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ABSTRACT 

In recent times, the world has inclined towards using renewable energy sources since 

they have relatively lower greenhouse gas emissions, occur freely in nature, and 

unlike fossil fuels, cannot be depleted. Wind power is one such renewable energy 

source that has attracted a lot of research and interest in the power industry. With the 

growing quantities of wind power generation incorporated into power systems, grid 

reliability is at risk since wind power is highly intermittent. Wind power forecasts 

help incorporate wind in a grid’s power mix more efficiently and reduce the quantity 

of power reserves allocated to cater to the intermittency of wind. This makes 

adopting more wind power resources into the grid more economical. This work 

developed an approach to wind power forecasting using Bidirectional Long Short-

Term Memory (BiLSTM) Neural Networks hybridized with data decomposition 

techniques and a wind power curve layer. First, a wind power curve was modelled 

from the historical wind speed and wind power datasets using the Avrami equation 

and the best line of fit determined. Next, the wind time series data was decomposed 

into several Intrinsic Mode Functions (IMFs) and a Residual Function using 

Empirical Mode Decomposition (EMD). Finally, the BiLSTM model enhanced with 

the Avrami Power curve was used to forecast future wind power values. The 

developed model was tested on an online-based dataset and compared with the 

traditional LSTM, BiLSTM and hybrid (Bi)LSTM - data decomposition models. 

Using the developed BiLSTM + EMD enhanced with an Avrami Power Curve layer, 

wind power prediction RMSE improved by at least 50% for the 24-hour forecast 

compared to hybrid BiLSTM-data decomposition models.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

Conventionally, power grids have been dominated by a few centrally located high-

output generators that produce power to meet the entire load in the grid. Hydro, 

geothermal, coal, and nuclear power generators have been the primary electrical 

power sources in the grid. In recent times, however, there has been a gradual 

paradigm shift from the exclusive use of these classical electrical power sources to 

adopting more renewables in the power mix to meet the growing demand. This is in 

line with ensuring that the power industries reduce their environmental carbon 

footprint (Jarke & Perino, 2017). In addition, many grids have continued leaning 

towards more reliable sources of energy that do not stand to get depleted soon. Fossil 

fuel deposits are running low, and with increasing populations, they stand to get 

exhausted at some point in the future (Kalair Anam, Abas Naeem, Shoaib Saleem 

Muhammad, Raza Kalair Ali, 2020). Initiatives such as the Paris agreement and the 

Net Zero initiative have gone a long way in promoting the adoption of more 

renewables in a grid’s energy mix and reducing global warming (Oxford Net Zero, 

n.d.).  

Solar, wind, and biofuels have attracted the most interest in this quest to go green in 

the 20th century (Lu et al., 2020). Solar and wind occur freely in nature and can be 

harnessed anywhere in the world. This has made them an attractive area of research 

for scholars globally who aim to maximize the benefits the world can reap from these 

free resources. Governments have incentivized energy institutions, including giving 

tax waivers and funding to encourage the exploration and exploitation of solar and 

wind energy. There have been technological advancements in the hardware 

technology used in solar panels, battery storage systems, and wind turbines. These 

advancements aim to improve the efficiency of renewable systems to ensure 

maximum power conversion from solar irradiation and wind into electric power. The 

popularity of Solar and Wind power varies by region and they are both considered to 

be important sources of renewable energy. In terms of their harnessing, solar energy 
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is more predictable since it is naturally experienced during the day, allowing for 

effective planning and utilization. In contrast, the wind power is highly stochastic 

with wind patterns varying from day to day and even from hour to hour. In this 

regard, wind power is conventionally considered to be a non-dispatchable resource 

by power system operators (Hafner, Manfred Luciani, 2022).   

Wind power’s intermittent and unpredictable nature has spurred significant interest 

in developing accurate prediction algorithms and models to ensure the optimal 

integration of wind as a dispatchable resource in a grid’s energy mix. Wind power 

uncertainty is a risk to grid stability in cases where wind power accounts for a 

significant amount of the grid’s total installed capacity. Voltage stability at the point 

of injection and transient stability become issues of concern regarding wind power 

integration into the grid. This challenge has called for the development of fast and 

accurate optimization tools capable of accurately predicting wind power, allowing 

for the best planning of grid operations and optimal usage of this free power as and 

when available.  

1.2 Problem Statement 

Penetration of renewable energy sources in power grids has been on the increase in 

recent years. Renewable Energy Sources (RES) are considered clean and with 

minimal to no pollution effects on the environment. Some RES, like wind, are 

intermittent, making their connection to the grid and dispatch problematic for grids 

with significant wind power. As more wind power is integrated into a power system, 

the operation of the grid is bound to be adversely affected by the unpredictable 

nature of this renewable resource. Despite the fast advances in the technologies 

behind harnessing wind power, the solutions to counter the intermittency of wind 

have not grown on a similar scale, and this remains a viable area of research. With 

global warming altering weather patterns, it becomes difficult to rely on traditional 

models as the only way to determine wind patterns and project the expected power. 

A more reliable forecast method that combines historical and real-time data becomes 

necessary to ensure optimal wind power dispatch in the grid.  
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The operating schedule of a wind farm connected to a grid is greatly affected by the 

accuracy of the method used to forecast the expected power (Y. Zheng et al., 2015). 

The wind farm can be underutilized, leading to the projected income from wind 

power not being achieved. On the other hand, expected wind power can be over-

projected, leading to a deficit during dispatch in a power system. In such a case, the 

operating reserves from other generating sources must be over-engaged, diluting the 

economic advantages of wind power in the grid. Before a utility-scale wind farm is 

developed, feasibility studies are done to determine the wind speeds, direction, 

consistency, and intermittency levels (E & Diamond, 2011). However, despite the 

feasibility studies, this does not change the fact that wind is an intermittent natural 

resource, so wind power constantly fluctuates. Considering that wind farms have a 

viability period of between 20 to 30 years, it would be of great importance that when 

the wind turbines are in operation, utilization of the power output derived from them 

is optimal. Hence, developing accurate wind power prediction tools becomes 

necessary in present-day power grids as installed wind power capacity continues to 

increase.  

1.3 Justification 

Wind energy is a renewable energy resource that occurs intermittently in nature. 

Despite being a free resource, its intermittency makes it challenging to integrate into 

the grid. There arise challenges of power quality, stability, system operation, and 

control (Z. Chen & Member, 2005). Large-scale wind farms in the range of hundreds 

of megawatts have continued to be installed globally, with wind energy penetration 

increasing to over 30% of the total demand in some power systems like Denmark 

(Zhang, Shijie Wei, Jing Chen, Xi Zhao, 2020). Between 2010 and 2021, it was 

reported that the capacity of global wind energy installed grew by more than four 

times (Lee & Zhao, 2021). With such penetration levels, the security of a power 

system becomes a key concern and should be evaluated keenly to ensure that this 

free resource does not end up causing instability in previously stable systems.  

The goal of sustainable development can only be attained by properly managing the 

available resources. Wind power is a free and available resource, and it should be 
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well utilized as and when available. High-precision wind speed and wind power 

forecasting tools have become the most crucial aspect of any power system that 

deploys wind power in the range of Megawatts. Short-term forecasts extending from 

1 hour to 72 hours are essential to plan the operations of a power system in terms of 

unit commitment and wind power dispatch. This helps ensure operations continuity 

and boosts the power system's reliability. In addition, accurate wind power prediction 

helps optimize the grid's operational costs by optimizing the grid’s power mix at any 

given time and optimizing any balancing power required to take care of the 

uncertainty of wind power. The developed hybrid algorithm in this thesis helps 

improve the accuracy of wind power forecasts, thus making integrating large-scale 

wind power more manageable and economical. 

1.4 Objectives 

1.4.1 Main Objective 

To develop a wind power forecasting tool using Bidirectional Long Short-Term 

Memory (BiLSTM) Neural Networks hybridized with data decomposition techniques 

and a wind power curve layer for improved forecasts. 

1.4.2 Specific Objectives 

a) To develop a wind power forecasting model and implement it in a wind 

power forecasting tool using BiLSTM.  

b) To enhance the developed BILSTM model with data decomposition 

techniques and a wind power curve layer.  

c) To test and validate the developed model using the actual wind power data 

from a verifiable wind power dataset from the National Renewable Energy 

Laboratory.  

1.5 Project Scope 

The scope of this study entailed the development of an algorithm that gave improved 

wind power forecasts. The developed algorithm was then tested on a verifiable 

dataset. The simulation environment for this research was MATLAB.  
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1.6 Thesis Outline 

Chapter 1 outlines the problem statement, justification, objectives and the scope of 

research. 

Chapter 2 gives a literature review of the essential topics of this research. It starts by 

explaining the mechanics of wind power harnessing and the types of wind power 

conversion technologies. The various approaches to wind power forecasting based on 

neural network are then introduced after which the essence of data decomposition in 

time series prediction is presented.  

Chapter 3 is the methodology section that gives the outline of the steps adopted in 

implementing the wind power forecasting tool using neural networks. The process of 

enhancing the base models with data decomposition and with a wind power curve 

layer is then presented.  

Chapter 4 presents and discusses the results obtained in this thesis. The results are 

presented based on the methodology and the objectives of the study.  

Chapter 5 outlines the conclusions of the thesis and gives recommendations for 

future research.  
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Harnessing the Power of Wind 

Wind is the movement of air due to the sun’s uneven heating of the earth’s surface. 

In essence, there can never be uniform heating of the earth’s surface due to the 

varying altitudes of topological features; hence, the wind always exists in nature. 

Wind is random and uncontrollable, and it is a renewable energy resource that occurs 

freely in nature virtually in all places around the globe. It is relatively simple to 

harness and has a significantly lower carbon footprint on the environment. There has 

been tremendous growth in incorporating renewables such as wind energy in present-

day power systems driven by public policies that champion climate change and 

reduction of the carbon footprint of various sectors on the environment.  

In some countries, such as the United States, which have well-developed power 

systems, fossil fuels, mainly coal and natural gas, are among the largest sources of 

electricity (U.S Energy Information Administration, 2021). Deposits of these fossil 

fuels are limited in nature and hence stand to get depleted with the growing power 

demand. In addition, power stations running on fossil fuels are major emitters of CO2 

as a byproduct (EPA, 2019). CO2 is a greenhouse gas that has been the most 

significant contributor to global warming in the last century. Recently, the world has 

sought to reduce its CO2 emissions in the environment to reduce global warming. 

According to the Paris agreement, the world is looking to reduce global warming to 

below 2oC by 2050 (Oxford Net Zero, n.d.). Renewables offer this much-needed path 

towards achieving net-zero emissions in the atmosphere since they are clean energy 

sources with minimal adverse environmental impacts.  

According to the global wind report, the global wind industry experienced its most 

remarkable growth in 2020, where the total new wind power installations surpassed 

the 90GW mark that year. This was a 56.7% increase in new installations compared 

to the year 2019 (Lee & Zhao, 2021). The cumulative wind power installations as of 

2020 now stood at 743GW, with China reporting cumulative grid-connected wind 
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power of over 272GW, making it the global leader in wind power installations 

(Zhang, Shijie Wei, Jing Chen, Xi Zhao, 2020). Of the 95.3GW of new wind power 

installations in 2020, 88.4GW (92.8%) of this power came from onshore 

installations, which shows the popularity of onshore wind power plants worldwide. 

Figure 2.1 shows the New global year-over-year wind power installations over the 

last seven years (Lee & Zhao, 2021)(Global Wind Energy Council, 2022): 

 

Figure 2.1: New Global Wind Power Installations in GW per Year. 

One of the biggest challenges in using wind turbines is the fast change in the power 

output of these turbines (Ahmed & Al-ismail, 2020). The wind turbine power output 

depends on the wind speed – an irregular and random variable, making wind power 

an intermittent variable. Due to this variability of wind power, for the efficient 

running of wind power units connected to the grid, accurate forecasts of up to 48 

hours are crucial (Lotfi et al., 2014). The knowledge and information regarding the 

future expected power generation from wind turbines is vital for the smooth 

operation of a power system.  

Wind power uncertainty and the increased bulk wind power integration in power 

systems are bound to affect system stability. The uncertainty of wind power makes it 



8 

a non-dispatchable resource [7]. As a result, there has been a lot of research focusing 

on the development of accurate prediction tools for wind power and improved 

methodologies of accurately determining and allocating reserves to cater to the 

intermittency of wind power, especially where large-scale wind power integration is 

involved. Advancing technologies in wind turbine manufacturing have greatly 

enhanced the process of harnessing wind energy hence popularizing wind power in 

present-day power grids. Wind power forecasting continues to be an attractive 

research area, especially with the increased integration of renewables in modern-day 

grids. Forecasts help power system operators make decisions regarding the grid’s 

operation to guarantee reliability and ensure that generation follows the load demand.   

Wind power is harnessed on two fronts: 

i. Onshore 

ii. Offshore 

Onshore wind turbines are set up on land, while on the other hand, offshore wind 

turbines are installed in water bodies, e.g., seas and oceans.Table 2.1 shows a 

comparison between onshore and offshore wind turbines: 

Table 2.1: Comparison Between Onshore and Offshore Wind Turbines 

(Blaabjerg & Ma Ke, 2017). 

 Onshore Offshore 

1 Designed for moderate wind speeds Designed for higher wind speeds 

2 Comparatively lower installation 

costs 

Higher installation costs compared to 

onshore turbines 

3 Minimal erosion to turbine blades More erosion of turbine blades due to 

moisture 

4 Easy to access and maintain Difficult to maintain and access 

In 2015, the average size of onshore wind turbines installed in the developed wind 

markets such as in Europe was 2.7 MW with the average for offshore turbines 

standing at 4.2 MW (Blaabjerg & Ma Ke, 2017). By 2017, the major wind turbine 

manufacturing companies are producing products ranging from 4 - 6 MW, indicating 

a growth in the wind power sector (Blaabjerg & Ma Ke, 2017). Offshore winds are 
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more uniform and stronger than onshore winds and, thus, generate more power 

explaining why offshore turbines have higher output ratings compared to onshore 

turbines. However, onshore wind turbines still remain the most common wind 

turbine technology installed globally (Global Wind Energy Council, 2022).  

2.2 The Wind Power Equation and Wind Turbines’ Power Characteristics 

Harnessing wind power entails taping the kinetic energy in the wind and converting 

it into electric power. Extracting all the kinetic energy in a wind stream is practically 

impossible. Mathematically, if all the kinetic energy from a wind stream were 

extracted, the stream’s speed after the turbine would be zero (Aliprantis & Lafayette, 

2014). This would imply a disruption in the flow of new wind streams across the 

wind turbine. German physicist Albert Betz researched on the maximum possible 

power that can be extracted from a mass of wind and called it the Betz limit. 

According to the Betz limit, a wind turbine cannot convert more than 59.3% of the 

kinetic energy in the wind into mechanical energy to turn the generator rotor (Ragheb 

& Ragheb Magdi, 2011). This is illustrated in Figure 2.2. 

 

Figure 2.2: Wind Power Extraction Illustration According to the Betz Limit  

(Ragheb & Ragheb Magdi, 2011). 

Out of the 59.3% of the wind’s mechanical energy extracted by the wind turbine, it 

converts part of it into electrical power based on its efficiency. For example, with a 

70% efficiency, the power coefficient (𝐶𝑝) of the wind turbine 

becomes 70 𝑥 59.3% = 𝟒𝟏. 𝟓𝟏%. 
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The wind power equation is derived from the equation for kinetic energy (K.E) given 

by  

.𝐾. 𝐸 =
1

2
𝑚𝑣2     (2.1) 

Where: 𝑚 is the mass of an object in kg 

𝑣 is the velocity of the object in m/s 

The mass of flowing air particles used to generate the kinetic energy is a function of 

time since air is continuously flowing and is given as:  

 
𝑑𝑚

𝑑𝑡
= 𝜌(𝑡)𝐴𝑣     (2.2) 

Where: 𝑚 is the mass of air in kg 

𝑡 is the time in 𝑠 

𝑣 is the velocity of air 

𝜌(𝑡) is the density of air in kg/𝑚3 at a given time (𝑡).  

𝐴 is the area swept by the wind turbine blades in 𝑚2.  

From equation (2.1), the average electrical power (𝑃𝑎𝑣) in Watts developed by wind 

is given as:  

𝑃𝑎𝑣 = 𝐶𝑝
1

2

𝑑𝑚

𝑑𝑡
𝑣2     (2.3) 

Substituting equation (2.2) in (2.3), we have:  

𝑃𝑎𝑣 = 𝐶𝑝 ∗
1

2
𝜌𝐴𝑣. 𝑣2= 

1

2
𝐶𝑝𝜌𝐴𝑣3   (2.4) 

Where CP is the Power Coefficient  
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Equation 2.4 above shows the cubic relationship between wind speed and wind 

power, making the wind speed, 𝑣, the most significant variable in determining the 

power output of a wind turbine (Rafaat & Hussein, 2018). A graph of 𝑃𝑎𝑣 against 𝑣 is 

known as the wind power generation curve. There are three critical zones in a wind 

power generation curve:  

i. Cut in speed 

ii. Constant Cp region 

iii. Constant Power output region. 

These zones are illustrated in Figure 2.3 next: 

 

 

 

Figure 2.3: Wind Power Curve for a Vestas V52 - 850kW Wind Turbine (Vestas 

Wind Systems, n.d.). 

The cut-in speed is the speed at which the wind turbine has sufficient mechanical 

energy to start generating electric power. Below the cut-in speed, the generator 

Cut off speed Constant (Rated output and speed) 

Constant Cp region 

Cut in speed 

Power Curve V52 - 850 kW 
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output is zero since the energy in the wind is too small to overcome mechanical 

losses and start generating. In the Constant Cp region, the wind power has a quasi-

cubic increase for every step increase in the wind speed. When the wind speed 

reaches the rated speed, the wind generator’s power output becomes constant, and 

this zone is referred to as the constant power region. The output remains constant 

until the cut-off speed, where the turbine disengages from the generator and 

generation stops. Beyond the cut-off speed, the wind speed is too fast and stands to 

damage the generator; hence, generation is stopped.  

2.3 Wind Energy Conversion Systems (WECS) 

Wind Turbines have increased in size over the years, having started from a few KW 

to the MW systems of today. New combinations and configurations of generators and 

convertor technologies help achieve high and stable output power. One of the most 

notable modifications has been the introduction of pitch-able blades. These allow the 

wind generator to vary its output by controlling the angle of attack of the turbine 

blades on the wind (Beainy et al., 2016). The future of harnessing wind power is 

going offshore since winds are stronger and more consistent at sea than on land. 

However, for now, most of the installations that have been done are onshore. 

Wind turbines are usually clustered together to form wind farms, after which the 

power obtained from the wind farms is aggregated and injected into the grid. 

According to the history of wind turbines, there have been two types of WTs – fixed 

speed and variable speed. Fixed-speed WTs are an earlier technology that has 

gradually been replaced by variable-speed WTs. Variable speed WTs can achieve 

better aerodynamic efficiency for varying wind speeds. Usually, large-scale WTs 

have a horizontal axis structure and are referred to as Horizontal Axis Wind Turbines 

(HAWT). Other configurations are the Vertical Axis Wind Turbines (VAWT). 

HAWTs are more common globally due to their high power conversion efficiencies 

(Johari et al., 2018). The blades of a WT can reach up to 140 m in diameter for 

rotational speeds of between 5 and 25 rpm. Figure 2.4 below shows the parts of a 

wind turbine:  
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Figure 2.4: Parts of a Wind Turbine (Rafaat & Hussein, 2018) 

There are four types of WECS used in geared operations (Aliprantis & Lafayette, 

2014): 

i. Squirrel Cage Induction Generator (SCIG) or Type I wind turbines. 

ii. Wound Rotor Induction Generator (WRIG) or Type II wind turbines. 

iii. Doubly Fed Induction Generators (DFIG) or Type III wind turbines. 

iv. Permanent Magnet Synchronous Generators (PMSG) or Type IV wind 

turbines. 

Table 2.2 summarises these four types of WECS and their characteristics (Aliprantis 

& Lafayette, 2014) (Beainy et al., 2016). 
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Table 2.2: Types of WECS. 

S/No Type Characteristics Illustration  

i.  Squirre

l Cage 

Inducti

on 

Genera

tor 

(SCIG) 

or 

Type I 

wind 

turbine 

 Simple design 

 Squirrel cage 

rotor 

 Fixed speed 

operation 

 Limited 

controllability, 

hence 

inefficient at 

varying wind 

speeds.  

 

ii.  Wound 

Rotor 

Inducti

on 

Genera

tor 

(WRIG

) or 

Type II 

wind 

turbine 

 Wound rotor 

with external 

resistor bank 

with variable 

resistors.  

 Some control 

over output by 

varying the 

rotor resistance.   

iii.  Doubly 

Fed 

Inducti

on 

Genera

tors 

(DFIG) 

or 

Type 

III 

wind 

turbine

s 

 Similar 

topology to the 

WRIG, but has 

its rotor is 

connected to the 

grid via power 

electronic 

devices.  

 Higher level of 

control, hence 

higher 

efficiency.  
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S/No Type Characteristics Illustration  

iv.  Perma

nent 

Magne

t 

Synchr

onous 

Genera

tors 

(PMS

G) or 

Type 

IV 

Wind 

Turbin

es 

 Use 

permanent 

magnets to 

produce the 

magnetic 

field.  

 They have 

higher 

controllability 

and, hence, 

are more 

efficient.  

 

 

 

2.4 Wind Power Forecasting  

Wind power is a stochastic variable and requires accurate forecasting techniques to 

determine a future value close to its actual value over a given horizon (Shao et al., 

2016). Wind power forecasting is a time series analysis problem since wind data fits 

the description of a time series. A time series is a set of ordered data that spreads 

over a given period and has equally spaced observation points (Ivanovic & Kurbalija, 

2016). Time series analysis entails using previously observed values to predict future 

values. It is the process of analyzing time series data to extract information and 

forecast future instances of the series. In time series analysis, a one model fits all 

approach cannot be assumed since each data set has unique intrinsic characteristics 

that may not be common to other data sets (Shrestha & Bhatta, 2017). Therefore, a 

chosen model must be customized and tailored to fit the specific problem to which it 

shall be applied.  

When analyzing time series data, three crucial pieces of information can be drawn 

from the data (Ivanovic & Kurbalija, 2016):  

i. Autocorrelation - refers to the degree of similarity between a given time 

series and a lagged version of itself.  
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ii. Seasonality - involves the time series data having patterns that repeat at 

regular intervals in the timeframe of interest. For example, when the data 

peaks and dips are observed at similar instances, it is concluded that the time 

series exhibits seasonality tendencies.  

iii. Stationarity - Measures how little the time series mean and variance change 

with time. If these data values do not change much throughout the time series 

(i.e., they are seen to be constant over time), then the data is said to have high 

stationarity.  

Time series analysis explains what happened in the past and why and then 

endeavours to predict what will happen in the future. Such decisions are crucial in 

power systems since they assist operators in making the best operational decisions to 

optimize system efficiency and reliability.  

Wind power can be predicted in several forecast horizons, as summarized in Table 

2.3 (Zhao et al., 2011): 

Table 2.3: Wind Power Prediction Horizons and their Applications. 

Time Horizon  Forecast Range Applications in Power Systems 

Very Short Term Few seconds - 30 mins Turbine control 

Market clearing 

Short Term 30 mins - 48(or 72) hours  Dispatch planning 

Medium Term 48(or 72) hours - 1 week  Unit commitment 

Maintenance planning 

Long Term 1 week - 1 year (or more) Feasibility studies for  wind 

farm 

Scheduling for optimal costs 

In as much as these time scales are important, the short-term forecast is the most 

important for the operation of the wind farms and the grid, and this research focuses 

on testing the developed forecast algorithms on the short-term prediction horizon. 

Should wind power be suddenly lost a few minutes to dispatch, thermal generators 

have to be engaged to kick in and provide the deficit power. Operating thermal units 

is expensive, and thus, this leads to the increase in per unit cost of electricity. With 

accurate short-term forecasts, a power system operator can plan for cheaper 
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alternatives in the absence or dip in wind power (Zhu & Genton, 2012). The 

advantages of accurate short-term predictions include the following: 

i. Efficient operation of the wind turbine units/farms ensuring optimal power 

is obtained from them. 

ii. Savings resulting from reduced thermal capacity that is committed as 

spinning reserve. 

2.5 Challenges of Wind Energy Integration in a Power System.  

There are several challenges posed by integrating wind power into a power system. 

These challenges are the genesis of the research revolving around wind power 

forecasting and prediction. The challenges include (Zhu & Genton, 2012): 

i. High variability – Wind can be blowing at one moment and, in the next, 

suddenly disappear. This characteristic is unlike conventional sources of 

power generation, where the power system operators have some control over 

the power being generated at any particular time. 

ii. Limited predictability – Weather forecasting is becoming more complicated 

with the day due to global warming disrupting the normal weather patterns 

that have existed through the years. Forecasting wind power has now been 

reduced to a game of chance rather than a science. 

iii. Limited dispatchability – Due to the intermittency of wind power, power 

operators consider it a non-dispatchable resource. Such a fluctuating power 

resource is bound to cause substantial stability issues in a power system when 

there is a sudden influx of wind power or when a considerable amount of 

power is suddenly lost when the wind disappears.  

iv. Limited storage capability – There are very few ways wind power can be 

stored. They are either too limited such that they do not make use of the total 

wind power produced or are too expensive to implement. Unlike coal and 

natural gas, wind cannot be stored physically and used to generate power 

later. 
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The main objective of power system operation is to balance the demand and supply 

of electric power with a generation mix that gives minimum costs. The constraints 

are the line capacities, among other contingencies. On different time scales, the 

Independent System Operator (ISO) is tasked with balancing supply and demand and 

keeping the generation costs at a minimum. These time scales can be a day ahead, 

hourly, or even minutes ahead. This indicates that if a wind power prediction system 

is to be developed, it must be able to forecast within minutes to allow the system 

operators to incorporate the wind power into the grid seamlessly. Power plants 

provide power based on the projected load demands at any given time. On top of 

that, they also offer other ancillary services that include frequency regulation and 

provision of reserve capacity (spinning reserve) to guarantee system security and 

reliability. Online plants must adjust their output by increasing or decreasing their 

production to keep the frequency at a nominal level.  

2.5.1 Wind Power Forecasting Approaches 

Wind power forecasting approaches can be categorized into two based on the 

forecasting data used (Bokde et al., 2018): 

a) The indirect method - Entails forecasting future wind speed values, after 

which appropriate transformations are applied to get the corresponding values 

of wind power.  

b) The direct method - Here, wind power is forecast directly without 

predicting wind speed. 

According to the approach used in wind power prediction, the various methods can 

be classified into:  

i. Persistence Methods - Assumes that wind power at a given observation 

point in the future, 𝑡 + 1, is the same as the measured power at the current 

time, 𝑡. The accuracy of this method deteriorates fast with an increase in the 

prediction scope/timescale (Hanifi et al., 2020). If the current wind power at 

time 𝑡 is 𝑃(𝑡), then wind power at a future time 𝑡 + 𝛥𝑡 is assumed to be 

𝑃(𝑡 + 𝛥𝑡) =  𝑃(𝑡). For this assumption to hold, the forecasting time frame 
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needs to be very small; hence, its accuracy is only viable for ultra-short-term 

time frames.  

ii. Physical Methods - Utilize complex mathematical models to perform their 

prediction. Physical methods deal with numerical weather prediction data 

from meteorological services that study the behaviour and physics of the 

lower boundary of the atmosphere to predict future weather patterns. This 

method considers the topology of a wind farm’s location. The main 

disadvantage of physical models is that they need very accurate online and 

offline data (Zhao et al., 2011). This method is also computationally tasking 

and requires considerable computing resources (Hanifi et al., 2020). Physical 

methods present better performance for medium-term and long-term forecasts 

(Y. Wang et al., 2021). They, however, have poor performance in shorter-

term forecasts.  

iii. Statistical Methods - These are based on establishing the linear and non-

linear relationships between weather parameters such as wind speed, 

direction, and temperature with the generated wind power. Statistical methods 

require historical data to train the models to determine these relationships. 

Statistical models are ideal for short-term wind prediction, and prediction 

accuracy decreases as the forecast time scale increases (Hanifi et al., 2020). 

They are simple to model and require short computational durations. The 

models are occasionally tuned by comparing the predicted and measured 

power to ensure that the forecasts continuously improve as time progresses. 

Statistical models are divided into time series models and artificial neural 

network models.  

a) Time series models 

These are mathematical models proposed by George Box and Gwilym 

Jenkins and use historical data to develop a mathematical model that forecasts 

future time series instances (Hanifi et al., 2020). The Box - Jenkins models 

are based on the ARIMA models to find the best fit for a time series based on 

historical values (Lawan et al., 2014). The general form of the model is 

described as follows:  
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𝑋𝑡 = ∑ 𝜑𝑖𝑋𝑡−𝑖
𝑝
𝑖=1 + 𝛼𝑡 − ∑ 𝜃𝑗𝛼𝑡−𝑗

𝑞
𝑗=1    (2.5) 

Where:  

𝑋𝑡 - is the wind power forecast at the time 𝑡 

𝜑𝑖 - is the autoregressive parameter 

𝜃𝑗  - moving average parameter 

𝛼𝑡 - white noise 

𝑝 - order of the autoregressive model 

𝑞 - order of the moving average model 

If 𝑝 = 0, the model becomes a Moving Average (MA) model, and if 𝑞 = 0, 

the model becomes an Auto-Regressive (AR) model.  

b) Artificial Neural Network Models 

Artificial Neural Networks (ANNs) are some of the most popular methods 

used in wind power forecasting (Hanifi et al., 2020). The strengths of ANNs 

come from their ability to establish non-linear relationships between input 

features and the predicted variable(s) without any need for mathematical 

formulations (Lawan et al., 2014).  

iv. Hybrid Methods 

It involves combining physical and statistical models or two or more physical 

or statistical models. The aim is to have one model improve on the weakness of 

the other model they are hybridized with. In doing this, the overall prediction 

accuracy of the hybrid is improved.  

2.5.2 Evaluation Criteria of the Accuracy of Wind Power Forecasts. 

Since wind power is a highly fluctuating variable, wind power forecasting cannot be 

an exact science. The forecast wind power at a time 𝑡 needs to be compared to the 

actual power from the dataset and the error computed. The less the error, the more 

accurate the prediction model.  The most common methods used in evaluating the 

accuracy of a wind forecast are summarized below (Zhao et al., 2011):  
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a) Mean Error (ME) 

𝑀𝐸 =
1

𝑁
∑ (𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)𝑁

𝑡=1       (2.6) 

Where: 

 𝑋𝑝𝑟𝑒𝑑,𝑡 - Is the forecast value for time t 

𝑋𝑜𝑏𝑠,𝑡 - Is the observed (actual) value at time t 

𝑁− is the number of prediction points 

b) Mean Absolute Error (MAE) 

𝑀𝐴𝐸 =
1

𝑁
∑ |(𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)|𝑁

𝑡=1    (2.7) 

Where: 

 𝑋𝑝𝑟𝑒𝑑,𝑡 - Is the forecast value for time t 

𝑋𝑜𝑏𝑠,𝑡 - Is the observed (actual) value at time t 

𝑁− is the number of prediction points 

c) Mean Square Error (MSE) 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)2𝑁

𝑡=1    (2.8) 

Where: 

 𝑋𝑝𝑟𝑒𝑑,𝑡 - Is the forecast value for time t 

𝑋𝑜𝑏𝑠,𝑡 - Is the observed (actual) value at time t 

𝑁− is the number of prediction points 

d) Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)2𝑁

𝑡=1    (2.9) 
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Where: 

 𝑋𝑝𝑟𝑒𝑑,𝑡 - Is the forecast value for time t 

𝑋𝑜𝑏𝑠,𝑡 - Is the observed (actual) value at time t 

𝑁− is the number of prediction points 

e) Normalized Mean Absolute Error (NMAE) 

𝑁𝑀𝐴𝐸 =
1

𝑃𝑖𝑛𝑠𝑡
{

1

𝑁
∑ |(𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)|𝑁

𝑡=1 }   (2.10) 

Where: 

𝑃𝑖𝑛𝑠𝑡 - Installed capacity of the wind farm. 

f) Normalized Root Mean Square Error (NRMSE) 

𝑁𝑅𝑀𝑆𝐸 =
1

𝑃𝑖𝑛𝑠𝑡
√

1

𝑁
∑ (𝑋𝑝𝑟𝑒𝑑,𝑡 − 𝑋𝑜𝑏𝑠,𝑡)2𝑁

𝑡=1    (2.11) 

Where: 

𝑃𝑖𝑛𝑠𝑡 - Installed capacity of the wind farm. 

g) Mean Absolute Percentage Error (MAPE) 

𝑀𝐴𝑃𝐸 =
100

𝑁
∑ |

(𝑋𝑝𝑟𝑒𝑑,𝑡−𝑋𝑜𝑏𝑠,𝑡)

(𝑋𝑜𝑏𝑠,𝑡
|𝑁

𝑡=1     (2.12) 

Where: 

 𝑋𝑝𝑟𝑒𝑑,𝑡 - Is the forecast value for time t 

𝑋𝑜𝑏𝑠,𝑡 - Is the observed (actual) value at time t 

𝑁− is the number of prediction points 
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2.6 The Artificial Neural Network (ANN) 

2.6.1 Basic Structure of the ANN 

The ANN is a non-linear mapping architecture mimicking a human’s central nervous 

system operation. The basic structure of an ANN is the neuron. It mimics the 

biological neuron, and its illustration is shown in Figure 2.5: Architecture of a 

Neuron. The first artificial neural network model was created by McCulloch and Pitts 

back in 1943 (Singh, 2016). The ideas behind that first model are still in use today.  

An ANN can also be defined as a massively paralleled processor consisting of simple 

processing units that can learn by experience and use that knowledge to make future 

decisions (Sharkawy, 2020). The ANN is a robust prediction tool for situations 

where the relationship between data is unknown and seeks to be established. ANNs 

learn from any correlated patterns observed between input data sets and target values 

in the training dataset. Once trained, an ANN can then predict subsequent future 

outcome(s) from the determined pattern/connections it extablishes from the training 

dataset.  

ANNs are well suited to deal with data considered vague, noisy and data that, at 

times, changes erratically. Wind power exhibits such characteristics due to the 

fluctuating nature of wind speed. Wind power has a quasi-cubic relationship with 

wind speed.  Thus, ANNs are ideal for a wind speed/ power data prediction tool since 

such data is complex and often non-linear (Singh, 2016). Since a neural network 

consists of highly interconnected nodes, it can learn and generalize training patterns 

from the training data, just like the human brain. This vital learning capability of 

ANNs is the main advantage that makes it the best tool for forecasting applications. 

The neuron is the basic information processing unit in a neural network, and its 

architecture is shown in Figure 2.5 below (Sharkawy, 2020): 
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Figure 2.5: Architecture of a Neuron. 

Where: 

 𝑥1 to 𝑥𝑚 represent the inputs to the neuron  

 𝑥0 represents the bias - The bias helps in establishing meaningful 

activation of neurons. It stipulates the threshold above which a neuron is 

activated; otherwise, the neuron remains inactive.  

 𝑤𝑗0 to 𝑤𝑗𝑚 represent respective synaptic weights connecting each input to 

neuron 𝑗 

 𝑦𝑗 is the output signal of the neuron 

The output of the summation junction 𝑠𝑗 is given as: 

𝑠𝑗 =  ∑ 𝑤𝑗𝑚𝑥𝑚
𝑚
𝑚=0    (2.13) 

The weighted sum is then passed through an activation function, 𝜑, to squash it 

between a given small range of values. The output from the activation function is the 

output of the neuron, 𝑦𝑗.  

𝑦𝑗 =  𝜑(𝑠𝑗)     (2.14) 

The flow chart of the ANN algorithm is shown in Figure 2.6: 
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Figure 2.6: Flowchart of the ANN algorithm. 

 

 

Obtaining the best neural network 

architecture and training parameters 

Network is ready for performance prediction 

Validation of network 

Error goal reached Increase iteration 

Define input and output parameters 

  Training, validation and test data set extracted 
from the experimental results 

START

Define learning algorithm 

ANN training and network optimization 

Weight and bias are selected random 

STOP

Update parameters 

(𝒘𝒊𝒋, 𝒘𝒋𝒌, 𝒃𝒋, 𝒃𝒌  ) 

Changing of parameters for training of the network 
(Backpropagation+ Optimization Algorithm) 

1. Number of hidden layers 
2. Number of neurons in hidden layer 
3. Momentum factor 
4. Transfer function 

NO 

YES 
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2.6.2 ANN Activation Functions.  

Eight activation functions can be used with neural networks (Rasamoelina, 2020):  

i. The sigmoid/logistic activation function 

It handles inputs ranging from −∞ to +∞ and translates them to the range [0; 1]. 

The sigmoid function is defined as:  

𝜎𝑥 =
1

1+𝑒−𝑥
    (2.15) 

A plot of the sigmoid function and its derivative is shown in Figure 2.7 below:  

 

Figure 2.7: Sigmoid Function and its Derivative 

The sigmoid function squashes a large input space into a small range between 0 and 

1. As the input to the sigmoid function increases, the derivative tends to zero. 

Consequently, the sigmoid function suffers from the vanishing gradient problem in 

deep networks since the derivative tends to zero, making training ineffective.  

ii. Hyperbolic tangent function 

It handles inputs ranging from −∞ to +∞ and translates them to the range [−1, +1]. 
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The hyperbolic tangent function is defined as:  

tanh(𝑥) =
2

1+𝑒−2𝑥 − 1    (2.16) 

A plot of the hyperbolic tangent function and its derivative is shown in Figure 2.8 : 

 

Figure 2.8: Hyperbolic Tangent Function and its Derivative 

iii. The rectified linear unit (ReLU) 

It is the most common activation function, especially in deep neural networks, due to 

its superior performance over the sigmoid and hyperbolic tangent functions. It 

handles inputs ranging from −∞ to +∞ and translates them to the range [0, +∞]. It 

is defined as: 

𝑅𝑒𝐿𝑈(𝑥) = max (0, 𝑥)     (2.17) 

ReLU is zero for all negative values and linear for positive ones. Since RNNs can 

have very large outputs, the ReLu activation function is not recommended since it 

might lead to exploding gradients compared to activation functions with bounded 

output values. The disadvantage of the ReLU is that all negative input values are 

transformed into zeros. This implies that once a neuron gets negative, then it is 
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unlikely to recover. This phenomenon is called the dying ReLU and is a unique case 

of the vanishing gradient problem.  

A plot of the ReLU function and its derivative is shown in Figure 2.9 below:  

 

Figure 2.9: ReLU Function and its Derivative 

iv. Parametric Leaky ReLU 

Seeks to resolve the dying ReLU problem by giving the negative input values a 

negative slope instead of squashing them to zero. It is defined as: 

𝑃𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) + 𝛼 · min (0, 𝑥)     (2.18) 

A plot of the PReLU function and its derivative is shown in Figure 2.10:  
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Figure 2.10: PReLU Function and its Derivative 

v. Exponential Linear Unit (ELU) 

It is an improvement over the traditional ReLu. For input values greater than zero, it 

follows the same rules as ReLU. However, the ELU increases exponentially for 

negative values to resolve the dying ReLU problem of the traditional ReLU. 

It is defined as: 

𝐸𝐿𝑈(𝑥) = max(0, 𝑥) + min (0, 𝛼(𝑒𝑥 − 1))     (2.19) 

 A plot of the ELU function and its derivative is shown in Figure 2.11 next:  
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Figure 2.11: ELU Function and its Derivative 

vi. Scaled Exponential Linear Unit (SELU) 

It was proposed for use with self-normalized neural networks. It is defined as: 

𝑆𝐸𝐿𝑈(𝑥) = γ · (max(0, 𝑥) + min (0, 𝛼(𝑒𝑥 − 1)))    (2.20) 

Where: 𝛼 = 1: 6732632423543772848170429916717  and 𝛾 =

1: 0507009873554804934193349852946 

Not many studies have been done on the use of SELU.  

vii. Swish Function 

It doesn’t have an upper bound but instead has a lower bound. It is defined as:  

𝑆𝑤𝑖𝑠ℎ(𝑥) =
𝑥

1+𝑒𝑥
     (2.21) 

viii. Mish function 

It is defined as:  

𝑀𝑖𝑠ℎ(𝑥) = 𝑥𝑡𝑎𝑛ℎ(log (1 + 𝑒𝑥))     (2.22) 
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Figure 2.12: Swish and Mish Functions Comparison 

2.6.3 Types of ANNs 

Artificial Neural Networks can be broadly categorized into: 

i. Feedforward Neural Networks (FFNNs) 

ii. Radial Basis Neural Networks (RBFNNs) 

iii. Convolutional Neural Networks (CNNs) 

iv. Recurrent Neural Networks (RNNs) 

The RNNs are optimized to handle time series data and form the basis of the research 

for this thesis. Next is a discussion of each of the four categories of neural networks.  

2.6.3.1 Feedforward Neural Network (FFNN) 

It is one of the simplest neural networks. In the FFNN, the data flows in one 

direction from the input node(s) to the output node(s). Neurons are interconnected by 

weights that form some weighted associations between the inputs and outputs. The 

network learns by comparing the processed output vs the actual/target output. If this 

value is less than the desired threshold, the network then adjusts the values of the 
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interconnecting weights according to a set learning rate based on the error values. 

Figure 2.13 below shows an illustration of a single-layer FFNN.  

 

 

Figure 2.13: Illustration of a Single-Layer FFNN. 

In the FFNN, the product of the inputs and the corresponding weights connecting 

them to a given node are calculated and then added together. This sum is then fed to 

the output, as shown in Figure 2.13. If the FFNN has more than one layer, it is 

referred to as a Multilayer Perceptron (MLP).  

The MLP has three or more layers and is used to classify data that cannot be linearly 

separated. Every single node in a given layer is connected to each node in the next 

layer; hence, the MLP is considered a fully connected ANN. An MLP uses a non-

linear activation function, e.g., hyperbolic tangent or the logistic function. FFNNs 

mainly find applications in general regression and classification problems. Figure 

2.14 below shows the illustration of an MLP: 

Inputs Output Layer 
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Figure 2.14: A Multilayer Perceptron 

2.6.3.2 Radial Basis Function Neural Network (RBFNN) 

RBFNNs are a class of FFNNs. The design of his network is such that it tries to 

establish the best curve of fit in a high-dimensional space. In getting the surface that 

provides the best line of fit for the training data, RBFNNs can use that to forecast 

future values of a given quantity.   RBFNNs are applied in power restoration systems 

to ensure power restoration is done in the shortest time possible.  

2.6.3.3 Convolutional Neural Network (CNN) 

Convolutional networks are very effective in image and video recognition. They are 

mainly used for object detection and image classification problems. A CNN is a 

variant of the MLP in that it has several layers. The convolutional layers can either 

be wholly connected or pooled. Figure 2.15 shows a CNN.  
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Figure 2.15: Illustration of a CNN 

2.6.3.4 The Recurrent Neural Network (RNN) 

The RNN is a type of neural network where the output of a given layer is saved and 

fed back to the network as an input. RNNs were created to solve the FFNN’s 

problem of not handling sequential data well. The FFNN only considers the current 

inputs and cannot memorize previous inputs. Also, the input nodes of the FFNN are 

independent; hence, the neural network cannot learn any temporal relationship 

present in the input data (Y. Liu et al., 2019). Figure 2.16 below shows a simple 

illustration of an RNN.  

 

Figure 2.16: Illustration of an RNN (rolled) 
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Expanding/unrolling the illustration in Figure 2.16 to show how the output of the 

hidden layer is fed back as an input in the next time step, we get the neuron in Figure 

2.17:  

 

Figure 2.17: A Fully Connected RNN (unrolled) 

Where: 

ℎ(𝑡) is the new state of the network 

𝑥(𝑡) is the input 

𝑦(𝑡)  the output 

At the time (𝑡), the state of the network is going to be determined by the input 𝑥(𝑡) 

as well as the previous/old state of the network ℎ(𝑡 − 1), i.e., 

ℎ(𝑡) = 𝑓 (𝑥(𝑡), ℎ(𝑡 − 1))     (2.23) 

Therefore, an RNN forms a chain of interconnected modules of the simple neural 

network, as shown in Figure 2.18:  
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Figure 2.18: Chain of Simple Interconnected Neural Networks to Form an RNN 

The old state of the network is fetched back to improve the current output of the 

network. This makes RNNs well-adapted to deal with time series data, image 

captioning, and natural language processing. Such data usually correlates between 

previously observed data and the current data.  

Standard RNNs have a few limitations:  

i. They suffer from the vanishing gradient problem - RNNs work on time-

dependent and sequential data problems. Gradients carry the information 

transmitted over time across the RNN to improve future updates. If the gradient 

becomes too small, the updates to the network become insignificant, limiting the 

network’s ability to learn through long data sequences.  

ii. They suffer from the exploding gradient problem - When training an RNN, if the 

slope of the data keeps growing exponentially and does not decay, this results in 

an exploding gradient. When large error gradients accumulate, huge updates are 

made to the networks for every step, resulting in longer training times and 

inferior performance. To resolve the limitations of the RNNs, the Long Short-

Term Memory (LSTM) neural network was developed. The LSTM has a long-

term memory to learn any long-term dependencies in a dataset and store that 

information for future reference. For the LSTM, instead of having a chain of 

ℎ𝑡−1 ℎ𝑡 ℎ𝑡+1 

𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1 

𝒕𝒂𝒏𝒉 𝐀 𝐀 
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single neural networks, it has four layers that interact and communicate, as 

shown in Figure 2.19 below:  

 

Figure 2.19: Chain Structure of the LSTM 

The structure of a single LSTM cell is shown in Figure 2.20, and the working of 

how it processed information is explained next. 

 

Figure 2.20: An LSTM Cell 

New Hidden 

State 

New Cell 

State 

Input State 

Output 

State 

ℎ𝑡−1 ℎ𝑡 ℎ𝑡+1 

𝑥𝑡−1 𝑥𝑡 𝑥𝑡+1 

𝐀 𝐀 

𝒕𝒂𝒏𝒉 
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The information flow of the LSTM cell, as shown in Figure 2.20, is from left to 

right. The working of the LSTM is as explained below: 

Stage 1: The Forget Gate 

Here, the LSTM decides what to remember or forget from the information received 

from the previous timestep. The output of the forget gate is formulated as below:  

𝑓(𝑡) = 𝜎(𝑈𝑓𝑥(𝑡) + 𝑊𝑓ℎ(𝑡 − 1))     (2.24) 

The previous hidden state and the current input are passed through a sigmoid 

function to determine the relevance of the old information to the current input. The 

sigmoid function gives an output of a 0 or a 1. If the forget gate output 𝑓(𝑡) = 0 or 

close to a zero, that information is irrelevant and forgotten. If the forget gate output 

𝑓(𝑡) = 1 or close to one, then that information is remembered.  

Stage 2: The Input Gate 

The input gate updates the cell state with the current input. Initially, the previous 

hidden state and current input are given as inputs to a sigmoid function. The closer 

the output is to a 1, the more relevant the information is to the network. In this stage, 

to further improve the tuning of the network, the previous hidden state and current 

input are passed through a tanh to squeeze the values between +1 and -1. This gives a 

weighting to the variables based on their relevance or level of importance. The two 

outputs are then multiplied element by element. The sigmoid output then determines 

what information to keep from the tanh output.  

𝑖1(𝑡) = 𝜎(𝑈𝑖𝑥(𝑡) + 𝑊𝑖ℎ(𝑡 − 1))    (2.25) 

𝑖2(𝑡) = tanh (𝑈𝑔𝑥(𝑡) + 𝑊𝑔ℎ(𝑡 − 1))   (2.26) 

𝑖(𝑡) = 𝑖1(𝑡) + 𝑖2(𝑡)     (2.27) 

Stage 3: Calculation of the new cell state 

After we get the output of our input gate, we calculate the new cell state as below:  
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𝑐(𝑡) = 𝑓(𝑡)𝑐(𝑡 − 1) + 𝑖(𝑡)     (2.28) 

Stage 4: The Output Stage 

First, the current cell state part that makes it to the output is determined. The cell 

state first passes through a tanh function to squash the values between +1 and −1. 

The previous hidden state and the current input are summed and passed through a 

sigmoid function. After that, the two outputs are multiplied element by element, and 

this gives the matrix of the information to be contained in the next hidden state ℎ(𝑡).  

𝑜(𝑡) = 𝜎(𝑊𝑜ℎ(𝑡 − 1) + 𝑈𝑜𝑥(𝑡))     (2.29) 

ℎ(𝑡) = tanh(𝑐(𝑡)) ∗ 𝑜(𝑡)     (2.30) 

The Bidirectional LSTM is an improvement of the LSTM. It combines the LSTM 

network and the bidirectional RNNs, allowing it to learn long-term dependencies in a 

dataset (Dolatabadi et al., 2020). The BiLSTM allows better training of the network 

by traversing the training data twice, i.e. from left to right (forward) and from right to 

left (backward), hence the term “Bi”.BiLSTM models have better accuracy than 

LSTM but reach equilibrium more slowly (Namini et al., n.d.). The structure of a 

BiLSTM network for three consecutive steps is as shown below (Yanga, Mo Wang, 

2022):  

 

Figure 2.21: Structure of a BiLSTM Network 
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In Figure 2.21 above, the BiLSTM Network is presented, illustrating its bidirectional 

data processing capabilities. This is achieved by having two LSTM layers - one for 

each direction. During the forward pass through the data, the forward LSTM 

processes the input sequence from 𝑥1, 𝑥2, … … … … 𝑥𝑡 , and processes it sequentially 

from 𝑡 =  1 to 𝑡 =  𝑇, where T is the sequence length. The backward LSTM 

processes the data from time 𝑡 =  𝑇 backwards to time 𝑡 =  1 (Y. Wang et al., 

2021). After that, the forward and backward LSTM outputs are concatenated at each 

time stamp. This results in a combined hidden state for each time stamp [ℎ𝑡, ℎ𝑡
′ ] from 

the forward LSTM and the backward LSTM respectively. The information in the 

concatenated hidden layers is then used in subsequent time steps for predictions in 

the time series data. The capability of the BiLSTM networks to capture contextual 

information and connections from past and future data points makes the BiLSTM a 

robust tool for time series prediction. The BiLSTM has been successfully 

implemented in time series forecasting problems and have been shown to have 

superior performance over the LSTM models (Dolatabadi et al., 2020).  By sweeping 

through the data in the forward and backward directions, the BiLSTM network can 

identify some additional connections in time series data that cannot be identified by 

the traditional LSTM and is recommended as a better tool for time series forecasting 

(Namini et al., 2019).   

2.7 Data Decomposition Techniques. 

Time series decomposition is a statistical task that involves breaking down data into 

several high and low-frequency components to extract information on seasonality or 

trends from the data (Chourasia, 2020). Time series data is usually very noisy and 

complex, and decomposition helps break it down into simpler components. 

Decomposition gives a better understanding of the data by highlighting any repetitive 

seasons in the data or increasing or decreasing trends over time.  Data decomposition 

reduces the non-stationarity and non-linearity of a time-series dataset, making it 

easier to predict than the original data series  (Y. Liu et al., 2019).  

Data decomposition models can be classified into additive and multiplicative models. 

In the additive model, the variance of the data does not change much over time, and 
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the trend line is linear (Chourasia, 2020). To get the original time series, one only 

needs to add the lower frequency components the data is decomposed into. i.e., 

𝑦(𝑡) = 𝑠(𝑡) + 𝑇(𝑡) + 𝑅(𝑡)     (2.31) 

Where:  𝑦(𝑡) - Original time series 

𝑠(𝑡)- Seasonal component 

𝑇(𝑡) - Trend component 

𝑅(𝑡) - Residual component 

In the multiplicative model, the seasonal and trend components also increase as the 

data increases over time. Hence, to reconstitute the original time series, one 

multiplies all the components the trend was broken down into as shown below 

(Chourasia, 2020): 

𝑦(𝑡) = 𝑠(𝑡) x 𝑇(𝑡) x 𝑅(𝑡)    (2.32) 

The working of data decomposition is illustrated in Figure 2.22:  
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Figure 2.22: An Illustration of Data Decomposition (McHugh, 2020). 

Figure 2.22 above illustrates how data decomposition can bring out clear patterns of 

seasonality from a dataset. The original time series data is shown in the graph (𝑎). 

The trend component is extracted as illustrated in (𝑏) and shows any long-term 

directional property of the time series data. It indicates whether the data is increasing, 

decreasing or remaining constant relative to time. The extracted seasonal component 

is illustrated in (𝑐) and highlights the repetitive patterns or events occurring in the 

data at fixed intervals such as daily, weekly or yearly cycles. These repetitive 

patterns indicate the cycles of seasons, especially in time series data that rely on 

weather parameters. The residual or remainder is shown in (𝑑) and is commonly 

referred to as the noise. It represents the unexplained variability in the data once the 

seasonal and trend components have been accounted for.  

𝑑 

c 

𝑏 

𝑎 
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There has been a lot of research on the significance of data decomposition of wind 

time series data on the accuracy of forecasts. Most researchers hybridize their 

algorithm of choice with a given data decomposition technique, and the results that 

have been posted show the improvements that are achieved with the inclusion of data 

decomposition. The original time series/data is broken down into simpler constituent 

components, which help improve the prediction of the data since the selected 

algorithm can now be optimized to forecast each of the components, after which the 

components are reconstituted to get the forecast series. The data decomposition 

techniques that have been previously used include the wavelet transform, empirical 

mode decomposition, variational mode decomposition, and their variants.  

2.7.1 Wavelet Transform 

It consists of two variants. The Continuous Wavelet Transform (CWT) and the 

Discrete Wavelet Transform (DWT). For a given input signal 𝑊(𝑡), the two variants 

of wavelet transform can be expressed as shown next: 

𝐶𝑊𝑇(𝑢, 𝑣) =
1

√𝑢
∫ 𝑊(𝑡)𝜓∗(

𝑡−𝑣

𝑢
)𝑑𝑡

∞

−∞
     (2.33) 

Where: 𝑢 - scale factor 

𝑣 - translation parameter 

𝜓(𝑡) - represents the mother wavelet 

𝐷𝑊𝑇(𝑥, 𝑦) = 2−
𝑥

2 ∑ 𝑊(𝑡)𝜓∗(
𝑡−𝑦.2𝑥

2𝑥
)𝑑𝑡𝐿−1

𝑗=0      (2.34) 

Where: 𝐿 - length of the input signal 𝑊(𝑡) 

 𝑥 - scale factor 

𝑦 - translation parameter 

𝜓(𝑡) - represents the mother wavelet 
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DWT is more popular than CWT due to its computational efficiency and data 

compression capability. Wavelet transform breaks down the data into a single low-

frequency component and multiple high-frequency components. The accuracy of WT 

depends on the selection of the mother wavelet and the number of levels of 

decomposition chosen. The available mother wavelet options include Daubechies, 

Haar, Morlet, and Mexican Hat (Jaseena & Kovoor, 2021).  

2.7.2 Empirical Mode Decomposition (EMD) 

Hilbert Huang developed EMD in 1998. It entails the decomposition of a time series 

into finite nearly monotonic intrinsic mode functions (IMFs) and one residual 

component, as shown below: 

𝑊(𝑡) = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑖=1      (2.35) 

Where: 𝑊(𝑡) - input signal 

𝐼𝑀𝐹𝑖(𝑡) - intrinsic mode functions 

𝑟𝑛(𝑡) - residual component 

 𝑛 - number of IMFs 

Mode mixing refers to the scenario where an IMF obtained using EMD has 

components of different/various frequencies. EMD offers advantages such as 

adaptability to non-linear and non-stationary data, making it suitable for analyzing 

real-world signals like financial, biomedical, and environmental data (Zhang et al., 

2018). EMD does not rely on predetermined basis functions and automatically 

extracts the inherent oscillatory modes within the data. It is widely used in signal 

processing, fault diagnosis, and trend analysis, providing a powerful tool for 

uncovering hidden patterns and extracting valuable information from complex and 

dynamic datasets.  
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2.8 Previous Neural Network-Based Research on Wind Prediction.  

In (Singh, 2016), the FFNN was used to predict wind power and gave MSE and 

MAE values of 13.5 and 9.35 for a short-term forecast showcasing the promising 

capabilities of using FFNNs in wind power forecasting. This research did not, 

however, explore further ways that the FFNNs would be enhanced for better 

forecasts and did not compare its performance against other prediction approaches. 

In (Kassa et al., 2016), ANFIS was used to predict wind power and compared against 

the BPNN and GA-BPNN hybrid models. It was observed that ANFIS performed 

better than the BPNN but only showed slightly better performance compared to the 

GA-BPNN hybrid model. The BPNN model had 11 hidden layer neurons and was 

trained using the Levenberg-Marquardt algorithm with tangent sigmoid and pure 

linear activation functions at the input and output. This paper highlighted the 

importance of hybridization since the GA_BPNN model had better performance than 

BP alone, and its performance was almost equal to the ANFIS. In (Q. Chen et al., 

2018), ANFIS, ANN, and ARIMA were used to predict wind power. With ten hidden 

layers and trained using Bayesian Regularization, the ANN was the best prediction 

algorithm for 1-hour ahead forecasts with RMSE and MAE values of 18.1 and 12.3. 

ANFIS came in at a close second with RMSE and MAE values of 18.4 and 12.2. 

This research showed the robust capabilities of models incorporating neural networks 

compared to statistical methods.  

In (Shao et al., 2016), a neural network was used together with wavelet 

decomposition to forecast wind speed. The neural network had three layers with 

seven input neurons, 12 hidden layer neurons, and one output neuron for spring data. 

The network had nine-input neurons and 14 hidden layer neurons for the rest of the 

three seasons. The proposed network was enhanced using wavelet decomposition and 

adaptive boosting and outperformed fuzzy logic and classical FFNNs. The hybrid 

network with wavelet decomposition outperformed the base models, showcasing the 

advantages of improving forecast accuracy by incorporating data decomposition.  

In (J. Wang, 2014), Wavelet Transform (WT) was combined with a two-hidden layer 

neural network to forecast wind speed. The data was decomposed into four 
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components using wavelet transform. A neural network with two hidden layers was 

used to predict each of the obtained sub-series, after which the obtained forecasts 

were combined to get the final prediction. The proposed WT-TNN approach 

outperformed the NN, and the lowest RMSE and MAE values obtained for the four 

test datasets were 0.3317 and 0.2312. The TNN's corresponding RMSE and MAE 

values were 0.8019 and 0.4767, respectively. The superiority of the WT-TNN again 

showed the significance of including a data decomposition technique in a forecast.  

In (Berrezzek et al., 2019), the Discrete Wavelet Transform (DWT) was combined 

with ANNs for wind speed forecasting. A 5-level data decomposition was performed 

using DWT to give five detail coefficients and an approximation coefficient for each 

data value. Each detail and approximation coefficient had its neural network 

consisting of five inputs, two hidden layers, and one output. Five previous daily 

average wind speeds were used to forecast the wind speed for the sixth day, i.e., a 

sliding window of 5 days was used. After the prediction, all the outputs were 

reconstructed to give the final forecast.  The dataset consisted of 4375 daily average 

wind speeds spanning twelve years from 2007 to 2018. The training data was from 

2007 to 2017 (4015 data points), while the testing data used was for 2018 (360 

points). The least RMSE and MAPE values posted for the test sets were 0.1265 and 

0.0371. Once more, the superior performance of incorporating data decomposition in 

prediction using neural networks was illustrated.  

In (Z. Zheng et al., 2012), empirical mode decomposition was used with RBFNN to 

forecast wind power with three input parameters - wind power, speed, and direction. 

EMD decomposed the data into eight intrinsic mode functions (IMFs) and one 

residual function. 900 samples were used to test the model, and 74 were used for 

testing. An RBFNN network was used for each of the obtained data sub-series, after 

which the values were combined to give the final prediction. The EMD_RBFNN 

model was compared to the RBFNN. EMD_RBFNN posted MAE and MSE values 

of 22.075 and 2.485, respectively, while RBFNN alone posted MAE and MSE values 

of 34.905 and 4.293, respectively. The results again highlighted the advantage of 

data decomposition and showed the strength of EMD as a data decomposition tool.  
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Wind speed was forecast using EMD, ANNs, and ARIMA in (Bantupalli, 2017), and 

the results were compared against ANN and EMD_ANN. EMD_ANN outperformed 

ANN alone, posting RMSE and MAE of 2.058 and 0.713 against RMSE and MAE of 

2.949 and 1.456, respectively. The EMD_ANN_ARIMA was the best amongst the 

three, with RMSE and MAE of 0.890 and 0.527, respectively. In (H. Liu et al., 

2019), a hybrid method combining EEMD and neural networks (Group Method of 

Data Handling networks) was used to forecast wind speed. The researcher compared 

the proposed method with GMDH neural networks alone, GMDH neural networks 

with wavelet packet decomposition, SVM, and ELM. The proposed method posted 

minimum RMSE and MAPE values of 0.0113 and 0.6337. These results were better 

than the algorithms used without any data decomposition techniques. Based on the 

results, EEMD performed better than WT in the same hybrid scenarios. In 

(Bantupalli, 2017) and (H. Liu et al., 2019), the strength of using a data 

decomposition technique based on Empirical Mode Decomposition was highlighted.  

In (Quan & Shang, 2021), a method based on variational mode decomposition 

(VMD) and the Bare Bones Fireworks Algorithm (BBFA) was proposed to forecast 

wind speed. Again, compared to the same approaches but with no data 

decomposition involved, the hybrid approaches using data decomposition came out 

superior. VMD_BBFA had the least RMSE and MAE values of 0.20 and 0.17. In 

(Shahid et al., 2021), LSTM and GA were combined to predict wind power for seven 

wind farms and showed an improvement of between 6% - 30% in wind power 

forecast accuracy. The LSTM network had three layers, a batch size of 30 and 10 

epochs. The window size used is three timesteps. In (Wu, Qianyu Guan1, Fei Lv, 

Chen Huang, n.d.), a hybrid of CNN-LSTM was used in wind power forecasting. 

The CNN was used to extract the temporal and spatial correlations between the 

parameters affecting wind power and the wind turbines' location on a wind farm. The 

CNN_LSTM improved the forecast accuracy by 14% compared to the LSTM model, 

highlighting the advantages of hybridized models in wind power forecasting.   
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2.9 Summary and Research  Gaps 

Much research has been done on the wind power prediction problem, as discussed in 

section 2.8. However, it is noted that there are opportunities for further research in 

improving wind power forecasts. Wind power forecasting is an area of research with 

significant untapped potential, as it has not yet reached its maximum capabilities. 

Unlike load forecasting, which is now a mature science and has been used for a long 

time, wind forecasting is still a relatively new phenomenon and new models continue 

to be developed. This is due to the fact that wind power prediction errors are still 

significant and can be improved further with newer technologies. Load forecasting 

has been refined and tuned to errors of 1-3% of the actual values, while wind power 

forecasting errors are much higher.  

With precise wind power forecasts, curtailment of wind power and over-allocation of 

spinning reserves can be reduced significantly, allowing for more accurate power 

dispatch. To guarantee the optimal operation of a power system, more precise wind 

power prediction tools and approaches must be developed to ensure optimal 

utilization of this free resource when available. The future of wind power prediction 

lies in using online/real-time data, especially for short-term wind forecasting, which 

is the gap this research aims to fill. LSTM-based neural networks are noted to have 

superior capabilities in handling time series data due to their ability to capture short 

and long-term dependencies without suffering from the vanishing and exploding 

gradient limitations of RNNs. The BiLSTM is a further enhancement of the LSTM 

since it allows better training of a network by traversing through the training data 

twice. EMD, as a data decomposition method, has shown great adaptability in 

handling non-linear, complex, rapidly changing time series data such as wind power 

data. It has good time-frequency localization capabilities and is very effective in 

capturing and highlighting non-linear patters in a dataset. In this research, a novel 

approach using BiLSTM, data decomposition and a wind power curve modelled 

from the Avrami equation is used to develop a much more accurate wind power 

prediction approach. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Outline of the Research Stages 

The developed hybrid approach utilizes the BiLSTM neural network and empirical 

mode decomposition to forecast wind power. The developed method follows the 

following stages, as illustrated in Figure 3.1, and the detailed flowchart is shown in 

Figure 3.2. 

 

Figure 3.1: Illustration of the Various Stages of the developed 

BiLSTM+EMD+Avrami Power Curve Model. 
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Figure 3.2: General Wind Power Forecasting Procedure 
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3.2 Dataset Description and Handling 

3.2.1 Data Description.  

The selected dataset is an online-based dataset used by various researchers looking 

into the wind power forecasting problem. The particulars of the dataset are 

summarized in Table 3.1 below: 

Table 3.1: Particulars of the Wind Dataset 

Data Name Source  Data 

Resolution 

Span 

AL_WIND_07_12 National 

Renewable 

Energy 

Laboratory 

(NREL)  

Hourly 

observations  

01/01/2007 00:00:00 

to 

31/12/2012 23:00:00 

(52560 observations equivalent 

to 6 years of data) 

* Dataset available on: https://github.com/ShashwatArghode/Wind-Energy-Prediction-

using-LSTM/blob/master/AL_WIND_07_12.xlsx  

or on  

https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/  

 

The AL_WIND_07_12 wind dataset consists of the following variables: a timestamp, 

air temperature (oC), pressure (atm), wind speed (m/s), wind direction (deg) and wind 

power (kW). Correlation is a measure of the strength of association between two 

variables.  The correlation between other variables and wind power is determined. 

According to (Schober et al., 2018), correlation can be categorized from negligible 

correlation to very strong correlation, as presented in Table 3.2: 

  

https://github.com/ShashwatArghode/Wind-Energy-Prediction-using-LSTM/blob/master/AL_WIND_07_12.xlsx
https://github.com/ShashwatArghode/Wind-Energy-Prediction-using-LSTM/blob/master/AL_WIND_07_12.xlsx
https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/
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Table 3.2: Conventional Approach of Interpreting Correlation Coefficients. 

Absolute Value of Correlation Coefficient Interpretation 

0.00 - 0.10 Negligible Correlation 

0.10 - 0.39 Weak Correlation 

0.40 - 0.69 Moderate Correlation 

0.70 - 0.89 Strong Correlation 

0.90 - 1.00 Very Strong Correlation 

The correlation of the various weather parameters/variables against wind power in 

the AL_WIND_07_12 dataset is determined using Pearson’s correlation, and the 

results are summarized in Table 3.3 below:  

Table 3. 3: Pearson’s Correlation Results for AL_WIND_07_12 Dataset. 

Pearson’s Correlation Test Results (AL_WIND_07_12) 

Wind Speed vs Wind Power 0.9435 Very Strong Positive 

Correlation 

Wind Direction vs Wind Power -0.0090 Negligible Negative Correlation 

Wind Temperature vs Wind Power -0.2608 Weak Negative Correlation 

Wind Pressure vs Wind Power -0.0764 Negligible Negative Correlation 

As observed in Table 3.3 above, wind speed is the variable that has the strongest 

correlation to wind power, and this can be explained by the fact that wind speed has a 

quasi-cubic relationship with wind power, as shown in Equation 3.1 below:  

𝑃𝑎𝑣 =
1

2
𝐶𝑝𝜌𝐴𝑣3  (3.1) (*Retrieved from Equation 2.4) 

Where: 𝑃𝑎𝑣 is Average Power and 𝑣 is the wind speed.  

The dataset was split into 70% training and 30% testing data for each test. Empirical 

analysis demonstrates that optimal outcomes are achieved when 20-30% of the 

observed data points are reserved for testing, and the remaining 70-80% are used for 

training. In time series data analysis, the choice of 70% training and 30% testing data 

split acknowledges the temporal dependencies within the data. The smaller testing 
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set allows models to learn from a more extended history, capturing time-evolving 

patterns and ensuring better forecasting accuracy over time (Gholamy, Afshin 

Kreinovich, Vladik Kosheleva, 2018). 

3.2.2 Data Preparation 

3.2.2.1 Data Preprocessing 

Data preprocessing in time series data forecasting is one of the most important steps 

before any forecasting is done. It involves estimating missing values, identifying and 

filling existing outliers, and data feature scaling.  Figure 3.3 below shows these 

stages of data pre-processing.  

 

Figure 3.3: Stages of Pre-Processing. 

The following procedure is followed in the data preprocessing: 

i. Checking for missing data - This is done by using the rmmissing function in 

MATLAB. The function has the option of removing rows or columns with 

missing data. One could specify the Min Num Missing threshold below which 

rows or columns with missing data are not deleted. The dataset used did not have 

any missing data.   

ii. Handing Outliers - The isoutlier MATLAB function is used to identify the 

outliers in the wind dataset, after which any outliers are clipped. The 

AL_WIND_07_12 dataset did not have any outliers.  

iii. Feature scaling - This is done to prevent the domination of one variable on the 

output. There are two types of standard feature scaling options, Standardization 

and normalization, and their formulas are represented in Equations 3.2 and 3.3 

below: 

Check for 

missing data 

+outliers 

Pre-

processed 

Wind Data 

Original 

Wind 

Data 

Feature scaling: 

(Normalization) 
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𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 =
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑.𝑑𝑒𝑣(𝑥)
     (3.2) 

𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 =
𝑥−𝑚𝑖𝑛(𝑥)

max(𝑥)−min (𝑥)
    (3.3) 

Where:  

𝑥 is the data before scaling and 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 is the data after 

scaling.  

Standardization scales the data to the range of −1 < 𝑥 < 1, while normalization 

squashes the data to the range 0 < 𝑥 < 1. For this work, normalization was used as 

the feature scaling method. This ensured that all the data values were scaled to 0 and 

1. Normalization ensures that no one factor or parameter is weighted higher than 

others based on their numerical values. For example, in the absence of feature 

scaling, the wind direction would be weighted higher than wind speed since wind 

direction values (angles) typically have larger values compared to wind speed values. 

Figure 3.4 below is a section of the un-normalized data in the AL_WIND_07_12 

dataset for illustration.  

DateTime AirTemperature Pressure WindSpeed WindDirection Power 

1/1/2007 0:00 10.9260 0.9791 9.0140 229 3.3688E+04 

1/1/2007 1:00 9.9190 0.9796 9.4280 232 3.7262E+04 

1/1/2007 2:00 8.5670 0.9799 8.7000 236 3.0503E+04 

1/1/2007 3:00 7.8770 0.9801 8.4810 247 2.8419E+04 

1/1/2007 4:00 7.2590 0.9799 8.3830 256 2.7370E+04 

1/1/2007 5:00 6.5700 0.9799 8.2560 261 2.5806E+04 

1/1/2007 6:00 6.57 0.979884 8.256 261 25805.9 

1/1/2007 7:00 5.897 0.980318 6.476 265 11546.8 

1/1/2007 8:00 5.109 0.980597 5.906 271 8360.76 

1/1/2007 9:00 4.413 0.980711 5.557 269 6426.64 

Figure 3.4: A Section of the AL_WIND_07_12 Wind Power Dataset before 

Normalization. 

Note the large magnitude of the wind direction values compared to wind speed 

values. If both of these parameters are being used as input variables, they need to be 

normalized to ensure that one parameter does not overshadow the impact of another 

on the variable being predicted. Figure 3.5 below presents the same data with the 
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variables now normalized. Note how the distribution of all variables (other than the 

timestamp) is now a value between 0 and 1.  

DateTime AirTemperature Pressure WindSpeed WindDirection Power 

1/1/2007 0:00 0.4727 0.4364 0.4531 0.6361 0.5501 

1/1/2007 1:00 0.4537 0.4463 0.4742 0.6459 0.6084 

1/1/2007 2:00 0.4281 0.4542 0.4371 0.6556 0.4980 

1/1/2007 3:00 0.4150 0.4567 0.4259 0.6861 0.4640 

1/1/2007 4:00 0.4033 0.4527 0.4209 0.7111 0.4469 

1/1/2007 5:00 0.3903 0.4531 0.4144 0.7250 0.4214 

1/1/2007 6:00 0.3776 0.4623 0.3235 0.7361 0.1885 

1/1/2007 7:00 0.3627 0.4682 0.2944 0.7528 0.1365 

1/1/2007 8:00 0.3495 0.4707 0.2766 0.7472 0.1049 

1/1/2007 9:00 0.3370 0.4747 0.3033 0.7583 0.1527 

Figure 3.5: A Section of Normalized AL_WIND_07_12 Wind Power Dataset. 

3.2.3 Look Back period 

Look back refers to the number of observations in the past that are used to make 

predictions for future data points. The choice of a look-back period is critical since it 

significantly impacts the prediction accuracy of a developed model. A longer look-

back captures more historical information but risks introducing potentially irrelevant 

data. A very short look-back period results in a simpler model but one that might not 

be able to identify seasonal information in a dataset. Wind power is a non-stationary 

time series, which means that at a given future time 𝑡, previous observations of the 

time series variable affect future value observation at time 𝑡 (Y. Liu et al., 2019).  

For the scenario where historical wind power observations shall be used to predict 

future wind power, the look-back period is a crucial parameter to determine. In 

(Mathenge et al., 2021), this was examined for a look-back period of 1 and produced 

better forecast results than the forecast without a look-back. Autocorrelation exists in 

time series dataset observations at time t and those that occurred earlier, i.e., at time 

𝑡 − 1, 𝑡 − 2, 𝑡 − 3, 𝑡 − 𝑛 where 𝑛 is the look back period where the obervations at 

time 𝑡 − 𝑛 still bear a strong correlation with the obervations at time 𝑡. To determine 
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the most ideal look back period for the dataset, pearson’ correlation is used and the 

autocorrelation results are obtained as below: 

Table 3.4: AL_WIND_07_12 Correlation 

Dataset: AL_WIND_07_12 

Look_back steps Autocorrelation Interpretation 

1 0.9250 Very strong correlation 

2 0.8368 Strong Correlation 

3 0.7594 Strong Correlation 

4 0.6878 Moderate Correlation 

5 0.6197 Moderate Correlation 

6 0.5562 Moderate Correlation 

7 0.4976 Moderate Correlation 

8 0.4455 Moderate Correlation 

9 0.4006 Moderate Correlation 

10 0.3616 Weak Correlation 

*Note: The AL_WIND_07_12 dataset data observations are spaced every 1 hour. 

3.3 Data Decomposition.   

Empirical Mode Decomposition (EMD) was used to break down the input data into 

more basic, less noisy signals. The original data signal is broken down into more 

physically meaningful components of different frequencies, making it easier to 

identify trends and patterns. In this research, data decomposition is applied for the 

scenario where wind speed is used to forecast wind power. The wind speed and 

power are decomposed into different frequency components; then, corresponding 

mode components are used as input and output. Since time series decomposition is a 

statistical task that involves breaking down data into several high and low-frequency 

components, decomposition of the data makes it easier to identify trends on 

seasonality or other trends from the data.  Time series data is usually very noisy and 

complex, and decomposition helps break it down into simpler components for the 

neural network-based algorithms to handle. 
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A flowchart of the prediction process that entails decomposition by EMD is 

illustrated in Figure 3.6: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: LSTM/BiLSTM_EMD Forecast Procedure 
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3.4 Modelling of the Wind Power Curve from Historical Data 

A wind power curve is a graphical illustration of the relationship between wind speed 

and wind power. The actual wind power curve for a wind turbine or a wind farm is 

usually not an exact match to the wind power curve from the manufacturer. The 

manufacturer wind power curve is derived from turbines operated in ideal conditions 

and with wind turbine blade angles positioned to extract as much energy as possible 

from the wind. For this research, the wind power curve was reconstructed from the 

historical training data (i.e., the data section used for training).  First, the wind speed 

vs wind power scatter plot was drawn in Excel. The wind turbine power curve 

presents itself in a graph mimicking the Avrami equation. The Avrami equation 

defines the kinetics behind crystallization and is also applied to define other 

applications involving changes such as chemical reactions (Finke & Ozkar, 2017). 

The best line of fit through the data was determined, and the Avrami equation 

coefficients were incorporated into the MATLAB prediction algorithm.  

For each test, the dataset was split into 70% training and 30% testing data. Based on 

this split, the AL_WIND_07_12 wind dataset uses approximately four years of data 

for training and data from the final two years is used for testing. The partition of the 

data into train and test sets is illustrated in Table 3.5 below: 

Table 3.5: Partition of the Dataset into Train and Test Data 

AL_WIND_07_12 

Dataset 

Train Data 0.7 ∗  52560 = 𝟑𝟔𝟕𝟗𝟐 

Test Data 0.3 ∗  52560 = 𝟏𝟓𝟕𝟔𝟖 

The Avrami equation is defined as:  

𝑦 = 1 − 𝑒−𝑘𝑡𝑛
          (3.1) 

Where: y is the fraction of completed transformation at time t  

k is a rate constant 

t is time 

n is the growth dimensionality.  
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The equation, as defined in Equation 3.1  above, is constrained between 0 and 1. 

Since our wind data exceeds these boundaries, we modify the Avrami equation to 

encompass the scope of wind power. The modified avrami equation is shown below: 

𝑦 = 𝐴 (1 − 𝑒−𝑘𝑡𝑛
)           (3.2) 

Where 𝐴, 𝑘, 𝑡 are fitting constants and 𝑡 =  𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 

The fitting constants are determined by minimizing the sum square residual where: 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 =  𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 −  𝑎𝑣𝑟𝑎𝑚𝑖 𝑝𝑜𝑤𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒    

 (3.3) 

The fitting of the Avrami equation is done in Excel using the Solver tool, and the 

obtained Avrami equation is coded into the forecasting algorithm in MATLAB. For 

the AL_WIND_07_12 wind dataset, the Avrami equation for minimized Sum of 

Squared Residuals (SSR) was obtained as follows: 

𝒚 = 𝟓𝟗𝟕𝟏𝟏. 𝟒𝟒  (𝟏 − 𝒆−𝒌(𝟖.𝟎𝟔 𝒙𝟏𝟎−𝟎𝟓)·  𝒕 𝟒.𝟐𝟎𝟑𝟖𝟓𝟓
)   (3.4) 

The wind power curve, as determined by the Avrami equation, is used to provide a 

wind power estimate for wind power at time 𝑡. This new input provides a variable 

that improves the BiLSTM prediction accuracy for wind power at time 𝑡 and with a 

look-back period of 𝑛 time steps.  

3.5 Models and Model Parameters 

Based on repeated experiments, the hyperparameters for the LSTM and BiLSTM 

were set as follows: 

Number of neurons in the hidden layer = 150 

Iteration epochs = 10 

Look back period/Sequence length = 6 
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The Adam optimizer was used since it helps accelerate the learning speed of LSTM 

while reducing the optimization resources required. It combines the benefits of two 

gradient descent algorithms: AdaGrad and RMSProp  (Y. Liu et al., 2019).  

Adam helps in adjusting individual parameters (weights) during training. It 

dynamically adapts the learning rates based on the previous gradients and the moving 

averages of the parameters as the network passes through the training data. This 

adaptability makes Adam makes it well-suited for optimizing complex and high-

dimensional models, leading to faster convergence and improved training 

performance. 

Adam follows the following steps during the training of the LSTMs and BiLSTMs 

(Y. Liu et al., 2019): 

i. Initialization: Adam initializes variables to zero. These variables are meant to 

keep track of the moving averages of past gradients.  

ii. Computing Gradients: At each training iteration, gradients are computed for the 

model's weights based on the present batch of training data. 

iii. Updating of Moving Averages: Adam updates the moving averages of past 

gradients and squared gradients using exponential decay. Doing this helps the 

optimizer remember information about past gradients while at the same time 

giving more weight to recent gradients. 

iv. Bias Correction: Adam performs bias correction to adjust the estimates to avoid 

biased estimates in the initial training steps when moving averages are close to 

zero. 

v. Updating of Weights: The optimizer calculates the weight update using the 

moving averages and the current gradients. It uses the moving averages to adapt 

the learning rates for each parameter, ensuring that parameters with different 

scales receive appropriate updates. 

In conclusion, the data preprocessing steps to be followed are discussed in this 

chapter, with the LSTM and BiLSTM identified as choices of Recurrent Neural 

Networks to be used for the prediction. The forecast accuracy of these two networks 

is then enhanced using data decomposition using EMD and then further improved by 
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adding mathematical modelling of the wind power curve based on the Avrami 

Equation. The following models were tested on the AL_WIND_07_12 wind power 

dataset, with their results presented and discussed in Chapter 4.  

i. LSTM_EMD 

ii. BiLSTM 

iii. BiLSTM_EMD 

iv. BiLSTM_EMD_with Avrami Power Curve 
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CHAPTER FOUR 

RESULTS, ANALYSIS AND DISCUSSION 

4.1 Forecasting using the Direct and Indirect Approach 

Two wind power forecasting approaches are discussed in the literature review: 

Indirect and direct. The indirect process entails forecasting future wind speed 

values, after which appropriate transformations are applied to get the corresponding 

values of wind power. On the other hand, in the direct method, wind power is 

forecast directly without predicting wind speed first. 

This section presents wind power forecast results using Bidirectional Long Short 

Term Neural Networks (BiLSTMs) and Empirical Mode Decomposition (EMD) 

techniques. After that, the Avrami wind power curve modelled from the historical 

wind speed vs wind power datasets is used to improve the forecasts. To validate the 

effectiveness of the approaches, a comparison is made for the direct vs indirect wind 

power forecasting approaches for the same models and the results discussed. The 

indirect approach that used BiLTSM + EMD + Avrami Curve was discovered to 

have the best accuracy compared to other models for the same dataset and forecast 

horizons. 

4.1.1 Test on Effectiveness of Data Decomposition and Illustration of the 

Deficiency of LSTMs 

Simulations in this section were carried out on a section of the dataset. The 

forecasting algorithm used was the LSTM, and it was later hybridized using EMD 

and a wind power curve. The LSTM was used alone to predict 168 look-ahead 

instances (equivalent to 1 week for the AL_WIND_07_12 dataset with hourly 

observations). Figure 4.1 shows the plot of the predicted vs actual wind power 

forecast using LSTM alone and with wind power as the input parameter.  
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Figure 4.1: Graph of Wind Power vs Time for LSTM Alone (168 Look Ahead 

Instances) 

Observation: The predicted Wind Power shows good accuracy relative to the actual 

values. However, a time lag is noted in the LSTM prediction compared to the actual 

wind power data. This is caused by the high variability of the wind power data and 

can be resolved by breaking down the wind power time-series data into simpler 

forms using data decomposition techniques. Figure 4.2 shows the improvement in 

the forecast when data decomposition is used to break down the data before the 

prediction.  
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Figure 4.2: Graph of Wind Power vs Time for LSTM+EMD (168 Look Ahead 

Instances) 

Observation: The time lag phenomenon visible in the LSTM prediction graphs in Fig 

4.1 is now suppressed by EMD, and the prediction is now better. A deviation in the 

prediction below the zero mark is noted in some instances, e.g. at hour 70 and hour 

130, and this results from the fact that in the decomposed data, some of the 

components are negative. It is however observed that the prediction from the LSTM 

is suffering from overshoots and undershoots. This is attributed to the fact that the 

Wind Power dataset is highly dynamic and therefore the LSTM network is not able 

to adapt quickly to the data changes. To correct the undershoot, a simple curve 

correction definition was used to limit the prediction from swinging below the zero 

mark, and the final updated prediction is as shown in Fig 4.3: 
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Figure 4.3: Graph of Wind Power vs Time for LSTM+EMD with Power Curve 

Layer (168 look ahead instances). 

The three approaches (LSTM, LSTM + EMD and LSTM + EMD + Curve 

correction) were then compared, and a graph of a prediction of 100 future instances 

was plotted, as shown in Fig 4.4 below.  
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Figure 4.4: Graph of Wind Power vs Time for Models Comparison. 

*100 observations sampled for plotting from the 876 predictions made. 

Observation: The LSTM + EMD with Power Curve model gives the best prediction 

compared to the other two models since it follows the actual wind power better than 

the other two models. LSTM +EMD + Power curve gives a 22.858% improved 

forecast accuracy compared to LSTM alone and a 13.895% better forecast compared 

to LSTM +EMD. The impeovements in the forecast expecially at the peaks are noted 

when EMD is included in the forecast model. Table 4.1 summarizes the RMSE 

values for the forecast. 

Table 4.1: RMSE Values Comparison for the Models. 

S/No Model RMSE (kW) 

1. LSTM 6184 

2. LSTM+EMD 5540 

3.  LSTM+EMD+Curve Correction 4770 
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The importance of this section was to show the limitation of LSTMs and how that 

limitation was overcome. In the next section, the BiLSTM was used as the 

forecasting network, EMD as the data decomposition technique and the Avrami 

approach as the method of obtaining the wind power curve from the historical 

training wind data. The BiLSTM model offers better prediction accuracy than LSTM 

since it traverses the data backwards and forward during training [34], giving it a 

better understanding of the relationship between various variables to determine more 

precise patterns and connections in the dataset. Therefore, this research now focuses 

on the BiLSTM networks from this point onwards.  

4.2 Wind Power Forecasting using BiLSTM 

4.2.1 BiLSTM Alone Prediction Results  

4.2.1.1 Prediction on AL_Wind_07_12 Dataset 

Dataset: AL_Wind_07_12 Dataset 

Predicted Variable: Wind Power (t)  

Input Variables: Air Temperature, Pressure, Wind Speed & Wind Direction 

Hidden layer neurons = 150 (Determined through trial and error) 

Look_back/Sequence length = 6 

Average simulation time: = 390 seconds 

The results obtained from this forecast are as shown next: 
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Figure 4.5: 24 - Hours Ahead Wind Power Forecast 

Observation: For the 24 hour ahead forecast using BiLSTM, the RMSE and MAE 

values obtained when the actual and predicted data are compared is 639 kW and 

383.6 kW respectively. The actual and predicted datasets have a correlation of 

0.9898 indicating that the prediction model was able to strongly capture the 

underlying patterns in the dataset.  

 

Figure 4.6: 48 Hours Ahead Wind Power Forecast 
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Observation: For the 48-hour ahead forecast using BiLSTM, the RMSE and MAE 

values obtained when the actual and predicted data are compared are 1098.5 kW and 

613.9 kW, respectively. Compared to the 24-hour forecast, the prediction accuracy is 

observed to deteriorate.   

 

Figure 4.7: 72 Hours Ahead Wind Power Forecast 

Observation: For the 72-hour ahead forecast using BiLSTM, the RMSE and MAE 

values obtained when the actual and predicted data are compared are 1514.8 kW and 

1398.4 kW, respectively. Compared to the 48-hour forecast, the prediction accuracy 

is noted to deteriorate further.  
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Figure 4.8: 168 Hours Ahead Wind Power Forecast 

Observation: For the 168-hour ahead forecast using BiLSTM, the RMSE and MAE 

values obtained when the actual and predicted data are compared are 5580.7 kW and 

3174.4 kW, respectively. The forecast accuracy is seen to deteriorate even further 

compared to the 24, 48 and 72-hour forecasts. Table 4.2 below compares the 

prediction results obtained from BiLSTM.  

Table 4. 2: Comparison of Prediction Results of BiLSTM Alone 

Look Ahead (hrs) RMSE (kW) MAE (kW) 𝑹𝟐 

24 639.0 382.6 0.9898 

48 1098.5 613.9 0.9827 

72 1514.8 1398.4 0.9478 

168 5580.7 3174.4 0.9568 

Observation: The BiLSTM network has its best prediction accuracy during the 24-

hour look ahead test. According to literature, as the forecast horizon increases, the 

forecast accuracy diminishes. This shows that the BiLSTM model is well-suited for 

short-term forecasts.  
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4.2.2 BiLSTM_EMD  

Dataset: AL_Wind_07_12 Dataset 

Predicted Variable: Wind Power (t)  

Input Variables: Wind Power (t-1, t-2, ….) 

Hidden layer neurons = 150 (Determined through trial and error) 

Average simulation time: = 10 minutes 

The results obtained from this forecast are as shown below: 

 

Figure 4.9: 24 Hours Ahead Wind Power Forecast 

Observation: For the 24-hour ahead forecast using BiLSTM + EMD, the RMSE and 

MAE values obtained when the actual and predicted data are compared are 164.1 kW 

and 101.6 kW, respectively. This forecast is comparatively better than the forecast 

using BiLSTM alone.  
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Figure 4.10: 48 Hours Ahead Wind Power Forecast 

Observation: For the 48-hour ahead forecast using BiLSTM + EMD, the RMSE and 

MAE values obtained when the actual and predicted data are compared are 908.1 kW 

and 686 kW, respectively. The forecast is noted to deteriorate compared to the 24-

hour forecast.  

 

Figure 4.11: 72 Hours Ahead Wind Power Forecast 
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Observation: For the 72-hour ahead forecast using BiLSTM + EMD in Figure 4.11 

above, the RMSE and MAE values obtained when the actual and predicted data are 

compared are 1242.2 kW and 789 kW, respectively. The forecast is noted to 

deteriorate further in comparison to the 48-hour forecast.  

 

Figure 4.12: 168 Hours Ahead Wind Power Forecast 

Observation: For the 168-hour ahead forecast using BiLSTM + EMD, the RMSE and 

MAE values are noted to deteriorate further and settle at 3381 kW and 927 kW, 

respectively. The results obtained from the BiLSTM_EMD model are as shown in 

Table 4.3 below: 

Table 4.3: Comparison of Prediction Results of BiLSTM_EMD 

Look Ahead (hrs) RMSE (kW) MAE (kW) 𝑹𝟐 

24 164.1 101.6 0.9989 

48 908.1 686 0.9977 

72 1242.2 789 0.9866 

168 3381 927 0.9868 
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Observation: The BiLSTM_EMD model has its best prediction accuracy during the 

24-hour look ahead test. The forecast accuracy deteriorates as the forecast period 

increases. This is an expected phenomenon from literature where the forecast 

accuracy diminishes as the forecast horizon increases.  EMD is seen to improve the 

accuracy of the BiLSTM model working alone.  

4.2.3 BiLSTM with Avrami Curve 

Dataset: AL_Wind_07_12 Dataset 

Predicted Variable: Wind Power (t) 

Input Variable: Wind Power (t-1, t-2, ….) 

Hidden layers = 150 (Determined through trial and error) 

Look Back/ Sequence Length = 6 

The first step in implementing the BiLSTM with the Avrami model was determining 

the parameters for the Avrami equation that give the best line of fit on the training 

data drawn from the wind power dataset. A scatter plot of the training data before 

curve fitting is shown in Figure 4.13 below: 

 

Figure 4.13: Scatter Plot of the Wind Power vs Wind Speed Data before curve 

fitting (AL_WIND_07_12 Dataset) 
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After the optimal Avrami equation parameters are determined using Excel’s solver, a 

curve of best fit is plotted as shown in Figure 4.14: 

 

Figure 4.14: Scatter Plot of the Wind Power vs Wind Speed Data after curve 

fitting with Avrami (AL_WIND_07_12 Dataset) 

The obtained Avrami Equation parameters that best fit the historical wind power, as 

shown in Equation (4.1) are then incorporated into the forecast methodology: 

𝒚 = 𝑨 (1 − 𝑒−𝑘𝑡𝑛
) = 𝟓𝟗𝟕𝟏𝟏. 𝟒𝟒  (𝟏 − 𝒆−𝒌(𝟖.𝟎𝟔 𝒙𝟏𝟎−𝟎𝟓)·  𝒕 𝟒.𝟐𝟎𝟑𝟖𝟓𝟓

)   (4.1) 

The results obtained from the BiLSTM EMD + Avrami curve forecast are shown in 

Figure 4.15 - Figure 4.18 for look-ahead forecasts of 24 hours to 168 hours: 
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Figure 4. 15: 24 - Hours Ahead Wind Power Forecast 

Observation: For the 24-hour ahead forecast using BiLSTM + EMD +Avrami Curve, 

the RMSE and MAE values obtained are 72.1 kW and 55.2 kW, respectively. This 

forecast is the best when compared to the BiLSTM and the BiLSTM + EMD models 

for the same forecast period of 24 hours.  

Graph of Wind Power vs Hour (BiLSTM +EMD + Avrami) 

Time (Hours) 

P
o
w

e
r 

(k
W

) 

𝑅𝑀𝑆𝐸 (𝑘𝑊) =  72.1 

𝑀𝐴𝐸 (𝑘𝑊) = 55.2 



77 

 

Figure 4.16: 48 Hours Ahead Wind Power Forecast 

Observation: For the 48-hour ahead forecast, the RMSE and MAE values obtained 

are 84.1 kW and 64.6 kW, respectively. This is a slight deterioration compared to the 

24-hour forecast, indicating that the BiLSTM + EMD with Avrami curve would have 

superior accuracy for the 48-hour forecast.  
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Figure 4.17: 72 Hours Ahead Wind Power Forecast 

Observation: For the 72-hour ahead forecast, the RMSE and MAE values obtained 

are 174.9 kW and 99.5 kW, respectively. A deterioration in the forecast accuracy is 

noted when the results are compared to the 48-hour forecast.  
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Figure 4.18: 168 Hours Ahead Wind Power Forecast 

Observation: The 168-hour look ahead forecast has almost similar accuracy to the 

72-hour forecast. Compared to the 24-hour and the 48-hour forecasts, deterioration in 

the forecast accuracy is noted.  

Table 4.4: Prediction Results of BiLSTM_EMD with Avrami Curve 

Look Ahead (hrs) RMSE (kW) MAE (kW) 𝑹𝟐 

24 72.1 55.2 0.9999 

48 84.1 64.6 0.9999 

72 174.9 99.5 0.9997 

168 161.7 102.6 0.9999 

Observation: The BiLSTM_Avrami model has its best prediction accuracy during 

the 24-hour look ahead test. The forecast accuracy deteriorates as the forecast period 

increases. The inclusion of the concept of the Avrami Equation is seen to improve 

the accuracy of the BiLSTM model in predicting future wind power.  
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4.3.Summary of Results  

The best RMSE and MAE values were observed when using the BiLSTM + EMD + 

Avrami model, as seen in Table 4.5 below: 

Table 4.5: Comparison of Prediction Results for all BiLSTM Models 

 BiLSTM BiLSTM + EMD BiLSTM + EMD 

+ Avrami 

Look Ahead 

(hrs) 

RMSE 

(kW) 

MAE 

(kW) 

RMSE 

(kW) 

MAE 

(kW) 

RMSE 

(kW) 

MAE 

(kW) 

24 639.0 382.6 164.1 101.6 72.1 55.2 

48 1098.5 613.9 908.1 686 84.1 64.6 

72 1514.8 1398.4 1242.2 789 174.9 99.5 

168 5580.7 3174.4 3381 927 161.7 102.6 

The RMSE value of the BiLSTM + Avrami Power curve is 72.1kW, making it the 

lowest among the hybrid approaches for the 24-hour forecast. Compared to the 

BiLSTM + EMD hybrid approach, the percentage improvement in the RMSE of the 

forecasts resulting from inclusion of the Avrami curve is calculated as:  

164.1 𝑘𝑊 − 72.1 𝑘𝑊

164.1 𝑘𝑊
 𝑥 100 = 𝟓𝟔. 𝟏% 

This shows the superiority of modelling the wind power curve using the Avrami 

equation and the potential to improve neural network-based forecasts using 

mathematical modelling. The improvements that data decomposition brings to wind 

power forecasting are seen when the predictions from LSTM vs LSTM+EMD and 

BiLSTM vs BiLSTM + EMD approaches, respectively. The latter two models with 

EMD have lower RMSE values than the base models. Neural networks perform 

better when the time series data is broken down/decomposed into its constituent 

frequency components. The data becomes easier to understand and to extract 

meaningful information from a time series. Therefore, the developed indirect 
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approach to wind power forecasting based on BiLSTM+EMD+Avrami Power Curve 

is an effective approach to wind power prediction.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

This work successfully developed an approach to wind power forecasting based on 

BiLSTM and EMD. Data preprocessing was done to ensure no missing data values, 

after which feature scaling was done on the data using normalization. The 

preprocessed data was then used in various models based on BiLSTM alone, 

BiLSTM and with EMD and BiLSTM_EMD with the Avrami Power Curve. The 

output of all these models was the predicted wind power. In the adopted forecasting 

model, past wind power forecasts (𝑡 − 1, 𝑡 − 2, . . ) were used to predict wind power 

at time 𝑡. The Avrami power curve was used to approximate wind power at time 𝑡 

given wind speed to ensure that the BiLSTM neural network could converge faster 

and offer more accurate results. The wind power curve was modelled from the 

historical train data in the dataset to ensure as much factual information was captured 

as compared to using the manufacturer's wind power curve. The modelled wind 

power curve considers the wind farm operation dynamics that could have affected 

the wind power output, such as the prevailing weather conditions at that time and 

other operational constraints.  

The observed value error values using the BiLSTM + EMD + Avrami model was an 

RMSE value of 72.1kW for a 24-hour ahead forecast. This was a more accurate 

forecast than the BiLSTM+EMD model and BiLSTM alone. The use of EMD does, 

however, come at a small cost. When the data is decomposed into its various mode 

components, each input mode component data and its corresponding output data is 

forecast by its own BiLSTM network, increasing the computation times. However, a 

longer execution time is worth it since the forecast model's accuracy is improved.  

With improved forecasts, integrating large-scale wind power in present-day grids 

becomes easier and more economical since improved accuracy of wind forecasts 

means less balancing power requirements.  



83 

5.2 Recommendations 

This research only focused on one type of data decomposition technique - EMD. The 

thesis was primarily focused on developing an approach to wind power forecasting 

that uses the Avrami equation to model the wind power curve of a wind farm and 

help improve forecasts. The essence of data decomposition in time series prediction 

cannot be overlooked, and future research can focus on exploring alternative data 

decomposition methods to improve prediction along with the Avrami wind power 

curve. The forecasting approach adopted in this research can also be implemented on 

a different development platform, such as Python and comparing computational 

resources against MATLAB.  
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APPENDICES 

Appendix I: Wind Power Dataset Information  

Data Name Source  Data Resolution Span 

AL_WIND_07_12 National 

Renewable 

Energy 

Laboratory 

(NREL)  

Hourly 

observations  

01/01/2007 00:00:00 

to 

31/12/2012 23:00:00 

(52560 observations 

equivalent to 6 years of 

data) 

Dataset available on: https://github.com/ShashwatArghode/Wind-Energy-Prediction-

using-LSTM/blob/master/AL_WIND_07_12.xlsx  

or on  

https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/  

 

AL_WIND_07_12 Dataset Train Data  01/01/2007 - 31/12/2010  

Test Data 

Sample 

01/01/2011 - 31/12/2012 

*The test data was drawn from the Test Data Sample depending on the look ehead 

period required.  

*Validation data is the  Actual Wind Power Data from the Test Data Sample and this is 

compared to the forecast values. 

 

 

 

 

 

https://github.com/ShashwatArghode/Wind-Energy-Prediction-using-LSTM/blob/master/AL_WIND_07_12.xlsx
https://github.com/ShashwatArghode/Wind-Energy-Prediction-using-LSTM/blob/master/AL_WIND_07_12.xlsx
https://developer.nrel.gov/docs/wind/wind-toolkit/wtk-download/
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*First 20 Sampled Data from the 24,48 and 72 hour prediction Horizons 
(BiLSTM_Avrami Model) (Power in kW) 

Y_Test 
Raw 

Y_Pred_Raw (24 
hour forecast) 

Y_Pred_Raw (48 hour 
forecast) 

Y_Pred_Raw (72 hour 
forecast) 

8471.07 8581.556668 8648.437668 8701.334475 
13137.400

3 13036.30908 13012.05692 13058.99244 

7670.32 7709.916107 7815.397603 7842.965344 

1227.85 1183.407032 1319.599016 1295.435147 

0 -133.6945785 5.730502639 -73.74393028 

0 -72.68382779 96.76048335 6.480254714 

1342.74 1340.724405 1444.953205 1411.443003 
3925.3056

45 3911.072786 3977.590559 3971.059796 

1011.39 1071.63913 1193.544613 1183.317366 

0 -50.83392647 66.07001573 24.92782338 

0 -70.57782557 71.36599356 3.676662795 

0 -33.77885638 107.8803941 48.38349291 

0 -8.76316408 112.3915692 70.47809249 
30.138699

99 6.79428416 131.1815443 85.88701059 

0 -27.25801826 100.0849004 52.80431793 

0 -28.487898 98.56577477 51.11746846 

0 -28.39138763 98.92871535 51.30204738 

0 -28.20178925 99.11112679 51.54275291 

0 -28.00374907 99.12789632 51.70120787 
1322.3659

22 1261.394481 1444.994273 1404.362953 
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Appendix II: Developed MatLab Codes 

BiLSTM Alone 

clear all; 

close all; 

dataWind=readtable('AL_WIND_07_12.csv');  

time=dataWind.DateTime; 

dataWind.DateTime=[]; 

record=dataWind{:,:}; 

cos_angle = cosd(record(:,4)); 

record(:,4) = cos_angle; 

%%Normalizing the data 

for i=1:size(record,2) 

    record(:,i)=(record(:,i)-min(record(:,i)))/(max(record(:,i))-

min(record(:,i))); 

end 

record=record(1:100,:); 

% %Partition Data for Training and Testing 

numObservations=size(record,1); 

idxTrain = 1:floor(0.7*numObservations); 

idxTest = floor(0.7*numObservations):numObservations; 

%separate the dataset into training and testing 

dataTrain = record(idxTrain,:); 

dataTest = record(idxTest,:); 

%separate the training dataset into inputs and outputs 

XTrain = dataTrain(:,1:4); %select input variables 

YTrain = dataTrain(:,5);   %select target variable (power) 
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for i=1:size(XTrain,1) 

    XTrain2(i)={XTrain(i,:)}; %Convert the inputs into a cell array.  

end 

XTrain=XTrain2; 

YTrain=YTrain'; 

%% Train 

inputSize = 1; 

numHiddenUnits = 150; 

layers = [ ... 

    sequenceInputLayer(inputSize) 

    bilstmLayer(numHiddenUnits,'OutputMode','last') 

    fullyConnectedLayer(1) 

    regressionLayer]; 

maxEpochs = 10; 

options = trainingOptions('adam', ... 

    'MaxEpochs',maxEpochs, ... 

    'InitialLearnRate',0.001, ...     

    'GradientThreshold',1, ... 

    'Shuffle','never', ... 

    'Plots','training-progress',... 

    'SequenceLength',6, ... 

    'Verbose',0); 

net = trainNetwork(XTrain,YTrain',layers,options); 

trainY=double(predict(net,XTrain)); 

%Test network 

%separate the testing dataset into inputs and outputs 

look_ahead=24; %Repeat for 48 hours, 72 hours, 168 hours.  
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XTest = dataTest(1:look_ahead,1:4); 

YTest = dataTest(1:look_ahead,5); 

for i=1:size(XTest,1) 

XTest2(i)={XTest(i,:)}; 

end 

XTest=XTest2; 

YTest=YTest'; 

YPred = predict(net,XTest); 

YPred=YPred'; 

for i=1:size(YPred,2) 

    if YPred(i)<0 

        YPred(i)=0; 

    end 

end 

% Getting actual test values  

for i=1:size(YTest,2) 

YTest_actual(i)=min(dataWind.Power)+(YTest(i)*(max(dataWind.Power)-

min(dataWind.Power))); 

end 

% Getting actual predicted values  

for i=1:size(YTest,2) 

    

YPred_actual(i)=min(dataWind.Power)+(YPred(i)*(max(dataWind.Power)-

min(dataWind.Power))); 

end 

%Plot the actual figures 

figure 

plot(YTest_actual) 
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hold on 

plot(YPred_actual) 

hold off 

legend('Actual','Predicted') 

xlabel('Hours') 

ylabel('Power') 

title('Graph of Wind Power vs Hour (BiLSTM)') 

figure, ploterrhist(YPred_actual-YTest_actual) 

figure, plot(YPred_actual,'-o') 

hold on 

plot(YTest_actual,'-^') 

title('Train Results') 

xlabel('Time') 

ylabel('Power Output'); 

legend('biLSTM output','Actual Demand') 

%Performance evaluation of the model 

rmse_power=sqrt(mean((YPred_actual-YTest_actual).^2)) 

MAE = mean(abs(YTest_actual-YPred_actual)) 

MAPE = mean(abs((YTest_actual-YPred_actual)/YTest_actual)) 

corrcoef(YPred_actual,YTest_actual) 

BiLSTM EMD 

clear all; 

close all; 

dataWind=readtable('AL_WIND_07_12.csv'); %Has 52560 observation 

points 

speedData=dataWind.Power; % power selected as the variable to be 

interrogated. 

sample_data=speedData(1:8760);%Pick a sample of data 
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% %Partition Data for Training and Testing 

numObservations=size(sample_data,1); 

idxTrain = 1:floor(0.7*numObservations); 

idxTest = floor(0.7*numObservations):numObservations; 

%Feature Scaling of the sampled dataset 

min_sample=min(sample_data); 

max_sample=max(sample_data); 

sample_dataSTD=(sample_data-min_sample)./(max_sample-min_sample); 

%  

%emd on dataTrain 

[imf_train,res_train]=emd(sample_dataSTD'); 

sample_dataEMD=[imf_train,res_train]; 

%separate the dataset into training and testing 

dataTrain = sample_dataEMD(idxTrain,:); 

dataTest = sample_dataEMD(idxTest,:); 

XTrain=dataTrain(1:end-1,:)'; 

YTrain=dataTrain(2:end,:)'; 

numFeatures=size(XTrain,1); 

numResponses=size(XTrain,1); 

numHiddenUnits=150; 

layers = [ 

    sequenceInputLayer(numFeatures) 

    bilstmLayer(numHiddenUnits,'OutputMode','sequence') %formerly 

128 on 23.3.2022 

    dropoutLayer(0.2) 

    fullyConnectedLayer(numResponses) 

    regressionLayer]; 
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options = trainingOptions('adam', ... 

    'MaxEpochs',100, ...   

    'MiniBatchSize',30, ... 

    'InitialLearnRate',0.01, ... 

    'GradientThreshold',1,...     

    'Shuffle','never', ... 

    'Plots','training-progress', ...    

    'Verbose',0); 

net=trainNetwork(XTrain,YTrain,layers,options) 

dataTest=dataTest'; 

look_ahead=24; 

dataTest2=dataTest(:,1:look_ahead+1); 

XTest=dataTest2(:,1:end-1); 

YTest=dataTest2(:,2:end); 

YPred = predict(net,XTest); 

%Get the sums 

for j=1:size(YPred,2) 

    YPredSum(j)=sum(YPred(:,j)); 

    YTestSum(j)=sum(YTest(:,j)); 

end 

YPredRaw=YPredSum; 

YTestRaw=YTestSum; 

YPredRaw=(YPredSum*(max_sample-min_sample))+min_sample; 

YTestRaw=(YTestSum*(max_sample-min_sample))+min_sample; 

  

YPredRaw2=YPredRaw(1:end); 
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YTestRaw2=YTestRaw(1:end); 

%Plot the figure 

figure 

plot(YTestRaw2) 

hold on 

plot(YPredRaw2) 

hold off 

%Plot the figure 

figure 

plot(YTestRaw2) 

hold on 

plot(YPredRaw2) 

hold off 

legend('Actual','Predicted') 

xlabel('Hours') 

ylabel('Power') 

title('Graph of Wind Power vs Hour (BiLSTM + EMD)') 

%Performance evaluation of the model 

rmse_power=sqrt(mean((YPredRaw2-YTestRaw2).^2)) 

MAE = mean(abs(YPredRaw2-YTestRaw2)) 

MAPE = mean(abs((YPredRaw2-YTestRaw2)/YTestRaw2)) 

corrcoef(YPredRaw2,YTestRaw2) 

BiLSTM Avrami 

clc 

clear 

close all 
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%% 

record_actual=csvread('AL_WIND_07_12 - No Labels.csv'); 

record=csvread('AL_WIND_07_12 - No Labels.csv'); 

look_back = 6; 

sizeData=size(record,1); 

avrami_data=xlsread('AL_WIND_07_12_Avrami.xlsx'); 

% %Based on the look_back, we replace the values of power at time t 

with the 

% %estimates from AVRAMI 

for i=look_back:look_back:size(record,1) 

     record(i,5)=avrami_data(i,6); 

end 

%%Normalizing the data 

for i=1:size(record,2) 

    record(:,i)=(record(:,i)-min(record(:,i)))/(max(record(:,i))-

min(record(:,i))); 

end 

numObservations=size(record,1); 

idxTrain = 1:floor(0.7*numObservations); 

idxTest = floor(0.7*numObservations):numObservations; 

in=record(idxTrain,5); 

out=record(idxTrain,5); 

i=1; 

while ~isempty(in) 

    pick=look_back; 

    if pick<size(in,1) 

        X_train{i}=(in(1:pick,:))'; 

        Y_train(i)=out(pick); %Estimate provided from Avrami Eqn 
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        in(1,:)=[]; 

        out(1,:)=[]; 

        i=i+1; 

    else 

        X_train{i}=in'; 

        Y_train(i)=out(end); 

        break; 

    end 

end 

%% Train 

inputSize = 1; 

numHiddenUnits = 150; 

layers = [ ... 

    sequenceInputLayer(inputSize) 

    bilstmLayer(numHiddenUnits,'OutputMode','last') 

    fullyConnectedLayer(1) 

    regressionLayer]; 

maxEpochs = 10; 

options = trainingOptions('adam', ... 

    'MaxEpochs',maxEpochs, ... 

    'InitialLearnRate',0.001, ...     

    'GradientThreshold',1, ... 

    'Shuffle','never', ... 

    'Plots','training-progress',... 

    'SequenceLength',6, ... 

    'Verbose',0); 

net = trainNetwork(X_train,Y_train',layers,options); 
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trainY=double(predict(net,X_train)); 

figure, ploterrhist(trainY-Y_train') 

figure, plot(trainY,'-o') 

hold on 

plot(Y_train,'-^') 

title('Train Results') 

xlabel('Time') 

ylabel('Power Output'); 

legend('biLSTM output','Actual Demand') 

%% test network 

in_test=record(min(idxTest):min(idxTest)+24,5); 

out_test=record(min(idxTest):min(idxTest)+24,5); 

%Preparing time series data for specified look_back 

i=1; 

while ~isempty(in_test) 

    pick=look_back; 

    if pick<size(in_test,1) 

        X_test{i}=(in_test(1:pick,:))'; 

        Y_test(i)=out_test(pick); 

        in_test(1,:)=[]; 

        out_test(1,:)=[]; 

        i=i+1; 

    else 

        X_test{i}=in'; 

        Y_test(i)=out(end); 

        break; 

    end 
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end 

testY=double(predict(net,X_test)); 

figure, ploterrhist(testY-Y_test'), title('test') 

figure, plot(testY,'-o') 

hold on 

plot(Y_test,'-^') 

title('Test Results') 

xlabel('Time') 

ylabel('Output Power'); 

legend('biLSTM output','Actual Demand') 

% Getting actual test values   

for i=1:size(Y_test,2) 

     

Y_test_raw(i)=min(record_actual(:,5))+(Y_test(i))*(max(record_actual

(:,5))-min(record_actual(:,5))); 

     i=i+1; 

end 

 %Getting actual predicted values 

 for i=1:size(testY,1) 

Y_predicted_raw(i)=min(record_actual(:,5))+(testY(i))*(max(record_ac

tual(:,5))-min(record_actual(:,5))); 

     i=i+1; 

 end 

%Performance evaluation of the model 

rmse_power=sqrt(mean((Y_predicted_raw-Y_test_raw).^2)) 

MAE = mean(abs(Y_test_raw-Y_predicted_raw)) 

MAPE = mean(abs((Y_test_raw-Y_predicted_raw)/Y_test_raw)) 

corrcoef(Y_predicted_raw,Y_test_raw) 
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Appendix III: Conference and Journal Papers Published 

From this research, two conference papers and two journal papers were published.  

Mathenge J.N, Murage D.K & Nderu J.N. (2021). A Short-Term Wind Power 

Forecasting Approach using ANFIS. International Research Journal of 

Innovations in Engineering and Technology, 5 (5), 35 - 42. https://doi.org/ 

10.47001/IRJIET/2021.505007 

Mathenge J.N, Murage D.K, Nderu J.N & Muriithi C.M. (2018). A Review on 

Artificial Neural Network Models for Short-Term Wind Power Prediction. 

Proceedings of the 2018 Sustainable Research and Innovation Conference, 54 

- 58. https://sri.jkuat.ac.ke/jkuatsri/index.php/sri/article/view/37 

Mathenge J.N, Murage D.K, Nderu J.N & Muriithi C.M. (2018). Grid Integration of 

Large Capacity Wind Power: A Review. Proceedings of the 2018 Sustainable 

Research and Innovation Conference, 75 - 79.https://sri.jkuat.ac.ke/jkuatsri/ 

index.php/sri/article/view/41 

Mathenge J.N, Murage D.K & Nderu J.N. (2023). A Short-Term Hybrid Wind Power 

Forecasting Approach using BiLSTM_EMD and the Avrami Curve. 

International Research Journal of Innovations in Engineering and 

Technology, 7 (10), 376 - 392. https://doi.org/10.47001/IRJIET/2023.710051 

 


