGM (1, N) had been greatly 

improved compared with those of the GM (1, N) model. Luo, et al. (2013), improved 

the precision of the non-equidistant GM(1,1) by firstly, generating the reciprocal of the 

original time series data, secondly by adopting the reciprocal AGO process and finally, 

by optimzing the background values of the improved unequal interval GRM(1,1). The 

GRM(1,1) was found to have good performance. However, this method is tedious and 

complex in its structure form compared to the proposed improved GM(m,n) of this 

thesis. Additionally, Luo et al. (2013) did not modify the initial condtion which is 
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considered as a causal to prediction error. In this theisis the proposed model only data 

grouping is adopted and modification of the raw data is not part of the data grouping 

process. So that the proposed improved GM(m,n) is more adaptable to the raw data as 

opposed to other methods (such as the ones discussed above) which require data 

modification before grey modelling. Moreover, from the above literatue review it is 

evident that the methods used in improving GM(m,n)’s accuracy are lengthy, complex, 

data discriminatory, time consuming and involve data pre-processing which poses 

much modification to the raw data. Complexity of any system modelling method 

increases uncertinity in the performance of the sysstem (Javanmardi & Liu, 2019). To 

overcome these shortcomings a simple improved GM(m,n) is proposed in this thesis. 

The proposed model’s procedure and construction structure is simple and hence less 

computational time. The DGT proposed in improving the GM(m,n)’s forecasting 

perfomance does not modify the raw data like in the case of Luo, et al. (2013), in which 

accumulated generating operation of the reciprocal number is used. Instead, the DGT 

groups the raw data directly without any data pre-processing procedure. It is worthy to 

note that data pre-processing, some times, has issues to do with multicollinearity.  

Moreover, this DGT adheres to the ‘new information prior using” principle. This 

principle takes the advantage of new/current information of a time series in system 

modelling (Javanmardi & Liu, 2019). Note that none of the above outlined accuracy 

improving methods adheres to this important principle in improving the performnce of 

the conventional GM(m,n).  

To overcome the deficiencies of the existing unbiased prediction grey model 

(abbreviated as UGM(1,1)), Zeng et al. (2020) proposed a new shale gas output grey 

prediction model and abbreviated it as SGGM(1,1,r). They modelled the SGGM(1,1,r) 

by combining new initial conditions and reprocessing of the original data using a grey 

average weakening buffer operator. Then the new model’s accumulative order was 

optimized by fraction accumulation generation operation. Moreover, the new model 

was designed based on the “new information priority” principle and thus its time 

response function was derived by using the latest value as the initial value. Comparing 

the experimental results of the new model with that of the existing model, the former 

was significantly better than the latter. However, recognition of the latest value as the 

initial value discriminates the old values and this violates one of the six basic axioms 
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of the GST (Javanmardi & Liu, 2019). The Axiom states that “Difference” connotes 

the existence of information-each piece of information must carry some kind of 

“difference” which is known as principle of informational differences. Thus, all values 

in the original data sequence have information about the trend of the system and need 

to be considered in grey modelling. 

Chen et al. (2020) proposed an improved GM (1,7) prediction model to predict the 

volume fraction of 7 dissolved gases in transformers. In this study the original data 

sequence of the traditional GM (1, 7) prediction model, was transformed so that the 

original data sequence after the transformation had better exponential properties, to 

meet the model's requirements for sequence smoothness. In order to greatly improve 

the prediction accuracy of the model, the construction method of background value 

optimization was also introduced. The average residual of the improved GM (1,7) 

model was found to be smaller compared to those of the traditional GM (1,1) and GM 

(1,7) models. Thus, the superiority of the improved model was proved. In this raw data 

transformation and background value modification approach a limitation is noticed. 

The initial condition in the improved GM (1,7) is not modified and yet it is one of the 

error causal factors in grey modelling (Jiang et al., 2014). To overcome this limitation 

this thesis proposed a DGT which keeps modifying the initial condition from one 

formed group to the other in accordance to the new information prior using principle. 

In Li et al. (2023) the mechanism defects, parameter defects, and structural defects of 

the GM(1,N) model were compensated by adding linear correction term and grey 

action, and the OGM(1,N) model was established. Then, the background value 

coefficients of the OGM(1,N) model were optimized using the particle swarm 

optimization (PSO) algorithm, and the OBGM(1,N) model was established. Then, by 

introducing the fractional order idea, the PSO algorithm was used to optimize the 

cumulative order of the OBGM(1,N) and the order of the OBGM(1,N) model was 

extended from an integer field to a real number field to establish FOBGM(1,N) model. 

From the result analysis the prediction accuracy of the FOBGM model reached 

99.996%. This verified the effectiveness of the model improvement by Li et al. (2023). 

Li et al. (2023) concluded this study by quoting that the model still has room for 

improvement, such as from the perspectives of initial value improvement, residual 
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correction, and metabolism, as a subject of further research. Therefore, this thesis 

extends and proposes improvement of the GM(1,N) from the initial value improvement 

and residual correction perspectives. 

Ohene-Akoto et al. (2023) enhanced the prediction accuracy of the traditional grey 

system model using the PSO algorithm. The enhancement was mainly by the use of 

PSO to predict an optimum initial condition value based on the input dataset to 

improve the prediction accuracy of the original grey model that uses the first data of 

the input dataset as its initial condition. The optimum initial condition chosen becomes 

the initial condition value for the response function of the whitenization equation of 

the original grey system model. The accuracy of the proposed model was tested using 

a generated monotonic increasing and decreasing data. The proposed PSO optimized 

initial condition (PSOOIC) had the best performance as compared to the traditional 

grey system model and a model that also improved the initial condition. The results 

showed that the enhanced model using the PSO to choose an optimum initial condition 

is a better modification of the grey system model. 

In dealing with the problem of prediction accuracy of stochastic volatility series Xiao 

et al. (2021) proposed a method to optimize the GM(1,1) from the perspective of 

residual error. In this study, a new fitting method which combines the wavelet function 

basis and the least square method to fit the residual data of the GM(1,1) was used. The 

residual prediction function was constructed by using the fitting method. Then, the 

prediction function of the GM(1,1) was modified by the residual prediction function. 

As a result a wavelet residual-corrected grey prediction model (WGM(1,1)) was 

established. The WGM(1,1) was compared with the GM(1,1) and a Fourier residual 

corrected grey prediction model (FGM(1,1)). From the experimental analysis, the 

WGM(1,1) had better simulation effect and higher prediction accuracy than the 

GM(1,1) and FGM(1,1). 

2.6 Research Gaps 

From the analysis of the relevant literature, it was found that scholars from different 

spheres have improved and optimized the GM(1,n) model from different perspectives 

in different research fields and obtained relatively better prediction accuracy compared 
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with the traditional GM(1,n) model. Some of the methods and approaches used to 

improve the existing GM(1,n) had deficiencies and some of the researchers (e.g. Li et 

al. (2023)) gave recommendations for further improvement of the GM(1,n)’s 

prediction accuracy. From the literature the following research gaps were identified. 

2.6.1 GM(m,n)’s Accuracy Improvement  

The proposed accuracy improvement models in Cai (2010), Mahdi and Mohamed 

(2017, 2022), Lao et al. (2021), Luo et al. (2013) and Xiao et al. (2021) are inconsistent 

with the GST. According to the principles of minimum information, new information 

priority and difference information, most of these existing grey forecast models and 

their improvement are inconsistent with the GST (Tu et al., 2023). Therefore, a novel 

grey model consistent with the GST is necessary. Thus, to improve the accuracy of the 

grey model, a DGT which is consistent with the GST is proposed in this thesis. The 

DGT obeys both the “difference information” and “new information priority” 

principles. Moreover, the DGT has a simple and straight forward procedure and model 

structure. Further, Li et al. (2023) recommended GM(1,n)’s accuracy improvement 

from three perspectives, namely initial value improvement, residual correction and 

metabolism. In respect to this recommendation this thesis improves GM(1,n)’s 

accuracy by employing the DGT and the FSECA. As mentioned earlier the DGT 

modifies the initial condition whereas the FSECA corrects the prediction error. 

Additionally, the RVSA is proposed for improving GM(1,n)’s prediction accuracy in 

vehicle flow prediction. 

2.6.2 Short-Term Forecasting 

These efforts (Changjun et al., 2011; Khuman et al., 2013; Lao et al., 2021; Li et al., 

2023; Luo, et al., 2013; Mahdi & Mohamed, 2017a, 2017b, 2022; Ohene-Akoto et al. 

2023; Twumasi et al., 2021; Xiao et al., 2021) to improve the precision of the original 

GM(1,1) had only concentrated on methodologies to improve the GM(1,n)’s 

prediction accuracy. The researchers did not apply the improved GM(1,n) in any short-

term forecasting. Thus, this research not only introduces new approaches, which 

include data grouping and relative variable smoothing, for improving the precision of 

the original grey models but also extended the application of the improved models in 
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short-term forecasting of vehicle traffic flow. Moreover, this area of short-term traffic 

flow forecasting is receiving much attention nowadays (Shah et al., 2022). 

2.6.3 Relative Factors in the Multivariate Grey Model 

In many mathematical models (Changjun et al., 2011; Kumar, 2017; Kumar & 

Vanajakshi, 2015; Liu et al., 2014; Ma et al., 2017; Shen et al., 2016; Shen, 2022; 

Smith & Demetsky, 1997; Wu et al., 2013; Xu & Dang, 2015; Yao et al., 2022; Yaping 

et al., 2015; Zaki et al., 2016, 2020; Zhou et al., 2022; Zhuang & Cao, 2022) which 

have been used to predict traffic flow the researchers have not considered other factors 

such as pedestrian and motorcycle which affect traffic flow. In such studies the 

researchers have overlooked important factors that affect the performance of a traffic 

system. In other words, the researchers have employed univariate models to predict 

traffic flow. Variables that affect the system of interest are external and is important 

that they are determined and taken into account in system modelling (Caleb et al., 

2022). The pedestrian mode as a relative variable is an important component of urban 

networks and greatly affects the performance of sidewalks and crosswalks, as well as 

the entire network traffic operations by interacting with other traffic modes 

(automobile, bicycle, transit) (Zheng et al., 2016). In this research these relative factors 

are considered in a multivariate grey model, GM(1,n), where n stands for the number 

of factors/variables affecting the system. In particular considered is the pedestrian and 

motorcycle factors in modelling and forecasting of vehicle traffic flow. 
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CHAPTER THREE 

METHODOLOGY 

In addressing city issues of traffic congestion an approach of improved grey model for 

short-term vehicle flow forecasting (estimating traffic flow conditions in the near 

future) is proposed in this research. Therefore, in this chapter, to facilitate the 

assessment of the effect of DGT on short term traffic flow forecasting grey model 

performance both the univariate (GM(1,1)) and multivariate (GM(1,n)) grey models 

are defined and their modelling structure provided. Then the least square method is 

discussed as the optimizing algorithm for determining the optimal parameters of the 

GM(m,n). Next formulation of the proposed accuracy improving methods are 

discussed. The chapter also presents methods and materials on how to analyze the 

performance of the DGT. Evaluation of accuracy improvement by error indicators is 

explained in addition to highlighting on how to validate the reliability and applicability 

of the improved grey models. Finally, research data sources, collection methods and 

procedures are discussed.   

3.1 Assessment of the Effect of Data Grouping Technique on Short Term Vehicle 

Traffic Flow Forecasting Grey Model Performance 

3.1.1 Formulation of the Basic Conventional Grey Model and Its Variants 

The grey model as introduced by Deng (1989) is a widely employed prediction model 

and in this thesis modelling and forecasting of vehicle traffic flow was based on first-

order 1-variable and n-variable grey models denoted by GM(1,1) and GM(1,n) 

respectively.  

I. The Basic Grey Model (GM(1,1) 

The basic grey model i.e. the first-order one-variable (univariate) grey model 

(GM(1,1)), utilizes grey generating techniques to construct a differential equation. 

These generating techniques include the accumulated generating operation (AGO), 

inverse accumulated generating operation (IAGO) and mean value generating 

operation (MGO) which are summarize as follows (Deng, 1989; Xie et al., 2013).  
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a) AGO Formation 

In grey modelling the grey generating techniques develops a systematic series from a 

raw data series. In this thesis the raw data series is presented as (Lu M., 2015; Wang 

et al., 2018):   
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where m is the total number of data points. Accumulation of the series in (3.1) by: 
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results to: 
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which is the Accumulated Generating Operation (AGO) (Li et al., 2021). The AGO is 

a pre-processing technique which reduces the randomness of the actual data to improve 

data regularity and smoothness (Jiang et al., 2014). This generating operation can be 

denoted as: 

)1()0( }{ XXAGO      (3.4) 

and  denotes an operator.  

b) MGO Formation  

From adjacent AGO neighbors a Mean value Generating Operation (MGO) can be 

obtained as (Deng, 1989; Li & Lin, 2014; Lu M., 2015): 
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 is the background value.  
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Thus, the mean generation of adjacent neighbors of the AGO yields the background 

value 𝑍(𝑘)
(1)

 and according to the existing result the "weight" equals to 0.5 (Deng, 1989). 

c) The Grey Generated Model  

The grey modelling algorithm has a unique characteristic of first order differential 

equation given as (Chang et al., 2013; Iqelan, 2017; Lu M., 2015):  

    btaXtX
dt

d
 11       (3.6) 

where  tX 1
 is a background grey value at time 𝑡, 𝑎 and 𝑏 are the developing 

coefficient and grey input respectively (Deng, 1989; Tien, 2009; Wang et al., 2016, 

2018). The parameters  𝑎 and  𝑏 are optimized and estimated by the least squares 

method (see section 3.1.1 part IV) (Lu M., 2015). Eq. (3.6) is the 1st-order grey 

differential equation denoted by GM(1,1) (Tien, 2009) where the first 1 stands for  the 

first-order derivative of AGO data sequence of (3.3) and the second 1 stands for only 

1 time series data used in the grey differential equation.   

Based on initial condition: 
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the solution of (3.6) is deduced as: 
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Therefore, the time response function of (3.6) is deduced as (Chang et al., 2013):   
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where 
 

 

x rˆ
1

1
 is the prediction of the AGO and  𝑥(1)

(0)
 of (3.9) is the initial condition of 

the model which causes prediction error (Jiang et al., 2014; Jong & Liu, 2014).       
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And from (3.1) and (3.3) the following equation can be obtained (Li & Lin, 2014):  
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This is a grey differential model, called ‘Grey Model (first-order, single-variable)’, 

GM(1,1). where 
)0(

)(kx  is a grey derivative (Iqelan, 2017; Lu M., 2015; Slavek et al., 

2015).   

Now the data sequence of the predicted values arising from (3.9) is: 
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d) IAGO Formation  

Now, based on (3.11), a systematical sequence of the original series is obtained by 

retrogressing through Inverse Accumulated Generating Operation (IAGO) given by 

(Chang et al., 2013; Shen et al., 2016):  
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where 1,,2,1  mr  .  

Then the simulative data sequence �̂�(0) of original data sequence 𝑋(0) of (3.1) is 

generated as: 
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where the data sequence �̂�(0) is the final predicted/fitted data sequence of 𝑋(0) of (3.1). 

In other words, by an inverse accumulated generating operation (IAGO) it is shown 

that: 

)0()1( }{ XXIAGO      (3.14) 
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Notice that IAGO (inverse AGO) re-models the original series, and  means 

IAGO operator 

e) Estimating Model Parameters 

The ordinary least square method best estimates the parameter values  𝑎 and 𝑏 which 

are calculated as (Chang et al., 2013; Lu M., 2015):          
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where A  is the data matrix and y  is the measured vector and are given as: 
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II. The Second-Order Grey Model, (GM(2,1) 

For the sake of understanding the grey model in detail the second-order grey model, 

GM(2,1), as a variant of the basic grey model is discussed here. Now, based on the 

basic grey model described above the conventional second-order one-variable grey 

model, (GM(2,1)), can be constructed. 

The operators AGO and IAGO are used to generate the sequences 𝑋(1) and 𝑋(−1) from 

the raw data sequence 𝑋(0). The sequences 𝑋(0) and 𝑋(1)  are as in (3.1) and (3.3) 

respectively. Now, the sequence 𝑋(−1) is generated by IAGO as: 
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where: 
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Besides, the background sequence (i.e. the sequence of the mean of adjacent AGO 

series data) is constructed: 

      
 

 

 

 

 

 

  zzzZ m

11

3

1

2

1
,,,ˆ       (3.19) 

where the mean generation of adjoining AGO neighbors is: 
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This is the mean value generating operation (MGO) and according to the existing result 

(Deng, 1989), the "weight" equals to 0.5, as mentioned earlier. 

Then the grey differential equation model is constructed: 
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where 
1  and 

2  are the low order parameter and high order parameter, respectively, 

𝑏 denotes the control variable and 𝑍(1) is the background sequence as mentioned 

earlier. 

These parameters are best estimated by the least square error method. From which the 

vector parameter p is given by (Xie et al., 2013): 
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where A  is the data matrix and y  is the measured vector (Deng, 1989; Xie et al., 

2013) obtained as: 
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and 𝑚 is the total number of time series data.  

Next, the grey reflection equation (or grey whitenization equation) is constructed and 

solved to obtain a time response equation. Finally, the data sequence 𝑋(0) of (3.1) can 

be forecasted. 

Additionally, in this thesis a multivariable grey model, discussed in the next section, 

is considered. 

III. The Multivariable Grey Model, GM(1,n) 

The multivariable grey model is another variant of the basic grey model denoted as 

GM(1,n), where 1 stands for first order and n stands for the number of time series used 

in the grey differential equation (Li & Wu, 2021). The constructional structure of the 

conventional multivariable grey model is as follows (Cheng et al., 2020; Moonchai & 

Rakpuang). 

The dependent variable time series sequence is presented by 𝑥1
(0)

 (𝑘) and the relative 

variables’ time series sequences are presented by 𝑥𝑖
(0)(𝑘) (𝑘 = 1,2,3,4,⋯ ,𝑚 , 𝑖 =

2,3,4,⋯ , 𝑛), where 𝑚 is the total number of time series data and 𝑛 is the number of 

time series.  

The conventional GM(1,n)’s first order accumulated generating operation (1-AGO) is 

(Li & Wu, 2021): 

𝑥𝑖
(1)

(𝑘) = ∑ 𝑥𝑖
(0)

(𝑗)
(𝑘)
𝑗=1  𝑘 = 1,2,3,4,⋯ ,𝑚 and 𝑖 = 1,2,3,4,⋯ , 𝑛  (3.24) 

and its differential equation is given by: 



39 

𝑥1
(0)(𝑘) + 𝑎𝑧1

(1)(𝑘) = 𝑏2𝑥2
(1)

+ 𝑏3𝑥3
(1)(𝑘) + ⋯+ 𝑏𝑛𝑥𝑛

(1)(𝑘)   (3.25) 

where 𝑎, 𝑏2 to 𝑏𝑛 are parameters determined by the least square method and 𝑧1
(1)

 is the 

background value obtained as: 

𝑧𝑖
(1)(𝑘) = 0.5 (𝑥𝑖

(1)(𝑘) + 𝑥𝑖
(1)(𝑘 − 1)), 𝑘 = 2,3,4,⋯ ,𝑚, 𝑖 = 1,2,3,4,⋯ , 𝑛      (3.26) 

The whitening equation is given as: 

  
𝑑

𝑑𝑡
𝑥1

(1)(𝑡) + 𝑎𝑥1
(1)(𝑘) = 𝑏2𝑥2

(1)(𝑘) + 𝑏3𝑥3
(1)(𝑘) + ⋯+ 𝑏𝑛𝑋𝑛

(1)(𝑘)   (3.27) 

and its solution is: 

𝑥1
(1)(𝑘) = 𝑒−𝑎𝑡(𝑥1

(1)(1) + 𝑡 ∑ 𝑏𝑖
𝑛
𝑖=2 𝑥𝑖

(1)(1) + ∑ ∫ 𝑏𝑖
𝑛
𝑖=2 𝑥𝑖

(1)(𝑡)𝑒𝑎𝑡𝑑𝑡)   (3.28) 

When the time sequence 𝑥𝑖
(1)(𝑘) , (𝑖 = 2,3,4,⋯ , 𝑛) has few changes in the time 

interval [𝑡𝑘, 𝑡𝑘+1], the time response equation of GM(1,n)’s whitening equation 

approximates to: 

�̂�1
(1)(𝑘 + 1) = 𝑒−𝑎𝑡 (𝑥1

(1)(1) −
1

𝑎
∑ 𝑏𝑖𝑥𝑖

(1)𝑛
𝑖=2 (𝑘 + 1)) +

1

𝑎
∑ 𝑏𝑖𝑥𝑖

(1)𝑛
𝑖=2 (𝑘 + 1) (3.29) 

where a vector parameter �̂�, data matrix X  and measured vectorY are given by: 

�̂� = [

𝑎
𝑏2

⋮
𝑏𝑛

] = (𝑋′𝑋)−1𝑋′𝑌     (3.30) 

 𝑋 =

[
 
 
 
 −𝑧1

(1)(2)    𝑥2
(1)(2)   …        𝑥𝑛

(1)(2)

−𝑧1
(1)(3)     𝑥2

(1)(3)   …        𝑥𝑛
(1)(3)

     ⋮               ⋮           …               ⋮

−𝑧1
(1)

(𝑚)  𝑥2
(1)

(𝑚)    …      𝑥𝑛
(1)

(𝑚)]
 
 
 
 

,       𝑌 =

[
 
 
 
 𝑥1

(0)(2)

𝑥1
(0)(3)

⋮

𝑥1
(0)(𝑚)]

 
 
 
 

  (3.31) 

where 𝑚 is the total number of time series data and 𝑛 is the number of time series, as 

mentioned earlier.  
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Then the forecasted value of the original sequence is: 

�̂�1
(0)(𝑘) = �̂�1

(1)(𝑘) − �̂�1
(1)(𝑘 − 1) , 𝑘 = 2,3,4,⋯ ,𝑚, )1(ˆ)1(ˆ )1(

1

)0(

1 xx   (3.32) 

If time series sequence 𝑥𝑖
(1)(𝑘) , 𝑖 = 1,2,3,4,⋯ , 𝑛, has great changes in time interval  

[𝑡𝑘,𝑡𝑘+1], the time response function of GM(1,1) modelled by the series is substituted 

into 𝑥𝑖
(1)

(𝑡) (𝑖 = 2,3,4,⋯ , 𝑛) of 𝑥1
(1)

(𝑡) = 𝑒−𝑎𝑡(𝑥1
(1)

(1) + 𝑡 ∑ 𝑏𝑖
𝑛
𝑖=2 𝑥𝑖

(1)
(1) +

∑ ∫ 𝑏𝑖
𝑛
𝑖=2 𝑥𝑖

(1)(𝑡)𝑒𝑎𝑡𝑑𝑡) to get the analytical expression for time response equation of 

GM(1,n). 

At this point it is worthy to make clear the deficiency of the GM(1,n). According to 

(Wei & Dang, 2016) the trend of the relative variables is a causal to the low accuracy 

of the GM(1,n). Moreover, in the study of Li et al. (2023), it was concluded that 

GM(1,n) still has room for improvement, such as from the perspectives of initial value 

improvement, residual correction, and metabolism, as a subject of further research. 

Now in this research the adopted DGT modifies the initial condition whereas the RVSA 

smooths the relative variables. Additionally, the FSECA performs residual correction. 

IV. Method of Least Squares 

The parameters )( a  and b  of the grey differential equation model are referred to as 

the development coefficient and the grey action quantity respectively and are 

determined by the method of least squares. The parameter )( a  describes the 

development states of )1(X  and )0(X . It represents the variance and dynamic nature of 

the system. In other words, it reflects the variation in the data. A small variance 

indicates that the data points tend to be very close to the mean and to each other. 

Parameter b  is referred to as the grey action quantity value, and is obtained from the 

background values (behavioral sequence). 

The grey model parameter values  𝑎 and 𝑏 are such that the best fit result minimizes 

the sum of squared errors or residuals which are the differences between the observed 

or experimental value and corresponding fitted value given in the model. Thus, the 
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ordinary least square method best estimates these parameters which are calculated as 

(Caleb et al., 2022; Chang et al., 2013; Lu M., 2015; Nguyen et al., 2020): 

  yT
b

a
AAA

T1









, which is applicable in GM(1,1)     

  yT

b

AAA
T1

2

1























, which is applicable in GM(2,1)     

[

𝑎
𝑏2

⋮
𝑏𝑛

] = (𝑋′𝑋)−1𝑋′𝑌, which is applicable in GM(1,n)   (3.33) 

where  𝑎 and b  are as defined in (3.6), 
1  and 

2  are as defined in (3.21), A  is the 

data matrix and y  is the measured vector (Deng, 1989; Guo-Dong et al., 2006; Luo 

et al., 2013; Zou & Wu, 2012), 𝑋 and 𝑌 are the data matrix and measured vector for a 

multivariable grey model as defined in (3.31). Whereas 𝑎, 𝑏2 to 𝑏𝑛  are the multivariate 

grey model parameters as defined in (3.25).  

And as long as the matrix A  has a full rank and the inverse of 𝐴𝑇𝐴 exists, then it is 

possible to compute “good” values of the parameters 𝑎 and 𝑏 that minimizes the sum 

of squared errors. 

3.1.2 Formulation of the Grey Models Based on Accuracy Improving Methods 

In this thesis six methods for improving GM’s accuracy in traffic flow fitting and short-

term forecasting are proposed. To improve the conventional grey models’ precision 

this thesis introduces three new methods, namely a data grouping technique (DGT), a 

relative variable smoothing approach (RVSA) and a three-step approach (TSA). The 

DGT has the consequence of a lot of calculations but with the aid of MATLAB code 

the computation is done easily and faster. The RVSA is used as a data pre-processing 

tool in improving the precision of the multivariate grey model. TSA method was 

proposed to improve the accuracy of the conventional multivariate grey model 
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(GM(1,n)). The other three methods employed in this thesis were existing approaches, 

namely modification of background value (MBV), modification of initial condition 

(MIC) and Fourier series error correction approach (FSECA). These methods were 

used to improve prediction accuracy of the conventional grey models through data 

grouping. The TSA entails combining three approaches i.e. combining the DGT, RVSA 

and FSECA. Moreover, these methods are compared in improving the accuracy of the 

conventional grey models. The methods are explained and formulated in the following 

sub-sections of this thesis. 

a) Data Grouping Technique (DGT) 

The concept of DGT can be explained from a curve point of view. When a curve is 

divided into several small portions, the portions assume a straight-line shape. In other 

words the trends in a single portion tend to relate linearly with each other. This is the 

concept of “smoothing” and it is the “hidden inherent characteristic” in this concept of 

DGT. So if a set of time series data is grouped into overlapping sub-groups (small 

portions) and forecasted separately and the results of forecasts superimposed to obtain 

overall result of prediction, it is definite that the prediction accuracy can be improved. 

This can be referred to as “Group Smoothing” and can be used all across data analysis. 

The general idea is to group data points that are expected to have similar characteristics 

and fit a simple model. It is almost similar to bin smoothing. 

Data grouping has been employed in other time series prediction methods. But in this 

research the grouping is very unique in the sense that it is based on the overlapping 

concept (Farsi, 2020) whereas in other cases grouping is based on data type, data 

intervals, data similarity etc. In the process of data grouping the groups overlap and 

depending on the intensity of overlapping the strong grouping and weak grouping 

techniques are formulated. In addition, the DGT is based on the “new information prior 

using” principle (see part III below). The ‘new information prior using’ principle 

prioritizes new information in a given data series and is useful in reducing the inherent 

prediction errors in the conventional GM (Mahdi and Mohamed, 2017b). 

According to the GST the minimum number of data points to estimate and model a 

system is four (4). Therefore, in this research the minimum number of group data 
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points is four. Consequently, data grouping in 5s, 6s, 7s, and so on is considerable. 

Moreover, the more the groups formed the more the accuracy improvement as 

explained in section 4.1.3 of this thesis. 

Three categories of data grouping techniques, namely no grouping or one group (NG 

or OG), weak grouping (WG), and strong grouping (SG) are considered in this thesis. 

The no/one group technique correspond to the original GM (m,n) whereas the weak 

grouping and strong grouping techniques correspond to the proposed Grouped GM 

(m,n) (GGM (m,n)). These data grouping techniques are explained below and their 

performance analysis is done in section 4.1.3. Moreover, part IV outlines a 

mathematical form of the DGT in 4s. 

(I) No Grouping (NG) Method 

In this method whole data sequence to be predicted forms a single group. For example, 

for ten elements in a data sequence 10m  , where m  is the total number of elements. 

This is illustrated in Figure 3.1. The original GM(1,1) is based on this grouping method 

in which case there is no data overlapping. This method is also referred to as the “one 

group” or “non-grouping” (abbreviated as NG) method. 

 

Figure 3.1: No Grouping (NG) 

(II) Weak Grouping (WG) Technique 

Considering a data set of 10 sample points 3 groups of 4s are formed (see Figure 3.2). 

In Figure 3.2, shown is the first group containing elements 1 to 4 and the third group 

consists of elements 7 to 10. The second group contains elements 4 to 7. Note that the 

three groups only overlap at data points 4 and 7. If the data is grouped in 5s, two groups 

are obtained in which case the first group is that of elements 1 through 5, and the 

second group has elements 5 through 9. Thus, one data is left out and this is the 



44 

disadvantage of this technique. If the data is grouped in 6s, one group of elements 1 

through 6 is formed but the second group is not full. Therefore, based on this grouping 

technique, the formed groups do not overlap so much as compared to the strong 

grouping technique and thus the simulation errors do not cancel out. Consequently, the 

prediction accuracy is low, as it is evident from section 4.1.3d. In this thesis this 

technique is referred to as weak grouping. Notice that in this case a maximum of three 

groups are formed if no data is left out. 

 

Figure 3.2: Weak Grouping (WG) 

(III) Strong Grouping (SG) Technique 

This is the most accurate DGT as the groups overlap so much and hence the errors tend 

to reduce to a minimum. For any particular data set the number of groups is given by:  

𝑁 = 𝑚 − [𝑘 − 1]     (3.34) 

where 𝑁 is the number of groups, 𝑚 is the total number of data used, and 𝑘 is the 

number of group data points. This technique is illustrated in Figure 3.3. With 10 sample 

points, 7 groups of 4s are formed. In addition to the three groups of the WG technique, 

four more groups are formed. 

 

Figure 3.3: Strong Grouping (SG) 
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The first group includes elements 1 to 4 and the last group is composed of elements 7 

to 10. Note that at data points 2 and 9 the overlap is once, at data points 3 and 8 the 

overlap is twice and at data points 4, 5, 6 and 7 the overlap is thrice. Note that a lot of 

overlaps are involved in this DGT and consequently many groups are formed. Now 

this is referred to as strong grouping (SG). With many groups and overlaps the 

simulation errors tend to reduce to a minimum, making this technique to be more 

accurate compared with the weak grouping technique. See section 4.1.3d. If now the 

data is grouped in 5s, six groups are obtained in which case the first group is that of 

elements 1 through 5, and the sixth group has elements 6 through 10. Here no data is 

left out and this is the advantage of this technique. If grouping is in 6s, five groups are 

formed. Thus, the more the data points per group the less the number of groups formed. 

The SG technique has an advantage of being based on the “new information prior 

using” principle, which is discussed in section 3.1.2b. 

As a matter of illustration, the traffic flow data of Table 3.1 is employed to show the 

concept of SG in 4s and this is the data grouping method adopted throughout this thesis 

in improving the precision of the original grey model. The Table 3.1 data are from 6:00 

am to 8:00 am of the day which were recorded at every data point (DP). The vehicle 

flow data was from the national highway route 11 of Tokushima city, Japan.  

For example, the first 22 data points given in Table 3.1 are grouped into 19 groups of 

4s based on (3.34) and Figure. 3.3. These groups are formed and tabulated as in Table 

3.2 where DP stands for data point and AD stands for actual data. Notice that the 

process of data grouping involves dropping of an old data point from a group and 

adding of a new data point to that group until all data set elements are grouped. 
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Table 3.1: Traffic Flow Data 

Note: Data by author; A-1-8 Traffic Congestion and CO2 Emission Analysis via 

MITRAM in Tokushima City. Proceedings of the IEICE Engineering Sciences 

Society/NOLTA Society Conference. January 3rd, 2016. 

(IV) Data Grouping Technique in a Mathematical Form 

The process of data grouping can be easily presented in a general mathematical form. 

For instance, the process of strongly grouping data in 4s can be summarized as follows. 

Any time series data can be grouped to form 𝑚 − 3 groups. The first group is presented 

as: 

  𝑥𝑖
(0)(𝑘), 𝑘 = 1,⋯ ,4,    𝑖 = 1,2,⋯𝑛    (3.35) 

Data Point Time of Day Traffic Volume 

1 6:00 0 

2 6:05 14 

3 6:10 35 

4 6:15 54 

5 6:20 55 

6 6:25 95 

7 6:30 83 

8 6:35 89 

9 6:40 98 

10 6:45 134 

11 6:50 103 

12 6:55 173 

13 7:00 110 

14 7:05 167 

15 7:10 160 

16 7:15 150 

17 7:20 210 

18 7:25 200 

19 7:30 172 

20 7:35 149 

21 7:40 154 

 

22 7:45 140 

 

23 7:50 157 

24 7:55 146 

25 8:00 145 
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where 𝑛 is number of time series under consideration. 

And in accordance with the “new information prior using” principle (Mahdi & 

Mohamed, 2017b) the second group is presented as:



48 

Table 3.2: Actual Data (AD) Grouping by SG in 4s 

DP AD GROUPS 1- 19 

G1 G 2 G 3 G 4 G 5 G6 G7 G8 G9 G 10 G 11 G 12 G 13 G 14 G 15 G 16 G 17 G18 G19 

1 0 0                   

2 14 14 14                  

3 35 35 35 35                 

4 54 54 54 54 54                

5 55  55 55 55 55               

6 95   95 95 95 95              

7 83    83 83 83 83             

8 89     89 89 89 89            

9 98      98 98 98 98           

10 134        134  134  134  134           

11 103        103 103 103 103         

12 173         173 173 173 173        

13 110          110 110 110 110       

14 167           167 167 167 167      

15 160            160 160 160 160     

16 150             150 150 150 150    

17 210              210 210 210 210   

18 200               200 200 200 200  

19 172                172 172 172 172 

20 149                 149 149 149 

21 154                  154 154 

22 140                   140 
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𝑥𝑖
(0)(𝑘), 𝑘 = 2,⋯ ,5,    𝑖 = 1,2,⋯𝑛   (3.36) 

This grouping process continues until the last group is presented as: 

𝑥𝑖
(0)(𝑘), 𝑘 = 𝑚 − 3,⋯ ,𝑚,    𝑖 = 1,2,⋯𝑛   (3.37) 

where 𝑚 is the total number of time series data. 

Therefore, the SG in 4s (i.e. four data points per group) keeps dropping an old data 

and adding a new data in the grouping process. This is the point at which the SG 

technique has the advantage of adhering to the ‘new information prior using’ principle. 

Thus the procedure of grouped grey modelling entails repeated application of the 

OGM(1,1) on each group of data and averaging the predicted values at points of 

overlap. In other words, the final combined prediction is obtained by superimposing 

those group predictions. Thus, grouped grey modelling inherently modifies the initial 

condition (MIC) of (3.9) and this promotes accuracy improvement. 

In this thesis the original GM(1,1) is denoted as OGM(1,1). Introduction of the DGT 

into the OGM(1,1) results to a hybrid grey model referred to as Grouped GM(1,1) and 

denoted as GGM(1,1). 

b) New Information Prior Using Principle 

In (Mahdi & Mohamed, 2017b) both initial and final conditions of GM(1,1)’s time 

response function were improved in order to express this principle. In the proposed SG 

technique, the new information priority principle is well and repeatedly demonstrated 

in each formed group. For example, the initial condition of the first group is data point 

1, that of the second group is data point 2, that of the third group is data point 3, and 

so on. This process of dropping an old data point and adding a new data point keeps 

modifying the initial condition. Thus, the SG technique takes advantage of the new 

pieces of information in the original data (Mahdi & Mohamed, 2017b; Jiang et al., 

2022).  
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c) Modification of the Background Value (MBV) 

The computation of the parameters 𝑎 and 𝑏 of (3.9) depends on the original data 

sequence of (3.1) and the background value of (3.20). In GST, the value of the 

background value coefficient has a significant impact on the performance of the grey 

forecasting models (Zeng & Li, 2018). However, for most existing grey models, the 

background value coefficient is fixed at 0.5 to simplify the modelling process (Li et 

al., 2021; Zeng & Li, 2018). The constructional formula for (3.20) is among the factors 

which produce simulation errors (Jiang et al., 2014). Thus remodelling (3.20) will 

improve the precision of the model and in this thesis, remodelling is by integrating 

both sides of (3.6) from 𝑘 − 1 to 𝑘 to obtain (Mahdi & Mohamed, 2017a): 

∫
𝑑𝑥(𝑡)

(1)

𝑑𝑡
𝑑𝑡 + 𝑎 ∫ 𝑥(𝑡)

(1)

𝑘

𝑘−1

𝑘

𝑘−1

𝑑𝑡 = ∫ 𝑏𝑑𝑡

𝑘

𝑘−1

 

𝑥(𝑘)
(1)

− 𝑥(𝑘−1)
(1)

+ 𝑎 ∫ 𝑥(𝑡)
(1)

𝑑𝑡 = 𝑏

𝑘

𝑘−1

𝑥(𝑘)
(0)

+ 𝑎 ∫ 𝑥(𝑡)
(1)

𝑘

𝑘−1

𝑑𝑡 = 𝑏 

 (3.38) 

Compare (3.10) and (3.38) and notice that the parameters 𝑎 and 𝑏 are now estimated 

by using: 

𝑍(𝑘)
(1)

= ∫ 𝑥(𝑡)
(1)

𝑑𝑡

𝑘

𝑘−1

 

   (3.39) 

as the background value. Thus 𝑎 and 𝑏 are now more adaptive to the whitenization 

equation (Mahdi & Mohamed, 2017a). 

Use of (3.39) with a few steps of integration as in (Liu et al., 2014) yields: 
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Then this MBV and the DGT method are combined to improve the OGM(1,1)’s 

accuracy in fitting and short-term forecasting. Thus a modified background value 

GM(1,1) named as MBVGM(1,1) is established. Further, combination of the MBV and 

the DGT in improving the OGM(1,1)’s accuracy establishes a Modified Background 

Value Grouped GM(1,1), MBVGGM(1,1). 

d) Modification of the Initial Condition (MIC)  

The initial condition of (3.9) is a cause to precision error of the OGM(1,1) (Jong & 

Liu, 2014). Thus, modification of this initial condition to enhance the model’s 

accuracy is important and as in (Madhi & Mohamed, 2017c) MIC is accomplished as 

follows. From (3.12) the restored value of the original sequence can as well be given 

by:  

 

 

 

 

 

 
mrxxx rrr

,3,2,ˆˆˆ
1

1

10



   (3.41) 

Substituting (3.9) in (3.41) results to: 

�̂�(𝑟)
(0)

= (1 − 𝑒𝑎) (𝑥(1)
(0)

−
𝑏

𝑎
) ∗ 𝑒−𝑎𝑟 ∗ 𝑒𝑎   (3.42) 

Let 𝐶, that is the initial condition of the traditional GM(1,1), be expressed as: 

𝐶 = (𝑥(1)
(0)

−
𝑏

𝑎
) ∗ 𝑒𝑎     (3.43) 

So that (3.42) becomes: 

�̂�(𝑟)
(0)

= 𝐶 ∗ (1 − 𝑒𝑎) ∗ 𝑒−𝑎𝑟    (3.44) 

Therefore, the discrete form of (3.9) results to:  

�̂�(𝑟)
(1)

≜ 𝐶 ∗ 𝑒−𝑎𝑟 +
𝑏

𝑎
,    (3.45) 

By applying IAGO on �̂�(𝑟)
(1)

, the restored (predicted) value of the raw data is given as 

follows: 
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   �̂�(𝑟)
(0)

= �̂�(𝑟)
(1)

− �̂�(𝑟−1)
(1)

   

           = 𝐶 ∗ (1 − 𝑒𝑎) ∗ 𝑒−𝑎𝑟 

= 𝐶 ∗ (𝑒−𝑎𝑟 − 𝑒𝑎 ∗ 𝑒−𝑎𝑟)    

= 𝐶 ∗ (𝑒−𝑎𝑟 − 𝑒−𝑎(𝑟−1)), 𝑟 = 2,3, . . 𝑚 (3.46) 

Optimization of the Initial Condition 

Minimizing the sum of the squared error from the predicted values can optimize the 

initial condition. A function of 𝐶 is constructed as follows (Madhi & Mohamed, 

2017c):  

𝑓(𝐶) = ∑ [�̂�(𝑟)
(0)

− 𝑥(𝑟)
(0)

]𝑚
𝑟=2 ^2   (3.47) 

Substituting (3.46) into (3.47) yields: 

 𝑓(𝐶) = ∑ [𝐶 ∗ (𝑒−𝑎𝑟 − 𝑒−𝑎(𝑟−1)) − 𝑥(𝑟)
(0)

]𝑚
𝑟=2 ^2   (3.48) 

Now, (3.48) is differentiated with respect to 𝐶 and let the derivative be equal to zero. 

Then as in (Madhi & Mohamed, 2017c) the optimized 𝐶 is given as:  

𝐶 =
∑ (𝑒−𝑎𝑟−𝑒−𝑎(𝑟−1))𝑚

𝑟=2 ∗𝑥(𝑟)
(0)

∑ (𝑒−𝑎𝑟−𝑒−𝑎(𝑟−1))𝑚
𝑟=2 ^2

    (3.49) 

Therefore, the process of prediction by the modified initial condition grey model is 

outlined in four steps which include: 

a. Calculation of the background value from the AGO sequence of (3.3) by (3.20), 

b. Computation of the developing coefficient and grey input parameters by (3.33), 

c. Computation of the optimized value of 𝐶 by (3.49) and 

d. Computation of the restored (predicted) values by (3.46). 
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When MIC is used to improve OGM(1,1)’s accuracy a Modified Initial Condition 

GM(1,1) is developed and referred to as MICGM(1,1). And combination of DGT and 

MIC in improving OGM(1,1)’s accuracy results to a hybrid model called Modified 

Initial Condition Grouped Grey  Model (MICGGM(1,1)).  

e) Relative Variable Smoothing Approach (RVSA) 

According to (Wei & Dang, 2016) the trend of the relative variables is a causal to the 

low accuracy of the GM(1,n). Thus this thesis proposes to adopt the procedure of the 

conventional grey model GM(1,1) (He & Tao, 2014) as a data pre-processing tool and 

smooth the relative variables. Thus a GM(1,1) fitted data series is generated for each 

relative variable and the new smoothed data series are used, instead of the observed 

data series, in GM(1,n) modelling. Note that GM(1,1) is a special case of the GM(1,n) 

in which n=1 and its constructional structure is as outlined in section 3.1.1 part I. Now, 

introducing RVSA and DGT in OGM(1,1) results to a Variable Smoothed-Grouped 

data multivariate Grey Model denoted as VSGGM(1,n). This approach is employed in 

section 4.3.4 to improve the precision of the conventional GM(1,3).  

f) Fourier Series Error Correction Approach (FSECA) 

In this section, based on Fourier series theory, the use of the Fourier series in time 

series fitting error correction is discussed. A Fourier series takes a signal and 

decomposes it into a sum of sines and cosines at different frequencies and is a very 

good way of approximating functions in a finite range, using only the first few modes 

(i.e. truncating the sum over 𝑚 after some low value 𝑚 = 𝑁) (Hu, YC., 2021). 

Generally, Fourier components get smaller as the mode number 𝑚 increases and if the 

Fourier series is truncated after 𝑁 terms, an error 𝐸𝑁 that measures how much the 

truncated Fourier series differs from the original function, can defined. That is to say 

if:  

𝑓𝑁(𝑡) =
𝑎0

2
+ ∑ [𝑎𝑚cos (

2𝜋𝑚

𝑇
𝑡) + 𝑏𝑚sin (

2𝜋𝑚

𝑇
𝑡)]𝑁

𝑚=1   (3.50) 

the error can be defined as: 
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𝐸𝑁 = ∫ 𝑑𝑡|𝑓(𝑡) − 𝑓𝑁(𝑡)|2 ≥ 0
𝑇

2

−
𝑇

2

   (3.51) 

where 𝑓(𝑡) is the signal waveform, 𝑎0/2 is a constant term representing functions that 

are entirely above the x-axis, 𝑇 is the period, 𝑎𝑚 and 𝑏𝑚 are Fourier coefficients to be 

determined by the least square method (Hu, YC., 2021). Furthermore, the Fourier 

coefficients are designed to minimize the square of the error from the actual function. 

The Fourier series is optimal in the least-squares sense because the Fourier coefficients 

which minimize 𝐸𝑁 for some given 𝑁, are exactly the coefficients that can be obtained 

by solving the full Fourier problem. 

Now the Fourier analysis allows to isolate (filter) certain frequency ranges such as 

those of noise and can compensate the random error of a system (Niu et al., 2014). 

This property makes it useful in modifying the residual to effectively improve the 

prediction accuracy of the conventional GM(1,n). Thus, modification of the error 

based on Fourier series is achieved as follows. The relative error 𝑒(𝑘), can be 

computed as: 

𝑒(𝑘) = 𝑥(0)(𝑘 − 1) − �̂�(0)(𝑘 − 1);    𝑘 = 2, 3,⋯ ,𝑚;   𝑒(1) = 0  (3.52) 

where 𝑥(0) is the original dependent time series and �̂�(0) is the restored value of this 

series by the conventional GM(1,n) as obtained before error correction. 

This results to a relative error series presented as:  

         𝑒 = [𝑒(1), 𝑒(2), 𝑒(3),⋯ , 𝑒(𝑚)] (3.53) 

By Fourier series and truncating the sum over 𝑚 after some low value 𝑚 = 𝑁 the 

modified random error sequence can be approximated as (Hsu, 2009): 

�̂�(𝑘) =
𝑎0

2
+ ∑ [𝑎𝑚cos (

2𝜋𝑚

𝑇
𝑘) + 𝑏𝑚sin (

2𝜋𝑚

𝑇
𝑘)]𝑁

𝑚=1   (3.54) 

where 𝑎0, 𝑎𝑚 and 𝑏𝑚 are Fourier coefficients, 𝑁 = {(𝑚 − 1)/2} − 1, 𝑘 = 2, 3,⋯ ,𝑚 , 

and 𝑇 = 𝑚 − 1. 
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For convenience and to compute the Fourier coefficients 𝑎0, 𝑎𝑚 and 𝑏𝑚 based on the 

original relative error sequence, 𝑒, (3.54) is rewritten in matrix form as: 

𝑒 = 𝐴𝑃    (3.55) 

where 𝐴 is a 12 N  by 1m  matrix obtained as: 
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and 𝑃 is the Fourier coefficient vector given as: 

𝑃 = [𝑎0 , 𝑎1, 𝑏1,⋯ , 𝑎𝑁 , 𝑏𝑁]𝑇    (3.57) 

And from the least square method (Nguyen et al., 2020):  

𝑃 = [𝐴𝑇𝐴]−1𝐴𝑇𝑒𝑇    (3.58) 

Then the computed values of the Fourier coefficients are to be substituted in (3.54) and 

the final restored value of the dependent variable is obtained as: 

(𝑘) = �̂�(0)(𝑘)+�̂�(𝑘)    (3.59) 

This error correction method is employed in section 4.3.4 to improve the precision of 

the conventional GM(1,n) in vehicle traffic flow prediction. Incorporation of FSECA 

in VSGGM(1,n) yields a Variable Smoothed-Grouped data-Fourier series based 

multivariate Grey Model denoted as VSGFGM(1,n). 

g) Three-Step Approach (TSA) 

The conventional GM(1,n) has a complex structure compared to the GM(1,1) and its 

low accuracy has been attributed to its defects in modelling mechanism, parameter 
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estimation and model structure (Cheng et al., 2020; Li et al., 2023; Zeng et al., 2016). 

According to (Lao et al., 2021; Moonchai & Rakpuang, 2015), the prediction accuracy 

of the conventional GM(1,n) is limited due to some factors such as the smoothness of 

the raw data, its background value computation and  its model equation. Additionally, 

Li et al. (2023) in their study recommended residual correction to further improve 

GM(1,n)’s accuracy. In this thesis the prediction accuracy of a conventional first order 

three variable grey model denoted as GM(1,3), is improved by smoothing its two 

relative variables in addition to adopting the DGT and FSECA. It is simply the 

combination of the three approaches which have been explained above. 

This TSA consists of smoothing the relative variables by a univariate grey model, 

GM(1,1), adoption of a DGT in the GM(,n) and correction of the prediction error 

(residual) based on FSECA. The univariate grey model, GM(1,1), is proposed as the 

data pre-processing tool for smoothing the relative variables. The FSECA filters noise 

components in the prediction error. This approach is simply the combination of the 

RVSA, DGT and FSECA methods, in that order, for improving the precision of the 

conventional GM(m,n). The TSA yields the two improved hybrid grey models as 

follows.   

i) VSGGM(1,n) Improved Model 

Firstly, by combining the RVSA and DGT a Variable Smoothed-Grouped data 

multivariate Grey Model denoted as VSGGM(1,n) is established. 

ii) VSGFGM(1,n) Improved Model 

Secondly, introducing FSECA in VSGGM(1,n) results to a Variable Smoothed-

Grouped data-Fourier series based multivariate Grey Model denoted as 

VSGFGM(1,n). 

h) Relative Factors; Motorcycle and Pedestrian in the GM(1,n)  

Various factors affects vehicle traffic flow and can increase the intensity of traffic 

congestion. The pedestrian mode as relative factor is an important component of urban 

networks and greatly affects the performance of sidewalks and crosswalks, as well as 
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the entire network traffic operations by interacting with other traffic modes 

(automobile, bicycle, transit) (Zheng et al., 2016). On the other hand, the effects of 

motorcycle on vehicle traffic operations cannot be neglected. Traffic mixed with 

motorcycle is more hazardous under interruption caused by motorcycle. Such aspects 

affect vehicle traffic flow in one way or the other depending on whether an intersection 

is signalized or not (Zheng et al., 2016). 

Such factors are taken into account by the multivariable grey model GM(1,n), as 

relative variables. Therefore, these factors are considered in predicting vehicle traffic 

flow in this study. These factors along with the main factor of vehicle traffic flow are 

the 𝑛 variables in the GM(1,n). For instance, considering three variables (𝑛 = 3), say 

the main variable (vehicle traffic flow) and two relative variable (i.e. motorcycle and 

pedestrian), then these three variables can be defined in GM(1,3) as follows (Shen et 

al., 2019): 
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tX  is the time series of traffic flow ( number of vehicles), 
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tX  is the time series of motorcycle (number of motorcycles) and 
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tX  is the time series of pedestrian (number of people),  

 where t  is an order of the time series and can be minute, hour, month or year. 

In this thesis the motorcycle and pedestrian are considered as the relative variables 

affecting vehicle traffic flow. See section 4.3.4.  

i) Short-Term Traffic Flow Forecasting 

Traffic flow forecasting is a crucial technology for building ITS and has gained more 

and more attention with the rapid development and deployment of the ITS. Traffic flow 

prediction means to predict the distribution of traffic flow in the near future. The 

prediction is based on historical and real-time traffic flow data and can include short-

term, medium-term and long-term traffic flow prediction (Sun et al., 2022). In this 
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thesis the focus was on short-term vehicle flow forecast and the concept of grey 

forecasting was used.  

The concept of grey forecasting is by extrapolating the modelled series of (3.9) as: 
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3 ,    (3.60) 

     Hence by short-term forecast vehicle volume in the near future was determined at 

predetermined time intervals. In general, short-term traffic flow forecasting refers to 

the case in which the time span between 𝑡 and 𝑡 + 1 does not exceed 15 minutes (or 

even is smaller than 5 minutes). Where 𝑡 is the instant at which data is recorded and 

𝑡 + 1 is the immediate instant of data collection. So, to forecast two points ahead 

means estimating the traffic volume at 𝑡 + 1 and at 𝑡 + 2 which corresponds to 𝑚 +

1 and 𝑚 + 2 of grey forecasting, see (3.60). 

3.1.3 Evaluating the Performance of the Improved GM (m,n) 

Measuring and judging accuracy improvement was of paramount importance in this 

research. Measures of model performance, namely Root Mean Square Error (RMSE), 

Root Mean Square Percentage Error (RMSPE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Deviation (MAPD) and the Percent Error ( ) were adopted to 

evaluate the accuracy improvement of the grey models. These error indicators were 

computed by (3.61) to (3.65) (Chai & Draxler, 2014; Guo et al., 2015; Liu & Cocea, 

2017; Lotfalipour et al., 2013; Willmott & Matsuura, 2005; Zhang et al., 2015): 
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where 
 

 

x i

0
 is the original data, and 

 

 

x iˆ
0   is it’s forecasting, 𝑛 = 𝑚 is the total number 

of data, (see (3.1) and (3.13)). In addition accuracy improvement was judged by 

comparing the improved grey models with other best models available (e.g. MBV 

GM(1,1) of (Mahdi & Mohamed, 2017a) and MIC GM(1,1) of (Mahdi & Mohamed, 

2017b) in terms of accuracy. In other words, comparison of the DGT with MBV and 

MIC in improving the precision of the original grey models was evaluated.  

3.1.4 Analyzing the Performance of the Data Grouping Techniques 

To improve the prediction accuracy of the conventional GM (1,1) the DGT, MBV and 

MIC techniques are adopted. For the DGT various techniques are proposed and 

graphically analyzed and their performance is evaluated in detail. In particular, the 

strong and weak grouping techniques are discussed to show that prediction accuracy 

continues to improve as the number of data groups increases. Therefore, detailed 

performance analysis of the proposed strong grouping (SG) and weak grouping (WG) 

techniques is presented and consequently the usefulness of the proposed technique (i.e. 

the DGT) is precisely discussed and shown. In particular, the connection between data 

points per group and the number of groups is evaluated. It is shown that the more the 

number of groups, the more the overlaps and the more the data is smoothed to increase 

prediction accuracy. In order to achieve this performance analysis two types of data 

(from Table 3.3), namely vehicle volume and CO2 emissions, up to 25 data points are 

employed. Both vehicle volume and CO2 emissions data were grouped in 4s and 5s. 

Generally, these four grouping techniques and the one group technique are compared 
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to determine the most accurate technique for improving the prediction accuracy of the 

conventional GM(1,1).   

3.2 Investigating the Effect of Univariate and Multivariate Formulation on 

Accuracy of Grey Models on Short Term Vehicle Traffic Flow Forecasting 

The conventional univariate and multivariate grey models are compared to improved 

univariate and multivariate grey models. This comparison establishes the effect of the 

relative factors in vehicle flow modelling. The univariate model is used to fit the main 

variable data set without considering the relative variables. On the other hand, the 

multivariate model is used to fit the same main variable data set with consideration of 

the relative variables. The main variable in this thesis is the vehicle flow time series 

data whereas the relative variables are pedestrian and motorcycle time series data. The 

three variables are from traffic flow data collected from the Nairobi CBD. Since 𝑛 =

3 the conventional multivariate grey model considered in this thesis is GM(1,3). On 

the other hand the conventional univariate grey model is GM(1,1). These conventional 

grey models are improved by the DGT to develop hybrid grey models named as 

univariate Grouped Grey Model (GGM(1,1) and multivariate Grouped grey Model 

(GGM(1,3). Then these four models are compared in terms of their prediction accuracy 

to determine the effect of the relative variables on vehicle traffic flow forecasting.  

3.3 Assessment of Grouping Technique Based Grey Model on Energy 

Consumption and Carbon Dioxide Emissions 

In this research the proposed improved grey models were subjected to a variety of time 

series data in order to assess their performance. The improved grey models were 

employed in fitting and forecasting two types of time series data, namely CO2 emission 

and electricity consumption. The detailed modelling of these time series data by the 

improved models is presented in Chapter 4, sections 4.2 and 4.4. Additionally, in this 

research the existing MBV and MIC methods have been compared with the proposed 

DGT in improving the precision of the conventional grey models.  

The GM uses a cumulative model in order to create differential equations and it 

requires a small number of data. As mentioned earlier, in section 3.1.1 of this thesis, 
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the grey forecasting model is abbreviated as “GM(m,n)” and “m” symbolizes the 

degree of differential equations whereas “n” represents the number of variables under 

consideration. In this thesis a conventional first order three variable grey model 

denoted as OGM(1,3) (Original GM(1,3)) was considered. This model is applicable in 

modelling systems that involve one dependent variable and n-1 relative factors 

(Moonchai & Rakpuang, 2015). According to Moonchai and Rakpuang (2015) the 

prediction accuracy of the conventional GM(1,n) is limited due to some factors such 

as the smoothness of the raw data, its background value computation and  its model 

equation.  

Now in this thesis to improve the fitting accuracy of the OGM(1,n) the DGT is 

introduced into OGM(1,n). Thus a Grouped GM(1,n) denoted as GGM(1,n) is 

developed. The DGT has been discussed in section 3.1.2 of this thesis and it plays a 

great role in smoothing the raw data and thereby improving the smoothing and fitting 

accuracy of the OGM(1,n). The accuracies of the OGM(1,n) and those of the 

GGM(1,n) are compared for the purpose of validating the DGT in accuracy 

improvement. Additionally, these two models are subjected to two data scenarios (CO2 

emission and clean energy consumption) for the purpose of further assessing the DGT 

in boosting the accuracy of the OGM(1,n). 

3.4 Research Data  

As mentioned earlier a variety of time series data were used in this research for the 

purpose of validating the proposed new concept of data grouping in improving the 

precision of the original grey models. These data included vehicle traffic flow, 

vehicular CO2 emission, electricity consumption data, energy consumption, economic 

scale and population size. Therefore, several empirical examples were given in this 

thesis based on different data scenarios sourced from different origins. This is to prove 

that the improved grey models are portable and multidisciplinary applicable.  

3.4.1 Data Source 

For a vehicle traffic system there are three cyclical variations: Traffic flow 

characteristics varies as hourly pattern, daily pattern, monthly and yearly pattern 
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(Sarraj, 2018). Of particular interest in this study is the hourly vehicle traffic pattern. 

For the hourly pattern, vehicle traffic congestion data for the whole day is essential 

(Sarraj, 2018). Of particular interest in this study was minute time traffic pattern data 

(i.e. traffic data collected and recorded in minute time segments). In this study vehicle 

traffic data was sourced from various sources as categorized below.  

Table 3.3: 6:00 Am to 8:00 Am Vehicle Flow and Vehicular CO2 Emission Data 

Note: Data by author; A-1-8 Traffic Congestion and CO2 Emission Analysis via 

MITRAM in Tokushima City. Proceedings of the IEICE Engineering Sciences 

Society/NOLTA Society Conference. January 3rd, 2016. 

I. Data Sourced from Past Research Contexts 

a) Vehicle Flow Data from the National Highway Route 11 of Tokushima City 

The Table 3.3 data were from 6:00 am to 8:00 am of the day which were as recorded 

DP Time  of Day Traffic Flow CO2 [g] 

1 6:00 0 0.0 

2 6:05 14 13.62 

3 6:10 35 56.06 

4 6:15 54 67.88 

5 6:20 55 83.08 

6 6:25 95 96.13 

7 6:30 83 84.74 

8 6:35 89 181.12 

9 6:40 98 128.72 

10 6:45 134 132.58 

11 6:50 103 249.10 

12 6:55 173 311.93 

13 7:00 110 300.76 

14 7:05 167 271.66 

15 7:10 160 331.52 

16 7:15 150 250.40 

17 7:20 210 275.48 

18 7:25 200 311.09 

19 7:30 172 321.01 

20 7:35 149 258.03 

21 7:40 154 

 

338.53 

22 7:45 140 

 

378.92 

23 7:50 157 174.47 

24 7:55 146 330.33 

25 8:00 145 339.23 
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at every data point (DP). The vehicle flow data was from the national highway route 

11 of Tokushima city, Japan. The data were simulated in a microscopic traffic simulator 

(MITRAM) and output data were recorded (See Table 3.3). For more details about 

MITRAM see (Ishikawa, et al., 2005; Mori et al., 2013).  

b) Vehicular CO2 Emission Data 

The vehicular CO2 emission time series data employed in this research consists of data 

output as simulated by MITRAM and recorded in Table 3.3. The vehicle flow data 

from the national highway route 11 of Tokushima city (see (a) above) were simulated 

in MITRAM, and the simulator could output assumed CO2 emission data based on 

vehicle traffic density. 

The data from (Özceylan, 2016) consists of CO2 emission (mt) as the dependent or 

output variable and energy consumption (mtoe) and number of motor vehicles (106) as 

relative or input variables. These data were as tabulated in Table 4.80. 

c) Electricity/Energy Consumption Data 

The electricity consumption data used in this study consists of Kenya’s total electricity 

consumption, expressed in kilowatt-hours (kWh), for the period from the year 2000 to 

2019 except for the year 2015 whose value was approximated by computing the mean 

of the adjacent data. The data were retrieved from the Central Intelligence Agency 

(CIA) World Factbook (www.indexmundi.com/g/g.aspx?c=ke&v=81) 

on December 29, 2019 and tabulated as in Table 4.13.  

Data sourced from (Cheng et al., 2020) consists of clean energy (10,000 tons of 

standard coal) as the output variable and economic scale, GDP (CNY 0.1Billion) and 

population size (10,000 people) as the input variables. These data are as tabulated in 

Table 4.82.    
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II. Traffic Data Collected from Nairobi CBD  

For the case study, vehicle, pedestrian and motorcycle traffic data were collected from 

real-time traffic system information, from Nairobi CBD, the study site (see section 

3.5.4). Normally it is impractical to study a whole population and thus the need for 

sampling. Moreover, sampling is necessary for economic reasons. Traffic counts are 

normally not taken on a holiday nor on the day before or after a holiday. Monday 

mornings and Friday evenings generally show high volumes (Regehr et al., 2015; 

Sampson, 2017). Usually, days counted include Tuesdays, Wednesdays and Thursdays. 

These are days that are likely to have the same pattern of vehicle, pedestrian and 

motorcycle volumes within a week and these days are representative enough for one 

week. Mondays and Fridays have different volume patterns (Regehr et al., 2015) and 

higher volumes are expected on weekends. Fridays and Saturdays are usually different 

and have higher volumes due to traditional activities like “after works”, recreational 

and due to the night life (Sampson, 2017). However, these days cause a bias on the 

volume of traffic (e.g. pedestrians) in comparison to the remaining days of the week; 

consequently it is better to count in other days rather than these (Miranda et al., 2011). 

Therefore, data were collected at intervals of 5 minutes for a duration of 15 hours per 

day for three consecutive days, i.e. from Tuesday to Thursday. Examples of these data 

were as tabulated in Tables 1 to 21 of Appendix IV.  

3.4.2 Training and Test Data Sets 

In time series modelling it is common to use a portion of the available data for fitting 

and the rest of the data for testing a model (Liu & Cocea, 2017). Ajiboye et al., (2015), 

asserts that a model trained with the largest size of training sets is the most accurate 

and it consistently delivers much better and stable results. Therefore, in this study the 

data for modelling were divided into two sub-sets, namely training data set and testing 

data set (see Figure 4.1 and Figure 4.30). To achieve good performance in modelling 

the training data set was made large compared to the testing data set (Ajiboye et al., 

2015). The goal is to develop a trained (fitted) model for well generalization to new, 

unknown data. Then the fitted model is evaluated using “new” data from the held-out 

dataset (validation dataset) to estimate the model’s accuracy in classifying the new 
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data. The reason for sub dividing the original data set is to reduce the risk of issues 

such as over fitting and, therefore, the data in the validation dataset is not used to train 

the models. Thus, in this thesis employed is the classical hold out method. 

3.5 Traffic Data Collection and Sampling 

Traffic data were collected from the study region (i.e. the Nairobi CBD). This region 

is shown in Figure 1.1. For the purpose of this research study the number of vehicles, 

motorcycles and pedestrians, passing a given point, were counted at intervals of 5 

minutes. It was ensured that traffic flow data during important periods of a day were 

well captured in the counting-by-counting data from 6:00 am to 21:00 pm. These are 

the morning peak, off peak and evening peak traffic volumes (Sampson, 2017). Thus, 

day time traffic data were of paramount importance in this research. 

3.5.1 Types of Traffic Counts  

This research is tailored towards the most typical count i.e. the volume count. Due to 

complexity and time taken other counts based on vehicle classification, occupancy, 

and truck percentage are not considered. Traffic counts involve counting vehicles 

passing a point for varying intervals of time and can range from 365 days per year, 24 

hours per day, to short term intervals of fifteen minutes (Aldrin, 1998). The various 

types of traffic counts include directional traffic, lane traffic and pedestrian counts. In 

this research vehicle traffic, motorcycle traffic and pedestrian traffic were counted 

(Ling et al., 2013; Yong & Xiuchun, 2013; Zheng et al., 2016). Pedestrian counts are 

counts of the number of people walking through the area being studied and are 

typically taken only for 12 hours (day time) say between 8:00 A.M. and 6:00 P.M 

(Miranda et al., 2011; Obiri et al., 2021). This period, accounts for most of the 

pedestrian volume for a whole day. Therefore, in this research interest was not only in 

vehicle traffic counts but also in motorcycle and pedestrian counts because the flow of 

motorcycles and the human factor are among the factors that affect vehicle traffic flow. 
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3.5.2 Method of Traffic Count  

Traffic counting is categorized into two, namely manual counts and automatic counts 

(Bas et al., 2007; Obiri et al., 2021). The difference between these two methods can be 

deduced from the discussions of the respective methods below.  

a) Manual/Observation Counts  

The most common method of collecting traffic volume data is the manual method 

which involves assigning a group of people to record the number of vehicles passing, 

on a pre-determined location, using tally marks in inventories (Leduc, 2008). Raw data 

from those inventories is then organized for compilation and analysis. This method of 

data collection is usually expensive in terms of manpower, however it is necessary in 

most cases where vehicles are to be classified with a number of movements recorded 

separately, such as at intersections, also in case where automatic methods cannot be 

used due to lack of infrastructure, necessary authorization etc. This method is also 

appropriate for short periods of counting time (e.g. 5, 15 minutes) (Schneider et al., 

2009). 

b) Automatic/Machine Counts 

These are counts by machines that can record passing vehicles automatically, hence 

known as “automatic traffic counts”. This method is employed in cases where manual 

count method is not feasible. Various instruments are available for automatic count, 

which have their own merits and demerits. Some of the widely used instruments are 

pneumatic tubes, inductive loops, weigh-in-motion Sensor, micro-millimeter wave 

Radar detectors and video camera (Bas et al., 2007). 

Because the manual/observation traffic count method is the most common and it is 

necessary in most cases where automatic methods cannot be used, it was selected for 

collecting data for this study. Moreover, for economic reasons (from equipment 

requirement point of view) the manual count method was adopted and in the direct 

manual method tally sheets were used due to the fact that they are rather cheap 

(Miranda et al., 2011). Further, in this method subjective bias is eliminated, 
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information obtained relates to what is currently happening and it is independent of 

respondents’ willingness to respond. 

At road intersection sites, the traffic on each arm were counted and recorded separately 

for each direction of movement. Traffic-counting teams (counting clerks) were set up 

to carry out the counting of vehicles, motorcycles and pedestrians at the various 

predetermined locations throughout the road networks at set interval of time.  

3.5.3 Traffic Data Sampling 

As it is impractical to study a whole population and to reduce the cost and workload 

in traffic counting, sampling of the counting locations from the study site was 

necessary. Sampling is a method that allows researchers to infer information about a 

population from a subset of the population, without having to investigate every 

individual. Reducing the number of individuals in a study reduces the cost and 

workload, and may make it easier to obtain high quality information, but this has to be 

balanced against having a large enough sample size with enough power to detect a true 

parent population (Claffy et al., 1993). By whatever method a sample is chosen, it is 

important that the individuals selected are representative of the whole population. 

For quantification of vehicle traffic congestion which is obviously heavy during rush 

hours and at road junctions, then the best representative count locations were generally 

at or near road junctions. All junctions qualified to be selected. However, reducing the 

cost and workload in traffic counting was necessary to make it easier to obtain high 

quality representative information. Therefore, traffic data from randomly selected 

traffic counting locations (at road junctions) of the Nairobi CBD were collected.  

There are several different sampling techniques available, and they can be subdivided 

into two groups: probability sampling and non-probability sampling (Hamed, 2016). 

In this study random sampling which is a probability method was used. The seven ‘+’ 

junctions from within the CBD were randomly selected, as long as these junctions 

experiences heavy traffic jams. 
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Sample sizes can vary from a fraction of an hour to 24 hours a day, 365 days a year. 

Generally, peak periods need to be included in all samples. Traffic counts are normally 

not taken on a holiday nor on the day before or after a holiday. Monday mornings and 

Friday evenings generally show high volumes (Regehr et al., 2015; Sampson, 2017). 

Usually, days counted include Tuesdays, Wednesdays and Thursdays. These are days 

that are likely to have the same pattern of vehicle and pedestrian volumes within a 

week. Mondays and Fridays have different volume patterns (Regehr et al., 2015) and 

higher volumes are expected on weekends. Fridays and Saturdays are usually different 

and have higher volumes due to traditional activities like “after works”, recreational 

and due to the night life (Sampson, 2017). However, these days cause a bias on the 

volume of traffic (e.g. pedestrians) in comparison to the remaining days of the week; 

consequently it is better to count in other days rather than these (Miranda et al., 2011). 

Therefore, based on random sampling, data were collected from the following seven 

Nairobi CBD road junctions. See Figure 3.4 for the exact location of these sites. 

1. Haile Selassie Roundabout,  

2. Kenyatta Avenue Uhuru Highway Roundabout,  

3. University Way Uhuru Highway Roundabout,  

4. Kenyatta Avenue-Moi Avenue-Mondlane Street Junction,  

5. Moi Avenue-Slip Road Junction,  

6. City Hall Way-Wabera Street T-Roundabout and 

7. Haile Selassie Avenue-Moi Avenue Roundabout.  

3.5.4 Selection of Counting Sites 

For obvious reasons traffic cannot be possibly counted on every street in any given 

area. Therefore, it is necessary to collect traffic count samples at a variety of locations. 

Counting sites thought to best represent typical urban traffic congestion conditions 

were selected. The specific locations for counting sites were determined keeping in 
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mind the following facts before deciding on the counting site (National Highway 

Authority, 2017; Roads and Highways Department, 2001; Roads Department, 2004); 

 The road section should have uniform geometric characteristics and be near 

junctions, 

 Location should be on a horizontal (flat) and geometrically straight road 

section. So that enumerators have good vision of traffic approaching from all 

directions. The site should not be located on bends or at places where 

trees/buildings obscure vision. 

 Section of the road to have an uninterrupted traffic flow and free of animal 

traffic and 

 Section to meet safety requirements. For instance a lighted location would be 

of advantage for counts conducted after daylight. 

See Figure 3.4 for the exact location of the selected counting sites 1 to 7 in the Nairobi 

CBD. 

 

Figure 3.4: Traffic Data Counting Site Locations 

Source: Google (n.d.)  
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3.5.5 Traffic Counting 

Every 5-minute interval traffic were counted. For example, at this increment of 5 

minutes counting started at 06:00, then the number of vehicles crossing a specific point 

on the road from 06:00 to 06:05 was recorded. The next count began at 06:06 to 06:10 

and so forth. A 24-hour clock approach was used so that no confusion between morning 

and evening counts. Tally marks were mostly used to represent each vehicle on the 15-

hour traffic count. Four directions of traffic flow – northward, southward, eastward 

and westward directions were considered and recorded separately. 

3.5.6 Timing of Counts 

The traffic counting was conducted for 15 hours (from 06:00 to 21:00). The traffic 

counting took place for a period of three consecutive days. Counts were conducted on 

days for which the traffic flow is typical of an average day of the week (Roads and 

Highways Department, 2001). Generally, the best days for counting were from 

Tuesday to Thursday (Regehr et al., 2015). In the timing of counts the following days 

were avoided; public holidays, Mondays, Fridays and any other days when it is known 

from local knowledge that traffic flows will be unusual, for instance when there are 

local religious ceremonies (Roads and Highways Department, 2001). Traffic flow 

during those days contains more complex spatial-temporal characteristics, with a large 

range of changes (Chen L. et al., 2023). For instance, it experiences sudden and 

irregular characteristics. Because of such complexity of vehicle flow, traffic flow 

prediction during such days is beyond the scope of this thesis. 

The traffic counting clerks worked in two shifts. The first shift counted as from 06:00-

14:00 and the second shift as from 14:00-21:00.  

3.5.7 Staff Requirements 

The total number of persons (clerks) required to conduct the count was dependent on 

the number of selected counting locations. At four-way junction eight enumerators 

(counting clerks) were required at all times, two clerks counted vehicles, motorcycles 

and pedestrians in each direction of traffic flow. For example, for the northward 
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direction, one clerk counted the northbound vehicles and the other counted the 

northbound motorcycles and pedestrians crossing at that point. A supervisor was also 

required at all times. The supervisor was responsible for ensuring that the enumerators 

filled the forms in correctly, collating the completed forms and acting as a relief for 

the clerks to provide breaks during the shift.  Similarly, at a three-way junction six 

enumerators and a supervisor were required. Table 3.4 gives the number of clerks who 

did the counting for the 15-hour count, the standard 8-hour shift for each counting team 

was adopted (National Highway Authority, 2017; Roads and Highways Department, 

2001).  

Table 3.4: Staff Requirements per Shift 

15 hour count (in 2 shifts) 

Type of 

Junction 

Number of 

Junctions 

Enumerators 

per Junction 

Supervisors 

per Junction 
Total Staff 

Three-way 4 6 1 28 

Four-way 3 8 1 27 

Note that this was the total required counting staff per shift and there were two shifts 

per day for three counting days. Therefore, a total staff of 330 clerks participated in 

the data collection exercise.  

3.5.8 Equipment Requirements 

The enumerators and supervisors required watches, reflector jackets among other 

items. Clipboards were also required for each of the team members with pencils, 

erasers and sharpeners. The equipment requirements for a team of enumerators and 

one supervisor were as shown in Table 3.5 (National Highway Authority, 2017; Roads 

and Highways Department, 2001). 
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Table 3.5: Equipment Requirements for a Team of Enumerators and One 

Supervisor 

Item Quantity Per Four-

Way Junction 

Quantity Per Three-

Way Junction 

Watch 4 3 
Clipboards 9 7 

Pencils 9 7 

Pencil sharpeners 4 3 

Erasers 4 3 

Spring files (to store forms 

in) 

5 4 

Jacket reflectors 9 7 

Umbrellas 5 4 

Led power torches 5 4 

Traffic count tally sheets  Enough Enough 

Daily summary sheets 3 3 

3.5.9 Conducting the Count 

The volume of vehicles, motorcycles and pedestrians were recorded onto a standard 

form, the Traffic Count Tally Sheet (see Appendix I) (Roads and Highways 

Department, 2001). Data were recorded in 5-minute’s time increments in order that 

variations in traffic flow over the hour and day could be identified. Data were also 

recorded in four directions of travel, which included northward, southward, eastward 

and westward directions. During data collection various activities took place as 

outlined below. 

a) Prior to Starting 

The first shift assembled at the station half an hour before the count was due to start. 

The supervisor issued Traffic Count Tally Sheets (see Appendix I) attached to a 

clipboard to each enumerator, together with a pencil. The enumerators then filled in 

details of the count on the top of the sheet, according to the supervisor’s instructions. 

Finally, the enumerator entered the starting time of the count in the left hand “Time” 

column. 
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b) Counting 

The supervisor directed the enumerators to their assigned sites of the road five minutes 

prior to the starting time. At the start the supervisor could announce the start of the 

count and the clerks began to record the number of vehicles, motorcycles and 

pedestrians passing on that point of the road. A five bar tally was used when and where 

possible. Record of data was done in the Traffic Count Tally Sheets of Appendix I. 

c) Supervision 

The supervisor ensured that the enumerators were filling in the tally sheets correctly. 

He/she also acted as a relief to the enumerators allowing them to have alternate meal 

breaks.        

In addition to these duties the supervisor was responsible for completing a short report 

on the shifts count. This was done on the Traffic Count Report Sheet (see Appendix 

II). 

d) Weather Report 

The Traffic Count Report Sheet of Appendix II included a brief summary of the 

weather conditions and incidents that may have affected the validity of the count 

(especially accidents or road closures in the vicinity of the count station). It was the 

responsibility of the supervisor to complete this report. 

Finally, at the end of the shift the supervisor could collate all the sheets in order and 

keep them in safe custody. 

3.5.10 Data Presentation 

As mentioned earlier data were collected from the Nairobi CBD for 15 hours of a day. 

Information on traffic data is not always easily accessible. Thus, the essential part of 

any data collection process is to analyze and present the data in a format that is easily 

understandable. In this thesis tables were used to present the collected data. The tables 

typically show five-minute interval traffic flow pattern. See Tables 1- 21 in Appendix 
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IV. This gave useful and comprehensive information of the traffic volume data on the 

Nairobi CBD Road network. In addition, the error and accuracy evaluations of the 

forecasted results were tabulated in table form throughout the thesis. 
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CHAPTER FOUR 

RESEARCH RESULTS AND DISCUSSION 

Analyzed and discussed in this chapter include improvement of the original GM(1,1) 

by the MBV, MIC and DGT methods, evaluation of the improved grey models, 

analysis of the proposed DGTs in order to determine the most accurate DGT, validation 

of the DGTs in improving both GM(1,1) and GM(1,3), case study analysis and finally 

comparison of the univariate (GM(1,1)) and multivariate (GM(1,n)) grey models to 

determine the influence of the relative factors on their prediction performance. 

4.1 Assessment of the Effect of Data Grouping Technique on Short Term Vehicle 

Traffic Flow Forecasting Grey Model Performance 

4.1.1 MBV, MIC and DGT in GM(1,1) Modelling and Short-Term Traffic Flow 

Forecasting 

In this thesis the conventional GM(1,1) is referred to as the Original GM(1,1) and 

denoted as OGM(1,1). The precision of the OGM(1,1) is improved by, firstly, 

introducing modification of the background value (MBV) (Liu et al., 2014) in the 

OGM(1,1) and establishing a Modified Background Value Grey Model which is 

denoted as MBVGM(1,1). Secondly, a DGT is introduced into OGM(1,1) to establish 

a Grouped Grey Model abbreviated as GGM(1,1). Overall, by combination of the 

MBV and DGT in OGM(1,1) a Modified Background Value Grouped Grey Model 

abbreviated as MBVGGM(1,1) is established. Moreover, from the GST, to improve 

the precision of the OGM(1,1), emphasis should be based on the “new information 

prior using” principle (Jong & Liu, 2014). Therefore in this section proposed is 

combination of the DGT and MIC methods, which adheres to this principle, in 

improving the performance of the OGM(1,1). Hence, this thesis section institutes a 

new perspective of amalgamating the DGT and MIC in optimizing the accuracy of the 

OGM(1,1). The developed optimized grey model is referred to as the single variable 

first-order Modified Initial Condition Grouped Grey Model and denoted as 

MICGGM(1,1). Additionally, employing MIC alone to improve OGM(1,1)’s accuracy 

results to a Modified Initial Condition Grey Model named as MICGM(1,1). So 
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modelling and short-term forecasting of traffic flow was accomplished by these 

improved grey models.   

Therefore, in this section the thesis introduces a new approach of the DGT and 

combines it with existing MBV and MIC methods to improve fitting and short-term 

forecasting accuracy of the OGM(1,1) and the results are as discussed below.  

I. Traffic Flow Fitting 

a) Data Source 

In this section traffic flow data of Table 3.3 was employed. The traffic flow data were 

from 06:00 to 08:00 of the day. At 5-minute interval this constitutes 25 data points. 

b) Training and Test Data Sets 

It is common to use a portion of the available data for fitting and the rest of the data 

for testing a model. Ajiboye et al., (2015), asserts that a model trained with the largest 

size of training sets is the most accurate and it consistently delivers much better and 

stable results. Thus, traffic flow data of Table 3.3 is subdivided into training and test 

data sets, as in Figure 4.1, for estimating and evaluating the proposed grey models, 

respectively (Liu & Cocea, 2017).  

Thus, to analyze the performance of the proposed grey models a numerical example 

was simulated in MATLAB. The vehicle flow data in Table 3.3 was partitioned into 

two as in Figure 4.1. The first 22 points (i.e. from 6:00 am to 7:45 am) were used to 

train the proposed models whereas the last 3 points (i.e. from 7:50 am to 8:00 am) were 

used as the test data set.  
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Figure 4.1: Two-Way 25-Point Data Splitting 

c) Training the Grey Models 

The AGO, MGO and IAGO operations were performed on the training data set by 

(3.3), (3.19) and (3.13), respectively. Then the models were trained as follows. 

For the OGM(1,1) these operations were computed and the resultant data were: 

𝑋(1) = {0 14 49 103 158 253 336 425 523 657 760 933 1043 1210 1370 1520 

1730 1930 2102 2251 2405 2545}, this is the AGO.   (4.1)  

𝑍(1) =1.0e+03 *{0.0070 0.0315 0.0760 0.1305 0.2055 0.2945 0.3805 0.4740 

0.5900 0.7085 0.8465 0.9880 1.1265 1.2900 1.4450 1.6250 1.8300 

2.0160 2.1765 2.32802.4750}, this is the MGO   (4.2) 

𝑦 = {14 35 54 55 95 83 89 98 134 103 173 110 167 160 150 210 200 172  

149 154 140}, this is the measured data.       (4.3) 

The data matrix 𝐴 and the measured vector 𝑦 are obtained as: 
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    (4.4) 

     For the OGM(1,1) all the training data set is used to compute parameters 𝑎 and 𝑏 

from (3.33) and the obtained values are 𝑎 = -0.0516 and 𝑏= 69.4717. Consequently, 

the time response function of (3.9) for this model was obtained as: 
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The computed values from (4.5) were subjected to IAGO and the final fitting values 

obtained as: 

�̂�(0)

= {0 71.2956 75.0718 79.0479 83.2346 87.6431 92.2851 97.1729 102.3196  

107.7389 113.4452 119.4538 125.7805 132.4424 139.4572 146.8434  

154.6209 162.8103 171.4335 180.5133 190.0741 200.1413}  (4.6) 

The fitting values of (4.6) is the IAGO and these values were tabulated in Table 4.1 

where DP stands for data point. Figure 4.2 shows the plots for the real values, 

OGM(1,1)’s fitted values and the error curve (the de-trended vehicle volume). The 

error curve indicates the difference between the simulated and actual values. The actual 

values are the real values (or raw data).  

Now the OGM(1,1) is modified by reconstructing the background value (see section 

3.1.2c). Thus parameters 𝑎 and 𝑏 are calculated from (3.33) using (3.40) instead of 

(3.20). This modification resulted to a new background value given as: 

𝑍(1) =1.0e+03 *{0 0.0289 0.0741 0.1304 0.2012 0.2954 0.3800 0.4732 

0.5865 0.7108 0.8391 0.9921 1.1207 1.2906 1.4458 1.6191 

1.8308 2.0182 2.1783 2.327 2.4761}   (4.7) 
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Thus the modified data matrix 𝐴 was computed as: 
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With this modification 𝑎= -0.0515 and 𝑏= 69.6675. Hence the MBVGM(1,1)’s time 

response function of (3.9) simplified to: 
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The corresponding fitting values are as recorded in Table 4.1 and Figure 4.3 shows the 

plot of the real, fitted and de-trended values. De-trended values are the errors involved 

in fitting and forecasting, i.e. the residues. 
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Table 4.1: Original and Improved Grey Models’ Traffic Flow Fitting and 

Forecasting Values  

Raw Data Grey Model 

DP Real 

Value 

OGM(1,1) MBVGM(1,1) MICGM(1,1) GGM(1,1) MBVGGM(1,1) MICGGM 

(1,1) 

Training Fitted Values 

1 0 0 0 0 0 0 0 

2 14 71.2956 71.4918 69.5654 15.6615 17.6566   15.9281 

3 35 75.0718 75.2683 73.2499 34.7612 36.1439   35.1083 

4 54 79.0479 79.2444 77.1295 50.1448 50.8296   50.8452 

5 55 83.2346 83.4305 81.2147 60.5172 57.5155   60.9350 

6 95 87.6431 87.8377 85.5162 88.2873 84.9983   88.8117 

7 83 92.2851 92.4777 90.0455 86.2357 84.8559   86.2782 

8 89 97.1729 97.3628 94.8147 87.1706 84.9820   87.3272 

9 98 102.3196 102.5060 99.8365 102.3888 98.6913  102.5789 

10 134 107.7389 107.9209 105.1242 122.6047 116.2246  122.9481 

11 103 113.4452 113.6218 110.6921 119.3534 114.3712 119.5043 

12 173 119.4538 119.6239 116.5548 153.3755 148.3196  153.5545 

13 110 125.7805 125.9430 122.7281 128.6640 126.6200  128.7178 

14 167 132.4424 132.5959 129.2283 156.3421 155.6647  156.4133 

15 160 139.4572 139.6003 136.0728 158.7244 153.6437  158.9242 

16 150 146.8434 146.9747 143.2798 158.8813 153.6201  159.0757 

17 210 154.6209 154.7386 150.8685 202.0690 197.7780  202.3187 

18 200 162.8103 162.9127 158.8592 200.7975 202.6486  200.9595 

19 172 171.4335 171.5185 167.2731 171.8332 175.9304  171.9366 

20 149 180.5133 180.5790 176.1326 152.9252 155.8546  153.0167 

21 154 

 

190.0741 190.1180   185.4613 148.3633 150.3881 148.3897 

22 140 

 

200.1413 200.1610 195.2842 143.2761 144.6307  143.2855 

Testing Short-Term Forecasted Values 

23 157 210.7416 210.7345 205.6273 122.4088 122.1732 122.4716 

 24 146 221.9034 221.8666 216.5182 130.0374 130.8847 130.0599 

 25 145 233.6564 233.5866 227.9860 131.0119 131.8423 131.0204 
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Figure 4.2: Vehicle Flow OGM(1,1) Fitting 

    

Figure 4.3: Vehicle Flow MBVGM(1,1) Fitting 

Next MIC is introduction into OGM(1,1) (see section 3.1.2d) to establish the 

MICGM(1,1). The AGO series for MICGM(1,1) is the same as that of OGM(1,1). 

Since the background value is not modified its value also remains the same as that of 

the OGM(1,1). Consequently, The data matrix 𝐴 and the measured vector 𝑦 are also 

the same as those of the OGM(1,1). So the computed parameter values were 𝑎= -

0.0516 and 𝑏= 69.4717 and the optimized initial condition value computed by (3.49), 

𝐶= 1.2474e+03. Therefore, the resulting modified initial condition model structure of 

the grey model from (3.46) is given as: 

�̂�(𝑟)
(0)

=  1.2474 ∗ 𝑒3 ∗ (𝑒0.0516𝑟 − 𝑒0.0516(𝑟−1)),   𝑟 = 2,3, . . 𝑚  (4.10)  
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The fitting values computed from (4.10) were tabulated in Table 4.1. Figure 4.4 is an 

indication of how well the real and fitted values of the MICGM(1,1) fit onto each other 

and the de-trended values. 

 

Figure 4.4: Vehicle Flow MICGM(1,1) Fitting 

MICGM(1,1)’s fitting accuracies were found to be 77.1957% and 77.9812% from 

RMSPE and MAPD calculations, respectively, as in Table 4.4. 

For the GGM(1,1), the DGT is adopted in the simulation process as follows. Firstly, 

the first 22 data points shown in Table 3.3 were grouped into 19 groups of 4s based on 

(3.34) and Figure 4.5. These groups are formed and tabulated as in Table 3.2. Secondly, 

the OGM(1,1) procedure was applied on each group to obtain fitted data (FD) for each 

group as tabulated in Table 4.2. Since data is grouped the parameters 𝑎 and 𝑏 are many 

and have unique values for each group and therefore these values have not been 

provided in this thesis. Moreover, each formed group has a different time response 

function arising from (3.9). Thus 19 different time response functions are formulated. 

Also note that in Table 4.2 the FD for groups 6 to 14 are not shown because of wanting 

to reduce the size of Table 4.2. Thirdly, the overall simulation data sequence is obtained 

by superimposing the group simulation data at points of overlaps and this overall 

(final) sequence is as indicated in Table 4.2. For instance, groups 1 and 2 overlap once 

at data point 2 and, thus, the final FD is obtained as (17.3230+14)/2=15.6615 and 

groups 1, 2 and 3 overlaps twice at data point 3 resulting to a final fitted value 
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computed as (30.3630+38.9204+35)/3=34.7611. Also, groups 1, 2, 3 and 4 overlap 

three times at data point 4 and the final fitted value is obtained as 

(53.2192+47.3115+46.0486+54)/4=50.1448. This sequence of computations is 

continued to generate the final simulation sequence (i.e. final FD) which is also 

indicated in Table 4.1. Figure 4.6 shows the corresponding plots and it can be observed 

that this improved grey model has good fitting ability. 

 

Figure 4.5: Strong Grouping (SG). The 22 Data Points Have Been Grouped in 4s 

to Form 19 Groups 

Now, if the DGT is introduced into MBVGM(1,1) simulation the MBVGGM(1,1) is 

established. Following similar procedure to that of the GGM(1,1) 19 groups of data 

are formed. Thus the MBVGGM(1,1) equally has different time response function for 

each formed group with unique values of parameters 𝒂 and 𝒃. Its computed fitting 

values are tabulated in Table 4.1 and plotted in Figure 4.7. 
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Table 4.2: Group and Final Fitted Data for GGM(1,1) 

 Groups 1 - 5 and 15 - 19 fitted data  

AD G1 G2 G3 G4 G5 G 15 G 16 G 17 G 18 G 19 Final FD 

0  0                 0 

14   17.3230 14.0000           15.6615 

35   30.3630   38.9204 35.0000          34.7612 

54   53.2192   47.3115   46.0486 54.0000         50.1448 

55    57.5117   64.0354   65.5217 55.0000        60.5172 

95     89.0480   76.9918   92.1096        88.2873 

83      90.4698   88.9531        86.2357 

89       85.9048        87.1706 

98            102.3888 

134             122.6047 

103            119.3534 

173            153.3755 

110            128.6640 

167            156.3421 

160      160.0000      158.7244 

150      163.6233 150.0000     158.8813 

210      185.5501 212.8429 210.0000    202.0690 

200      210.4152 193.2895 199.4853 200.0000   200.7975 

172       175.5324 172.1672 167.6332 172.0000  171.8332 

149        148.5902 158.1018 152.0837  152.9252 

154         149.1124 147.6142   148.3633 

140          143.2761  143.2761 
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Finally, in training, the MICGGM(1,1), the DGT and MIC are adopt in the simulation 

as follows. Firstly, the first 22 data points of Table 3.3 are grouped into 19 groups of 

4s based on (3.34) and Figure 4.5. These groups are formed and tabulated as in Table 

3.2.  

Secondly, MIC is introduced into OGM(1,1) procedure (Wang et al., 2018) and applied 

on each group to obtain fitted data (FD) for each group as tabulated in Table 4.3. Note 

that each group has unique values of the parameters  𝑎 and 𝑏 which have not been 

provided in this thesis. Consequently, the corresponding time functions are different. 

Also note that in Table 4.3 the FD for groups 6 to 14 are not shown because of wanting 

to reduce the size of Table 4.3.   

Thirdly, the overall simulation data sequence is obtained by superimposing the group 

simulation data at points of overlaps and this overall (final) sequence is as indicated in 

Table 4.3. For instance, groups 1 and 2 overlap once at data point 2 and, thus, the final 

FD is obtained as (17.8561+14)/2=15.9281 and groups 1, 2 and 3 overlaps twice at 

data point 3 resulting to a final fitted value computed as 

(31.2975+39.0274+35)/3=35.1083. Also, groups 1, 2, 3 and 4 overlap three times at 

data point 4 and the final fitted value is obtained as 

(54.8572+47.4416+47.082+54)/4=50.8452. This sequence of computations is 

continued to generate the final simulation sequence (i.e. final FD) which is also 

tabulated in Table 4.1.   

Lastly, this proposed model, MICGGM(1,1), resulted with simulation values tabulated 

in Table 4.1 and Figure 4.8 is its plot of the real, fitted and de-trended values.  
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Table 4.3: Group and Final Fitted Data for MICGGM(1,1) 

 Groups 1 - 5 and 15 - 19 fitted data  

AD G1 G2 G3 G4 G5 G 15 G 16 G 17 G 18 G 19 Final FD 

0 0          0 

14 17.8561 14           15.9281 

35 31.2975 39.0274 35          35.1083 

54 
54.8572 47.4416 47.082 54 

        50.8452 

55  57.6698 65.4726 65.5975 55        60.9350 

95   91.0465 77.0809 92.1196        88.8117 

83    90.5745 88.9628        86.2782 

89     85.9141        87.3272 

98            102.5789 

134             122.9481 

103           119.5043 

173            153.5545 

110            128.7178 

167            156.4133 

160      160      158.9242 

150      163.8034 150     159.0757 

210      185.7543 212.9778 210    202.3187 

200      210.6468 193.412 199.7791 200   200.9595 

172       175.6437 172.4208 167.6817 172  171.9366 

149        148.809 158.1476 152.0936  153.0167 

154         149.1556 147.6238 148.3897 

140       

 

 

   143.2855  143.2855 
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Figure 4.6: Vehicle Flow GGM(1,1) Fitting 

 

Figure 4.7: Vehicle Flow MBVGGM(1,1) Fitting 

 

Figure 4.8: Vehicle Flow MICGGM(1,1) Fitting 

Close observation of the error curves in Figures 4.2-4.8 reveals that MICGGM(1,1) is 

the most accurate model in predicting vehicle flow and the OGM(1,1) is the least 
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accurate. Moreover, from Figures 4.2, 4.3 and 4.4 notice that the de-trended vehicle 

volume curves look similar meaning that the OGM(1,1), MBVGM(1,1) and 

MICGM(1,1) have almost the same fitting accuracy. It was expected that the accuracy 

would be improved after the background and initial conditions are modified. 

Unfortunately, it was not and this was an indication that MBV and MIC have minimal 

effect in improving the prediction accuracy of the OGM(1,1). From Figures 4.6, 4.7 

and 4.8 the de-trended curves also look similar and are approaching zero level. It 

means that GGM(1,1), MBVGGM(1,1) and MICGGM(1,1) are more accurate 

compared to the OGM(1,1), MBVGM(1,1) and MICGM(1,1). Thus the DGT greatly 

improves the fitting accuracy of the OGM(1,1).  Now, it is evident that the proposed 

DGT is a powerful technique, compared to MBV and MIC, in improving the fitting 

accuracy of the OGM(1,1). For error evaluation of these grey models see Table 4.4. 

II. Testing the Grey Models in Short-Term Forecasting 

In this section short-term traffic flow forecasting is carried out, three points into the 

future, by extrapolating (3.9). Thus, the test data set (i.e. the three points) are forecasted 

and used to evaluate the performance of the proposed grey models (Liu & Cocea, 

2017).  

From Table 3.3 the testing data set consists of the last three data points, i.e. 157, 146 

and 145. To forecast these three points (4.5), (4.9) and (4.10) are extrapolated three 

points ahead (see section 4.1.1 part I). Hence short-term traffic flow forecasting. 

Extrapolation of (4.5), (4.9) and (4.10) gives the forecasts by the OGM(1,1), 

MBVGM(1,1) and MICGM(1,1) respectively. For GGM(1,1), MBVGGM(1,1) and 

MICGGM(1,1) the 19 time response functions are also extrapolated to forecast the 

three points. The forecasted values by the six models are as indicated in Table 4.1. 

Plotted in Figures 4.9-4.14 are the real, predicted and de-trended vehicle volume 

curves for the six grey models. The last three-time sample points (i.e. at t=22, t=23 and 

t=24) are the extrapolated points of focus. The error curves in Figures 4.9, 4.10 and 

4.11 shows that the OGM(1,1), MBVGM(1,1) and MICGM(1,1) have almost the same 

short-term forecasting accuracy. On the other hand from Figures 4.12, 4.13 and 4.14 

the GGM(1,1), MBVGGM(1,1) and MICGGM(1,1) have much improved short-term 
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forecasting accuracy. MBVGGM(1,1) is the most accurate in short-term forecasting 

whereas OGM(1,1) is the least accurate. This is clear and evident in the next discussion 

on evaluation of the grey models.  

 

Figure 4.9: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.10: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.11: Short-Term Vehicle Flow Forecast by MICGM(1,1) 

 

 

Figure 4.12: Short-Term Vehicle Flow Forecast by GGM(1,1) 
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Figure 4.13: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

 

Figure 4.14: Short-Term Vehicle Flow Forecast by MICGGM(1,1) 

4.1.2 Evaluation of the Improved GM (1,1) in Traffic Flow Fitting and 

Forecasting 

The fitting and forecasting values for the six grey models were as tabulated in Table 

4.1 and the errors involved are indicated in Tables 4.4 and 4.5. The OGM(1,1) and the 

other five improved grey models are evaluated based on their fitting and forecasting 

errors. This Error evaluation is done as follows. Using the error indicators discussed 

in section 3.1.3 and MATLAB the fitting and short-term forecasting errors were 

calculated and recorded in Tables 4.4 and 4.5 respectively. The corresponding 
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accuracies were as well recorded in Tables 4.4 and 4.5. From Table 4.4 notice that the 

OGM(1,1), MBVGM(1,1) and MICGM(1,1) had lower fitting accuracies compared to 

GGM(1,1), MBVGGM(1,1) and MICGGM(1,1). MICGGM(1,1) was the most 

accurate and its mean absolute percentage deviation (MAPD) was 5.3013% which 

translates to an accuracy of 94.6987%. Therefore, DGT is a powerful method in 

improving the fitting accuracy of the OGM(1,1) as compared to the MBV and MIC 

methods (see Table 4.4).  

In short-term forecasting it is clear that the MBVGGM(1,1) is the most accurate model 

(see Table 4.5). Consider the MAPD for all the models; the accuracies are 51.2720%, 

51.2974%, 54.8814%, 85.5933%, 85.9152% and 85.6143% for the OGM(1,1), 

MBVGM(1,1), MICGM(1,1), GGM(1,1), MBVGGM(1,1) and MICGGM(1,1) 

respectively. Thus MBV slightly improves the short-term forecasting accuracy of the 

GGM(1,1). It means that the MGO by (3.20), which is the background value, is among 

the factors causing forecasting errors in the OGM(1,1). This is evident from Table 4.5, 

that after modification of the background value the established MBVGM(1,1) is more 

accurate in short-term forecasting compared to the OGM(1,1). However, in fitting the 

OGM(1,1) is slightly more accurate compared to the MBVGM(1,1) (see Table 4.4). 

Overall, the DGT is a powerful technique for improving the accuracy of the OGM(1,1). 

Table 4.4: Vehicle Flow Fitting Error and Accuracy Evaluation 

Error/ 

Accuracy 

Indicator 

Grey Model 

OGM 

(1,1) 

MBVGM  

(1,1) 

MICGM 

(1,1) 

GGM   

(1,1) 

MBVGGM   

(1,1) 

MICGGM 

(1,1) 

Error 

RMSE 31.9387 31.9513 31.7867 8.4546 9.3349  8.4172 

RMSPE 22.1441 22.1060 22.8043 5.6729 6.7574 5.6318 

MAE 25.6790 25.7037 25.4717 6.1829 6.9414 6.1327 

MAPD 22.1980 22.2193 22.0188 5.3448 6.0004 5.3013 

Accuracy 

100-RMSPE 78.8559 78.8940 77.1957 94.3271 93.2426 94.3682 

100-MAPD 78.8020 77.7807 77.9812 94.6552 93.9996 94.6987 
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Table 4.5: Short-Term Vehicle Flow Forecast Error and Accuracy Evaluation 

Error/ 

Accuracy 

Indicator 

Grey Model 

OGM  

(1,1) 

MBVGM 

(1,1) 

MICGM 

(1,1) 

GGM  

(1,1) 

MBVGGM 

(1,1) 

MICGGM 

(1,1) 

Error 

RMSE 74.1832 74.1411 68.8576 23.4309 23.1984 23.3932 

RMSPE 48.8740 48.8469 45.3326 16.1111 15.9802 16.0849 

MAE 72.7671 72.7292 67.3772 21.5140 21.0333 21.4827 

MAPD 48.7280 48.7026 45.1186 14.4067 14.0848 14.3857 

Accuracy 

100-RMSPE 51.1260 51.1531 54.6674 83.8889 84.0198 83.9151 

100-MAPD 51.2720 51.2974 54.8814 85.5933 85.9152 85.6143 

The criteria of MAPD and RMSPE (Lotfalipour et al., 2013; Zhang et al., 2015) are as 

tabulated in Table 4.6. Notice that the fitting errors of GGM(1,1), MBVGGM(1,1) and 

MICGGM(1,1) from Table 4.4 are less than 10%. Thus from Table 4.6 it is clear that 

the fitting accuracies of GGM(1,1), MBVGGM(1,1) and MICGGM(1,1) are high. 

Considering RMSPE and MAPD their short-term forecast errors ranges between 10 to 

20% as seen in Table 4.5. This is good short-term forecasting accuracy as seen in Table 

4.6). 

Table 4.6: Criteria for MAPD and RMSPE 

MAPD and RMSPE Forecasting power 

Less than 10% High accuracy 

10 to 20% Good 

20 to 50% Reasonable 

More than 50% Inaccurate 

In this section the conventional grey model, OGM(1,1), has been modified to establish 

improved grey models denoted by MBVGM(1,1), MICGM(1,1), GGM(1,1), 

MBVGGM(1,1) and MICGGM(1,1). In essence the OGM(1,1)’s fitting and 

forecasting accuracies have been improved and generally, the GGM(1,1), 

MBVGGM(1,1) and MICGGM(1,1) have high fitting accuracy and good short-term 

forecasting accuracy. Thus DGT, MBV and MIC methods have the ability to improve 

the fitting and forecasting accuracy of the OGM(1,1). However, the DGT has better 

performance in improving OGM(1,1)’s accuracy compared to the MBV and MIC.    
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4.1.3 Data Grouping Techniques’ Performance Analysis 

In the earlier sections of this thesis the prediction accuracy of the conventional GM 

(1,1) was improved by adopting the DGT, MBV and MIC techniques. For the DGT 

various data grouping techniques were proposed and in this section these data grouping 

techniques are graphically analyzed and their performance is evaluated in detail. In 

particular, the strong and weak grouping techniques are discussed and it is shown that 

prediction accuracy continues to improve as the number of data groups increases. 

Therefore, the novelty of this section is that detailed performance analysis of the 

proposed strong grouping (SG) and weak grouping (WG) techniques is presented and 

consequently the usefulness of the proposed technique (i.e. the DGT) is precisely 

discussed and shown. In particular, the connection between data points per group and 

the number of groups is evaluated. It is shown that the more the number of groups, the 

more the overlaps and the more the data is smoothed to increase prediction accuracy. 

For analyzing the data grouping techniques two types of data were employed, namely 

vehicle traffic flow and CO2 emission, as discussed in sub-sections 4.1.3b and 4.1.3c. 

The vehicle flow and CO2 emissions data of Table 3.3 was simulated in MATLAB by 

OGM(1,1) and GGM(1,1). From Table 3.3 the total number of data points is 25. 

a) The GGM(1,1) Prediction Method 

The GGM(1,1) was established from the conventional GM(1,1) based on the data 

grouping concept. This DGT involves a lot of calculations. However, with a MATLAB 

code the calculations are made easier and faster. The forecasting model was deduced 

and presented by (3.9) and rewritten here as: 
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Generally, five (5) data grouping techniques are adopted. They include the no grouping 

(NG) (all data form one group), WG in 4s, WG in 5s, SG in 4s and SG in 5s. And it is 

confirmed that strongly grouping the training data in 4s is the most accurate method. 

This work is further evaluated by the performed error evaluation in section 4.1.3d and 

the tabulated errors of Tables 4.7 and 4.8. 

b) Vehicle Flow Forecast 

First, considering the NG method and employing traffic volume data of Table 3.3, the 

OGM(1,1) 
 

 
2090.2075209.2075

0378.01

1ˆ 
 ex

r

r
 was obtained, where 0378.0a  

and 4429.78b . The 2-h (25 data-points) forecast data set �̂�(0) was obtained as: 

 

} 190.7712  183.6920  176.8754  170.3118  163.9918  157.9063  152.0466  146.4043             

  140.9715  135.7402  130.7031  125.8529  121.1827  116.6857  112.3557  108.1863             

  104.1717  100.3060  96.5838   92.9997   89.5486   86.2256   83.0259   79.9449   0.0{ˆˆ
0

X
  

(4.12) 

The residue time series set 𝑋(𝑑) =̂  𝑋(0)  − �̂�(0) was obtained as: 

 

45.7712}-  37.6920-  19.8754-  30.3118-  9.9918-   8.9063-   19.9534   53.5957             

   69.0285   14.2598   29.2969   41.1471  11.1827-  56.3143   9.3557-   25.8137             

   6.1717-   11.3060-  13.5838-  2.0003    34.5486-  32.2256-  48.0259-  65.9449-  0.0{̂X
d

 

 (4.13) 

where d  stands for de-trended. This is actually the error involved in forecasting, i.e. 

the residue.  

Second, the SG method’s forecasts are computed by (3.9). However, the parameters 𝑎 

and b  differ from one group to the other. Hence, strongly grouping data in 4s yields 22 

data groups (see section 4.1.3d) whose forecast, data sequence �̂�(0), is: 
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143.2892}  149.9049  151.6495  144.5920  149.8770  151.9439  171.8332  200.7975             

  202.0690  158.8813  158.7244  156.3421  128.6640  153.3755  119.3534  122.6047             

  102.3888  87.1706   86.2357   88.2873   60.5172   50.1448   34.7612   15.6615   0.0{ˆˆ
0

X
 

 (4.14) 

In this case, the residue data sequence �̂�(𝑑) is as follows: 

 

1.7108}    3.9049-   5.3505    4.5920-   4.1230    2.9439-   0.1668    0.7975-             

   7.9310    8.8813-   1.2756    10.6579  18.6640-  19.6245   16.3534-  11.3953             

   4.3888-   1.8294    3.2357-   6.7127    5.5172-   3.8552    0.2388    1.6615-   0.0{̂X
d

 

 (4.15) 

Figure 4.15 shows the vehicle flow forecasting for the NG, SG and WG methods and 

their corresponding residues. The residue data is obtained by subtracting the predicted 

data from the original data. This difference is the error (residue). The residue gives a 

comparison between original and fitted curves. If the residue is zero it shows 100% 

prediction accuracy. Otherwise, the accuracy is low. Observing the de-trending 

(residue) curves in Figure 4.15 shows that the data grouping concept improves 

GM(1,1)’s precision (see Table 4.7). The SG in 4s (see Figure 4.15) is the most 

accurate data grouping method because many data groups (22 groups in this case) are 

formed. Forecasts for SG in 5s (forming 21 data groups) and WG cases are as shown 

in the same Figure 4.15. Similarly, for the WG method, grouping data in 4s is more 

accurate than grouping data in 5s (see Figure 4.15). However, strong grouping 

technique’s improvement on the conventional GM(1,1)’s precision is greater than the 

weak grouping technique’s improvement.  For the SG in 5s case and the WG cases the 

data sequence �̂�(0) and residue sequence 𝑋(𝑑) are not given in this thesis but are easily 

obtainable through the same methods. 
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Figure 4.15: Vehicle Flow Forecasting 

c) CO2 Emission Forecast 

The CO2 emissions prediction is based on the model presented by (4.11) and the 

parameters 𝒂 and b  differ from group to group. However, the application of the AGO 

and IAGO procedures are alike. The CO2 emission forecasts are as shown in Figure 

4.16. Figure 4.16 also shows the residues for CO2 emission forecasts. For NG of data 

all the 25 data points form 1 group (refer to sections 4.1.3d(ii) and 4.1.3d(iii) for more 

information on data grouping techniques). Comparison of the NG CO2 emission 

residues and those of the SG (in Figure 4.16) again indicates that the concept of 

grouping data plays a great role in improving the precision of the original GM(1,1). 

Further, from the de-trended curves, it can be observed that strongly grouping data in 

4s is more accurate than in 5s. This is because grouping data in 4s yields more data 

groups (in this case 22 groups) compared to grouping data in 5s (in which case 21 

groups are formed). With the WG method (see Figure 4.16) similar situation of 

accuracy improvement is evident. CO2 emission forecasting error evaluation in Table 

4.8 shows that the concept of DGT in improving the precision of the OGM(1,1) is valid 

and reliable. 

Vehicle volume and CO2 emissions have been forecasted for two hours and therefore, 

in Figures 4.15 and 4.16, time sample (t=0) corresponds to 6:00 am and time sample 

(t=24) corresponds to 8:00 am of the day.  



98 

 

Figure 4.16: CO2 Emissions Forecasting 

d) Error and Performance Evaluation 

Discussed here is error evaluation as computed by the various error indicators and the 

performance analysis of the strong grouping (SG) and weak grouping (WG) 

techniques.  

i) Error Evaluation 

The root mean square error (RMSE), root mean square percentage error (RMSPE), 

mean absolute error (MAE), and the mean absolute percentage deviation (MAPD) 

error indicators are adopted in analyzing the accuracy of the forecasting. These 

indicators are computed as given in section 3.1.3. 

The computed errors show that GGM(1,1) is of high accuracy than the conventional 

GM(1,1). Moreover, grouping in 4s is the most accurate DGT (see Tables 4.7 and 4.8). 

In Tables 4.7 and 4.8 RMSPE and MAPD errors were computed in percentage. The 

number in curly brackets in Tables 4.7-4.9 indicate the number of data groups formed. 

The criteria of MAPD and RMSPE are as tabulated before in Table 4.6 (Lotfalipour et 

al., 2013; Zhang et al., 2015). 

Considering the indicator MAPD, the accuracies of conventional GM(1,1) and 

improved GM(1,1) (GGM(1,1)) in forecasting the traffic parameters are as tabulated 

in Table 4.9. The accuracy improvement by the data grouping concept is clearly 
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evident from Table 4.9. Thus, the proposed GGM(1,1) is effective and useful in 

analyzing, estimating, forecasting and modelling grey systems.  

ii) Strong Grouping (SG) Technique Performance Analysis 

From the Strong grouping (SG) technique formula (see section 3.1.2a):  

]1[  kmM       (4.16) 

Table 4.7: Vehicle Flow Forecast Error Evaluation 

 

Error 

Indicator 

Grouping Method 

In GM (1,1) In GGM (1,1) 

NG WG in SG in 

All data {1} 4s {8}  5s {6}  4s {22}  5s {21} 

RMSE 34.1121 11.4549 13.2773 8.0205 10.2526 

RMSPE 24.0135 8.1548 9.5584 5.3415 7.0417 
MAE 27.8521 6.5161 9.1310 5.8325 7.7149 

MAPD 23.2644 5.4428 7.6270 4.8718 6.4441 

Table 4.8: CO2 Emissions Forecast Error Evaluation 

 

Error 

Indicator 

Grouping Method 

In GM (1,1) In GGM (1,1) 

NG WG in SG in 

all data {1}  4s {8}  5s {6}  4s {22}  5s {21} 

RMSE 67.8673 19.8205 39.7873 22.0666 32.0497 

RMSPE 20.4764 7.9574 13.5263 8.1039 11.0460 
MAE 56.3588 14.2036 28.1121 13.8517 21.7322 

MAPD 26.6528 6.7171 13.2946 6.5506 10.2774 

Table 4.9: GM(1,1) and GGM(1,1) Prediction Accuracy 

Accuracy 

Indicator 

Traffic 

Parameter 

Grouping Method 

In GM (1,1) In GGM (1,1) 

NG WG in SG in 
all data {1} 4s {8} 5s {6} 4s {22} 5s {21} 

100-MAPD Vehicle 

volume 

76.7356 94.5572 92.3730 95.1282 93.5559 

CO2 

emission 

73.3472 93.2829 86.7054 93.4494 89.7226 
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where  𝑀 = 𝑁 is the number of groups,  𝑚 = 𝑛 is the total number of data, and k  is 

the number of data points per group; the SG method’s performance is graphically 

presented and it is shown that the more the number of groups the more the prediction 

accuracy is improved. Figures 4.17 and 4.18 shows the graph of number of groups 

versus the prediction accuracy by the various error indicators. The graphs are self-

explanatory and the blue vertical line indicates the accuracy levels of the OGM(1,1), 

whose accuracy is improved in this study. With OGM(1,1) all data form one group and 

therefore, 𝑀 = 1,  𝑘 = 𝑚 = 25. Observe that the prediction accuracy of the OGM(1,1) 

without data grouping is low. 

Now, when the concept of data grouping is introduced in OGM(1,1), there is 

significant improvement in the prediction accuracy. This is evident from Figures 4.17 

and 4.18. Data was grouped in 4s, 5s, 6s, , to 25s which corresponds to 22, 21, 20,

 , to 1 group (s), respectively, and the accuracies were computed by error indicators 

discussed in section 3.1.3. In Figures 4.17 and 4.18 the accuracy levels of GGM(1,1) 

are as indicated. Notice that the prediction accuracy continues to improve as the 

number of groups increases from 1 to 22. Consider the MAPD error indicator curve, 

and notice a very neat trend in accuracy improvement. 

From both graphs observe that data grouping in 4s is the most accurate. It involves so 

many data groups, overlaps and few data points per group. The graphs present the 

connection between the data points per group and the corresponding number of groups 

generated. For instance, from Figure 4.17, observe the top and bottom scales of the 

graph to notice that with 4 data points per group 22 groups are formed. To form 10 

groups of data then each group should contain 16 data points. Therefore, the fewer the 

data points per group, the more the groups formed, the more the overlaps and the high 

the accuracy of prediction. 

It can now be confidently concluded that the data grouping concept in improving 

OGM(1,1)’s accuracy is worthy in time series smoothing and forecasting. 
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Figure 4.17: Vehicle Volume; GGM (1,1) Strong Grouping Technique’s 

Performance Analysis 

 

Figure 4.18: CO2 Emission; GGM (1,1) Strong Grouping Technique’s 

Performance Analysis 

iii) Weak Grouping (WG) Technique Performance Analysis 

Similarly, the weak grouping technique was analyzed as follows. Data was grouped in 

4s, 5s, 7s, 9s and 13s which corresponds to 8, 6, 4, 3, and 2 groups, respectively, and 

the accuracies were computed by error indicators discussed in section 4.1.3d(i). In 

Figures 4.19 and 4.20 the accuracy levels of OGM(1,1) are not shown as it forms 1 

group consisting of all the 25 data points but GGM (1,1)’s accuracy levels are observed 

to improve as the number of groups increases from 2 to 8. Unfortunately, the weak 
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grouping technique results in a fewer number of groups. In this case it was possible to 

form only 8 groups unlike in strong grouping technique which resulted to 22 groups. 

Notice again that the more the number of groups the more the accuracy is improved. 

Thus, the strong grouping technique is more accurate than the weak grouping 

technique.  

From both graphs (i.e., from Figures 4.19 and 4.20) again note that data grouping in 

4s is the most accurate. In this case it involves eight groups and four data points per 

group. 

 

Figure 4.19: Vehicle Volume; GGM(1,1) Weak Grouping Technique’s 

Performance Analysis 
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Figure 4.20: CO2 Emission; GGM(1,1) Weak Grouping Technique’s 

Performance Analysis 

Surely, the data grouping concept in OGM(1,1)’s precision improvement is worthy as 

it has been shown and more especially in SG techniques. The data grouping 

performance analysis and traffic parameter forecast in this section have shown that 

GGM(1,1) is applicable and reliable in time series forecasting. 

4.2 Assessment of Grouping Technique Based Univariate Grey Model, GM(1,1), 

on Energy Consumption and Carbon Dioxide Emissions 

In order to assess the performance of the DGT in improving the accuracy of the 

OGM(1,1) two application results are discussed. The DGT is applied in vehicular CO2 

emission and electricity consumption modelling and forecasting. Firstly, the proposed 

new approach of DGT and the past approach of MIC are applied and compared in 

improving the accuracy of the original grey model (OGM(1,1)). This is for assessing 

the DGT’s ability in enhancing the OGM(1,1). These techniques have been discussed 

in sections 3.1.2a and 3.1.2d. Consequently, the GGM(1,1) and MICGM(1,1) are used 

in modelling and forecasting CO2 emissions. Vehicular CO2 emission time-series data 

is utilized to model and forecast CO2 emission by these models. Secondly, the 

GGM(1,1)  is applied in modelling and forecasting of electricity consumption. 
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4.2.1 GGM(1,1) and MICGM in Vehicular CO2 Emission Modelling and 

Forecasting 

The OGM(1,1)’s precision is improved by, firstly, grouping CO2 emission data and 

establishing a GGM(1,1) as before. Secondly, MIC (Madhi & Mohamed, 2017c) is 

introduced to establish the MICGM(1,1). So, modelling and forecasting CO2 emission 

is done by these improved grey models.  

a) Data Source 

The CO2 emission data used in this section were as recorded in Table 3.3. The data in 

Table 3.3, now recorded again in Table 4.10, were used in modelling and forecasting 

CO2 emissions and the empirical results are presented in the following paragraphs. The 

first 22 data points were used in modelling and the remaining three data points were 

used in forecasting the CO2 emissions. In other words, the 22 data points were used as 

historical data and the three as the future data to be forecast. 

b) Vehicular CO2 Emission Modelling Empirical Results 

By application of the AGO, IAGO and MGO operations on the original data sequence 

CO2 emission is modelled and the OGM(1,1)’s parameters were obtained as 𝑎= -

0.0692 and 𝑏=100.1470. Thus the structure of the OGM(1,1) from (3.9) was found to 

be: 

 

 
,2110.447,12110.447,1ˆ
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 1,,2,1,0  mr    (4.17) 

The fitting values computed from (4.17) were tabulated in Table 4.10. The fitting 

accuracies based on MAPD calculation was found to be 76.4233%. See Table 4.11. 

Figure 4.21 shows the OGM(1,1)’s actual, fitted (predicted) and residual curves. The 

residual is the fitting deviation (model error). 

For the MICGM(1,1) the computed parameter values were 𝑎= -0.0692 and 

𝑏=100.1470 and the optimized initial condition value, 𝐶= 1.2827e+03. Therefore, the 
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resulting modified initial condition model structure of the grey model from (3.46) is 

given as: 

�̂�(𝑟)
(0)

= 1.2827 ∗ 𝑒3 ∗ (𝑒0.0692𝑟 − 𝑒0.0692(𝑟−1)),   𝑟 = 2,3, . . 𝑚  (4.18)  

The fitting values computed from (4.18) were tabulated in Table 4.10 and the 

corresponding fitting accuracies was found to be 78.2432% in terms of MAPD 

calculation, as in Table 4.11. Figure 4.22 is an indication of how well the actual and 

predicted values of the MICGM(1,1) fit onto each other and the residual curve. 

As stated before for the GGM(1,1) the parameters 𝑎 and 𝑏 are different for each formed 

group and therefore the model structures are also different. Note that in this model and 

from (3.34) nineteen groups are formed. Hence this will result in nineteen model 

structures of the GGM(1,1) with nineteen different values of 𝑎 and 𝑏. Hence this model 

involves a lot of computations but with MATLAB software it is easier to superimpose 

the simulations and show that this model has excellent accuracy. In this simulation the 

fitting accuracy obtained was 95.6668% as obtained in terms of MAPD computation, 

as shown in Table 4.11. In Figure 4.23 notice that GGM(1,1)’s  actual and predicted 

curves fit onto each other with a high accuracy compared with those of OGM(1,1) and 

MICGM(1,1). Moreover, the residual curve indicates that the fitting deviation is low. 
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Table 4.10: Original and Improved Grey Models’ CO2 Emission Fitting and 

Forecasting Values 

Raw Data Traditional 

GM(1,1) 

Improved GM(1,1) 

Data Point Actual Data OGM(1,1) MICGM(1,1) GGM(1,1) 

Historical Data Model Values 
1 0.0 0.0 0.0 0.0 

2 13.62 103.6935 98.4937 19.6619 

3 56.06 111.1233 105.5509 51.6320 

4 67.88 119.0854 113.1138 69.1628 

5 83.08 127.6181 121.2186 83.5470 

6 96.13 136.7621 129.9041 88.2273 

7 84.74 146.5614 139.2119 98.9877 

8 181.12 157.0627 149.1866 162.1046 

9 128.72 168.3165 159.8761 132.4549 

10 132.58 180.3766 171.3315 140.4709 

11 249.10 193.3009 183.6076 240.3059 

12 311.93 207.1512 196.7634 307.5334 

13 300.76 221.9939 210.8618 298.0975 

14 271.66 237.9001 225.9704 285.4907 

15 331.52 254.9461 242.1615 312.2848 

16 250.40 273.2133 259.5128 264.6029 

17 275.48 292.7895 278.1073 272.3879 

18 311.09 313.7683 298.0341 311.2325 

19 321.01 336.2503 319.3887 309.5854 

20 258.03 360.3432 342.2734 281.5715 

21 338.53 386.1624 366.7978 318.0301 

22 378.92 413.8315 393.0795 384.5836 

Future Data Forecast Values 

23 174.47 443.4832 421.2442 335.5412 

24 330.33 475.2594 451.4271 449.5600 

25 339.23 509.3125 483.7725 663.1573 
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Figure 4.21: OGM(1,1) CO2 Emission Modelling 

 

Figure 4.22: MICGM(1,1) CO2 Emission Modelling 

 

Figure 4.23: GGM(1,1) CO2 Emission Modelling 

c) Vehicular CO2 Emission Forecasting Empirical Results 

The models developed in this section are extrapolated to forecast future trends of CO2 

emissions with an assumption that the models fits a “best curve” to the historical data 

and that the future will follow that curve. The extrapolation in this context constitutes 

short-term forecasting of CO2 emission. 
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Future forecasts of CO2 emissions for the original grey model are found by 

extrapolating the model of (4.17), three points beyond 𝑚. Figure 4.24 shows the 

forecasting at time samples 𝑡 = 22, 23, 24. The future CO2 emissions were obtained 

and recorded in Table 4.10. These are the last three values of the OGM(1,1) column 

and the forecasting accuracy was 69.1399% as per the MAPD error indicator, see 

Table 4.12.  

Similarly, Figure 4.25 shows the forecasting at time samples 𝑡 = 22, 23, 24 as a result 

of extrapolating the model of (4.18). The three future forecast values as recorded in 

Table 4.10 for the MICGM(1,1) were obtained at a forecasting accuracy of 72.0238%, 

based on the MAPD error indicator as seen in Table 4.12.     

For the GGM(1,1) all the nineteen models are extrapolated and the simulations 

superimposed in MATLAB to obtain three forecasts of CO2 emissions at time samples 

𝑡 = 22, 23, 24, as recorded in Table 4.10 and plotted in. Figure 4.26. Here the 

forecasting accuracy as computed by MAPD error indication was 76.7674%, as shown 

in Table 4.12. 

 

Figure 4.24: OGM(1,1) Future CO2 Emission Forecasting 
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Figure 4.25: MICGM(1,1) Future CO2 Emission Forecasting 

 

Figure 4.26: GGM(1,1) Future CO2 Emission Forecasting 

d) Error and Accuracy Analysis 

The performance of the grey models were evaluated by the MAE and MAPD error 

indicators and the errors were tabulated in Tables 4.11 and 4.12. Referring to Table 4.6 

one can notice that the fitting errors (in terms of MAPD) of both OGM(1,1) and 

MICGM(1,1) from Table 4.11 are in the range of 20 to 50% and that of the GGM(1,1) 

is less than 10%. From Table 4.12, GGM(1,1)’s short-term forecast error (in terms of 

MAPD) ranges between 20 to 50%. Thus the GGM(1,1) has high fitting accuracy with 

reasonable forecasting accuracy. See the criteria for MAPD in Table 4.6 (Lotfalipour 

et al., 2013; Zhang et al., 2015).  
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Table 4.11: CO2 Emission Modelling Error and Accuracy Evaluation 

Error/ 

Accuracy 

Indicator 

Grey Model 

Traditional GM(1,1) Improved GM(1,1) 

OGM(1,1) MICGM(1,1) GGM(1,1) 

Error 

MAE 47.6073 43.9326 8.7499 

MAPD 23.5767 21.7568 4.3332 

Accuracy 

100-MAPD 76.4233 78.2432 95.6668 

Table 4.12: CO2 Emission Forecasting Error and Accuracy Evaluation 

Error/ 

Accuracy 

Indicator 

Grey Model 

Traditional GM(1,1) Improved GM(1,1) 

OGM(1,1) MICGM(1,1) GGM(1,1) 

Error 

MAE 65.2554 59.1572 49.1267 

MAPD 30.8601 27.9762 23.2326 

Accuracy 

100-MAPD 69.1399 72.0238 76.7674 

Therefore, among the proposed grey models in this section the GGM(1,1) has the 

highest modelling accuracy with reasonable forecasting accuracy. Thus these results 

show and validate the claim that the DGT is a reliable technique in improving the 

precision of the OGM(1,1) as opposed to MIC. The OGM(1,1) has, generally, low 

accuracy in modelling and forecasting CO2 emissions. 

4.2.2 GGM (1,1), in Modelling Medium-Term Forecasting of Electricity 

Consumption  

From the discussions in sections 4.1.1 and 4.1.2 the GGM(1,1) has emerged as the 

most accurate technique in time series forecasting. Therefore, in this section the 

GGM(1,1) was applied in modelling medium-term forecasting of electricity 

consumption. GGM(1,1) was subjected to electricity consumption data scenario to 

validate its applicability in time series data forecasting. An analysis of an empirical 
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example is given. Hence the accuracy of the prediction on electricity consumption in 

this section of this thesis is improved based on the DGT. 

a) The GGM(1,1) 

GGM(1,1) is an improved version of the OGM(1,1). The DGT in GGM(1,1) prioritizes 

new information in a given data series and is useful in reducing the inherent prediction 

errors in the conventional GM(1,1). So in this section the GGM(1,1) of the strong 

grouping (SG) technique is used, because of its high accuracy, (see Figure 3.3). In 

Figure 3.3 seven groups of 4s are formed based on the “new information prior using” 

principle (Mahdi & Mohamed, 2017b). 

Based on this SG technique the electricity consumption data as shown in Table 4.13 

can be grouped in 4s as follows. The first group includes data for the years 2000 to 

2003 and the last group is composed of data from the year 2016 to 2019. Thus, a total 

of 17 groups are formed. The conventional GM prediction process is applied on each 

group separately and the fitted data are superimposed in MATLAB, at points where 

the groups overlap. The resulting prediction is termed as the GGM(1,1) prediction. 

Table 4.13: Kenya’s Electricity - Consumption Data (Billion kWh) 

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 

Electricity 4.08 4.08 4.43 3.98 3.98 4.34 4.24 5.46 5.12 
Year 2009 2010 2011 2012 2013 2014 2015 2016 2017 
Electricity  4.86 4.86 4.86 5.74 5.52 6.15 6.39 6.63 7.60 

Year 2018 2019        

Electricity  7.86 7.86        

b) Data Source 

The data used in this section consists of Kenya’s total electricity consumption, 

expressed in kilowatt-hours (kWh), for the period from the year 2000 to 2019 except 

for the year 2015 whose value was approximated by computing the mean of the 

adjacent data. The data were retrieved from the Central Intelligence Agency (CIA) 

World Factbook(www.indexmundi.com/g/g.aspx?c=ke&v=81) on December 29, 2019 

and tabulated as in Table 4.13. 
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A numerical example is presented by training and testing both the conventional and 

improved GM(1,1). Thus data of Table 4.13 was subdivided into training and test data 

sets for estimating and evaluating the GM(1,1)s, respectively (Liu & Cocea, 2017). 

Consequently, data from the year 2000 to 2016 were used for estimating whereas data 

from 2017 to 2019 were used for evaluation purposes. 

c) Training the Grey Models 

In training the grey models the sequence of (3.3) was generated from Table 4.13 data 

and with (3.20) and (3.23) the matrix 𝐴 and vector 𝑦 were formed. Consequently, the 

parameters 𝑎 and 𝑏 were calculated from (3.33). For the OGM(1,1) 𝑎= -0.0336, 𝑏= 

3.6656 and the time function of (3.9) simplified to the model structure:  

 

 
,0952.1091752.113ˆ
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r
    1,,2,1,0  mr    (4.19) 

To restore the original data IAGO was applied on (4.19) to obtain the fitted data for 

the years 2000 to 2016 as; {4.0800 3.8674 3.9996 4.1363 4.2777 4.4239 4.5751 4.7315 

4.8933 5.0605 5.2335 5.4124 5.5974 5.7887 5.9866 6.1912 6.4028}. 

Computation by the GGM(1,1) results to different model structures as each group 

demonstrates unique values of parameters 𝑎 and 𝑏  which may not be necessarily the 

same. By superimposing the predictions from all the groups, the fitted data for the 

GGM(1,1) was; {4.0800 4.1459 4.3177 4.0344 4.0095 4.2266 4.4319 5.2753 5.1446 

4.9132 4.8449 5.0130 5.5766 5.6517 6.0573 6.4192 6.6306}.  

Figure 4.27 shows plots of the real, fitted and fitting deviation data for the OGM(1,1) 

and the GGM(1,1). The fitting deviation curves demonstrates the model errors in 

fitting the original data sequence. Note that GGM(1,1)’s errors are lower compared to 

those of the OGM(1,1). See their corresponding fitting accuracies in Table 4.14. 
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Figure 4.27: Grey Model Training 

d) Testing the Grey Models 

Testing of the models involved using the constructed models to anticipate the 

electricity consumption for the years 2017 to 2019. In this respect the OGM(1,1) 

structure of (4.19) was extrapolated (refer to section 3.1.2(i)) by three points into the 

future as shown in Figure 4.28. Similarly, extrapolation in GGM(1,1) is illustrated in 

Figure 4.28. The model simulation values were recorded in Table 4.15 and the 

performance evaluation accuracies were as given in Table 4.16. 

 

Figure 4.28: Grey Model Extrapolation-Testing 

e) Medium-Term Forecasting 

Short-term forecasting is daily up to months in the future. It usually involves processes 

that show results within a year. It can also involve forecasting at predetermined 

intervals of time say in minutes or hours. On the other hand, Medium-term forecasting 

tends to be several months up to 2 years into the future. Its period extends from one to 
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two years (Alvarez et al., 2010) and in this study the electricity consumption for the 

years 2020 and 2021 was forecasted. From the above discussion it was evident that the 

GGM(1,1) is more accurate than the OGM(1,1). Consequently, the GGM(1,1) was 

extrapolated beyond the year 2019 to anticipate the future electricity consumption for 

the years 2020 and 2021 which were found to be 8.0353 and 8.1023 billion kWh 

respectively, as read from Figure 4.29.  

 

Figure 4.29: GGM (1,1) in Medium-Term Forecasting 

It is worthy to note that from CIA the consumption for the year 2020 was 7.86 billion 

KWh. The prediction by this thesis was 8.0353 Billion KWh. Thus, there was a 

variance.  This variance can be attributed to the fact that during the year 2020, the 

coronavirus disease 2019 (COVID 19) had struck most parts of the world, Kenya 

inclusive. So that the rate of electricity consumption in Kenya reduced due to the 

situation that most of the electricity consuming economic activities were not/not fully 

in operation. Otherwise, the consumption could reach 8.0353 billion KWh (or near 

about) as predicted. 

f) Accuracy Evaluation  

The error measures mentioned in section 3.1.3 were computed and their corresponding 

accuracies recorded in Tables 4.14 and 4.16. From Table 4.6 notice that both models 

have high accuracy. However, the GGM(1,1) is slightly more accurate than the 

OGM(1,1) in both fitting and forecasting as seen in Tables 4.14 and 16.  
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Table 4.14: Model Training Accuracy Evaluation 

Accuracy Indicator Traditional GM Grouped GM 

100-RMSE 99.6801 99.8956 

100-RMSPE 99.5481 99.9730 

100-MAE 99.7295 99.9167 

100-MAPD 94.5723 98.3270 

Table 4.15: Model Evaluation  

Test data Model Data 

YEAR Raw data OGM(1,1) GGM(1,1) 

2017 7.60 6.6217 7.0104 

2018 7.86 6.8480 7.5712 

2019 7.86 7.0821 7.4213 

Table 4.16: Model Testing Accuracy Evaluation 

Accuracy Indicator Traditional GM Grouped GM 

100-RMSE 99.5349 99.6572 

100-RMSPE 96.1884 97.9596 

100-MAE 99.6317 99.7492 

100-MAPD 93.1817 95.3579 

Therefore, it has been shown that for both OGM(1,1) and GGM(1,1) the fitting and 

forecasting errors are below 10% and this shows high accuracy (see Tables 4.14 and 

4.16). However, the OGM(1,1)’s accuracy has been slightly improved by the DGT and 

thus the GGM(1,1) is suitable, reliable and valid in electricity consumption modelling 

and forecasting. This validates GGM(1,1) ‘a applicability in time series modelling and 

forecasting.  

4.3 Case Study 

In the previous sections of this thesis various case scenarios have been presented, based 

on a variety of time series data for the purpose of validating the proposed DGT method 

in improving the precision of the original grey models. In this section a case study is 

presented to further validate the effectiveness and applicability of the proposed DGT 

method in modelling and short-term forecasting of vehicle traffic flow. The criteria 

used in determining the accuracy improvement include the Root Mean Square Error 
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(RMSE), Root Mean Square Percentage Error (RMSPE), Mean Absolute Error (MAE) 

and the Mean Absolute Percentage Deviation (MAPD), which are calculated as before. 

Additionally, in this case study the TSA, discussed in section 3.2.7 of this thesis, was 

applied in improving the precision of the GM(1,n). 

4.3.1 Data Source  

The case study is based on traffic flow data which were manually collected from 

Nairobi CBD, Kenya. In order to capture hourly pattern of data that accurately reflects 

the real-world traffic situation in the CBD area the traffic count was conducted 

throughout a day. The collected data included counting the number of vehicles (VEHs), 

pedestrians (PEDs) and motorcycles (MOTs) passing a point of study. The data were 

collected for three consecutive days, from 16th to 18th February 2021, from seven major 

counting sites within the CBD. Usually, days counted include Tuesdays, Wednesdays 

and Thursdays. These are days that are likely to have the same pattern of vehicle, 

pedestrian and motorcycle volumes within a week and these days are representative 

enough for one week (Roads and Highways Department, 2001). Mondays and Fridays 

have different volume patterns (Regehr et al., 2015) and higher volumes are expected 

on weekends. Fridays and Saturdays are usually different and have higher volumes due 

to traditional activities like “after works”, recreational and due to the night life 

(Sampson, 2017). However, these days cause a bias on the volume of traffic (e.g. 

pedestrians) in comparison to the remaining days of the week; consequently it is better 

to count in other days rather than these (Miranda et al., 2011). Therefore, data were 

collected at intervals of 5 minutes for a duration of 15 hours per day for three 

consecutive days, i.e. from Tuesday to Thursday. For each day data were collected as 

from 06:00 to 21:00 in all the directions of a road intersection. The traffic data were 

collected from the seven sites mentioned in section 3.5.4. In this thesis day one traffic 

data corresponds to data collected on 16th February, day two traffic data is data 

collected on 17th February, whereas day three traffic data is data collected on the last 

day of data collection. For economic reasons the manual count method was adopted in 

this research. In Appendix III shown are some photos of clerks collecting traffic data 

at the stated sites. 
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From the photos in Appendix III, it is clear that the weather conditions were favorable 

for the traffic counting exercise. The Nairobi CBD area was calm and sunny 

throughout the three days and no incident occurred. Therefore, the traffic counting 

activity was conducted smoothly and successfully.  

4.3.2 The Collected Traffic Data 

For empirical analysis and for clear visual interpretation of the traffic data, the data 

were tabulated in table form as in Appendix IV for each site. In Appendix IV are 

examples of the traffic flow data sets collected from seven different sites for the three 

days of the week and at 5-minute interval. Data shown is from 6:00 am to 10:30 am of 

the day. This is to avoid making this thesis so voluminous. Full day traffic flow data 

are available upon request from the author. Blank columns in the tabulated traffic data 

of Appendix IV means that data were not well or fully captured during that time. This 

was because of failure of the clerk to report in time or the concerned clerk was 

completely absent due to sickness or any other unavoidable circumstance. However, 

the collected data is a good representative of the whole CBD traffic system.   

Based on these data the prediction and forecasting accuracies of the original and 

improved grey models were compared. In this section the case study was considered 

under two headings, namely “Formulating GM(1,1), in modelling and short-term 

forecasting of vehicle traffic flow” and “Formulating the multivariate grey model, 

GM(1,n),  in vehicle flow modelling”. These models’ precisions have been improved 

in the previous sections and in this case study, sections 4.3.3 and 4.3.4 presents more 

results for the conventional and the proposed improved grey models. 

4.3.3 Formulating GM(1,1) in Modelling and Short-Term Forecasting of Vehicle 

Traffic Flow 

Vehicle traffic flow was modelled based on the OGM(1,1) and the proposed 

MBVGM(1,1), GGM(1,1) and MBVGGM(1,1). The structure of GM(1,1) has been 

provided in section 3.1.1 part I and the procedure of the proposed grey models are 

discussed in section 3.1.2 of this thesis. Now from existing results (Ajiboye, et al., 

2015) a model trained with the largest size of training sets is the most accurate and it 
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consistently delivers much better and stable results. Thus, in this thesis a large portion 

of the collected vehicle volume time series data is used to train these models and the 

near future data of that time series is used to test the models. The collected vehicle 

traffic data used were 30 data points and the last 3 points of this time series data was 

used for testing purposes. That is to say the first 27 data points were used for fitting 

and the last 3 data points were used for testing purpose. Thus, the grey models were 

extrapolated three points into the future in order to forecast the last 3 data points. Hence 

short-term forecasting. As data were collected for three consecutive days sampling was 

done so that four cases are presented per day in sections 4.3.3.1, 4.3.3.2 and 4.3.3.3. 

This was for the purpose of increasing the generalizing capability of the models and 

allow for the models to be most accurate and reliable. Additionally, for each case one 

direction of traffic flow was randomly selected and its performance evaluated. 

4.3.3.1 Day One Vehicle Traffic Flow Modelling and Short-Term Forecasting 

Based on vehicle traffic flow data collected on 16th February 2021, four cases are 

presented in modelling and short-term forecasting of vehicle traffic flow for four sites. 

These sites include; 

 Day 1 Site 1 (D1S1): Haile Selassie Roundabout, 

 Day 1 Site 4 (D1S4): Kenyatta Avenue-Moi Avenue-Mondlane Street 

Junction, 

 Day 1 Site 5 (D1S5): Moi Avenue-Slip Road Junction and 

 Day 1 Site 7 (D1S7): Haile Selassie Avenue-Moi Avenue Roundabout. 

Consequently, data from the said four sites were employed. Note that the data used is 

from 6:00 am to 8:30 am of the day and these constitutes 30 data points. The data were 

sub-divided as in Figure 4.30 such that the first 27 data points are for training the 

models and the last 3 points were used for testing the models (Ajiboye et al., 2015). 

These four cases are presented in Figures 4.31, 4.33, 4.35 and 4.37 which illustrates 

the training of the conventional GM(1,1) and the improved GM(1,1), (GGM(1,1)) 

whereas Figures 4.32, 4.34, 4.36 and 4.38 presents the short-term forecasting (i.e. 

forecasting of the last 3 data points through grey model extrapolation) by these models. 
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In both cases of training and forecasting notice that the proposed GGM(1,1) has good 

performance compared to OGM(1,1) and since it performs well in the four cases of 

different sites of the Nairobi CBD from which data were collected it is evident that this 

model is portable and applicable  in vehicle flow modelling and forecasting.  

 

Figure 4.30: Two-Way 30-Point Data Splitting 

I. Site 1: Haile Selassie Roundabout 

a) Traffic Flow Training 

The Haile Selassie roundabout is a four-way type of junction. In this study the 

northward direction was randomly selected and its results are presented in detail. The 

AGO, MGO and IAGO operations were applied on the first 27 data points (of 

Appendix IV Table 1) of each direction and the model parameters 𝑎 and 𝑏 were 

computed and tabulated in Table 4.17.  

Table 4.17: Day 1 Site 1 OGM(1,1) Model Parameters 

Traffic Flow 

Direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0153 144.4327 

Southward -0.0207 75.2663 

Eastward -0.0156 57.9234 

Westward -0.0072 85.0393 

The time response function of (3.9) for the OGM(1,1) in the northward direction was 

obtained as: 

                                       Training                                            Testing 

3 points 

Original Traffic Data Set 30 Points 

27 points 
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where 𝑚=27. From (4.20) the simulated vehicle flow data were recorded in Table 4.19. 

The real and simulated data for the OGM(1,1) in all directions were as plotted in Figure 

4.31a. Similarly, the time response functions for the other three directions can be 

obtained by substituting the model parameters of Table 4.17 into (3.9). 

 

Figure 4.31a: Vehicle Flow OGM(1,1) Training 

Modifying the background value resulted to model parameters indicated in Table 4.18. 

Thus the time response function of (3.9) for the MBVGM(1,1) in the northward 

direction was obtained as: 
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Table 4.18: Day 1 Site 1 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0152 144.6559 

Southward -0.0192 77.3774 

Eastward -0.0156 57.9595 

Westward -0.0071 85.0742 

The final fitting values from (4.21) were recorded in Table 4.19 and Figure 4.31b 

shows the real and simulated data plots.  

 

Figure 4.31b: Vehicle Flow MBVGM(1,1) Training 

Introduction of the DGT in OGM(1,1) and MBVGM(1,1) results to many groups being 

formed and hence many time response functions are formulated. In this case with 27 

data points 24 groups of data are formed. This means that 24 time response functions 

are formulated each with unique values of the parameters 𝑎 and 𝑏. Therefore, for 

GGM(1,1) and MBVGGM(1,1) the model parameters and the corresponding time 

response functions are not provided here. Figures 4.31c and 4.31d shows the plots of 

real and simulate data for the GGM(1,1) and MBVGGM(1,1) respectively. The 

simulated data for these models were also recorded in Table 4.19. 
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Figure 4.31c: Vehicle Flow GGM(1,1) Training 

 

Figure 4.31d: Vehicle Flow MBVGGM(1,1) Training 

The simulation errors in Figures 4.31a to 4.31d shows that the OGM(1,1) and 

MBVGM(1,1) have almost the same fitting accuracy whereas the GGM(1,1) and 

MBVGGM(1,1) have also almost the same fitting accuracy. However, the GGM(1,1) 

and MBVGGM(1,1) are more accurate than the OGM(1,1) and MBVGM(1,1). It 

implies that the DGT has a great impact in improving the fitting accuracy of the 

OGM(1,1). The accuracy improvement by the MBV is very minimal. Avery poor 

prediction performance is noticed at the last data point in Figure 4.31d, southward 

direction. An error of -22.4995 at the final point by MBVGGM(1,1) predicted 
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occurred. Generally, traffic flow fitting by MBVGGM(1,1) in the said direction was 

not good.  

b) Testing the Grey Models in Short-Term Forecasting 

For short-term forecasting the formulated time response functions were extrapolated 

three points into the future (i.e. the last 3 data points were estimated). For the 

OGM(1,1) and MBVGM(1,1)  (4.20) and (4.21) were extrapolated. In short-term 

forecasting the parameters 𝑎 and 𝑏 remain the same as those obtained in training the 

models. Figures 4.32 a-4.32d shows the short-term forecasting by the conventional and 

improved grey models. 

 

Figure 4.32a: Short-Term Vehicle Flow Forecast by OGM(1,1) 
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Figure 4.32b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 

 

Figure 4.32c: Short-Term Vehicle Flow Forecast by GGM(1,1) 
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Figure 4.32d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Comparison of the simulation errors in Figure 4.32a to Figure 4.32d reveals that the 

forecasting errors are a bit large. However, the simulation error curves in the northward 

direction indicates that MBVGGM(1,1) is the most accurate. Also the simulation error 

curves in the westward direction indicates that the GGM(1,1) is more accurate. It again 

shows that the DGT is good in improving the accuracy of the OGM(1,1).  

c) Evaluation of the Grey Models 

The final day 1 site 1 traffic flow fitting and forecasting values (for the northward 

direction only) were obtained and recorded in Table 4.19. Moreover, the overall 

training and short-term forecasting errors for this site were computed and tabulated in 

Table 4.20. 
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Table 4.19: Original and Improved Grey Models’ Simulation Values (D1S1 

Northward Direction)  

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 60 60.0000  60.0000 60.0000 60.0000 

2 55 146.4728  146.6851   55.8896   55.9144 

3 70  148.7361  148.9375   69.0092   68.8541  

4 77  151.0343  151.2246   77.3329  77.2115 

5 82  153.3680 153.5467   80.8203   80.3928 

6 81  155.7377  155.9046   81.5486   80.5066 

7 97  158.1441  158.2986   90.8216   87.9868 

8 137  160.5877  160.7294  150.0240  134.5100 

9 319  163.0690  163.1975  280.2892  262.0274 

10 223  165.5887  165.7035  234.4838  232.4074 

11 198  168.1473  168.2480 201.7108  199.3349 

12 238  170.7454  170.8316  233.5593  229.9553 

13 251  173.3837  173.4548  251.4464  249.4446 

14 247  176.0627  176.1184  243.5463  243.8568 

15 222  178.7832  178.8228  229.2007  228.7993 

16 252  181.5456  181.5687  246.9259  247.1138 

17 244  184.3508  184.3569 245.3689  248.4210 

18 226  187.1993  187.1878  216.7087  214.6110 

19 189  190.0918  190.0622  213.3698  205.4722 

20 312  193.0290  192.9807  274.7988  275.2537 

21 134 196.0116  195.9441  166.0507  172.7909 

22 176  199.0403  198.9530  158.1449  159.9347 

23 151  202.1157  202.0080  156.7823  157.7140 

24 154  205.2387  205.1100  149.0264  149.5950 

25 135  208.4100  208.2596  140.9255  138.6573 

26 160  211.6302  211.4576  156.4693  151.4517 

27 192  214.9002  214.7047  191.0012  177.8547 

Testing Short-Term Forecasted Values 

28 159 218.2208 218.0017 168.5547 163.2340 

29 215 221.5926 221.3492 217.2907 207.0257 

30 112 225.0166 224.7482 324.2162 294.1527 

 Table 4.19 shows that GGM(1,1)’s fitting values are close to the real data as compared 

to the other models. And therefore, GGM (1,1) was the most accurate improved grey 

model. From Table 4.20 it can be clearly seen that GGM(1,1) had less than 10% fitting 

error in the northbound, eastbound and westbound directions. This is an indication of 

high fitting accuracies as per the criteria for MAPD and RMSPE shown in Table 4.6. 
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The fitting error in the southbound direction was in the range of 20 to 50% (see Table 

4.20). Based on the criteria in Table 4.6, this is a reasonable accuracy. 

Table 4.20: Day 1 Site 1 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic 

Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional  Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 67.5900 67.5913 14.2515 16.6227 

RMSPE 34.1376 34.1186 8.1721   9.9934 

MAE 59.3191 59.3094 8.9264 9.9768 

MAPD 34.2079 34.2024 5.1476 5.7534 

Southbound RMSE 60.8495 60.8640 39.2054 65.6346 

RMSPE 40.9329 41.1642 27.3430 67.1580 

MAE 45.7421 45.9943 24.2648 32.4198 

MAPD 46.1523 46.4068 24.4824 32.7105 

Eastbound RMSE 10.3898 10.3898 3.3926 3.4657 

RMSPE 13.4687 13.4672 4.1655 4.4015 

MAE 8.1478 8.1442 2.6427 2.6597 

MAPD 11.4519 11.4469 3.7143 3.7382 

Westbound RMSE 17.2639 17.2639 3.2907 4.4726 

RMSPE 19.1635 19.1599 3.5312 5.0760 

MAE 12.9414 12.9428 2.4323 3.0431 

MAPD 13.9488 13.9503 2.6216 3.2800 

Short-Term Forecasting 

Northbound RMSE 68.2325 68.2118 72.0811 49.8643 

RMSPE 33.9027 33.8805 34.5042 23.4735 

MAE 59.3482 59.3151 38.0688 28.3097 

MAPD 34.4513 34.4322 22.0988 16.4336 

Southbound RMSE 59.2578 59.1766 73.2609 70.4907 

RMSPE 40.2786 40.4874 36.6983 49.0172 

MAE 45.0665 45.2239 45.2428 44.7315 

MAPD 45.1267 45.2843 45.3032 44.7912 

Eastbound RMSE 10.2457 10.2434 9.9066 9.4550 

RMSPE 13.0247 13.0200 13.9423 13.2000 

MAE 8.0665 8.0599 7.0535 6.8747 

MAPD 11.1570 11.1479 9.7559 9.5086 

Westbound RMSE 20.4125 20.4055 10.8469 21.0894 

RMSPE 20.8070 20.8004 11.1116 24.8212 

MAE 15.4888 15.4863 7.1965 14.2263 

MAPD 17.1971 17.1943 7.9902 15.7953 

In short-term forecasting, the last three time sample points in Figures 4.32a - 4.32d 

(i.e. at 8:20, 8:25 and 8:30 AM) are the extrapolated points of focus.  For the 
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northbound direction the forecasted values are recorded in Table 4.19. The errors 

involved in this short-term forecast are indicated in Table 4.20. The GGM(1,1) is the 

most accurate in fitting because its fitting errors are lower compared to those of the 

other three models. In the westbound direction the GGM(1,1) emerged the most 

accurate in short-term forecasting. It had a MAPD of 7.9902 which translates to an 

accuracy of 92.0098%. 

II. Site 4: Kenyatta Avenue-Moi Avenue-Mondlane Street Junction 

a) Traffic Flow Training 

Vehicle flow data of site 4 (data of Appendix IV Table 4) in all directions were 

considered and Figures 4.33a-4.33d and 4.34a-4.34d shows the grey model training 

and short-term forecasting, respectively.  

Table 4.21 shows the OGM(1,1)’s model parameters for this site. Note that site 4 is a 

three-way junction. 

Table 4.21: Day 1 Site 4 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0190 62.0909 

Southward -0.0203 22.3530 

Eastward -0.0320 9.0775 

Thus the time response function of (3.9) for the OGM(1,1) in the southward direction 

was obtained as: 
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From (4.22) OGM(1,1)’s simulation values were tabulated in Table 4.23 and Figure 

4.33a is the plot of the real and the simulation data.  
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Figure 4.33a: Vehicle Flow OGM(1,1) Training 

Vehicle flow MBVGM(1,1) training resulted to the model parameters of Table 4.22 

and considering the southward direction the time response function was obtained as: 

Table 4.22: Day 1 Site 4 MBVGM(1,1) Model Parameters 

Traffic Flow 

Direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0190 62.1289 

Southward -0.0202 22.3833 

Eastward NaN NaN 
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In MATLAB simulation of the eastward direction data the values for the model 

parameters were not computed because the data matrix 𝐴 was singular to working 

precision. So, MATLAB gives a “NaN” result which stands for “Not a Number”. The 

“NaN” results can be attributed to poor data collection. This is indicated in Table 4.22. 

Therefore, there were no results for the eastward direction as can be seen in Figure 

4.33b.   

In Table 4.23 recorded are the MBVGM(1,1)’s simulation values as computed from 

(4.23). The plots of the real, simulated and error values of the MBVGM(1,1) are shown 

in Figure 4.33b. 
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Figure 4.33b: Vehicle Flow MBVGM(1,1) Training 

The plots of the real, simulated and error values of the GGM(1,1) and MBVGGM(1,1) 

are shown in Figure 4.33c and 4.33d, respectively. Their simulation values were as 

recorded in Table 4.23. As it was mentioned earlier their time response functions and 

model parameters are many and thus not provided here.  

 

Figure 4.33c: Vehicle Flow GGM(1,1)  Training 
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Figure 4.33d: Vehicle Flow MBVGGM(1,1)  Training 

It can be observed from Figures 4.33a – 4.33d that the error curves for the OGM(1,1) 

and MBVGM(1,1) are not as smooth as those of the GGM(1,1) and MBVGGM(1,1). 

The error curves for GGM(1,1) and MBVGGM(1,1) are approaching zero. This is a 

good indication that their fitting accuracy is higher compared to those of the OGM(1,1) 

and MBVGM(1,1).  

b) Testing the Grey Models in Short-Term Forecasting 

For the OGM(1,1) and MBVGM(1,1)  (4.22) and (4.23) were extrapolated three points 

into the future. In short-term forecasting the parameters 𝑎 and 𝑏 remained the same as 

those obtained in training the models (i.e. as in Tables 4.21 and 4.22). Figures 4.34a – 

4.34d show the short-term forecasting by the conventional and improved grey models. 
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Figure 4.34a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.34b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.34c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

 

Figure 4.34d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

From Figures 4.34a - 4.34d the following observations are made. Firstly, there were 

no results for the eastward direction of Figure 4.34b as MATLAB simulation indicated 

a NaN result, as explained earlier. Secondly, close observation of the error curves can 

reveal that MBVGGM(1,1) is more accurate in short-term forecasting compared with 

the other three models. This is very clear from the evaluation point of view discussed 

next. 
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c) Evaluation of the Grey Models 

The simulation data for the four grey models in the southward direction were as 

tabulated in Table 4.23. Both training and short-term forecasting simulation data are 

as shown. The overall training and short-term forecasting errors for site 4 were as well 

tabulated in Table 4.24. Table 4.24 reveals that GGM(1,1) is more accurate in vehicle 

flow fitting because its fitting errors are lower as compared to those of the other three 

grey models. The forecasting errors of the MBVGGM(1,1) in the northward and 

southward directions are lower compared to the other models’ errors. It means it was 

the most accurate in short-term forecasting with an accuracy of 100-

MAPD=89.3487%, in the northward direction. The reasons for the “NaN” results in 

Table 4.24 are as explained before.  
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Table 4.23: Original and Improved Grey Models’ Simulation Values (D1S4 

Southward Direction)  

Raw Data Grey Model 

Data Point Real Value OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 19 19.0000 19.0000 19.0000 19.0000 

2 17 22.9708 22.9991 17.1955 17.1960 

3 20 23.4416 23.4689 19.3804 19.3044 

4 21 23.9221 23.9482 21.7964 21.6037 

5 28 24.4125 24.4373 27.0530 26.6290 

6 29 24.9129 24.9364 30.1842 29.9394 

7 34 25.4236 25.4457 31.6298 31.5882 

8 21 25.9447 25.9654 23.7549 23.9301 

9 27 26.4765 26.4957 25.4714 25.7444 

10 25 27.0193 27.0369 24.9985 25.0042 

11 22 27.5731 27.5891 21.8850 21.7478 

12 24 28.1383 28.1525 25.5738 24.9828 

13 38 28.7151 28.7275 34.3203 33.1899 

14 26 29.3037 29.3143 29.7824 29.4705 

15 39 29.9044 29.9130 37.2040 37.1623 

16 40 30.5174 30.5239 39.2192 38.9238 

17 32 31.1429 31.1473 33.9989 34.5356 

18 35 31.7813 31.7835 31.2479 30.7829 

19 18 32.4328 32.4326 23.4046 22.8792 

20 36 33.0976 33.0950 31.3851 31.6139 

21 24 33.7760 33.7709 26.4991 26.4954 

22 30 34.4684 34.4607 29.5393 29.0559 

23 39 35.1749 35.1645 38.6860 37.7344 

24 42 35.8959 35.8827 40.5355 39.7874 

25 35 36.6317 36.6155 39.2244 38.9251 

26 47 37.3826 37.3634 40.4875 40.4193 

27 29 38.1489 38.1265 34.4040 35.5681 

Testing Short-Term Forecasted Values 

28 46 38.9309 38.9052 37.9711 38.7661 

29 29 39.7289 39.6998 41.7102 43.3160 

30 49 40.5433 40.5106 

 

27.7948 

 

30.5772 

   



136 

III. Site 5: Moi Avenue-Slip Road Junction 

a) Traffic Flow Training 

Vehicle flow data of site 5 (of Appendix IV Table 5) in all directions were simulated 

and Figures 4.35a-4.35d and 4.36a-4.36d shows the grey model training and short-

term forecasting respectively. The first 27 data point were used for training the grey 

models, ass before. 

Table 4.24: Day 1 Site 4 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional  Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 12.1582 12.1582 4.0208 4.0717 

RMSPE 14.3974 14.3916 5.0627 5.2877 

MAE 9.6951 9.6904 3.0609 3.2367 

MAPD 12.3069 12.3009 3.8854 4.1086 

Southbound RMSE 6.3247 6.3247 2.8533 3.0006 

RMSPE 19.0390 19.0368 9.2014 9.7922 

MAE 5.2938 5.2950 2.1769 2.3276 

MAPD 17.9340 17.9379 7.3746 7.8854 

Eastbound RMSE 4.9101 NaN 1.3525 1.5890 

RMSPE 33.6235 NaN 8.0072 9.2317 

MAE 3.8160 NaN 1.0173 1.1489 

MAPD 27.9982 NaN 7.4635 8.4297 

Short-Term Forecasting 

Northbound RMSE 12.5901 12.5870 11.8193 11.2687 

RMSPE 14.6467 14.6378 13.5735 13.1212 

MAE 10.0775 10.0704 8.7971 8.5317 

MAPD 12.5811 12.5723 10.9827 10.6513 

Southbound RMSE 6.6248 6.6256 7.2162 6.7671 

RMSPE 18.8943 18.9028 22.5237 20.4914 

MAE 5.6396 5.6416 4.8673 4.5144 

MAPD 18.3701 18.3766 15.8544 14.7048 

Eastbound RMSE 4.7742 NaN 6.0297 5.0596 

RMSPE 29.2685 NaN 31.2832 29.2517 

MAE 3.6647 NaN 4.1953 3.7187 

MAPD 25.0436 NaN 28.6695 25.4124 
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AGO and MGO operations on the first 27 data points of site 5 resulted to OGM(1,1)’s 

model parameters shown in Table 4.25. Note that site 5 is a three-way junction. 

Thus the time response function of (3.9) for the OGM(1,1) in the eastward direction 

simplified to: 
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Table 4.25: Day 1 Site 5 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0118 45.4337 

Eastward -0.0267 55.9904 

Westward -0.0752 15.6012 

From (4.24) OGM(1,1)’s simulation values were tabulated in Table 4.27 and Figure 

4.35a is the plot of the real data, simulation data and the error curve.  

 

Figure 4.35a: Vehicle Flow OGM(1,1) Training 

The MBVGM(1,1) vehicle flow training of the first 27 data points resulted to the 

model parameters of Table 4.26 and considering the eastward direction the time 

response function was formulated as:  
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Table 4.26: Day 1 Site 5 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0117 45.4876 

Eastward -0.0267 56.0313 

Westward -0.0752 15.6482 

In Table 4.27 recorded are the MBVGM(1,1)’s simulation values as computed from 

(4.25). The plots of the real, simulated and error values of the MBVGM(1,1) are shown 

in Figure 4.35b. 

 

Figure 4.35b: Vehicle Flow MBVGM(1,1) Training 

The plots of the real, simulated and error values of the GGM(1,1) and MBVGGM(1,1) 

are shown in Figures 4.35c and 4.35d, respectively. Their simulation values were as 

recorded in Table 4.27. Because of the same reasons given earlier their time response 

functions and model parameters are many and thus not provided here.  
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Figure 4.35c: Vehicle Flow GGM(1,1)  Training 

 

Figure 4.35d: Vehicle Flow MBVGGM(1,1)  Training 

Similarly, as for site 4, it can be observed from Figures 4.35a - 4.35d show that the 

error curves for the OGM(1,1) and MBVGM(1,1) are not as smooth as those of the 

GGM(1,1) and MBVGGM(1,1). The error curves for GGM(1,1) and MBVGGM(1,1) 

are smooth and approaching zero. This indicates that their fitting accuracy is higher 

compared to those of the OGM(1,1) and MBVGM(1,1).  
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b) Testing the Grey Models in Short-Term Forecasting 

For the OGM(1,1) and MBVGM(1,1)  (4.24) and (4.25) were extrapolated three points 

into the future. The parameters 𝑎 and 𝑏 remained the same as those obtained in training 

the models (i.e. as in Tables 4.25 and 4.26). Figures 4.36a-4.36d show the short-term 

forecasting by the conventional and improved grey models. 

 

Figure 4.36a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.36b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.36c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

 

Figure 4.36d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

From Figures 4.36a-4.36d the following observations are made. Firstly, close 

observation of the error curves can reveal that MBVGGM(1,1) is more accurate in 

short-term forecasting compared with the other three models. This is particularly in 

the northward and eastward directions. The MBVGGM(1,1) fitting in those directions 

is good. Similar result are exhibited by the GGM(1,1). Secondly, the OGM(1,1) had a 

good fit in the westward direction. The other models, especially the MBVGGM(1,1), 

had poor fitting in this direction. See Figure 4.36d. 
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c) Evaluation of the Grey Models 

The simulation data for the four grey models in the eastward direction were as 

tabulated in Table 4.27. Both training and short-term forecasting simulation data are 

as shown in that table. The overall training and short-term forecasting errors for site 5 

were as well tabulated in Table 4.28.  

Again Table 4.28 reveals that GGM(1,1) is more accurate in vehicle flow fitting 

because its fitting errors are lower as compared to those of the other three grey models. 

Its fitting accuracy as indicated by RMSPE can be shown to be 100-2.6674=97.3326%, 

in the westward direction. The forecasting errors of the MBVGGM(1,1) in the 

northward and eastward directions are lower compared to the other models’ errors. It 

means it was the most accurate in short-term forecasting with the highest accuracy of 

100-MAPD=91.3983%, in the eastward direction. The OGM(1,1) emerged the most 

accurate, in the westward direction, because it had the lowest errors whereas the 

MBVGGM(1,1) was the poorest in short term forecasting of vehicle flow in that 

direction. 
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Table 4.27: Original and Improved Grey Models’ Simulation Values (D1S5 

Eastward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 
1 15 15.0000 15.0000 15.0000 15.0000 

2 40   57.1503   57.1904   38.8045   38.6735 

3 25   58.6965   58.7359   26.5687   27.0070 

4 28   60.2846   60.3231   27.5881   27.9089 

5 35   61.9156   61.9532   32.9612   33.4278 

6 38  63.5908   63.6274   41.5194   40.6947 

7 70   65.3113   65.3468   64.1996   61.4665 

8 65   67.0783   67.1127   69.4464   67.0840 

9 87   68.8931   68.9262  84.4278   82.7373 

10 88   70.7571   70.7888   87.3784   86.3037 

11 81 72.6715 72.7018 82.8340 82.4817 

12 91   74.6376   74.6664   89.6920   88.0121 

13 100   76.6570   76.6841  102.3486   99.8184 

14 119   78.7310   78.7564  114.6704  114.1660 

15 97   80.8611   80.8846   99.3144  100.5934 

16 91   83.0488   83.0704   91.5713   91.9812 

17 98   85.2958   85.3152   98.2261   98.3724 

18 101   87.6035   87.6207   96.1714   96.1120 

19 74   89.9736   89.9885   81.9878   81.8919 

20 103   92.4079   92.4202   96.2314   95.3456 

21 92 94.9081 94.9177 96.7396 95.5833 

22 106   97.4759   97.4827  101.7348  101.5812 

23 93  100.1131  100.1170   97.1807   97.2632 

24 104  102.8217  102.8224  100.6233  101.7907 

25 89  105.6036  105.6010   89.2184   90.1996 

26 80  108.4608  108.4547   84.2895   84.6780 

27 100  111.3953  111.3855   95.4800   93.0706 

Testing Short-Term Forecasted Values 

28 84 114.4091   114.3955 83.4791 83.9357    

29 70 117.5045   117.4868   80.8643   79.6307   

30 101 120.6837 

 

120.6616 115.9550 111.3272 
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Table 4.28: Day 1 Site 5 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional  Improved 

GM(1,1) MBVGM(1,1) GGM(1,1 MBVGGM(1,1) 

Training 

Northbound RMSE 12.6352 12.6352 3.3856 3.5377 

RMSPE 21.2517 21.2571 5.7929 5.9251 

MAE 10.2713 10.2671 2.7259 2.9039 

MAPD 19.1522 19.1444 5.0828 5.4148 

Eastbound RMSE 18.6457 18.6463 3.6385 4.0083 

RMSPE 18.7725 18.7589 4.1000 4.5681 

MAE 15.5184 15.5156 2.9734 3.2006 

MAPD 19.8577 19.8540 3.8048 4.0956 

Westbound RMSE 10.0481 10.0691 1.6733 2.8186 

RMSPE 15.1881 15.1824 2.6674 4.6669 

MAE 7.5897 7.6085 1.3123 1.9730 

MAPD 16.0346 16.0743 2.7725 4.1682 

Short-Term Forecasting 

Northbound RMSE 12.2374 12.2387 13.1021 11.7994 

RMSPE 20.1397 20.1488 20.5937 18.7787 

MAE 9.8795 9.8743 9.0299 8.4351 

MAPD 18.0174 18.0078 16.4679 15.3832 

Eastbound RMSE 20.7811 20.7790 9.8209 8.5487 

RMSPE 20.8597 20.8456 11.3304 9.8501 

MAE 17.2198 17.2155 7.8180 6.7810 

MAPD 21.8433 21.8378 9.9171 8.6017 

Westbound RMSE 11.3874 11.4281 14.1859 2.5120e+04 

RMSPE 15.2518 15.3058 23.7447 3.9842e+04 

MAE 8.1746 8.2111 9.6439 6.1242e+03 

MAPD 15.0730 15.1404 17.7822 1.1292e+04 

IV. Site 7: Haile Selassie Avenue-Moi Avenue Roundabout 

a) Traffic Flow Training 

Lastly, training and short-term forecasting of vehicle flow of day 1 site 7 (see 

Appendix IV Table 7) are as illustrated in Figures 4.37a-4.37d and 4.38a-4.38d 

respectively. Note that this site is a three-way junction.  

The first 27 data points were used to train the OGM(1,1) and the parameters of this 

model were indicated in Table 4.29.  
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From Table 4.29 the time response function of (3.9) for the eastward direction 

simplified to:  
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The computed final model values of (4.26) were recorded in Table 4.31. The 

OGM(1,1)’s simulation plots are as in Figure 4.37a. 

Table 4.29: Day 1 Site 7 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward -0.0081 65.5375 

Eastward 0.0224 89.6651 

Westward -0.0021 95.3182 

 

Figure 4.37a: Vehicle Flow OGM(1,1)  Training 

When the background value was modified the generated parameter values were as 

indicated in Table 4.30. The MBVGM(1,1)’s eastward direction time response 

function simplified to: 
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MBVGM(1,1)’s eastward simulation values from (4.27) were recorded in Table 4.31. 

Its plots are illustrated in Figure 4.37b.  
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Vehicle flow training by GGM(1,1) and MBVGGM(1,1) were performed and Figures 

4.37c and 4.37d are their plots, respectively.  

Table 4.30: Day 1 Site 7 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward 0.0081 65.5597 

Eastward 0.0224 89.6865 

Westward -0.0020 95.4515 

 

 

Figure 4.37b: Vehicle Flow MBVGM(1,1)  Training 
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Figure 4.37c: Vehicle Flow GGM(1,1)  Training 

 

Figure 4.37d: Vehicle Flow MBVGGM(1,1)  Training 

From the error curves in Figure 4.37a - 4.37d, one can notice that the fit of OGM(1,1) 

and MBVGM(1,1) are similar and not as accurate as those of GGM(1,1) and 

MBVGM(1,1). GGM(1,1) and MBVGM(1,1) had a good fit except for GGM(1,1) 

which resulted to “NaN” in the southward direction. Because of this “NaN” result the 

GGM(1,1)’s simulated data curve is not complete. See Figure 4.37c.   

b) Testing the Grey Models in Short-Term Forecasting 

The grey models were extrapolated three points into the future. For OGM(1,1) and 

MBVGM(1,1) (4.26) and (4.27) were extrapolated and the forecasted values were 
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recorded in Table 4.31. The plots of real, simulated and error curves of these models 

are illustrated in Figures 4.38a - 4.38d.  

 

Figure 4.38a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.38b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.38c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

Observation of Figures 4.38a - 4.38d reveal some facts. OGM(1,1) and MBVGM(1,1) 

had a poor fitting compared to that of GGM(1,1) and MBVGGM(1,1). However, 

perdition of the 27th data point by OGM(1,1) and MBVGM(1,1) had a good fit. That 

of the GGM(1,1) and MBVGGM(1,1) was poor. GGM(1,1) simulation had a “NaN” 

result in the southward direction. This can be attributed to poor data collection. 

 

Figure 4.38d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 
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c) Evaluation of the Grey Models 

The fitting and forecasting values for all the four grey models were as recorded in 

Table 4.31. Note that these were eastward direction values. Moreover, the overall 

training and short-term forecasting errors for site 7 were evaluated as tabulated in Table 

4.32. 

Examination of Table 4.32 shows that GGM(1,1)’s fitting accuracy was good 

compared to the other models. This was true especially in the eastward and westward 

directions. In the eastward direction GGM(1,1) had the highest fitting accuracy of 100-

MAPD=100-5.1272=94.8728%. Notice from Table 4.31 that data point 5 was 

accurately predicted by both GGM(1,1) and MBVGGM(1,1). The real value of data 

point 5 is 107. GGM(1,1) and MBVGGM(1,1) fitted values were 102.6946 and 

103.0843, respectively, which are close to this real value.  

The GGM(1,1) MATLAB simulation resulted to "Not a Number" (NaN) error as seen 

in Table 4.32. This is because the data matrix 𝐴 was singular to working precision. 

Hence it was impossible to compute “good” values of the parameters 𝑎 and 𝑏 that 

minimizes the sum of squared errors (see section 3.1.1 part IV). The “NaN” results can 

be attributed to poor data collection so that the southward vehicle flow data must have 

been poorly collected. Nevertheless, the GGM(1,1) can do well in real time, in case of 

automatic data collection.  
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Table 4.31: Original and Improved Grey Models’ Simulation Values (D1S7 

Eastward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 30 30.0000 30.0000 30.0000 30.0000 

2 70   88.0055   88.0245   69.6269   69.9691   

3 80   86.0582   86.0740   80.5368 80.6188 

4 95   84.1539   84.1669   95.9502   95.8271 

5 107   82.2917   82.3019  102.6946  103.0843 

6 78   80.4708   80.4783   81.4393   81.4947 

7 77   78.6901   78.6951   77.0997   76.4949 

8 87   76.9489   76.9514   86.1724    86.3429  

9 86   75.2462   75.2463  85.4360  85.6654 

10 71   73.5811   73.5790   68.0892   67.0451 

11 50 71.9529 71.9487 57.1353 56.6118  

12 86   70.3608   70.3545   81.9277  83.1959   

13 87   68.8038   68.7956   83.5280  83.8157 

14 50   67.2813   67.2712  54.5151   53.2910 

15 52   65.7925   65.7807   51.6447   49.9878 

16 60   64.3367   64.3231   55.9546   55.8467  

17 40   62.9130   62.8979   45.3341  45.3337  

18 56   61.5209   61.5042   51.7243   52.5498   

19 50   60.1596   60.1414  52.6531 54.4520   

20 63   58.8284   58.8088   62.2499 63.3723  

21 72  57.5266 57.5058 71.9596 72.5508  

22 69   56.2537   56.2316   64.2224  63.4375   

23 42   55.0089   54.9856   51.9225  50.4312 

24 80   53.7917   53.7673  69.5096   70.4331 

25 40   52.6014   52.5759   49.4545   51.1907  

26 50   51.4374   51.4109   44.2132  43.7003  

27 57   50.2992   50.2718   57.4321  62.5299 

Testing Short-Term Forecasted Values 

28 40 49.1862 49.1579    46.9205 55.2923 

29 45 48.0978 48.0687    48.4346 50.0987   

30 37 47.0335 

 

47.0036 

 

96.0113 105.2051 
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Table 4.32: Day 1 Site 7 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1 GGM(1,1) MBVGGM(1,1) 

Training 

Southbound RMSE 14.1245 14.1245 NaN 3.6355 

RMSPE 15.8435 15.8382 NaN 4.4256 

MAE 10.8251 10.8217 NaN 3.1028 

MAPD 15.1126 15.1078 NaN 4.3317 

Eastbound RMSE 13.6036 13.6036 4.5799 4.6689 

RMSPE 18.4850 18.4878 5.2296 5.1629 

MAE 11.4187 11.4181 3.3896 3.5976 

MAPD 17.2720 17.2711 5.1272 5.4418 

Westbound RMSE 21.2909 21.2910 11.4169 11.7899 

RMSPE 18.1481 18.1698 10.3432 10.7383 

MAE 14.6333 14.6535 7.3335 7.3984 

MAPD 15.1611 15.1820 7.5980 7.6652 

Short-Term Forecasting 

Southbound RMSE 14.5403 14.5385 NaN 10.7860 

RMSPE 16.1147 16.1081 NaN 13.3218 

MAE 11.0964 11.0912 NaN 7.4117 

MAPD 15.5556 15.5485 NaN 10.3902 

Eastbound RMSE 13.1545 13.1528 15.1472 16.7721 

RMSPE 18.4852 18.4873 14.9964 15.8796 

MAE 11.0208 11.0173 9.6974 10.7480 

MAPD 17.3373 17.3319 15.2555 16.9082 

Westbound RMSE 22.6508 22.6645 28.1042 42.1754 

RMSPE 21.1885 21.2270 26.0519 37.7661 

MAE 15.4365 15.4688 17.8315 21.7208 

MAPD 15.5557 15.5883 17.9693 21.8886 

4.3.3.2 Day Two Vehicle Traffic Flow Modelling and Short-Term Forecasting 

Similarly, for day two four cases are presented which include modelling of vehicle 

traffic flow moving in all directions for; 

 Day 2 Site 2 (D2S2): Kenyatta Avenue Uhuru Highway Roundabout,  

 Day 2 Site 5 (D2S5): Moi Avenue-Slip Road Junction, 

 Day 2 Site 6 (D2S6): City Hall Way-Wabera Street T-Roundabout and 

 Day 2 Site 7 (D2S7): Haile Selassie Avenue-Moi Avenue Roundabout. 
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Consequently, data from the four sites were employed. The four cases are presented in 

Figures 4.39a-4.46d from which it is observed that the proposed GGM(1,1) model has 

good performance in modelling and short-term forecasting of traffic flow. However, 

forecasting of westbound traffic flow of site 2 (see Figure 4.40b) shows a poor 

performance of the proposed model and this can be attributed to some data collection 

errors such as not collecting data continuously at specified intervals of time. It can also 

be caused by in accuracy in data collection. Thus the 19th data point of the westbound 

traffic flow might have not been zero (0) number of vehicles as this is not realistic.  

I. Site 2: Kenyatta Avenue Uhuru Highway Roundabout 

a) Traffic Flow Training 

The AGO series was generated from the real vehicle flow data of day 2 site 2 (see 

Appendix IV Table 9). Based on the AGO the MGO was obtained. Then from 

OGM(1,1) simulation the parameters 𝑎 and 𝑏 were obtained and Table 4.33 shows 

these parameter values. 

Table 4.33: Day 2 Site 2 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward 0.0036 110.9944 

Southward -0.0001 182.3804 

Eastward -0.0128 84.3814 

Westward -0.0171 54.4240 

Based on Table 4.33 (3.9) can be simplified to obtain the time response functions for 

each direction of vehicle flow. For the eastward direction the time response function 

simplified to: 
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Generation of the IAGO from (4.28) gives the final fitted data which is recorded in 

Table 4.35. The real data, simulation data and the fitting errors for the OGM(1,1) were 

as plotted in Figure 4.39a. 
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The background value of the OGM(1,1) was modified and Table 4.34 shows 

MBVGM(1,1)’s model parameters from which (3.9), in the eastward direction, 

simplified to: 

 
 

 
,2362.649,62362.724,6ˆ

0127.01

1ˆ 
 ex

r

r
1,,2,1,0  mr   (4.29) 

The IAGO operation was applied on the series generated from (4.29) and the final 

MBVGM(1,1)’s fitted data recorded in Table 4.35. The real data, simulation data and 

the fitting errors for the MBVGM(1,1) were as plotted in Figure 4.39b. 

Table 4.34: Day 2 Site 2 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward 0.0054 113.6233 

Southward 0.0003 183.4814 

Eastward -0.0127 84.4453 

Westward -0.0157 55.6651 

Similarly, the real data, simulation data and the fitting errors for GGM(1,1) and 

MBVGGM(1,1) were as plotted in Figures 4.39c  and 4.39d, respectively.   

Figure 4.39a: Vehicle Flow OGM(1,1) Training 
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Figure 4.39b: Vehicle Flow MBVGM(1,1) Training 

 

Figure 4.39c: Vehicle Flow GGM(1,1) Training 
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Figure 4.39d: Vehicle Flow MBVGGM(1,1) Training 

Notice from Figures 4.39a - 4.39d that both OGM(1,1) and MBVGM(1,1) have poor 

fitting compared to GGM(1,1) and MBVGGM(1,1). GGM(1,1) and MBVGGM(1,1) 

have neat fitting especially on the eastward data. The simulation error curves for both 

GGM(1,1) and MBVGGM(1,1) are approaching zero level, especially on the eastward 

direction. 

b) Testing the Grey Models in Short-Term Forecasting 

OGM(1,1) and MBVGM(1,1) (4.28) and (4.29) were extrapolated three points into the 

future to estimate the last three data points. Their short-term forecasted values for the 

eastward direction were as recorded in Table 4.35. Plots of the real, simulation and 

forecasting errors are shown in Figures 4.40a and 4.40b. Similarly, the time response 

functions in GGM(1,1) and MBVGGM(1,1) were extrapolated and their forecasted 

values recorded in Table 5.1d2s2. the corresponding plots for GGM(1,1) and 

MBVGGM(1,1) are as shown in Figures 4.40c and 4.40d, respectively. 
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Figure 4.40a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.40b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.40c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

 

Figure 4.40d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Short-term forecasting by OGM(1,1) and MBVGM(1,1), as seen in Figures 4.40a and 

4.40b, looks similar. This is evident from the simulation error curves. On the other 

hand, in short-term forecasting all the models seemed to forecast the last three points 

with high accuracy, in the eastward direction. Observe and compare the forecasts of 

the last three points in Figures 4.40a - 4.40d.  
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c) Evaluation of the Grey Models 

The simulation data for all the four grey models were as recorded in table 4.35. Note 

that these data are for the eastward direction only. The overall training and short-term 

forecasting error evaluation for day 2 site 2 is as tabulated in table 4.36. 

Table 4.35: Original and Improved Grey Models’ Simulation Values (D2S2 

Eastward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 75 75.0000 75.0000 75.0000 75.0000 

2 67 85.8889 85.9479 67.4505 67.4402 

3 79 86.9945 87.0504 78.3453 78.1589 

4 87 88.1145 88.1671 87.8238 87.6743 

5 96 89.2488 89.2981 94.0071 93.8102 

6 89 90.3977 90.4436 92.2379 92.4492 

7 97 91.5615 91.6038 92.2427 92.6274 

8 70 92.7402 92.7788 72.0566 72.0546 

9 75 93.9341 93.9690 78.7954 77.5355 

10 122 95.1433 95.1744 115.5470 114.5733 

11 112 96.3681 96.3953 114.5628 115.7679 

12 99 97.6087 97.6318 90.5658 88.3939 

13 60 98.8653 98.8842 75.5630 71.8613 

14 136 100.1380 100.1527 124.6558 123.2686 

15 128 101.4271 101.4374 128.3664 126.4051 

16 112 102.7329 102.7386 117.7553 117.7343 

17 134 104.0554 104.0565 126.8743 128.3583 

18 101 105.3949 105.3914 105.1820 105.9514 

19 97 106.7517 106.7433 95.9372 95.4903 

20 100 108.1260 108.1126 101.3479 101.1362 

21 111 109.5179 109.4994 107.1038 106.5742 

22 97 110.9278 110.9041 102.1744 101.7038 

23 118 112.3558 112.3267 114.3808 114.5219 

24 112 113.8022 113.7676 112.1374 112.0603 

25 104 115.2673 115.2270 106.4402 106.1792 

26 113 116.7512 116.7051 110.3678 109.9767 

27 115 118.2541 118.2022 116.1274 115.3424 

Testing Short-Term Forecasted Values 

28 110 119.7765 119.7185 106.5689 106.1209 

29 112 121.3184 121.2542 119.9326 120.0411 

30 113 122.8802 

 

122.8096 

 

134.5849 134.1905 
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From Table 4.36 the errors involved in training the OGM(1,1) and MBVGM(1,1) are 

large compared to those of GGM(1,1) and MBVGGM(1,1). Generally, the GGM(1,1) 

training errors are the smallest in value and therefore GGM(1,1) was more accurate in 

fitting the real data in all directions of traffic flow except the westward direction. In 

the westward direction MBVGGM(1,1) was the most accurate with an accuracy of 

100-MAPD=100-20.5771=79.4229%. In short-term forecasting no one specific model 

emerged as the most accurate. But in the eastward direction the MBVGGM(1,1) 

performed well. And in the southward direction MBVGM(1,1) was the most accurate 

among the four models.   
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Table 4.36: Day 2 Site 2 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 62.0528 62.0691 33.7346 37.6636 

RMSPE 39.6257 40.0932 18.3727 28.0829 

MAE 47.6995 48.0677 25.6133 27.5952 

MAPD 45.3162 45.6660 24.3335 26.2164 

Southbound RMSE 83.7442 83.7464 43.6047 45.8546 

RMSPE 30.4697 30.5342 15.7895 18.8121 

MAE 66.8685 66.9053 32.6690 34.1508 

MAPD 37.3335 37.3541 18.2395 19.0668 

Eastbound RMSE 16.5449 16.5450 5.1675 5.0757 

RMSPE 15.8976 15.8916 4.7021 4.9082 

MAE 12.2612 12.2585 3.7405 3.7678 

MAPD 12.2340 12.2313 3.7322 3.7595 

Westbound RMSE 34.7333 34.7413 31.6858 19.9880 

RMSPE 44.0293 44.1954 54.4613 29.5262 

MAE 25.7608 25.7357 17.0022 13.9924 

MAPD 37.8835 37.8466 25.0032 20.5771 

Short-Term Forecasting 

Northbound RMSE 64.7117 64.5011 119.0153 119.6668 

RMSPE 39.2706 39.7792 37.0482 24.8176 

MAE 50.9361 51.1746 65.9250 67.7025 

MAPD 51.2436 51.4835 66.3230 68.1112 

Southbound RMSE 85.3689 85.2755 139.1228 239.1549 

RMSPE 30.3785 30.4423 52.5835 90.2041 

MAE 68.9119 68.9108 86.4059 133.1119 

MAPD 39.9953 39.9947 50.1485 77.2559 

Eastbound RMSE 15.9905 15.9867 16.8365 16.0693 

RMSPE 15.1992 15.1897 13.7939 13.7450 

MAE 12.0009 11.9921 10.7183 10.5722 

MAPD 11.8391 11.8304 10.5738 10.4297 

Westbound RMSE 35.0611 35.1349 260.2773 37.8887 

 

RMSPE 41.7766 42.0734 398.3535 42.3894 

 

MAE 26.9509 26.9744 85.4140 26.2252 

MAPD 37.6233 37.6562 119.2378 36.6104 
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II. Site 5: Moi Avenue-Slip Road Junction 

a) Traffic Flow Training 

AGO and MGO operations on the first 27 data points of Appendix IV Table 5 led to 

the computation of OGM(1,1)’s 𝑎 and 𝑏 parameters as tabulated in Table 4.37. Note 

that site 5 is a three-way junction. Considering the westward direction (3.9) simplified 

to: 
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The OGM(1,1)’s simulation data as computed from (4.30) were recorded in Table 

4.39. The corresponding OGM(1,1)’s plot is shown in Figure 4.41a. 

Table 4.37: Day 2 Site 5 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0387 32.1944 

Eastward -0.0113 54.1796 

Westward -0.0288 47.5309 

In MBVGM(1,1) the background value was modified and its 𝑎 and 𝑏 parameters were 

calculated. See Table 4.38. For this model, in the westward direction, (3.9) simplified 

to: 
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MBVGM(1,1)’s simulation data as obtained from IAGO on (4.31) were recorded in 

Table 4.39 and Figure 4.41b shows plot of its real, simulated and fitting error data. 

Table 4.38: Day 2 Site 5 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0387 32.2526 

Eastward -0.0112 54.2238 

Westward -0.0287 47.6158 
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Figures 4.41c and 4.41d are the plots for GGM(1,1) and MBVGGM(1,1), respectively. 

Their simulation data were recorded in Table 4.39. 

 

Figure 4.41a: Vehicle Flow OGM(1,1) Training 

 

Figure 4.41b: Vehicle Flow MBVGM(1,1) Training 
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Figure 4.41c: Vehicle Flow GGM(1,1) Training 

 

Figure 4.41d: Vehicle Flow MBVGGM(1,1) Training 

The simulation error curves for OGM(1,1) and MBVGM(1,1) in Figures 4.41a and 

4.41b are similar. Thus, these models have similar performance. Then it means MBV’s 

impact on OGM(1,1)’s fitting accuracy is not significant enough to improve its 

accuracy. On the other hand the simulation curves for GGM(1,1) and MBVGGM(1,1), 

in Figures 4.41c and 4.41d, are almost approaching the zero level meaning that these 

models are accurate compared to OGM(1,1) and MBVGM(1,1). This is because the 

DGT has a great effect on OGM(1,1)’s fitting accuracy. DGT has actually improved 

OGM(1,1)’s fitting accuracy. 
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b) Testing the Grey Models in Short-Term Forecasting 

To compute the short-term forecasts for the OGM(1,1) and MBVGM(1,1) (4.30) and 

(4.31) were extrapolated three points into the future. Also the time response functions 

of GGM(1,1) and MBVGGM(1,1) were extrapolated during simulation. The 

simulation data from these four models were tabulated in Table 4.39. Plotted in Figures 

4.42a to 4.42d are the real, simulated and forecasted errors.  

 

Figure 4.42a: Short-Term Vehicle Flow Forecast by OGGM(1,1) 

 

Figure 4.42b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.42c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

 

Figure 4.42d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

The short-term forecasting simulation error curves of OGM(1,1) and MBVGM(1,1) 

are not good enough to deduce that these models are good in short-term forecasting. 

Even their fitting of the simulated data onto the real data is not promising. See Figures 

4.42a and 4.42b. In the northward and eastward directions the MBVGGM(1,1) had a 

good forecasting compared to its forecasting in the westward direction. This is in 

consideration of how well the simulated and real curves fit onto each other. See Figure 

4.42d. 
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Table 4.39: Original and Improved Grey Models’ Simulation Values (D2S5 

Westward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 
1 40 40.0000 40.0000 40.0000 40.0000 

2 29 49.3882 49.4691 27.0257 26.7847 

3 33 50.8294 50.9086 37.0917 35.0883 

4 57 52.3126 52.3899 50.0132 51.2142 

5 24 53.8391 53.9143 29.7797 30.4660 

6 36 55.4101 55.4830 34.0938 32.1999 

7 55 57.0270 57.0974 53.1194 51.7536 

8 67 58.6910 58.7588 67.9218 64.2509 

9 90 60.4036 60.4685 90.8902 87.1323 

10 110 62.1662 62.2280 105.0620 106.4460 

11 76 63.9802 64.0387 78.3997 80.2238 

12 59 65.8472 65.9020 60.3726 59.5565 

13 60 67.7686 67.8196 54.9497 53.3005 

14 48 69.7461 69.7930 56.0156 52.3703 

15 95 71.7813 71.8238 85.6378 82.1448 

16 75 73.8759 73.9136 81.6227 80.4531 

17 92 76.0316 76.0643 87.2150 86.6750 

18 83 78.2502 78.2776 88.4329 88.3497 

19 98 80.5336 80.5553 86.6147 85.3680 

20 40 82.8836 82.8992 56.0016 55.4777 

21 87 85.3021 85.3113 75.4192 74.7753 

22 76 87.7912 87.7937 82.5664 79.3328 

23 103 90.3530 90.3482 97.9621 95.8523 

24 98 92.9895 92.9771 102.6840 101.9626 

25 112 95.7030 95.6825 102.4037 103.8674 

26 75 98.4956 98.4666 88.9277 91.5262 

27 94 101.3697 101.3317 83.7825 85.4466 

Testing Short-Term Forecasted Values 

28 107 104.3277 104.2802 89.2362 88.5903 

29 95 107.3720 107.3145 64.2311 59.7076 

30 98 110.5051 110.4370 60.8991 61.0283 

c) Evaluation of the Grey Models 

Simulation data for all the grey models were as recorded in Table 4.39. These data 

were for the westward direction. The overall training and short-term forecasting error 

evaluation for day 2 site 5 were as tabulated in Table 4.40. 
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In obtaining the fitted values, shown in Table 4.39, of the four models the 

corresponding fitting errors indicated in Table 4.40 clearly shows that GGM(1,1) is 

more accurate in vehicle flow fitting. GGM(1,1)’s fitting errors were lower in all 

directions except for the northward direction for which case MAPD value indicated 

that MBVGGM(1,1) had a lower error compared to GGM(1,1). The highest fitting 

accuracy obtained by GGM(1,1) was 100-RMSPE=100-5.9430= 94.0570%, in the 

northward direction. In short-term forecasting MBVGGM(1,1) emerged the most 

accurate in both northward and eastward directions. It had the highest accuracy of 100-

MAPD=100-12.1235=87.8765% in the eastward direction.   

Table 4.40: Day 2 Site 5 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle Traffic 

Flow Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 11.8009 11.8027 4.2200 4.2362 

RMSPE 15.2739 15.2491 5.9430 6.3853 

MAE 9.8062 9.8030 3.6005 3.4991 

MAPD 18.1223 18.1164 6.6539 6.4664 

Eastbound RMSE 12.4874 12.4875 5.2222 5.3362 

RMSPE 17.6632 17.6592 7.6029 7.7609 

MAE 10.4683 10.4671 4.0595 4.1095 

MAPD 16.8742 16.8724 6.5437 6.6242 

Westbound RMSE 19.3844 19.3849 7.2472 7.4807 

RMSPE 22.6057 22.5819 8.5235 8.9327 

MAE 15.2601 15.2608 5.9781 6.1332 

MAPD 21.5493 21.5502 8.4418 8.6608 

Short-Term Forecasting 

Northbound RMSE 12.6156 12.6162 13.3648 10.3546 

RMSPE 17.2737 17.2538 19.6135 16.2785 

MAE 10.6523 10.6489 9.3550 7.6323 

MAPD 18.8983 18.8922 16.5966 13.5405 

Eastbound RMSE 12.2757 12.2760 11.8812 10.8036 

RMSPE 16.9024 16.9013 17.5509 16.1098 

MAE 10.3532 10.3539 8.6342 7.6742 

MAPD 16.3557 16.3569 13.6401 12.1235 

Westbound RMSE 18.6743 18.6723 19.0545 23.8856 

RMSPE 20.6849 20.6599 21.3681 29.4039 

MAE 14.6524 14.6504 14.4098 18.9653 

MAPD 19.8721 19.8694 19.5431 25.7214 
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III. Site 6: City Hall Way-Wabera Street T-Roundabout 

a) Traffic Flow Training 

The real vehicle flow data for day 2 site 6 (see Appendix IV Table 13), for which the 

eastward direction data was as recorded in Table 4.43, were used.  The first 27 data 

points were subjected to OGM(1,1) training. The AGO and MGO on the data resulted 

to the parameters in Table 4.41. From Table 4.41 and considering the eastward 

direction (3.9) simplified to: 
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From (4.32) OGM(1,1)’s simulated values were computed and indicated in Table 4.43. 

Figure 4.43a is a plot of the real, simulated and fitting error data for OGM(1,1).  

Table 4.41: Day 2 Site 6 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward -0.0354 14.4567 

Eastward -0.0310 28.2812 

Westward -0.0316 22.7895 

Next OGM(1,1)’s background value was modified and the developed MBVGM(,1)’s 

𝑎 and 𝑏 parameters were as shown in Table 4.42. For southward and westward 

directions MATLAB simulation output was “NaN”. Therefore, considering the 

eastward direction (3.9) simplified to: 
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The IAGO operation was applied on the computed values of (4.33). Thus 

MBVGM(,1)’s simulation values in the eastward direction were calculated and 

recorded in Table 4.43. The corresponding plots are shown in Figure 4.43b. 
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Table 4.42: Day 2 Site 6 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward NaN NaN 

Eastward -0.0309 28.3417 

Westward NaN NaN 

Figures 4.43c and 4.43d are the plots of GGM(1,1) and MBVGGM(1,1) respectively. 

The simulation values of GGM(1,1) and MBVGGM(1,1) were as tabulated in Table 

4.43. 

 

Figure 4.43a: Vehicle Flow OGM(1,1) Training 

 

Figure 4.43b: Vehicle Flow MBVGM(1,1) Training 
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Figure 4.43c: Vehicle Flow GGM(1,1) Training 

 

Figure 4.43d: Vehicle Flow MBVGGM(1,1) Training 

The following observations can be derived from Figures 4.43a-4.43d. The 

MBVGM(1,1) and MBVGGM(1,1) did not yield any simulation result in both 

southward and westward directions (see Figures 4.43b and 4.43d). For this case the 

MATLAB output was “NaN”. This “Not a Number” result from MATLAB means that 

the data matrix 𝐴 was singular to working precision. And, therefore, the parameters 𝑎 

and 𝑏 could not be computed. However, in the eastward direction, MBVGGM(1,1) had 

a very smooth fitting (see Figure 4.43d). So it was more accurate in fitting compared 

to the MBVGM(1,1). Thus the DGT real improves the fitting accuracy of the 

OGM(1,1). Comparison of OGM(1,1) and GGM(1,1) reveals the power of the DGT in 
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improving the fitting accuracy of the OGM(1,1). From Figures 4.43a and 4.43c one 

can see that OGM(1,1) has poor fitting result whereas GGM(1,1) has very neat fitting 

result in all directions of vehicle flow. Moreover, in the eastward direction GGM(1,1) 

and MBVGGM seems to have similar results in vehicle flow fitting.   

b) Testing the Grey Models in Short-Term Forecasting 

In short-term forecasting the formulated time response functions were extrapolated 

three points into the future. This included extrapolation of (4.32) and (4.33) for 

OGM(1,1) and MBVGM(1,1), respectively. As a result, plotted in Figures 4.44a-4.44d 

are the real, simulated and error values for the four grey models. Note that in short-

term forecasting the parameters 𝑎 and 𝑏 remain the same as those obtained in training 

of the models.  

 

Figure 4.44a: Short-Term Vehicle Flow Forecast by OGM(1,1) 
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Figure 4.44b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 

 

Figure 4.44c: Short-Term Vehicle Flow Forecast by GGM(1,1) 
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Figure 4.44d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Again in this short-term forecasting the MBVGM(1,1) and MBVGGM(1,1) did not 

give any result for the southward and westward directions because of the “NaN” 

condition (see Figures 4.44b and 4.44d). However, close observation of the results of 

Figures 4.44c and 4.44d shows that GGM(1,1) and MBVGGM(1,1) had a good short-

term forecasting fit, especially at the last point of forecast (i.e. the 30th point).  

c) Evaluation of the Grey Models 

To evaluate the grey models the simulation data were recorded in Table 4.43. The 

training data set included the first 27 data points as seen in Table 4.43. Therefore, the 

testing data set was the last three data points of the real data series. Now, the overall 

training and short-term forecasting error evaluation for day 2 site 6 was as tabulated in 

Table 4.44. 

  



175 

Table 4.43: Original and Improved Grey Models’ Simulation Values (D2S6 

Eastward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 27 27.0000 27.0000 27.0000 27.0000 

2 18 29.5738 29.6310 17.6442 17.5813 

3 20 30.5046 30.5606 20.6083 20.4476 

4 26 31.4647 31.5194 25.6660 25.6026 

5 28 32.4550 32.5082 27.6943 27.7968 

6 25 33.4765 33.5281 25.0108 25.0025 

7 23 34.5302 34.5799 23.7179 23.5505 

8 27 35.6170 35.6648 25.5859 25.3000 

9 25 36.7380 36.7837 26.4837 25.8400 

10 37 37.8943 37.9377 35.0886 34.8107 

11 48 39.0870 39.1279 47.4085 45.9277 

12 54 40.3172 40.3554 51.7846 50.9404 

13 48 41.5862 41.6215 50.4922 50.1665 

14 62 42.8951 42.9272 59.7389 59.6591 

15 57 44.2452 44.2740 56.3449 55.9214 

16 49 45.6377 45.6630 52.1678 51.4649 

17 65 47.0742 47.0955 62.4608 62.9380 

18 58 48.5558 48.5730 55.2356 53.9676 

19 42 50.0840 50.0969 49.7973 46.9571 

20 80 51.6604 51.6685 71.1773 72.1542 

21 44 53.2864 53.2895 48.0478 48.7943 

22 36 54.9635 54.9613 33.3354 31.4997 

23 37 56.6935 56.6856 41.2661 37.8098 

24 80 58.4778 58.4640 73.6278 70.1540 

25 68 60.3184 60.2982 65.2852 63.7643 

26 37 62.2169 62.1899 47.7931 48.2412 

27 55 64.1751 64.1409 45.7920 48.7831 

Testing Short-Term Forecasted Values 
28 54 66.1950 66.1532 68.8852 65.8112 

29 47 68.2784 68.2286 25.1986 25.8452 

30 35 70.4274 70.3691 

 

29.8434 

 

34.7702 
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Table 4.44: Day 2 Site 6 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1 GGM(1,1) MBVGGM(1,1) 

Training 

Southbound RMSE 6.3061 NaN 2.2967 NaN 

RMSPE 23.5178 NaN 7.9946 NaN 

MAE 4.9129 NaN 1.8740 NaN 

MAPD 20.7586 NaN 7.9183 NaN 

Eastbound RMSE 13.4899 13.4906 4.2154 4.1756 

RMSPE 27.2923 27.2792 8.5107 8.9343 

MAE 11.5859 11.5929 2.9820 2.9805 

MAPD 26.6002 26.6164 6.8465 6.8430 

Westbound RMSE 13.2014 NaN 4.2114 NaN 

RMSPE 44.6108 NaN 12.1900 NaN 

MAE 8.4321 NaN 3.0319 NaN 

MAPD 23.9145 NaN 8.5989 NaN 

Short-Term Forecasting 

Southbound RMSE 7.0524 NaN 7.2741 NaN 

RMSPE 25.3940 NaN 24.2167 NaN 

MAE 5.5609 NaN 5.3925 NaN 

MAPD 23.0742 NaN 22.3753 NaN 

Eastbound RMSE 15.0222 15.0147 17.8207 12.6729 

RMSPE 28.7732 28.7518 34.2894 25.4816 

MAE 12.7240 12.7253 10.5803 8.5695 

MAPD 29.0944 29.0976 24.1927 19.5948 

Westbound RMSE 12.8779 NaN 20.4949 NaN 

RMSPE 42.7865 NaN 35.7079 NaN 

MAE 8.5294 NaN 11.3961 NaN 

MAPD 23.4538 NaN 31.3368 NaN 

There were no results from MBVGM(1,1) and MBVGGM(1,1)  simulation in the 

southward and westward directions because of the “NaN” condition. Table 4.43 shows 

the simulation results for the eastward direction and from Table 4.44 it is noticeable 

that MBVGGM(1,1) was the most accurate in the eastward direction. MBVGGM(1,1) 

had the highest forecasting accuracy of 100-MAPD=100-19.5948=80.4052%, in the 

eastward direction. In the southward direction GGM(1,1) was the most accurate in 

short-term forecasting. It had the highest accuracy of 100-22.3753=77.6247% 

compared with OGM(1,1) which had an accuracy of 100-23.0742=76.9258%. That is 

in consideration of the MAPD error indicator. In fitting of vehicle flow GGM(1,1) had 

lower fitting errors compared to the OGM(1,1), in the southward direction. In the 
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eastward direction, MBVGGM(1,) emerged the best in vehicle flow fitting with an 

accuracy of 100-MAPD=100-6.8430=93.1570%. 

IV. Site 7: Haile Selassie Avenue-Moi Avenue Roundabout 

a) Traffic Flow Training 

The real vehicle flow data for day 2 site 7 (see Appendix IV Table 14) were used. The 

westward direction data were as recorded in Table 4.47.  The first 27 data points were 

subjected to OGM(1,1) training. The AGO and MGO on the data resulted to the 

parameters in Table 4.45. From Table 4.45 and considering the westward direction 

(3.9) simplified to: 
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From (4.34) OGM(1,1)’s simulated values were computed and indicated in Table 4.47. 

Figure 4.45a is a plot of the real, simulated and fitting error data for OGM(1,1).  

Table 4.45: Day 2 Site 7 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward -0.0035 76.3657 

Eastward 0.0134 89.4151 

Westward -0.0092 83.8379 

Next OGM(1,1)’s background value was modified and the developed MBVGM(,1)’s 

𝑎 and 𝑏 parameters were as shown in Table 4.46. For the southward direction 

MATLAB simulation output was “NaN”. Considering the westward direction (3.9) 

simplified to:  
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The IAGO operation was applied on the computed values of (4.35). Thus 

MBVGM(,1)’s simulation values in the westward direction were calculated and 

recorded in Table 4.47. The corresponding plots are shown in Figure 4.45b. 
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Table 4.46: Day 2 Site 7 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward NaN NaN 

Eastward 0.0135 89.5711 

Westward -0.0091 83.9588 

Figures 4.45c and 4.45d are the plots of GGM(1,1) and MBVGGM(1,1) traffic flow 

training, respectively. The simulation values of GGM(1,1) and MBVGGM(1,1) were 

as well tabulated in Table 4.47. 

 

Figure 4.45a: Vehicle Flow OGM(1,1) Training 

 

Figure 4.45b: Vehicle Flow MBVGM(1,1) Training 
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Figure 4.45c: Vehicle Flow GGM(1,1) Training. 

 

Figure 4.45d: Vehicle Flow MBVGGM(1,1) Training 

The following observations can be derived from Figures 4.45a-4.45d. The 

MBVGM(1,1) did not yield any simulation result in the southward direction. This was 

because the MATLAB output was a “NaN” condition. As before it means that the data 

matrix 𝐴 was singular to working precision. And, therefore, the parameters 𝑎 and 𝑏 

could not be computed. Once more, comparison of OGM(1,1) and GGM(1,1) reveals 

the ability of the DGT in improving the fitting accuracy of the OGM(1,1). From 

Figures 4.45a and 4.45c one can see that OGM(1,1) has poor fitting result whereas 

GGM(1,1) has very neat fitting result in all directions of vehicle flow. Thus the DGT 
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real improves the fitting accuracy of the OGM(1,1). Moreover, in all directions 

GGM(1,1) and MBVGGM seems to have similar results in vehicle flow fitting. 

b) Testing the Grey Models in Short-Term Forecasting 

In short-term forecasting the formulated time response equations were extrapolated 

three points into the future. This included extrapolation of (4.34) and (4.35) for 

OGM(1,1) and MBVGM(1,1), respectively. As a result, plotted in Figures 4.46a-4.46d 

are the real, simulated and error values for the four grey models. The parameters 𝑎 and 

𝑏 remains the same as those obtained in training of the models.  

 

Figure 4.46a: Short-Term Vehicle Flow Forecast by OGM(1,1) 
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Figure 4.46b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 

 

Figure 4.46c: Short-Term Vehicle Flow Forecast by GGM(1,1) 
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Figure 4.46d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Notice, from Figure 4.46b, that in this short-term forecasting the MBVGM(1,1) did 

not give any result in the southward direction because of the “NaN” condition. 

Moreover, close observation of Figures 4.46c and 4.46d shows that GGM(1,1) and 

MBVGGM(1,1) had  a good short-term forecasting fit, especially at the last point of 

forecast (i.e. the 30th point).  

c) Evaluation of the Grey Models 

To evaluate the grey models the simulation data were recorded in Table 4.47. The 

training data set included the first 27 data points as seen in Table 4.47. Therefore, the 

testing data set was the last three data points of the real data series. Now, the overall 

training and short-term forecasting error evaluation for day 2 site 7 was as tabulated in 

Table 4.48. 
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Table 4.47: Original and Improved Grey Models’ Simulation Values (D2S7 

Westward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 52 52.0000 52.0000 52.0000 52.0000 

2 77 84.7052 84.8180 74.1842 74.3690 

3 69 85.4879 85.5940 74.9112 74.2435 

4 92 86.2779 86.3771 85.9147 86.2077 

5 68 87.0751 87.1673 72.1525 72.6156 

6 72 87.8797 87.9648 69.1600 69.0576 

7 76 88.6918 88.7696 80.8114 80.1021 

8 112 89.5113 89.5817 103.3332 102.6636 

9 84 90.3384 90.4013 92.0796 92.3201 

10 109 91.1732 91.2283 105.6060 105.4393 

11 112 92.0157 92.0629 108.2952 107.6048 

12 93 92.8660 92.9052 102.0390 100.8066 

13 132 93.7241 93.7552 120.5943 120.4702 

14 90 94.5902 94.6129 100.1951 100.9096 

15 113 95.4642 95.4785 107.0503 107.3884 

16 103 96.3464 96.3520 103.8286 103.8715 

17 99 97.2366 97.2335 101.3463 100.8253 

18 116 98.1352 98.1231 115.5773 115.2391 

19 113 99.0420 99.0208 103.3312 102.7761 

20 38 99.9572 99.9267 51.7533 54.7926 

21 76 100.8808 100.8409 73.9851 74.2658 

22 136 101.8130 101.7635 118.5632 119.3986 

23 57 102.7538 102.6945 72.2067 75.9019 

24 93 103.7033 103.6340 90.5787 89.2475 

25 141 104.6616 104.5821 120.0440 115.7626 

26 73 105.6287 105.5389 104.6700 108.2316 

27 132 106.6048 106.5045 109.8781 114.8672 

Testing Short-Term Forecasted Values 

28 135 107.5898 107.4788 230.3233 201.3029 

29 155 108.5840 108.4621 86.8386 105.1925 

30 147 109.5874 109.4544 95.3443 113.2102 
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Table 4.48: Day 2 Site 7 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Southbound RMSE 12.5224 NaN 5.7827 5.9604 

RMSPE 14.3681 NaN 6.8284 6.9715 

MAE 9.6038 NaN 4.2813 4.3584 

MAPD 12.1000 NaN 5.3941 5.4912 

Eastbound RMSE 22.4726 22.4727 9.3273 9.9330 

RMSPE 31.6569 31.6562 10.4956 10.4962 

MAE 16.9399 16.9449 7.4719 7.7622 

MAPD 22.8689 22.8757 10.0871 10.4789 

Westbound RMSE 24.0552 24.0554 11.2396 11.9574 

RMSPE 21.3298 21.3400 11.0219 11.3301 

MAE 19.1415 19.1479 8.3666 8.7357 

MAPD 20.4438 20.4507 8.9359 9.3300 

Short-Term Forecasting 

Southbound RMSE 13.2950 NaN 12.5009 12.1167 

RMSPE 15.2178 NaN 13.4132 12.9865 

MAE 10.4975 NaN 9.5725 9.3526 

MAPD 13.4584 NaN 12.2725 11.9905 

Eastbound RMSE 24.7296 24.7197 23.1889 23.6075 

RMSPE 32.2171 32.2267 24.3525 23.8018 

MAE 19.2058 19.2046 17.7577 17.8862 

MAPD 26.9114 26.9097 24.8824 25.0624 

Westbound RMSE 25.7741 25.7919 30.9565 23.6103 

RMSPE 23.0066 23.0423 33.2970 23.7609 

MAE 20.9353 20.9533 20.7724 17.1612 

MAPD 21.1824 21.2006 21.0176 17.3638 

There were no results from MBVGM(1,1) simulation in the southward direction 

because of the “NaN” condition. Table 4.47 shows the simulation results for the 

westward direction and from Table 4.48 it is noticeable that GGM(1,1) was the most 

accurate in all directions. GGM(1,1) had the highest fitting accuracy of 100-

MAPD=100-5.3941=94.6059%, in the southward direction. In the southward direction 

MBVGGM(1,1) was the most accurate in short-term forecasting. It had the highest 

accuracy of 100-11.9905=88.0095% compared with OGM(1,1) which had an accuracy 

of 100-13.4584=86.5416%. That is in consideration of the MAPD error indicator. 
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4.3.3.3 Day Three Vehicle Traffic Flow Modelling and Short-Term Forecasting 

Similarly, for day three vehicle traffic flow moving in all directions for the following 

four sites were modelled. 

 Day 3 Site 1 (D3S1): Haile Selassie Roundabout, 

 Day 3 Site 2 (D3S2): Kenyatta Avenue Uhuru Highway Roundabout,  

 Day 3 Site 4 (D3S4): Kenyatta Avenue-Moi Avenue-Mondlane Street Junction 

and 

 Day 3 Site 7 (D3S7): Haile Selassie Avenue-Moi Avenue Roundabout. 

Data from the four sites were employed and Figures 4.47a to 4.54d presents the four 

cases in training and short-term forecasting. 

I. Site 1: Haile Selassie Roundabout 

a) Traffic Flow Training 

The AGO and MGO operations were performed on the real vehicle flow data of 

Appendix IV Table 15, in order to create the data matrix 𝐴. Then the parameters 𝑎 and 

𝑏 for OGM(1,1) were computed and Table 4.49 contains these parameters. Using the 

parameters in Table 4.49 the time response equation for each direction can be 

developed. For instance, in the northward direction (3.9) simplified to: 
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Based on IAGO, OGM(1,1)’s simulation data was obtained from (4.36) and recorded 

in Table 4.51. Figure 4.47a is the plot of real, simulated and error data of OGM(1,1).  
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Table 4.49: Day 3 Site 1 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0022 196.6368 

Southward -0.0157 87.4806 

Eastward -0.0360 41.4252 

Westward -0.0109 75.6861 

Modification of OGM(1,1)’s background value develops the hybrid model 

MBVGM(11) whose parameters were obtained and recorded in Table 4.50. From (3.9) 

and using the parameters in Table 4.50 the time response equation for each direction 

can be obtained. In the northward direction the time response of MBVGM(1,1) was 

found to be: 
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MBVGM(1,1)’s simulation data was obtained from (4.37) through IAGO operation. 

These data were recorded in Table 5.51. The real, simulated and error data were plotted 

in Figure 4.47b. 

Table 4.50: Day 3 Site 1 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0021 196.9500 

Southward -0.0156 87.7911 

Eastward -0.0358 41.5409 

Westward -0.0110 75.6207 

The GGM(1,1) and MBVGGM(1,1) involve a number of time response equations, 

each with different values of parameters 𝑎 and 𝑏 which are not necessarily the same. 

The time response equations are as many as the number of data groups formed. The 

parameters 𝑎 and 𝑏 are also as many as the number of data groups formed. Therefore, 

not provided here as before. Shown in Figures 4.47c and 4.47d are the plots of real, 

simulation and error data for GGM(1,1) and MBVGGM(1,1), respectively.  
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Figure 4.47a: Vehicle Flow OGM(1,1) Training 

      

Figure 4.47b: Vehicle Flow MBVGM(1,1) Training 
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Figure 4.47c: Vehicle Flow GGM(1,1) Training 

 

Figure 4.47d: Vehicle Flow MBVGGM(1,1) Training 

As before the OGM(1,1) and MBVGM(1,1) have similar performance in vehicle flow 

training. This is evident from Figures 4.47a and 4.47b. Thus it can be deduced that 

MBV does not greatly improve the performance of the OGM(1,1). Its improvement on 

OGM(1,1)’s performance is too minute as compared to that of DGT. On the other hand 

GGM(1,1) and MBVGGM(1,1) have similar performance in vehicle flow fitting. 

Notice from Figures 4.47c and 4.47d that the simulation error curves are almost at zero 

level. This shows that the DGT greatly improves OGM(1,1)’s performance in vehicle 

flow fitting. 
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b) Testing the Grey Models in Short-Term Forecasting 

The grey models were tested by extrapolating their time response equations. For 

OGM(1,1) and MBVGM(1,1) (4.36) and (4.37) were extrapolated three points into the 

future to forecast the last three points. The short-term forecasted values for each model 

were as tabulated in Table 4.51. Figures 4.48a-4.48d show the short-term forecasting 

plots for the four grey models. 

 

Figure 4.48a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.48b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.48c: Short-Term Vehicle Flow Forecast by GGM(1,1) 

 

Figure 4.48d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Examine the last three data points of the error curves in Figures 4.48a-4.48d and notice 

that MBVGM(1,1) is the most accurate in vehicle flow short-term forecasting, in the 

southward direction. This is because its error curve is almost at zero level. The 

performance of the rest of the models is not clearly distinctive. The performance is 

made clear in part (c) below. 

c) Evaluation of the Grey Models 

Table 4.51 shows the simulation performance (both training and short-term 

forecasting) of the four grey models, in the northward direction. In this simulation the 



191 

errors involved were calculated and the overall training and short-term forecasting 

error evaluation for day 3 site 1 was as tabulated in Table 4.52. 

Table 4.51: Original and Improved Grey Models’ Simulation Values (D3S1 

Northward Direction) 

Raw Data Grey Model 
Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 81 81.0000 81.0000 81.0000 81.0000 

2 90 197.0363 197.3291 77.3545 77.2398 

3 79 197.4753 197.7460 94.1042 90.9715 

4 180 197.9153 198.1638 167.7417 164.2319 

5 206 198.3563 198.5824 205.8256 199.9224 

6 212 198.7983 199.0019 211.8578 207.3093 

7 232 199.2412 199.4223 240.0815 233.8624 

8 297 199.6852 199.8436 275.7347 269.3707 

9 221 200.1301 200.2658 252.4715 247.1235 

10 325 200.5760 200.6889 281.2705 281.5169 

11 131 201.0229 201.1129 180.3573 183.7034 

12 260 201.4708 201.5378 230.6736 231.4312 

13 237 201.9197 201.9635 241.8403 239.5545 

14 222 202.3696 202.3902 227.4029 229.4472 

15 228 202.8205 202.8178 203.9778 200.0433 

16 114 203.2725 203.2463 154.3551 145.2742 

17 263 203.7254 203.6756 225.0999 222.2530 

18 162 204.1793 204.1059 192.6028 191.1329 

19 240 204.6342 204.5371 210.6845 207.4535 

20 165 205.0902 204.9692 196.3511 190.7474 

21 280 205.5472 205.4023 246.0748 243.8765 

22 169 206.0052 205.8362 201.7839 201.4542 

23 258 206.4642 206.2711 234.2487 238.9841 

24 190 206.9242 206.7068 198.4787 200.1683 

25 179 207.3853 207.1435 185.3850 181.1938 

26 207 207.8473 207.5811 184.2423 184.9904 

27 121 208.3104 208.0197 143.8172 151.5959 

Testing Short-Term Forecasted Values 
28 189 208.7746 208.4591 145.6179 142.0339 

29 88 209.2398 208.8995 168.0954 174.0508 

30 192 209.7060 209.3409 90.7493 105.9078 
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Table 4.52: Day 3 Site 1 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 60.0896 60.0899 25.5816 25.7114 

RMSPE 25.7361 25.7224 11.1759 11.4111 

MAE 48.5454 48.5022 21.4165 21.5410 

MAPD 24.5041 24.4823 10.8103 10.8732 

Southbound RMSE 46.3823 46.3834 22.3996 25.8152 

RMSPE 32.0459 32.0232 15.5012 21.5986 

MAE 37.3073 37.2921 16.4326 18.1481 

MAPD 35.2202 35.2059 15.5133 17.1328 

Eastbound RMSE 17.0142 17.0149 7.3407 8.3307 

RMSPE 23.6716 23.6529 10.1071 12.8315 

MAE 13.3250 13.3268 5.5295 5.8316 

MAPD 19.1370 19.1395 7.9414 8.3751 

Westbound RMSE 29.3854 29.3854 15.0617 16.1311 

RMSPE 21.8539 21.8197 10.4906 10.8039 

MAE 21.8389 21.8244 8.3409 8.2001 

MAPD   25.5924 25.5755 9.7745 9.6095 

Short-Term Forecasting 

Northbound RMSE 61.3444 61.3155 51.1668 51.2457 

RMSPE 25.6281 25.6106 19.1836 18.5851 

MAE 48.9815 48.9087 40.3371 39.5804 

MAPD 25.2569 25.2193 20.7995 20.4093 

Southbound RMSE 48.5652 48.5480 123.8618 69.1543 

RMSPE 31.7502 31.7299 44.4531 32.4986 

MAE 39.5376 39.5169 53.2710 40.9068 

MAPD 37.7868 37.7670 50.9120 39.0954 

Eastbound RMSE 18.6887 18.6808 27.6995 23.6732 

RMSPE 23.4848 23.4617 37.7256 31.8691 

MAE 14.5110 14.5100 17.7799 16.2264 

MAPD 20.1542 20.1528 24.6943 22.5366 

Westbound RMSE 28.3786 28.3821 39.9783 35.6490 

RMSPE 21.1844 21.1543 33.3100 27.3552 

MAE 21.0007 20.9916 22.2562 20.9722 

MAPD 24.3439 24.3334 25.7993 24.3109 

From Table 4.51 the fitting data obtained by the GGM(1,1) is more close to the original 

(real) data and this is evident in Table 4.52, where the fitting errors for GGM(1,1) are 

actually smaller compared to those of the other three models. In short-term forecasting 

MBVGGM(1,1) outperformed the other models with an accuracy of 100-
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RMSPE=100-18.5851=81.4149%, in the northward direction. This is good accuracy 

as seen from Table 4.6. In both southward and eastward directions MBVGM(1,1)’s 

RMSPE and MAPD are in the range of 20-50%, this is reasonable accuracy as can be 

seen from Table 4.6. This model outperformed the rest in these two directions of 

vehicle flow.  

II. Site 2: Kenyatta Avenue Uhuru Highway Roundabout 

a) Traffic Flow Training 

In training the OGM(1,1), AGO and MGO of the real vehicle flow data (of Appendix 

IV Table 16) was obtained from which the parameters 𝑎 and 𝑏 were calculated and 

recorded in Table 4.53. Thus from (3.9) OGM(1,1)’s time response equation for the 

southward direction  can be given as: 
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From (4.38) the simulation values of OGM(1,1) were calculated and recorded in Table 

4.55. Further, Figure 4.49a shows the plots of real, simulation and error data curves.  

Table 4.53: Day 3 Site 2 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward 0.0109 123.8431 

Southward 0.0028 152.4030 

Eastward -0.0090 79.2429 

Westward -0.0214 55.0473 

The model parameters for the MBVGM(1,1) were as shown in Table 4.54. This is after 

modification of OGM(1,1)’s background value. Now, from (3.9) MBVGM(1,1)’s time 

response equation, in the  southward direction, is given by:  
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MBVGM(1,1)’s simulation values as obtained from (4.39) were as recorded in Table 

4.55. Its plots of real, simulated and error curves are shown in Figure 4.49b.   
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Table 4.54: Day 3 Site 2 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward 0.0129 126.6548 

Southward 0.0031 152.9294 

Eastward -0.0089 79.3214 

Westward -0.0213 55.2208 

Similarly, GGM(1,1)’s and MBVGGM)(1,1)’s simulation values (in the southward 

direction) were obtained and recorded in Table 4.55. Their real, simulated and error 

curves are as shown in Figures 4.49c and 4.49d, respectively. 

  

Figure 4.49a: Vehicle Flow OGM(1,1) Training 
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Figure 4.49b: Vehicle Flow MBVGM(1,1) Training 

 

Figure 4.49c: Vehicle Flow GGM(1,1) Training 
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Figure 4.49d: Vehicle Flow MBVGGM(1,1) Training 

Observe the error curves in Figures 4.49a-4.49d to notice that for GGM(1,1) and 

MBVGGM(1,1) the error curve is almost at zero level unlike with the OGM(1,1) and 

MBVGM(1,1). It means that both GGM(1,1) and MBVGGM(1,1) have good vehicle 

flow fitting compared to OGM(1,1) and MBVGM(1,1). Probably, this is because of 

the ability of the DGT in improving the fitting accuracy of the OGM(1,1).   

b) Testing the Grey Models in Short-Term Forecasting 

To test the grey models the time response functions of the grey models were 

extrapolated. For instance (4.38) and (4.39) were extrapolated for OGM(1,1) and 

MBVGM(1,1), respectively. The forecasted values for all the four models were then 

recorded in Table 4.55. Note that Table 4.55 shows values for the southward direction 

only. Figures 4.50a-4.50d show the real, simulated and error curves for these grey 

models.  
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Figure 4.50a: Short-Term Vehicle Flow Forecast by OGM(1,1) 

 

Figure 4.50b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.50c: Short-Term Vehicle Flow Forecast by GGM(1,1)  

 

Figure 4.50d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1)  

From Figure 4.50c the following observation can be made. For GGM(1,1), short-term 

forecast of 757.2532 at the 7th last data point was obtained, in the westward direction. 

This was too inaccurate. For MBVGGM(1,1), a northward direction forecast of 

1.0e+03 *0.4118 and 1.0e+03 *1.7561 at the last two data point were obtained, 

respectively. This is a too high forecast. The MBVGGM(1,1) was not accurate in this 

case.  
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Table 4.55: Original and Improved Grey Models’ Simulation Values (D3S2 

Southward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 88 88.0000 88.0000 88.0000 88.0000 

2 148 151.9458  152.427  142.1899  142.6015 

3 123 151.5228 151.9627  134.4356  133.5144 

4 164 151.1010  151.4991  152.7004  152.7649 

5 132 150.6804  151.0370  143.0762  143.0876 

6 163 150.2609  150.5763  154.6982  154.7098 

7 123 149.8426  150.1170  119.1037  118.7950 

8 77 149.4255  149.6591   89.4635   90.7545 

9 143 149.0095  149.2025  137.2645  139.9474 

10 193 148.5947  148.7474  192.3308  192.2816  

11 203 148.1810   148.2937  193.4688 193.9792 

12 127 147.7685  147.8413  139.2992  140.3661 

13 149 147.3572  147.3903  144.2782  143.4691 

14 167 146.9470  146.9408  167.1153  166.7675 

15 173 146.5379  146.4925  169.8008  169.9238 

16 153 146.1300  146.0457  155.7136  156.0159 

17 169 145.7232  145.6002  173.2335  171.5189 

18 217 145.3175  145.1560  207.8388  207.6875 

19 176 144.9130  144.7133  183.2731  179.0215 

20 154 144.5096  144.2718   117.2700  111.2778 

21 0 144.1073 143.8317  58.6761  56.7312  

22 214 143.7062  143.3930  181.5777 181.8777  

23 193 143.3061  142.9556  200.0580 205.0285 

24 135 142.9072 142.5195  128.2747  125.4675 

25 68 142.5094  142.0848    93.1578   89.7345 

26 139 142.1126 141.6514  111.0508  115.5722 

27 113 141.7170  141.2193  126.6762  137.5969 

Testing Short-Term Forecasted Values 

28 223 141.3225 140.7885   97.6830   104.8835   

29 93 140.9291 140.3591   153.2434   174.9376   

30 0 140.5368 139.9309 218.4783 262.4073 

c) Evaluation of the Grey Models  

The fitting and forecasted data for the four grey models were computed and recorded 

in Table 4.55. This was for the southward direction. The errors which were involved 

in the simulation process were as well calculated and recorded in Table 4.56. 
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Table 4.56: Day 3 Site 2 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 65.8868 65.9048 36.0221 43.1865 

RMSPE 46.8358 47.2605 20.7942 30.3828 

MAE 49.6257 49.8337 29.0376 34.0396 

MAPD 46.6699 46.8655 27.3081 32.0121 

Southbound RMSE 45.3105 45.3114 17.9132 18.2807 

RMSPE 22.9012 22.9503 8.4069 8.8186 

MAE 32.2579 32.2770 12.3086 12.6018 

MAPD 22.3095 22.3227 8.5126 8.7154 

Eastbound RMSE 21.9446 21.9447 4.8197 4.7215 

RMSPE 22.0605 22.0569 5.6781 5.4827 

MAE 16.2335 16.2264 3.2887 3.2559 

MAPD 17.9339 17.9260 3.6332 3.5969 

Westbound RMSE 34.9147 34.9153 12.4437 15.6906 

RMSPE 36.0106 35.9905 10.4758 14.8323 

MAE 26.9081 26.9021 8.6073 10.7011 

MAPD 36.8044 36.7961 11.7729 14.6368 

Short-Term Forecasting 

Northbound RMSE 67.8272 67.8971 85.9174 301.3335 

RMSPE 47.7119 48.2782 41.9303 260.6571 

MAE 51.5958 51.8889 55.7738 115.7676 

MAPD 48.8597 49.1372 52.8161 109.6284 

Southbound RMSE 52.9626 52.9203 77.3037 86.8158 

RMSPE 25.0932 25.1698 32.5474 32.5602 

MAE 38.0369 38.0327 50.0153 52.9555 

MAPD 27.0404 27.0374 35.5559 37.6461 

Eastbound RMSE 22.2953 22.3048 21.2363 19.9741 

RMSPE 21.5428 21.5545 22.2564 21.5535 

MAE 17.1205 17.1223 14.8458 13.8632 

MAPD 18.1682 18.1701 15.7543 14.7116 

Westbound RMSE 37.0398 37.0414 133.2588 47.0540 

RMSPE 38.3584 38.3588 151.1395 45.9697 

MAE 28.9735 28.9654 56.8899 28.0897 

MAPD 38.0230 38.0123 74.6586 36.8632 

In vehicle flow fitting GGM(1,1) was the most accurate (except in the eastward 

direction) since its simulation resulted to small error values (see Table 4.56). It had the 

highest accuracy, in the southward direction, of 100-RMSPE=100-8.4069=91.5931%. 

This is high accuracy (see Table 4.6). In the eastward direction MBVGGM(1,1) had 
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the highest accuracy in fitting. It had an accuracy of 100-MAPD=100-

3.5969=96.4031%. This accuracy is also high. 

In short-term forecasting, in the northward direction, GGM(1,1) emerged the accurate 

grey model with an accuracy of 100-MAPD=100-41.9303=58.0697%. This is 

reasonable accuracy as seen from Table 4.6. In the eastward direction, MBVGGM(1,1) 

had an accuracy of 100-MAPD=100-14.7116=85.2884%. According to Table 4.6 this 

is good forecasting accuracy.       

Generally, from this evaluation the DGT seems to do great in improving the fitting 

accuracy of the OGM(1,1).  

III. Site 4: Kenyatta Avenue-Moi Avenue-Mondlane Street Junction 

a) Traffic Flow Training 

Generation of the AGO and MGO series from the real data of day 3 site 4 (see 

Appendix IV Table 18), led to the computation of the parameters 𝑎 and 𝑏 for the 

OGM(1,1). These parameters are shown in Table 4.57. Note that site 4 is a three-way 

junction.  

Table 4.57: Day 3 Site 4 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0301 38.0664 

Southward -0.0165 25.3203 

Eastward -0.0165 10.9007 

From Table 4.57 the time response equations for each direction can be formulated. In 

the southward direction the time response equation from (3.9) was found to be: 

 

 
,5636.534,15636.558,1ˆ

0165.01

1ˆ 
 ex

r

r
1,,2,1,0  mr    (4.40) 

IAGO was applied on the time series data generated from (4.40) to obtain OGM(1,1)’s 

fitted data. These fitted data was recorded in Table 4.59. And the real, simulated and 

error curves were plotted in Figure 4.51a.  
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The background value of the OGM(1,1) was modified and the developed 

MBVGM(1,1)’s 𝑎 and 𝑏 parameters were as recorded in Table 4.58. Thus its time 

response equation for the southward direction was obtained from (3.9) as: 
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Then through the IAGO process MBVG(1,1)’s fitted data were calculated and 

recorded in Table 4.59. Figure 4.51b shows MBVG(1,1)’s real, simulated and error 

curves.  

Similarly, for GGM(1,1) and MBVGGM(1,1) Figures 4.51c and 4.51d were plotted. 

Their simulated values were as well recorded in Table 4.59.  

Table 4.58: Day 3 Site 4 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Northward -0.0301 38.0956 

Southward -0.0165 25.3308 

Eastward NaN NaN 

 

Figure 4.51a: Vehicle Flow OGM(1,1) Training 

  



203 

 

Figure 4.51b: Vehicle Flow MBVGM(1,1) Training 

 

Figure 4.51c: Vehicle Flow GGM(1,1) Training 
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Figure 4.51d: Vehicle Flow MBVGGM(1,1) Training 

From Figure 4.51b notice that there were no eastward direction result for 

MBVGM(1,1). This was because of the “NaN” condition. It means that the data matrix 

𝐴 was singular to working precision. And therefore the parameters 𝑎 and 𝑏 could not 

be computed. Also from Figures 4.51a-4.51d observe that the GGM(1,1) and 

MBVGGM(1,1) have very neat vehicle flow fitting compared to the other two models. 

b) Testing the Grey Models in Short-Term Forecasting 

Testing of the grey models involved extrapolating the time response equations to 

forecast the last three data points of the real data series. So (4.40) and (4.41) were 

extrapolated for OGM(1,1) and MBVGM(1,1) respectively. Their forecasts were as 

recorded in Table 4.59. Figures 4.52a-4.52d show the plots of the real, simulated and 

error data curves for all the four grey models.  
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Figure 4.52a: Short-Term Vehicle Flow Forecast by OGGM(1,1) 

 

Figure 4.52b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.52c: Short-Term Vehicle Flow Forecast by GGM(1,1)  

 

Figure 4.52d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1)  

Figure 4.52b shows that there were no result of the eastward direction because of the 

‘NaN” condition as obtained during simulation. OGM(1,1) and MBVGM(1,1) have 

similar performance as observed from their error curves. Same observation can be 

deduced from the GGM(1,1) and MBVGGM(1,1) curves, that they also have similar 

forecasting performance.  
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Table 4.59: Original and Improved Grey Models’ Simulation Values (D3S4 

Southward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 
1 24 24.0000 24.0000 24.0000 24.0000 

2 27   25.9301   25.9399   27.9680   27.9795 

3 32   26.3618   26.3712   30.2722   30.1875 

4 25   26.8007   26.8097   25.9690   26.0279 

5 26   27.2470   27.2554   26.2044   26.3220  

6 31   27.7006   27.7086   30.5656  30.5853 

7 30   28.1618   28.1693   29.4817   29.3481 

8 23   28.6307   28.6377   23.5147   23.4367 

9 22   29.1073   29.1139   21.9740    22.2174 

10 26   29.5919   29.5979  26.7643   26.8687 

11 34  30.0846  30.0901 31.7091 31.4636 

12 22   30.5855   30.5904   23.8119   23.9859 

13 24   31.0947   31.0990   23.3284   23.7033 

14 29   31.6124   31.6161   29.7625   29.7552 

15 39   32.1388   32.1418   36.9330    36.4275 

16 34   32.6738   32.6762  36.1319   35.8833 

17 43   33.2178   33.2195   41.8870    41.7286 

18 44   33.7709   33.7719  44.1221   44.0856  

19 41   34.3331   34.3334   40.4317    40.6202 

20 34   34.9048   34.9043 34.6833    35.3563 

21 36  35.4859  35.4846 34.1004 34.8506 

22 32   36.0767   36.0746    32.6277   33.3187 

23 36   36.6773  36.6745    37.8801   34.5411 

24 31   37.2880   37.2842   32.1852   32.1820 

25 35  37.9088   37.9042   34.3400   34.2761  

26 38   38.5400   38.5344   38.0317  37.5214 

27 41   39.1816   39.1751   41.0110   40.3920 

Testing Short-Term Forecasted Values 

28 34 39.8340    39.8265    40.9989    40.5556    

29 40 40.4972    40.4887    49.7992    48.1725    

30 37 41.1714 

 

41.1619 51.9644 50.4153 

 

c) Evaluation of the Grey Models 

In evaluating the four grey models, their simulation data were as indicated in Table 

4.59. These data were for the southward direction. The overall traffic flow training and 

short-term forecasting error evaluation for day 3 site 4 was as tabulated in Table 4.60. 
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Table 4.60: Day 3 Site 4 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training 

Northbound RMSE 8.5393 8.5394 2.8477 2.9165 

RMSPE 13.6806 13.6758 5.1650 5.4773 

MAE 6.5203 6.5208   1.9071 1.8780 

MAPD 11.2996 11.3005 3.3051 3.2546 

Southbound RMSE 4.9317 4.9317 1.1549 1.2097 

RMSPE 15.0597 15.0573 3.4083 3.5793 

MAE 3.9268 3.9265 0.9128 0.9916 

MAPD 12.3428 12.3416 2.8690 3.1169 

Eastbound RMSE 4.4169 NaN 1.5028 1.6315 

RMSPE 28.5696 NaN 8.4766 10.9102 

MAE 3.6890 NaN 1.1543 1.2221 

MAPD 27.7445 NaN 8.6814 9.1910 

Short-Term Forecasting 

Northbound RMSE 8.9553 8.9543 10.8731 10.5833 

RMSPE 13.5554 13.5502 17.3097 17.1646 

MAE 6.9797 6.9796 7.9574 7.7464 

MAPD 11.5749 11.5747 13.1963 12.8464 

Southbound RMSE 4.8592 4.8587 4.8645 4.5528 

RMSPE 14.4984 14.4943 15.1054 14.0041 

MAE 3.8842 3.8831 3.5818 3.3912 

MAPD 12.0131 12.0095 11.0778 10.4882 

Eastbound RMSE 4.5138 NaN 5.8324 5.6305 

RMSPE 27.8647 NaN 37.1411 37.8498 

MAE 3.7976 NaN 4.4614 4.2514 

MAPD 26.9972 NaN 31.7158 30.2234 

Table 4.59 shows the simulation values for the four grey models in the southward 

direction. From Table 4.60, in the southward direction, GGM(1,1) proved to have a 

high fitting accuracy of 100-MAPD=100-2.8690=97.1310%. See Table 4.6. It also had 

the highest fitting accuracy of 100-RMSPE=100-8.4766=91.5234%, in the eastward 

direction.  

In short-term forecasting, MBVGGM(1,1) had the highest forecasting accuracy given 

by 100-MAPD=100-10.4882=89.5118%, in the southward direction. See Table 4.60. 

In the northward direction, MBVGM(1,1) had the highest accuracy at 100-

MAPD=100-11.5747= 88.4253%. In this simulation a unique result was obtained in 
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the eastward direction. That is, the OGM(1,1) had the highest short-term forecasting 

accuracy of 100-MAPD=100-26.9972=73.0028%. This was not expected. 

IV. Site 7: Haile Selassie Avenue-Moi Avenue Roundabout 

a) Traffic Flow Training 

The parameters 𝑎 and 𝑏 for OGM(1,1) were computed through the generation of the 

AGO and MGO series from the real data of day 3 site 7 (see Appendix IV Table 21). 

These parameters are shown in Table 4.61. Note that site 4 is a three-way junction.  

Table 4.61: Day 3 Site 7 OGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward -0.0021 76.9635 

Eastward 0.0006 84.1522 

Westward -0.0122 88.8354 

From Table 4.61 it is possible to formulate the time response equations for each 

direction based on (3.9). In the westward direction the time response equation was 

found to be: 

 

 
,5902.281,75902.368,7ˆ

0122.01

1ˆ 
 ex

r

r
1,,2,1,0  mr    (4.42) 

The IAGO operation was applied on the time series data generated from (4.42) to 

obtain OGM(1,1)’s fitted data. These fitted data were recorded in Table 4.63. And the 

real, simulated and error curves were plotted in Figure 4.53a.  

Next the background value of OGM(1,1) was modified and the developed 

MBVGM(1,1)’s 𝑎 and 𝑏 parameters were as recorded in Table 4.62. Thus, its time 

response equation for the westward direction was obtained from (3.9) as: 

 

 
,8689.284,78689.371,7ˆ

0122.01

1ˆ 
 ex

r

r
1,,2,1,0  mr   (4.43) 

Then through the IAGO process MBVG(1,1)’s fitted data was calculated and recorded 

in Table 4.63. Figure 4.53b shows MBVG(1,1)’s real, simulated and error curves.  
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Table 4.62: Day 3 Site 7 MBVGM(1,1) Model Parameters 

Traffic flow 

direction 

Grey Model Parameter 

Development Coefficient, 𝒂 Control Variable, 𝒃 

Southward -0.0020     76.9965 

Eastward 0.0006      84.1784 

Westward -0.0122       88.8754 

Similarly, for GGM(1,1) and MBVGGM(1,1) Figures 4.53c and 4.53d were plotted. 

Their simulated values were as well recorded in Table 4.63.  

 

Figure 4.53a: Vehicle Flow OGM(1,1) Training 
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Figure 4.53b: Vehicle Flow MBVGM(1,1) Training 

 

Figure 4.53c: Vehicle Flow GGM(1,1) Training 
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Figure 4.53d: Vehicle Flow MBVGGM(1,1) Training 

From Figures 4.53a-4.53d observe that the GGM(1,1) and MBVGGM(1,1) have very 

neat vehicle flow fitting compared to the other two models. That is to say with 

GGM(1,1) and MBVGGM(1,1) the simulated data can trace the real data with high 

accuracy. This is very clear from the corresponding error curves which are approaching 

zero level. Meaning the deviation between real data and the simulated data is almost 

zero. Thus the DGT is powerful in improving the fitting accuracy of the OGM(1,1), 

compared with MBV. 

b) Testing the Grey Models in Short-Term Forecasting 

Testing of the grey models involved extrapolating the time response equations to 

forecast the last three data points of the real data series. Therefore, (4.42) and (4.43) 

were extrapolated for OGM(1,1) and MBVGM(1,1) respectively. Their short-term 

forecasts were as recorded in Table 4.63. Figures 4.54a-4.54d show the plots of the 

real, simulated and error data curves for all the four grey models. 
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Figure 4.54a: Short-Term Vehicle Flow Forecast by OGGM(1,1) 

 

Figure 4.54b: Short-Term Vehicle Flow Forecast by MBVGM(1,1) 
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Figure 4.54c: Short-Term Vehicle Flow Forecast by GGM(1,1)  

 

Figure 4.54d: Short-Term Vehicle Flow Forecast by MBVGGM(1,1) 

Critical observation of the error curves of OGM(1,1) and MBVGM(1,1) shows that 

they have similar performance characteristics in short-term forecasting. Same 

observation can be deduced from GGM(1,1) and MBVGGM(1,1) curves, that they 

also have similar forecasting performance characteristics. For instance the fitting of 

the real and simulated curves of GGM(1,1) and MBVGGM(1,1), especially at the last 

three data points, looks alike. It implies that they have same forecasting accuracy. 

However, these observations shows that GGM(1,1) and MBVGGM(1,1) are more 

accurate compared to OGM(1,1) and MBVGM(1,1). 
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Table 4.63: Original and Improved Grey Models’ Simulation Values (D3S7 

Westward Direction) 

Raw Data Grey Model 

Data 

Point 

Real 

Value 

OGM(1,1) MBVGM(1,1) GGM(1,1) MBVGGM(1,1) 

Training Fitted Values 

1 87 87.0000 87.0000 87.0000 87.0000 

2 91   90.4535   90.4902   90.3969   90.4054 

3 93   91.5680   91.6028   94.7812   94.7165 

4 102   92.6963   92.7289   99.5821   99.6221 

5 92   93.8384   93.8690   94.9811   94.9750 

6 96   94.9947   95.0230   91.8038   91.5642 

7 73   96.1651   96.1913   77.0426   77.0249 

8 83   97.3500   97.3739   80.5262   80.8761 

9 92   98.5495   98.5710   95.2334   95.1658 

10 119   99.7638   99.7829  112.9703  112.7266 

11 97   100.9930  101.0096  102.3218  102.5614 

12 108  102.2374  102.2515  104.4047  104.2792 

13 105  103.4971  103.5086  109.6131  109.2603 

14 124  104.7723  104.7811  115.8587  115.7764 

15 83  106.0632  106.0693   90.9539   91.5199 

16 102  107.3701  107.3734   98.5037   98.4533  

17 116  108.6930  108.6935  117.0218 116.1637 

18 132  110.0323  110.0298  131.8930  132.1058 

19 128  111.3880  111.3825  120.1338  119.0076 

20 76  112.7605  112.7519   90.1990   89.5358 

21 125  114.1498 114.1381  114.6857  115.3380 

22 116  115.5563  115.5413  120.3096  119.7228 

23 129  116.9801  116.9618  128.0916  127.9790 

24 133  118.4215  118.3998  131.1774  131.4525 

25 117  119.8806  119.8554  119.7824  120.4742 

26 114  121.3577  121.3289  111.9856  112.2661 

27 106  122.8530  122.8206  106.9030  107.0019 

Testing Short-Term Forecasted Values 

28 104 124.3667   124.3306   100.6744    100.4521    

29 97 125.8991   125.8591   92.4957    91.6956    

30 88 127.4503 127.4065 

 

92.4021 91.8531 
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c) Evaluation of the Grey Models 

To evaluate the four grey models, their simulation data were as indicated in Table 4.63. 

These data were for the westward direction. The overall vehicle flow training and 

short-term forecasting error evaluation for day 3 site 7 was as tabulated in Table 4.64. 

Table 4.64: Day 3 Site 7 Traffic Flow Training and Forecasting Error Evaluation 

Vehicle 

Traffic Flow 

Direction 

Error 

Indicator 

Grey Model 

Conventional Improved 

GM(1,1) MBVGM(1,1)) GGM(1,1) MBVGGM(1,1) 

Training 

Southbound RMSE 13.5506 13.5506 4.5004 4.4866 

RMSPE 17.2462 17.2482 5.0632 5.0993 

MAE 10.8006 10.8002 3.1171 3.1538 

MAPD 13.7815 13.7810 3.9774 4.0242 

Eastbound RMSE 11.8033 11.8033 2.7599 2.9706 

RMSPE 13.8157 13.8172 3.0571 3.3044 

MAE 10.4236 10.4227 2.2749 2.5120 

MAPD 12.4474 12.4464 2.7166 2.9997 

Westbound RMSE 13.8982 13.8982 5.1486 5.1429 

RMSPE 11.9219 11.9215 4.4631 4.4893 

MAE 10.5177 10.5148 3.9678 3.9438 

MAPD 10.0027 10.0000 3.7735 3.7507 

Short-Term Forecasting 

Southbound RMSE 15.1105 15.1049 10.0606 10.3253 

RMSPE 18.3115 18.3098 11.0555 11.3033 

MAE 12.1803 12.1765 7.1725 7.4218 

MAPD 15.9777 15.9726 9.4086 9.7356 

Eastbound RMSE 13.2725 13.2681 25.3377 23.7074 

RMSPE 14.8543 14.8529 22.7293 21.4016 

MAE 11.5977 11.5942 14.2764 13.6548 

MAPD 14.2420 14.2377 17.5314 16.7680 

Westbound RMSE 16.3519 16.3446 13.2749 12.9833 

RMSPE 13.8715 13.8655 11.1758 10.9766 

MAE 12.4231 12.4165 9.1084 9.0948 

MAPD 11.9147 11.9084 8.7357 8.7227 

Table 4.63 shows the simulation values for the four grey models in the westward 

direction. From Table 4.64, in the westward direction, MBVGGM(1,1) proved to have 

a high fitting accuracy of 100-MAPD=100-3.7507=96.2493%. See Table 4.6. In both 

northward and eastward directions GGM(1,1) emerged the most accurate vehicle flow 

fitting model with an accuracy of 100-MAPD=100-2.7166=97.2834%, in the eastward 
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direction. This shows how DGT greatly improves the fitting accuracy of OGM(1,1). 

In this vehicle flow fitting OGM(1,1) attained the highest accuracy of 100-

MAPD=100-10.0027=89.9973%, in the westward direction.  

In short-term forecasting, MBVGGM(1,1) had the highest forecasting accuracy given 

by 100-MAPD=100-8.7227=91.2773%, in the westward direction. See Table 4.64. In 

the southward direction, GGM(1,1) had the highest forecasting accuracy at 100-

MAPD=100-9.4086=90.5914%. In the eastward direction, GGM(1,1) had the highest 

short-term forecasting accuracy of 100-MAPD=100-14.2377=85.7623%. This is good 

accuracy according to Table 4.6. Lastly, in this short-term forecasting the highest 

accuracy attained by OGM(1,1) was 100-MAPD=100-11.9147=88.0853%, in the 

westward direction.  

4.3.4 Formulating the Multivariate Grey Model, GM(1,n),  in Vehicle Flow 

Modelling 

In this section focus is on the problem of low prediction accuracy of the conventional 

multivariate Grey Model, GM(1,n). The GM(1,n) has inherent low precision 

commonly because of great variations in the time series of the relative variables used. 

Therefore, the TSA is proposed and employed to improve the precision of the 

conventional GM(1,n). The TSA consists of smoothing the relative variables by a 

univariate grey model, GM(1,1), adoption of a DGT in the GM(,n) and correction of 

the prediction error based on Fourier series. The FSECA filters noise components in 

the prediction error. Thus a Variable Smoothed-Grouped data-Fourier series based 

multivariate Grey Model denoted as VSGFGM(1,n) is developed in this thesis.  

In this section of this thesis the prediction accuracy of a conventional first order three 

variable grey model denoted as GM(1,3) is improved by smoothing its two relative 

variables in addition to adopting the DGT and Fourier series error correction. 

As mentioned above based on RVSA, DGT and FSECA an optimized GM(1,3) is 

developed and referred to as VSGFGM(1,3). And three empirical examples for 

improving the prediction accuracy of the conventional GM(1,n) are presented in the 

following sections.  
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4.3.4.1 Empirical Example 1 

An empirical example to validate the TSA method in improving the prediction 

accuracy of the conventional GM(1,n) is presented. Considered was a vehicle traffic 

flow system and factors that affect its performance. In the real world vehicle flow is 

influenced by many factors such as weather conditions, accidents, pedestrians, 

motorcycles among other factors. Thus, in this thesis prediction of vehicle traffic flow 

was considered under the influence of pedestrians and motorcycles. Hence considered 

was a three variable GM, GM(1,3), where 𝑛 = 3. 

a) Data Source 

The data sets used were collected from Nairobi CBD, Kenya, and in particular the data 

were collected from the Kenyatta Avenue Uhuru Highway Roundabout in the 

westward direction on Tuesday, February 16, 2021, from 6:00 am to 7:45 am. This 

consists of 21 data points. The data includes three variables, namely vehicle (VEH) 

flow, pedestrian (PED) and motorcycle (MOT). Vehicle traffic flow is the dependent 

or output variable influenced by pedestrian and motorcycle as relative or input 

variables. The raw data, as extracted from Appendix IV Table 2, was as tabulated in 

Table 4.65. Also included in Table 4.65 is the AGO series of each variable and the 

MGO series of the dependent variable. 
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Table 4.65: Day 1 Site 2 Vehicle Flow, Related Factors and Grey Generating 

Operations 

Time 

Sample 

𝒕 

Time Raw Data AGO MGO 

VEH PED MOT VEH PED MOT VEH 

𝑥1
(0)(𝑡) 𝑥2

(0)(𝑡) 𝑥3
(0)(𝑡) 𝑥1

(1)(𝑡) 𝑥2
(1)(𝑡) 𝑥3

(1)(𝑡) 𝑧1
(1)(𝑡) 

1 06:00-06:05 48 10 6 48 10 6  

2 06:06-06:10 41 4 0 89 14 6 68.5 

3 06:11-06:15 39 6 6 128 20 12 108.5 

4 06:16-06:20 47 5 2 175 25 14 151.5 

5 06:21-06:25 34 6 5 209 31 19 192.0 

6 06:26-06:30 64 21 1 273 52 20 241.0 

7 06:31-06:35 64 5 3 337 57 23 305.0 

8 06:36-06:40 55 12 2 392 69 25 364.5 

9 06:41-06:45 79 7 2 471 76 27 431.5 

10 06:46-06:50 52 10 2 523 86 29 497.0 

11 06:51-06:55 98 3 2 621 89 31 572.0 

12 06:56-07:00 72 12 6 693 101 37 657.0 

13 07:01-07:05 86 13 4 779 114 41 736.0 

14 07:06-07:10 87 8 2 866 122 43 822.5 

15 07:11-07:15 94 8 16 960 130 59 913.0 

16 07:16-07:20 86 8 10 1046 138 69 1003.0 

17 07:21-07:25 75 11 11 1121 149 80 1083.5 

18 07:26-07:30 69 7 5 1190 156 85 1155.5 

19 07:31-07:35 99 15 8 1289 171 93 1239.5 

20 07:36-07:40 57 12 13 1346 183 106 1317.5 

21 07:41-07:45 95 10 5 1441 193 111 1393.5 

These three variables are defined and presented in GM(1,3) as follows (Shen et al., 

2019): 

𝑥1
(0)(𝑡) is the dependent time series of vehicle volume, 

𝑥2
(0)(𝑡) is the independent relative time series of pedestrian and  

𝑥3
(0)(𝑡) is the independent relative time series of motorcycle. 

where 𝑡 is an order of the time series and in this section, it is the time of the 

day, presented by time sample 𝑡 as in Table 4.65. 

b) Conventional GM(1,3) in Vehicle Flow Prediction/Modelling 

In conventional GM(1,3) simulation the three variables’ raw data shown in Table 4.65 

were used. From (3.24) the AGO for each variable was generated and recorded in Table 

4.65. From (3.26) the MGO of the dependent variable was also generated and recorded. 

The generated AGO and MGO were used in (3.31) to construct the data matrix 𝑋. Then 
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from (3.30) the vector parameter �̂� was computed and the model parameters were 

obtained as 𝑎=0.2037, 𝑏2=2.377 and 𝑏3=-0.7368. Thus, the time response function of 

(3.29) simplified to: 

�̂�1
(1)(𝑘 + 1) = 𝑒−0.2037𝑘 (𝑥1

(1)(1) −
1

0.2037
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1))

+
1

0.2037
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1) 

𝑘 = 0,1,2,⋯ ,𝑚 − 1,   𝑚 = 21   (4.44) 

Lastly, from (4.44) and (3.32), the final forecasted (fitted) values of the original 

sequence were obtained and tabulated in Table 4.68 and the corresponding relative 

errors are as tabulated in Table 4.69.  

This GM(1,3) simulation was done in MATLAB and Figure 4.55 shows the plot of 

real, simulated and error values.  

 

Figure 4.55: Day 1 Site 2 Vehicle Volume Simulation by The Conventional 

GM(1,3) 
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Observe the simulation error curve in Figure 4.55. This error curve indicates that the 

deviation between the real and simulated data is large. That means the fitting accuracy 

of the conventional GM(1,n) is low. The fitting accuracy of the conventional GM(1,3) 

was improved in this thesis by the TSA. In (c) below this fitting accuracy improvement 

is carried out.   

c)  Improved GM(1,3) in Vehicle Flow Prediction/Modelling 

The TSA was employed in improving the conventional GM(1,3)’s fitting accuracy as 

follows. In the first step, the observed relative variables were smoothed by OGM(1,1). 

Thus the procedure of OGM(1,1) was adopted in data pre-processing. The AGO of the 

relative variables are as already provided in Table 4.65. Now from (3.5) or (3.26) the 

MGO for each variable were calculated and recorded in Table 4.66.  

Table 4.66: Day 1 Site 2 Traffic Flow MGO   

Time  

Sample 

𝒕 

Raw Data MGO 

VEH PED MOT VEH PED MOT 

𝑥1
(0)(𝑡) 𝑥2

(0)(𝑡) 𝑥3
(0)(𝑡) 𝑧1

(1)(𝑡) 𝑧2
(1)(𝑡) 𝑧3

(1)(𝑡) 

1 48 10 6    

2 41 4 0 68.5000 12.0000 6.0000 

3 39 6 6 108.5000 17.0000 9.0000 

4 47 5 2 151.5000 22.5000 13.0000 

5 34 6 5 192.0000 28.0000 16.5000 

6 64 21 1 241.0000 41.5000 19.5000 

7 64 5 3 305.0000 54.5000 21.5000 

8 55 12 2 364.5000 63.0000 24.0000 

9 79 7 2 431.5000 72.5000 26.0000 

10 52 10 2 497.0000 81.0000 28.0000 

11 98 3 2 572.0000 87.5000 30.0000 

12 72 12 6 657.0000 95.0000 34.0000 

13 86 13 4 736.0000 107.5000 39.0000 

14 87 8 2 822.5000 118.0000 42.0000 

15 94 8 16 913.0000 126.0000 51.0000 

16 86 8 10 1003.0000 134.0000 64.0000 

17 75 11 11 1083.5000 143.5000 74.5000 

18 69 7 5 1155.5000 152.5000 82.5000 

19 99 15 8 1239.5000 163.5000 89.0000 

20 57 12 13 1317.5000 177.0000 99.5000 

21 95 10 5 1393.5000 188.0000 108.5000 

Using the MGO in Table 4.66 the data matrix 𝐴 of (3.16) was constructed for each 

relative variable and from (3.33) the model parameters 𝑎 and 𝑏 were obtained for each 

relative variable. For PED variable 𝑎= -0.0230, 𝑏=6.9828 and for MOT variable 𝑎= -

0.0811 and 𝑏=1.6898. Therefore, for the PED variable (3.9) simplified to: 
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,6.3036.313ˆ
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 ex
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r
    (4.45) 

And for the MOT variable (3.9) simplified to: 

 

 
,836.20836.26ˆ

0811.01

1ˆ 
 ex

r

r
    1,,2,1,0  mr     (4.46) 

The IAGO was applied on (4.45) and (4.46) and new time series (smoothed relative 

variables) were generated as tabulated in Table 4.68.  

In the second step, the DGT was introduced in GM(1,3) modelling. Note that the DGT 

involves many data groups and hence many values of the parameters 𝑎 and 𝑏 are 

obtained. For this case, according to (4.16), the 21 data points results to 18 groups of 

data. Hence, it results to 18 time response equations each with unique values of 

parameters 𝑎 and 𝑏. Because these response equations and their parameters are many 

they are not presented in this thesis. However, they are easily computed in MATLAB 

simulation. 

Now, GM(1,3) modelling procedure was followed based on the raw vehicle flow, 

smoothed relative variables and DGT. This combination of the RVSA and DGT in 

GM(1,3) develops a Variable Smoothed-Grouped data multivariate Grey Model 

denoted as VSGGM(1,3). VSGGM(1,3) simulation was carried out in MATLAB and 

final forecasted (fitted) values of VSGGM(1,3) were obtained and tabulated in Table 

4.68. A time series error (i.e. the difference between the raw vehicle flow data and the 

VSGGM(1,n)’s fitted data) was generated and obtained as: 

   𝑒={0    0.1308    6.2043    2.4225    25.4598    0.0133    8.7298    22.1080    0.6115    

44.9020 2.3101    31.1330    11.6173    15.6295    12.0428    16.4169  17.3974 

23.5759    -1.5713    99.7484    51.4499}     (4.47) 

The real, fitted and error values were plotted in Figure 4.56. 
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Figure 4.56: Day 1 Site 2 Vehicle Volume Simulation by Improved GM(1,3), 

VSGGM(1,3).  

The error curves in Figures 4.55 and 4.56 are not the same neither similar. It is a clear 

indication that the fitting accuracy of the conventional GM(1,3) has been improved. 

The simulation error in Figure 4.56 is approaching zero level. Hence, VSGGM(1,3) is 

more accurate in vehicle flow fitting compared to GM(1,3). However, at the second 

last data point the fitted data by VSGGM(1,3) was -42.7484. This error was improved 

by the FSECA, discussed next. 

In the third step, the error set of (4.47) was subjected to FSECA. By Fourier series and 

truncating the sum over 𝑚 after some low value 𝑚 = 𝑁 the modified random error 

sequence was approximated by (3.54). From (3.51) 𝑇 is the period, from (4.44) 𝑚=21 

and from (3.54) 𝑁 = {(𝑚 − 1)/2} − 1, and 𝑇 = 𝑚 − 1. Therefore, (3.54) becomes: 

�̂�(𝑘) =
𝑎0

2
+ ∑ [𝑎𝑚cos (

2𝜋𝑚

20
𝑘) + 𝑏𝑚sin (

2𝜋𝑚

20
𝑘)]9

𝑚=1   (4.48) 

where 𝑎0, 𝑎𝑚 and 𝑏𝑚 are Fourier coefficients, 𝑚 = 1,2,⋯ ,9 and 𝑘 = 2, 3,⋯ ,21. To 

compute the Fourier coefficients (3.55) to (3.58) were used and the values of these 

coefficients were tabulated in Table 4.67. 
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Table 4.67: Fourier Coefficients 

𝒎 1 2 3 4 5 6 7 8 9 

𝒂𝟎 39.0332 

𝑎𝑚 7.8512 13.2165 8.5892 11.1317 8.7577 7.4791 3.6882 14.8899 -1.4631 

𝑏𝑚 -2.9362 1.1503 1.0276 4.6905 7.8820 6.6942 3.7229 3.7025 6.5132 

These computed values of the Fourier coefficients were substituted back into (4.48) to 

obtain the modified random error sequence as: 

 �̂�(𝑘) ={0   -5.9607   12.2957   -3.6690   31.5512   -6.0782   14.8213   16.0166   

6.7030   38.8106   8.4015   25.0416   17.7088   9.5381   18.1343   10.3255   

23.4888   17.4845   4.5201   93.6570   57.5413}   (4.49) 

This corrected error was added to VSGGM(1,n)’s fitted data to give the final vehicle 

flow prediction. With this Fourier series error correction a hybrid grey model was 

established and referred to as a Variable Smoothed-Grouped data-Fourier series based 

multivariate Grey Model denoted as VSGFGM(1,n). Therefore, the final restored 

value of the dependent valuable was obtained based on (3.59) and tabulated in Table 

4.68 as VSGFGM(1,3)’s fitted data. These results were also plotted in Figure 4.57.   

 

Figure 4.57: Day 1 Site 2 Vehicle Volume Simulation by Improved GM(1,3), 

VSGFGM(1,3) 

Figures 4.55, 4.56 and 4.57 clearly demonstrates that the TSA improves the 

conventional GM(1,3)’s fitting accuracy. VSGFGM(1,3)) is the most accurate 
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compared to VSGGM(1,3)) and the conventional GM(1,3). Therefore, the accuracy of 

the conventional GM(1,3) has been improved as observed from the error curves in 

Figures 4.55, 4.56 and 4.57. The simulation error curve of Figure 4.57 is approaching 

zero which is an indication of improved accuracy. Moreover, in Figure 4.57 the 

simulation data almost fits onto the real data noting that the fitting error that occurred 

at the second last data point was now corrected.  

d) Evaluating the Performance of the Improved GM (1,3) in Traffic Flow 

Modelling 

For the purpose of evaluating the grey models the fitted data by each model were as 

tabulated in Table 4.68. Moreover, Table 4.69 shows prediction error and accuracy 

evaluation. 

From Table 4.68 the fitted data by the conventional GM(1,3) at time sample 20 was 

98.6602 and  that of VSGGM(1,3) was -42.7484. After Fourier series error correction 

VSGFGM(1,3)’s fitted value at this data point was 50.9086. This was a great 

improvement on the fitting accuracy noting that the real data at this data point is 57. 

The fitted value of 50.9086 by VSGFGM(1,3) is more closer to 57 compared to 

GM(1,3)’s and VSGGM(1,3)’s fitted values of  98.6602 and -42.7484, respectively. 

Thus VSGFGM(1,3) is the most accurate in this context. 
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Table 4.68: Traffic Flow, Smoothed Variables and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Existing Model  

GM(1,3) 

Improved Models 

VSGGM(1,3) and VSGFGM(1,3) 

Raw Relative 

Variables 

Fitted 

Value 

Smoothed Relative 

Variables 

VSGGM 

Fitted 

Value 

VSGFGM 

Fitted 

Value 

VEH PED MOT VEH PED MOT VEH VEH 

1 48 10 6 48.0000 10.0000 6.0000 48.0000 48.0000 

2 41 4 0 17.2645 7.2964 2.2674 40.8692 34.9086 

3 39 6 6 30.2513 7.4661 2.4590 32.7957 45.0914 

4 47 5 2 40.7850 7.6398 2.6669 44.5775 40.9086 

5 34 6 5 48.2576 7.8176 2.8923 8.5402 40.0914 

6 64 21 1 174.2489 7.9995 3.1368 63.9867 57.9086 

7 64 5 3 65.8822 8.1856 3.4020 55.2702 70.0914 

8 55 12 2 129.8792 8.3761 3.6895 32.8920 48.9086 

9 79 7 2 89.3849 8.5710 4.0014 78.3885 85.0914 

10 52 10 2 118.7329 8.7704 4.3396 7.0980 45.9086 

11 98 3 2 49.2143 8.9744 4.7064 95.6899 104.0914 

12 72 12 6 126.8544 9.1833 5.1043 40.8670 65.9086 

13 86 13 4 144.8652 9.3969 5.5357 74.3827 92.0914 

14 87 8 2 98.1569 9.6156 6.0036 71.3705 80.9086 

15 94 8 16 49.3499 9.8393 6.5111 81.9572 100.0914 

16 86 8 10 67.8505 10.0682 7.0615 69.5831 79.9086 

17 75 11 11 96.5661 10.3025 7.6584 57.6026 81.0914 

18 69 7 5 71.5265 10.5422 8.3057 45.4241 62.9086 

19 99 15 8 150.8273 10.7875 9.0078 100.5713 105.0914 

20 57 12 13 98.6602 11.0385 9.7692 -42.7484 50.9086 

21 95 10 5 103.4767 11.2953 10.5950 43.5501 101.0914 

Table 4.69: Day 1 Site 2 Vehicle Flow Prediction Error and Accuracy Evaluation 

Error 

Indicator 

Multivariate  Grey Models 

Existing Model Improved Models 

GM(1,3) VSGGM(1,3) VSGFGM(1,3) 

Error 

43.3561 

29.6811 

5.9446 

RMSE 43.3561 29.6811 5.9446 

RMSPE 53.1629 33.4921 7.4041 

MAE 32.3621 18.7369 5.8014 

MAPD 47.1619 27.3057 8.4544 

Accuracy 

100-RMSPE 46.8371 66.5079 92.5959 

100-MAPD 52.8381 72.6943 91.5456 

Accuracy improvement was explored through error analysis and tabulated in Table 

4.69 are the simulation errors and accuracies as obtained by various error indicators. 

The prediction errors of the conventional and improved grey models were measured 

and evaluated by Root Mean Square Error (RMSE), Root Mean Square Percentage 

Error (RMSPE), Mean Absolute Error (MAE) and Mean Absolute Percentage 

Deviation (MAPD). These error indicators are computed as in section 3.1.3 of this 
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thesis. From Table 4.6 and Table 4.69 note that, as computed by RMSPE, 

VSGFGM(1,3) has a higher fitting accuracy at 92.5959% as compared with that of the 

conventional GM(1,3) at 46.8371%. 

4.3.4.2 Empirical example 2 

Based on the TSA method employed in section 4.3.4.1 a second empirical example is 

presented but this time different traffic data is employed for the purpose of validating 

the portability and applicability of the improved GM(1,3) in vehicle traffic flow 

modelling and forecasting. Following a similar procedure, as in section 4.3.4.1, 

simulation was performed by the conventional GM(1,3), VSGGM(1,3) and 

VSGFGM(1,3) and the results were plotted as shown in Figures 4.58, 4.59 and 4.60, 

respectively. In Table 4.74 the error and accuracy analysis of this case scenario was 

tabulated.  

a) Data Source  

Used is the Nairobi CBD traffic data collected from the Haile Selassie Avenue-Moi 

Avenue Roundabout in the eastward direction (see Appendix IV Table 14). The data 

were collected on Wednesday, February 17, 2021, from 6:00 am to 7:45 am. Note that 

this is day 2 data and as before the data includes three variables, namely vehicle flow, 

pedestrian and motorcycle. The data were as tabulated in Table 4.70 and defined as in 

section 4.3.4.1. Also included in Table 4.70 is the AGO series for each variable and the 

background value (i.e. MGO) of the dependent variable.  

b) Conventional GM(1,3) in Vehicle Flow Prediction/Modelling 

The three variables’ raw data shown in Table 4.70 were used. From (3.24) the AGO 

for each variable was generated and recorded in Table 4.70. From (3.26) the MGO of 

the dependent variable was also generated and recorded. The generated AGO and 

MGO were used in (3.31) to construct the data matrix 𝑋. Then the vector parameter �̂� 

was computed from (3.30) and the model parameters were obtained as 𝑎= -0.0986, 

𝑏2= -0.1595 and 𝑏3=7.6001. Thus the time response function of (3.29) simplified to: 
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�̂�1
(1)(𝑘 + 1) = 𝑒0.0986𝑘 (𝑥1

(1)(1) +
1

0.0986
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1))

−
1

0.0986
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1) 

𝑘 = 0,1,2,⋯ ,𝑚 − 1,   𝑚 = 21  (4.50) 

Table 4.70: Day 2 Site 7 Vehicle Flow, Related Factors and Grey Generating 

Operations  

Time 

Sample   

𝒕 

Time Raw Data AGO MGO 

VEH PED MOT VEH PED MOT VEH 

𝑥1
(0)(𝑡) 𝑥2

(0)(𝑡) 𝑥3
(0)(𝑡) 𝑥1

(1)(𝑡) 𝑥2
(1)(𝑡) 𝑥3

(1)(𝑡) 𝑧1
(1)(𝑡) 

1 06:00-06:05 50 128 5 50 128 5  

2 06:06-06:10 100 133 4 150 261 9 100.0 

3 06:11-06:15 75 192 3 225 453 12 187.5 

4 06:16-06:20 102 171 4 327 624 16 276.0 

5 06:21-06:25 72 181 3 399 805 19 363.0 

6 06:26-06:30 80 200 3 479 1005 22 439.0 

7 06:31-06:35 95 148 3 574 1153 25 526.5 

8 06:36-06:40 148 213 4 722 1366 29 648.0 

9 06:41-06:45 55 161 5 777 1527 34 749.5 

10 06:46-06:50 60 176 4 837 1703 38 807.0 

11 06:51-06:55 80 285 4 917 1988 42 877.0 

12 06:56-07:00 62 223 2 979 2211 44 948.0 

13 07:01-07:05 65 197 2 1044 2408 46 1011.5 

14 07:06-07:10 53 186 3 1097 2594 49 1070.5 

15 07:11-07:15 70 342 3 1167 2936 52 1132.0 

16 07:16-07:20 72 195 6 1239 3131 58 1203.0 

17 07:21-07:25 60 204 3 1299 3335 61 1269.0 

18 07:26-07:30 36 206 9 1335 3541 70 1317.0 

19 07:31-07:35 70 192 7 1405 3733 77 1370.0 

20 07:36-07:40 90 562 5 1495 4295 82 1450.0 

21 07:41-07:45 106 362 5 1601 4657 87 1548.0 

From (4.50) and (3.32), the final forecasted (fitted) values of the original sequence 

were obtained and tabulated in Table 4.73 and the corresponding relative errors are as 

tabulated in Table 4.74. Figure 4.58 shows the plot of real, simulated and error values 

of GM(1,3).  
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Figure 4.58: Day 2 Site 7 Vehicle Volume Simulation by the Conventional 

GM(1,3) 

Conventional GM(1,3)’s simulation plot of Figure 4.58,  shows that this model’s fitting 

accuracy was too low. Its simulation error was in the range of -1500 to 3000 as can be 

seen in Figure 4.58.  Improvement of its fitting accuracy is explained and carried out 

below. 

c) Improved GM(1,3) in Vehicle Flow Prediction/Modelling 

The fitting accuracy of the conventional GM(1,3) was improved by smoothing the 

observed relative variables using OGM(1,1) as a data pre-processing tool. Using the 

AGO series of Table 4.70 in (3.5) or (3.26) the MGO for each variable were calculated 

and recorded in Table 4.71.  
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Table 4.71: Day 1 Site 7 Traffic Flow MGO   

Time 

Sample 

𝒕 

Raw Data MGO 

VEH PED MOT VEH PED MOT 

𝑥1
(0)(𝑡) 𝑥2

(0)(𝑡) 𝑥3
(0)(𝑡) 𝑧1

(1)(𝑡) 𝑧2
(1)(𝑡) 𝑧3

(1)(𝑡) 

1 50 128 5    

2 100 133 4 100.0000 194.5000 7.0000 

3 75 192 3 187.5000 357.0000 10.5000 

4 102 171 4 276.0000 538.5000 14.0000 

5 72 181 3 363.0000 714.5000 17.5000 

6 80 200 3 439.0000 905.0000 20.5000 

7 95 148 3 526.5000 1079.0000 23.5000 

8 148 213 4 648.0000 1259.5000 27.0000 

9 55 161 5 749.5000 1446.5000 31.5000 

10 60 176 4 807.0000 1615.0000 36.0000 

11 80 285 4 877.0000 1845.5000 40.0000 

12 62 223 2 948.0000 2099.5000 43.0000 

13 65 197 2 1011.5000 2309.5000 45.0000 

14 53 186 3 1070.5000 2501.0000 47.5000 

15 70 342 3 1132.0000 2765.0000 50.5000 

16 72 195 6 1203.0000 3033.5000 55.0000 

17 60 204 3 1269.0000 3233.0000 59.5000 

18 36 206 9 1317.0000 3438.0000 65.5000 

19 70 192 7 1370.0000 3637.0000 73.5000 

20 90 562 5 1450.0000 4014.0000 79.5000 

21 106 362 5 1548.0000 4476.0000 84.5000 

The MGO values of Table 4.71 were used to construct the data matrix 𝐴 of (3.16) for 

each relative variable. By (3.33) the model parameters 𝑎 and 𝑏 for PED variable were 

𝑎= -0.0464, 𝑏=130.2636 and for the MOT variable 𝑎= -0.0361 and 𝑏=2.6021. 

Therefore, for the PED variable (3.9) simplified to: 

 

 
,4052.807,24052.935,2ˆ

0464.01

1ˆ 
 ex

r

r
   1,,2,1,0  mr    (4.51) 

And for the MOT variable (3.9) simplified to: 

 

 
,0803.720803.77ˆ

0361.01

1ˆ 
 ex

r

r
    1,,2,1,0  mr    (4.52) 

Then the smoothed relative variables were generated from (4.51) and (4.52) by the 

IAGO process. See Table 4.73.  

Next the DGT was introduced in GM(1,3) modelling and as it was mentioned earlier 

the DGT involves many data groups and consequently many model equations are 

established. The number of equations formed are as many as the number of data groups 
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formed. Because these equations and their 𝑎 and 𝑏 parameters are many they are not 

presented in this thesis. 

Both the smoothed relative variables and the DGT were introduced in the conventional 

GM(1,3) and the developed grey model i.e. the VSGGM(1,3) resulted to the fitted data 

tabulated in Table 4.73. The corresponding simulation error was obtained as: 

𝑒 ={0    0.4188    27.0469    -2.0426    11.2406    0.5427    11.8035    -1.2825    

30.6845    5.1863    -4.3606    4.9863    -4.7813    9.9100    -1.4667    -

4.4943    -2.7054    43.9862    61.3923    -12.4342    -10.0449}  (4.53) 

VSGGM(1,3)’s real, fitted and error values were as plotted in Figure 4.59. 

 

Figure 4.59: Day 2 Site 7 Vehicle Volume Simulation by Improved GM(1,3), 

VSGGM(1,3) 

Comparison of Figures 4.58 and 4.59 clearly demonstrates that VSGGM(1,3) is a great 

improvement from the conventional GM(1,3). VSGGM(1,3)’s simulation error curve 

is approaching zero level. Perhaps, much of the inaccuracy was as a result of the 18th 

data point prediction which was observed at -7.9862 in Table 4.73 and in Figure 4.59. 

This error was corrected by the FSECA. 

The error of (4.53) was corrected by Fourier series. Starting with (4.48) and from 

(3.55) to (3.58) the Fourier coefficients in Table 4.72 were determined. 
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Table 4.72: Fourier Coefficients 

𝒎 1 2 3 4 5 6 7 8 9 

𝒂𝟎 16.3586 

𝑎𝑚 4.4036 4.7822 -1.8216 -3.6557 -7.5311 -5.3361 -1.4690 -3.8921 -2.3921 

𝑏𝑚 0.3079 -7.8591 -7.1162 -14.2175 -7.0022 -7.5846 1.5502 -2.1540 7.4819 

These Fourier coefficients were substituted back into (4.48) to obtain the modified 

random error sequence as: 

�̂�(𝑘) ={0   4.1205   23.3453   1.6590   7.5390   4.2443   8.1019   2.4191   26.9829   

8.8879   -8.0622   8.6879   -8.4829   13.6117   -5.1684   -0.7927   -6.4070   

47.6878   57.6907   -8.7326   -13.7465}    (4.54) 

This modified error of (4.54) was added to VSGGM(1,n)’s fitted data (according to 

(3.59)) to give the final vehicle flow prediction as tabulated in Table 4.73. This was 

VSGFGM(1,3)’s fitted data. These results were also plotted in Figure 4.60.    

 

Figure 4.60: Day 2 site 7 Vehicle Volume Simulation by Improved GM(1,3), 

VSGFGM(1,3). 

The fitting of the real and the simulated data in Figures 4.58 to 4.60 can be observed 

to change from poor fitting in Figure 4.58 to neat fitting in Figure 4.60. In other words 

the fitting accuracy of the conventional GM(1,3) was improved significantly by 

introducing the TSA in its modelling procedure. The simulation error in Figure 4.58 is 

large compared to that of Figure 4.60. Thus VSGFGM(1,3) is more accurate in vehicle 
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flow fitting compared to the conventional GM(1,3). VSGGM(1,3)’s fitting accuracy 

lies between that of the conventional GM(1,3) and VSGFGM(1,3).  

d) Evaluating the Performance of the Improved GM (1,3) in Traffic Flow 

Modelling 

For easy of comparison and evaluation the fitted data of the three grey models were 

tabulated in Table 4.73. Moreover, error and accuracy evaluation was tabulated in 

Table 4.74. 

Table 4.73: Traffic Flow, Smoothed Variables and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Existing Model 

GM(1,3) 

Improved Models 

VSGGM(1,3) and VSGFGM(1,3) 

Raw Relative 

Variables 

Fitted 

Value 

Smoothed Relative 

Variables 

VSGGM 

Fitted Value 

VSGFGM 

Fitted Value 

VEH PED MOT VEH PED MOT VEH VEH 

1 50 128 5 50.0000 128.0000 5.0000 50.0000 50.0000 

2 100 133 4 33.3000 139.4117 2.8331 99.5812 103.7016 

3 75 192 3 19.4000 146.0326 2.9371 47.9531 71.2984 

4 102 171 4 41.4000 152.9678 3.0449 104.0426 105.7016 

5 72 181 3 8.3000 160.2324 3.1567 60.7594 68.2984 

6 80 200 3 -26.3000 167.8421 3.2726 79.4573 83.7016 

7 95 148 3 13.7000 175.8131 3.3927 83.1965 91.2984 

8 148 213 4 -15.2000 184.1626 3.5173 149.2825 151.7016 

9 55 161 5 165.5000 192.9087 3.6464 24.3155 51.2984 

10 60 176 4 79.3000 202.0702 3.7802 54.8137 63.7016 

11 80 285 4 -200.6000 211.6668 3.9190 84.3606 76.2984 

12 62 223 2 -385.2000 221.7191 4.0628 57.0137 65.7016 

13 65 197 2 -414.6000 232.2487 4.2120 69.7813 61.2984 

14 53 186 3 -283.3000 243.2785 4.3666 43.0900 56.7016 

15 70 342 3 -1097.5000 254.8321 4.5269 71.4667 66.2984 

16 72 195 6 212.7000 266.9344 4.6931 76.4943 75.7016 

17 60 204 3 -628.2000 279.6114 4.8653 62.7054 56.2984 

18 36 206 9 1243.1000 292.8904 5.0439 -7.9862 39.7016 

19 70 192 7 964.6000 306.8002 5.2291 8.6077 66.2984 

20 90 562 5 -2922.3000 321.3704 5.4210 102.4342 93.7016 

21 106 362 5 -1630.6000 336.6327 5.6200 116.0449 102.2984 
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Table 4.74: Day 2 Site 7 Vehicle Flow Prediction Error and Accuracy Evaluation 

Error 

Indicator 

Multivariate  Grey Models 

Existing Model Improved Models 

GM(1,3) VSGGM(1,3) VSGFGM(1,3) 

Error 

RMSE 897.0257 19.6709 3.6124 

RMSPE 996.4187 16.2186 3.7836 

MAE 529.4186 11.9434 3.5253 

MAPD 694.4279 15.6659 4.6241 

Accuracy 

100-RMSPE -896.4187 83.7814 96.2164 

100- MAPD -594.4279 84.3341 95.3759 

From Table 4.73 most of the existing GM(1,3)’s fitted values were negative values. 

Prediction values in grey modelling ought to be positive values. Thus, the negative 

fitted values of the existing model was a sign of inaccuracy in vehicle flow fitting. This 

inaccuracy of the existing model was improved by relative data smoothing in 

combination with the DGT, as demonstrated by Figure 4.59. The accuracy increased 

from -896.4187% to 83.7814%, as obtained by the RMSPE error indicator, in Table 

4.74. The accuracy was further improved by Fourier series error correction as observed 

in Figure 4.60. Because of Fourier series error correction, the accuracy increased from 

83.7814% to 96.2164%. Considering the MAPD error indicator, in Table 4.74, the 

accuracy of the existing model was improved from -594.4279% to 95.3759%. This is 

great improvement in the fitting accuracy of the existing model.  

4.3.4.3 Empirical Example 3 

A third empirical example was carried out to assess the TSA in improving the fitting 

accuracy of the conventional GM(1,3). The results were as plotted in Figures 4.61, 

4.62 and 4.63 for the conventional GM(1,3), VSGGM(1,3) and VSGFGM(1,3), 

respectively. Moreover, the fitting errors and accuracies were tabulated and evaluated.  

a) Data Source   

This particular example was based on traffic data collected in the Nairobi CBD, during 

the third day, from the Kenyatta Avenue-Moi Avenue-Mondlane Street Junction in the 
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northward direction on Thursday, February 18, 2021, from 6:00 am to 7:45 am (see 

Appendix IV Table 18). These data were recorded in Table 4.75. It included vehicle 

flow, pedestrian and motorcycle variables as in the previous two cases. As before 

included in Table 4.75 are the AGO series for each variable and the background value 

(i.e. MGO) of the dependent variable. 

Table 4.75: Day 3 Site 4 Vehicle Flow, Related Factors and Grey Generating 

Operations  

Time 

Sample  

𝒕 

Time Raw Data AGO MGO 

VEH PED MOT VEH PED MOT VEH 

𝑥1
(0)(𝑡) 𝑥2

(0)(𝑡) 𝑥3
(0)(𝑡) 𝑥1

(1)(𝑡) 𝑥2
(1)(𝑡) 𝑥3

(1)(𝑡) 𝑧1
(1)(𝑡) 

1 06:00-06:05 26 96 2 26 96 2  

2 06:06-06:10 35 84 2 61 180 4 43.5000 

3 06:11-06:15 41 107 1 102 287 5 81.5000 

4 06:16-06:20 39 100 4 141 387 9 121.5000 

5 06:21-06:25 40 93 6 181 480 15 161.0000 

6 06:26-06:30 52 110 1 233 590 16 207.0000 

7 06:31-06:35 48 89 5 281 679 21 257.0000 

8 06:36-06:40 44 107 4 325 786 25 303.0000 

9 06:41-06:45 56 85 5 381 871 30 353.0000 

10 06:46-06:50 65 150 4 446 1021 34 413.5000 

11 06:51-06:55 49 147 4 495 1168 38 470.5000 

12 06:56-07:00 38 126 6 533 1294 44 514.0000 

13 07:01-07:05 42 129 4 575 1423 48 554.0000 

14 07:06-07:10 54 146 13 629 1569 61 602.0000 

15 07:11-07:15 67 123 8 696 1692 69 662.5000 

16 07:16-07:20 58 192 13 754 1884 82 725.0000 

17 07:21-07:25 71 156 9 825 2040 91 789.5000 

18 07:26-07:30 64 98 12 889 2138 103 857.0000 

19 07:31-07:35 52 121 18 941 2259 121 915.0000 

20 07:36-07:40 68 203 12 1009 2462 133 975.0000 

21 07:41-07:45 71 192 8 1080 2654 141 1044.5000 

b) Conventional GM(1,3) in Vehicle Flow Prediction/Modelling 

The conventional GM(1,n)’s first order AGO for the three variables were computed 

using (3.24) and recorded in Table 4.75. The background value of the vehicle variable 

was also obtained from (3.26) and recorded in Table 4.75. This background value and 

the AGO series of the relative variables were used in (3.31) to construct the data matrix 

𝑋. Then (3.31) was used in the least square method of (3.30) and the parameters 

𝑎=0.4590, 𝑏2=0.2537, and 𝑏3= -0.8715 were determined. Hence the time response 

function of (3.29) simplified to: 
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�̂�1
(1)(𝑘 + 1) = 𝑒−0.4590𝑘 (𝑥1

(1)(1) −
1

0.4590
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1))

+
1

0.4590
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1) 

𝑘 = 0,1,2,⋯ ,𝑚 − 1,   𝑚 = 21    (4.55) 

Now (3.32) generated the IAGO of (4.55) and this IAGO was as recorded in Table 

4.78. This was the existing GM(1,3)’s vehicle flow fitted value. The real, simulated 

and error values of the GM(1,3) were plotted in Figure 4.61. 

 

Figure 4.61: Day 3 Site 4 Vehicle Volume Simulation by the Conventional 

GM(1,3) 

It can be noted from Figure 4.61 that there were discrepancies in the fitting of the real 

and simulated values except at data points 𝑡 = 0, 6, 13 𝑎𝑛𝑑 16, which are observed to 

have a good fit. These discrepancies (i.e. errors) were reduced by the TSA in (c) below. 

c) Improved GM(1,3) in Vehicle Flow Prediction/Modelling 

The discrepancies in the fitting of the conventional GM(1,3) were reduced by first 

combining the RVSA and the DGT in the GM(1,3)’s procedure. This combination, as 
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it was mentioned earlier, develops the VSGGM(1,3). Secondly, the FSECA was 

introduced in the VSGGM(1,3) to further reduce the simulation error. 

As before the OGM(1,1), as a data pre-processing tool, was used to smooth the relative 

variable. The AGO of the relative variables, as already presented in Table 4.75, were 

used in (3.26) to generate the MGO provided in Table 4.76. 

The data matrix 𝐴, of (3.16), for each relative variable was constructed from Table 

4.76. By (3.33) the model parameters 𝑎 and 𝑏 for PED variable were 𝑎= -0.0346, 

𝑏=85.3666 and for the MOT variable 𝑎= -0.0853 and 𝑏=2.5975. Therefore, the time 

response equation for the PED variable from (3.9) simplified to:  
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And that of the MOT variable simplified to: 
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Table 4.76: Day 3 Site 4 Traffic Flow MGO   

Time 

Sample 

𝒕 

Raw Data MGO 

VEH PED MOT VEH PED MOT 

𝒙𝟏
(𝟎)(𝒕) 𝒙𝟐

(𝟎)(𝒕) 𝒙𝟑
(𝟎)(𝒕) 𝒛𝟏

(𝟏)(𝒕) 𝒛𝟐
(𝟏)(𝒕) 𝒛𝟑

(𝟏)(𝒕) 

1 26 96 2    

2 35 84 2 43.5000 138.0000 3.0000 

3 41 107 1 81.5000 233.5000 4.5000 

4 39 100 4 121.5000 337.0000 7.0000 

5 40 93 6 161.0000 433.5000 12.0000 

6 52 110 1 207.0000 535.0000 15.5000 

7 48 89 5 257.0000 634.5000 18.5000 

8 44 107 4 303.0000 732.5000 23.0000 

9 56 85 5 353.0000 828.5000 27.5000 

10 65 150 4 413.5000 946.0000 32.0000 

11 49 147 4 470.5000 1094.5000 36.0000 

12 38 126 6 514.0000 1231.0000 41.0000 

13 42 129 4 554.0000 1358.5000 46.0000 

14 54 146 13 602.0000 1496.0000 54.5000 

15 67 123 8 662.5000 1630.5000 65.0000 

16 58 192 13 725.0000 1788.0000 75.5000 

17 71 156 9 789.5000 1962.0000 86.5000 

18 64 98 12 857.0000 2089.0000 97.0000 

19 52 121 18 915.0000 2198.5000 112.0000 

20 68 203 12 975.0000 2360.5000 127.0000 

21 71 192 8 1044.5000 2558.0000 137.0000 



238 

Then the smoothed relative variables were generated from (4.56) and (4.57) by the 

IAGO process given by (3.12). These smoothed variables were as presented in Table 

4.78.  

As a second step, in the TSA, the DGT was introduced and for the same reasons given 

earlier the parameters 𝑎 and 𝑏 and the resulting time response equations for the DGT 

are not provided in this section. The developed grey model i.e. the VSGGM(1,3) 

resulted to the fitted data tabulated in Table 4.78 and the corresponding simulation 

error was obtained as: 

𝑒 =0    0.0230    -2.9822    -0.8475    1.7957    -3.7941    -1.8244    3.5114    -1.5771  

-6.1531    -0.9981    2.3289    0.8272    -1.4166    -6.4437    5.4865    -5.0493  -

3.4346    11.3829    -4.2635   -8.0608     (4.58) 

The real, fitted and error values of the VSGGM(1,3) were as plotted in Figure 4.62. 

 

Figure 4.62: Day 3 Site 4 Vehicle Volume Simulation by Improved GM(1,3), 

VSGGM(1,3) 

Comparison of the simulation error curves in Figures 4.61 and 4.62 shows that the 

fitting error had reduced due to the fact that the relative variables were smoothed and 

the DGT was introduced in GM(1,3) modelling. It means that the smoothness of the 

relative variables has an influence on the fitting accuracy of the conventional GM(1,3). 

Moreover, the DGT was influential in improving the fitting accuracy of the GM(1,3). 
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From the figures it can be inferred that VSGGM(1,3) is more accurate compared to the 

conventional GM(1,3). 

To further improve the fitting accuracy the third step of the TSA was employed. This 

step involved application of the Fourier series error correction to modify the error of 

(4.58). Using (4.48) and (3.55) to (3.58) the Fourier coefficients in Table 4.77 were 

determined. 

Table 4.77: Fourier Coefficients 

𝒎 1 2 3 4 5 6 7 8 9 

𝒂𝟎 -2.1489 

𝑎𝑚 -0.1078 -0.1161 0.6936 -0.9671 2.0991 -1.5445 -1.3376 -1.7246 -0.4026 

𝑏𝑚 -0.3979 -0.6763 -1.5085 -1.5615 -1.1199 -2.5815 -3.4152 -0.6439 0.7137 

By substituting these Fourier coefficients back into (4.48) the modified random error 

sequence was obtain as: 

�̂�(𝑘) ={0    -0.1955    -2.7637    -1.0661    2.0142    -4.0126    -1.6059    3.2929    -

1.3586    -6.3716    -0.7796    2.1104    1.0457    -1.6351    -6.2252    5.2680    -

4.8308    -3.6531    11.6015    -4.4821    -7.8423}    (4.59) 

The modified error of (4.59) was added to VSGGM(1,n)’s fitted data (according to 

(3.59)) to give the final vehicle flow prediction as tabulated in Table 4.78. This was 

VSGFGM(1,3)’s fitted data. These results were also plotted in Figure 4.63. 
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Figure 4.63: Day 3 site 4 Vehicle Volume Simulation by Improved GM(1,3), 

VSGFGM(1,3) 

In Figure 4.63 it can be observed that the fitting of the real and simulated values was 

very neat and smooth. In addition, the simulation curve is approaching zero level. This 

is an indication that the FSECA has greatly improved the fitting accuracy of the 

conventional GM(1,3). So VSGFGM(1,3) was more accurate compared to 

VSGGM(1,3). 

d) Evaluating the Performance of the Improved GM (1,3) in Traffic Flow 

Modelling 

In Table 4.78 the fitted values of the existing and improved grey models were recorded. 

And in Table 4.79 the fitting errors and accuracies were also tabulated for evaluation 

purposes.  

From the fitted values in Table 4.78 it is evident that VSGFGM(1,3)’s fitted values 

were so close to the real values. This is also very clear from Table 4.79 which indicates 

that VSGFGM(1,3)’s fitting accuracy is far much high compared to that of the 

conventional model. For instance, considering the RMSPE error indicator, the 

conventional model had an accuracy of 69.7243% which was improved to 99.6281% 

by VSGFGM(1,3).  See Table 4.79. 
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Table 4.78: Traffic Flow, Smoothed Variable and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Existing Model 

GM(1,3) 

Improved Models 

VSGGM(1,3) and VSGFGM(1,3) 

Raw Relative 

Variables 

Fitted 

Value 

Smoothed Relative 

Variables 

VSGGM 

Fitted Value 

VSGFGM 

Fitted Value 

VEH PED MOT VEH PED MOT VEH VEH 

1 26 96 2 26.0000 96.0000 2.0000 26.0000 26.0000 

2 35 84 2 24.2587 90.2405 2.8896 34.9770 34.7815 

3 41 107 1 49.7172 93.4176 3.1469 43.9822 41.2185 

4 39 100 4 53.7511 96.7065 3.4272 39.8475 38.7815 

5 40 93 6 49.5011 100.1112 3.7323 38.2043 40.2185 

6 52 110 1 65.3439 103.6358 4.0647 55.7941 51.7815 

7 48 89 5 47.1783 107.2845 4.4266 49.8244 48.2185 

8 44 107 4 56.7282 111.0616 4.8208 40.4886 43.7815 

9 56 85 5 41.8838 114.9717 5.2500 57.5771 56.2185 

10 65 150 4 77.8375 119.0195 5.7175 71.1531 64.7815 

11 49 147 4 75.7142 123.2098 6.2266 49.9981 49.2185 

12 38 126 6 59.9274 127.5476 6.7811 35.6711 37.7815 

13 42 129 4 64.8827 132.0381 7.3849 41.1728 42.2185 

14 54 146 13 56.8762 136.6867 8.0425 55.4166 53.7815 

15 67 123 8 53.3987 141.4990 8.7586 73.4437 67.2185 

16 58 192 13 81.8279 146.4807 9.5385 52.5135 57.7815 

17 71 156 9 69.4215 151.6378 10.3879 76.0493 71.2185 

18 64 98 12 31.5955 156.9765 11.3128 67.4346 63.7815 

19 52 121 18 32.8455 162.5031 12.3202 40.6171 52.2185 

20 68 203 12 89.5061 168.2243 13.4172 72.2635 67.7815 

21 71 192 8 90.9958 174.1470 14.6119 79.0608 71.2185 

Table 4.79: Day 3 Site 4 Vehicle Flow Prediction Error and Accuracy Evaluation 

Error 

Indicator 

Multivariate Grey Models 

Existing Model Improved Models 

GM(1,3) VSGGM(1,3) VSGFGM(1,3) 

Error 
RMSE 16.8536 4.4400 0.2133 

RMSPE 30.2757 8.6492 0.3719 

MAE 14.4775 3.4381 0.2081 

MAPD 28.1507 6.6852 0.4047 

Accuracy 

100-RMSPE 69.7243 91.3508 99.6281 

100-MAPD 71.8493 93.3148 99.5953 

From the results of the three examples above an optimized GM(1,n) referred  to as 

Variable Smoothed-Grouped data-Fourier series based multivariate Grey Model 

denoted as VSGFGM(1,n) was established. VSGFGM(1,n) was constructed based on 

the TSA for improving the accuracy of the conventional GM(1,n). This TSA consists 

of smoothing the relative variables by GM(1,1), adoption of the DGT in the GM(,n) 

and correction of the arising error based on Fourier series. With n=3 the results 
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obtained have shown that the VSGFGM(1,3)’s performance was superior to that of the 

conventional GM(1,3). Consequently, the results have proved that smoothness of the 

relative variables in GM(1,n) is important in predicting and forecasting of systems 

involving more than one relative variables.  

4.4 Assessment of Grouping Technique Based Multivariate Grey Model, GM(1,n), 

on Energy Consumption and Carbon Dioxide Emissions  

In order to assess the DGT in improving the fitting accuracy of the OGM(1,3) two 

application results were presented using two types of data i.e. CO2 emission and clean 

energy. OGM(1.3) was improved by the DGT to develop a hybrid grey model called 

GGM(1,3). The two models were subjected to the two types of data mentioned above. 

Then the performance of the two grey models were compared for validating the DGT 

in accuracy improvement.  

4.4.1 Data Source 

The two numerical examples presented in this section were based on data obtained 

from (Cheng et al., 2020; Özceylan, 2016). The data from (Özceylan, 2016) consists 

of CO2 emission (mt) as the dependent or output variable and energy consumption 

(mtoe) and number of motor vehicles (106) as relative or input variables. On the other 

hand data from (Cheng et al., 2020) consists of clean energy (10,000 tons of standard 

coal) as the output variable and economic scale, GDP (CNY 0.1Billion) and population 

size (10,000 people) as the input variables. These data are as tabulated in Tables 4.80 

and 4.82 together with the simulation results.  

In reference to section 3.1.2h of this thesis the three variables of the GM(1,3) are 

defined and presented as follows; 

𝑥1
(0)(𝑡) is the dependent time series of CO2 emission (mt) or clean energy 

(10,000 tons), 

𝑥2
(0)(𝑡) is the independent relative time series of energy consumption (mtoe) 

or economic scale (GDP) and  
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𝑥3
(0)(𝑡) is the independent relative time series of the number of motor vehicles 

(106) or population size (10,000 people). 

where t  is an order of the time series and in this case it is the year, presented 

by time sample t.  

Now, the two numerical examples are presented in the following sections. 

4.4.2 GM(1,3) in CO2 Emission Fitting 

From Table 4.80 (Özceylan, 2016) CO2 emission is the dependent variable and the 

factors affecting this variable are the energy consumption and the number of motor 

vehicles. These three factors were used to fit the time series of CO2 emission. 

a) Conventional GM(1,3)’s CO2 Emission Fitting Results 

A similar procedure as in section 4.3.4 was followed in this section. From (3.24) the 

AGO for each variable was generated. From (3.26) the MGO of the dependent variable 

was also generated. The generated AGO and MGO were used in (3.31) to construct the 

data matrix 𝑋. Then from (3.30) the vector parameter �̂� was computed and the model 

parameters were obtained as 𝑎=0.9002, 𝑏2=2.7189 and 𝑏3=-2.7557. Thus, the time 

response function of (3.29) simplified to: 

�̂�1
(1)(𝑘 + 1) = 𝑒−0.9002𝑘 (𝑥1

(1)(1) −
1

0.9002
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1))

+
1

0.9002
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1) 

𝑘 = 0,1,2,⋯ ,𝑚 − 1,   𝑚 = 29   (4.60) 

Next from (4.60) and (3.32), the final forecasted (fitted) values and the corresponding 

relative errors were as tabulated in Table 4.80. This OGM(1,3) simulation was done in 

MATLAB and Figure 4.64 shows the plot of real, simulated and error values.  
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b) GGM(1,3)’s CO2 Emission Fitting Results 

The DGT was introduced in OGM(1,3) and for the same reasons given earlier the 

parameters 𝑎 and 𝑏 and the resulting time response equations for the DGT are not 

provided in this section. The developed grey model i.e. the GGM(1,3) resulted to the 

fitted data and the corresponding relative errors tabulated in Table 4.80. The real, 

fitted/simulated and error values of the GGM(1,3) were as plotted in Figure 4.65. 

 

Figure 4.64: CO2 Emission Simulation by OGM(1,3) 
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Table 4.80: CO2 Emission and Related Indicators of Turkey 

Time 

Sample  

t 

Year CO2 

Emission 

(mt) 

Energy 

Consumption 

(mtoe) 

Number of 

Motor 

Vehicles 

(106) 

Existing Model OGM 

(1,3) 

Improved Model 

GGM(1,3) 

  Output 

Variable 

Input Variable Input 

Variable 

Fitted Value Relative 

Error-% 

Fitted 

Value 

Relative 

Error-

% 

1 1980 75.702 31.970 1.431 75.7020 0 75.7020 0 

2 1981 79.809 32.050 1.513 64.4806 19.2064 75.4781 5.4266 

3 1982 86.917 34.390 1.626 108.7593 25.1301 86.6585 0.2974 

4 1983 90.468 35.700 1.761 115.9032 28.1151 89.0152 1.6059 

5 1984 95.718 37.430 1.927 116.5785 21.7937 89.1734 6.8374 

6 1985 106.630 39.400 2.098 118.0837 10.7415 102.814 3.5787 
7 1986 116.786 42.470 2.275 124.2462 6.3879 116.3299 0.3905 

8 1987 129.801 46.880 2.484 135.4814 4.3762 127.4357 1.8223 

9 1988 126.206 47.910 2.705 137.1711 8.6882 123.7014 1.9845 
10 1989 139.203 50.710 2.895 144.6574 3.9183 138.3195 0.6347 

11 1990 150.667 52.980 3.228 150.3033 0.2414 153.0257 1.5655 

12 1991 151.675 54.270 3.548 153.1279 0.9579 153.229 1.0246 
13 1992 154.368 56.680 3.974 159.0588 3.0387 153.13 0.8020 

14 1993 164.125 60.260 4.568 168.0326 2.3809 154.5696 5.8220 

15 1994 161.527 59.120 5.047 163.114 0.9825 157.3057 2.6134 
16 1995 176.561 63.680 5.355 175.9391 0.3522 173.3421 1.8231 

17 1996 192.342 69.860 5.753 193.3838 0.5416 191.145 0.6223 

18 1997 202.722 73.780 6.282 203.6029 0.4345 205.7741 1.5056 
19 1998 205.254 74.710 6.923 204.4492 0.3921 205.5053 0.1224 

20 1999 196.607 76.770 7.377 209.281 6.4464 199.9555 1.7031 

21 2000 215.971 80.500 7.966 218.7433 1.2836 208.5686 3.4275 
22 2001 194.379 75.400 8.453 201.8494 3.8432 191.7555 1.3497 

23 2002 205.510 78.330 8.612 210.2119 2.2879 201.6107 1.8974 

24 2003 218.330 83.840 8.882 226.0269 3.5254 215.4068 1.3389 
25 2004 225.222 87.820 9.686 235.5862 4.6018 222.7684 1.0894 

26 2005 237.174 91.580 10.666 243.9424 2.8538 237.1868 0.0054 

27 2006 261.357 100.580 11.945 267.2093 2.2392 263.8114 0.9391 
28 2007 288.445 109.060 12.708 290.4852 0.7073 311.6923 8.0595 

29 2008 297.120 113.850 13.512 302.4909 1.8077 306.9714 3.3156 

Note: Adapted from “Forecasting CO2 emission of Turkey: swarm intelligence 

approaches”, by Özceylan, E., 2016, Int. J. Global Warming, 9(3), 337-361. DOI: 

10.1504/IJGW.2016.075450. 
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Figure 4.65: CO2 Emission Simulation by GGM(1,3) 

Figures 4.64 and 4.65 clearly demonstrates that the GGM(1,3) is more accurate in CO2 

emission fitting compared to OGM(1,3). This is evident from their corresponding 

simulation error curves. Therefore, the accuracy of the OGM(1,3) has been improved 

slightly by the DGT.    

c) Evaluating the Performance of OGM (1,3) and GGM (1,3) on CO2 Emission 

Fitting 

The magnitude of the percentage relative error at each data point was determined from 

(3.65) and recorded in Table 4.80. Relative error is defined as the ratio of the absolute 

error of the measurement to the actual measurement. Percent error is the difference 

between the measured value and the true value, as a percentage of true value. In this 

case the measured value was the fitted value and the true value was the output variable. 

From the percentage relative errors it can be observed that the GGM(1,3) had  smaller 

values compared to OGM(1,3)’s error values. Thus GGM(1,3)’s fitted values were 

close to the real data (i.e. output variable), indicating that GGM(1,3) is more accurate 

compared to OGM(1,3). 

To further explore the accuracy improvement, simulation error analysis was done and 

tabulated in Table 4.81 are the simulation errors as obtained by various error indicators. 
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Table 4.81: CO2 Emission Simulation Error Evaluation 

Error Indicator Grey Model 

OGM(1,3) GGM(1,3) 

RMSE 9.7098 5.8048 

RMSPE 3.2296 3.7689 

MAE 7.0877 3.7060 

MAPD 4.1552 2.1727 

From Tables 4.6 and 4.81 the MAPD error indicator shows that both OGM(1,3) and 

GGM(1,3) had high fitting accuracy. However, from Table 4.81, it can be noticed that 

OGM(1,3)’s fitting accuracy had been improved from 100-4.1552=95.8448% to 100-

2.1727=97.8273% by the DGT. The error indicators RMSE and MAE also shows that 

OGM(1,3)’s fitting accuracy was improved. Except with the RMSPE error indicator 

which indicates that OGM(1,3) had less accuracy compared to GGM(1,3). 

4.4.3 GM(1,3) in  Clean Energy Consumption Fitting 

From Table 4.82 (Cheng et al., 2020), clean energy consumption is the dependent 

variable and economic scale and population size are the relative variables.  

a) Conventional GM(1,3)’s Clean Energy Consumption Fitting Results 

As in section 4.4.2 the AGO for each variable was generated from (3.24) whereas from 

(3.26) the MGO of the dependent variable was generated. These AGO and MGO were 

used in (3.31) to construct the data matrix 𝑋 which was used in (3.30) to compute the 

vector parameter �̂�. Thus, the model parameters were obtained as 𝑎=-0.0918, 𝑏2=-

0.0140 and 𝑏3=0.0654. And the time response function of (3.29) simplified to: 

�̂�1
(1)(𝑘 + 1) = 𝑒0.0918𝑘 (𝑥1

(1)(1) +
1

0.0918
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1))

−
1

0.0918
∑𝑏𝑖𝑥𝑖

(1)

3

𝑖=2

(𝑘 + 1) 

𝑘 = 0,1,2,⋯ ,𝑚 − 1,   𝑚 = 13   (4.61) 
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Application of the IAGO on (4.61), i.e. use of (3.32), computed the fitted values as 

tabulated in Table 4.82. The corresponding relative errors were also calculated and 

tabulated in Table 4.82. Plotted in Figure 4.66 is the real, simulated and error values 

of the OGM(1,3).  

Table 4.82: Clean Energy Consumption and Related Indicators of China 

Time 

Sample 

t 

Year Clean Energy 

Consumption 

Economic 

Scale 

Population 

Size 

Existing Model 

OGM(1,3) 

Improved Model 

GGM(1,3) 

  Output 

Variable 

Input 

Variable 

Input 

Variable 

Fitted 

Value 

Relative 

Error-% 

Fitted 

Value 

Relative 

Error% 

1 2006 21,198.56  219,438.5  131,448.0 21199 0.0021 21199 0.0021 

2 2007 23,358.15  270,092.3  132,129.0 12893 44.8030 22277 4.6286 

3 2008  26,931.32  319,244.6  132,802.0 23360 13.2608 26809 0.4542 

4 2009 28,570.71  348,517.7  133,450.0 34024 19.0870 29516 3.3086 

5 2010  33,900.91  412,119.3  134,091.0 42490 25.3359 33103 2.3537 

6 2011 32,511.61  487,940.2  134,735.0 47727 46.7999 33167 2.0159 

7 2012  39,007.39  538,580.0  135,404.0 52284 34.0361 37439 4.0208 

8 2013  42,525.13  592,963.2  136,072.0 53953 26.8732 41948 1.3572 

9 2014  48,116.08  641,280.6  136,782.0 53426 11.0356 47532 1.2139 

10 2015  52,018.51  685,992.9  137,462.0 50220 3.4574 52439 0.8083 

11 2016 57,988.00  740,060.8  138,271.0 41278 28.8163 59038 1.8107 

12 2017 61,897.02  820,754.3  139,008.0 19692 68.1859 67985 9.8357 

13 2018  66,352.00  900,309.5  139,538.0 -11629 117.5262 68653 3.4679 

Note: Adapted from “Forecasting Clean Energy Consumption in China by 2025: 

Using Improved Grey Model GM (1, N)”, by Cheng, M., Li, J., Liu, Y., & Liu, B., 

2020, Sustainability, MDPI, 12(2), 1-20. 

b) GGM(1,3)’s Clean Energy Consumption Fitting Results 

Introduction of the DGT in OGM(1,3) resulted to the developed grey model, i.e. the 

GGM(1,3), whose fitted data and corresponding relative errors were tabulated in Table 

4.82. The real, simulated and error values of the GGM(1,3) were as plotted in Figure 

4.67.  
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Figure 4.66: Clean Energy Consumption Simulation by OGM(1,3) 

 

Figure 4.67: Clean Energy Consumption Simulation by GGM(1,3) 

From the plots in Figures 4.66 and 4.67, it is clear again that the accuracy of the 

OGM(1,3) has been improved by the DGT. The GGM(1,3) has higher accuracy 

because its error curve approaches zero level more closely.  

c) Evaluating the Performance of OGM (1,3) and GGM (1,3) on Clean Energy 

Consumption Fitting 

The percentage relative errors at each data point were determined from (3.65) and 

recorded in Table 4.82. From these percentage relative errors it can be observed that 

GGM(1,3) had much smaller values compared to OGM(1,3)’s relative error values. 

Thus GGM(1,3) was more accurate in clean energy consumption fitting compared to 

OGM(1,3).  
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The simulation errors by various error indicators were as well computed and recorded 

in Table 4.83. Considering the MAPD error indicator accuracy was improved from 

100-39.6730=60.3270% to 100-3.0294=96.9706%. This is great improvement in 

OGM(1,3)’s fitting accuracy.  

Table 4.83: Clean Energy Consumption Simulation Error Evaluation 

Error Indicator Grey Model 

OGM(1,3) GGM(1,3) 

RMSE 2.6220e+04 1.9594e+03 

RMSPE 72.4159 5.1135 

MAE 1.6308e+04 1.2452e+03 

MAPD 39.6730 3.0294 

4.5 Investigating the Effect of Univariate and Multivariate Formulation on 

Accuracy of Grey Models on Vehicle Traffic Flow Fitting 

In this section the conventional univariate and multivariate grey models were 

compared to improved univariate and multivariate grey models. This comparison 

established the effect of the relative factors in vehicle flow modelling. The univariate 

model was used to fit the main variable without considering the relative variables. On 

the other hand, the multivariate model was used to fit the main variable with 

consideration of the relative variables. The main variable in this thesis is the vehicle 

flow time series data whereas the relative variables are pedestrian and motorcycle time 

series data.  

In section 4.3 it was established that GGM(1,1) and VSGFGM(1,3) had the best 

performance in vehicle flow fitting. These improved models are compared to establish 

the influence of the relative variables on vehicle flow. Also considered in this 

comparison were their corresponding conventional grey models, i.e. the OGM(1,1) 

and the GM(1,3). 

Three cases were considered using the same data as in section 4.3.4. Therefore, the 

fitting results of GM(1,3) and VSGFGM(1,3) are as presented in section 4.3.4 and 

these results are used in this section. OGM(1,1) and GGM(1,1)’s vehicle flow fitting 

were carried out as follows. 
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4.5.1 Day 1 Site 2 Vehicle Flow Fitting by Univariate and Multivariate Grey 

Models 

a) Vehicle Flow OGM(1,1) Fitting 

For the conventional GM(1,1)’s vehicle flow fitting the simulation was done using raw 

vehicle flow data of Table 4.65 (i.e. data of day 1 site 2 westward direction). From the 

structure of this model its model parameters were obtained as 𝑎= -0.0321 and 

𝑏=48.3724. Thus the time response function was obtained from (3.9) as: 

 

 
,9283.506,19283.554,1ˆ

0321.01

1ˆ 
 ex

r

r
1,,2,1,0  mr     (4.62) 

 where 𝑚=21. From (4.62) and with the IAGO process the fitted vehicle flow data 

were recorded in Table 4.85. Figure 4.68 shows the plot of the real, simulated and 

simulation error curves for day 1 (D1), site 2 (S2) in the westward (W) direction. Table 

4.86 shows the fitting errors and accuracies as a result of this OGM(1,1) simulation.  

b) Vehicle Flow GGM(1,1) Fitting 

GGM(1,1)’s fitting simulation involved 18 groups of 4 data points. This was as a result 

of (3.34) with 𝑚=21. Hence many values of the parameters 𝑎 and 𝑏 were obtained. It 

means 18 time response equations were obtained. Table 4.84 shows these parameters 

and the corresponding time response equations. The time response equations were 

computed from (3.9). 
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Table 4.84: D1-S2-W GGM(1,1)’s Parameters and Corresponding Time Response 

Functions 

Groups 1 ~ 18 Model Parameters Time Response Function 

𝒂 𝒃 𝒓 = 𝟎, 𝟏, 𝟐,⋯ ,𝒎 − 𝟏,    𝒎 = 𝟐𝟏 

G1 -0.0737 34.2622 
 

 
8874.4648874.512ˆ

0737.01

1ˆ 
 ex

r

r
 

G2 0.0574 45.8883 
 

 
4477.7994477.751ˆ

0574.01

1ˆ 


 ex
r

r
 

G3 -0.2045 26.6863 
 

 
4954.1304954.178ˆ

2045.01

1ˆ 
 ex

r

r
 

G4 -0.2523 24.2336 
 

 
0507.960507.144ˆ

2523.01

1ˆ 
 ex

r

r
 

G5 0.0720 70.2465 
 

 
6458.9756458.927ˆ

0720.01

1ˆ 


 ex
r

r
 

G6 -0.1236 46.4731 
 

 
9960.3759960.423ˆ

1236.01

1ˆ 
 ex

r

r
 

G7 0.0212 65.3477 
 

 
4387.082,30344387,3ˆ

0212.01

1ˆ 


 ex
r

r
 

G8 -0.1467 52.3938 
 

 
1493.3571403.405ˆ

1467.01

1ˆ 
 ex

r

r
 

G9 -0.1155 52.8296 
 

 
3991.4573991.505ˆ

1155.01

1ˆ 
 ex

r

r
 

G10 0.0761 99.3378 
 

 
3587.305,13587.257,1ˆ

0761.01

1ˆ 


 ex
r

r
 

G11 -0.0894 62.4038 
 

 
0291.6980291.746ˆ

0894.01

1ˆ 
 ex

r

r
 

G12 -0.0454 79.7822 
 

 
3172..757,13172.805,1ˆ

0454.01

1ˆ 
 ex

r

r
 

G13 0.0055 90.2010 
 

 
1818.400,161818.352,16ˆ

0055.01

1ˆ 


 ex
r

r

 

G14 0.1110 109.5115 
 

 
5901.9865901.938ˆ

1110.01

1ˆ 


 ex
r

r
 

G15 0.1120 100.7026 
 

 
1304.8991304.851ˆ

1120.01

1ˆ 


 ex
r

r
 

G16 -0.1594 49.1900 
 

 
5947.3085947.356ˆ

1594.01

1ˆ 
 ex

r

r
 

G17 0.0686 88.1284 
 

 
6706.284,16706.236,1ˆ

0686.01

1ˆ 


 ex
r

r
 

G18 0.0282 89.1933 
 

 
8830.162,38830.114,3ˆ

0282.01

1ˆ 


 ex
r

r
 

For each group equation the generated data series was subjected to IAGO process to 

obtain the fitted data. The group fitted data series were superimposed and the final 

fitted data were as recorded in Table 4.85. Figure 4.69 shows GGM(1,1)’s plot of real, 

fitted and error curves. Included in Table 4.86 are the fitting errors and accuracies of 

GGM(1,1).  
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Figure 4.68: D1-S2-W Vehicle Flow OGM(1,1) Fitting 

 

Figure 4.69: D1-S2-W Vehicle Flow GGM(1,1) Fitting 

Comparing the vehicle flow fitting in Figures 4.68 and 4.69 shows that GGM(1,1) is 

more accurate than the OGM(1,1). This is seen from observation of the simulation 

curves. GGM(1,1)’s simulation error curve is smoother compared to that of OGM(1,1). 

c) Evaluation of the Univariate and Multivariate Grey Models in Vehicle Flow 

Fitting 

The fitted values for both the univariate and multivariate grey models were as in Table 

4.85. The univariate grey models only involved the main variable which is the VEH 

variable. Whereas the multivariate grey models involved the relative variables (PED 

and MOT) in vehicle flow fitting. For the existing GM(1,3) the relative variables were 
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not smoothed. However, to improve its fitting accuracy the relative variables were 

smoothed and this resulted to the improved model called VSGFGM(1,3).  

Table 4.85: D1-S2-W Vehicle Flow, Relative Variables and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Univariate Grey 

Models 

Multivariate Grey 

Models 

Existing 

OGM 

(1,1) 

Improved 

GGM 

(1,1) 

Existing Model 

GM(1,3) 

Improved Model 

VSGFGM(1,3) 

Fitted 

Value 

Fitted 

Value 

Raw Relative 

Variables 

Fitted 

Value 

Smoothed Relative 

Variables 

Fitted 

Value 

VEH VEH VEH PED MOT VEH PED MOT VEH 

1 48 48.0000 48.0000 10 6 48.0000 10.0000 6.0000 48.0000 

2 41 50.7237 40.1141 4 0 17.2645 7.2964 2.2674 34.9086 

3 39 52.3790 41.1802 6 6 30.2513 7.4661 2.4590 45.0914 

4 47 54.0882 42.7189 5 2 40.7850 7.6398 2.6669 40.9086 

5 34 55.8532 39.9922 6 5 48.2576 7.8176 2.8923 40.0914 

6 64 57.6758 60.0373 21 1 174.2489 7.9995 3.1368 57.9086 

7 64 59.5579 62.6871 5 3 65.8822 8.1856 3.4020 70.0914 

8 55 61.5014 60.1173 12 2 129.8792 8.3761 3.6895 48.9086 

9 79 63.5084 70.0581 7 2 89.3849 8.5710 4.0014 85.0914 

10 52 65.5808 63.4444 10 2 118.7329 8.7704 4.3396 45.9086 

11 98 67.7209 87.7208 3 2 49.2143 8.9744 4.7064 104.0914 

12 72 69.9307 78.5707 12 6 126.8544 9.1833 5.1043 65.9086 

13 86 72.2127 82.8111 13 4 144.8652 9.3969 5.5357 92.0914 

14 87 74.5692 88.6051 8 2 98.1569 9.6156 6.0036 80.9086 

15 94 77.0026 92.6417 8 16 49.3499 9.8393 6.5111 100.0914 

16 86 79.5153 86.1024 8 10 67.8505 10.0682 7.0615 79.9086 

17 75 82.1101 73.7919 11 11 96.5661 10.3025 7.6584 81.0914 

18 69 84.7895 74.3463 7 5 71.5265 10.5422 8.3057 62.9086 

19 99 87.5564 84.9093 15 8 150.8273 10.7875 9.0078 105.0914 

20 57 90.4136 76.7811 12 13 98.6602 11.0385 9.7692 50.9086 

21 95 93.3640 81.3054 10 5 103.4767 11.2953 10.5950 101.0914 

Vehicle flow fitting error and accuracy evaluation was as in Table 4.86. From Table 

4.86 the following observations were made. GGM(1,1) and VSGFGM(1,3) are more 

accurate compared to OGM(1,1) and GM(1,3) respectively. GM(1,3) is less accurate 

compared to OGM(1,1), this indicates that the relative variables have no significance 

in vehicle flow fitting. However, the relative variables play a great role in improving 

the fitting accuracy of the conventional multivariate grey model. When the TSA, in 

which relative variables were smoothed as seen in Table 4.85, was used the accuracy 

of the conventional GM(1,3) was improved from 46.8371% to 92.5959%. Therefore, 

the improved multivariate grey model (VSGFGM(1,3)) performed better than the 

improved univariate grey model (GGM(1,1)). It means that relative variables are 
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important in traffic flow fitting and, therefore, need to be considered in any time series 

modelling. 

Table 4.86: Day 1 Site 2 Vehicle Flow Prediction Error and Accuracy Evaluation 

Error 

Indicator 

Univariate Grey Models Multivariate  Grey Models 

Existing 

Model 

Improved 

Model 

Existing 

Model 

Improved 

Model 

OGM(1,1) GGM(1,1) GM(1,3) VSGFGM(1,1) 

Error 
RMSE 14.5968 7.8230 43.3561 5.9446 

RMSPE 18.4133 10.2630 53.1629 7.4041 

MAE 11.8965 5.7783 32.3621 5.8014 

MAPD 17.3370 8.4208 47.1619 8.4544 

Accuracy 

100-RMSPE 81.5867 89.7370 46.8371 92.5959 

100-MAPD 82.6630 91.5792 52.8381 91.5456 

4.5.2 Day 2 Site 7 Vehicle Flow Fitting by Univariate and Multivariate Grey 

Models 

a) Vehicle Flow OGM(1,1) Fitting 

Similarly, using the raw data of Table 4.70 (i.e. data from day 2 (D2) site 7 (S7) 

eastward (E) direction) the OGM(1,1)’s simulation gave the model parameters as 

𝑎=0.0164 and 𝑏=91.7669. These parameter values simplified (3.9) and this time 

response equation became: 

 

 
,5427.595,55427.545,5ˆ

0164.01

1ˆ 


 ex
r

r
1,,2,1,0  mr    (4.63) 

For 𝑚=21 in (4.63) and by the IAGO process the fitted data were as in Table 4.88. 

OGM(1,1)’s results were plotted in Figure 4.70 and the fitting errors and accuracies 

were as indicated in Table 4.89. 

b) Vehicle Flow GGM(1,1) Fitting 

As in section 4.5.1 above GGM(1,1)’s fitting simulation resulted to the model 

parameters and time response equations recorded in Table 4.87. 



256 

Table 4.87: D2-S7-E GM(1,1)’s Parameters and Corresponding Time Response 

Functions 

Groups 1 ~ 18 Model Parameters Time Response Function 

𝒂 𝒃 𝒓 = 𝟎, 𝟏, 𝟐,⋯ ,𝒎 − 𝟏,    𝒎 = 𝟐𝟏 

G1 -0.0119    90.0938 
 

 
9076.570,79076.620.7ˆ

0119.01

1ˆ 
 ex

r

r
 

G2 0.0162    86.6460 
 

 
5185.348,55185..298,5ˆ

0162.01

1ˆ 


 ex
r

r
 

G3 0.1400   113.9735 
 

 
0964.8140964.764ˆ

1400.01

1ˆ 


 ex
r

r
 

G4 -0.1414    51.5223 
 

 
3727.3643727.414ˆ

1414.01

1ˆ 
 ex

r

r
 

G5 -0.3323    37.6095 
 

 
1794.1131794.163ˆ

3323.01

1ˆ 
 ex

r

r
 

G6 0.1594   137.9545 
 

 
4611.8654611.815ˆ

1594.01

1ˆ 


 ex
r

r
 

G7 0.5951   239.9187 
 

 
1569.4031569.353ˆ

5951.01

1ˆ 


 ex
r

r
 

G8 -0.1993    17.7363 
 

 
9930.889930.138ˆ

1993.01

1ˆ 
 ex

r

r
 

G9 -0.0135    65.2290 
 

 
7778.831,47778.881,4ˆ

0135.01

1ˆ 
 ex

r

r
 

G10 0.1143    88.2609 
 

 
1864.7721864.762ˆ

1143.01

1ˆ 


 ex
r

r
 

G11 0.0719    72.4452 
 

 
5828.007,15828.957ˆ

0719.01

1ˆ 


 ex
r

r
 

G12 -0.0432    56.0069 
 

 
4560.296,14560.346,1ˆ

0432.01

1ˆ 
 ex

r

r
 

G13 -0.1404    43.0664 
 

 
7407.3067407.356ˆ

1404.01

1ˆ 
 ex

r

r
 

G14 0.0717    78.6169 
 

 
4700.096,14700.046,1ˆ

0717.01

1ˆ 


 ex
r

r
 

G15 0.3077   107.0769 
 

 
9912.3479912.297ˆ

3077.01

1ˆ 


 ex
r

r
 

G16 -0.1084    38.8930 
 

 
7915.3587915.408ˆ

1084.01

1ˆ 
 ex

r

r
 

G17 -0.3935    10.2452 
 

 
0361.260361.76ˆ

3935.01

1ˆ 
 ex

r

r
 

G18 -0.2008    57.1402 
 

 
5627.2845627.334ˆ

2008.01

1ˆ 
 ex

r

r
 

The forecasted vehicle flow for each group equation were subjected to the IAGO 

process to obtain the fitted data for each group. The group fitted data were 

superimposed to obtain the final fitted data which were recorded in Table 4.88. Figure 

4.71 shows GGM(1,1)’s plot of real, fitted and error curves. The fitting errors and 

accuracies of GGM(1,1) are shown in Table 4.89.  
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Figure 4.70: D2-S7-E Vehicle Flow OGM(1,1) Fitting 

 

Figure 4.71: D2-S7-E Vehicle Flow GGM(1,1) Fitting 

Observation of the error curves in Figures 4.70 and 4.71 indicates that these univariate 

models were perfect in vehicle flow fitting. This is because both of the error curves are 

smooth, approaching zero level. However, observing the real and simulated curves 

shows that GGM(1,1) had good fitting compared to OGM(1.1). These models’ 

performance are evaluated in section (c) below. 
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c) Evaluation of the Univariate and Multivariate Grey Models in Vehicle Flow 

Fitting 

Tables 4.88 and 4.89 shows the record of the fitted, error and accuracy values for the 

four grey models. As in the previous section the performance of these models were 

evaluated and VSGFGM(1,3) emerged as the most accurate among the four models. It 

had an accuracy of 96.2164%, followed by the GGM(1,1) at an accuracy of 91.6620%. 

See Table 4.89. These are high accuracies as deduced from Table 4.6.  

From Table 4.89 a highly inaccurate vehicle flow estimate by the conventional 

GM(1,3) was observed at -896.4187%. Of importance is how ‘smoothing of the 

relative variables’, DGT and FSECA have played an important role in improving the 

fitting accuracy of the conventional GM(1,3) from -896.4187% to 96.2164%.  

Table 4.88: D2-S7-E Vehicle Flow, Relative Variables and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Univariate Grey 

Models 

Multivariate Grey 

Models 

Existing 

OGM 

(1,1) 

Improved 

GGM 

(1,1) 

Existing Model 

GM(1,3) 

Improved Model 

VSGFGM(1,3) 

Fitted 

Value 

Fitted 

Value 

Raw 

Relative 

Variables 

Fitted 

Value 

Smoothed 

Relative 

Variables 

Fitted 

Value 

VEH VEH VEH PED MOT VEH PED MOT VEH 

1 50 50.0000 50.0000 128 5 50.0000 128.0000 5.0000 50.0000 

2 100 90.2012 95.6164 133 4 33.3000 139.4117 2.8331 103.7016 

3 75 88.7301 83.8908 192 3 19.4000 146.0326 2.9371 71.2984 

4 102 87.2831 93.7460 171 4 41.4000 152.9678 3.0449 105.7016 

5 72 85.8596 77.1113 181 3 8.3000 160.2324 3.1567 68.2984 

6 80 84.4594 76.8928 200 3 -26.3000 167.8421 3.2726 83.7016 

7 95 83.0820 101.6252 148 3 13.7000 175.8131 3.3927 91.2984 

8 148 81.7271 131.6898 213 4 -15.2000 184.1626 3.5173 151.7016 

9 55 80.3942 66.9080 161 5 165.5000 192.9087 3.6464 51.2984 

10 60 79.0831 58.0622 176 4 79.3000 202.0702 3.7802 63.7016 

11 80 77.7934 75.5277 285 4 -200.6000 211.6668 3.9190 76.2984 

12 62 76.5247 65.8021 223 2 -385.2000 221.7191 4.0628 65.7016 

13 65 75.2767 61.5126 197 2 -414.6000 232.2487 4.2120 61.2984 

14 53 74.0491 56.8438 186 3 -283.3000 243.2785 4.3666 56.7016 

15 70 72.8414 68.0143 342 3 -1097.5000 254.8321 4.5269 66.2984 

16 72 71.6535 71.7609 195 6 212.7000 266.9344 4.6931 75.7016 

17 60 70.4849 56.5001 204 3 -628.2000 279.6114 4.8653 56.2984 

18 36 69.3354 43.0610 206 9 1243.1000 292.8904 5.0439 39.7016 

19 70 68.2047 64.6774 192 7 964.6000 306.8002 5.2291 66.2984 

20 90 67.0924 89.1326 562 5 -2922.3000 321.3704 5.4210 93.7016 

21 106 65.9982 106.5195 362 5 -1630.6000 336.6327 5.6200 102.2984 
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Table 4.89: Day 2 Site 7 Vehicle Flow Prediction Error and Accuracy Evaluation 

Error 

Indicator 

Univariate Grey Models Multivariate  Grey Models 

Existing 

Model 

Improved 

Model 

Existing 

Model 

Improved 

Model 

OGM(1,1) GGM(1,1) GM(1,3) VSGFGM(1,3) 

Error 

RMSE 22.2307 6.2278 897.0257 3.6124 

RMSPE 32.4625 8.3380 996.4187 3.7836 

MAE 16.1430 

 

4.8395 529.4186 3.5253 

MAPD 21.1745 6.3478 694.4279 4.6241 

Accuracy 

100-RMSPE 67.5375 91.6620 -896.4187 96.2164 

100-MAPD 78.8255 93.6522 -594.4279 95.3759 

4.5.3 Day 3 Site 4 Vehicle Flow Fitting by Univariate and Multivariate Grey 

Models  

a) Vehicle Flow OGM(1,1) Fitting 

Using raw vehicle flow data of Table 4.75 (i.e. data of day 3 (D3) site 4 (S4) northward 

(N) direction) OGM(1,1)’s simulation gave the model parameters as 𝑎= -0.0287 and 

𝑏=38.2533. Then the time response function of (3.9) reduced to:  

 

 
,8676.332,18676.358,1ˆ

0287.01

1ˆ 
 ex

r

r
1,,2,1,0  mr    (4.64) 

 where 𝑚=21. From (4.64) and with the IAGO process the fitted vehicle flow data 

were recorded in Table 4.91. Figure 4.72 shows the plot of this OGM(1,1) simulation. 

The fitting errors and accuracies were as in Table 4.92.  

b) Vehicle Flow GGM(1,1) Fitting 

GGM(1,1)’s vehicle flow fitting involved 18 groups of 4 data points. The model 

parameter values 𝑎 and 𝑏 were obtained together with the corresponding time response 

equations. These were as recorded in Table 4.90. These time response equations were 

computed from (3.9). 
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Each group’s time response equation generated a data series which was subjected to 

the IAGO process to obtain group fitted data. The group fitted data series were 

superimposed and the final fitted data were as recorded in Table 4.91. Figure 4.73 

shows the plot of GGM(1,1)’s results and in Table 4.92 its fitting errors and accuracies 

were recorded. 

Table 4.90: D3-S4-N GGM(1,1)’s Parameters and Corresponding Time Response 

Functions 

Groups 1 ~ 18 Model Parameters Time Response Function 

𝒂 𝒃 𝒓 = 𝟎, 𝟏, 𝟐,⋯ ,𝒎 − 𝟏,    𝒎 = 𝟐𝟏 

G1 -0.0504 34.1926 
 

 
4246.6784246.704ˆ

0504.01

1ˆ 
 ex

r

r
 

G2 0.0127 41.2067 
 

 
6220.244,36220.218,3ˆ

0127.01

1ˆ 


 ex
r

r
 

G3 -0.1550 27.8300 
 

 
5484.1795484.205ˆ

1550.01

1ˆ 
 ex

r

r
 

G4 -0.0810 38.0567 
 

 
8358.4698358.495ˆ

0810.01

1ˆ 
 ex

r

r
 

G5 0.0833 57.5500 
 

 
8764.6908764.664ˆ

0833.01

1ˆ 


 ex
r

r
 

G6 -0.0856 38.7762 
 

 
9930.4529930.478ˆ

0856.01

1ˆ 
 ex

r

r
 

G7 -0.1886 31.7057 
 

 
1108.1681108.194ˆ

1886.01

1ˆ 
 ex

r

r
 

G8 0.0574 64.2111 
 

 
6603.118,16603.092,1ˆ

0574.01

1ˆ 


 ex
r

r
 

G9 0.2693 88.6330 
 

 
1237.3291237.303ˆ

2693.01

1ˆ 


 ex
r

r
 

G10 0.0863 54.3761 
 

 
0823.6300823.604ˆ

0863.01

1ˆ 


 ex
r

r
 

G11 -0.1841 24.2967 
 

 
9756.1319756.157ˆ

1841.01

1ˆ 
 ex

r

r
 

G12 -0.2298 28.7925 
 

 
2937.1252937.151ˆ

2298.01

1ˆ 
 ex

r

r
 

G13 -0.0315 55.5602 
 

 
8159.763,18159.789,1ˆ

0315.01

1ˆ 
 ex

r

r
 

G14 -0.0324 60.4513 
 

 
7809.865,17809.891,1ˆ

0324.01

1ˆ 
 ex

r

r
 

G15 -0.0443 57.1790 
 

 
7223.290,17223.316,1ˆ

0443.01

1ˆ 
 ex

r

r
 

G16 0.1501 86.0245 
 

 
1146.5731146.547ˆ

1501.01

1ˆ 


 ex
r

r
 

G17 -0.0352 55.6369 
 

 
5938.580,15938.606,1ˆ

0352.01

1ˆ 
 ex

r

r
 

G18 -0.1440 41.6099 
 

 
9576.2889576.314ˆ

1440.01

1ˆ 
 ex

r

r
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Figure 4.72: D3-S4-N Vehicle Flow OGM(1,1) Fitting 

 

Figure 4.73: D3-S4-N Vehicle Flow GGM(1,1) Fitting 

Figures 4.72 and 4.73 indicates that OGM(1,1) has poor vehicle flow fitting whereas 

GGM(1,1) has good fitting results. This is a clear indication of the role played by the 

DGT in improving the accuracy of the conventional GM(1,1).  
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c) Evaluation of the Univariate and Multivariate Grey Models in Vehicle Flow 

Fitting 

Table 4.91 indicates the fitted values of the four grey models. In Table 4.92 are the 

errors and accuracies of the grey models in this vehicle flow fitting. Tables 4.91 and 

4.92 clearly indicates the following observations. 

1. The improved models yield good fitting results for the raw vehicle flow data. 

Considering the RMSPE error indicator; VSGFGM(1,3) had a fitting accuracy 

of 99.6281% whereas GM(1,3) had a fitting accuracy of 69.7243%. On the 

other hand GGM(1,1) had an accuracy of 95.9894% whereas GM(1,1)’s 

accuracy was 86.9847%.  

2. The existing multivariate grey model poorly fitted the vehicle flow data as 

compared to the existing univariate grey model. For instance GM(1,3) had a 

fitting accuracy of 71.8493% whereas GM(1,1) had an accuracy of 89.1955%, 

as indicated by the MAPD error indicator. This means that relative variables 

have no value in vehicle flow fitting. However, as in (1) above when the 

relative variables are smoothed in VSGFGM(1,3) the accuracy is highly 

improved. 

3. The relative variables as smoothed in the TSA are significant as far as 

improving the fitting accuracy of the multivariate grey model is concerned. 

Therefore, it is important to predict vehicle traffic flow under the consideration 

of relative variables. 
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Table 4.91: D3-S4-N Vehicle Flow, Relative Variables and Simulated Data 

Time 

Sample 

𝒕 

Raw 

Data 

Univariate Grey 

Models 

Multivariate Grey 

Models 

Existing 

OGM 

(1,1) 

Improved 

GGM 

(1,1) 

Existing Model 

GM(1,3) 

Improved Model 

VSGFGM(1,3) 

Fitted 

Value 

Fitted 

Value 

Raw 

Relative 

Variables 

Fitted 

Value 

Smoothed 

Relative 

Variables 

Fitted 

Value 

VEH VEH VEH PED MOT VEH PED MOT VEH 

1 26 26.0000 26.0000 96 2 26.0000 96.0000 2.0000 26.0000 

2 35 39.5668 35.7063 84 2 24.2587 90.2405 2.8896 34.7815 

3 41 40.7209 39.9338 107 1 49.7172 93.4176 3.1469 41.2185 

4 39 41.9086 39.0621 100 4 53.7511 96.7065 3.4272 38.7815 

5 40 43.1309 41.4001 93 6 49.5011 100.1112 3.7323 40.2185 

6 52 44.3889 50.2471 110 1 65.3439 103.6358 4.0647 51.7815 

7 48 45.6836 47.8681 89 5 47.1783 107.2845 4.4266 48.2185 

8 44 47.0161 45.5154 107 4 56.7282 111.0616 4.8208 43.7815 

9 56 48.3874 55.9180 85 5 41.8838 114.9717 5.2500 56.2185 

10 65 49.7987 62.8737 150 4 77.8375 119.0195 5.7175 64.7815 

11 49 51.2512 49.6057 147 4 75.7142 123.2098 6.2266 49.2185 

12 38 52.7460 38.7679 126 6 59.9274 127.5476 6.7811 37.7815 

13 42 54.2844 41.8679 129 4 64.8827 132.0381 7.3849 42.2185 

14 54 55.8677 54.4323 146 13 56.8762 136.6867 8.0425 53.7815 

15 67 57.4972 64.1632 123 8 53.3987 141.4990 8.7586 67.2185 

16 58 59.1742 61.5892 192 13 81.8279 146.4807 9.5385 57.7815 

17 71 60.9002 68.6332 156 9 69.4215 151.6378 10.3879 71.2185 

18 64 62.6764 63.0401 98 12 31.5955 156.9765 11.3128 63.7815 

19 52 64.5045 56.3806 121 18 32.8455 162.5031 12.3202 52.2185 

20 68 66.3859 63.3156 203 12 89.5061 168.2243 13.4172 67.7815 

21 71 68.3222 72.9146 192 8 90.9958 174.1470 14.6119 71.2185 

Table 4.92: Day 3 site 4 Vehicle Flow Prediction Error and Accuracy Evaluation 

  

Error 

Indicator 

Univariate Grey Models Multivariate  Grey Models 

Existing 

Model 

Improved 

Model 

Existing 

Model 

Improved 

Model 

OGM(1,1) GGM(1,1) GM(1,3) VSGFGM(1,3) 

Error 

RMSE 7.3650 2.0346 16.8536 0.2133 

RMSPE 13.0153 4.0106 30.2757 0.3719 

MAE 5.5566 1.5007 14.4775 0.2081 

MAPD 10.8045 2.9179 28.1507 0.4047 

Accuracy 

100-RMSPE 86.9847 95.9894 69.7243 99.6281 

100-MAPD 89.1955 97.0821 71.8493 99.5953 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS  

5.1 Conclusions  

This thesis has demonstrated on how to improve the prediction accuracy of the 

conventional grey models by various methods. The thesis has formulated various 

methods for improving the prediction accuracy of the conventional grey models. These 

methods included the newly introduced approaches such as the data grouping 

technique (DGT), the relative variable smoothing approach (RVSA) and the three-step 

approach (TSA). Further, these methods were combined with existing methods such 

as MBV, MIC and FSECA. Thus hybrid grey models were established as a result of 

introducing these methods into the conventional GM(m,n). For instance the DGT in 

GM(1,1) modelling resulted to a grouped GM(1,1) which was referred to as GGM(1,1) 

in this thesis. DGT in combination with MBV established the MBVGGM(1,1). 

Further, the RVSA, DGT and FSECA in the TSA developed an improved grey model 

which was named as VSGFGM(1,3). The conclusions of this study in line with the 

objectives are as outlined below. 

i. The empirical results demonstrated that the proposed forecasting models 

outperforms the existing models in terms of accuracy. For instance based on traffic 

flow data collected from the Nairobi CBD, on day 1 site 1, the GGM(1,1) was the 

most accurate in traffic flow fitting because its fitting errors were lower compared 

to three other models. For instance in the westbound direction the GGM(1,1) 

emerged the most accurate in short-term forecasting with a MAPD value of 7.9902 

which translates to an accuracy of 92.0098%, whereas the OGM(1,1) had a MAPD 

value of 17.1971 which is an 82.8029% accuracy. Based on traffic flow data 

collected on day 2 site 7 it was noticeable that GGM(1,1) was the most accurate 

in all directions. It had the highest fitting accuracy of 94.6059%, based on MAPD, 

in the southward direction. MBVGGM(1,1) was the most accurate in short-term 

forecasting. It had the highest accuracy of 88.0095% compared with OGM(1,1) 

which had an accuracy of 86.5416%. That was in consideration of the MAPD error 

indicator. Finally, based on traffic flow data collected on day 3 site 7, 
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MBVGGM(1,1) had the highest short-term forecasting accuracy at 91.2773%, in 

the westward direction. In the southward direction, GGM(1,1) had the highest 

short-term forecasting accuracy at 90.5914%. This were high accuracies 

according to Table 4.6. Lastly, in this short-term forecasting the highest accuracy 

attained by OGM(1,1) was 88.0853%, in the westward direction. Therefore, the 

DGT has greatly improved the precision of the conventional grey model in traffic 

flow short-term forecasting. The improvement in accuracy is due to the fact that 

the DGT adheres to the “difference information” and “new information prior 

using” principles of the GST. Moreover, the SG technique adheres to the 

consistency principle that a shorter interval data length leads to more accurate 

results. Indeed these were promising results and, therefore, the developed grey 

models are significant in accurate traffic flow modelling and forecasting. Hence 

the hybrid grey models can enhance the forecasting ability of the ITS. 

ii. Firstly, the improved models attained good fitting results on the raw vehicle flow 

data forecasting. Considering the RMSPE error indicator the hybrid multivariate 

VSGFGM(1,3) had the highest fitting accuracy of 99.6281% whereas the 

conventional multivariate GM(1,3) had a fitting accuracy of 69.7243%. On the 

other hand the hybrid univariate GGM(1,1) attained an accuracy of 95.9894% 

whereas the conventional  univariate GM(1,1)’s accuracy was 86.9847%.  

Secondly, the existing multivariate grey model poorly fitted the vehicle flow data 

as compared to the existing univariate grey model. For instance the conventional 

GM(1,3) had a fitting accuracy of 71.8493% whereas the conventional GM(1,1) 

had an accuracy of 89.1955%, as was indicated by the MAPD error indicator. This 

implies that relative variables are not significant in improving vehicle flow fitting 

accuracy. However, as first stated above when the relative variables in a 

multivariable GM were smoothed the accuracy of the conventional GM(1,3) was 

improved and thus VSGFGM(1,3) had the highest accuracy of 99.6281%. Thirdly, 

and as a conclusion, the relative variables as smoothed in the TSA are significant 

as far as improving the fitting accuracy of the multivariate grey model is 

concerned. Therefore, it is important to predict vehicle traffic flow under the 

consideration of relative variables. An improved multivariate grey model can 
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attain high traffic flow forecasting accuracies compared with an improved 

univariate grey model. 

iii. The grouping technique based multivariate GM had good performance on both 

energy consumption and CO2 emission forecasting. Both OGM(1,3) and 

GGM(1,3) had high fitting accuracy. However, in one of the three considered 

cases, OGM(1,3)’s fitting accuracy had been improved from 95.8448% to 

97.8273% (based on MAPD) by the DGT on CO2 emission prediction. On the 

other hand on energy consumption forecasting, based on the MAPD, the accuracy 

was improved from 60.3270% to 96.9706%. That is to say OGM(1,3)’s accuracy 

was at 60.3270% whereas that of GGM(1,3) was at 96.9706%. This was great 

improvement on OGM(1,3)’s fitting accuracy. Thus the grouping technique based 

multivariate GM outperformed the conventional multivariate GM on both CO2 

emission and energy consumption forecasting. Similar results were obtained 

based on the univariate GM as follows. The grouping technique based univariate 

GM had good performance on both electricity consumption and CO2 emission 

forecasting. In modelling medium-term forecasting of electricity consumption the 

OGM(1,1) at an accuracy of 93.1817% was outperformed by GGM(1,1) at an 

accuracy of  95.3579% (this was in consideration of the MAPD). On vehicular 

CO2 emission forecasting the accuracy of OGM(1,1) was improved from 

69.1399% to 76.7674%, by the DGT, based on MAPD. Consequently, the hybrid 

grey models developed in this thesis are multidisciplinary and can be applied in 

modelling and forecasting time series data. 

5.2 Recommendations and Future Research 

5.2.1 Recommendations 

In this research it was revealed that the smoothness of the relative variables is a causal 

to the low accuracy of the multivariate grey model, GM(1,n).  Therefore, it is 

recommended that for good results the relative variables of a GM(1,n) need to be 

smoothed before any prediction is done. Use of the conventional GM(1,1) as a data 

pre-processing tool, as proven in this thesis, can be a great step towards smoothing the 

relative variables. Additionally, recommended is the incorporation of the newly 
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improved and developed grey models in PLC and ITS based traffic control systems for 

the purpose of proactively controlling vehicle traffic flow.   

5.2.2 Areas of Future Research 

In future the real-time performance of the developed grey models would be evaluated. 

A systematic study to evaluate and characterize the applicability and boundary of the 

developed grey model is crucial. In the implementation of the hybrid grey models in 

ITS, decision support technologies such as Complex Event Processing (CEP), Fuzzy 

Logic (FL) and Colored Petri Nets (CPN) can be integrated and evaluated. 

Further future focus can be based on more state-of-the-art improved forecasting 

models such as the grey prediction evolution algorithm based on the even grey model 

(GPEAe), fractional discrete grey model (FDGM(1,1)), Verhulst NGM(1,1), 

GM(1,1,2), long short-term memory network (LSTM), grey model with cosine term 

(GM ( 1,1 | Cos(wt)) and grey model with time power OGM(1,1, tα) can be 

investigated and compared with the hybrid grey models developed and discussed in 

this thesis.   

In this research unforeseen instances such as when it is raining or lane closures due to 

issues like a vehicle breakdown/road works etc. were not considered. Therefore, it will 

be crucial to consider such situations in the future in order to develop more adaptive 

predictive models.  

Traffic flow data during Mondays, Fridays and holidays have different volume patterns 

and higher volumes are expected on weekends. Traffic flow during those days contains 

more complex spatial-temporal characteristics, with a large range of changes. For 

instance, it experiences sudden and irregular characteristics. And, therefore, a future 

study would be estimation and validation of the proposed models using real-world 

traffic data collected during such unique days of the week. 

Last but not least, in this thesis NaN results were obtained in MATLAB simulations. 

In future it is important to investigate, solve and get rid of the NaN results in 

MATLAB. This will enable the proposed grey models to effectively model and forecast 
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vehicle traffic flow. Additionally, the grey multivariate model is a more reasonable and 

scientific model compared with the univariate grey model. However, the grey 

multivariate model still has a shortcoming. When using the grey multivariate model in 

short-term forecasting of the output variable, the input variable data must be provided; 

that is to say, to forecast the output variable data for the next 3 instants, the input 

variable data for the next 3 instants must be available. Now, how to obtain the input 

variable data for the next 3 instants is the shortcoming. This problem exists not only 

in the grey multivariate prediction models but also in other prediction models that need 

to consider influencing factors. As a matter of future investigation, is it possible to use 

a univariate grey prediction model to predict the data of the input variables before 

making predictions and then use the predicted data of the input variables to build a 

multivariate grey prediction model for short-term forecasting?  
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APPENDICES 

Appendix I: Traffic Count Tally Sheet  

Date  Counting Site  

Volunteer (Who will do the count) Contacts 

  

Type of count  

Road   

Direction Northward Southward Eastward Westward 

TIME  (5 

minute 

increment) 

    

06:00-06:05     

06:06-06:10     

06:11-06:15     

06:16-06:20     

06:21-06:25     

06:26-06:30     
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Appendix II: Traffic Count Report Sheet 

Counter Counting site Road Direction Date 

     

Shift           From:                           To: Count type 

Weather  

Incident  

Other comments  

Supervisor 

Name 

 Signature:  

Date: 
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Appendix III: Photos Showing Clerks Collecting Traffic Data from Nairobi 

CBD 

  

Figure 1: At University Way Uhuru               Figure 2: At City Hall Way-Wabera 

Highway Roundabout                                    Street T-Roundabout 

   

Figure 3: At Kenyatta Avenue-Moi            Figure 4: At City Hall Way-Wabera 

Avenue Mondlane Street Junction             Street T-Roundabout  

 



291 

     

Figure 5: At Haile Selassie Roundabout      Figure 6: At Kenyatta Avenue Uhuru                                                                                                                                                                                                                  

                                                                      Highway Roundabout 

     

Figure 7: At Haile Selassie Avenue-Moi       Figure 8: At Moi Avenue-Slip Road 

Avenue Roundabout                                      Junction 
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Appendix IV: Nairobi CBD Traffic Data 

Table 1: Day 1 site 1 (Haile Selassie Roundabout) Traffic Data  

DAY 1 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 60 5 6 53   43 15 8 63 5 7 

06:06-06:10 55 4 9 47   50 9 7 67 7 8 

06:11-06:15 70 8 11 60   61 12 4 56 14 8 

06:16-06:20 77 7 14 58   58 7 9 71 16 9 

06:21-06:25 82 5 12 65   65 8 4 80 20 10 

06:26-06:30 81 14 9 80   70 5 7 77 20 7 

06:31-06:35 97 13 10 86   56 3 8 89 23 24 

06:36-06:40 137 10 14 89   68 11 7 83 26 14 

06:41-06:45 319 20 9 86   69 6 3 76 43 14 

06:46-06:50 223 26 4 100   72 8 1 129 21 15 

06:51-06:55 198 18 11 144   44 12 4 98 14 13 

06:56-07:00 238 15 10 161   80 4 3 129 38 14 

07:01-07:05 251 16 10 141   70 6 2 124 14 11 

07:06-07:10 247 21 8 103   66 3 5 120 26 13 

07:11-07:15 222 21 10 83   83 5 11 112 14 12 

07:16-07:20 252 17 10 85   81 9 5 102 10 15 

07:21-07:25 244 16 27 49   52 4 2 98 17 12 

07:26-07:30 226 18 16 132   68 4 11 101 19 13 

07:31-07:35 189 15 22 178   98 10 6 89 24 12 

07:36-07:40 312 21 14 2   82 6 3 93 10 10 

07:41-07:45 134 18 27 229   85 4 5 90 14 12 

07:46-07:50 176 24 22 0   92 3 4 88 26 14 

07:51-07:55 151 18 14 212   98 7 3 93 32 10 

07:56-08:00 154 26 22 42   79 8 5 103 14 12 

08:01-08:05 135 33 22 178   82 10 7 98 20 13 

08:06-08:10 160 26 19 0   75 4 13 102 12 11 

08:11-08:15 192 16 29 213   74 3 7 74 14 12 

08:16-08:20 159 16 33 78   77 3 7 69 22 11 

08:21-08:25 215 26 33 151   80 2 16 63 34 11 

08:26-08:30 112 8 44 91   91 2 10 65 34 12 

08:31-08:35 195 21 27 32   93 4 12 0 36 0 

08:36-08:40 253 17 28 212   48 4 15 57 14 10 

08:41-08:45 201 16 26 0   47 3 6 70 42 10 

08:46-08:50 94 18 27 95   115 5 10 56 14 9 

08:51-08:55 291 13 32 0   55 3 10 69 26 18 

08:56-09:00 154 12 18 111   99 2 7 19 36 16 

09:01-09:05 283 5 22 0   69 4 14 63 12 14 

09:06-09:10 112 8 35 287   98 13 15 65 16 10 

09:11-09:15 354 10 26 8   30 4 16 74 18 0 

09:16-09:20 132 18 28 96   105 7 11 63 9 0 

09:21-09:25 114 11 39 103   58 8 13 19 0 8 

09:26-09:30 322 16 31 5   42 9 19 34 14 6 

09:31-09:35 81 1 24 250   62 5 11 12 8 7 

09:36-09:40 297 7 33 20   84 5 16 89 14 3 

09:41-09:45 103 13 28 86   86 1 13 54 0 0 

09:46-09:50 184 5 28 141   67 3 12 0 4 8 

09:51-09:55 206 11 25 30   76 1 9 57 14 3 

09:56-10:00 241 12 26 169   65 2 15 12 12 0 

10:01-10:05 115 10 23 169   94 8 14 23 18 4 



293 

DAY 1 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

10:06-10:10 260 10 32 0   75 5 13 46 34 12 

10:11-10:15 79 14 27 194   66 7 22 51 24 4 

10:16-10:20 242 8 41 75   69 2 18 12 14 2 

10:21-10:25 237 10 45 7   61 6 10 76 12 3 

10:26-10:30 192 2 53 183   79 8 9 39 26 8 

Table 2: Day 1 site 2 (Kenyatta Avenue Uhuru Highway Roundabout) Traffic Data 

DAY 1 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 100 23 1 148 23 3 90 2 6 48 10 6 

06:06-06:10 120 10 5 163 31 0 84 2 6 41 4 0 

06:11-06:15 150 6 11 187 48 4 71 4 7 39 6 6 

06:16-06:20 110 11 6 177 35 4 76 2 3 47 5 2 

06:21-06:25 112 15 7 156 57 4 84 1 1 34 6 5 

06:26-06:30 115 17 5 193 52 3 97 2 4 64 21 1 

06:31-06:35 80 13 4 182 53 6 115 7 0 64 5 3 

06:36-06:40 121 13 9 191 71 4 120 7 0 55 12 2 

06:41-06:45 110 12 5 209 76 5 120 8 3 79 7 2 

06:46-06:50 115 14 6 223 56 7 127 6 1 52 10 2 

06:51-06:55 120 15 7 248 42 3 119 5 2 98 3 2 

06:56-07:00 150 15 5 251 81 6 136 2 0 72 12 6 

07:01-07:05 140 13 6 123 96 8 112 3 0 86 13 4 

07:06-07:10 141 14 6 193 83 4 118 6 4 87 8 2 

07:11-07:15 120 16 12 88 76 7 124 10 3 94 8 16 

07:16-07:20 123 15 7 75 57 5 119 5 9 86 8 10 

07:21-07:25 120 18 9 149 53 4 127 6 6 75 11 11 

07:26-07:30 130 13 13 0 79 8 0 10 11 69 7 5 

07:31-07:35 133 12 13 188 82 6 129 14 7 99 15 8 

07:36-07:40 200 23 7 122 54 7 0 6 9 57 12 13 

07:41-07:45 180 35 12 97 73 17 137 8 5 95 10 5 

07:46-07:50 185 48 13 105 78 19 53 13 15 96 8 11 

07:51-07:55 173 47 23 187 83 14 58 10 12 80 4 7 

07:56-08:00 148 21 10 222 40 17 71 0 10 72 6 9 

08:01-08:05 140 74 13 157 73 31 64 2 5 132 2 7 

08:06-08:10 143 61 28 239 39 17 78 8 6 38 10 10 

08:11-08:15 169 55 17 35 52 29 112 2 8 110 6 6 

08:16-08:20 160 53 19 234 62 21 94 5 5 53 4 17 

08:21-08:25 166 64 23 85 51 18 24 2 16 123 5 10 

08:26-08:30 87 47 18 214 52 16 88 5 18 86 4 19 

08:31-08:35 118 79 16 202 58 25 118 4 6 44 11 21 

08:36-08:40 123 69 22 193 43 28 67 4 9 91 7 25 

08:41-08:45 0 34 23 222 49 27 84 5 8 97 4 15 

08:46-08:50 101 28 14 188 22 23 18 4 9 37 1 4 

08:51-08:55 58 31 21 133 37 18 58 2 10 70 9 16 

08:56-09:00 132 53 41 158 33 12 64 6 6 36 5 11 

09:01-09:05 115 54 27 193 57 41 78 4 8 87 10 22 

09:06-09:10 0 41 24 173 26 17 124 5 9 56 6 8 

09:11-09:15 111 33 16 223 36 11 113 9 8 36 4 15 

09:16-09:20 146 31 27 175 48 14 72 6 7 136 8 11 

09:21-09:25 0 39 25 165 21 17 64 7 8 136 5 10 

09:26-09:30 139 35 18 216 19 23 127 2 2 41 5 7 



294 

DAY 1 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

09:31-09:35 126 18 7 123 14 32 30 2 10 87 2 20 

09:36-09:40 69 32 17 237 21 10 64 2 7 40 7 12 

09:41-09:45 115 23 26 191 26 16 73 4 6 144 3 14 

09:46-09:50 100 13 30 63 17 6 44 4 10 85 6 11 

09:51-09:55 41 28 8 258 46 28 87 2 7 62 5 18 

09:56-10:00 73 34 14 209 24 16 88 3 10 116 7 9 

10:01-10:05 186 41 23 137 29 41 94 7 12 66 3 25 

10:06-10:10 1 13 18 273 11 40 67 3 7 91 4 22 

10:11-10:15 103 22 12 293 14 53 82 5 3 65 4 9 

10:16-10:20 196 36 23 213 30 21 93 4 5 44 10 15 

10:21-10:25 100 33 19 176 22 34 84 4 7 74 3 13 

10:26-10:30 21 46 24 143 17 27 78 7 11 111 8 25 

Table 3: Day 1 site 3 (University Way Uhuru Highway Roundabout) Traffic Data 

DAY 1 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 102 5 4 0 0 0 47 21 16 0 0 0 

06:06-06:10 107 6 2 0 0 0 54 18 14 0 0 0 

06:11-06:15 108 10 8 0 0 0 41 34 18 0 0 0 

06:16-06:20 98 2 4 0 0 0 53 46 15 0 17 13 

06:21-06:25 68 1 10 141 9 3 46 54 8 64 18 14 

06:26-06:30 38 9 6 148 5 3 41 31 7 80 11 5 

06:31-06:35 63 8 7 140 4 5 70 62 5 56 18 13 

06:36-06:40 62 4 4 130 3 6 65 74 16 92 15 11 

06:41-06:45 110 6 15 220 4 9 76 39 17 90 14 12 

06:46-06:50 61 1 21 156 3 8 84 51 12 105 16 10 

06:51-06:55 96 17 18 230 5 7 78 18 8 107 14 7 

06:56-07:00 49 9 30 205 4 7 89 29 9 96 13 9 

07:01-07:05 47 10 8 183 3 6 51 19 11 93 10 8 

07:06-07:10 81 15 9 123 5 3 74 43 14 99 12 9 

07:11-07:15 71 2 15 163 5 3 85 14 12 97 11 14 

07:16-07:20 32 14 4 174 3 2 70 21 7 87 7 15 

07:21-07:25 46 1 6 195 8 7 76 17 8 91 9 11 

07:26-07:30 55 1 4 179 29 18 90 39 7 100 8 11 

07:31-07:35 23 17 26 17 38 12 85 41 9 110 11 9 

07:36-07:40 48 10 22 213 11 21 116 53 4 120 8 12 

07:41-07:45 52 20 16 194 20 6 107 46 7 106 7 10 

07:46-07:50 63 15 16 176 32 20 130 61 8 158 12 17 

07:51-07:55 12 3 26 235 43 24 107 74 2 112 9 12 

07:56-08:00 31 5 19 185 33 21 78 42 11 97 6 11 

08:01-08:05 82 11 34 198 29 15 113 37 5 71 4 8 

08:06-08:10 0 12 29 202 17 25 101 89 14 54 7 13 

08:11-08:15 75 19 14 185 21 27 93 54 2 33 5 9 

08:16-08:20 55 7 23 168 19 10 109 46 4 66 8 10 

08:21-08:25 58 6 21 176 9 23 124 25 7 41 9 12 

08:26-08:30 110 8 14 163 18 21 109 18 3 38 6 9 

08:31-08:35 42 21 22 158 18 23 135 19 9 36 11 15 

08:36-08:40 70 13 11 193 13 24 116 14 7 55 9 13 

08:41-08:45 65 12 4 147 28 25 123 27 6 47 8 10 

08:46-08:50 84 11 28 177 12 25 146 9 3 78 7 11 

08:51-08:55 67 21 23 164 15 30 76 11 4 81 5 14 
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DAY 1 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

08:56-09:00 60 7 9 173 12 30 85 7 5 36 8 16 

09:01-09:05 46 9 21 161 11 34 91 19 7 79 10 12 

09:06-09:10 81 11 20 127 28 32 103 26 14 67 6 9 

09:11-09:15 93 11 11 183 17 18 92 17 9 60 9 13 

09:16-09:20 48 4 9 173 21 20 96 13 5 76 7 10 

09:21-09:25 64 6 2 93 17 20 107 9 3 55 12 23 

09:26-09:30 54 21 21 188 18 32 118 19 7 60 8 25 

09:31-09:35 66 5 11 179 15 22 88 34 6 57 14 19 

09:36-09:40 86 7 6 87 21 14 93 28 7 61 11 21 

09:41-09:45 93 10 14 105 17 20 81 39 12 58 6 15 

09:46-09:50 57 15 24 97 39 21 76 47 5 40 9 17 

09:51-09:55 97 7 22 178 15 27 101 41 11 63 12 20 

09:56-10:00 71 14 32 107 14 23 74 22 4 53 8 14 

10:01-10:05 67 7 31 174 21 28 90 24 3 49 11 19 

10:06-10:10 86 20 6 107 21 37 71 19 5 67 12 27 

10:11-10:15 27 13 15 115 34 35 50 14 6 70 9 31 

10:16-10:20 60 7 11 125 28 39 63 13 5 41 15 33 

10:21-10:25 91 7 20 142 29 23 72 9 14 47 12 38 

10:26-10:30 75 7 21 166 21 17 56 22 3 59 9 25 

Table 4: Day 1 site 4 (Kenyatta Avenue-Moi Avenue-Mondlane Street Junction) Traffic 

Data 

DAY 1 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 26 52 1 19 12 0 2 19 11 

06:06-06:10 38 49 1 17 20 2 7 12 6 

06:11-06:15 46 76 3 20 29 1 3 44 3 

06:16-06:20 55 88 3 21 32 3 5 52 2 

06:21-06:25 72 77 5 28 20 0 4 56 7 

06:26-06:30 86 73 3 29 22 0 10 63 9 

06:31-06:35 82 72 3 34 41 2 8 74 5 

06:36-06:40 80 79 1 21 45 1 6 69 6 

06:41-06:45 56 88 1 27 32 1 15 77 3 

06:46-06:50 91 112 2 25 50 3 19 84 7 

06:51-06:55 78 123 5 22 63 4 28 82 4 

06:56-07:00 80 97 4 24 50 2 10 70 7 

07:01-07:05 74 74 2 38 46 5 16 102 5 

07:06-07:10 93 72 3 26 78 8 16 81 13 

07:11-07:15 85 82 6 39 60 16 19 59 9 

07:16-07:20 76 99 7 40 61 5 9 75 9 

07:21-07:25 71 87 8 32 65 5 16 89 4 

07:26-07:30 95 123 6 35 45 10 19 88 2 

07:31-07:35 88 100 9 18 48 5 19 55 6 

07:36-07:40 92 113 7 36 61 7 15 80 6 

07:41-07:45 84 101 7 24 64 14 13 59 3 

07:46-07:50 122 90 8 30 75 5 14 118 2 

07:51-07:55 88 92 10 39 77 13 19 98 5 

07:56-08:00 95 91 12 42 60 18 20 109 7 

08:01-08:05 86 82 11 35 76 15 22 93 12 

08:06-08:10 90 117 13 47 73 23 21 99 8 
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DAY 1 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

08:11-08:15 98 121 12 29 87 15 13 97 7 

08:16-08:20 102 87 9 46 58 23 27 49 5 

08:21-08:25 86 100 12 29 73 16 21 87 3 

08:26-08:30 88 97 13 49 67 13 23 92 5 

08:31-08:35 93 93 16 28 92 21 20 96 8 

08:36-08:40 72 86 21 36 63 17 20 108 8 

08:41-08:45 76 68 22 31 57 29 18 130 15 

08:46-08:50 82 92 13 40 73 10 19 127 12 

08:51-08:55 79 78 14 21 42 25 30 157 16 

08:56-09:00 84 69 9 31 92 22 22 117 8 

09:01-09:05 85 93 16 26 73 24 30 104 13 

09:06-09:10 78 79 11 24 69 16 40 97 13 

09:11-09:15 73 90 15 26 53 10 20 83 12 

09:16-09:20 65 74 14 22 83 21 45 91 12 

09:21-09:25 71 59 12 26 77 11 21 97 12 

09:26-09:30 68 61 20 38 69 9 27 100 14 

09:31-09:35 74 42 11 22 94 21 20 92 22 

09:36-09:40 67 66 25 25 72 18 35 104 16 

09:41-09:45 72 46 11 11 89 23 20 89 20 

09:46-09:50 69 73 9 26 96 22 34 124 24 

09:51-09:55 72 82 14 25 68 10 25 124 16 

09:56-10:00 70 76 13 27 96 16 25 129 24 

10:01-10:05 84 67 11 28 59 18 31 126 6 

10:06-10:10 76 72 12 31 79 26 27 97 5 

10:11-10:15 78 73 26 28 92 20 37 113 12 

10:16-10:20 81 71 5 17 94 30 42 98 20 

10:21-10:25 61 68 14 11 93 27 40 107 16 

10:26-10:30 72 65 19 20 68 26 38 140 16 

Table 5: Day 1 site 5 (Moi Avenue-Slip Road Junction) Traffic Data 

DAY 1 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 48 3 1 15 21 5 10 3 0 

06:06-06:10 63 5 3 40 27 2 13 5 0 

06:11-06:15 55 6 4 25 33 6 10 7 3 

06:16-06:20 51 10 2 28 40 3 16 4 0 

06:21-06:25 49 12 3 35 38 7 17 11 4 

06:26-06:30 56 4 7 38 27 4 20 3 0 

06:31-06:35 48 17 3 70 48 3 18 5 0 

06:36-06:40 54 21 2 65 39 2 28 10 0 

06:41-06:45 50 30 4 87 41 4 27 4 1 

06:46-06:50 32 24 3 88 37 6 31 20 3 

06:51-06:55 63 25 4 81 38 12 44 27 1 

06:56-07:00 41 12 4 91 51 8 46 30 2 

07:01-07:05 45 17 2 100 30 4 32 27 0 

07:06-07:10 47 21 4 119 47 13 36 10 0 

07:11-07:15 29 6 1 97 43 6 43 47 7 

07:16-07:20 36 15 3 91 39 5 60 12 1 

07:21-07:25 64 7 1 98 39 11 49 25 5 

07:26-07:30 69 11 2 101 36 3 35 12 0 

07:31-07:35 38 16 2 74 34 19 41 21 1 
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DAY 1 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:36-07:40 43 9 3 103 51 19 63 15 1 

07:41-07:45 55 14 8 92 39 20 82 15 0 

07:46-07:50 80 15 4 106 50 21 79 25 2 

07:51-07:55 70 20 12 93 42 25 102 10 1 

07:56-08:00 84 21 15 104 33 20 97 18 3 

08:01-08:05 60 19 16 89 24 21 98 24 3 

08:06-08:10 48 26 8 80 26 13 93 17 4 

08:11-08:15 70 9 3 100 31 22 88 20 2 

08:16-08:20 59 21 16 84 33 20 119 12 5 

08:21-08:25 61 13 15 70 26 24 124 8 2 

08:26-08:30 77 9 12 101 27 15 106 11 10 

08:31-08:35 53 10 8 98 33 18 116 21 0 

08:36-08:40 46 6 5 115 18 22 103 16 14 

08:41-08:45 75 12 22 98 10 13 97 25 0 

08:46-08:50 49 16 18 98 22 19 85 4 11 

08:51-08:55 53 9 14 112 23 11 123 5 5 

08:56-09:00 43 11 19 98 20 16 103 19 8 

09:01-09:05 76 12 20 84 18 17 81 10 6 

09:06-09:10 45 7 18 136 20 15 123 7 10 

09:11-09:15 71 8 11 111 25 16 90 2 3 

09:16-09:20 58 9 17 62 19 14 107 16 4 

09:21-09:25 73 22 16 88 30 12 83 11 0 

09:26-09:30 52 7 11 78 15 16 101 20 4 

09:31-09:35 44 9 13 72 13 15 105 16 0 

09:36-09:40 71 14 17 84 18 22 84 23 0 

09:41-09:45 59 7 12 40 31 20 107 4 2 

09:46-09:50 72 1 19 103 28 29 109 7 0 

09:51-09:55 64 6 13 98 27 30 80 12 4 

09:56-10:00 56 7 17 84 29 23 127 17 0 

10:01-10:05 65 10 16 129 18 13 78 12 1 

10:06-10:10 59 9 13 87 23 20 96 21 13 

10:11-10:15 92 6 10 80 24 17 110 18 2 

10:16-10:20 69 14 19 89 15 13 98 11 0 

10:21-10:25 66 25 17 85 8 32 123 4 3 

10:26-10:30 64 16 23 89 32 33 87 15 0 

Table 6: Day 1 site 6 (City Hall Way-Wabera Street T-Roundabout) Traffic Data 

DAY 1 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 6 17 2 7 2 0 12 9 1 

06:06-06:10 10 16 0 17 3 1 15 13 1 

06:11-06:15 8 12 1 25 1 0 24 17 11 

06:16-06:20 19 7 2 26 2 0 18 13 2 

06:21-06:25 13 4 1 20 2 0 21 17 0 

06:26-06:30 9 10 1 32 3 0 19 13 0 

06:31-06:35 14 5 3 26 4 0 23 31 11 

06:36-06:40 12 8 0 31 2 0 39 28 1 

06:41-06:45 19 4 2 31 3 1 42 31 0 

06:46-06:50 25 6 0 24 5 2 35 22 3 

06:51-06:55 19 9 0 35 6 0 39 26 3 

06:56-07:00 15 15 1 33 8 1 46 27 3 
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DAY 1 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:01-07:05 22 27 3 39 4 0 40 30 0 

07:06-07:10 17 27 3 54 3 2 34 23 4 

07:11-07:15 27 22 3 43 5 1 31 35 4 

07:16-07:20 30 21 0 34 9 3 33 37 1 

07:21-07:25 22 17 1 29 6 1 45 46 3 

07:26-07:30 16 17 3 44 10 4 36 36 5 

07:31-07:35 16 18 3 47 9 2 32 30 10 

07:36-07:40 25 21 0 41 7 3 35 30 0 

07:41-07:45 26 24 5 40 3 1 46 27 4 

07:46-07:50 30 35 3 45 7 1 36 59 9 

07:51-07:55 41 76 3 52 12 2 40 21 3 

07:56-08:00 28 78 2 61 10 1 45 31 1 

08:01-08:05 35 73 7 35 12 2 41 40 4 

08:06-08:10 34 39 5 34 15 2 39 31 8 

08:11-08:15 38 49 7 50 11 3 51 20 3 

08:16-08:20 35 36 2 53 12 4 30 40 5 

08:21-08:25 37 37 4 59 13 4 60 27 14 

08:26-08:30 48 44 6 35 8 1 36 30 11 

08:31-08:35 40 37 11 42 12 4 52 20 15 

08:36-08:40 35 52 6 31 12 3 50 26 2 

08:41-08:45 45 28 7 51 18 6 43 30 3 

08:46-08:50 38 53 4 53 15 4 36 32 12 

08:51-08:55 30 32 6 34 14 3 21 24 7 

08:56-09:00 43 19 6 66 17 1 29 22 8 

09:01-09:05 35 20 11 31 19 4 28 27 9 

09:06-09:10 33 34 6 43 14 2 36 21 6 

09:11-09:15 43 29 5 32 8 2 31 26 10 

09:16-09:20 44 24 4 45 10 3 32 21 10 

09:21-09:25 27 27 10 48 16 1 43 27 11 

09:26-09:30 38 34 8 38 20 6 38 40 11 

09:31-09:35 44 27 8 45 1 3 38 42 5 

09:36-09:40 50 37 9 34 22 6 37 62 10 

09:41-09:45 44 43 9 49 12 2 35 64 9 

09:46-09:50 43 38 10 38 19 2 36 49 7 

09:51-09:55 42 44 12 55 18 5 31 56 15 

09:56-10:00 55 21 11 41 13 2 42 36 7 

10:01-10:05 44 38 12 51 17 4 43 62 8 

10:06-10:10 37 45 9 54 15 3 30 51 13 

10:11-10:15 34 31 10 48 22 8 44 42 13 

10:16-10:20 37 26 10 35 5 2 26 59 9 

10:21-10:25 29 45 8 38 8 7 27 75 18 

10:26-10:30 40 38 11 45 17 4 40 55 16 

 

Table 7: Day 1 site 7 (Haile Selassie Avenue-Moi Avenue Roundabout) Traffic Data 

DAY 1 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 31 45 0 30 102 2 57 266 6 

06:06-06:10 42 60 4 70 108 3 101 220 3 

06:11-06:15 25 31 0 80 

 

 

103 3 88 298 2 
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DAY 1 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:16-06:20 55 83 0 95 124 4 75 234 1 

06:21-06:25 72 49 7 107 166 5 96 276 7 

06:26-06:30 73 60 0 78 158 6 94 235 8 

06:31-06:35 65 81 0 77 195 4 101 215 12 

06:36-06:40 93 110 6 87 152 6 83 229 6 

06:41-06:45 84 94 0 86 205 9 89 329 3 

06:46-06:50 80 120 4 71 217 3 103 297 3 

06:51-06:55 84 105 13 50 265 3 118 316 2 

06:56-07:00 72 135 3 86 239 2 107 262 4 

07:01-07:05 82 92 1 87 272 3 96 314 6 

07:06-07:10 93 84 2 50 182 3 103 364 7 

07:11-07:15 70 43 6 52 245 4 108 246 6 

07:16-07:20 90 61 0 60 400 8 119 370 3 

07:21-07:25 87 74 7 40 214 4 116 326 2 

07:26-07:30 80 68 4 56 182 5 99 285 5 

07:31-07:35 76 81 10 50 174 7 119 314 4 

07:36-07:40 89 74 5 63 406 6 48 980 3 

07:41-07:45 63 104 3 72 493 3 103 1028 7 

07:46-07:50 70 94 3 69 272 7 113 580 1 

07:51-07:55 65 74 6 42 524 5 44 1530 2 

07:56-08:00 74 86 5 80 402 7 148 620 4 

08:01-08:05 63 107 11 40 334 4 64 520 5 

08:06-08:10 76 70 8 50 208 5 108 410 6 

08:11-08:15 80 59 9 57 192 7 106 325 7 

08:16-08:20 52 80 14 40 184 8 156 296 8 

08:21-08:25 80 95 11 45 172 6 104 267 11 

08:26-08:30 74 75 2 37 153 6 111 282 3 

08:31-08:35 60 115 13 50 182 11 124 253 5 

08:36-08:40 54 40 1 44 184 7 112 378 3 

08:41-08:45 70 84 0 40 137 8 129 247 7 

08:46-08:50 72 63 13 50 125 5 117 262 8 

08:51-08:55 69 61 15 45 128 9 106 233 9 

08:56-09:00 72 100 17 36 121 8 104 278 9 

09:01-09:05 65 47 8 25 118 13 91 235 6 

09:06-09:10 64 51 3 30 105 14 99 187 3 

09:11-09:15 82 63 10 32 144 10 108 238 2 

09:16-09:20 60 49 3 30 137 12 77 286 1 

09:21-09:25 82 35 0 60 134 8 82 223 0 

09:26-09:30 80 59 15 0 138 9 98 173 5 

09:31-09:35 76 54 9 90 126 5 126 226 4 

09:36-09:40 85 62 14 43 98 7 68 172 3 

09:41-09:45 40 48 13 0 112 5 94 207 2 

09:46-09:50 30 32 6 0 88 2 121 272 1 

09:51-09:55 116 24 9 0 78 4 105 155 3 

09:56-10:00 0 44 16 175 114 7 87 162 10 

10:01-10:05 0 27 3 50 102 6 72 174 8 

10:06-10:10 155 42 13 0 106 7 70 179 6 

10:11-10:15 100 55 14 62 97 6 75 142 5 

10:16-10:20 95 35 12 0 89 4 98 197 4 

10:21-10:25 30 20 18 162 78 3 117 178 3 

10:26-10:30 80 49 17 70 79 10 93 223 2 
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Table 8: Day 2 Site 1 (Haile Selassie Roundabout) Traffic Data  

DAY 2 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 70 6 1 43   29 8 0 8 7 1 

06:06-06:10 83 4 1 38   35 10 1 10 12 0 

06:11-06:15 95 7 3 69   38 6 3 18 8 3 

06:16-06:20 101 5 2 118   31 7 2 49 13 1 

06:21-06:25 116 7 3 98   38 6 2 69 16 2 

06:26-06:30 178 8 5 120   56 12 4 108 18 3 

06:31-06:35 192 10 7 104   47 11 3 114 26 4 

06:36-06:40 228 18 8 113   56 8 2 118 23 3 

06:41-06:45 213 16 12 131   63 4 5 132 16 2 

06:46-06:50 262 17 4 116   62 9 7 148 15 6 

06:51-06:55 249 18 14 123   52 8 1 100 24 8 

06:56-07:00 265 16 11 53   42 6 3 89 12 4 

07:01-07:05 233 23 12 176   74 11 2 69 18 8 

07:06-07:10 215 22 17 215   70 8 3 74 21 5 

07:11-07:15 291 21 18 80   79 9 12 29 30 7 

07:16-07:20 234 21 7 151   75 18 7 24 12 2 

07:21-07:25 205 31 17 80   87 9 7 46 21 4 

07:26-07:30 193 25 28 108   68 3 6 58 38 7 

07:31-07:35 279 25 16 49   80 19 13 116 23 4 

07:36-07:40 195 25 26 195   67 13 5 104 26 8 

07:41-07:45 150 17 34 220   70 2 13 108 30 3 

07:46-07:50 167 37 25 69   84 9 7 113 7 2 

07:51-07:55 214 24 26 197   71 5 11 86 19 1 

07:56-08:00 258 21 21 2   99 9 14 74 27 0 

08:01-08:05 87 42 19 144   90 2 18 44 20 7 

08:06-08:10 328 32 33 0   89 4 17 84 12 8 

08:11-08:15 118 9 37 205   103 5 8 72 28 2 

08:16-08:20 255 12 25 78   106 4 10 109 13 8 

08:21-08:25 179 26 31 138   51 2 13 141 7 0 

08:26-08:30 182 11 31 73   123 13 12 100 6 4 

08:31-08:35 253 10 24 87   89 4 12 161 12 5 

08:36-08:40 297 15 25 135   76 5 19 101 15 2 

08:41-08:45 190 8 32 50   104 11 14 94 17 0 

08:46-08:50 144 6 35 175   85 5 20 84 21 1 

08:51-08:55 200 17 46 14   70 5 13 46 2 3 

08:56-09:00 202 25 35 176   68 3 9 84 4 0 

09:01-09:05 229 7 30 77   78 1 13 96 12 1 

09:06-09:10 208 12 37 87   70 4 19 44 3 2 

09:11-09:15 278 6 32 144   0 6 13 48 8 4 

09:16-09:20 223 18 14 0   151 5 7 40 10 1 

09:21-09:25 66 9 37 265   48 1 9 68 7 0 

09:26-09:30 234 16 32 0   67 8 24 74 0 2 

09:31-09:35 285 9 28 195   60 6 18 66 5 3 

09:36-09:40 210 11 36 67   81 10 14 107 10 0 

09:41-09:45 164 6 34 95   115 4 15 48 15 2 

09:46-09:50 179 9 31 129   68 9 13 148 15 3 

09:51-09:55 194 12 32 160   78 3 21 109 8 0 

09:56-10:00 201 18 32 90   71 7 15 100 17 4 

10:01-10:05 165 10 34 179   88 5 13 108 16 1 

10:06-10:10 297 11 47 65   65 7 17 142 17 5 

10:11-10:15 168 6 31 148   70 6 9 181 13 4 

10:16-10:20 201 14 38 106   86 9 21 109 23 5 
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DAY 2 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

10:21-10:25 149 14 43 128   79 5 18 112 12 2 

10:26-10:30 223 13 25 67   80 4 8 180 15 0 

Table 9: Day 2 Site 2 (Kenyatta Avenue Uhuru Highway Roundabout) Traffic Data 

DAY 2 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 96 11 4 87 12 5 75 3 3 37 6 3 

06:06-06:10 110 17 3 135 38 2 67 1 1 47 15 3 

06:11-06:15 118 12 2 179 23 4 79 2 1 49 19 4 

06:16-06:20 100 18 8 226 43 3 87 6 0 28 7 1 

06:21-06:25 106 23 7 155 56 6 96 5 0 64 1 4 

06:26-06:30 141 30 6 173 33 2 89 8 2 58 14 0 

06:31-06:35 89 48 4 197 47 3 97 10 4 61 4 4 

06:36-06:40 91 37 5 246 53 7 70 12 0 68 7 2 

06:41-06:45 120 22 6 212 42 1 75 2 0 40 9 3 

06:46-06:50 101 46 3 30 63 3 122 7 1 77 17 0 

06:51-06:55 109 35 7 248 37 5 112 3 1 94 5 6 

06:56-07:00 36 37 8 256 58 8 99 7 2 86 4 4 

07:01-07:05 168 42 10 215 49 3 60 4 2 63 16 6 

07:06-07:10 159 77 10 61 64 8 136 3 3 109 2 4 

07:11-07:15 0 71 5 309 58 4 128 5 4 48 7 3 

07:16-07:20 211 68 8 120 37 12 112 7 6 104 10 2 

07:21-07:25 0 63 10 27 53 9 134 1 1 56 6 9 

07:26-07:30 138 101 18 243 68 15 101 1 2 60 5 5 

07:31-07:35 159 66 9 290 73 9 97 2 3 0 1 5 

07:36-07:40 0 79 14 53 54 14 100 2 1 164 6 4 

07:41-07:45 201 53 11 297 65 8 111 1 7 53 2 9 

07:46-07:50 193 74 17 232 49 16 97 6 4 20 3 9 

07:51-07:55 0 50 10 182 88 13 118 3 7 149 7 16 

07:56-08:00 109 83 15 259 38 23 112 9 1 40 6 18 

08:01-08:05 146 73 16 8 57 18 104 6 3 121 7 8 

08:06-08:10 0 88 18 230 39 28 113 8 5 60 6 12 

08:11-08:15 141 46 8 166 43 17 115 4 8 80 7 13 

08:16-08:20 0 62 15 74 32 19 110 5 7 128 9 20 

08:21-08:25 140 71 22 53 23 12 112 2 5 56 2 21 

08:26-08:30 0 61 13 206 16 22 113 5 7 129 6 15 

08:31-08:35 151 48 13 254 29 22 132 5 8 55 13 24 

08:36-08:40 113 49 24 43 36 14 131 5 8 99 2 16 

08:41-08:45 23 61 20 205 22 19 114 16 2 82 7 22 

08:46-08:50 280 66 11 142 45 11 116 5 12 8 8 24 

08:51-08:55 0 46 26 217 26 19 122 7 4 131 9 17 

08:56-09:00 172 44 27 224 16 8 124 2 6 93 4 14 

09:01-09:05 61 56 23 214 26 18 136 9 4 115 4 22 

09:06-09:10 0 41 18 173 36 9 127 3 1 78 3 20 

09:11-09:15 212 69 30 194 13 16 110 9 6 24 10 17 

09:16-09:20 210 73 23 53 36 14 102 5 3 77 3 27 

09:21-09:25 17 59 26 198 18 12 136 4 0 111 4 27 

09:26-09:30 85 41 13 136 27 6 132 8 4 34 6 23 

09:31-09:35 96 48 11 142 39 22 126 9 13 40 6 17 

09:36-09:40 105 43 8 135 58 36 119 10 12 96 7 8 

09:41-09:45 127 63 19 162 23 9 99 2 9 66 9 17 
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DAY 2 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

09:46-09:50 221 49 24 44 16 21 109 2 16 74 6 25 

09:51-09:55 107 53 18 84 24 37 92 2 18 120 9 21 

09:56-10:00 247 41 37 186 28 32 110 1 20 98 2 30 

10:01-10:05 0 46 27 183 32 14 119 8 9 96 8 29 

10:06-10:10 95 37 21 78 16 19 82 5 16 74 8 22 

10:11-10:15 186 56 18 115 23 10 93 3 8 57 8 23 

10:16-10:20 0 63 14 91 13 23 110 9 6 54 16 29 

10:21-10:25 254 30 30 174 16 14 105 6 9 16 0 14 

10:26-10:30 0 75 26 121 12 17 94 5 9 154 11 19 

Table 10: Day 2 Site 3 (University Way Uhuru Highway Roundabout) Traffic Data 

DAY 2 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 98 8 4 0 0 0 42 18 7 63 2 1 

06:06-06:10 104 4 1 0 0 0 56 12 9 98 4 3 

06:11-06:15 119 0 2 0 0 0 48 21 11 81 3 7 

06:16-06:20 102 11 3 0 2 1 64 34 8 92 9 11 

06:21-06:25 146 15 10 0 1 4 37 27 6 75 12 3 

06:26-06:30 131 4 8 187 5 2 29 30 10 93 7 16 

06:31-06:35 122 2 11 153 3 3 74 41 11 102 11 8 

06:36-06:40 78 1 4 167 8 4 81 31 5 81 8 4 

06:41-06:45 113 7 2 156 9 5 35 42 9 72 14 6 

06:46-06:50 87 8 1 145 20 2 64 22 4 95 11 13 

06:51-06:55 100 17 5 143 27 10 93 36 12 131 9 4 

06:56-07:00 114 4 5 157 30 7 84 47 7 0 11 14 

07:01-07:05 76 4 7 122 29 9 121 28 9 53 11 13 

07:06-07:10 109 10 5 133 23 12 0 39 8 98 8 10 

07:11-07:15 89 9 8 143 13 7 97 23 16 68 10 14 

07:16-07:20 106 8 4 173 17 20 0 37 12 83 7 12 

07:21-07:25 115 14 1 129 12 15 67 24 9 72 9 15 

07:26-07:30 119 7 14 133 6 6 69 19 13 65 8 11 

07:31-07:35 96 15 8 141 18 11 74 36 8 104 6 9 

07:36-07:40 110 8 9 176 16 28 78 18 3 78 8 13 

07:41-07:45 107 3 7 143 27 16 86 25 7 81 9 12 

07:46-07:50 134 13 8 159 23 19 12 13 2 87 6 15 

07:51-07:55 44 15 7 163 15 13 107 16 5 111 10 17 

07:56-08:00 124 8 14 97 7 29 114 21 10 103 7 13 

08:01-08:05 75 14 5 124 10 18 96 34 13 87 5 16 

08:06-08:10 120 28 12 167 13 11 0 27 6 76 8 14 

08:11-08:15 79 15 18 138 21 30 79 29 4 55 7 18 

08:16-08:20 114 15 13 143 23 34 81 31 14 49 7 15 

08:21-08:25 128 9 10 98 10 17 74 25 8 85 9 17 

08:26-08:30 80 9 14 133 15 29 78 17 7 60 8 21 

08:31-08:35 164 7 5 125 20 23 126 33 12 73 10 19 

08:36-08:40 62 6 10 153 11 15 129 39 15 38 10 18 

08:41-08:45 102 10 19 165 13 18 87 20 9 59 7 16 

08:46-08:50 120 9 18 73 14 24 106 23 11 63 12 19 

08:51-08:55 134 15 11 196 21 15 124 18 8 0 6 11 

08:56-09:00 104 9 17 177 19 22 109 32 16 60 8 13 

09:01-09:05 119 12 12 125 17 15 97 26 7 37 10 18 

09:06-09:10 83 13 14 122 20 14 94 12 26 89 9 22 
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DAY 2 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

09:11-09:15 110 12 8 151 17 20 86 28 17 57 12 25 

09:16-09:20 133 17 15 164 10 37 113 21 13 73 14 20 

09:21-09:25 198 15 13 155 17 21 107 11 10 67 10 22 

09:26-09:30 132 10 21 171 21 15 74 15 23 181 8 27 

09:31-09:35 45 16 21 183 11 9 92 10 19 125 7 31 

09:36-09:40 95 14 16 164 20 17 126 12 21 32 10 23 

09:41-09:45 156 10 14 195 19 24 67 32 12 0 9 25 

09:46-09:50 84 22 10 172 10 22 0 27 19 30 11 33 

09:51-09:55 119 21 8 163 17 24 0 28 26 137 15 22 

09:56-10:00 201 9 6 188 11 21 56 30 21 83 10 35 

10:01-10:05 115 8 12 151 17 32 78 16 11 43 9 29 

10:06-10:10 118 12 17 168 16 34 94 28 8 0 14 37 

10:11-10:15 107 10 9 172 18 27 69 21 12 39 14 32 

10:16-10:20 112 13 11 195 13 29 86 12 14 114 10 33 

10:21-10:25 125 6 16 105 21 30 49 31 18 72 12 33 

10:26-10:30 58 12 12 115 15 24 62 31 26 132 11 28 

Table 11: Day 2 Site 4 (Kenyatta Avenue-Moi Avenue-Mondlane Street Junction) 

Traffic Data 

DAY 2 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 29 101 1 15 48  8 15 7 

06:06-06:10 35 132 0 19 45  13 8 5 

06:11-06:15 40 99 2 10 50  11 20 10 

06:16-06:20 48 121 0 26 47  8 18 14 

06:21-06:25 50 113 3 28 45  13 14 3 

06:26-06:30 45 113 3 20 71  16 10 6 

06:31-06:35 52 125 6 25 50  7 22 6 

06:36-06:40 54 96 1 22 42  14 18 8 

06:41-06:45 60 91 6 34 51  25 20 4 

06:46-06:50 58 97 4 30 57  15 28 5 

06:51-06:55 55 62 3 33 44  11 30 2 

06:56-07:00 46 114 5 25 53  15 28 4 

07:01-07:05 58 124 5 34 44  11 21 3 

07:06-07:10 62 100 2 37 37  8 29 6 

07:11-07:15 68 97 7 32 58  13 58 3 

07:16-07:20 65 129 3 41 51  14 67 7 

07:21-07:25 72 122 8 34 48  13 54 8 

07:26-07:30 88 119 9 46 52  28 51 6 

07:31-07:35 86 131 9 40 61  10 111 3 

07:36-07:40 85 74 12 24 49  21 110 3 

07:41-07:45 78 151 17 34 69  10 72 5 

07:46-07:50 134 146 15 33 71  23 93 6 

07:51-07:55 125 147 16 37 67  15 101 5 

07:56-08:00 98 149 15 32 78  13 126 4 

08:01-08:05 84 165 12 51 81  28 134 11 

08:06-08:10 91 131 15 41 75  21 148 22 

08:11-08:15 88 148 17 39 96  16 151 20 

08:16-08:20 96 115 21 32 88  22 130 15 

08:21-08:25 80 107 21 28 85  24 129 10 
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DAY 2 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

08:26-08:30 106 111 32 44 97  31 97 6 

08:31-08:35 95 142 22 38 83  22 112 12 

08:36-08:40 86 115 19 20 72  35 94 12 

08:41-08:45 98 139 21 35 84  18 89 13 

08:46-08:50 93 136 15 32 69  35 75 15 

08:51-08:55 75 157 17 35 75  13 64 14 

08:56-09:00 69 110 12 22 73  18 78 13 

09:01-09:05 84 89 20 22 80  26 89 10 

09:06-09:10 72 77 19 28 71  21 95 9 

09:11-09:15 87 79 22 33 68  20 108 9 

09:16-09:20 96 119 11 32 82  35 102 10 

09:21-09:25 82 78 17 36 73  24 98 15 

09:26-09:30 78 118 25 27 76  30 109 18 

09:31-09:35 73 102 20 42 82  27 101 11 

09:36-09:40 67 95 18 36 88  24 107 6 

09:41-09:45 88 107 31 22 54  25 106 10 

09:46-09:50 64 92 14 27 101  22 98 8 

09:51-09:55 92 65 17 32 68  25 98 8 

09:56-10:00 74 71 18 32 73  32 100 7 

10:01-10:05 83 104 24 35 69  34 124 12 

10:06-10:10 78 98 12 23 81  24 112 18 

10:11-10:15 72 101 19 26 83  27 98 10 

10:16-10:20 85 62 19 27 77  28 84 10 

10:21-10:25 68 110 25 20 61  34 101 16 

10:26-10:30 57 71 20 34 72  20 102 22 

Table 12: Day 2 Site 5 (Moi Avenue-Slip Road Junction) Traffic Data 

DAY 2 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 13 8 2 29 12 4 40   

06:06-06:10 20 16 3 47 14 6 29   

06:11-06:15 12 12 4 35 10 2 33   

06:16-06:20 15 10 3 39 16 6 57   

06:21-06:25 42 21 2 42 15 1 24   

06:26-06:30 33 31 1 73 32 3 36   

06:31-06:35 59 30 1 59 48 4 55   

06:36-06:40 47 49 0 75 43 3 67   

06:41-06:45 50 23 5 58 84 5 90   

06:46-06:50 45 38 2 79 84 3 110   

06:51-06:55 43 31 3 62 48 4 76   

06:56-07:00 68 38 7 63 45 3 59   

07:01-07:05 63 49 3 66 59 11 60   

07:06-07:10 32 24 3 56 57 9 48   

07:11-07:15 60 31 2 53 41 7 95   

07:16-07:20 65 38 3 75 47 13 75   

07:21-07:25 50 42 3 82 48 16 92   

07:26-07:30 70 26 5 71 44 14 83   

07:31-07:35 78 34 2 76 32 8 98   

07:36-07:40 70 22 6 63 49 24 40   

07:41-07:45 63 42 6 78 56 18 87   

07:46-07:50 82 36 7 83 64 15 76   
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DAY 2 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:51-07:55 86 27 4 55 42 12 103   

07:56-08:00 61 20 5 85 46 16 98   

08:01-08:05 75 37 6 44 36 27 112   

08:06-08:10 71 43 5 65 37 22 75   

08:11-08:15 88 52 8 62 44 15 94   

08:16-08:20 76 54 6 60 38 33 107   

08:21-08:25 75 32 7 85 41 37 95   

08:26-08:30 79 38 9 79 32 26 98   

08:31-08:35 75 41 11 68 38 30 83   

08:36-08:40 90 38 6 71 32 27 101   

08:41-08:45 58 36 7 86 40 24 95   

08:46-08:50 76 41 8 75 24 17 88   

08:51-08:55 70 43 15 69 18 30 86   

08:56-09:00 63 52 11 81 22 24 104   

09:01-09:05 89 34 12 56 16 20 89   

09:06-09:10 70 29 10 64 26 31 92   

09:11-09:15 93 38 12 73 27 24 108   

09:16-09:20 68 21 8 47 18 28 78   

09:21-09:25 110 18 7 56 42 55 83   

09:26-09:30 87 25 10 37 14 28 107   

09:31-09:35 72 31 6 40 18 43 111   

09:36-09:40 81 38 16 49 13 44 94   

09:41-09:45 71 20 14 58 16 56 97   

09:46-09:50 100 22 17 65 22 29 84   

09:51-09:55 87 13 8 47 26 37 101   

09:56-10:00 115 23 7 70 18 24 106   

10:01-10:05 81 20 9 76 16 31 185   

10:06-10:10 94 16 6 80 14 23 126   

10:11-10:15 102 24 10 77 22 35 111   

10:16-10:20 86 30 11 59 20 33 176   

10:21-10:25 98 16 13 63 32 51 196   

10:26-10:30 91 18 7 60 36 44 172   

Table 13: Day 2 Site 6 (City Hall Way-Wabera Street T-Roundabout) Traffic Data 

DAY 2 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 
DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 12   27 0 1 18 24 0 

06:06-06:10 10   18 3 0 18 20 1 

06:11-06:15 10   20 1 0 22 17 2 

06:16-06:20 15   26 3 0 17 24 1 

06:21-06:25 18   28 3 0 17 20 0 

06:26-06:30 12   25 4 0 8 26 0 

06:31-06:35 9   23 4 1 33 22 5 

06:36-06:40 21   27 4 5 24 33 0 

06:41-06:45 17   25 2 0 35 20 1 

06:46-06:50 31   37 2 1 35 37 1 

06:51-06:55 21   48 3 1 37 29 2 

06:56-07:00 20   54 5 2 50 50 7 

07:01-07:05 28   48 1 3 34 22 5 

07:06-07:10 14   62 2 4 24 23 5 

07:11-07:15 26   57 

 

7 5 41 45 3 
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DAY 2 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 
DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:16-07:20 30   49 8 2 90 40 4 

07:21-07:25 34   65 5 0 33 53 1 

07:26-07:30 22   58 4 2 37 52 4 

07:31-07:35 27   42 4 2 20 44 3 

07:36-07:40 32   80 15 3 36 44 4 

07:41-07:45 45   44 7 6 42 38 8 

07:46-07:50 35   36 4 7 35 92 7 

07:51-07:55 35   37 7 6 47 54 7 

07:56-08:00 20   80 21 2 54 72 8 

08:01-08:05 35   68 4 6 55 110 5 

08:06-08:10 32   37 22 3 41 103 12 

08:11-08:15 28   55 2 9 49 74 7 

08:16-08:20 27   54 6 11 44 63 7 

08:21-08:25 24   47 9 9 48 78 6 

08:26-08:30 33   35 11 8 47 67 8 

08:31-08:35 28   39 7 4 42 70 6 

08:36-08:40 38   60 13 1 52 60 11 

08:41-08:45 42   58 8 3 44 80 5 

08:46-08:50 50   46 14 6 54 63 10 

08:51-08:55 27   50 11 8 49 67 9 

08:56-09:00 37   39 9 10 50 75 9 

09:01-09:05 32   58 23 4 36 59 10 

09:06-09:10 37   60 10 7 28 60 5 

09:11-09:15 43   65 10 4 84 79 8 

09:16-09:20 36   53 14 7 45 76 15 

09:21-09:25 55   57 7 3 44 72 4 

09:26-09:30 45   44 17 8 50 70 9 

09:31-09:35 35   78 21 4 49 65 3 

09:36-09:40 41   56 16 2 30 72 4 

09:41-09:45 45   62 18 8 40 60 6 

09:46-09:50 34   42 19 6 51 63 11 

09:51-09:55 37   56 16 4 18 62 12 

09:56-10:00 44   62 8 10 19 66 11 

10:01-10:05 40   78 11 4 53 54 12 

10:06-10:10 50   57 8 6 45 88 8 

10:11-10:15 45   48 7 10 37 86 9 

10:16-10:20 42   52 11 4 34 79 3 

10:21-10:25 39   58 18 7 43 75 2 

10:26-10:30 40   46 8 6 31 55 11 

Table 14: Day 2 Site 7 (Haile Selassie Avenue-Moi Avenue Roundabout) Traffic Data 

DAY 2 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 60 10 2 50 128 5 52 208 2 

06:06-06:10 66 12 1 100 133 4 77 249 2 

06:11-06:15 70 13 2 75 192 3 69 285 0 

06:16-06:20 68 33 1 102 171 4 92 267 4 

06:21-06:25 72 47 2 72 181 3 68 373 2 

06:26-06:30 63 84 0 80 200 3 72 356 5 

06:31-06:35 90 48 0 95 148 3 76 273 7 

06:36-06:40 92 64 1 148 213 4 112 421 1 
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DAY 2 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:41-06:45 78 42 0 55 161 5 84 290 3 

06:46-06:50 85 70 1 60 176 4 109 301 2 

06:51-06:55 86 81 5 80 285 4 112 418 5 

06:56-07:00 97 84 7 62 223 2 93 419 3 

07:01-07:05 80 68 3 65 197 2 132 376 1 

07:06-07:10 80 34 4 53 186 3 90 249 9 

07:11-07:15 70 111 8 70 342 3 113 597 3 

07:16-07:20 90 74 8 72 195 6 103 422 1 

07:21-07:25 80 63 3 60 204 3 99 306 4 

07:26-07:30 78 87 0 36 206 9 116 256 2 

07:31-07:35 90 63 1 70 192 7 113 1007 2 

07:36-07:40 100 80 8 90 562 5 38 1426 2 

07:41-07:45 61 17 7 106 362 5 76 954 1 

07:46-07:50 102 72 9 27 172 10 136 322 4 

07:51-07:55 70 67 10 85 289 5 57 669 2 

07:56-08:00 82 24 4 71 490 9 93 316 1 

08:01-08:05 83 53 5 96 344 8 141 197 3 

08:06-08:10 100 49 3 50 285 7 73 172 5 

08:11-08:15 50 104 17 70 266 12 132 134 7 

08:16-08:20 70 97 13 100 198 10 135 144 3 

08:21-08:25 65 58 24 20 194 13 155 161 1 

08:26-08:30 62 43 16 21 178 14 147 136 2 

08:31-08:35 73 62 10 50 180 9 119 172 1 

08:36-08:40 60 70 11 70 140 7 111 155 5 

08:41-08:45 110 122 7 60 124 5 103 186 3 

08:46-08:50 90 49 14 100 146 10 118 166 1 

08:51-08:55 80 94 14 0 165 5 143 138 6 

08:56-09:00 76 113 0 62 130 4 125 121 3 

09:01-09:05 62 84 14 105 128 3 138 152 2 

09:06-09:10 61 104 15 80 129 5 129 134 1 

09:11-09:15 52 88 7 70 118 6 137 153 8 

09:16-09:20 65 74 12 130 104 6 148 140 2 

09:21-09:25 85 67 23 40 102 6 99 176 4 

09:26-09:30 72 28 0 72 98 12 89 129 4 

09:31-09:35 68 59 18 57 95 3 102 135 2 

09:36-09:40 70 104 13 100 146 5 137 189 9 

09:41-09:45 76 66 14 63 100 7 104 128 5 

09:46-09:50 80 47 15 35 78 5 117 168 4 

09:51-09:55 73 43 9 70 83 7 142 159 4 

09:56-10:00 70 67 16 38 100 6 108 116 2 

10:01-10:05 72 56 6 40 128 10 127 133 7 

10:06-10:10 70 85 19 30 113 14 112 139 4 

10:11-10:15 81 78 11 42 139 14 114 187 2 

10:16-10:20 70 73 24 30 118 12 106 119 2 

10:21-10:25 58 44 14 23 120 11 119 145 6 

10:26-10:30 55 27 23 40 99 9 102 154 1 

Table 15: Day 3 site 1 (Haile Selassie Roundabout) Traffic Data  

DAY 3 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 81 6 2 38   42 7 4 23 8 0 
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DAY 3 SITE 1 (HAILE SELASSIE ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:06-06:10 90 10 5 47   37 12 3 41 10 0 

06:11-06:15 79 7 2 41   49 7 5 36 14 2 

06:16-06:20 180 7 4 63   51 8 4 64 9 2 

06:21-06:25 206 9 3 78   34 14 4 73 6 4 

06:26-06:30 212 12 7 103   40 11 3 91 7 0 

06:31-06:35 232 14 6 65   75 9 3 79 4 0 

06:36-06:40 297 14 7 105   42 5 7 94 12 0 

06:41-06:45 221 28 6 119   41 10 8 97 8 4 

06:46-06:50 325 26 12 115   57 7 2 78 16 3 

06:51-06:55 131 15 12 165   70 7 3 98 14 2 

06:56-07:00 260 24 13 119   32 13 4 101 10 0 

07:01-07:05 237 24 10 137   78 8 3 68 16 0 

07:06-07:10 222 39 11 123   61 10 15 98 18 1 

07:11-07:15 228 23 21 139   76 16 5 102 9 0 

07:16-07:20 114 33 9 176   64 12 8 112 8 0 

07:21-07:25 263 27 13 63   122 18 7 126 14 0 

07:26-07:30 162 37 19 187   79 4 7 108 16 0 

07:31-07:35 240 21 12 39   96 19 14 92 8 0 
07:36-07:40 165 18 24 139   105 15 3 107 11 3 

07:41-07:45 280 29 20 85   88 7 9 115 12 0 

07:46-07:50 169 20 19 196   82 3 10 52 14 4 

07:51-07:55 258 31 33 0   69 6 4 112 8 4 

07:56-08:00 190 24 28 134   77 4 4 129 16 5 

08:01-08:05 179 33 36 180   87 11 15 140 32 0 

08:06-08:10 207 21 35 105   133 15 11 0 19 4 

08:11-08:15 121 24 38 99   93 4 23 68 18 2 

08:16-08:20 189 14 28 46   68 4 10 74 16 0 

08:21-08:25 88 13 38 161   120 9 11 98 17 4 

08:26-08:30 192 18 45 72   92 7 15 112 36 6 

08:31-08:35 297 17 28 0   112 4 13 126 32 0 

08:36-08:40 205 15 45 49   69 2 10 131 30 0 

08:41-08:45 97 13 28 168   85 7 13 54 28 0 

08:46-08:50 210 27 19 160   49 4 9 68 27 0 

08:51-08:55 231 18 27 0   63 4 7 74 16 0 

08:56-09:00 308 17 45 88   78 8 12 98 19 3 

09:01-09:05 134 15 39 12   115 2 11 89 18 4 

09:06-09:10 267 5 23 267   39 2 9 120 0 0 

09:11-09:15 224 7 32 0   45 5 16 112 19 3 

09:16-09:20 129 13 31 172   108 3 17 74 36 4 

09:21-09:25 299 8 37 0   75 4 20 68 46 10 

09:26-09:30 207 7 30 140   62 5 10 54 31 8 

09:31-09:35 230 16 47 139   17 4 9 93 29 0 

09:36-09:40 231 9 46 179   119 3 6 110 18 7 

09:41-09:45 206 14 38 0   37 0 13 97 27 4 

09:46-09:50 249 13 40 0   119 11 10 68 20 0 

09:51-09:55 61 10 36 285   51 8 17 23 18 6 

09:56-10:00 252 15 50 1   82 7 21 54 37 18 

10:01-10:05 250 26 40 30   68 9 11 34 39 10 

10:06-10:10 149 11 44 296   44 8 29 41 48 3 

10:11-10:15 146 9 46 0   89 9 14 51 19 6 

10:16-10:20 181 14 56 211   78 6 21 0 38 14 

10:21-10:25 163 15 35 129   58 8 19 35 44 9 

10:26-10:30 333 13 39 44   63 5 13 74 18 0 
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Table 16: Day 3 Site 2 (Kenyatta Avenue Uhuru Highway Roundabout) Traffic Data 

DAY 3 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 91 27 8 88 22 9 97 4 3 39 11 3 

06:06-06:10 107 41 4 148 30 2 95 8 1 48 6 5 

06:11-06:15 115 23 6 123 53 3 82 2 2 35 7 1 

06:16-06:20 124 57 6 164 68 4 87 0 1 30 16 3 

06:21-06:25 111 34 4 132 54 6 91 1 0 35 7 4 

06:26-06:30 96 53 1 163 35 2 97 3 2 70 12 5 

06:31-06:35 120 30 5 123 63 4 102 6 3 45 3 10 

06:36-06:40 97 70 5 77 53 0 78 3 3 74 12 4 

06:41-06:45 186 46 6 143 62 2 67 3 2 86 10 5 

06:46-06:50 77 41 3 193 59 2 143 0 5 75 17 6 

06:51-06:55 218 66 9 203 56 7 80 9 1 79 11 8 

06:56-07:00 0 66 5 127 48 16 64 2 5 106 9 10 

07:01-07:05 135 62 6 149 50 19 68 3 8 49 12 4 

07:06-07:10 100 56 7 167 43 22 38 0 2 84 9 3 

07:11-07:15 159 89 2 173 28 11 48 2 7 110 3 10 

07:16-07:20 0 62 8 153 37 19 62 8 3 100 3 9 

07:21-07:25 146 72 7 169 74 7 88 1 4 85 9 8 

07:26-07:30 0 69 6 217 33 8 95 7 3 96 3 11 

07:31-07:35 167 83 7 176 41 13 104 6 2 0 13 7 

07:36-07:40 217 91 13 154 38 17 114 6 3 66 6 9 

07:41-07:45 0 97 15 0 20 15 124 1 4 168 4 10 

07:46-07:50 241 58 5 214 31 10 109 8 4 40 10 7 

07:51-07:55 80 77 22 193 34 18 122 12 5 73 5 15 

07:56-08:00 123 111 22 135 26 14 97 9 5 131 13 17 

08:01-08:05 61 95 18 68 31 9 104 7 4 112 1 7 

08:06-08:10 0 90 13 139 25 4 96 2 6 123 7 10 

08:11-08:15 100 59 23 113 21 13 92 8 8 15 13 15 

08:16-08:20 0 54 21 223 32 11 124 6 7 55 6 8 

08:21-08:25 96 32 20 93 37 14 127 3 9 177 11 15 

08:26-08:30 201 75 18 0 29 18 132 3 8 80 7 19 

08:31-08:35 147 45 14 246 21 16 114 6 6 49 14 12 

08:36-08:40 177 65 18 39 48 24 118 6 10 116 15 25 

08:41-08:45 31 65 18 97 43 28 107 3 7 42 4 13 

08:46-08:50 126 41 9 103 55 31 111 7 10 28 10 12 

08:51-08:55 145 53 26 46 47 34 132 7 14 102 6 20 

08:56-09:00 0 47 16 69 50 28 129 4 3 69 5 18 

09:01-09:05 147 37 29 156 41 19 113 4 8 27 4 13 

09:06-09:10 115 75 30 188 38 26 118 6 8 31 10 18 

09:11-09:15 0 66 17 139 48 21 121 1 9 78 18 22 

09:16-09:20 256 47 14 48 32 11 114 4 10 148 4 18 

09:21-09:25 71 56 29 161 44 17 117 3 7 28 7 23 

09:26-09:30 119 47 21 62 29 31 112 4 9 120 13 24 

09:31-09:35 201 58 17 192 26 21 127 6 10 56 3 23 

09:36-09:40 113 38 21 97 38 16 102 8 15 108 10 25 

09:41-09:45 128 80 28 116 27 31 113 4 8 40 10 13 

09:46-09:50 224 46 23 140 29 23 124 6 7 99 12 25 

09:51-09:55 0 34 16 189 36 14 112 7 7 60 11 16 

09:56-10:00 100 31 35 61 14 21 108 3 12 92 5 26 

10:01-10:05 22 53 26 113 19 24 97 24 4 61 10 1 

10:06-10:10 193 64 19 144 16 16 121 16 8 101 7 2 

10:11-10:15 51 56 21 183 21 11 118 11 9 20 8 6 

10:16-10:20 105 80 27 155 24 27 123 27 4 109 9 6 
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DAY 3 SITE 2 (KENYATTA AVENUE UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

10:21-10:25 90 59 22 122 31 24 114 24 10 107 3 1 

10:26-10:30 0 81 25 257 27 16 122 16 9 55 4 8 

Table 17: Day 3 Site 3 (University Way Uhuru Highway Roundabout) Traffic Data 

DAY 3 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 72 10 13 0 2 4 14 21 2 53 20 10 

06:06-06:10 81 9 12 147 15 6 17 19 7 71 10 15 

06:11-06:15 58 11 10 128 1 7 12 23 1 68 14 12 

06:16-06:20 105 16 9 133 0 8 19 28 2 43 11 20 

06:21-06:25 63 15 14 141 3 5 24 17 4 110 12 10 

06:26-06:30 74 11 12 156 4 6 16 25 1 94 16 7 

06:31-06:35 90 20 11 113 5 12 37 19 3 72 18 9 

06:36-06:40 94 14 5 119 6 7 49 27 6 100 21 12 

06:41-06:45 69 16 3 137 10 13 89 31 2 102 19 11 

06:46-06:50 105 35 6 153 30 10 96 24 5 80 17 8 

06:51-06:55 110 19 6 176 22 15 74 38 7 113 15 8 

06:56-07:00 78 54 9 122 15 7 112 32 4 145 18 10 

07:01-07:05 113 49 11 126 29 8 89 43 11 97 16 9 

07:06-07:10 128 37 18 129 30 12 43 36 9 108 14 12 

07:11-07:15 131 63 19 134 16 6 64 27 6 129 19 10 

07:16-07:20 149 33 12 74 15 12 91 22 5 77 13 8 

07:21-07:25 65 20 7 107 19 8 0 29 6 85 12 8 

07:26-07:30 77 42 17 172 16 19 0 35 12 108 10 11 

07:31-07:35 110 52 18 109 15 13 69 43 9 95 15 9 

07:36-07:40 152 24 11 156 22 19 114 37 8 0 13 10 

07:41-07:45 98 28 14 131 17 22 98 45 12 165 15 9 

07:46-07:50 24 33 9 173 16 14 113 32 10 76 10 12 

07:51-07:55 138 24 15 167 19 23 109 24 7 0 12 15 

07:56-08:00 95 19 13 115 24 27 86 37 12 195 9 13 

08:01-08:05 139 25 20 155 17 22 91 43 9 0 11 13 

08:06-08:10 40 28 13 227 21 25 76 31 14 219 8 16 

08:11-08:15 51 41 24 141 23 19 68 26 11 79 13 18 

08:16-08:20 87 27 11 163 25 23 94 35 8 0 10 18 

08:21-08:25 45 35 14 155 21 14 87 47 13 155 10 14 

08:26-08:30 171 18 19 163 20 32 39 32 17 72 7 15 

08:31-08:35 140 50 14 11 12 15 47 35 19 43 9 17 

08:36-08:40 104 3 21 123 9 24 54 27 11 29 11 18 

08:41-08:45 162 43 19 139 22 26 0 16 8 81 13 21 

08:46-08:50 106 24 14 144 15 24 0 28 24 48 8 16 

08:51-08:55 139 31 20 212 17 27 69 32 18 73 12 21 

08:56-09:00 115 27 9 188 12 32 117 27 21 39 15 27 

09:01-09:05 82 34 21 117 9 28 102 34 15 48 10 23 

09:06-09:10 127 41 18 151 13 24 89 29 12 0 14 26 

09:11-09:15 107 27 14 137 11 27 74 38 27 213 9 29 

09:16-09:20 32 13 18 145 3 30 69 24 22 38 7 25 

09:21-09:25 111 21 21 152 17 35 81 32 18 47 11 28 

09:26-09:30 54 14 4 112 15 33 54 26 25 73 13 31 

09:31-09:35 65 34 18 93 19 40 46 24 21 52 15 27 

09:36-09:40 109 60 41 144 18 32 57 18 26 38 10 27 

09:41-09:45 86 41 33 126 21 35 81 23 18 0 8 32 
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DAY 3 SITE 3 (UNIVERSITY WAY UHURU HIGHWAY ROUNDABOUT) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT VEH PED MOT 

09:46-09:50 42 19 20 139 17 32 63 34 27 123 14 30 

09:51-09:55 98 27 14 125 20 28 92 27 15 79 14 24 

09:56-10:00 57 41 19 134 21 16 87 28 14 98 8 19 

10:01-10:05 119 18 13 148 17 23 0 19 26 69 11 23 

10:06-10:10 123 24 7 153 19 30 0 14 19 0 13 27 

10:11-10:15 103 19 24 172 31 27 18 27 12 107 10 31 

10:16-10:20 75 29 18 144 35 26 37 39 19 18 12 28 

10:21-10:25 96 16 17 169 28 22 49 24 13 0 10 25 

10:26-10:30 59 35 20 129 15 27 54 43 22 149 15 23 

Table 18: Day 3 Site 4 (Kenyatta Avenue-Moi Avenue-Mondlane Street Junction) 

Traffic Data 

DAY 3 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 26 96 2 24 39 2 4 38 4 

06:06-06:10 35 84 2 27 33 3 2 42 11 

06:11-06:15 41 107 1 32 46 3 8 55 7 

06:16-06:20 39 100 4 25 42 5 10 46 9 

06:21-06:25 40 93 6 26 44 2 17 40 3 

06:26-06:30 52 110 1 31 39 4 12 63 3 

06:31-06:35 48 89 5 30 41 0 10 68 6 

06:36-06:40 44 107 4 23 52 2 14 59 5 

06:41-06:45 56 85 5 22 46 3 8 83 7 

06:46-06:50 65 150 4 26 48 5 17 92 12 

06:51-06:55 49 147 4 34 51 3 19 76 13 

06:56-07:00 38 126 6 22 54 4 13 67 3 

07:01-07:05 42 129 4 24 58 7 10 72 7 

07:06-07:10 54 146 13 29 62 9 18 83 7 

07:11-07:15 67 123 8 39 60 10 7 64 9 

07:16-07:20 58 192 13 34 79 13 21 59 5 

07:21-07:25 71 156 9 43 94 6 23 67 13 

07:26-07:30 64 98 12 44 88 9 16 56 12 

07:31-07:35 52 121 18 41 72 12 13 63 5 

07:36-07:40 68 203 12 34 90 13 10 148 6 

07:41-07:45 71 192 8 36 84 11 17 70 9 

07:46-07:50 84 189 11 32 98 9 11 68 10 

07:51-07:55 92 143 11 36 102 10 21 67 13 

07:56-08:00 75 127 15 31 99 7 18 48 6 

08:01-08:05 63 174 15 35 106 11 14 118 16 

08:06-08:10 88 125 14 38 96 11 13 92 10 

08:11-08:15 76 136 13 41 88 13 13 71 3 

08:16-08:20 95 110 17 34 89 15 23 154 10 

08:21-08:25 82 141 12 40 109 10 24 145 14 

08:26-08:30 74 148 14 37 93 13 16 60 22 

08:31-08:35 58 148 16 35 80 15 20 72 24 

08:36-08:40 93 161 16 34 94 18 26 69 17 

08:41-08:45 102 103 10 31 74 13 25 64 17 

08:46-08:50 88 110 14 32 98 20 17 72 24 

08:51-08:55 79 79 9 40 86 18 21 87 26 

08:56-09:00 94 78 13 26 96 13 23 149 10 
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DAY 3 SITE 4 (KENYATTA AVENUE-MOI AVENUE-MONDLANE STREET JUNCTION) TRAFFIC DATA 

DIRECTION NORTHWARD SOUTHWARD EASTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

09:01-09:05 82 96 15 31 94 16 26 155 17 

09:06-09:10 73 99 14 33 67 12 18 67 11 

09:11-09:15 68 104 19 22 72 18 28 138 9 

09:16-09:20 57 89 16 41 82 8 22 62 23 

09:21-09:25 72 109 16 32 76 10 23 93 30 

09:26-09:30 61 121 19 28 86 12 15 89 22 

09:31-09:35 86 111 11 39 79 25 22 83 8 

09:36-09:40 77 122 30 35 110 13 25 89 11 

09:41-09:45 69 110 24 36 90 19 24 71 13 

09:46-09:50 92 98 16 33 87 10 19 84 19 

09:51-09:55 78 113 18 35 95 13 26 157 17 

09:56-10:00 64 132 11 42 58 12 30 88 18 

10:01-10:05 72 106 27 26 65 17 21 90 12 

10:06-10:10 83 99 14 30 61 7 25 61 20 

10:11-10:15 59 87 13 27 57 13 22 77 10 

10:16-10:20 48 104 33 31 62 21 27 75 27 

10:21-10:25 56 96 19 34 55 21 28 61 13 

10:26-10:30 60 75 32 29 63 19 26 55 16 

Table 19: Day 3 Site 5 (Moi Avenue-Slip Road Junction) Traffic Data 

DAY 3 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 16 13 0 48 23 2 78   

06:06-06:10 39 15 1 60 39 4 63   

06:11-06:15 42 20 4 54 46 6 84   

06:16-06:20 51 25 3 63 58 7 120   

06:21-06:25 60 19 3 58 37 11 91   

06:26-06:30 43 16 1 71 20 3 153   

06:31-06:35 67 11 5 68 23 2 135   

06:36-06:40 48 29 2 76 45 10 147   

06:41-06:45 44 12 1 92 38 5 146   

06:46-06:50 66 10 3 63 59 4 154   

06:51-06:55 52 17 2 77 35 6 107   

06:56-07:00 59 22 6 85 41 7 123   

07:01-07:05 47 37 10 98 27 8 167   

07:06-07:10 62 42 12 121 51 7 143   

07:11-07:15 57 24 7 101 53 6 107   

07:16-07:20 71 32 12 99 29 6 94   

07:21-07:25 58 40 18 134 37 8 145   

07:26-07:30 54 33 11 61 38 7 132   

07:31-07:35 76 21 8 119 31 21 121   

07:36-07:40 52 19 7 74 27 8 94   

07:41-07:45 61 19 3 94 27 14 134   

07:46-07:50 75 15 4 87 33 12 98   

07:51-07:55 69 22 13 80 21 18 74   

07:56-08:00 90 19 6 102 32 21 98   

08:01-08:05 67 12 5 96 32 22 109   

08:06-08:10 73 19 4 82 20 13 131   

08:11-08:15 67 10 7 87 26 9 74   

08:16-08:20 92 13 8 66 16 16 84   

08:21-08:25 87 15 13 74 27 14 126   



313 

DAY 3 SITE 5 (MOI AVENUE-SLIP ROAD JUNCTION) TRAFFIC DATA 

 

DIRECTION NORTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

08:26-08:30 102 25 19 69 23 21 87   

08:31-08:35 81 21 12 72 27 18 75   

08:36-08:40 79 29 20 44 29 30 102   

08:41-08:45 124 26 12 66 18 20 79   

08:46-08:50 61 33 19 81 21 24 65   

08:51-08:55 111 42 19 88 16 37 107   

08:56-09:00 73 30 21 96 27 42 83   

09:01-09:05 59 12 25 78 15 14 65   

09:06-09:10 95 21 19 90 18 27 70   

09:11-09:15 72 17 9 113 17 20 97   

09:16-09:20 89 12 20 83 19 11 104   

09:21-09:25 134 19 23 92 12 21 84   

09:26-09:30 53 26 30 84 5 8 128   

09:31-09:35 42 33 12 73 12 9 79   

09:36-09:40 75 40 13 85 17 22 85   

09:41-09:45 52 19 12 110 12 10 97   

09:46-09:50 63 20 16 64 5 17 100   

09:51-09:55 41 23 19 73 11 19 89   

09:56-10:00 110 33 29 63 14 20 77   

10:01-10:05 85 34 17 83 26 18 121   

10:06-10:10 63 21 11 70 12 19 97   

10:11-10:15 56 36 19 67 32 18 74   

10:16-10:20 65 40 23 61 17 16 81   

10:21-10:25 88 29 24 68 21 20 79   

10:26-10:30 72 21 17 56 18 12 96   

Table 20: Day 3 site 6 (City Hall Way-Wabera Street T-Roundabout) Traffic Data 

DAY 3 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 8   17 2 0 22 19 3 

06:06-06:10 9   15 3 0 17 19 1 

06:11-06:15 5   19 2 0 16 35 3 

06:16-06:20 16   23 4 0 27 21 0 

06:21-06:25 14   39 2 0 28 18 0 

06:26-06:30 13   37 1 0 24 35 1 

06:31-06:35 18   36 6 1 28 29 4 

06:36-06:40 9   42 4 4 23 51 3 

06:41-06:45 20   33 1 1 35 8 4 

06:46-06:50 23   37 6 3 25 43 4 

06:51-06:55 22   41 4 1 40 32 3 

06:56-07:00 17   36 1 2 30 33 3 

07:01-07:05 25   38 2 0 40 25 3 

07:06-07:10 24   40 6 2 33 36 4 

07:11-07:15 21   42 4 3 36 41 3 

07:16-07:20 34   32 4 2 41 38 4 

07:21-07:25 27   38 3 1 32 22 5 

07:26-07:30 22   49 5 3 39 43 3 

07:31-07:35 23   50 4 3 48 55 5 

07:36-07:40 27   32 3 1 39 66 3 

07:41-07:45 37   48 2 5 18 76 5 

07:46-07:50 28   56 5 3 44 105 3 
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DAY 3 SITE 6 (CITY HALL WAY-WABERA STREET T-ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:51-07:55 23   47 6 2 37 190 14 

07:56-08:00 27   27 6 4 42 96 5 

08:01-08:05 27   52 5 7 44 84 6 

08:06-08:10 31   58 8 2 50 70 10 

08:11-08:15 34   42 4 10 65 82 8 

08:16-08:20 32   52 6 5 53 63 12 

08:21-08:25 25   62 3 1 49 60 8 

08:26-08:30 28   48 3 7 43 67 3 

08:31-08:35 26   56 9 8 30 58 4 

08:36-08:40 31   32 7 6 26 47 1 

08:41-08:45 43   38 10 7 44 58 4 

08:46-08:50 31   52 5 3 40 99 6 

08:51-08:55 32   43 6 3 37 81 12 

08:56-09:00 35   36 7 7 41 79 17 

09:01-09:05 48   59 9 17 28 56 5 

09:06-09:10 22   62 5 12 30 87 12 

09:11-09:15 25   42 4 7 50 72 8 

09:16-09:20 28   65 1 3 41 76 7 

09:21-09:25 49   47 2 7 39 59 12 

09:26-09:30 42   56 6 3 37 92 5 

09:31-09:35 33   58 10 9 35 66 9 

09:36-09:40 34   40 11 2 42 100 5 

09:41-09:45 34   64 8 5 43 78 11 

09:46-09:50 26   79 18 2 41 61 10 

09:51-09:55 53   53 7 14 56 93 8 

09:56-10:00 38   49 9 5 43 49 7 

10:01-10:05 46   53 11 8 45 102 13 

10:06-10:10 48   59 15 10 46 91 11 

10:11-10:15 40   45 17 12 21 27 13 

10:16-10:20 40   47 20 14 36 103 13 

10:21-10:25 33   73 7 5 39 120 14 

10:26-10:30 46   62 16 8 45 109 13 

Table 21: Day 3 Site 7 (Haile Selassie Avenue-Moi Avenue Roundabout) Traffic Data 

DAY 3 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

06:00-06:05 57 12 2 90 10 0 87 120 4 

06:06-06:10 72 10 1 88 150 4 91 193 0 

06:11-06:15 67 13 0 94 120 4 93 187 3 

06:16-06:20 70 51 1 76 120 1 102 117 1 

06:21-06:25 73 50 1 94 66 0 92 197 2 

06:26-06:30 80 71 0 92 122 2 96 172 3 

06:31-06:35 85 78 3 82 145 5 73 184 5 

06:36-06:40 52 67 2 95 58 2 83 170 3 

06:41-06:45 102 103 0 70 170 0 92 137 1 

06:46-06:50 80 49 0 78 123 1 119 148 4 

06:51-06:55 87 81 3 102 145 0 97 192 7 

06:56-07:00 70 118 7 98 181 1 108 167 5 

07:01-07:05 85 97 3 69 94 3 105 182 3 

07:06-07:10 80 72 5 80 90 1 124 208 2 

07:11-07:15 72 81 6 71 123 3 83 136 3 
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DAY 3 SITE 7 (HAILE SELASSIE AVENUE-MOI AVENUE ROUNDABOUT) TRAFFIC DATA 

 

DIRECTION SOUTHWARD EASTWARD WESTWARD 

TIME VEH PED MOT VEH PED MOT VEH PED MOT 

07:16-07:20 71 79 5 72 130 2 102 147 6 

07:21-07:25 83 81 3 67 70 1 116 127 4 

07:26-07:30 92 67 2 76 83 3 132 148 2 

07:31-07:35 100 79 10 65 46 1 128 184 6 

07:36-07:40 110 51 7 80 245 2 76 1050 2 

07:41-07:45 101 48 3 93 200 5 125 980 7 

07:46-07:50 90 109 4 88 250 3 116 420 3 

07:51-07:55 70 43 2 70 500 7 129 1320 6 

07:56-08:00 76 79 6 72 337 5 133 510 2 

08:01-08:05 56 107 4 92 213 9 117 280 4 

08:06-08:10 71 72 12 102 67 15 114 176 3 

08:11-08:15 64 57 5 105 53 4 106 156 8 

08:16-08:20 52 112 3 55 51 3 104 223 2 

08:21-08:25 64 60 13 64 23 10 97 180 3 

08:26-08:30 55 48 2 63 37 7 88 173 0 

08:31-08:35 60 64 9 102 72 4 121 184 2 

08:36-08:40 64 72 9 84 103 6 96 157 3 

08:41-08:45 61 43 0 69 38 11 73 180 3 

08:46-08:50 53 61 10 73 59 3 97 152 2 

08:51-08:55 60 39 3 64 39 5 118 126 1 

08:56-09:00 80 112 7 64 54 12 123 130 1 

09:01-09:05 85 38 1 73 27 6 96 145 3 

09:06-09:10 73 64 21 60 42 13 112 117 2 

09:11-09:15 60 27 3 68 36 9 133 128 3 

09:16-09:20 59 71 7 89 44 7 77 125 2 

09:21-09:25 68 99 14 14 15 9 103 158 6 

09:26-09:30 64 81 12 87 67 0 88 118 4 

09:31-09:35 45 94 17 108 61 3 93 136 7 

09:36-09:40 81 61 20 102 24 2 74 95 5 

09:41-09:45 105 87 13 90 66 3 91 127 1 

09:46-09:50 90 117 7 103 68 4 119 176 2 

09:51-09:55 99 22 4 83 52 14 104 112 4 

09:56-10:00 86 99 13 92 45 8 122 84 2 

10:01-10:05 65 65 10 81 41 3 117 207 7 

10:06-10:10 80 43 19 43 44 1 97 178 8 

10:11-10:15 78 46 13 88 71 2 102 184 5 

10:16-10:20 83 35 6 70 63 5 129 218 4 

10:21-10:25 77 97 29 87 61 4 134 187 5 

10:26-10:30 40 81 19 110 73 7 131 540 4 
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Appendix V: MATLAB Code for Day 3 Site 2 Traffic Flow GGM(1,1) Training 

%The Nairobi CBD "Day 3 Site 2 Traffic Flow GGM(1,1) Training" MATLAB 

code sample file 

    % 1. Northbound file 

tic 

DN=[91  107 115 124 111 96  120 97  186 77  218 0 135 100 159 0 146 0 

167 217 0  241 80  123 61  0  100];         % First 27 vehicle flow 

data points   

AN=[DN(1:4); DN(2:5); DN(3:6); DN(4:7); DN(5:8); DN(6:9); DN(7:10); 

DN(8:11); DN(9:12); DN(10:13); DN(11:14); DN(12:15); DN(13:16); 

DN(14:17); DN(15:18); DN(16:19); DN(17:20); DN(18:21); DN(19:22); 

DN(20:23); DN(21:24); DN(22:25); DN(23:26); DN(24:27)];              % 

24 groups formed by DGT in 4s. 

    VN= zeros(24,4); 

for j=1:24; 

    XN=[AN(j,:)];                                        % Selecting 

a group 

    XNa=cumsum(XN);                                      % AGO 

    ZN=0.5*[XN(1)+XNa(2), XNa(2)+XNa(3), XNa(3)+XNa(4)]  % Background 

value Z 

    YN=[XN(2:4)];                                        % Measured 

vector Y 

    BN=[-ZN;1,1,1]';                                     % Data matrix 

B 

    QN=inv(BN'*BN)*(BN'*YN');                            % Parameter 

vector 

    for i=1:4; 

        t=i-1; 

        VN(j,i)=(XN(1)-QN(2)/QN(1))*exp(-QN(1)*t)+QN(2)/QN(1); 

    end 

end     

    VN; 
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    WN=[VN(:,1) VN(:,2)-VN(:,1) VN(:,3)-VN(:,2) VN(:,4)-VN(:,3)]; % 

IAGO 

    VSN=fliplr(WN); 

    H0N=sum(diag(VSN,0)); 

    H1N=zeros(1,3); 

    for i=1:3; 

        j=1; 

        H1N(j,i)=sum(diag(VSN,i)); 

    H2N=zeros(1,23); 

    for i=1:23; 

        J=1; 

        H2N(j,i)=sum(diag(VSN,-i)); 

    end 

    end 

    H1SN=fliplr(H1N); 

    HN=[H1SN H0N H2N]; 

    PN=[HN(1) HN(2)/2 HN(3)/3 HN(4:24)/4 HN(25)/3 HN(26)/2 HN(27)] % 

Fitted       

    %                                                                values 

    NRMSE=sqrt(mean((PN-DN).^2))                         % Northbound 

RMSE  

    NRMSPEe=sqrt(mean((PN-DN).^2/(DN).^2)*100^2)         % Northbound 

RMSPE  

    NMAE=mean(abs(DN-PN))                                % Northbound 

MAE  

    NMAPD=100*sum(abs(DN-PN))/sum(abs(DN))               % Northbound 

MAPD  

    % 2. Southbound file 

DS=[88 148 123 164 132 163 123 77 143 193 203 127 149 167 173 153 169 

217 176 154 0 214 193 135 68 139 113];      % First 27 vehicle flow 

data points. 
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AS=[DS(1:4); DS(2:5); DS(3:6); DS(4:7); DS(5:8); DS(6:9); DS(7:10); 

DS(8:11); DS(9:12); DS(10:13); DS(11:14); DS(12:15); DS(13:16); 

DS(14:17); DS(15:18); DS(16:19); DS(17:20); DS(18:21); DS(19:22); 

DS(20:23); DS(21:24); DS(22:25); DS(23:26); DS(24:27)];              % 

24 groups formed by DGT in 4s. 

    VS= zeros(24,4); 

for j=1:24; 

    XS=[AS(j,:)];                                        % Selecting 

a group 

    XSa=cumsum(XS);                                      % AGO 

    ZS=0.5*[XS(1)+XSa(2), XSa(2)+XSa(3), XSa(3)+XSa(4)]; % Background 

value Z 

    YS=[XS(2:4)];                                        % Measured 

vector Y 

    BS=[-ZS;1,1,1]';                                     % Data matrix 

B 

    QS=inv(BS'*BS)*(BS'*YS');                            % Parameter 

vector 

    for i=1:4; 

        t=i-1; 

        VS(j,i)=(XS(1)-QS(2)/QS(1))*exp(-QS(1)*t)+QS(2)/QS(1); 

    end 

end     

    VS; 

    WS=[VS(:,1) VS(:,2)-VS(:,1) VS(:,3)-VS(:,2) VS(:,4)-VS(:,3)]; % 

IAGO 

    VSS=fliplr(WS); 

    H0S=sum(diag(VSS,0)); 

    H1S=zeros(1,3); 

    for i=1:3; 

        j=1; 

        H1S(j,i)=sum(diag(VSS,i)); 
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    H2S=zeros(1,23); 

    for i=1:23; 

        J=1; 

        H2S(j,i)=sum(diag(VSS,-i)); 

    end 

    end 

    H1SS=fliplr(H1S); 

    HS=[H1SS H0S H2S]; 

    PS=[HS(1) HS(2)/2 HS(3)/3 HS(4:24)/4 HS(25)/3 HS(26)/2 HS(27)] % 

Fitted  

    %                                                                values 

    SRMSE=sqrt(mean((PS-DS).^2))                         % Southbound 

RMSE  

    SRMSPEe=sqrt(mean((PS-DS).^2/(DS).^2)*100^2)         % Southbound 

RMSPE  

    SMAE=mean(abs(DS-PS))                                % Southbound 

MAE  

    SMAPD=100*sum(abs(DS-PS))/sum(abs(DS))               % Southbound 

MAPD  

    % 3. Eastbound file 

DE=[97  95  82  87  91  97  102 78  67  143 80  64  68  38  48  62  

88  95  104 114 124 109 122 97  104 96  92];    % First 27 vehicle 

flow data points. 

AE=[DE(1:4); DE(2:5); DE(3:6); DE(4:7); DE(5:8); DE(6:9); DE(7:10); 

DE(8:11); DE(9:12); DE(10:13); DE(11:14); DE(12:15); DE(13:16); 

DE(14:17); DE(15:18); DE(16:19); DE(17:20); DE(18:21); DE(19:22); 

DE(20:23); DE(21:24); DE(22:25); DE(23:26); DE(24:27)];              % 

24 groups formed by DGT in 4s. 

    VE= zeros(24,4); 

for j=1:24; 

    XE=[AE(j,:)];                                        % Selecting 

a group 

    XEa=cumsum(XE);                                      % AGO 
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    ZE=0.5*[XE(1)+XEa(2), XEa(2)+XEa(3), XEa(3)+XEa(4)]; % Background 

value Z 

    YE=[XE(2:4)];                                        % Measured 

vector Y 

    BE=[-ZE;1,1,1]';                                     % Data matrix 

B 

    QE=inv(BE'*BE)*(BE'*YE');                            % Parameter 

vector 

    for i=1:4; 

        t=i-1; 

        VE(j,i)=(XE(1)-QE(2)/QE(1))*exp(-QE(1)*t)+QE(2)/QE(1); 

    end 

end     

    VE; 

    WE=[VE(:,1) VE(:,2)-VE(:,1) VE(:,3)-VE(:,2) VE(:,4)-VE(:,3)]; % 

IAGO 

    VSE=fliplr(WE); 

    H0E=sum(diag(VSE,0)); 

    H1E=zeros(1,3); 

    for i=1:3; 

        j=1; 

        H1E(j,i)=sum(diag(VSE,i)); 

    H2E=zeros(1,23); 

    for i=1:23; 

        J=1; 

        H2E(j,i)=sum(diag(VSE,-i)); 

    end 

    end 

    H1SE=fliplr(H1E); 
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    HE=[H1SE H0E H2E]; 

    PE=[HE(1) HE(2)/2 HE(3)/3 HE(4:24)/4 HE(25)/3 HE(26)/2 HE(27)] % 

Fitted  

    %                                                                values 

    ERMSE=sqrt(mean((PE-DE).^2))                         % Eastbound 

RMSE   

    ERMSPEe=sqrt(mean((PE-DE).^2/(DE).^2)*100^2)         % Eastbound 

RMSPE   

    EMAE=mean(abs(DE-PE))                                % Eastbound 

MAE  

    EMAPD=100*sum(abs(DE-PE))/sum(abs(DE))               % Eastbound 

MAPD   

    % 4. Westbound file 

DW=[39  48  35  30  35  70  45  74  86  75  79  106 49  84  110 100 

85  96  0   66  168 40  73  131 112 123 15];    % First 27 vehicle 

flow data points. 

AW=[DW(1:4); DW(2:5); DW(3:6); DW(4:7); DW(5:8); DW(6:9); DW(7:10); 

DW(8:11); DW(9:12); DW(10:13); DW(11:14); DW(12:15); DW(13:16); 

DW(14:17); DW(15:18); DW(16:19); DW(17:20); DW(18:21); DW(19:22); 

DW(20:23); DW(21:24); DW(22:25); DW(23:26); DW(24:27)];              % 

24 groups formed by DGT in 4s. 

    VW= zeros(24,4); 

for j=1:24; 

    XW=[AW(j,:)];                                        % Selecting 

a group 

    XWa=cumsum(XW);                                      % AGO 

    ZW=0.5*[XW(1)+XWa(2), XWa(2)+XWa(3), XWa(3)+XWa(4)]; % Background 

value Z 

    YW=[XW(2:4)];                                        % Measured 

vector Y 

    BW=[-ZW;1,1,1]';                                     % Data matrix 

B 

    QW=inv(BW'*BW)*(BW'*YW');                            % Parameter 

vector  

    for i=1:4; 
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        t=i-1; 

        VW(j,i)=(XW(1)-QW(2)/QW(1))*exp(-QW(1)*t)+QW(2)/QW(1); 

    end 

end     

    VW; 

    WW=[VW(:,1) VW(:,2)-VW(:,1) VW(:,3)-VW(:,2) VW(:,4)-VW(:,3)]; % 

IAGO 

    VSW=fliplr(WW); 

    H0W=sum(diag(VSW,0)); 

    H1W=zeros(1,3); 

    for i=1:3; 

        j=1; 

        H1W(j,i)=sum(diag(VSW,i)); 

    H2W=zeros(1,23); 

    for i=1:23; 

        J=1; 

        H2W(j,i)=sum(diag(VSW,-i)); 

    end 

    end 

    H1SW=fliplr(H1W); 

    HW=[H1SW H0W H2W]; 

    PW=[HW(1) HW(2)/2 HW(3)/3 HW(4:24)/4 HW(25)/3 HW(26)/2 HW(27)] % 

Fitted  

    %                                                                values 

    WRMSE=sqrt(mean((PW-DW).^2))                         % Westbound 

RMSE  

    WRMSPEe=sqrt(mean((PW-DW).^2/(DW).^2)*100^2)         % Westbound 

RMSPE   
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    WMAE=mean(abs(DW-PW))                                % Westbound 

MAE  

    WMAPD=100*sum(abs(DW-PW))/sum(abs(DW))               % Westbound 

MAPD   

    % PLOTS 

    % Northbound PLOT 

    t=[0:1:26];                           % Time sample (t) 

    NDt=minus(DN,PN)                      % Northbound de-trended data 

series 

    SDt=minus(DS,PS)                      % Southbound de-trended data 

series 

    EDt=minus(DE,PE)                      % Eastbound de-trended data 

series 

    WDt=minus(DW,PW)                      % Westbound de-trended data 

series 

    figure 

subplot(4,2,1) 

plot(t,DN,'-*b',t,PN,'-ro');              % Graph of real and fitted 

values               

%legend('Real data','Simulated data by 

GGM(1,1)','location','northwest'); 

title('NORTHWARD');                       % Graph title 

%ylabel('Vehicle Flow');                  % y-axis label 

grid on; 

subplot(4,2,3) 

plot(t,NDt,'-+g');                        % plotting de-trended graph 

%legend('Simulation Error','location','northwest') 

grid on;                    

    % Southbound PLOT  

subplot(4,2,2) 

plot(t,DS,'-*b',t,PS,'-ro');              % Graph of real and fitted 

values               
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%legend('Real data','Simulated data by 

GGM(1,1)','location','northwest'); 

title('SOUTHWARD');                       % Graph title 

grid on; 

subplot(4,2,4) 

plot(t,SDt,'-+g');                        % plotting de-trended graph 

%legend('Simulation Error','location','northwest') 

    grid on; 

    % Eastbound PLOT 

subplot(4,2,5) 

plot(t,DE,'-*b',t,PE,'-ro');              % Graph of real and fitted 

values               

legend('Real data','Simulated data by 

GGM(1,1)','location','northwest'); 

title('EASTWARD');                        % Graph title 

%xlabel('Time Sample (t)');               % x-axis label 

ylabel('Vehicle Flow');                   % y-axis label 

grid on; 

subplot(4,2,7) 

plot(t,EDt,'-+g');                        % plotting de-trended graph 

legend('Simulation Error','location','northwest') 

%title('EAST');                           % Graph title 

xlabel('Time Sample (t)');                % x-axis label 

%ylabel('Vehicle Flow');                  % y-axis label 

grid on; 

    % Westbound PLOT 

subplot(4,2,6) 

plot(t,DW,'-*b',t,PW,'-ro');              % Graph of real and fitted 

values               
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title('WESTWARD');                        % Graph title 

suptitle('DAY 3 SITE 2 TRAFFIC FLOW GGM(1,1) TRAINING'); 

grid on; 

subplot(4,2,8) 

plot(t,WDt,'-+g');                        % plotting de-trended graph 

%xlabel('Time Sample (t)');               % x-axis label 

grid on; 

toc 
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