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ABSTRACT

Estimation procedure of Population Parameters in Model Based framework has
employed Nonparametric techniques widely. This has become more interesting
when complete Auxiliary information is available allowing use of more flexible
methods in predicting the value taken by the survey variable in nonsampled units
ensuring more efficient Estimators of Finite Population Totals are build. In this
context, estimators such as Local Polynomial and Kernel Smoothers have dom-
inantly been used and shown to provides good estimators for Finite Population
Total in low dimension. Even in these scenarios however, bias at boundary points
presents a big problem when using these estimators in estimating Finite Popula-
tion Parameters. The problem worsens as the dimension of the regressors vectors
increases. This leads to sparseness of regressors values in the design space making
these methods unfeasible due to the decrease in the fastest achievable rates of con-
vergence of the regression function estimator towards the target curve. To address
this challenges, this study considers estimation of Finite Population Totals in high
dimension using a Feedforward Backpropagation Neural Network. The technique
of Neural Network ensures Robust Estimator in high dimensions and reduces
estimation bias with marginal increase in variance. The estimators properties
are developed, and a comparison with existing estimators such as Generalized
Additive Models, Multivariate Adaptive Regression Spline and Local Polynomial
was conducted to evaluate the estimators performance using simulated data and
data acquired from the United Nations Development Programme 2020. When
certain conditions are met, the estimator was found to have an asymptotic Mean
Square Error and asymptotically consistent. Simulation results showed that, the
Feedforward Backpropagation Neural Network estimator is efficient and outper-
formed the existing estimators in estimating Finite Population Totals as it had
smaller values of biases, and mean square errors compared to other Estimators.
The estimation approach performs well in an example using data from a United
Nations Development Programme 2020 on the study of Human Development In-
dex against other factors. The theoretical and practical results imply that the
Feedforward Backpropagation Neural Network Estimator is highly recommended
for Survey Sampling in the Estimation of Finite Population Totals.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the Study

Surveys are conducted at Local, National and International Levels to gather in-
formation and aid Public and Private sectors in effective policy making, (Hansen
et al., 1987). The objective of any survey is usually to obtain summary Statistics
for a Finite Population or for specific subgroups at the same time reducing the
time and cost of collecting data. Extrapolation does not give accurate informa-
tion in Surveys since the Sample is a subset of an entire Population and therefore
does not have information on Units that are not represented in the selected Sam-
ple. Auxiliary Information that is correlated to the characteristic under study
has been very effective in predicting the information in the unobserved units of
the Population under study.

For the purposes of this study, suppose there is a Finite Population of N distinct
and identifiable units; U = {1, 2. . . . , N}. Let each Population Unit have the
variable of interest as Y . It is assumed that there exist an Auxiliary Variable
X ∈ Rd, closely associated with Y , which is known for the entire Population
(i.e X1, X2 . . . , XN) are known ∀ Yi, i = 1, 2, . . . , N . Often the researchers are
faced with the problem of estimating a function of the Population, (i.e a function
of Y ′s), such as the Population Total;

T =
N∑
i=1

Yi (1.1)

or the Population Mean Ŷ or the Population Distribution Functions

F (y) =
1

N

N∑
i=1

I(Yi ≤ y) (1.2)
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The use of Distribution Functions in Survey Sampling, see (Chambers et al.,
1992) .

In estimating the Population Total T for instance, a Sample S is usually taken
so that the pair (xi,j, yi), i = 1, 2, . . . , n and j = 1, 2, 3, . . . , d is obtained from
the variable X and corresponding variable Y . It may then be used in the Design
Stage, Estimation Stage or both, (Hadayat and Silha, 1991). In the presence of
such auxiliary variables, a researcher can use a Superpopulation Model at the es-
timation stage for inference, (Chambers and Dunstan, 1986; Wang and Dorfman,
1996). Thus, estimators are sought to have desirable properties like Asymptotic
Design Unbiased, Consistency irrespective of whether the working model is cor-
rectly specified or not and to be particular the efficiency of the model.

However, all these techniques refer to simple statistical models for the underly-
ing relationships between the Survey and Auxiliary variable (Linear Regression
Models). (Hansen et al., 1983), points out through empirical study that, under
the Parametric Superpopulation, Misspecification of the Model can lead to se-
rious errors in an inference. To solve this problem, Nonparametric Regression
involving Robust Estimators in Finite Population Sampling has been proposed
by (Dorfman, 1992a; Otieno and Mwalili, 2000; Breidt and Opsomer, 2000).

The reason behind the Nonparametric Approach in this study is that a regression
curve obtained in this way has four main purposes detailed by (Härdle and Lin-
ton, 1994). It provides a versatile method of exploring the general relationship
between two variable; secondly, it enables one to make prediction of observations
without any reference to fixed Parametric Model; thirdly, it is a tool for finding
spurious observations by studying influence of isolated points and lastly it is a
flexible method for interpolating between adjacent values of Auxiliary variable.

A major problem that is usually encountered when using Nonparametric Kernel
based Regression Estimators over a Finite Interval such as the estimation of Fi-
nite Population Quantities is the bias at the boundary points, (Chambers et al.,
1992). It is also known that, Kernel and Polynomial Regression Estimators pro-
vide good estimates for the Population Total when x ∈ Rd and d = 1, (Otieno
and Mwalili, 2000; Montanari and Ranalli, 2003).

However, even though high dimensional Auxiliary Information might be accounted
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for in the above Estimators, the problem of the sparseness of regressors’ values
in the design space makes Kernel Methods and Local Polynomials unfeasible as
performance deteriorates sharply with increase in the dimension, (Stone, 1982;
Bickel and Li, 2007; Montanari and Ranalli, 2003). This problem is known as
the "Curse of Dimensionality" which is caused by the sparsity of the data
in high dimensional spaces, resulting in a decrease in the fastest achievable rates
of convergence of the Regression Function Estimators towards their target curve
as the dimension of Regressor Vector increases. Local approximators in such a
context run into problems. A review on the concept of Curse of Dimensionality
is provided in (Friedman, 1991).

Therefore, one has to turn to different Nonparametric Estimators to retain a large
degree of flexibility. An attempt to handle Multivariate Auxiliary Information is
to use Recursive Covering in Model-Based perspective (Di Ciaccio and Monta-
nari, 2001) and Generalized Additive Modeling in a Model-Assisted Framework
(Opsomer et al., 2007). These estimation methods comes at a cost of reduced
flexibility with the associated risk of increased bias (Stone, 1982; Friedman, 1991;
Bickel and Li, 2007; Rady and Ziedan, 2014).

To address the mentioned challenges, studies have suggested the use of Neural
Network in the Estimation of the Mean Function in cases where we have higher
dimensional datasets, (Cybenko, 1989; Funahashi, 1989; Barron, 1993; Franke
and Diagne, 2006). Neural Network(NN) constitute a class of flexible Nonlinear
Models designed to mimic Biological Neural Systems. Biological Neural System
consists of several layers, each with a large number of Neural Units (Neurons)
that can process the information in a parallel manner. The models with these
properties are known as NN Models.

The development in NN, including more complex and flexible NN structures and
new Network learning methods was first presented by (Rumelhart et al., 1988)
in his seminal work. Since then, NN has become a rapidly growing research,
attracting interest in different fields. For instance, it has been applied in Pattern
Recognition, Signal Processing, Language Learning and many more in the field
of Finance, Econometrics etc.

The reason behind the choice of NN in this work is that NN can be used to
approximate the unknown Conditional Mean Function of a variable of interest

3



without suffering from the problem of Model Misspecification, unlike Parametric
Models commonly used in empirical Studies. This is because of its Multi Layer
Structure in which the Middle Layer is build upon many Simple Nonlinear Func-
tions that play the role of Neurons in Biological Systems. Therefore, by allowing
the number of these Simple Functions to increase indefinitely, a Multi Layered
NN is then capable of approximating a large class of functions to any desired de-
gree of accuracy as shown in the theoretical work by (Cybenko, 1989; Funahashi,
1989; Barron, 1993).

Although Kernel and Local Polynomial Approximators also have the same prop-
erty, they usually require a large number of components to achieve similar approx-
imation accuracy (Barron, 1993). NN are thus considered to be a parsimonious
approach to Parametric Functional Analysis.

1.2 Statement of the Problem

Consider the estimation of the Population Total say T

T =
∑
i∈s

yi +
∑
i∈r

yi, (1.3)

where s are the Sample Units and r the Nonsampled Units. Assume that

yi = m(Xi,j) + εi, (1.4)

with Xi,j ∈ Rd, ε1, ε2, . . . , εN i.i.d with mean zero and xij, i = 1, 2, . . . , N, j =

1, 2, . . . , d are the Auxiliary Information. For d = 1 (One Dimension), Non-
parametric Estimates for the Mean Function m(.) based on the Kernel or Local
Polynomial Estimates have been shown to provide good Estimates of the Popu-
lation Total T in equation (1.3), (Stone, 1982; Otieno and Mwalili, 2000). It has
been demonstrated that Multivariate Auxiliary Information might be accounted
for in the above Estimators, however, the problem known as Curse of Dimension-
ality makes these methods unfeasible as performance deteriorates sharply with
increases in Dimension (Stone, 1982; Bickel and Li, 2007; Montanari and Ranalli,
2003). The reason behind this poor performance is because, these methods rely
on Local Averaging, therefore, in high dimensions, the Local Neighborhoods are
almost empty and the Neighborhoods that are not empty are not Local hence the
boundary effect are greatly exaggerated making the Computational and Statisti-
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cal Efficiency of the estimator difficult. In such cases, one has to either constrain
the form of the Mean Function m(.) for instance, use Functions which are Addi-
tive with respect to the coordinates of xj but these comes at a cost of reduced
flexibility and an associated risk of increased Bias (Stone, 1982; Friedman, 1991;
Bickel and Li, 2007; Rady and Ziedan, 2014). Another alternative is to turn to
different Nonparametric Estimators to retain a large degree of flexibility, (Mon-
tanari and Ranalli, 2003; Stone, 1982). To address this challenges, this study
considers a Feedforward Backpropagation Neural Network learning to Estimate
the Functional Relationship between the Survey Variable and the Auxiliary Vari-
ables in High Dimensional case.

1.3 Objectives of the Study

1.3.1 General Objective

To estimate Finite Population Total based on a Robust Nonparametric Feedfor-
ward Backpropagation Neural Network.

1.3.2 Specific Objectives

1. To develop a Robust Nonparametric Estimator of Finite Population Total
based on Feedforward Backpropagation Neural Network.

2. To derive the Asymptotic Properties of the developed Estimator.

3. To compare the performance of the developed Estimator to other existing
Nonparametric Finite Population Total Estimators such as Generalized Additive
Models, Multivariate Adaptive Regression Spline and Local Polynomial which
can handle High Dimensional Data using simulation Procedure.

4. To apply the developed Estimator to the data acquired from the United
Nations Development Programme 2020 and compare its performance with other
existing Nonparametric Finite Population Total Estimators such as Generalized
Additive Models, Multivariate Adaptive Regression Spline and Local Polynomial.

5



1.4 Justification of the Study

1.4.1 Justification to the Theory of Statistics

The main goal in Survey Sampling is to use the Sample Statistics to make conclu-
sions about the overall Finite Population Quantities. Nonparametric Regression
has developed into a increasingly growing field of statistics. This Regression
approach is flexible and data-analytical way of Estimating Regression Function
without specifying a Parametric Model correctly. Nonparametric Estimates are
often more reliable and flexible than Design Based Presumptions or Paramet-
ric Regression Models. In Sample Surveys, the Auxiliary Information is used to
increase the accuracy of Estimators of Finite Population Quantity at the Estima-
tion Stage.

Within the context of Nonparametric Regression, the Estimator suggested in liter-
ature contribute to the Trade-Off of Bias-Variance along the Boundary Points and
hence becomes infeasible in high dimensions.The aim of this research is therefore
to address this weakness by applying Neural Network method to the Estimation
of the Finite Population Total in high dimensional case.

1.4.2 Justification to Users of Statistics and other Stake-

holders

Globally, Census plays a crucial role during resource allocation and planning.
However, they are carried out only after every ten years. Thus, other methods
are required for planning in the intervening years. Population Estimates use
the Census as a baseline, for instance adding Births and subtracting Deaths and
make allowances for Migration. They can be used for National and Local Plan-
ning. Population Estimates are produced annually.

Additionally, National Government use Population Estimates as the basis for
capitation-based funding of County Governments, Primary health Care, Educa-
tion and other sectors of the economy, hence under-estimation can therefore have
effects on Local services, and Over-estimation can lead to unfair resource dis-
tribution. Therefore having an Robust Estimator Population Total/ Estimates
will ensure equitable resource allocation.The outcome of this thesis will play an
important role in providing a reliable Estimator of Finite Population Total that
will assist the Government in ensuring equitable resource allocation.

6



Additionally, the study contributes towards development of Mathematical and
Statistical knowledge in Survey Sampling. The developed Estimation Procedure
is useful to policy makers since National Development is dependent on the Sam-
pling Strategy employed. In addition, Business and Industrial sectors stand to
benefit from this study by using the developed Estimation Procedure for predic-
tion and thereby improving the efficiency of their internal operations.

1.5 Organization of the Thesis

The rest of this thesis is organized as follows: In chapter two, a critical review of
the work done by other researchers in the Nonparametric Estimation of the Finite
Population Parameters is accomplished and also some of the Robust Estimators
of the Finite Population Total are reviewed. In chapter three, Neural Network is
reviewed extensively and Robust Estimators of the Finite Population Total using
the procedure of Neural Network is developed in a Model Based Framework and
its properties investigated. In chapter four, a study is carried out to compare
the performances of the Estimator developed in chapter three with some other
Estimators that exist in the literature. Finally, in chapter five, a Summary of the
study is outlined in terms of the Conclusions and Recommendations for Further
Research.

7



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Estimation of a Finite Population Parameters such Population Mean and Total
has been an important problem in Survey Sampling. The most common approach
to Estimation of Population Parameters in Finite Population Sampling takes a
Design Based Approach, hence a number of Design Based Procedures such as
Horvitz-Thompson Estimator have been developed for the Estimation of Finite
Population Total.

Another widely used approach to this problem involves using any available Aux-
iliary Information related to the Population of interest that is available. One
approach to using this Auxiliary information in Estimation is to assume a work-
ing model describing the relationship between the study variable of interest and
the auxiliary variables. Estimators are then derived on the basis of this model,
(Dorfman, 1992b). Estimators are sought which have good efficiency if the model
is true, but maintain desirable properties like design consistency if the model is
false.

During such problems, the main challenge that needs to be addressed is the mat-
ter of accuracy of the Estimator which may also be referred to as Robustness of
the Estimator. Accordingly, each time an Estimator of Finite Population Total
is constructed, matters of robustness in the chosen Estimator are of importance.
The current problem of this thesis is on the Estimation of Finite Population To-
tal in high Dimensional spaces, a problem which suffers from Robustness due to
high biases at the boundaries if an estimator is not correctly chosen. Herein, to
ensure Robustness in the Estimation of Finite Population Total in high dimen-
sions (multivariate case), a Nonparametric Feedforward Backpropagation Neural

8



Network Function is developed and used.

The reason behind the choice of a Nonparametric Feedforward Backpropagation
Neural Network is informed by the fact that a Neural Network can be used to
approximate the unknown Conditional Mean Function of a variable of interest
without suffering from the problem of model misspecification, unlike Parametric
Models commonly used in empirical studies. Additionally it does not rely on the
local averaging that Kernel Smoother in the Nonparametric context relies on.
This is because of its Multi-Layer Structure in which the Middle Layer is build
upon many simple Nonlinear functions that play the role of Neurons in Biological
Systems.

Therefore, by allowing the number of these simple functions to increase indef-
initely, a Multi-Layered NN is then capable of approximating a large class of
functions to any desired degree of accuracy as shown in the theoretical work by
(Cybenko, 1989; Funahashi, 1989; Barron, 1993). Once a Nonparametric Feedfor-
ward Backpropagation Neural Network Function is developed, it is then employed
in the Estimation of Finite Population Total.

2.2 Theoretical Review

2.2.1 Nonparametric Estimators of Finite Population Total

In this section, numerous studies in Nonparametric Estimation process have been
discussed that formed the basis for the Neural Network Estimator that was de-
veloped in the current study.

It is important to note that in Nonparametric Estimation procedures, when the
Auxiliary information is available, a Linear Model is selected as the working
model, (Dorfman, 1992b). Estimators such as Generalized Regression Estima-
tors, (Cassel et al., 1976; Särndal, 1980; Robinson and Särndal, 1983)), including
Ratio Estimators and Linear Regression Estimators, (Cochran, 1977), Best Lin-
ear Unbiased Estimators (Brewer, 1963) and Post-Stratification Estimators (Holt
and Smith, 1979), are all derived from assumed Linear Models.

In some situations, the Linear Model is not appropriate and the resulting Esti-
mators do not achieve any efficiency gain over purely Design-Based Estimators.
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(Wu and Sitter, 2001) propose a class of Estimators for which the working mod-
els follow a Nonlinear Parametric Shape. However, efficient use of any of these
Estimators requires a priori knowledge of the specific Parametric Structure of the
Population. This is especially problematic if that same model is to be used for
many variables of interest, a common occurrence in Surveys.

Chambers et al. (1992) considered the same problem of estimating Finite Popu-
lation Total and proposed a calibrated version of the Nonparametric Estimator.
The prediction Bias was estimated based on a specified model and subtracted
from the Nonparametric Estimate of the Nonsampled component. The resulting
Estimator had a better performance than the Non-calibrated Nonparametric Es-
timator.

As a way of reducing the Boundary Bias that is experienced when Estimating
using Kernel Smoothers, (Herbert et al., 2017) considered the problem of Estimat-
ing Finite Population Total and proposes incorporating the Jackknifed procedure
into the Nonparametric Regression Estimator (the case of Nadaraya- Watson) to
reduce the Bias. The empirical results from the simulations conducted showed
that in terms of Biases and Mean Square Errors, this Estimator performed well
compared to other existing Estimators in the Estimation of the Finite Population
Total.

One problem in the above literature in Estimation of the Finite Population Total
is that they have been considered in the Univariate case; that is X ∈ Rd, d = 1.
As noted by (Montanari and Ranalli, 2003), extension of these techniques to Mul-
tivariate case although it is feasible in theory, it is difficult in practice because
of the Curse of Dimensionality. The cause of this Curse of Dimensionality is the
Trade-Off between the Bias and Variance in Nonparametric Curve Estimation.
Bias controls demand to consider data in a small Neighborhood around the target
predictor X, where the Curve Estimate is desired, while Variance control requires
large Neighborhoods containing many predictor-response pair.

Therefore, when the dimension increases, the predictor location becomes increas-
ingly sparse, with larger average distance between predictor location, moving the
Bias-Variance Trade-Off and resulting rate of convergence in unfavorable direc-
tion.
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(Bickel and Li, 2007) demonstrates that, "naive" Multivariate Local Polynomial
Regression can adapt to a Local Smooth Lower Dimensional Structure in the sense
that it achieves the optimal convergence rate for Nonparametric Estimation of
Regression Function belonging to a Sobolev space when the predictor variables
lives on or close to a lower dimensional manifold. However, this will require fit-
ting a model with a large sample size to achieve this. (Stone, 1982) in his study
demonstrates that, if the Regression Function m(x) belong to a Sobolev space
with smoothness p, there is no Nonparametric Estimator that can achieve a faster
convergence rate than n− p

2p+d , where d is the dimension of the predictor variables.

There has been a surge in research on identifying intrinsic low dimensional struc-
ture from seemly high dimensional source, (Stone, 1982; Belkin and Niyogi, 2003;
Ham et al., 2004). In this case, it is assumed that the observed high dimensional
data are lying on low Dimensional Smooth Manifold. If one can Estimate the
Manifold, then it can be expected that procedures which perform as well as if the
structure is known even if the low Dimensional Structure obtains only in a Neigh-
borhood of a Point Estimation at that point should be governed by actual rather
than ostensible dimension. (Levina and Bickel, 2004), points out that, in predict-
ing Y from X on the basis of training sample, one could automatically adapt to
the possibility that the apparently high dimensional X that one observed in fact
lived in a much smaller dimensional Manifold and that the Regression Function
was Smooth on that Manifold.

Further attempt to handle Multivariate Auxiliary is to use Recursive Covering
in Model-based perspective, (Di Ciaccio and Montanari, 2001). Within Model-
Assisted Framework, Generalized Additive Models(GAM) have been employed to
this end by (Opsomer et al., 2001) who proposed the use of Penalized Splines
while (Montanari and Ranalli, 2003) considered Neural Network (NN) in a more
general context of Model Calibration to Estimate Population Mean. In their
study they found out that NN gain efficiency with respect to Classical Regression
Estimators except in case when Sampling in High Dimension. They also observed
that, once Weight Decay Penalization is employed, choice of the number of Units
in the Hidden Layer is less important and does not imply in any case particularly
erratic result.

(Montanari and Ranalli, 2003) also compared the performance of NN, DART,
(Friedman, 1991), MARS, (Friedman, 1991) and GAM, (Hastie and Tibshirani,
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1990). The theoretical properties of these Estimators were stated and their per-
formance tested through a Simulation Study where they found out that NN also
competed well among the other Estimators in the Univariate case. (Wangang et
al.2014) explores the use of MARS and NN to capture the Intrinsic Nonlinear and
Multidimensional Relationship associated with Pile Driveability. In their study,
Performance measures indicated that NN and MARS models for the analyses of
Pile Driveability provide similar predictions and can thus be used for predicting
Pile Driveability.

From these reviews on Parametric and Nonparametric Estimators of Finite Popu-
lation Total that have been proposed and used to date, It may be seen that these
estimators have shown good performance in situations where the model has been
specified correctly for the Parametric ones and in lower dimensions (univariate
case) for the case of Nonparametric Kernel Smoothers. Kernel Smoother Estima-
tors generally relies on Local Averaging hence in high dimensions, the boundary
effect are greatly exaggerated as the dimension increases since a fraction of data
points near the boundary grows rapidly making the computational and statistical
efficiency of the estimator difficult.

Therefore, it comes out clearly that where the Model is Misspecified, the Para-
metric Estimators of Finite Population Total discussed in the Literature above
will give Estimators that are not Robust and are of low precision, while the Es-
timators based on Kernel Smoothers their efficiency will become poorer as the
dimension of the Regressors increases. Therefore, this calls for the need of an
Estimator of Finite Population Total that can handle issues of model Misspecifi-
cation and maintain high efficiency in High Dimensional datasets.

Thus, in this thesis, an estimator of Finite Population Total based on a Robust
Nonparametric Feedforward Backpropagation Neural Network is developed.

2.2.2 Asymptotic Properties of Estimators Based on Non-

parametric Regression

The key properties that a statistician would be interested to check given an
Estimator, are the, Normality, Consistency, the Variance and the Bias of that Es-
timator. These can enable one to measure the amount of precision and accuracy
that an Estimator has. In fact at an arbitrary fixed point, a basic measure of
accuracy that takes into account both the Bias and Variance is the Mean Square
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Error (MSE) (Tsybakov and Tsybakov, 2009).

Other texts that have such literature include (Härdle and Linton, 1994; Härdle
et al., 2004; Takezawa, 2005). This is one of the criteria of error measurement
that can be used in such statistical researches. In Nonparametric Regression Esti-
mation, one may be interested in the cumulative amount of Bias and the Variance
over the entire regression line. This global measure called MISE is obtained by
finding the integral value of the Variance and the Square of the Bias of the Esti-
mator (Zucchini et al., 2003; Soh et al., 2013).

An asymptotic approximation of Univariate Kernel Estimator using Taylor’s se-
ries expansion will yield the Asymptotic Mean Integrated Square Error (AMISE),
(Manzoor et al., 2013). Given the Asymptotic Properties one can discuss the
speed of convergence of the Estimators and determine the cost to pay in a given
option. It is from this vast literature that this study uses these measures in the
analysis stage to compare the proposed estimator against the standard ones re-
ported in the simulation study.

From these reviews it can be seen that determining Asymptotic Properties of an
Estimator play a key role in the development of that Estimator. Therefore, as
the one of the stages of coming up with estimator of Finite Population Total in
high Dimensions cases, the study has to derive the Asymptotic Properties as an
indicator and measure of performance.

2.3 Empirical Review

2.3.1 Performance of Estimators of Finite Population Total

The performance of an Estimator or a model is related to how close are the pre-
diction values to the observed values. In assessing the performance of Estimators,
measures that allow for comparison of the Estimators are normally subjected to
simulated data. There are different consistency criteria used in order to compare
and assess the performance of different Estimators. This includes Mean Square
Error (MSE), Mean Absolute Error (MAE), Bias, Relative Bias (RB), Mean Ab-
solute Percentage Error (MAPE) and the list continues.
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(Dorfman, 1992b) used the Root Average Relative Biases to make comparison
between the Design-Based Hovitz-Thompson Estimator with the Model-Based
Nonparametric Regression Estimator derived using (Nadaraya, 1964) Smoother.
More literature on the techniques used to measure the performance of the Estima-
tors in different studies can be found in (Bickel and Li, 2007; Breidt and Opsomer,
2000; Breidt et al., 2005; Otieno and Mwalili, 2000; Otieno et al., 2007). From
the above literature, it is imperative to note that, performance of an Estimator
is an important step in checking whether the developed Estimator can be reli-
able is the Estimation of particular Population Parameters. The measures used
in these literature are universal and employed in most of the Statistical Anal-
ysis to compare the performance of different Estimators. These measures are
also employed in this study to compared the developed Estimator with the other
identified Estimators.

2.4 Research Gaps Resulting from Critiques of

the Existing Literature Reviewed

From the literature reviewed in Sections 2.2.1, 2.2.2 and 2.3.1 where the critiques
have been given, it was clear that Parametric Estimators and Nonparametric Ker-
nel Smoothers are popular in the Estimation Finite Population Parameters such
as Population Total. They have gained usage in many practical cases and relied
upon by many researchers. Various Nonparametric Estimation methods of Finite
Population Total reviewed employed either Kernel Smoothers, Local Polynomials
and the Splines in the Estimation of the Regression Function which is later used
to predict the Nonsampled Units in Population.

However, conventional Parametric Estimators suffer when the model under con-
sideration is Misspecified and can not capture Non-Linearity in the data which
often exit when dealing with real life situations, while most Kernel Smoothers
have boundary problems and their efficiency rely greatly on the bandwidth that
is selected. In addition, for the Kernel Smoother, Estimators have been shown to
only provide good Estimates of the of the Regression Function in lower dimen-
sions but as the dimension increases, their performance deteriorates.

Therefore, there is still no Robust Estimation Framework in Nonparametric Esti-
mation techniques that can be used to efficiently Estimate the Regression Func-
tion and hence the Finite Population Total in cases of high dimensional dataset.
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This study uses Feedforward Backpropagation Neural Network approach to the
Nonparametric Estimation of Finite Population Total.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

In real-life, Surveys are conducted at Local, National and International levels to
gather information and aid Public and Private sectors in effective policy making.
The reason behind any Survey is usually to obtain summary statistics for a Finite
Population or for specific subgroups at the same time reducing the time and cost
of collecting data. In this instance, the problems involving Estimation of Popu-
lation Parameters such as Population Total, Means, and Proportions will occur.

To find an efficient Estimator of one these Parameters, one has to first evaluate
its properties of the Estimators available and then choose the best one. The most
desirable properties are typically Unbiasedness, Minimum Variance, Consistency
and least Mean Square Error. It is worth noting that using a Survey approach can
help build an Estimator with these desirable properties. Careful application of
such methods often achieves better performance. Most researches have developed
Estimators that works well when we have small dimensional datasets especially
in the Univariate case.

The truth is, in real life situations , we experience problems that rely on Multivari-
ate datasets or what we refer in here as the high dimensional case and therefore
the existing Estimators face a challenge in the estimation of population param-
eters such as Population Total with high precision. Therefore, this Estimation
of Finite Population Total calls for a Robust Estimator which can handle high
dimensional datasets and still maintains high precision.

In addition, it has been observed from literature that, Nonparametric Regression
techniques based on Kernel and Local Smoothers suffer greatly from the prob-
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lem of the Curse of Dimensionality hence becoming unfeasible as performance
deteriorates sharply with the increase in dimension. Also, if one resorts to using
Parametric Estimators in the Estimation, they also suffer from Model Misspecifi-
cation and also Multicollinearity of the Regressors which affects their performance
and inability to capture Non-linearity in the data.

The alternative is to use Neural Network (NN) in the Estimation of the Regres-
sion Function. Neural Network is able to handle high dimensional data because
of its Multi-layered structure in which the Middle Layer is made up of Neurons.
Therefore, allowing number of Neurons to increase indefinitely enables NN model
to approximate the unknown Conditional Mean Function of a variable of interest
without suffering from the problem of Model Misspecification and also gives it
the capability of approximating a large class of functions to any desired degree
of accuracy.

To enable development of a Robust Feedforward Backpropagation Neural Net-
work Estimator of Finite Population Total, a brief review of the general theory of
Neural Network is now done in the Section 3.4 that follows. Here we review the
Activation Functions with an intention of highlighting reasons towards choice of
the Logistic Activation Function that is eventually used in this development. The
reason behind the choice of the Backpropagation as a training technique is also
provided here. Finally, some Notations used are provided and briefly explained.

3.2 Notations Used

In this section, the fundamental concepts and Notations useful for the sequel are
provided and defined.

Suppose there is a Finite Population of N with distinct and identifiable Units
U = {1, 2. . . . , N}. We define the Population Total as

T =
N∑
i=1

Yi (3.1)

T =
∑
i∈s

yi +
∑
i∈r

yi (3.2)
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The intention is to Estimate the Nonsampled elements in the Population r. Let
there exist an Auxiliary variable X ∈ Rd, closely associated with Y , which is
known for the entire Population (i.e X1, X2 . . . , XN) are known ∀ Yi. Let X and
Y be define by a Superpopulation Model such that

yi = m(xi,j) + εi (3.3)

with xi,j ∈ Rd, ε1, ε2, . . . , εN i.i.d with mean zero and xij, i = 1, 2, . . . , N, j =

1, 2, . . . , d are the Auxiliary Information. The the Population Total T can be
given as

T =
∑
i∈s

yi +
∑
i∈r

m(xi,j) (3.4)

Where m(xi,j) is the Mean Function which is Estimated by Neural Network Func-
tion given as

fH(x, θ) = v0 +
H∑

h=1

vhψ
(
w0h + xTwh

)
, x ∈ Rd (3.5)

where θ represents the a vector of Neural Network Weights, H denotes the number
of nodes/ neurons, vh denotes the Network Weights from the hidden layer to the
output layer, wh denotes the Network Weights from the input layer to the Hidden
layer and ψ represents the Activation Function.

3.3 Nonparametric Estimators of Finite Popula-

tion Totals

3.3.1 The Nadaraya-Watson Estimator

In Estimating the Population Total in equation (1.3), a datum point remote
from x carries very minimal information about m(x). The Estimator is therefore
Estimated using the Function of the Sample values of y′is and the Nonsample
component is predicted, based on the Nonparametric model in equation (1.4).
The non-sample values of y′js are estimated using the local running average such
that

m̂(xj) =
n∑

i=1

wi(xj)yi (3.6)
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where wi(xj) =
k
(xi−xj

h

)
n∑

i=1

k

(
xi − xj
h

) is the Nadaraya- Watson Smoother (Nadaraya,

1964). The Function k(u) is a Symmetric Density Function, it can be the Gaus-
sian, Rectangular, Triangular, biweight or Epanechnikov Kernel for given Scaling
Smoothing Parameter h. The Kernel Function is defined by the relation given by

k(u) =
1

nh
k

(
xi − xj
h

)
The Kernel Function k(u) is under the user control. Therefore, it is necessary
for practical purposes to consider results that hold for particular Kernel being
used. The assumption considered at this stage is that the Kernel is Symmetrical
Function satisfying the following properties, (Silverman, 1986);

i) k(u) ≥ 0

ii)
∫
k(u)du = 1

iii)
∫
uk(u)du = 0

iv)
∫
u2k(u)du = K2 ̸= 0

v) k(u) = k(−u) for all u

vi)
∫ ∞

−∞
(k(u))2du <∞

It has been noted that none of the smoothing procedures is uniformly best. How-
ever, the Kernel Smoothers have optimal properties, (Gasser and Engel, 1990). A
Nonparametric Regression Estimator for the Finite Population Total, (Dorfman,
1992a,b) takes the form

T̂NW =
∑
i∈s

yi +
∑
j∈r

m̂(xj) (3.7)

It can be shown that the Conditional Mean and Variance of T̂NW −T can be give
as follows

E(T̂NW − T ) =
(N − n)h2K2

2

∫
β(x)d−1

s dr(x)dx+O(nh3 + n
1
2h

1
2 )
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V (T̂NW − T ) =
(N − n)2

n

∫
σ2(x)d−1

x (dr(x))
2dx+

(N − n)2

nh

∫
K2(x)du

∫
σ2(x)d−1

s (x)dr(x)dx+

(N − n)2

n
h2K2

∫
C∗(x)dx+

(N − n)

∫
σ2(x)drdx+O(nh2 + n

1
2h

1
2 )

where C∗(x) is a complicated function of the derivatives of ds(x) and dr(x).
and the Mean Square Error if given by

MSE(T̂NW ) =
[
h2(N − n)2K2∫
β(x)d−1

s drdx+ o(nh2 + h−1)
2

+
(N − n)

n ∫
σ2(x)d−1

s (x) [dr(x)]
2 dx+ (N − n)∫

σ2(x)dr(x)d(x) + o(x)

For proof of these Asymptotic Properties, see (Dorfman, 1992a; Githinji.S, 2010).

In higher dimensions, Xi ∈ Rd, the Kernels can easily be used by just replacing
xi − x in the Kernel argument by ∥ xi − x ∥2 so that the Multivariate Kernel
Regression Estimator is

m̂(x) =

n∑
i=1

K

(
∥ xi − x ∥2

h

)
yi

n∑
i=1

K

(
∥ xi − x ∥2

h

)

and the corresponding Estimator for Finite Population Total will be

T̂N =
∑
i∈s

yi +
∑
j∈r

m̂(xj) (3.8)

(Godambe, 1955; Dorfman, 1992b), considered a problem of Estimating Finite
Population Total using Nonparametric Regression. In their work, they consid-
ered this Nadaraya-Watson Estimator to Estimate the Mean Function to predict
the Nonsampled values of the study variable and consequently to Estimate the
Finite Population Total. It was demonstrated that, as long as some standard
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conditions were met, the Relative Bias of the above Estimator goes to zero.

The ratio of the Bias to the Standard Error of the Estimator was also shown
to be Asymptotically zero suggesting that using a wide bandwidth might yield
a better Estimate and it was found to be more efficient when compared to rival
Design Based Estimators. The greatest efficiency was achieved when a Linear
Model was used and Variance assumed to be proportional to the square of the
Auxiliary variable. Just like in the Univariate case where this Estimators suffers
from the Boundary effects, (Franke and Diagne, 2006), noted that, this Kernel
Smoother Estimator in high dimensions, the boundary effect are greatly exagger-
ated as the dimension increases since a fraction of data points near the boundary
grows rapidly making the computational and statistical efficiency of the Estimator
difficult.

3.3.2 The Gasser-Muller Estimator

The denominator in the Nadaraya-Watson Estimator (Nadaraya, 1964) is conve-
nient when taking derivatives of the Estimator and when deriving its Asymptotic
Properties. The sorting X-variable and the Estimator were proposed, (Gasser
and Müller, 1979). The Estimator m̂(x) is given by

m̂(x) =
n∑

j=1

∫ sj

sj−1

k (u− x) duSj (3.9)

where Sj =
1
2
(xj + xj+1) , x0 = −∞ and xn+1 = +∞

Therefore, the corresponding Nonparametric Estimator for the Finite Population
Total in equation 1.3 is

T̂G =
∑
i∈s

yi +
∑
j∈r

m̂(xj) (3.10)

This Kernel Smoother Estimator in high dimensions just like the Nadaraya Wat-
son Estimator considered in (Dorfman, 1992a), this Estimator relies on Local
Averaging hence the boundary effect are greatly exaggerated as the dimension
increases since a fraction of data points near the boundary grows rapidly making
the computational and statistical efficiency of the Estimator difficult.

The Priestly-Chao Estimator

(Priestley and Chao, 1972) proposed an Estimator for the unknown Mean Func-
tion both when the observations are assumed to be taken at equally spaced in-
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tervals and in a case where this restriction is removed.
The Priestly-Chao has the relation wi(xj) =

(xi−xi−1

h

)
k
(xi−xj

h

)
such that the

estimator Priestley and Chao (1972) is given by

m̂(xj) =
1

nh

∑
i∈s

wi(xj)yi (3.11)

This Smoother has the disadvantage where one needs to Estimate or extrapolate
values of the independent variable. This is another task that will lead to increase
of the errors in the Estimation if not correctly determined. Unlike the usual
weighting, the sum of weights does not equal to one but is only an approximation.

The Priestley-Chao and Gasser-Muller, (Priestley and Chao, 1972), assume that
the Estimator of data is ordered according to the Auxiliary variable data such
that xi−1 < xi and their weights are only applicable to cases in which the auxiliary
variable is restricted to some interval [0, 1]. The Population Total Estimator is
given by

T̂C =
∑
i∈s

yi +
∑
j∈r

m̂C(xj) (3.12)

Since the estimator is based on the Kernel Smoothers, its performance also dete-
riorates as the dimension of the explanatory variable increases.

3.3.3 The Spline Estimator

Spline Functions are more attractive due to their flexibility and less vulnerability
to the Bias resulting from Model Misspecification. In Spline Estimation the
technique of Residual Sum of Squares is used (Härdle and Stoker, 1989)

m̂(x) =
n∑

i=1

(yi − g(xi))
2

Here g(x) is a curve unrestricted in the Functional form. The distance can be
reduced by any g(x) that interpolates the data. The technique has disadvantage
such that the curve is not unique and too wiggly for a structure-oriented inter-
polation. The technique has good results because it will produce a good fit to
the data and the curve does not have too much rapid local variation. The Spline
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Estimator for the Population Total see (Zheng and Little, 2003), is given by

T̂S =
∑
i∈s

yi +
∑
j∈r

m̂(xj) (3.13)

In this context, (Zheng and Little, 2003) considered a model-based alternative to
the Horvitz Thompson estimator that employs Penalized Spline Regression.

3.3.4 Multivariate Adaptive Regression Spline (MARS)

MARS was first proposed by (Friedman, 1991) as a flexible procedure to organize
relationships between a set of input variables and the target dependent that are
nearly additive or involve interactions with fewer variables. It is a Nonparametric
Statistical Method based on a divide and conquer strategy in which the training
data sets are partitioned into separate piece-wise Linear Segments (Splines) of
differing gradients (slope). MARS makes no assumptions about the underlying
Functional Relationships between dependent and independent variables.

In general, the Splines are connected Smoothly together, and these Piece-Wise
Curves (polynomials), also known as Basis Functions (BFs), result in a flexi-
ble model that can handle both Linear and Nonlinear behavior. The connec-
tion/interface points between the pieces are called Knots. Marking the end of
one region of data and the beginning of another, the candidate Knots are placed
at random positions within the range of each input variable.

MARS generates BFs by step-wise searching overall possible Univariate candi-
date Knots and across interactions among all variables. An Adaptive Regression
Algorithm is adopted for automatically selecting the Knot Locations. TheMARS

algorithm involves a Forward Phase and a Backward Phase. The Forward Phase
places candidate Knots at random positions within the range of each predictor
variable to define a pair of BFs. At each step, the model adapts the Knot and
its corresponding pair of BFs to give the maximum reduction in sum-of-squares
Residual Error. This process of adding BFs continues until the maximum num-
ber is reached, which usually results in a very complicated and over-fitted model.
The backward phase involves deleting the redundant BFs that made the least
contributions.

Let y be the target dependent responses and X = (X1, X2, . . . , Xd) be a matrix
of d Input Variables. Then it is assumed the data are generated based on an
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unknown model. For a continuous response, this would be:

y = f(X1, X2, . . . , Xd) + ε = f(X) + ε (3.14)

in which ε is the Fitting Error. f is the built MARS model, comprising of
BFs which are Splines Piece-Wise Polynomial Functions. For simplicity, only
the Piece-Wise Linear Function is expressed and considered in this study. Piece-
Wise Linear Functions follow the form max(0, x− t) with a Knot defined at value
t. Expression max(.) means that only the positive part of (.) is used otherwise it
is assigned a zero value. Formally,

max(0, x− t) =

x− t, if x ≥ t

0, otherwise
(3.15)

The MARS model f(X), which is a Linear Combination of BFs and their inter-
actions, is expressed as

f(X) = β0 +
M∑

m=1

βmλm(X) (3.16)

where each λm is a BF. It can be a Spline Function, or interaction BFs pro-
duced by multiplying an existing term with a truncated linear function involving
a new/different variable (higher orders can be used only when the data warrants
it; for simplicity, at most second order is adopted). The term β is constant coef-
ficients, estimated using the least-squares method.

The MARS modeling is a data-driven process. To construct the model in equa-
tion 3.16, first the forward phase is performed on the training data starting ini-
tially with only the intercept β0. At each subsequent step, the basis pair that
produces the maximum reduction in the training error is added. Considering a
current model with M basis functions, the next pair to be added to the model is
in the form of

β̂M+1λ1(X)max(0, Xj − t) + β̂M+2λ1(X)max(0, t−Xj) (3.17)

with each β being estimated by the least-squares method. This process of adding
BFs continues until the model reaches some predetermined maximum number,
generally leading to a purposely over fitted model.
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The Backward Phase improves the model by removing the less significant terms
until it finds the best Sub-Model. Model subsets are compared using the less
computationally expensive method of Generalized Cross-Validation (GCV ). The
GCV is the Mean-Squared Residual Error divided by a penalty that is dependent
on Model complexity. According to (Hastie and Tibshirani, 1990), for the training
data with N observations, then GCV is calculated as

GCV =

1
N

N∑
i=1

[Yi − f(Xi)]
2

[
1− M+p×(M−1)

N

]2 (3.18)

in which M is the number of BFs, p is a penalty for each Basis Function included
in the developed sub-model, N is the number of datasets, and f(Xi) denotes the
MARS predicted values. Thus the numerator is the Mean Square Error of the
evaluated model in the training data, penalized by the denominator which ac-
counts for the increasing variance in the case of increasing model complexity.
Note that (M − 1)/2 is the number of Hinge Function Knots. The GCV penal-
izes not only the number of BFs but also the number of Knots.

After Estimating the function in 3.16 f̂(X) = m̂(x)MARS then the Finite Popu-
lation Total will be estimated using the function

T̂MARS =
∑
i∈s

yi +
∑
i∈r

m̂(xi)MARS (3.19)

For a detailed review of the MARS and its application in Estimation of Surveys
Population Parameters see Friedman (1991); Montanari and Ranalli (2003, 2005)

3.3.5 Generalized Additive Models

One of the most popular and useful tools in data analysis is the Linear Regression
Model. It is a statistical technique used for Modeling and Analysis of numerical
data consisting of values of a dependent variable and of one or more independent
variables.
Let Y be a dependent (response) variable, and X1, . . . , Xd be d independent
(predictor or regressors) variables. To describe the dependence of the mean of Y
as a function of X1, . . . , Xd, it is assumed that the mean of Y is a Linear Function
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of X1, . . . , Xd, such that;

µy|x = E(Y |X1, . . . , Xd) = f(X1, . . . , Xd)

= β0 + β1X1 + . . .+ βdXd

= β0 +
d∑

j=1

βjXj

(3.20)

Given a Sample of values for Y and X, the Estimates of β0, β1, . . . , βd are often
obtained by the Least Squares Method. It is achieved by fitting a Linear Model

which minimizes
d∑

j=1

(
yj − f̂(xj)

)2
where f̂(xj) = β̂jXj

The Generalized Additive Model replaces
d∑

j=1

βjXj with
d∑

j=1

fj(Xj) where fj is

an unspecified Nonparametric Function. It can be in a Nonlinear form

E(Y |X1, . . . , Xd) = f(X1, . . . , Xd)

= f0 + f1(X1) + . . .+ fd(Xd)

= f0 +
d∑

j=1

fj(Xj) = m(x)

(3.21)

This functionf̂j(Xj) is Estimated in a flexible manner using cubic spline smoother.
Thus the Finite Population Total based on the GAM will be estimated as

T̂GAM =
∑
i∈s

yi +
∑
i∈r

m̂(xi)GAM (3.22)

3.4 Neural Network

3.4.1 Background

Neural Network is a Network of interconnected Non-linear Processing Units for
distributed, parallel processing of input values to obtain a set of output values.
It is based on the attempt to model the way a Biological Brain processes data
and thus different from other standard Regression Models. Individual Survey
attributes can be considered as dependent(output) variables related by a Neural
Network to independent variable (input) variables.

The connection weights characterizing the strength" of the interconnection in an
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NN corresponds to the Parameters in Multivariate Models. They can be obtained
(Estimated) from a Sample of the Population by training. The trained NN can
then be used to Estimate the Nonsampled Units of the Survey data which interns
can be aggregated to Estimate the Population Total. Numerous studies have
indicates that NN Models represents a promising modeling technique especially
for data sets having Nonlinear Relationship, (Asnaashari et al., 2013).

This study adopts a FeedForward Neural Network (FFNN) in which no feedback
is allowed. The three layers are totally connected and there is no link between
units belonging to the same layer. Hidden Units are the processing units which do
not receive Exogenous input or deliver final output, but receive inputs from and
pass on Output to other units in the Network. The signal in FFNN only travel
from inputs to outputs. The Activation in the Hidden Layer is normally prefer-
able to be Non-Linear in such way that each output is a Non-Linear combination
of the Linear combination of the inputs and it should be differentiable to facilitate
the training process. This activation restricts the amplitude to a preferred closed
range between [0, 1] or [−1, 1] since it tend to increase the stability of the Network
while learning and also it is useful to maintain the normalization of the input data.

Another vital component in creating a NN Model is the number of Hidden Nodes,
which defines the complexity of the model developed. If the number of Neurons
of in a hidden layer are too few, NN will not be able to model the data accu-
rately. On the other hand if the number of Neurons in a Hidden layer are too
large, it can sometimes be beneficial, but may lead to over-fitting, (Despagne and
Massart, 1998).

Determining the Network Architecture is a fundamental task in a NN Model de-
velopment, (Maier and Dandy, 2000; Farrell et al., 2021). It requires the selection
of the optimum number of layers and the number of Nodes in each of the layers.
There is no integrated theory for the determination of an optimal NN architec-
ture, but it is generally achieved by fixing the number of layers and choosing
the number of Nodes in each layer, (Farrell et al., 2021). For a traditional series
estimator (such as Splines) the two choices for the practitioner are the basis (the
Spline shape and degree) and the number of terms (Knots), commonly referred
to as the smoothing and tuning parameters, respectively. In Kernel Regression,
these would respectively be the shape of the Kernel (and degree of Local Poly-
nomial) and the bandwidth(s).
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For Neural Network, the same phenomena is present, the Architecture as a whole
(the graph structure and activation function) are the Smoothing Parameters while
the width and depth play the role of tuning Parameters. The Architecture plays
a crucial role in that it determines the approximation power of the Network, and
it is worth noting that because of the relative complexity of Neural Network,
such approximation and comparisons across Architectures are not simple. At a
glance, it may not be clear what function class a given Network Architecture
(width,depth, graph structure, and Activation Function) can approximate.

Just as for Classical Nonparametrics, for a fixed Architecture it is the tuning Pa-
rameters that determine the rate of convergence. Therefore, choosing the number
of Hidden layers is another puzzle in a NN structure. The number of Hidden
Nodes allow a Neural Network to capture Nonlinear patterns and detect complex
relationship in the data. However, Network with too many Hidden Nodes may
cause over fitting problems, leading to poor forecasting ability.

Previous research shows that, one Hidden layer is sufficient to approximate any
continuous function, provided that sufficient connection weights are given, (Cy-
benko, 1989; Funahashi, 1989; Shahin et al., 2002). Because of this, the study will
adopt a one layer of Hidden Nodes to help reduce computation time and danger
of over-fitting.

Figure 3.1 is an Input-Output map, which has d input nodes, one layer of H
Hidden Nodes and an Activation Function ψ(x). The input at Hidden layer
Nodes are connected by Weights Whj for h ∈ (1, 2, 3, . . . , H) and j ∈ (1, 2, . . . , d)

where Wh0 is the Bias for the ith Hidden Node. The Hidden and Output layers
are connected by Weights vh for h ∈ (0, 1, 2, . . . , H). Considering an Input Vector
x = (x1, x2, . . . , xd) ∈ Rd the Input Vh(x) to the hth Hidden Node is the value

Vh(x) = Wh0 +

n,d∑
i=1,j=1

Whjxj (3.23)

where the Weights Wh,j for j = 0, 1, . . . , d in this equations corresponds to
the Kernel and Local Polynomial Weights in the Kernel and Local Polynomial
Smoothers. The number of Hidden Nodes (Neurons) corresponds to the Band-
width in the Kernel and Local Polynomial Smoothers.
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Figure 3.1: Feed Forward Neural Network Structure

The output ϕh(x) of the hth Hidden Node is the value

ϕh(x) = φ(Vh(x)) (3.24)

The net Input to the Output Node is the value

z(x) = v0 +
H∑
j=0

vhϕh(x) (3.25)

where vh for j = 0, 1, . . . , H denotes the connection weights from the input layer
to output layer. Finally the Output Z(x) of the net is the value

Z(x) = ψ(z(x)) (3.26)

The connection/ Weights are adjusted through training. There exists two training
paradigms: Non Supervised and Supervised training. We discuss and later apply
supervised learning. The Supervised training of a Neural Network requires the
following: A Sample of d Input Vectors , X = (x1, x2, . . . , xd) of size n, an
associated Output Y = (y1, y2, . . . , yn) and the selection of an initial Weight set.
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We need a repetitive algorithm to update the current Weights to optimize the
Input Output map.

3.4.2 Training of the Neural Network

Because of the Nonlinear nature of the Neural Network model for which no di-
rect Estimate exists, an iterative Estimation of the Weights need to be adopted.
Training an NN is an optimization problem, where one seeks the minimum of an
error surface in a Multi-dimensional space defined by the adjustable Parameters.
Such surfaces are characterized by the presence of several Local Minima, Saddle
Points. It must be accepted that the NN will probably not find the absolute Min-
imum of the Error Surface, but a Local Minimum relatively close to the absolute
Minimum and acceptable for the problem considered.

There are two methods used to train a Neural Network, the Maximum Likelihood
Estimator (MLE) Method and the Sum of Squared Errors (SSE) Method.
The SSE is used to train FeedForward Network. In this methods the Weights
are adjusted in such a way that the SSE between the targets Y and the Output
Z is Minimized. This SSE is defined as:

S2(xi, θ) =
n∑

i=1

(Yi − Z(xi; θ))
2

=
n∑

i=1

(Yi − Z (xi;W,α))
2

=
n∑

i=1

(
Yi − ψ

(
v0 +

H∑
j=1

(vnψ(Wh0 +
H∑
i=j

Whjxj
))

))2

(3.27)

The training process of the Network involves updating the Weights until the
function in equation (3.27) is Minimized. There are various methods of Mini-
mizing this function; Backpropagation, Quasi-Newton Method, and Simulated-
Annealing Method. In this study, we consider Backpropagation for training our
Network but one can consider other methods.The advantages of using a Back-
propagation algorithm in this study is that, it does not have any parameters to
tune except for the number of inputs. and it is highly adaptable and efficient and
does not require any prior knowledge about the network. It is a standard process
that usually works well.

30



Backpropagation (BP)

The BP procedure relies on the differences between the output/ Estimated vari-
able values and the target variable values (the observed values) from the training
set as a basis for adjusting weight values in each iteration. The training process
can be monitored by watching the computed MSE of all differences after each
training cycle. Optimal Weight values are obtained when all the differences be-
tween Estimated values approaches zero. In actual applications, the iteration has
to be terminated when no further progress in diminishing the differences between
Estimated and target values can be observed.

The set of Weights or Parameter values found when the training is terminated
may not represent the best or optimal set but a set representing a so called Local
Minimum in the MSE surface. A larger number of Weights in the models indi-
cates a danger of over-fitting. Over-fitting is adjusting too much to the training
sample with a risk of losing the model ability to generalize and make useful pre-
diction of the Nonsampled Units.

Taking a Unipolar Activation Function ψ(x), the Weights are adjusted as follows

W r+1 = W r +∆W

vr+1 = vr +∆α

Taking individual Weights, we have the rth iteration Weights as

vr+1
h = vrh − λ1

{
∂S2(xi; θ

(r))

∂vh

}
= vrh + λ1

{
Yi − Z(xi; θ

(r))
}
Z(xi; θ

(r))
{
1− Z(xi; θ

(r))
}
ϕh(xi)

(3.28)

for i = 1, 2, . . . , n and h = 1, 2, . . . , H

Similarly;

W r+1
hj = W r

hj − λ2

{
∂S2(xi; θ

(r))

∂Whj

}
= W r

hj + λ2
{
Yi − Z(xi; θ

(r))
}
Z(xi; θ

(r))
{
1− Z(xi; θ

(r))vrh
}

− {ϕh(xi) (1− ϕh(xi))}xj

(3.29)

for i = 1, 2, . . . , n, h = 1, 2, . . . , H and j = 1, 2, . . . , d

λ1 and λ2 represents the stop gain. The Weights are adjusted until the stopping
criterion are met. Under this method, each Weight is adjusted n, the sample size
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times each iteration; which implies that for I iterations each Weight is adjusted
In times.

3.4.3 Choices of Activation Function

For Model Specifications, the building blocks of a NN Model are the Activation
Functions ψ. Different choices of the activation functions results in different Net-
works Models. Here, we look at some Activation Functions commonly used in
empirical studies.

The Hidden Units plays the role of Neurons in Biological Systems. Thus, the
Activation Function in each Hidden Unit determines whether a Neuron should be
turned on or off. Such on/off response can easily be represented using an indica-
tor(threshold) function, also known as Heaviside Function in the NN literature.

ψ(u) =


ψ(u) −→ 0, as u −→ −∞

ψ(u) −→ 1, as u −→ +∞

ψ(u) + ψ(−u) = 1

(3.30)

In NN literature, it is common to choose a Sigmoid (S-shaped) and Squashing
(bounded) Functions because of its characteristics of allowing Nonlinearity and
also being differentiable. Another advantage is that the derivatives of the Sigmoid
Function can be expressed in terms of the individual Functions itself which is use-
ful when training the Network, (Zilouchian, 2001). Depending on the required
output, one could choose between widely used Sigmoid Functions, the Logistic
Sigmoid and the Bipolar Sigmoid. The Logistic Function is preferable when the
objective is to approximate functions that maps into Probability Space.

In particular, if the input signals are "squashed" between zero and one, the Acti-
vation Function is understood as a Smooth counterpart of the Indicator Function.
A leading example of the Logistic Function is described as

ψ(u) =
1

1 + exp(−u)
, −∞ < u <∞ (3.31)

which approaches one(zero) when its arguments goes to infinity(negative infin-
ity). Thus, the Logistic Activation Function generates a partially on/off signals
based on the received input signals.
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Figure 3.2: Logistic Activation function

Alternatively, the Hyperbolic Tangent (tanh) Function, which is also a Sigmoid
and Squashing Function, can serve as an Activation Function.

ψ(u) =
exp(u)− exp(−u)
exp(u) + exp(−u)

, −∞ < u <∞

Compared to the Logistic Function, this function is a rescaled versions of the
Logistic Sigmoid to assume negative values and is bounded between −1 and 1.
It approaches 1(−1) when its argument goes to ∞(−∞). This function is more
flexible because the negative values, in effect represents " suppressing" signals
from the Hidden Units. It should be noted that for Logistic Function ψ, the
re-scaled function ψ̂ such that ψ̂(u) = 2ψ(u) − 1 also generates values between
−1 and 1 and may be used in place of the tanh function.

The advantage of the rescaled versions is that they shifts data inputs around zero
because the magnitude of the derivatives is greater for these values which enables
a faster training. In addition, using an activation function that outputs in the
interval [0, 1] makes big negative values of the input saturating to zero which
has a negative effect on the training because they get stuck in the current state
and consequently the computational time increases. The additional problem of
having only positive values of the input is that, all of the weights that feed into a
node can only increase or decrease all together in the training phase for a given
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input pattern which creates an inefficient update path.

The aforementioned Activation Functions are chosen for convenience because they
are differentiable everywhere and their derivatives are easy to compute. In par-
ticular, when ψ is Logistic Function,

dψ(u)

du
= ψ(u)[1− ψ(u)];

where ψ is the tanh function,

dψ(u)

du
=

[
2

exp(u) + exp(−u)

]2
= sech2(u)

These properties facilitates Parameter Estimation. The Activation Function in
the Output Layer, it is common to set it as the Identity Function so that the
Output enjoys the freedom of assuming any real values. When the target is
binary variable taking values zero and one, as in the Classification Problems, the
Activation Function in the Output Layer may be chosen as Logistic so that the
Outputs must fall between zero and one, analogous to a Logit Model.

3.5 Finite Population Total Estimator Based on

Feedforward Backpropagation Neural Network

In this section, the Estimator of Finite Population Total based on Feedforward
Backpropagation Neural Network is discussed and presented.

Let

T =
∑
i∈s

yi +
∑
i∈r

yi (3.32)

be the Finite Population Total where s are the Sample Units and r are the
Nonsampled Units. Assume that yi is given according to equation (1.4) with
xi ∈ Rd, ε1, ε2, . . . , εN i.i.d. Consider Estimating m(x) based on approximating
it by Feedforward Backpropagation Neural Network. As the basic building block,
we consider the Neurons as a Nonlinear transformation of a Linear Combination
of the Input x = (x1, . . . , xd)

′ .

Feedforward Neural Network with more than one layer of Hidden Units are more
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complicated Network which allow feedback of information can be specified and
considered but for simplicity, the study only dealt with the structure presented
in equation (3.33), which is commonly used for a wide variety of applications
and has the appealing feature of being implemented in statistical softwares In the
simplest case of one Hidden Layer with H ≥ 1 Neurons, the Network in equation
(3.23) can be rewritten to represent the Network Function as follows

fH(x, θ) = v0 +
H∑

h=1

vhψ
(
w0h + xTwh

)
, x ∈ Rd (3.33)

with wh = (w1h, . . . , wdh) ∈ Rd and

θ =
(
w01, . . . , w0H , w

T
1 , . . . ,

wT
H , v0, . . . , vh

T ∈ RM(H),

where M(H) = (d+ 1)H +H + 1

(3.34)

represents the vector of all Parameters Weights of the Network. ψ : R 7−→ R is a
given Activation Function. For Regression problems, function of Sigmoid shape,
for instance, looking like the distribution function of a real random variable fre-
quently provides good results. fH(x; θ) specifies a mapping from the input space
Rd to the output space which for this study is one dimensional. Such class of all
Network output functions O =

{
fH(x; θ), θ ∈ RM(H), H ≥ 1

}
has several uni-

form approximation properties (Funahashi, 1989; Cybenko, 1989; White, 1990),
e.g for any continuous function m, any ε > 0 and any compact set C ⊆ Rd there
exist a function fH ∈ O with

sup
x∈C

| m(x)− fH(x; θ) |< ϵ

These implies that, any Regression Function m(x) may be approximated arbi-
trary well using a large enough number of Neurons and appropriate Parameters
θ.
Therefore, a Nonparametric Estimate for m(x) is obtained if H is chosen first,
which serves as a tuning Parameter and determines the smoothness of the Es-
timate and then Estimate the Parameter θ from the data by Nonlinear Least
Squares

θ̂n = arg min
θ∈ℜM(H)

Dn(θ) (3.35)
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with
Dn(θ) =

∑
s

(yi − fH(x; θ))
2

Under appropriate conditions, θ̂n converges in Probability for n → ∞ and a
constant H to the Parameter vector θ ∈ ΘH which corresponds to the best
approximation of m(x) by a function of type fH(x; θ), θ ∈ ΘH with

θ = arg min
θ∈ℜM(H)

D(θ) with D(θ) = E {m(x)− fH(x; θ)}

Also, under some stronger assumptions, the Asymptotic Normality of θ̂n and thus
the Estimator of m̂(x) = fH(x; θ̂n) also follows for the Regression Function m(x),
(Franke and Neumann, 2000). Therefore, the immediate consequence of these is
that fH(x; θ̂n) −→ fH(x; θ) for n −→ ∞, (White, 1990)
The Estimation Error θ̂n−θ can be divided into two Asymptotically independent
sub-components : θ̂n − θ = (θ̂n − θn) + (θn − θ), where the value

θn = arg min
θ∈ℜM(H)

n∑
i=1

{m(x)− fH(x, θ)}2

minimizes the Sample version of D(θ), (Franke and Neumann, 2000). By Univer-
sal Approximation property of Neural Network, fH(x; θ) converges to the Regres-
sion Function m(x) for H −→ ∞. Therefore fH(x; θ̂n) should become a consistent
Nonparametric Estimate of m(x) if H increases with n and with an appropriate
rate. From these results, the corresponding estimate of the Finite Population
Total is therefore, given as

T̂NN =
∑
j∈s

yj +
∑
j∈r

m̂n(xj) (3.36)

where m̂n(xj) = fH(x; θ̂n)

Thus equation (3.36) is the developed Estimator for the Finite Population Total.

The following comments are made about this Estimator. First, T̂NN is a Model-
Based Estimator, so that all the inference is with respect to the Model for the
y

′
is, not the Survey Design. Next, this Estimator is identical to that proposed in

(Dorfman, 1992a), except that the NN is replaced by a Kernel-Based Regression.
Lastly, this Estimator can be used to Estimate the Population Total of a Finite
Population as long as each of the Nonsampled elements has the same distribution
as the Sample.
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3.5.1 Regularity Notes on the Proposed Estimator

For fixed H we just fit a Nonlinear Regression Model to the data. However, we
are aware that this model will be misspecified and that we have to select a decent
H, determining the form of the Nonlinear Regression Function and the dimension
of its Parameter, to get a reasonable balance between bias and variance of m̂n(x)

as an Estimate of m(x).

1. The Parameter vector θ of equation (3.33) is not uniquely determined by the
function, i.e for different values of θ we get the same function fH(x, θ). If, for
example the Activation Function is Anti-symmetric, ψ(−x) = −ψ(x), like the
Logistic Function in equation (3.31), then changing the enumeration of Hidden
Units and multiplying all Weights wih, i = 1, 2, . . . , d, going into a Hidden Units
and simultaneously the Weight vh going out of the Neuron by −1 do not change
the function.

2. To avoid this ambiguity and the obvious problems with Estimation we con-
sider only Parameter Vectors in a subset ΘH ⊂ RM(H) chosen such that to
each function in equation 3.33 with H Neurons, their exists exactly one cor-
responding Parameter ΘH . For Anti-symmetric ψ we can choose for example
ΘH =

{
θ ∈ RM(H); v1 ≥ v2 ≥ . . . ≥ vH

}
, that is, the last h coordinates of θ are

in decreasing order. For more details on the identification of Parameters see
(Hwang and Ding, 1997).

For appropriate choice of θ, fH(x, θ) will approximate a Linear Function such that
the Estimator reverts to classical regression Estimator. If for example H = 1 we
have fx;θ = v0 + v1ψ

(
w01 + xTw1

)
. Choosing the Logistic ψ of equation 3.31 and

letting ∥wh∥ 7−→ 0 the a Taylor expansions of ψ up to order 1 gives

fH(x, θ) = v0 − v1 +
2v1

1 + c0

{
1 +

2c0
1 + c0

xTw1

}
+ o (w1)

with c0 = exp(−2w01), which is an approximately linear function.

Theoretically, Feedforward Neuron Network with one hidden layer suffice by the
universal approximation property. In practice, Networks with more than one Hid-
den Layer may provide a better approximation to m(x) with fewer Parameters,
see (Cybenko, 1989; Funahashi, 1989; Barron, 1994; Montanari and Ranalli, 2003;
Asnaashari et al., 2013).
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In the next section Theoretical properties of the proposed Estimator are consid-
ered.

3.6 Theoretical Properties of the Proposed Esti-

mator

3.6.1 Assumptions

To be able to prove the theoretical properties, the following assumptions are made;

A1) The errors εi are i.i.d with mean 0, Finite Variance σ2 satisfying

pr (|εi| > t) ≤ a0 exp {−a1tα} for all t ≥ 0

and for some a0, a1 and α > 0.

A2) The Auxiliary measurements xi ∈ Rd are i.i.d with an absolutely continuous
distribution F having a Finite Second Moment.∫ x1

−∞

∫ x2

−∞
. . .

∫ xd

−∞
f(t1, . . . , td)dt (3.37)

where f(.) is strictly positive density whose support is a compact subset of Rd.
Moreover,

pr (∥ xi ∥> t) ≤ b0 exp
{
−b1tβ

}
for all t ≥ 0 (3.38)

and for some b0, b1 and β > 0. A3) m(x) is a bounded function.

A4) For each sequence of Finite Population indexed by v, conditioned on the
value xi, the Superpopulation Model equation (1.4), where εi satisfies A1 , then,
the xi are considered fixed with respect to the Superpopulation Model ξ.

A5) The Survey variable has a bounded moment with ξ−probability 1. Moreover,
its noted that (A1), . . . , (A3) immediately imply for some c0, c1 > 0

Pr(|yi| > t) ≤ c0 exp{−c1tα}, for all t ≥ 0 (3.39)

38



A6) The Sampling rate is bounded, that is

lim
v−→∞

sup
n

N
= π,where π ∈ (0, 1)

A7) The Parameter space Θ is a compact set, θ an interior point of Θ and it is
irreducible; that is for h, h′ ̸= 0 none of the following three cases holds Hwang
and Ding (1997).

a) vh = 0, for some h = 1, . . . , H

b) wh = 0, for some h = 1, . . . , H

c) (w
′

h, w0h) = ±(w
′

h′ , w0h′ ), for w ̸= w
′

A8)The Activation Function ψ in equation (3.30) is Asymmetric Sigmoid Func-
tion differentiable to any order. Additionally, we make an assumption that the
class of functions {ψ(bt, b0), b > 0} ∪ {ψ ≡ 1} is linearly independent. The Logis-
tic Activation Function in equation 3.31 fulfills these requirement.

Therefore, to prove Consistency of T̂NN , the rate which determines how the com-
plexity of the Network and the possible roughness of the Function Estimate m̂n(x)

increases with the Sample size n has to satisfy some conditions. We follow (White,
1990) and restrict the number H of Neurons and the overall size of the Network
Weights vh, wjh simultaneously. For some sequences Hn,∆n −→ ∞, let

Θn = Θ(Hn,∆n) =

{
θ ∈ Θ;

Hn∑
h=0

|υh| ≤ ∆n,

Hn∑
h=1

d∑
j=0

|ωhj| ≤ Hn∆n

}
(3.40)

For given sample size n, we consider only Network Function in

On = O (Hn,∆n) = {fHn(x, θ); θ ∈ Θ(Hn,∆n)} (3.41)

as an Estimate for m(x). Therefore, we redefine the Parameter Estimate as

θ̂n = argmin
θ∈Θn

∑
s

(yi − fH(x; θ))
2 (3.42)
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and the Network Estimate for m(x) is therefore given by

m̂n(x) = fHn(x, θ̂n) (3.43)

which is a kind of a Sieve Estimate in the sense of (Grenander and Ulf, 1981;
Geman and Hwang, 1982).

To prove for Consistency of T̂NN , first we need to show that the Neural Network
based Regression Function m̂NN is normally distributed and also Consistent.

Theorem 3.6.1 (Franke and Neumann, 2000): Suppose that certain Conditions
a are satisfied and for n→ ∞,

√
n

(
θ̂n − θn

θn − θ

)
−→
d
N

(
0,

(
Σ1 0

0 Σ2

))

that is
√
n
(
θ̂n − θn

)
and

√
n (θn − θ) are Asymptotically Independent Normal

Random Vectors with Covariance Matrices Σ1 and Σ2, respectively, where

Σ1 = A(θ)−1B1(θ)A(θ)
−1, Σ2 = A(θ)−1B2(θ)A(θ)

−1

with
B1(θ) = 4.

∫
σ2
ϵ (x)∇fH(x, θ).∇fH(x, θ)

′
F (x)dx

B2(θ) = 4.

∫
(m(x)− fH(x, θ))

2∇fH(x, θ).∇fH(x, θ)
′
F (x)dx

and A(θ) = ∇2D(θ)

As noted by (Franke and Neumann, 2000), as an immediate consequence,
√
n
(
θ̂n − θ

)
is Asymptotically Normal with Mean 0 and Covariance Matrix Σ1 + Σ2. In the
correctly specified case where m(x) = fH(x, θ0), the Σ2 is equal to the zero ma-
trix, as there is no effect due to the randomness of the X ′

is, that is θn = θ. In
the Misspecified case, the randomness of the inputs causes a difference of order
n− 1

2 between the optimal Parameters θn and θ. A simple complete proof of these
theorem is given in Theorem 1 of (Franke and Neumann, 2000) and also see the
results of Theorem 5.1 of (Shen et al., 2019).

From this Theorem, it follows that, the Neural Network Estimator of the Mean
Function m(x) = fH(x, θ0) is Asymptotically Normal, then it also follows that,
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equation (3.36) which is the developed Estimator of the Finite Population Total
base on the Feedforward Backpropagation Neural Network is also Asymptotically
Normal.

Theorem 3.6.2 (Franke and Diagne, 2006): Let (y1, x1), . . . , (yn, xn) be i.i.d

variable with yi ∈ R, and xi ∈ Rd. Let the distributions of yi and xxi
satisfy

A2 and equation 3.37. Let On = O(Hn,∆n), n ≥ 1 be the set of Neural Net-
work Functions given by equation (3.41) with an Activation Function ψ which is
Lipschitz continuous on R, strictly increasing and satisfying equation (3.30). Let
m̂n(x) = E(yi|xi) = x be in the closure of

⋃∞
n=1On in L2(F ) that is, in the space

of functions Square Integrable with respect to the distribution of xi.
Then m̂n(x) is a Consistent Estimate of m(x) in the L2(F )-sense , that is∫

(m(x)− m̂n(x))
2 dF (x) −→ 0 in probability (3.44)

provided that Hn,∆n −→ ∞ such that ∆n = o(n
1
4 )

Hn,∆
4
nlog n = o(n) and Hnlog n = o(∆α

n)

where α determine the rate of decrease of the tail of the distribution of the yi by
equation (3.39)

3.7 Proof

Here,the highlight of the proof of Theorem 3.6.2 is provided. The theorem can
be proven exactly as Theorem 2.1 of (Franke and Diagne, 2006) for stationary
processes satisfying an α-mixing condition and also as Theorem 3.1 of (Shen
et al., 2019) for fixed data. As here the data are independent, the Bernstein
Inequality for stationary processes may be replaced by a Bernstein Inequality for
independent data like that one in section (2.5.4) of Lemma A of (Serfling, 2000,
2009). Therefore, the right hand side of equation (5.1) of (Franke and Diagne,
2006) changes to

c1 exp

(
−c2

∆

NM2
N

)
instead of c1 exp

(
−c2

∆2

√
NM2

N

)

Then the proof proceeds exactly as in (White, 1990).

It should be noted that, for bounded Random Variables (yi, xi), the last condition
on Hn,∆n involving α can be dropped. In that case, Theorem 3.6.2 essentially
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is equivalent to Theorem 3.3 of (White, 1990). The Parameters Hn, ∆n which
determines the Network Complexity and therefore the Smoothness of the Func-
tion Estimate can be determined adaptively from the data by Cross Validation
without changing the Consistency of m̂n(x) using Theorem 3.4 of (White, 1990).
For the detail and complete proof of these theorem, see the work of (White, 1990;
Franke and Diagne, 2006; Shen et al., 2019).

This Theorem is important in the development of this work in sense that, show-
ing that the developed estimator of the Finite Population Total given in equation
(3.36) is Consistent, it is required that the Neural Network estimator of the Mean
Function is also Consistent.

Equation (3.44) is in the integral form thus using it the proving of the foregoing
work of Consistence Population Total in equation (3.36) might be a little complex.
Therefore, equation (3.44) is required with a simple mean over the unobserved
xi, i ∈ r instead of the integral. to allow as to prove the consistency of T̂NN . The
following results shows that the difference between the integral and the Simple
mean is negligible.

Theorem 3.7.1 Let ((y1, x1), . . . , (yN , xN)) be i.i.d with equation (1.4) for some
bounded m(x). Let F denote the distribution of xi. Let |ψ(u)| ≤ 1, and s =

1, . . . , n be the index set of the observed data and r = n + 1, . . . , N the index of
unobserved data. Let θ̂n be defined as in equation 3.35 with m̂n(x) = fHn(x, θ̂n)

denote the Estimate of m(x) based on the Sample (yi, xi), i ∈ s. Let n,N −→ ∞
such that n

N
−→ π(0, 1) and let Hn,∆n satisfy conditions in Theorem (3.7.2).

Then for δ > 0

Pr

(∣∣∣∣∣ 1

N − n

∑
j∈r

(m(xj)− m̂n(xj))
2 −

∫
(m(xj)− m̂n(xj))

2dF (x) > δ|(yi, xi), i ∈ s

≤ d1 exp

{
−d2

Nδ2

∆4
n

} (3.45)

for all δ > 0 and all N large enough where d1, d2 are some constants independent
of N, n and (yi, xi), i ∈ s
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3.7.1 Proof

From assumption A3, let C be the upper bound ofm(x). By definition of m̂n(x) =

fHn(x, θ̂n) and m̂n(x) ∈ O(Hn,∆n), we immediately have

|m̂n(x)| ≤ ∆n a.s |ψ(u) ≤ 1|

if we set

VNi
= (m(xj)− m̂n(xj))

2 −
∫

(m(xj)− m̂n(xj))
2dF (x), i −→ r (3.46)

these therefore results to

|VNi
| ≤ 4(C2 +∆2

n)

E {VNi
|(yi, xi), i ∈ s} = 0

E
{
V 2
Ni
|(yi, xi), i ∈ s

}
≤ 32(C4 +∆4

n)

(3.47)

note that m̂n(x) is independent of (yi, xi), i ∈ r, and completely determined by
(yi, xi), i ∈ s. Now applying Bernsteins inequality (Lemma A, section 2.5.4) of
(Serfling, 2000) in equation (3.46), we get

Pr

(
1

N − n

∣∣∣∣∣∑
j∈r

VNj

∣∣∣∣∣ > δ(yi, xi), i ∈ s

)

≤ 2 exp

{
− (Nn)δ

2

64(C4 +∆4
n) +

2
3
4(C2 +∆2

n)δ

} (3.48)

Now the results follow as ∆n −→ ∞ and therefore ∆4
n dominates the denominator

of the exponent for N large enough and as N − n coincides Asymptotically with
(1 − π)N . Moreover, as ∆n = o(n

1
4 ), N

∆4
n
−→ ∞, that is, the right hand side of

the inequality converges to zero(taking limits as ∆n −→ ∞).

3.7.2 Consistency of the Developed Estimator of Finite Pop-

ulation Total

Theorem 3.7.2 If (A1)-(A8) are satisfied and if the Activation Function ψ(u)

is Lipschits continuous and strictly increasing and satisfies equation (3.30) also
Theorem 3.6.2 holds, then the Neural Network Estimate T̂NN of the Population
Total T given by equation (3.36) with m̂n(x) = f(x, θ̂n) and θ̂n given by equation
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(3.35) is Consistent in the following sense.

1

N

∣∣∣T − T̂NN

∣∣∣ −→ 0 in probability

where N, n −→ ∞ with
n

N
−→ π ∈ (0, 1)

(3.49)

provided that the number Hn and the bound ∆n of the Network Weights satisfy

Hn,∆n −→ ∞ such that

∆n = o(n
1
4 )

Hn∆
4
n log n = o(n)

Hn log n = o(∆α
n)

(3.50)

where α determines (by A1) how fast the tail probability of the εi and yi decreases.

White (1990) showed that, the appropriate choice for ∆n is such that ∆n −→ ∞
as n −→ ∞ and ∆n = o(n

1
4 ), i.e n

1
4∆n −→ 0 as n −→ ∞

Proof

1

N

∣∣∣T − T̂NN

∣∣∣ = 1

N

∣∣∣∣∣∑
j∈r

(yj − m̂n(xj))

∣∣∣∣∣
=

1

N

∣∣∣∣∣(m(xj)− m̂n(xj)) +
∑
j∈r

εj

∣∣∣∣∣
≤ 1

N
|(m(xj)− m̂n(xj))|+

N − n

N

1

N − n

∣∣∣∣∣∑
j∈r

εj

∣∣∣∣∣
≤ 1

N
(m(xj)− m̂n(xj))

2 +
N − n

N

1

N − n

∣∣∣∣∣∑
j∈r

εj

∣∣∣∣∣

(3.51)

by Jensen’s inequality.
Now the last term converges to

N − n

N

1

N − n

∣∣∣∣∣∑
j∈r

εj

∣∣∣∣∣ = (1− π) |E(εj)|

where (1−π)|E(εj)| = 0 since E(εj) = 0 by law of large numbers. The first term
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of equation (3.51) decomposes into

N − n

N

(
1

N − n

∑
j∈r

(m(xj)− m̂n(xj))
2 −

∫
(m(xj)− m̂n(xj))

2dF (x)

)

+
N − n

N

∫
(m(xj)− m̂n(xj))

2dF (x)

(3.52)

The right hand terms of equation (3.52) converges to 0 by Theorem 3.6.2 and as
N−n
N

−→ 1− π.
The proof is completed by using Theorem 3.7.1 to cope with left hand terms
where we drop the factor N−n

N
converges to 1− π any how.

Pr

(∣∣∣∣∣ 1

N − n

∑
j∈r

(m(xj)− m̂n(xj))
2 −

∫
(m(xj)− m̂n(xj))

2dF (x)

∣∣∣∣∣ > δ

)

= E

{
Pr

[∣∣∣∣∣ 1

N − n

∑
j∈r

(m(xj)− m̂n(xj))
2 −

∫
(m(xj)− m̂n(xj))

2dF (x)

∣∣∣∣∣
> δ|(yi, xi, i ∈ s)

≤ d1 exp

{
−d2

Nδ

∆4
n

}
−→ 0, ∀ δ

> 0, ∆n −→ ∞, n −→ ∞
(3.53)

hence the proof.

3.7.3 Mean Square Error(MSE) of the Developed Estima-

tor

Mean Square Error is used to measure the accuracy of the Estimator among other

measures of performance. The MSE is define by E
(
T̂NN − T

)2
where T denotes

the true Population Total. To Estimate E
(
T̂NN − T

)2
, first, we consider

E

[(
T̂NN − T

)2]
= E

( H∑
i=1

N∑
j=n+1

m̂(x, θ)−
N∑

j=n+1

(m(x) + ϵ)

)2


=
(N − n)2

N2
E

( 1

N − n

H∑
i=1

N∑
j=n+1

m̂(x)−
N∑

j=n+1

(m(x) + ϵ)

)2
+

N − n

N
var(ϵi)
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=
(N − n)2

N2

E

( 1

H(N − n)

H∑
i=1

N∑
j=n+1

m̂(x, θ)− E (Tk|D,Xj) + E (Tk|D,Xj)− E (Tk)

)2


+
N − n

N
var(ϵi)

=
τ 2D
H

(1− f) {E (Tk|D,Xj)− E (Tk)}2 +
1− f

N
var(ϵi) (3.54)

where the Xj = (xn+1, . . . , xN) are a set of Nonsampled Auxiliary Units. Tk

denotes the Total of the Nonsampled elements and E(Tk) =
N∑

j=n+1

m(x).

The last approximation of equation (3.54) follows from equation 15 of (Liang and
Kuk, 2004), that is

E

(
1

HN

H∑
i=1

N∑
j=n+1

m̂(x, θ)− (1− f)E(Tk)|D,Xj

)2

≈ τ 2D
H

for some positive constant τ 2D.

The term E (Tk|D,Xj)−E (Tk) is the predictor bias due to randomness or Sam-
pling Bias of D. Now from equation (3.54), we have

E (TNN − T )2 = E

(
τ̂ 2D
H

)
+ (1− f)2E {E (Tk|D,Xj−

E (Tk)
2 +

1− f

N
var(ϵi)

(3.55)

As noted in (Liang and Kuk, 2004), the quantity τ 2D can be Estimated by batch
method. Therefore,

τ̂ 2D =
s

r − 1

r∑
t=1

(
T̂NN,t − TNN

)2
(3.56)

for details see (Liang and Kuk, 2004). Equation 3.56 can be substituted in equa-
tion (3.55) in lieu of E(τ 2D).
Now, under the assumption that the ϵi

σ
∼ t(v), then the Estimate of var(ϵi) is
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given as

ˆvar(ϵi) =
v

v − 2

1

H

H∑
i=1

σ̂2
i (3.57)

Under the assumption that the Population is made up of exact copies of the
Sampled (training) data, we have E (Tk|D,Xj) − E (Tk) ≊ T̂ − T where T̂ the
fitted Sample Total and

E
(
T̂ − T

)2
=

(
n∑

i=1

ϵ̂i

)2

= V ar(ϵ̂i) (3.58)

Under the true model, we have V ar(ϵ̂i) = var(ϵi). Hence the E {E (Tk|D,Xj − E (Tk))}2

can be Estimated by

ˆBias
2
=

1

n
ˆvar(ϵi) (3.59)

Thus, E (TNN − T )2 can be Estimated by

Ê (TNN − T )2 =
τ̂ 2D
H

+ (1− f) ˆBias
2
+

1− f

N
tvar(ϵi)

=
τ̂ 2D
H

+
1− f

n
ˆvar(ϵi)

(3.60)

As H −→ ∞, equation (3.60) reduces to

Ê (TNN − T )2 =
1− f

n
ˆvar(ϵi) (3.61)

3.8 Comparison of the Developed Feedforward

Backpropagation Neural Network Estimator

with GAM, MARS and LP Estimators

In this section a description of methodology used to compare the developed Non-
parametric Feedforward Backpropagation Neural Network Estimator

T̂NN =
∑
j∈s

yj +
∑
j∈r

m̂n(xj) (3.62)
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where m̂n(xj) = fH(x; θ̂n)

with Generalized Additive Model estimator define in equation 3.22

T̂GAM =
∑
i∈s

yi +
∑
i∈r

m̂(xi)GAM (3.63)

Multivariate Additive Model Estimator define in equation 3.19

T̂MARS =
∑
i∈s

yi +
∑
i∈r

m̂(xi)MARS (3.64)

and Local Polynomial Estimator

T̂MARS =
∑
i∈s

yi +
∑
i∈r

m̂(xi)LP (3.65)

is given. Details of these functions are in sections 2.2.1 and 3.4. This compari-
son is through a simulation study in which some high dimension Superpulation
models were first considered, from which data was generated using Monte-Carlo
methods. The models used in this Thesis for simulation are adopted from the
work done by (Feng and Simon, 2017), three scenarios where the true function is
the sum of two dimensional linear function, two dimensional quadratic function
and a three dimensional mixed function is considered.

From the generated dataset, a sample was taken using Simple Random Sampling
without replacement and used as a training set to calibrate the Neural Network.
The calibrated Neural Network was used to estimate the nonsampled units for
the variable of interest Y . Various replications were conducted, and for each
iteration the Bias, MSE and Mean Absolute Errors were noted.This was done
for various estimators and the respective results finally averaged. The estimator
with the smallest Bias, MSE and Mean Absolute Errors was considered to be the
best estimator of the Finite Population Total in high dimension.

3.9 Determination of the Smoothing Parameters

The Estimate of the Bandwidth h for the Estimator based on Local Polyno-
mial was obtained by determining the Smoothing Parameter that Minimizes
the Least Squares Crossvalidation for the Finite Population Total Estimator for
the characteristic of the variable under consideration. This method applies to
the Local Polynomial Regression Estimator. This is due to the fact that the
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procedures of these Estimator incorporates the Smoothing Procedures in their
estimation. Therefore, the value of the Smoothing Parameter is necessary in
the construction of the appropriate Smoothers in order to Estimate the Popula-
tion Total. The search for the Smoothing Paramters is constrained in the range
1
4
n

−1
5 σ < h < 3

2
n

−1
5 (Silverman, 1986) and |k| ≤ 1 where k =

xi−xj

h

3.10 Performance Criterion of Estimators

The Estimates of the Finite Population Total for the Neural Network, Multi-
variate Additive Regression spline, Generalized Additive models and Local Poly-
nomial Regression Estimators are recorded analyzed and deductions made. The
unconditional results for the Estimators were computed that are used in the anal-
ysis that acts as performance indicators of the Estimators. The results include;
Bias,Mean Square Error(MSE), Mean Absolute Error(MAE) and Mean Absolute
Percentage Error(MAPE) respectively. These criterion are defined as follows;

i. Mean Square Error

MSE =
1

n

n∑
i=1

(
Ti − T̂i

)2
ii. Mean Absolute Error

MAE =
1

n

n∑
i=1

|Yi − Ŷi|

iii. Mean Absolute Percentage Error

MAPE =
1

n

n∑
i=1

|Yi − Ŷi|
|Yi|

× 100%
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

The problem being addressed in this thesis falls into the area of Survey Sampling
as follows; there exists a parent population from which the variable of interested
is associated with a number of Auxilliary Variables in which an appropriate Sam-
pling technique is used to select a Sample that is used in the Estimation. Since
the dateset is of high dimensional case, a Robust Estimator based on Feedforward
Backpropagation Neural Network is developed and used to Estimate the Finite
Population Total. The developed Estimator is then used on the data obtained
from the United Nations Development Programme 2020 report to test its Ro-
bustness in real life application.

Thus, in this chapter, the theory developed in the previous chapters are tested
here in a fairly wide range of sets of data. From a practical point of view, it is
natural to inquire about the Finite Sample properties of the new Estimator of
Finite Population Total based on Feedforward Backpropagation Neural Network
and to compare it to popular Estimators for Population Total available in the
literature.

The Estimation of the Population Total was done using five sets of data that
include Simulated data and Secondary data obtained from the United Nations
Development Programme 2020 report.

In order to understand how the Estimator developed in this thesis compared
against other existing Nonparametric Regression Estimators, a comparison of the
performance of the developed Estimator to that of identified Estimators based
on Multivariate Adaptive regression Splines(MARS), Generalized Additive Mod-
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els(GAM) and Local polynomial (LP) which can handle high dimensional data
was performed. The performance measure used included the Bias, Mean Squared
Error (MSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error
(MAPE).

4.2 Description of the Population Data Sets

4.2.1 Simulation Settings

The Superpopulation Model in equation (1.4), used in this thesis follows from the
problem proposed by (Feng and Simon, 2017). According to (Feng and Simon,
2017), three scenarios where the true function is the sum of Two dimensional
Linear Function, Two dimensional Quadratic Function and a Three dimensional
Mixed Function is considered. This models were considered in this thesis.

For all of the Simulation performed, data is generated according to model equa-
tion (1.4) where ϵ ∼ N(0, 1). The Auxiliary variable vector X ∈ Rd were gen-
erated from iid uniform(0,1) Random Vector. The Errors ϵ were generated from
iid N(0, 1) with noise level σ = 0.1, 0.4. The tanh was used as the Activation
Function for the Neural Network.

1,000 Samples of size 4,000 and 8,000, were generated using Simple Random Sam-
pling from a Population of size 10,000. Because of the hypothesized relationship
between the study variable and the auxiliary variable, which must be depicted in
the Simulation, the Sampling is done with indices.

TNN , with predictions obtained by means of the R function nnet() and by setting
the number of units in the Hidden layer and the weight decay parameter as fol-
lows: (3,0.05), (6,0.15), (12,0.15), (6,0.2), (12,0.2); the weight decay Parameter
is analogous to ridge regression introduced for Linear Models as a Solution to
Collinearity. Larger values of it tend to favor approximations corresponding to
small values of the Parameters of the net and therefore shrink the weights towards
zero to avoid overfitting.

TGAM , with predictions obtained through an additive splines model by means of
the R function gam(). The number of degrees of freedom for the splines have
been set equal to the values: 2, 3, 4, 5
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TMARS, with predictions computed by means of MARS 3.6, the original collection
of Fortran subroutines developed by (Friedman, 1991). The maximum interac-
tion level has been fixed to 1 and with the following values of the number of basis
functions: 5, 10, 15, 20.

TLP Local Polynomial Regression Estimator with degree P=1 and bandwidth
h=0.1 and h=0.25.

4.2.2 Two Dimensional Linear Model

m(x) = −1 + 2X1 + 4X2

Two Dimensional Quadratic Model

m(x) = 5.5− 6X1 + 8(X1 − 0.5)2 − 3X2 + 32(X3 − 0.5)3

Three Dimensional Mixed Model

m(x) = 8(X1 − 0.5)2 + exp(2X2 − 1) + sin(2π(X3 − 0.5))
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Figure 4.1: Relationship Between Y and X for a Two dimensional Linear
Model,Two dimensional Quadratic Model and Three dimensional Mixed Model

From the scatter plots in Figure 4.1, shows various relationships that exists the
response variable and the Auxiliary variables. In most of them, the relationships
exhibited are Linear and Quadratic.
Tables 4.1-4.3 summarize the findings of this Simulation investigation. Uncon-
ditional Bias (UB), Unconditional Mean Square Error (UMSE), Unconditional
Relative Mean Square Error (URMSE), and unconditional Mean Absolute Error
(UMAE) for said Estimators at different Sample sizes are shown in Tables 4.1-4.3.
The MAE reveals how near the Estimate being examined is to the true value,
while the MSE and RMSE represent the Estimator’s precision. For example,
if TNN’s UMSE and URMSE are comparable, it will reasonably be considered
"better" or " more desirable" than other Estimators.
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Table 4.1: Unconditional Bias, Mean Square Error, Relative root mean Square
Error, Mean Absolute Error and Mean Absolute Percentage Error for Two Di-
mensional Linear Model

Bias MSE RRMSE MAE MAPE

n=4000

T̂NN 8.7982 151.4639 0.1900 0.0043 0.4311
T̂MARS 9.8620 153.1423 0.2170 0.0048 0.4785
T̂GAM 9.8700 152.9656 0.2172 0.0048 0.4779
T̂LP 10.0203 156.9519 0.2205 0.0049 0.4852

n=8000

T̂NN 3.7104 20.7253 0.060 0.0011 0.1102
T̂MARS 4.3909 29.5419 0.0779 0.0014 0.1382
T̂GAM 10.4348 30.3327 0.4512 0.0041 0.4128
T̂LP 13.1195 40.3936 0.2327 0.0080 0.8003

4.3 Unconditional Properties for Artificial Data

4.3.1 Unconditional Properties for the Two Dimensional

Linear Model

The Generalized Additive Estimator and Local Polynomial Regression Estimator
over Estimates the Finite Population Total under two dimensional model. This is
because of their large Bias values of 9.8700 and 10.0203 respectively. The Finite
Population Estimator T̂NN has lower Biases, Mean Square Error, Relative Root
Mean Square Errors, Mean Absolute Errors and Mean Absolute Percentage Er-
rors which is followed closed by the Estimator T̂MARS. Therefore, the Estimator
of Finite Population Total based on Feedforward Backpropagation Neural Net-
work emerges the best and favorable in Estimating the Finite Population Total.

It is recorded and observed that, as the Sample size increases, all the Estimators
recorded a significant improvement in their performance in Estimating the Finite
Population Total. Notably is the Local Polynomial Regression Estimator with a
significance reduction in Bias and Mean Square Errors. The Neural Network Es-
timator still outperforms al other Estimators with significant reduction in Biases,
Mean Square Error Relative Root Mean Square errors, Mean Absolute Errors
and Mean Absolute Percentage Errors as Sample sizes increases.
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Table 4.2: Unconditional Bias, Mean Square Error, Relative root mean Square
Error, Mean Absolute Error and Mean Absoute Percentage Error for Two Di-
mensional Quadratic Model

Bias MSE RMSE MAE MAPE

n=4000

T̂NN 3.3743 20.5077 0.0596 0.0011 0.1052
T̂MARS 6.8289 76.5408 0.1206 0.0021 0.2130
T̂GAM 20.0105 643.8682 0.3534 0.0062 0.6240
T̂LP 18.1960 536.6546 0.3213 0.0057 0.5675

n=8000

T̂NN 1.9396 12.5319 0.0343 0.0006 0.0605
T̂MARS 4.0274 25.4001 0.0711 0.0013 0.1256
T̂GAM 12.4017 246.0122 0.2190 0.0039 0.3868
T̂LP 11.3112 200.8425 0.1998 0.0035 0.3528

4.3.2 Unconditional Properties for the Two Dimensional

Quadratic Model

Table 4.2 summarizes the results for the performance of the Estimators for a
Two Dimensional Quadratic model. Compared to Linear case, the performance
of all the Estimators has marginally decreased as indicated by marginal increase
Biases, Mean Square Error Relative Root Mean Square Errors, Mean Absolute
Errors and Mean Absolute Percentage Errors across all the Estimators of Finite
Population Total.

It is also observed that, the Generalized Additive Estimator and Local Polyno-
mial Regression records poor performance in terms of Biases, Mean Square Error
Relative Root Mean Square Errors, Mean Absolute Errors and Mean Absolute
Percentage Errors in Estimating the Finite Population Total under two dimen-
sional Quadratic Model. This is because of their large Bias values of Biases,
Mean Square Error Relative Root Mean Square Errors, Mean Absolute Errors
and Mean Absolute Percentage Errors. The finite population estimator T̂NN has
lower Biases, Mean Square Error Relative Root Mean Square Errors, Mean Ab-
solute Errors and Mean Absolute Percentage Errors which is followed closed with
the Estimator T̂MARS.

Therefore, the Estimator of Finite Population Total based on FeedForward Back-
propagation Neural Network emerges the best and favorable in Estimating the
finite population total in the two dimensional Quadratic case.
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Even with the Sample increases, all the Estimators record a significant improve-
ment in their performance in estimating the Finite Population Total. To note
here is the Local Polynomial Regression Estimator with a significance reduction
in Bias and Mean Square Errors. The Neural Network Estimator still outperforms
other Estimators as significant reduction in Biases, Mean Square Error Relative
Root Mean Square Errors, Mean Absolute Errors and Mean Absolute Percentage
Errors as Sample sizes increases.

4.3.3 Unconditional Properties for the Three Dimensional

Mixed Model

Table 4.3: Unconditional Bias, Mean Square Error, Relative root mean Square
Error, Mean Absolute Error and Mean Absoute Percentage Error for Three Di-
mensional mixed Model

Bias MSE RMSE MAE MAPE

n=4000

T̂NN 3.5196 18.9278 0.0583 0.0010 0.0965
T̂MARS 5.7422 52.2492 0.0951 0.0016 0.1574
T̂GAM 14.7975 353.5178 0.2450 0.0041 0.4056
T̂LP 16.8233 437.2852 0.2785 0.0046 0.4612

n=8000

T̂NN 1.8147 5.4731 0.0300 0.0005 0.0497
T̂MARS 3.3823 18.3560 0.0560 0.0009 0.0927
T̂GAM 8.8086 122.7989 0.1458 0.0024 0.2415
T̂LP 9.9900 151.4552 0.1654 0.0027 0.2738

Table 4.3 summarizes the results for performance of the Estimators for a three
dimensional mixed model. Compared to two dimensional case, the performance
of all the estimators has marginally decreased as indicated by marginal increase
Biases, Mean Square Error Relative Root Mean Square Errors, Mean Absolute
Errors and Mean Absolute Percentage Errors across all the Estimators of Finite
Population Total.

It is also observed that, the Generalized Additive Estimator and Local Polynomial
Regression still recorded poor performance in terms of Biases, Mean Square Error
Relative Root Mean Square Errors, Mean Absolute Errors and Mean Absolute
Percentage Errors in Estimating the Finite Population Total under three dimen-
sional mixed model. This is because of their large values of Biases, Mean Square
Error Relative Root Mean Square Errors, Mean Absolute Errors and Mean Ab-
solute Percentage Errors.
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In the other case, the Finite Population Estimator T̂NN has lower Biases, Mean
Square Error Relative Root Mean Square Errors, Mean Absolute Errors and Mean
Absolute Percentage Errors which is followed closed with the Estimator T̂MARS.
Therefore, the Estimator of Finite Population Total based on Feedforward Neu-
ral Network emerges the best and favorable in Estimating the Finite Population
Total in the three dimensional mixed model case.

Even with the Sample increases, all the Estimators record a significant improve-
ment in their performance in Estimating the Finite Population Total. To note
here is the Local polynomial Regression Estimator with a significance reduction
in Bias and Mean Square Errors. The Neural Network Estimator still remains
the Estimator of choice compared to other Estimators as Sample sizes increases.

4.4 Conditional Properties for Artificial Data

The 1000 Simple Random Samples were sorted using the Sample Means of X̄s

values criterion. The Samples were then grouped into sets of twenty Samples
such that the first set is made of Samples with the lowest Sample Means of X̄s

values, the second set consists of Samples with Means of X̄s that are larger than
the Sample Means of the first set and so on until the last set that consists of
Samples with the largest Sample Means of X̄s values. In each of the group, the
Bias, Mean Square Error, Relative Root Mean Square Error and Mean Absolute
Error were computed.

The results of group the Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error for the Finite Population Total Estimators T̂NN ,
T̂MARS, T̂GAM and T̂LP are plotted against group average values ¯̄X denoted as
Xbar in the fifty groups of Mean of X̄s .

Figures 4.2-4.5 summarizes the findings of the Conditional results for the Estima-
tors under Two dimensional Linear model, Two Dimensional Quadratic model and
Three Dimensional Mixed Model respectively. From the results, It was observed
that both the Estimators overestimates the Finite Population Total. However,
Generalized Additive and Local Polynomial Estimators performs poorly com-
pared to Neural Network and MARS Estimators of Finite Population Total. The
Neural Network Estimator emerges to perform better across all the models hence
becoming the most preferred Estimator in high dimensional dataset.
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Figure 4.2: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on a Two dimensional Linear model

Figure 4.3: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on a Two dimensional Quadratic model
with sample size 4000
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Figure 4.4: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on a Two dimensional Quadratic model
with sample size 8000
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Figure 4.5: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on a Three dimensional mixed model with
a sample size of 4000
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Figure 4.6: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on a Three dimensional mixed model with
a sample size of 8000

4.5 Application of the Developed Estimator to the

Data from United Nations Development Pro-

gramme

To illustrate our Estimation approach, the following data was utilized. A Popula-
tion of size 189 was obtained from the United Nations Development Programme
2020 report. The UN studied the development in 189 countries. It grouped de-
velopment in the countries as either very high human development, high human
development, medium human development or low human development. Kenya
was classified in countries that falls under medium development and ranked num-
ber 143 out of the 189 countries studied.

The UN study used attributes such as Human Development Index(HDI), Life
expectancy at Birth,Expected years of schooling, Mean years of schooling, Gross
national income (GNI) per capita and GNI per capita rank minus HDI to rank
human development index in the 189 countries. In this study, a relationship
between Human Development Index(HDI) which is considered as the survey vari-
able and the auxiliary variables ; Life expectancy at Birth, Expected years of
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schooling, Mean years of schooling and Gross National Income (GNI) per capita
was considered.

Figure 4.7: Relationship Between Human Development Index(HDI) and Life
Expetancy at Birth(LEB)

From the Scatter Plot in Figure 4.7, a Quadratic relationship between HDI and
LEB was observed. This indicates a strong positive relationship between LEB
and HDI.
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Figure 4.8: Relationship Between Human Development Index(HDI) and Ex-
pected years of schooling (EYS)

From the scatter plot in Figure 4.8, a Quadratic relationship between HDI and
EYS was observed. This indicates a strong positive relationship between EYS
and HDI. The graphs also shows the presence of outliers in the data which might
affect the efficiency of Parametric models when assumed in the analysis of this
data.
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Figure 4.9: Relationship Between Human Development Index(HDI) and Mean
years of schooling (MYS)

From the Scatter Plot in Figure 4.9, a Linear Relationship between HDI and
MYS was observed. This indicates a strong positive relationship between MYS
and HDI.

Figure 4.10: Relationship Between Human Development Index(HDI) and Gross
National Income (GNI) per capita

From the scatter plot in Figure 4.10, a Linear relationship between HDI and GNI
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was observed. This indicates a strong positive relationship between GNI and
HDI. The graphs also shows the presence of outliers in the data which might af-
fect the efficiency of Parametric Models when assumed in the analysis of this data.

To study the performance of the developed Estimator in relation to other Esti-
mators considered for comparison in this study, two Samples of of size 50 and
100 were taken from Population (United Nations Development Programme 2020)
applying Simple Random Sampling without replacement design. For each sample
taken, Bias, Mean Suare Error, Relative Mean Error, Mean Absolute Error and
Mean Absolute Percentage Error were computed.

Table 4.4: Unconditional Bias, Mean Square Error, Relative root mean Square
Error, Mean Absolute Error and Mean Absolute Percentage Error for Real Data
Set

Bias MSE RMSE MAE MAPE

n=50

T̂NN 0.0289 0.0013 0.0023 0.0001 0.0132
T̂MARS 0.0541 0.0046 0.0043 0.0003 0.0346
T̂GAM 0.0580 0.0052 0.0046 0.0004 0.0371
T̂LP 0.0331 0.0017 0.0026 0.0002 0.0211

n=100

T̂NN 0.0145 0.0003 0.0012 0.0001 0.0103
T̂MARS 0.0279 0.0012 0.0022 0.0002 0.0178
T̂GAM 0.0319 0.0016 0.0025 0.0002 0.0204
T̂LP 0.0184 0.0005 0.0015 0.0001 0.0118

Table 4.4 shows the Estimated Bias, Mean Square Error, Relative Mean Error,
Mean Absolute Error and Mean Absolute Percentage Error for each Estimator
considered. From these results, it can be observed that the overall performance
of the TNN estimate is superior to the usual one since it has minimum Bias, MSE,
Relative Mean Error and Mean Absolute Error. Even as the sample increases,
all the Estimators recorded a significant improvement in their performance in
Estimating the Finite Population Total. The developed Estimator, TNN still out-
performs other Estimators as significant reduction in Biases, Mean Square Error,
Relative Mean Error and Mean Absolute Errors was noticed as Sample sizes was
increased.

The conditional performance of the Estimator was done and compared with the
performance of other existing Estimators of Finite Population Total . To do this,
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500 random samples, all of sizes 50 and 100, were selected and the Mean of the
Auxiliary values xi was computed for each Sample to obtain 200 values of X̄.
These Sample Means were then sorted in ascending order and further grouped
into clusters of size 20 such that a total of 25 groups was realized.

Further, group means of the Means of Auxiliary variables was calculated to get
¯̄X. Empirical means and Biases were then computed for all the Estimators TNN ,
TLP , TMARS and TGAM . The Conditional Biases were plotted against ¯̄X to pro-
vide a good understanding of the pattern generated. Figure 4.11 and 4.12 sum-
marizes the behaviors of the Conditional Biases, Relative Absolute Biases and
Mean Squared Error realized by all the Estimators.

Figure 4.11: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on real data with a sample size of 100
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Figure 4.12: Conditional Bias, Mean Square Error, Relative Root Mean Square
Error and Mean Absolute Error based on real data with a sample size of 50

In most cases there are significant differences among the Bias characteristics of
the various Estimators. A detailed examination of the plots reveals that TNN has
a lower levels of Bias followed by TLP as indicated by the proximity of plotted
curves to the horizontal (no Bias) line at 0:0 on the vertical axis. Interestingly,
despite the rather entangled nature of some of the plots, Estimator TNN emerges
clearly as the least Biased for nearly every group Means of the Means of Auxiliary
variables.

From the plots, It can be observed that both the estimators underestimate the
Finite Population Total. Plots of Conditional MSE versus group Means of the
Means of Auxiliary variables similarly reveal coincident behavior for the Esti-
mators. TNN and TLP produce generally the lowest MSE values. In particular,
TNN yields the lowest MSE in most cases among all other Estimators. TNN is
consistently better than all other Estimators for both Bias and MSE. All of these
Estimators are Asymptotically Unbiased and they all exhibit MSE consistency in
that the MSE values tend toward zero as sample size increases. From the plots it
can be seen that TNN and TLP performed equally better than all other estimators
of the true Population Total.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND
RECOMMENDATIONS

5.1 Introduction

In this final Charpter, a brief summary of key results from this thesis are pre-
sented. In doing so, a summary that expounds on what the thesis aluded to
at the abstract stage has been provided followed by conclusions on each specific
objective and ensuing recommendations guided by the theoretical an empirical
analysis in this thesis. From all these, it is finally concluded that Estimator of Fi-
nite Population Total based on the Feedforward Backpropagation Neural Network
has proved to yield results with great precision and therefore it is recommended
for estimating Finite Population Total in High Dimensional Datasets in different
sectors of the economy since it yields very good results.

5.2 Summary

The main goal in Survey sampling is to use the sample statistics to make conclu-
sions about the overall Finite Population Quantities. Nonparametric regression
has developed into a increasingly growing field of statistics providing a versatile
and data analytical way of estimating Regression Function without specifying a
Parametric Model correctly. The estimates from these approach are often more
reliable and versatile than design based presumptions or Parametric Regression
Models.

The Nonparametric Regression estimators suggested in literature contribute to
the Trade-Off of Bias-Variance along the boundary points and hence becomes
infeasible in high dimensions. It is because of these, the foundation of this Thesis
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is developed with the aim of addressing this weaknesses by applying Neural Net-
work method to the estimation of the Finite Population Total in circumstances
where one is dealing with high dimensional datasets.

Therefore In realizing the set out objectives, this thesis has demonstrated that
it is possible obtain robust Nonparametric estimator of Finite Population To-
tal in high dimensional datasets using the Feedforward Backpropagation Neural
Network. The performance of this Nonparametric Feedforward Backpropagation
Neural Network was found to be better when compared with GAM, MARS and
LP estimators which was in line with analysis done by Montanari and Ranalli
(2005) but in the univariate case. This is therefore a milestone when used in area
of Survey sampling and specifically Nonparametric estimation when dealing with
multivariate datasets which often the case in real life problems .

Globally data is needed to make decisions thus making Census in important way
of data collection that plays a crucial role during resource allocation and plan-
ning. However, Census are carried out only after every ten years which limits
there impact within the intermediate years. Thus, other methods are required
for planning in the intervening years. Population Estimates use the Census as a
baseline, for instance adding Births and subtracting Deaths and make allowances
for Migration. They can be used for National and Local Planning. Population
Estimates are produced annually. Additionally, National Government use Popu-
lation Estimates as the basis for capitation-based funding of County Governments
and Primary Care, Education, Health Sector Trusts, hence under-estimation can
therefore have effects on Local services, and Over-estimation can lead to unfair
resource distribution. Therefore having an Robust Estimator Population Total/
Estimates will ensure equitable resource allocation.The outcome of this thesis
will play an important role in providing a reliable Estimator of Finite Population
Total that can be used different fields of the economy.

Additionally, the study contributes towards development of Mathematical and
Statistical knowledge in Survey Sampling. The developed Estimation Procedure
is useful to policy makers since National Development is dependent on the Sam-
pling Strategy employed. In addition, Business and Industrial sectors stand to
benefit from this study by using the developed Estimation Procedure for predic-
tion and thereby improving the efficiency of their internal operations.
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5.3 Conclusions

The main goal of this thesis was to estimate Finite Population Total in high
dimensional datasets based on a Robust Nonparametric Feedforward Backpropa-
gation Neural Network technique. In this thesis, a Robust Nonparametric Feed-
forward Backpropagation Neural Network estimator of Finite Population Total
was developed by employing a FeedForward Backpropagation Neural Network
technique in Nonparametric Regression. Asymptotic properties such as the Con-
sistency and Mean Squared Error for the developed estimator have been derived.

The first objective of this thesis was to develop a Robust Nonparametric Esti-
mator of Finite Population Total based on Feedforward Backpropagation Neural
Network within the model based approach. This study developed an estimator of
Finite Population Total based on Feedforward Backpropagation Neural Network
as given in equation 3.36 in section 3.5.

The second objective of this was to derive the asymptotic properties of the de-
veloped Robust Nonparametric Estimator of Finite Population Total based on
Feedforward Backpropagation Neural Network. The asymptotic properties of the
developed estimator were derived as provided in section 3.6, 3.7.2 and 3.7.3 of this
thesis. By investigating properties of the developed estimator, it was concluded
that it has Asymptotic Normal Distribution, as well as being Asymptotically Un-
biased and Asymptotically Consistent Estimator of the Population Total.

The third and last objective of thesis thesis was to study the coverage properties
of the developed Robust Nonparametric Estimator of Finite Population Total
based on Feedforward Backpropagation Neural Network by comparing its perfor-
mance to that of identified Nonparametric Finite Population Estimators using
data from UNDP report and artificial data Simulated from certain models.

When applied to simulated data and dataset obtained from the United Nations
Development Programme 2020 report, the findings indicate that the proposed es-
timator has the lowest bias and root mean square error values compared to other
existing estimators such as multivariate adaptive regression splines (MARS), gen-
eralized additive model (GAM), and local polynomial (LP) which can handle
high-dimensional data. As evidenced from the analysis of the Biases and Mean
Square Errors presented in Tables 4.1, 4.2 and 4.3, it was possible to significantly
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reduce the Bias and increase precision. The Biases indicate that the proposed
estimator is superior to the other estimators in all the models used in high di-
mensional cases.

The graphs of the Conditional Biases, Relative Biases and Mean Square Error
in Figures 4.2, 4.3 and 4.4 also indicate that the proposed estimator dominates
the other estimators. The graphs show that while the other estimators have
larger Conditional Biases, the proposed estimator is almost Conditionally Unbi-
ased. This good performance of the developed estimator was also evident with
the Conditional Mean Square Error graphs.

Additionally, the following observations were made using both theoretical and
empirical results;

(i) The Neural Network estimator estimates the finite population total better
than all other robust estimators in high dimensional case.

(ii) The Performance of local polynomial estimator in the estimation of finite
population becomes poor as the dimension of the data increases.

(iii) For all the estimators, as the sample sizes increases, Biases, Mean Square Er-
ror Relative root mean Square errors, Mean Absolute Errors and Mean Absolute
Percentage Errors decreases for the four models considered.

(iv) For all the estimators, as the dimension increases, Biases, Mean Square Er-
ror Relative root mean Square errors, Mean Absolute Errors and Mean Absolute
Percentage Errors decreases for all the four models considered.

The main conclusion in this thesis is that the Estimator of Finite Population
Total based on the Feedforward Backpropagation Neural Network has proved to
yield results with great precision and therefore it is recommended for estimating
Finite Population Total in High Dimensional Datasets in different sectors of the
economy since it yields very good results.
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5.4 Recommendations

In this study, the assumption made was that the activation function was a Sig-
moid function. Future research could examine usage of other activation functions
which are not Sigmoid in nature such as Rectified linear unit (RecRELU) and
the performance of the resulting estimator compared to see if it produces superior
Finite Population Total estimation.

The estimator in this study has been considered in the case of simple random sam-
pling without replacement (SRSWoR). Therefore, future research could examine
extending this to other complex sampling techniques that rely on SRSWoR.
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