

ACHIEVING APPROPRIATE SOFTWARE SECURITY

LEVELS WITH AGILE SOFTWARE DEVELOPMENT

GEOFREY GATINO KAGOMBE

MASTER OF SCIENCE

(Software Engineering)

JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY

2023

Achieving Appropriate Software Security Levels with Agile Software

Development

Geofrey Gatino Kagombe

A Thesis Submitted in Partial Fulfilment of the Requirements for the

Degree of Master of Science in Software Engineering of the Jomo

Kenyatta University of Agriculture and Technology

2023

ii

DECLARATION

This thesis is my original work and has not been presented for a degree in any other

university.

Signature………………………………… Date ……………………………….

Geofrey Gatino Kagombe

This thesis has been submitted for examination with our approval as the university

supervisors

Signature………………………………… Date ……………………………….

Prof. Ronald Waweru Mwangi, PhD

JKUAT, Kenya

Signature………………………………… Date ……………………………….

Prof. Joseph Wafula Muliaro, PhD

JKUAT, Kenya

iii

DEDICATION

To Jesus Christ my Lord and saviour. For His mercy and grace up to this point. To him

be the glory forever! Amen

iv

ACKNOWLEDGEMENT

First and foremost, I give my deepest and most sincere gratitude to the almighty God for

granting me this opportunity, sustaining me, and bringing me to this end. If it was not for

His grace, it would not have been possible.

I would also like to express my deepest appreciation to my supervisors, Prof. Waweru

Mwangi and Prof. Wafula Muliaro. They have patiently guided me, giving feedback and

direction to the very end. In the same vein, I thank the JKUAT Department of

Computing for various forms of support given to this research.

I also thank my family for giving me the time to concentrate on this research. I express

my greatest gratitude to my wife Naomi for taking care of the family while I dedicated

my time to this research. I thank my lovely daughters for their prayers and love while I

concentrated on this work.

v

TABLE OF CONTENTS

DECLARATION ... ii

DEDICATION .. iii

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES .. xi

LIST OF FIGURES .. xii

LIST OF APPENDICES .. xiv

LIST OF ABBREVIATIONS/ ACRONYMS .. xv

ABSTRACT ... xvi

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 5

1.3 Research questions ... 6

1.4 Objectives ... 7

1.5 Justification .. 8

1.6 Scope .. 9

vi

1.7 Limitations of the Study ... 10

CHAPTER TWO ... 12

LITERATURE REVIEW .. 12

2.1 Introduction .. 12

2.2 Agile Software Development Methods .. 12

2.3 Agility Assessment .. 19

2.3.1 Agility and Discipline Assessment (Boehm and Turner): 20

2.3.2 Team agility assessment by Dean Leffingwell: .. 20

2.3.4 4 Dimensional Analytical Tool by A. Qumer and B. Henderson: 21

2.4 Scrum ... 22

2.5 Security Issues and Scrum ... 26

2.6 System Security Engineering ... 28

2.6.1 Security and Vulnerability in Today’s Environments 29

2.6.2 Security Engineering Process Overview ... 32

2.7 Security engineering standards .. 36

2.8 Capability Maturity Models (CMMs) .. 37

2.8.1 SSE-CMM ... 38

2.8.2 CMMI .. 40

vii

2.8.3 CMMI and SCRUM .. 41

2.9 Security and Agile Methods ... 44

2.10 Approaches to Secure Agile Software Development Process 46

CHAPTER THREE ... 52

OVERVIEW OF THE SECURE AGILE PROCESS FRAMEWORK 52

3.1 Overview .. 52

3.2 Features of the Proposed Framework:.. 53

3.2.1 Agile Risk process .. 54

3.2.2 Agile Security Engineering ... 62

3.2.3 Security Assurance .. 64

3.3 The proposed framework and its implementation in scrum 66

CHAPTER FOUR .. 70

METHODOLOGY ... 70

4.1 Introduction .. 70

4.2 Empirical Research in software development .. 71

4.3 Research Design ... 72

4.4 Research Methods .. 73

4.4.1 Methodological triangulation .. 77

viii

4.4.2 Case study ... 77

4.4.3 Justification for Case study ... 78

4.4.4 The Case .. 79

4.4.5 Sampling for Case and project organisation ... 80

4.4.6 Preparation Training.. 81

4.4.7 Data Collection techniques ... 81

4.4.8 Evaluation Method .. 89

CHAPTER FIVE .. 93

CASE STUDY .. 93

5.1 Introduction .. 93

5.2 Demonstrating the Utility of the Framework –The Case 93

5.3 Roles ... 94

5.3.1 Product Owner .. 95

5.3.2 Scrum Master .. 96

5.3.3 Scrum Development Team .. 96

5.4 The project ... 97

5.5 Events ... 98

5.5.1 Security Sprint Zero .. 98

ix

5.5.2 Threat modelling and secure coding ... 104

5.5.3 Sprint review ... 111

5.6 Data collection ... 111

CHAPTER SIX .. 115

DATA ANALYSIS AND DISCUSSIONS .. 115

6.1 Introduction .. 115

6.2 Maturity Level Analysis ... 118

6.2.1 Security Risk Area .. 119

6.2.2 Security Engineering Area .. 120

6.2.3 Assurance Area ... 121

6.3 Agility Level Analysis ... 122

CHAPTER SEVEN .. 125

CONCLUSION AND FUTURE WORKS ... 125

7.1 Introduction .. 125

7.2 Research Goals achieved.. 126

7.3 Contributions .. 127

7.4 Limitations of the study ... 127

7.5 Recommendations for future works ... 128

x

REFERENCES ... 129

APPENDICES .. 144

xi

LIST OF TABLES

Table 2.1: Agile Principles .. 17

Table 2.2: SSE-CMM Security Engineering Process, Goals and Area 40

Table 2.3: Security Comparison between SSE-CMM and Scrum 46

Table 4.1: Hypothesis Statements from Research Questions .. 86

Table 4.2: Mapping of Questionnaire Questions to Hypothesis and Process Area......... 88

Table 4.3: Maturity Level Criteria .. 92

Table 5.1: Partial Risk Table ... 101

Table 5.2: Partial Risk Analysed Abuser Stories .. 102

Table 5.3: General Opinions from Focus Group Discussions 113

Table 6.1: Summary of Practitioners View of the Process in Light of Best Practices .. 116

Table 6.2: Security Engineering Process Areas Index and Levels Attained 118

Table 6.3: Agility level attained by the process .. 123

Table 7.1: How the process fulfils SSE-CMM process areas 125

xii

LIST OF FIGURES

Figure 2.1: The Agile Manifesto ... 16

Figure 2.2: High Level Agile Software Development Lifecycle. 19

Figure 2.3: Scrum Framework .. 23

Figure 2.4: The SSE-CMM Risk Process Involves Threats, Vulnerabilities, and Impact

 .. 34

Figure 2.5: SSE-CMM's Security Engineering Process Overview 35

Figure 2.6: SSE-CMM Organisation Structure ... 39

Figure 3.1: High Level Security Engineering Framework Design 54

Figure 3.2: Security Risk Analysis Model .. 55

Figure 3.3: Proposed Risk Model. .. 59

Figure 3.4: The Proposed Security Assurance Checklist .. 65

Figure 3.5: Proposed Framework Activities Within The Scrum Circle 69

Figure 4.1: Design science iteration: between design problem and answering knowledge

questions. .. 70

Figure 4.2: Knowledge Flow in the Research design ... 75

Figure 4.3: Interplay between problem and solution, theory and practice of the research.

 .. 76

Figure 5.1: High Level Data Flow Diagram of the Application Architecture. 100

xiii

Figure 5.2: Sprint Planning ... 105

Figure 5.3: Use Case Diagram with Malicious Actors ... 106

Figure 5.4: Screenshot of Sprint Backlog for Sprint 1 .. 107

Figure 5.5: Jira Board for Midway through Sprint 1 .. 108

Figure 5.6: MongoDB Configuration.. 110

Figure 5.7: Static Analysis Results ... 111

Figure 6.1: Administer Security Control... 119

Figure 6.2: SSE-CMM Risk Area Maturity Level Attained ... 120

Figure 6.3: SSE-CMM Engineering Area Maturity Level Attained 121

Figure 6.4: Maturity Level Summary Graph .. 122

xiv

LIST OF APPENDICES

Appendix I: Questionnaire .. 144

Appendix II: Initial product backlog .. 146

Appendix III: OWASP Top 10 ... 150

Appendix IV: Security Assurance Checklist Signed for an abuse case. 151

xv

LIST OF ABBREVIATIONS/ ACRONYMS

Agile SE Agile Software Engineering

CMM Capability Maturity Model

SSAM SSE-CMM Appraisal Method

SSE System Security Engineering

SSE-CMM System Security Engineering Capability Maturity Model

xvi

ABSTRACT

Software security for agile methods is still a major concern. Security has become an

integral component of software quality in today's world. This is influenced by the

criticality and amount of data the software handles and the volatility of the environment

of deployment, e.g. the cloud. In addressing this problem, this research proposes a

secure agile software development framework that conforms to standard industry best

practice in software security engineering. Agile methods have taken over the software

development industry, mainly due to their ability to deliver timely and quality software.

Research has also shown that most agile methods are not equipped to handle security

and assurance in the developed software. A review of literature conducted in this thesis

confirmed the lack of security practices in agile development methods. This research

uses Design Science Research (DSR) to build, test and evaluate an agile Security

engineering framework. It involved a rigorous process to design an agile security

framework to solve the observed problems by ensuring that security is part of the

development process from the beginning of the project to the end. It was modelled after

standard security engineering models targeting the intended security goals. The security

framework is agile, meaning it adheres to agile principles. A multiple-case study in an

academic and industry setting is conducted to demonstrate and evaluate the utility of the

methodology. The evaluation criterion for security capability was Systems Security

Engineering Capability Maturity Model (SSE-CMM) Appraisal Method (SSAM). The

agility of the resulting process was evaluated using the four-dimensional analytical tool

(4-DAT) and it showed satisfactory compliance of the methodology with agile

principles. The main contributions in this thesis are: the secure framework, which entails

description of the concepts, a pre-game risk analysis, security engineering stages, tasks,

tools and techniques; generation of a quality theory on practices that promote quality in

a software development environment. This research would be of value to researchers as

it introduces standard security components of software quality into an agile software

development environment, probing more research in the area. To software developers,

the research has provided a secure agile framework that builds security and assurance

into the product. This would be a first step towards standardisation of the developer's

process model as a secure process.

1

CHAPTER ONE

INTRODUCTION

1.1 Background

Software security is the idea of engineering software so that it continues to function

correctly under malicious attack (McGraw et al., 2011). This discipline encapsulates

fundamental principles that when properly employed would give users an acceptable

level of confidence that the system is fit for purpose (Irvine & Nguyen, 2010). Its

best practices leverage good software engineering practice and involve thinking

about security early in the software life cycle. This translates to knowing and

understanding of common threats (including language-based flaws and pitfalls),

leading to designing for security, and subjecting all software artefacts to thorough

objective risk analyses and testing.

The need for secure, trustworthy systems cannot be overemphasised, especially in

today’s world. Today’s information systems have a variety of characteristics that

raise security concerns. These range from the sensitivity and cost of data and

transactions handled to the ever-evolving geographical size and distribution

complexities for example the number and types of components and technologies

involved, among others.

The common practice in the software development world was fixing security into

systems after production, but experience has proved this to be costly. It has therefore

become generally accepted that Software Assurance should be built into a system as

it is being developed (Irvine & Nguyen, 2010) and thus software security engineering

valuably comes to play. This means that as software is being built, the developers

should consider or determine the pool of attacks that pose as threats to the particular

software and the data or the property it handles and think of ways of building a

system that has high probability of repelling the attack.

The increased prevalence of agile methodology in emerging software development

and deployment environments has brought new concerns in building secure systems.

2

This is mainly because the traditional literature and methods of Software security

engineering provide a very complete and exhaustive guide to security objectives.

These objectives include; to understanding the threats in the environment,

determining relevant controls, and implementation of these controls to minimise the

expected risk. Unfortunately, these artefacts are found to take security teams so much

time to produce, that by the time they are delivered, the software build in question

was already deployed and the next had begun (Taati & Modiri, 2015). The nature of

agile development with a framework like Scrum requires a time-boxed “sprint,”

whose end date does not change. The build is delivered on that date, and any portions

that are not complete get removed and put back into the backlog. The pace of such a

project means that IT security personnel are forever catching up to the latest release.

These security measures in their traditional form are just not agile and hence present

a general conflict of cultures.

In seeking to prioritise customer satisfaction, agile processes aim towards producing

customer value within iteration. Security requirements end up being denied the same

citizenship status or importance as reliability and performance requirements, since

most users are not aware of software security issues.

To develop secure software, developers are supposed to execute a set of security

engineering activities within the software development process (Merkow, 2019;

McGraw 2012; Ransome & Schoenfield, 2021). Security engineering standards and

processes are therefore designed to be coordinated within the SDL. When introduced

in their traditional state in agile environments, security engineering activities tend to

create production bottlenecks (Rindell et al., 2021). These bottlenecks might include

the production of additional documentations, performing security related reviews,

scans and tests. In addition, most traditional security engineering (e.g. SSE-CMM,

CoC) advocates for strict process adherence and heavy upfront requirements. This

implies that there is a need for research in this area in order to have efficient

coordination of security activities in the agile space. Research in this area will

promote security-enhanced Agile processes and practices and the skilled people to

manage them and perform them.

3

System Security Engineering (SSE) provides the activities that can be carried out

during software development to ensure the security of the resultant product and the

processes to be followed. There are no generally acceptable security activities, but

there has been credible and sufficient work by different bodies in this area. SSE-

CMM is a standardised example of such work.

The System Security Engineering – Capability Maturity Model (SSE-CMM) original

work and project infrastructure was sponsored by NSA (National Security Agency)

with collaboration from several industrial players with an aim to develop a CMM for

security engineering (Ferraiolo, 2000). The International Systems Security

Engineering Association (ISSEA) was later selected by the SSE-CMM project to

continue support. It oversees further development and use of the model (Association,

2002). SSE-CMM aims to improve and assess security engineering capability. It

examines the maturity of the Security processes implemented by an organisation or

in a project. It was built exclusively for security purposes, and it has also been

adopted as an ISO standard. The major problem is that most existing security

engineering standards, including SSE-CMM, were created with the traditional

software development life cycle (water fall) in perspective, and therefore they are

incompatible to agile techniques due to the difference in culture.

In this study, an agile security engineering framework is introduced, and tested on a

sample group of developers. The framework adopts the SSE-CMM security

engineering framework as a high-level model framework. Note that, as mentioned

earlier, SSE-CMM with its heavy and complete documentations and perceived

weight to the process presents a conflict in culture with agile methods. Nevertheless,

the idea is not to fully adopt it but to acquire proven guidance on principles and goals

on how to get secure software, based on the fact that these standards embed

knowledge of the necessary activities required for a system with security assurance.

Although SSE-CMM provides the base framework, this work has not been limited to

it, it has built upon contributions from several other reputable works (e.g.

Correctness by Construction (Kourie & Watson, 2012), Kanban (Terlecka, 2012),

etc) to improve and come up with the agile security framework. The final work has

4

influence from many relevant literatures (including CMM’s, related security

engineering documents as well as other researchers’ works) discussed and compared

in the literature review (chapter 2).

It is important to insist that not all security activities given by SSE-CMM can be

agile or even implemented in a lean way. IT security engineering activities are

generally costly in terms of time and money (Maqsood & Bondavalli, 2020), they

call for detailed documentation that means they are heavy, directly contrasting the

lean approach of agile methodologies. As already mentioned, the introduction of

these security activities introduces bottlenecks in the agile process (Rindell et al.,

2021). On the other hand, agile methods are characterised by strict timelines e.g. time

boxed sprints in scrum and these bottlenecks would therefore threaten the agility of

the process. Another example is, agile methodologies e.g. scrum do not harbour an

avenue to gather security requirements through risk analysis. If this is introduced in

its traditional form it would mean static, heavy requirements upfront and when

introduced later it would mean additional cost in terms of time and even sometimes

extra manpower. At the same time, discarding some important activities and

processes might render the whole framework ineffective as far as security is

concerned. A trade-off between agility and security has to be struck for success to be

achieved. The choice of the word “appropriate security levels'' was to avoid a total

loss of agility in seeking to achieve maximum security. This work seeks to achieve

basic maturity levels for a security engineering development process. It investigates

whether an agile process can consider security requirements and implement them

during development without necessarily compromising on agility to the extent of

instilling customer confidence in using the software. In increasing security there is a

giveaway in that some level of agility will be lost (Keramati, & Mirian-

Hosseinabadi, 2008). This work focuses on the process and will measure the security

levels in terms of a display of capability maturity of the process. Also, the measuring

gauge of how much security activities will be loaded on the process depends on the

agility of the overall process.

5

This research builds upon known practices and methods to achieve security, making

the necessary changes to maintain agility on the overall process.

1.2 Problem Statement

There has been a significant adoption of agile software engineering methodologies in

the software industry, indicating a cultural shift from traditional development

methodologies. In the software world, the main reason for this culture shift is mainly

because of;

● Agile methods involve the customer or a representation of the

customer throughout the process, and thereby promote a sense of

project ownership to the customers.

● Agile technique's ability to adapt quickly to customer's changing

requirements significantly reduces chances of failure to meet user

requirements.

● There is also a significant increase in the general productivity of

teams. Teams can deliver software products on time and within

budget, which has been a major problem, especially when software

development contracts are involved. (Pries-Heje & Pries-Heje, 2011;

Bellenzier et al., 2015)

Security engineering in the agile environment has generated a lot of discourse within

industry, with most literature in this area coming from practitioners and consultants.

The lack of security practices in agile methods, is corroborated by a number of

researchers (Baca et al., 2015; Aguda 2016; Ghani, Maqsood & Bondavalli, 2020b;

Singh et al., 2021). Insecure software development methodologies build insecure

software products (Homaei & Shahriari 2019). The vulnerabilities that emerge from

modern software deployment environments and systems need to be addressed with

more caution to avoid catastrophic ends.

The weaknesses of agile methodologies in engineering secure software can be

attributed mainly to the fact that security engineering activities have not been given

6

residence in agile techniques (Mirza & Datta, 2019). In short, two key issues stick

out:

1. Security requirements have not been given citizenship in these techniques, as

functionality and user requirements.

2. The traditional security engineering e.g., from SSE-CMM activities cannot fit

into the agile lifecycle without affecting agility i.e., there is a conflict of

cultures.

Because of the mentioned reasons, agile techniques as per the status quo do not

possess the ability to give software assurance and hence, from the process itself,

promote customer confidence in the final product as secure.

Most of the existing research in the area addresses phases in the process but not the

whole development circle (Alotaibi, 2015; Koc & Aydos, 2017). Fewer address the

issue of building software assurance (Rindell, 2021). Another gap in research for this

area is a lack of concrete guidance for application (Hollar 2006; Bernabé, Navia &

García-Peñalvo, 2015; Agarwal & Umphress, 2008; Dzhurov, Krasteva & Ilieva,

2009).

To solve this problem, this work has designed a secure agile security engineering

framework after the SSE-CMM, which is a standardised model for SSE. It

approaches SSE by breaking it into three phases: risk, engineering and assurance,

hence covering the entire process from inception to the end. The main contribution in

this framework is the agile initial risk analysis, the tools, tasks and techniques. The

generation of knowledge on how to enforce security as a quality in the developed

software comes in as a second contribution of this work. These contributions are

discussed in more detail later in subsequent chapters.

1.3 Research questions

To deal with the above problems, the research came up with the following research

questions (RQ) to be tackled in the course of the work :-

7

RQ. How can an agile development framework that conforms to recognized software

security standards be designed to ensure the development of secure software products

without losing agility of the overall process?

To answer this question (RQ), the following sub-questions were tackled:-

SQ1. What Software security engineering standards and best practices exists?

SQ2. What standard software engineering activities and techniques are essential for

developing secure software?

SQ3. How can the goals achieved by the activities and guidelines provided by the

standards be achieved in an agile manner?

SQ4. How can these activities be implemented in an agile environment (e.g. scrum)

without losing agility in the resultant process?

SQ5. How can the resultant process be evaluated?

1.4 Objectives

The main objective of this study is to improve the process of software development

using agile techniques by coming up with a framework that will incorporate standard

security artefacts into the life cycle without losing agility. This research seeks to

achieve the basic level of security engineering maturity as “appropriate” this being a

pilot attempt.

To achieve this, the following specific objectives will be involved:

1. Explore existing security engineering frameworks, standards and literature in

order to fully expose the gap between existing security engineering and agile

methodologies, and also review existing solutions from previous research.

The intention was that, the understanding gained, will influence the high-

quality design of the framework.

8

2. To design a framework that ensures standard security engineering goals are

met within the agile environment. The framework should cover the entire

engineering process from inception to completion without losing agility.

3. Implement the framework in an agile environment (scrum) to produce a

secure agile development process.

4. Evaluate the resultant process in an industrial setup to demonstrate utility as

well as assess security capability of the process as well as agility.

1.5 Justification

This research is warranted by the need for secure and trustworthy software. The

increased popularity of agile techniques in software development coupled with the

increased sensitivity of software and the data and function has warranted this

research. Agile Scrum is the most popular agile method at the moment. The 15th state

of agile Survey (2021) showed that about 94% of the 4,182 respondents applied agile

techniques. This indicated acceleration from 37% increment in 2020 to 87% in 2021.

Some of the reasons for this increment are; better management of priorities,

accelerating software deliveries, increased team productivity, among others. The

adoption of scrum has also increased, with 66% of the respondents claiming to use

scrum and a further 15% using some variants of it. It also reports that organisations

adopting agile methodologies meet the goals that they had set out to achieve in going

agile, however they also noted ample room for improvement where organisational

agile maturity is concerned. As most developers are moving towards agile there is a

trending decline of developers who are mastering the traditional waterfall SLC, in

short Agile is the future. Therefore, it is vital for it to be made fit for all types of

software, including security critical systems.

It is important to note that the traditional approaches had some level of success

especially where discipline was required for example the requirements, designs and

plans were made available early and constant monitoring was done to force the

projects to conform to plans, they also provided for easy certification against external

assurance standards. Although this is true, some literature, e.g. Beznosov and

Kruchten (2004), agree that there are still major problems associated with them

9

because the success rate of software projects subjected to these traditional

approaches have proved to be low, actually less than 50%. This is mainly due to

changing user requirements, not meeting agreed timelines and escalated costs. This is

where agile methodologies come in but the question that arises is; can we improve

agile techniques to a level where their projects can still enjoy the benefits of the

traditional approaches without losing agility if it is to some acceptable extent.

There is adequate literature on the challenges of agile techniques to develop secure

software for instance, Boehm & Turner (2005) listed among others developing safety

critical software as a challenge to agile processes. Beznosov and Kruchten (2004)

evaluated the mismatches between security assurance methods/techniques and agile

practices. The general issue is basically a conflict of culture between the agile

methodologies and security engineering activities provided by standards e.g. SSE-

CMM. This work attempts to bridge the gap between these two by coming up with a

framework for agile security.

Though several researches have attempted to address the problem of security in agile,

none has pegged their approach with a standardised approach as SSE-CMM or

Common Criteria for IT security (CC). The proposed framework aims to meet

standardised goals by trying to incorporate standard activities or hybrid versions of

the same. Some expected benefits of the framework would be; Heightened user trust

in the process as well as the final product, and also it is an initial phase towards

attaining security engineering capability maturity through agile.

1.6 Scope

The focus of this research is on agile methods, traditional waterfall methodologies

are out of the scope of this research and will only be mentioned when there is need

for comparison or learning. The investigation is further narrowed to SCRUM

because the researcher's experience with the methodology as well as its popularity

makes the work more relevant within the software industry. All the other agile

methodologies are out of scope for this work.

10

Software security engineering also involves organisational and process

administrative roles which involve things like setting policies, training, and quality

controls among others. In this work the focus is on the actual security engineering

process involving risk analysis, security engineering process and assurance

development. This excludes the organisation’s roles in security engineering from this

work.

Capturing the right requirements and ensuring implementation is critical in software

development (Singh, 2011; Martin, 2013), and a key pillar of agile software methods.

Therefore, this work will cover the whole development circle from capturing security

requirements, to ensuring that they are implemented amidst a cacophony of voices

poised as customer needs (Daneva & Wang, 2018b), and ensuring assurance is given

through evidence of implementation and tests. Suggestions from other researchers on

the best practices that will work well with the proposed framework might be

mentioned.

1.7 Limitations of the Study

The prior knowledge on which the secure agile framework is premised was obtained

through documents searched electronically. This implies that unpublished

documents and those not indexed by the databases, or the databases only allowed

access to paid subscribers were not included. The security engineering framework

will only mirror those studies that were included in the systematic literature survey.

Another limitation is that it is not possible to separate the experience or capability of

the developer(s) who were involved in the case study from the quality of the

methodology. The experience of the team, methodology in use and the project

environment will determine the quality of software. The experience of the team can

neutralise the weakness of the methodology and deliver a high-quality product. In

attempting to mitigate this, a triangulation of sources was carried out by interviewing

other developers in seeking out their opinions, but this might not be enough. Another

limitation is that this research did not define any quantitative metrics for evaluating

the impact of quality and security practices on the application programmes designed

using this methodology. This research used practices that have been proved to be

11

effective by other researchers, therefore proving each practice’s effect on the quality

of the software of the product is outside the scope of this research.

12

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The purpose of this chapter is to give a detailed understanding of the problem area

and to present arguments in favour of the introduced approach through relevant

literature on the specific area. The chapter is divided into four major parts; the first is

a general discussion on agile processes, then it narrows down to Scrum. The second

part is a discussion about the software security process, building an understanding

from the original standard heavyweight software security frameworks that exist. It

includes the SSE-CMM as a major element, since as already mentioned it is a

significant framework in this work. Also discussed, is Capability Maturity Model

Integration (CMMI) and how it can be used to instil discipline to agile processes in

the development of security critical systems. A survey of literature contributing to

security in agile software is also added. The knowledge built by the literature

influences the design and logic behind this framework. Lastly, an overview of the

framework is discussed, presenting its three major areas.

2.2 Agile Software Development Methods

Lightweight software development methods (later came to be known as agile

software development methods) have been in existence since the early 90s. They

evolved in the mid-1990 as a reaction against the heavyweight, process driven

methods (Poppendieck & Poppendieck, 2003). Though the traditional methodologies

provided a disciplined mechanism of software engineering, they were still blamed for

late delivery of software, plus they could not accommodate change in requirements.

The major arguments against these Classical methods of software development are;

huge efforts during the planning phase, poor requirements' conversion in rapidly

changing environments and treatment of staff as a factor of production.

13

The fact that requirements change during the process of development posed concerns

because traditional software development models were too rigid to accommodate

these changes, and when they were forced upon them, it resulted in increased budgets

and missed timescales. The high cost of change and rigidity to changing

requirements drew a possibility of building software that does not meet user

requirements. This is a major reason Agile methodologies were conceived in the first

place and also why most software development companies are shifting to Agile

today. Barry Boehm and Turner (2004) stated that as software proceeds through its

lifecycle the cost of making a change becomes larger with ratios of 100:1 for making

a change after delivery versus project starting are common. These ratios are usually

dependent on individual projects, but it is true for most projects that the cost of

change will be higher as the process advances (Barry Boehm & Turner, 2004). Agile

methodologies facilitate change accommodation through iterations and at the same

time promote high involvement of customers, hence they have low cost of change.

Other characteristics of heavyweight methods that received criticism were heavy

regulations, regimented and micromanaged among others. Agile software

development methodologies were introduced to specifically address these challenges.

In recent times, there has been a lot of excitement about agile and agile software

development methods. The software world is witnessing a shift from the traditional

to agile, with major players in the industry adopting these methodologies or hybrids

of agile and the traditional waterfall SDLC development. Many researchers have

actually tried to define agile and agile software development, but still by the time of

publication no common definition had been agreed upon.

Mushtaq and Qureshi (2012) defined agility as the capacity to have intellectual

response to business forecasts with the intent of remaining aggressive and inventive

for any unstable and swiftly shifting business environments. Conboy and Fitzgerald

(2004) through study of relevant materials came up with a similar but slightly

expounded definition that captured some keywords that express the spirit of agile

software development. His definition can be applied across the board regardless of

the method. According to them, agility is the continual readiness of an Information

system development method to rapidly or inherently create change and learn from

14

change while contributing to perceived customer value (economy, quality and

simplicity) through its collective components and relationships with its

environments.

Qumer and Henderson-Seller, after carrying out a survey and assessment of various

literatures including the agile manifesto (Beck et al., 2001) offered the following

definition for the agility of any entity:

“Agility is a persistent behaviour or ability of a sensitive entity that exhibits

flexibility to accommodate expected or unexpected changes rapidly, follows the

shortest time span, uses economical, simple and quality instruments in a dynamic

environment and applies updated prior knowledge and experience to learn from the

internal and external environment.” (Asif Qumer & Henderson-Sellers, 2006b).

From the aforementioned definitions, it is easy to note that they all agree an agile

software development methodology must bear some key elements that channel it

towards flexibility, speed, leanness, learning and responsiveness.

Some of these key elements are iterations, incremental development, and special

team structures. The Agile Alliance describes Agile software Development as a

group of frameworks and practices of software development methodologies based on

the values and principles expressed in the agile manifesto (Beck et al., 2001). A

major characteristic in such frameworks and practices is the focus on the people

doing the work and how they work together, in that requirements and solutions

evolve through collaboration between self-organising, cross-functional teams.

Note that agile development is only a subset of Incremental and Iterative

Development (IID) which is the idea of revising phases over and over but not the

same thing. This arrangement dramatically improves project efficiency. The iterative

nature of the software lifecycle is increased further by tightening the normal

traditional software development cycle (design-code-test loop) to at least once a day

(if not much more frequently) as opposed to once per iteration.

15

Some of the early agile frameworks were Scrum in 1995, Crystal Clear, Extreme

Programming both in 1996, Adaptive Software Development, Feature Driven

Development, and Dynamic Systems Development Method (DSDM) also in 1995,

others came later (Dingsøyr & Lassenius, 2016).

 In the year 2001 the agile manifesto, a concise summary of agile values, was written

and signed. With these came a wide adoption of the name “Agile processes” (Rao et

al., 2011).

In 2001 a group of seventeen software developers took some existing management

and development concepts and codified them into an umbrella philosophy which is

the origin of what is today defined as Agile software development. This group

produced a set of values that outlines this definition and sets apart agile development

from the traditional processes (see figure 2.1).

16

Figure 2.1: The Agile Manifesto (Beck et al., 2001)

In addition to the values, the agile association in February 2010 declared 12 agile

principles. These were aimed at promoting common practice in every agile software

development and better software development.

These principles, though informally defined, are intended to help developers produce

software in an agile manner. By following these principles, developers will be

integrating the four values of the manifesto. They promote agility within the software

process.

17

Table 2.1: Agile Principles

 Principle

P1. Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

P2.

Allow changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

P3. Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

P4. Business people and developers must work together daily throughout the

project.

P5. Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

P6. The most efficient and effective method of conveying information to and

within a development team is face-to-face conversation.

P7. Working software is the primary measure of progress.

P8. Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

P9. Continuous attention to technical excellence and good design enhances

agility.

P10. Simplicity--the art of maximising the amount of work not done--is essential.

P11. The best architectures, requirements, and designs emerge from self-organising

teams.

P12. At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behaviour accordingly.

Concerning the Agile manifesto values (figure 2.1), it is important not to misinterpret

that the items on the right should be completely discarded, but just that more

emphasis is given to the items on the left. For example, agile methods stress

productivity and value over heavy-weight process overhead and artefacts (Hneif &

Ow, 2009). This might sound catastrophic from a security engineer’s point of view;

18

consider for example the statement “working software over comprehensive

documentation”. First, this does not really mean that you completely do away with

documentation but rather, we can redefine the scope and nature of the documentation

to capture only the essential in order to give the developers more focus on the

software (Taati & Modiri, 2015). Secondly to a security practitioner, security risk

assessments, controls and mitigations, monitoring infrastructure, and IDS/IPS

hardware are the products that he/she is supposed to produce, so to them the working

software can be replaced by these.

Figure 2.2 is a diagrammatic overview of the agile Software Development Lifecycle

at a high level.

To a software development team, agile methods have diverse benefits. Among these

is an increased delivery rate and customer satisfaction due to customer involvement

throughout the process, these will result in increased productivity among others (Rao

et al., 2011; Rover et al., 2014).

On the flip side, some of the criticisms agile software development has received are;

lack of structure and necessary documentation, only working with experienced

developers, insufficient software design, and requiring too much cultural change.

Uncertainties in the beginning of the process may result in difficult contract

negotiations, and also, they provide limited support to the quality control in safety

critical-software (Anderson, 2010; Cho, 2008).

A key point to note from the above list is that most of the above-mentioned are also

the mismatch between agile methodologies and conventional methods for security

engineering e.g., the use of heavy documentation in building the security case,

prioritisation of security requirements versus functional requirements, lack of trained

Agile security experts among other issues. In subsequent sections, a discussion of

scrum in perspective to security is provided.

19

Figure 2.2: High Level Agile Software Development Lifecycle.

The Agile Manifesto doesn’t provide concrete steps. Organisations usually seek more

specific methods. Rao et al. (2011) suggested that methodologies are nothing but

chosen, team specific conventions that are followed in order for a team to achieve

agility. As long as they are generalised to be used by any team out there, they remain

frameworks, of which the actual implementation may differ across teams. Several of

these Agile Frameworks exist today. Some of these include; Extreme Programming,

Agile Modelling, Scrum, Crystal methodologies family, Feature-Driven

Development, Adaptive Software Development, etc.

In this research, the framework of choice is Scrum; the others are out of the scope of

this work. Below, a brief overview of Scrum is given and also an explanation of

“why scrum?” is offered.

2.3 Agility Assessment

Measuring agility can be done both qualitatively and quantitatively. Most studies

have aimed at assessing agility at organisation level (Gandomani, 2014; Telemaco et

al., 2020). In this work, e assessment models are discussed in the following section

and a rational is drawn towards the selected model:

20

2.3.1 Agility and Discipline Assessment (Boehm and Turner):

Boehm and Turner (2004) proposed a framework to find a balance between agility

and discipline. Discipline contributes to well-organised history and experience

(Lucassen et al., 2015). Agility uses this history to adapt to new environments. The

experienced teams are better placed to react and adapt to the changes, and even

leverage on unexpected opportunities. This has been emphasised further by Jakobsen

and Johnson (2008) where automatic tests, nightly build and integration are desired,

such as in security engineering. Barry Boehm and Turner (2004), highlighted five

critical factors involved in determining the relative suitability of agile or plan-driven

methods in a particular project situation:

• The number of persons working in the project.

• The balance between chaos and order.

• An estimate of how much the team or organisation likes to work on the

edge of chaos or with more planning and defined practices and

procedures.

• The type of personnel required to achieve success in a project.

• The nature of damage from undetected defects.

In summary, there are projects which suit a more disciplined approach of

development and security is one of the factors that call for this. Jakobsen and

Johnson (2008) concur with this, but also went further to give guidelines on how you

can achieve agility with discipline from CMMI. This has been discussed further in

this chapter, since it has played a role in the framework design. Boehm and Turner’s

(2004) does not cover the management level of the process.

2.3.2 Team agility assessment by Dean Leffingwell:

Leffingwell (2007), applies two metrics, agile project metrics and agile process

metrics, to assess team agility. Analysing several categories of team’s performance

aspects and ranking each category with a set of specific measures rated on a scale of

0 to 5 (5, describing better agility). The model also uses a radar chart, where each

axis represents a metrics category.

21

Though the approach of data collection

2.3.3 Dimensional Analytical Tool by A. Qumer and B. Henderson:

This model evaluates agility and the adoptability of agile methods in software

development organisations (Asif Qumer & Henderson-Sellers, 2006b). It provides a

quantitative mechanism to measure the degree of agility of an agile methodology at

specific levels within a process, using specific practices. The four dimensions are as

follows:

• Dimension 1 - Method Scope Characterization: It describes the scopes for

the application of the agile methodologies. It is used to compare the

methods at a high level. The scopes assessed in this dimension are: a)

Project Size b) Team Size c) Development Style d) Code Style e)

Technology Environment f) Physical Environment g) Business Culture h)

Abstraction Mechanism

• Dimension 2 - Agility Characterization: This dimension checks the

existence of agility in agile methods for process level and method

practices level. This dimension is the only one of the four proposed that is

quantitative.

• Dimension 3 - Agile Value Characterization: This dimension examines

the support of six agile values in different practices of agile methods.

Most of the values (4) are extracted from the agile manifesto; the rest are

provided by the author based on the study of several agile methods.

• Dimension 4 - Software Process Characterization: The fourth dimension

examines the practices that support the four components of the software

process proposed by (Asif Qumer & Henderson-Sellers, 2006b).

In this method agility is measured in terms of five different variables described in

dimension 2: Flexibility (FY), Speed (SD), Leanness (LS), Learning (LG) and

responsiveness (RS), where each variable may acquire a value of either 0 or 1 at any

given time. A software development method may encompass agility in the design

phase, planning phase or in the requirement engineering phase, but not necessarily all

22

three. Thus, the degree of agility (DA) for each of these phases is the fraction of the

five agility variables that is encompassed and supported. The below formula

summarises this.

Qumer et al. (2006) used this approach to measure the degree of agility (at both

phase and practice level) using Extreme Programming (XP) (Asif Qumer &

Henderson-Sellers, 2006a)

The 4-D model is the most complete of the models discussed; it tries to include the

major quantity of aspects related to the entire company, such as general software

process characterization, agile values execution and agile practices inside the

company, it provides a clear measure of agility that has been pegged on the agile

principles. This work will only carry out assessment at the process level.

2.4 Scrum

It is an iterative and incremental agile software development framework for

managing product development. Within it, people can address complex adaptive

problems, while productively and creatively delivering products of the highest

possible value. Larman et al. (2012) gave the following description of scrum in 100

words;

Scrum is an agile process that allows us to focus on delivering the highest

business value in the shortest time.

It allows us to rapidly and repeatedly inspect actual working software (every

two weeks to one month).

The business sets the priorities. Our teams self-manage to determine the best

way to deliver the highest priority features.

23

Every two weeks to a month, anyone can see real working software and

decide to release it as is or continue to enhance for iteration.

It is important to note that Scrum is not a process or a technique for building

products; rather, it is a framework within which you can employ various processes

and techniques. Scrum makes clear the relative efficacy of your product management

and development practices so that you can improve.

The Scrum framework consists of Scrum Teams and their associated roles, events,

artefacts, and rules. Each component within the framework serves a specific purpose

and is essential to Scrum’s success and usage.

The rules of Scrum bind together the events, roles, and artefacts, governing the

relationships and interaction between them.

Figure 2.3: Scrum Framework

The major characteristics of scrum include:

i) Work is organised in short cycles.

24

ii) Management does not interrupt the team during a work cycle.

iii) The team reports to the customer, not the manager.

iv) The team estimates how much time work will take.

v) The team decides how much work it can do in an iteration.

vi) The team decides how to do the work in the iteration.

vii) The team measures its own performance.

viii) Work goals are defined before each cycle starts.

ix) Work goals are defined through user stories.

x) Impediments to getting the work done are systematically removed. (Ken

Schwaber & Sutherland, 2017)

The scrum framework involves roles, ceremonies and artefacts where the roles are

Product Owner, Scrum Master and Team. The ceremonies are Sprint Planning, Sprint

Review, Sprint Retrospective, and Daily Scrum Meeting. Finally, the artefacts

involved are Product Backlog, Sprint Backlog, and Burn down chart. In summary

there are three roles, two shared tools and four meetings all within a regular period of

time called a sprint. It boasts of transparency and enhanced communication as its

strengths. Its creators advance it as a framework that promotes transparency and

communication saturation, which together enable the team to regularly inspect and

adapt to change (Schwaber & Sutherland, 2011).

Two key shared tools in traditional scrum are:

1) The product backlog (PB), which is basically a list of everything that should

be done during the development life cycle divided into items that can be

delivered independently. The PB is ordered according to item priority

depending on the value the user places on the item. Scrum work is basically

dictated by a product backlog.

2) The sprint backlog, which is a subset of the PB that is picked by the team to

be completed in a sprint. It reflects the priority given in PB. Once picked, it

cannot be changed.

25

The product owner is responsible for the commercial success of the product. He/she

must know what the customer wants and the relative business value of those wants.

He is responsible for controlling the order of the product backlog according to the

business value of items (most valuable at the top) and thus he can be seen as the

customer's advocate in the development. Since the team is responsible for the sprint

backlog, the product owner spends about half his or her time working with the team

to make sure the work in the sprint backlog reflects the vision of the product backlog.

The other half of the product owner’s time should be spent consulting with customers

and stakeholders to make sure the product backlog reflects their needs.

A sprint is a series of iterations that span a period of between 2 weeks to a month (30

days) that begins with a daily 15 minutes meeting called a scrum. The scrum meeting

handles three questions; 1). What did you do yesterday? 2). What will you do today?

3). What obstacles are in your way?

Sprint reviews offer process improvement mechanisms, where the process is

reviewed and improvements are suggested and agreed upon.

Security requirements are crucial in ensuring that security has been factored in the

end product. In fact, research shows that 80-85% of project failures are due to

incorrect requirements). A big failure of the waterfall was it was not flexible enough

to handle dynamic requirements. Agile has won this war, but there emerges another

challenge in that the voice of the customer is not one (Sven & Poller, 2017), for

example from a single client we can have technical decision makers, end users and

even system operators, all of whom have different priorities. Amidst this cacophony

of voices, there is a danger of overlooking the security argument. This work makes

sure this has been captured through a security sprint zero and within sprints by

slightly changing the team roles.

A sprint zero is a pseudo sprint that does not necessarily deliver customer value or

working software. Our sprint zero from a security perspective should be able to

involve some research spike to carry out vulnerability, threat, and risk analysis. It

should produce a security understanding for example in terms of abuse stories with a

26

few critical stories developed to accomplish a minimal flexible upfront design in

tandem with agile principles.

It is necessary to avoid a situation where you have a sprint zero that produces a

heavy project plan and a large requirement document, taking us back to waterfall

(Carlson & Soukop, 2017). To ensure this, the scrum alliance states the following as

what it is not meant to do; 1). Assemble the team. 2) Organisation and logistics. 3)

PB setup and design (Prakash, 2022).

More on the security sprint zero has been discussed in later chapters.

The popularity of SCRUM as a methodology for software development has greatly

accelerated over the past few years. It has become the dominant agile methodology

in industry today. This popularity is one factor that has advised the choice of

framework. The idea is to have research that adds significant relevance to the

industry.

Another factor is scrum boasts of good collaboration mechanisms which according to

this research could be taken advantage of in terms of security engineering

collaboration and also to build customer trust. In fact, scrum can be seen as just a

framework of collaboration and project management, meaning it has very little

emphasis on process. The next factor is flexibility of process i.e., as long as the

scrum rules on strict timelines, roles and ceremonies are adhered to the process

activities are left to be determined by the organisation or even the developers. Lastly,

the researchers’ preference and familiarity with the methodology has also played a

role in selecting scrum as the agile methodology to use.

2.5 Security Issues and Scrum

It has already been established that agile methodologies suffer critical shortcomings

when it comes to Security issues. In fact, it is reported that in the software

development industry, some existing cultures have resisted the agile revolution

especially where large or critical projects are involved (Bajta et al., 2015; Jamissen,

2012; Leffingwell, 2007). In these cases, the rigorous nature of the traditional

27

methodologies has been trusted. In the case of security, it is quite easy to see why

this is so, for example, looking at the agile principles previously mentioned “working

software over documentation” at face value would spell disaster for a security expert.

With all its strength, Scrum itself has several limitations related to security. These are

stated below:

• As the Scrum release cycle is too short, there is not enough time for the

development team to address security requirements for each release.

• Although the inclusion of security elements in the existing Scrum affects the

process characteristics or agility of Scrum.

• Absence of documentation during the requirement planning. This happens

due to the team players not having enough skills in building security. This

work attempts to create security knowledge within the team as well as

stakeholders.

• Another factor is the inadequacy of the process to instil the discipline

required to undertake a security process (Abbas, 2016). The lack of

guidelines in the collection of security requirements is also a factor, as there

are no frozen requirements in agile as there are in the other conventional

SDLCs (Karim et al., 2016).

• Lack of security awareness in scrums project managers coupled with the

pressure to complete the project within a minimal amount of time affects the

entire process (Rindell et al., 2015). For example, security activities such as

threat analysis necessary during requirements capturing/analysis, or security

testing within sprint phases are not included at all, or they cannot be

completed due to a lack of time (Ghani et al., 2014).

• Security testing has its own limitations, for example indirect verification by

demonstrating test or review results hinges on testing capabilities. Automated

security tests, which fit into agile practices, do not work well on some types

of vulnerabilities. Some tests are costly and hard to repeat within sprint, for

example Penetration testing and thorough reviews. Alternatively, if carried

out asynchronously of the iteration, their findings are likely to be handled

through bug fixing (Erdogan & Per, 2010).

28

While viewing security requirements as non-functional requirements raises a

challenge in that, these requirements are usually treated as soft goals and thereby

there is no obvious way of defining whether they are met or not. Security is not just a

quality aspect, but it also comprises functional and architectural aspects (Daneva &

Wang, 2018). A wholesome approach is necessary

To overcome these issues, this study attempts to suggest ways in which the Scrum

process can be suitably combined with security practices. The strengths of SCRUM

can be taken advantage of to enhance security. Previous research (Azham,

Zulkarnain, 2011; Ghani et al., 2014; Pohl & Hof, 2015), proposed solutions for this

situation, however, most only address some portion of the process neglecting other

parts, secondly there is no benchmark acceptable security process to compare against

and lastly there was no evidence regarding how the proposed solutions affected

Scrum agility. Later in this thesis, findings will be presented regarding these issues.

Before this let us first look at traditional security engineering, the intention is to lay

foundation knowledge and an understanding of the subject.

2.6 System Security Engineering

With the increasing reliance of the society on information, the protection of that

information is becoming increasingly important. Many products, systems, and

services are needed to maintain and protect information. The focus of security

engineering has expanded from one primarily concerned with safeguarding classified

government data to broader applications including financial transactions, contractual

agreements, personal information, and the Internet (McGraw, 2004). Today’s

systems are too complex, software-controlled, and highly networked. They are built

by integrating hundreds of suppliers and commercial off-the-shelf (COTS)

components, whose origin and level of integrity are difficult to ascertain (Karim et

al., 2016).

Security engineering can be thought of as the discipline of building secure software.

In 1989 the System Security Engineering was defined by the US DoD Military

Standard1785 as follows;

29

Systems Security Engineering: An element of system engineering that applies

scientific and engineering principles to identify security vulnerabilities and minimise

or contain risks associated with these vulnerabilities. It uses mathematical, physical,

and related scientific disciplines, and the principles and methods of engineering

design and analysis to specify, predict, and evaluate the vulnerability of the system to

security threats (Mailloux et al., 2013; Ross & Oren, 2016; Mailloux et al., 2016).

From the definition, we note that SSE must identify or predict threats and later use

engineering methods to reduce or minimise risk.

2.6.1 Security and Vulnerability in Today’s Environments

Security is defined as the probability (can be estimated or defined from empirical

evidence) that an attack of a specified type will be repelled (Mailloux et al., 2016). A

threat on the other hand is defined as the probability that an attack of a specified type

will occur within a given time (Shostack, 2014).

The Internet continues to grow exponentially both in terms of technological

advancement, the number of people using it and also in level of dependency.

Individual, government, and business applications continue to multiply on the

Internet, with radical benefits to end users. However, these network-based

applications and services can pose security risks to individuals and to the information

resources of companies and governments. Information is an asset that must be

protected. The increase of sensitive information being handled by computer systems

means a parallel increase in the need for their protection.

There are many aspects of information security ranging from network security,

environmental security and one of the most important and vulnerable areas is

software application security. Most of the applications have different platforms,

frameworks, and various types of vulnerabilities.

Studies show that the greatest threat to computer systems in today’s world comes

from humans, either through malicious actions or ignorance. When the action is

malicious, there is some motivation or goal that the attackers seek to achieve. An

30

example is, disrupting normal business operations in order to deny service. Other

objectives might be to steal, alter, damage or delete information or even make a joke

or simply to show off.

For a malicious attack to happen successfully, apart from the attacker having a

motive, he/she must also have a method and the system must be vulnerable to the

particular method of attack (Mailloux et al., 2013).

Attack= Motive + Method + Vulnerability

The method exploits the system's vulnerability in order to infiltrate the system and

cause an unwanted occurrence or launch the attack.

Software vulnerabilities are weaknesses in a software system design, implementation

and configuration that could be accidental or intentional. They allow an attacker to

reduce the system's information assurance. It is suggested that behind every

malicious attack and computer security problem, there is insecure software

(McGraw, 2006). Attackers do not create security holes, they simply exploit them

(McGraw et al., 2011). Most security related vulnerabilities arise from defects that

are unintentionally inserted in the software during the design and implementation

phase of the development. Common software vulnerabilities include buffer overflow,

heap overflow, race condition, format string bugs, poor random number generator,

SQL injection, denial of service (DoS) and misplaced trust (Sánchez et al., 2020).

Emerging technologies such as cloud and IoT bring about new and diverse

challenges. For example, in an IoT environment issues such as privacy,

authorization, verification, access control, system configuration, information storage,

and management, are the main challenges (Jing et al., 2014). Such technologies apart

from collecting personal information data, they also monitor behaviour such as the

user's eating patterns, schedules, etc. The security of such data has to be ensured to

give users confidence in using the applications. Cloud computing also brings great

deals of new challenges for data security, access control, etc (Paudel et al., 2013).

31

The discipline of systems security engineering provides an important mechanism for

the engineering team to assess and mitigate the vulnerabilities of the system and

subsystems.

Landoll (2011), observed that most cyber security breaches that occur don’t even

require expertise, timing, motivation or even time. They are enacted by adolescents,

disgruntled employees, or even novice computer users. A simple act such as opening

an email, running a hacker program or placing a phone call could mean your entire

system has been breached (Landoll, 2011). This means that security requirements

should never be overlooked and should be tracked at every point during

development, including in the training of employees. Actually, security development

life cycle activities involve security professionals in all phases of development

(Mailloux et al., 2013).

In general, security refers to an absence of objective dangers, i.e. of security

‘threats’, ‘challenges’, ‘vulnerabilities’ and ‘risks’, and of subjective fears or

concerns, and to the perception thereof. From a realist perspective, objective security

is achieved when the dangers posed by manifold threats, challenges, vulnerabilities

and risks are avoided, prevented, managed, coped with, mitigated and adapted to by

individuals, societal groups, the state or regional or global international organisations

(Brauch, 2011). From a software engineering perspective it is impossible to achieve

100% security through engineering mainly because of the evolving nature of the

software world itself, i.e. the threats of tomorrow would be expected to be more

sophisticated than the security employed today. Also, many defects are not security-

related, and some security vulnerabilities are not caused by software defects. For

example, intentionally added malicious code is a security vulnerability not caused by

common software defects. Another heavy factor is that sometimes security would

come at the expense of other requirements, e.g. performance. These trade-offs will

sometimes hinder the implementation of security features. These partially explain

why security engineering will have to continue throughout the lifetime of the

software and also include user training at different levels.

32

This research attempted to meet this objective in an agile development environment.

2.6.2 Security Engineering Process Overview

SSE process can be defined as the set of activities performed to develop, maintain

and deliver a secure software product; it can either take a sequential or even an

iterative approach (ISO, 2008).

A software product developed by the SSE process is supposed to be secure, meaning

it is able to; Operate correctly in the existence of most attacks, either by resisting the

exploitation of weaknesses in the software or tolerating the failures. Secondly, it

should limit the damage from attack-triggered fault failures and recover quickly from

those failures that the software was unable to resist or tolerate (Irvine & Nguyen,

2010).

The SSE-CMM model divides the process into three separate processes:

• risk process

• security engineering process

• assurance process

Risk can be defined as the expected value associated with an unwanted event

(Landoll, 2016, p. 25). Risk assessment is the process of identifying problems that

have not yet occurred. SSE-CMM states that risk is assessed by examining likelihood

of the threat and vulnerability and by considering the potential impact of unwanted

incidents (SSE-CMM Project, 1999). Risk analysis is essential for security

engineering because it offers a platform for identifying and prioritising dangers that

are inherent to the software. A risk process promotes sufficient knowledge of the

environment and the software in terms of threats and vulnerability present. It puts the

whole system into perspective within the deployment environment (Landoll, 2011, p.

52). It involves assessing potential threats to the system, those it will be vulnerable

to, and the risk impact in case the threat occurs. Furthermore, it is considered vital in

all phases of the development, but especially in the early phases (Bartsch, 2011) as a

means of gathering security requirements. Security Engineering is about reduction of

33

risks, and therefore you have to identify the risks before addressing them. It is a

practice not found in agile methodologies, but it is vital in building secure systems.

Note the three components that stick out, vulnerability, threat and risk. A proper and

accurate understanding of these security components will be essential to the effective

designing of a framework to mitigate risk.

Assume a simple example scenario of an application on a cell phone; in a city like

Nairobi, theft can be a threat, sometimes it can be assumed to be beyond our means

to prevent some threats but at least measures can be taken to reduce the threat, e.g. in

this case statistics on likelihood of occurrence in certain areas can be used to advise

users on measures to reduce the threat. Not having a data recovery plan in case, the

phone is stolen can be considered a vulnerability. The risk is loss of important

business data and information, business disruption, etc.

Note that it is possible to have a threat existing that the system is not vulnerable to or

to have a certain threat not existing, but the system is very vulnerable to it. In both

these cases, the risk impact is 0. Risk impact is felt when threat meets vulnerability

(Shostack, 2014, p. 41). SSE-CMM defines risk as;

Risk = Vulnerability * Threat * consequence

The majority of the research available today on secure agile development has given

very little attention to the process of security risk analysis at the early stages of

system development. Most work has been focused on the modelling of security

requirements where models like abuser stories, UMLsec (Jurjens, 2004), etc. have

been proposed. There is actually no agreement on the importance of risk

management in AM, the assumption is that risk will be taken care of within iterations

as they manifest into issues.

The problem is, some security risks may never manifest into issues until years after

deployment. In this work, we agree with the idea that disregarding security risks

analysis at the early phases might lead to costly problems down the road. It is

important to have some acceptable level of risk information for the development

34

team to make decisions concerning the security of the system as requirements change

during development.

Figure 2.4: The SSE-CMM Risk Process Involves Threats, Vulnerabilities, and

Impact (ISO, 2008)

A key principle in correctness by construction is to eliminate errors before testing

(Kourie & Watson, 2012). It establishes that it is cheaper to deploy techniques that

make it difficult to introduce errors in the first place before much progress is made

on the development of software, arguing that testing is the second most expensive

way of finding errors. The most expensive thing is to let your customers find them

for you. This counters the argument that after deploying a prototype, security risks

would be discovered by the customers or product owners and since AM can

accommodate changes, then there will be a low cost for change. Though this might

be true to some point, not all risks might be uncovered by users; in fact, sometimes

users might not be having the expertise to inflict some of the threats. Also, the cost of

this change brought about by the added security requirements might be significantly

high.

35

Security system engineering works with other engineering disciplines to determine

and implement solutions to the problems presented by the vulnerabilities and threats

(Mailloux et al., 2016; Ross & Oren, 2016). This is where the implementation of

security into the system occurs. Security engineering, like other engineering

disciplines, is a process that proceeds through concept, design, implementation, test,

deployment, operation, maintenance, and decommission. Figure 2.5 illustrates this

process.

Figure 2.5: SSE-CMM's Security Engineering Process Overview (ISO, 2008)

From this approach, we can observe that Security should be explicit within the

development process from the requirements level. Both overt functional security e.g.,

encryption and emergent characteristics should be covered during the security

requirements. Building abuse cases has been suggested as a great way to cover

emergent security issues (Bostrm et al., 2006; Mcdermott & Fox, 2002). This

requires explicit coverage of what should be protected, from whom, and for how

long.

36

Disregarding risk analysis at the design and architecture level will lead to costly

problems down the road. At the code level (engineering), focus should be on

implementation flaws.

Assurance is defined as the degree of confidence that security needs are satisfied

(Mailloux et al., 2013; McGraw, 2006). It is considered a product of process. The

mature software security processes models contribute to one aspect of assurance, the

confidence in the repeatability of the results from the security engineering process.

This confidence stems from the fact that a mature organisation is more likely to

repeat results than an immature organisation.

2.7 Security engineering standards

SSE-CMM The System Security Engineering Capability Maturity Model was

adapted from the well-known Capability Maturity Model (CMM) for software

engineering. It is the basis of the ISO/IEC 21827 standard. It defines five capability

levels for any organisation, and allows organisations to assess themselves, and put in

place processes to improve their levels. This work uses this assessment criterion to

evaluate the framework.

a) ISO/IEC 27001-27006

This is a set of related standards under the ISO/IEC 27000 family that

provides an Information Security Management System. Unlike SSE-CMM

the ISO/IEC 27000 family of standards specifies a set of requirements that

organisations must satisfy (e.g., there should be a process to systematically

evaluate information security risks). It is mainly based at management level

and not a good fit for this thesis.

b) ITIL Security Management

ITIL (the Information Technology Infrastructure Library) is a well-known

and comprehensive set of standards for IT service management. It was

originally a set of recommendations developed by the U.K. government’s

Central Computer and Telecommunications Agency. The section on security

37

management is based upon ISO/IEC 27002. It is broader and specifies

processes like ISO/IEC 27002.

It does not really focus on the process but the specific application security

standard, and thus it does not fit this work.

c) COBIT

ISACA, an international organisation devoted to the development of IT

governance standards, has developed the Control Objectives for Information

and Related Technology. This is a set of processes and best practices for

linking business goals to IT goals, together with metrics and a maturity

model. COBIT is broader in scope than ISO/IEC 27000, since it relates to IT

governance. It is proprietary and did not fit the budget set for this work.

Further, it is closely related to SSE-CMM and using SSE-CMM was deemed

sufficient for this work.

d) NIST

The US National Institute of Standards and Technology has a number of

white papers and other resources in its Security Management & Assurance

working group. These are targeted at U.S. federal agencies; however, many of

the recommendations will apply to other organisations as well.

The preference to SSE-CMM is guided by several reasons; first, it covers the whole

security engineering area, secondly, it is a standard and suits the objective of this

work, lastly, it defines capability levels which enable us to measure maturity of the

process.

2.8 Capability Maturity Models (CMMs)

CMMs provide a reference model of mature practices for a specific engineering

discipline. Organisations compare their engineering processes to this model to

identify potential areas for improvement.

38

It’s critical to note that CMMs don’t generally provide operational guidance for

performing the work i.e. the process definitions but rather they offer goal level

definitions for and key attributes for specific processes including Software

Engineering, Systems Engineering and Security Engineering. The” what” not the”

how” (Lacerda & Wangenheim, 2018). It does not define the engineering process.

Currently, three CMMs are in widespread use, the CMMI framework, the FAA-

iCMM, and the SSE-CMM. Of these, only the SSE-CMM was developed

specifically to address security (Hefner, 1997; Mailloux et al., 2013).

In this research, as mentioned previously, we recognize the conflict in cultures

between SSE-CMM and agile methodologies as SSE-CMM was built with classical

software development methodology perspective. SSE-CMM is an accepted tool in

security engineering, and therefore it is adopted as a school master for the discipline

of security engineering best practices, goals and principles. The aim is not to

completely adopt SSE-CMM, but to try to achieve what it was built to achieve in an

agile manner. To achieve this, we first study SSE-CMM.

2.8.1 SSE-CMM

The Systems Security Engineering Capability Maturity Model (SSE-CMM)

describes the essential characteristics of an organisation’s security engineering

process that must exist to ensure good security engineering. It does not prescribe a

particular process or sequence, but captures practices generally observed in industry.

It is used to improve and assess the security engineering capability of an

organisation.

39

Figure 2.6: SSE-CMM Organisation Structure

The model (SSE-CMM) is organised into two broad areas: Security Engineering, and

Project and Organisational processes. Security Engineering in turn is organised into

Engineering Processes, Assurance Processes, and Risk Processes. There are 22

Process Areas distributed among the three categories. Each Process Area is

composed of a related set of process goals and activities. Because of the scope of this

research, only Security Engineering will be the focus. Figure 2.6 displays the SSE-

CMM Security Engineering area with its Process Areas and their place in the model.

The International Systems Security Engineering Association (ISSEA) maintains the

SSE-CMM.

It defines a comprehensive framework for evaluating security engineering practices

against the generally accepted security engineering principles, thereby providing a

way to measure and improve performance in the application of security engineering

principles (Hefner, 1997). The field of security engineering has several generally

accepted principles, but prior to the SSE-CMM it lacked a comprehensive framework

for evaluating security engineering practices against these principles. The SSE-CMM

also describes the essential characteristics of an organisation’s security engineering

processes. The SSE-CMM has also been adopted as the ISO/IEC 21827 standard.

https://lucid.app/lucidchart/0a902704-f9b8-487a-bafb-178757f66eed/edit?page=0&v=218&s=612

40

Table 2.2: SSE-CMM Security Engineering Process, Goals and Area

SSE-CMM Process

area
Goal Process Areas

Risk ⎯ Determine Metrics

⎯ Gather Threat,

Vulnerability, and

Impact Information

⎯ Identify and Assess

Risks

PA04: Assess threat

PA05:Assess vulnerability

PA02:Assess impact

PA03: Assess risk

Engineering Identify, Implement and

track security

PA10:Specify security needs

PA09: Provide security input

PA08: Monitor security posture

PA01:Administer security control

PA07:Coordinate security

Assurance Build Security argument
PA11: Verify and validate security

PA06: Build assurance argument

Because of the above arguments, wide acceptability of its activities and processes,

and also easy certification if at all required in future, this research has borrowed

heavily from the SSE-CMM security engineering process as the foundation model to

learn and build arguments for an agile Security engineering model.

A common assumption to note with the use of CMMs, including SSE-CMM is that

too much documentation is necessary. This assumption is countered in SSE-CMM,

arguing that they point out only the type of information to be available (ISO, 2008).

In an agile set-up, we can work with any evidence that can be tabled as an alternative

to formal documents; this can be artefacts compiled or otherwise that do not interfere

with agility. Another assumption is that the CMM defines the engineering process.

This is not true according to SSE-CMM, as it only provides guidance for

organisations to define their processes and improve over time.

2.8.2 CMMI

The Capability Maturity Model Integration (CMMI) framework helps organisations

increase the maturity of their processes to improve long-term business performance.

41

It provides the latest best practices for product and service development,

maintenance, and acquisition, including mechanisms to help organisations improve

their processes and provides criteria for evaluating process capability and process

maturity. Improvement areas covered by this model include systems engineering,

software engineering, integrated product and process development, supplier sourcing,

and acquisition.

2.8.3 CMMI and SCRUM

CMMI provides solid support for what disciplines need to consider. Jakobsen and

Johnson (2008), argue that when CMMI is applied the disciplines create a focus on

important aspects of agile methods that are usually not elaborated, for example how

to ensure a proper quality of a product backlog or how to ensure a proper “production

line” for the project.

For small agile projects, this guidance may not be necessary, but as the use of agile

models continues to grow into various, larger, more complex and sometimes even

critical projects, agile projects will need to address these issues related to increased

size and complexity. When product security requirements are a priority due to the

nature of the product or even the environment of deployment e.g., cloud, you need

more discipline in the development. A more disciplined sprint zero, risk

management, and various checklists have been suggested in (Jakobsen & Sutherland,

2009), and observed to bring slightly more discipline into your project with minimal

effort.

This research believes and seeks to prove that the application of CMMI to a secure

scrum model would instil the discipline that is sometimes missed by teams and which

we deem as very necessary to the success in achieving secure agile projects.

Jakobsen and Sutherland (2009), through the study of practitioners’ experiences from

combining CMMI and Scrum, identified examples of explicit guidance from CMMI

that help to execute normal Scrum activities even better. These activities can be

implemented in the spirit of the agile manifesto and principles and by doing so agile

methods can be augmented and matured to ensure that even larger and more complex

42

projects in the future can and will benefit from agile - with a twist of CMMI

(Jakobsen & Johnson, 2008).

Looking at these from a security perspective within the scope of this work, the

following benefits have been generated:

1) CMMI planning can be considered a kind of disciplined sprint zero, where it

is ensured that an optimal high level framework for the project is established,

a high level architecture for the project can be developed with risk and

vulnerability features identified, including a high quality product backlog

with security requirements, a production line definition, and well known

security targets and vision for the project as a whole. This promotes a higher

level of common understanding of security issues across the board.

2) CMMI quality planning specifies more accurately and efficiently the quality

targets of the project and helps developers to a better interpretation of

completion criteria and sprint goals. This is implemented at the beginning of

the project (sprint zero), the question; “What needs to be protected?” is

attempted and answered at this level.

3) CMMI will ensure that the project is tracked as a whole allowing the Scrum

Team to concentrate on the current sprint, knowing that they periodically are

informed of overall project status.

4) Scrum requires discipline regarding automatic tests, a nightly build, and

integration. CMMI supports this need for discipline. The measure has proven

to be cheap to establish, easy to understand, and therefore facilitating good

habits.

5) CMMI expects the project to seek objective measures of performance of the

project’s processes. In Scrum, progress (of sprints) is primarily measured

through the sprint burn down chart and the sprint review meeting. The project

manager tracks the project based on selected measures within key areas like,

product size, earned value, schedule, and quality. CMMI project planning

provides good overall plans for the complete project, where each completed

sprint is valuable input.

6) CMMI ensures that agile methods are institutionalised, including

43

o Consistent implementation throughout the organisation and

continuous improvement, e.g., Systematic Scrum Guidelines, story

inspection checklist.

o Role based training of all roles, e.g., Scrum Master and Product

Owner.

In Jakobsen and Johnson (2008) the following CMMI activities are recommended to

agile projects:

1. Establish your own sprint zero and include activities in item 2-6 below in

it.

2. Use Risk Management to proactively address risks before they are

identified as impediments.

3. Decompose requirements into features on the product backlog. Prepare

the product backlog by decomposing the highest prioritised features to

stories, allowing for efficient sprint planning. (This defines what you are

really going to do.)

4. Use 3-point effort estimates on elements of the product backlog during

initial planning.

5. Analyse dependencies, stakeholders, and risk on elements of product

backlog.

6. Establish milestone and delivery plan and their initial relationship to

product backlog.

7. Use Story Completion Checklist to maintain high quality of stories

produced.

8. Decide and communicate quality objectives including, what code and

documentation to formally review to elaborate definition of done.

9. Establish standards for project “production line” including development,

build servers, and test servers.

10. Automate test and nightly build, and measure performance.

11. Establish criteria for committing code to integration.

12. Maintain integrity of configuration management, by using a checklist for

Work Product Evaluation and execute it by the end of each sprint.

44

2.9 Security and Agile Methods

Despite the effectiveness of agile processes in delivering systems that the customer

wants, the rigour of assurance and safety are found to conflict with its lightweight

and informal nature. One of its biggest obstacles is lack of adequate tracking of

security requirements (Oueslati et al., 2015). Security requirements are not given the

same citizenship as functionality requirements and reliability in the development

process (Sven & Poller, 2017).

The IT industry is viewed as a product and service selling business. Developers tend

to focus on extending features to enhance functionality and interoperability with

other popular products to capture the market. This “customer-pleasing” drive has

spurred the adoption of agile software processes in the industry, but at the same time

it is done at the expense of security requirements. Customers end up buying

information protection products and services e.g., firewalls, guards, crypto

mechanisms, intrusion detection systems, security administration packages, etc. as a

substitute to secure systems.

While security engineering is a rapidly growing research area, the current approach

of Information system security is based on a heavyweight process which starts with

an extensive risk analysis followed by the development of a security policy, then

finally the implementation of that policy.

Within traditional agile, security requirements elicitation activities are not given

residence. These include risk assessments, vulnerability assessments, etc. Another

issue is that the fixed iteration time may not fit time-consuming security activities

(Oueslati et al., 2015). There are also incremental development challenges such as

the agile refactoring practices. Security requirements are usually seen as constraints

on the functional requirements. The agile aspect of refactoring usually breaks

security constraints (Schön, Winter, & Escalona, 2017). Changes of requirements

and design breaks system security requirements posture (Karim et al., 2016).

Continuous code changes make completing the assurance activities difficult. Another

challenge identified is the tracing of the requirements to security objectives; this

becomes difficult since in agile development, requirements change as the process

45

progresses. The agile process should have mechanisms in place to handle security

requirements changes.

As we have seen in the security engineering process model (traditional), security

issues require detailed planning in an initial planning phase, typically resulting in a

detailed security analysis (threat and risk analysis report generation), a security

architecture, and instructions for security implementation (e.g., specification of key

sizes and cryptographic algorithms to use). On the other hand, agile software

development methods like Scrum reduce or even do away with these initial planning

phases and focus more on producing running code. Scrum also allows fast adaption

of the emerging software to changes of customer wishes. This (in relation to security)

translates to a lack of detailed security architecture or security implementation

instructions from the start of the project. It also means that a lot of design decisions

will be made during the runtime of the project.

In summary, Agile models focus less on documentation and plans than traditional

development models. Existing software security development started when

traditional development models (waterfall, V-model) were considered best for large,

complex systems. Though the security engineering models do not explicitly require

traditional development models, their compatibility with agile models are not ideal.

For instance, in traditional approaches, development of secure systems requires

documentation as a means of providing assurance to customers and this is not a

priority in agile. The task of developing detailed documentations slows down the

process, and thus it is just not agile. Table 2.3 gives a summary of these security

activities (drawn from SSE-CMM) compared to traditional agile (scrum) and

highlights some research works on the process areas.

46

Table 2.3: Security Comparison between SSE-CMM and Scrum

SECURITY

ENGINEERING

PROCESS

PROCESS AREA PERFORMED

IN

STANDARD

SCRUM

COMMENT/ MENTION IN

LITERATURE

RISK PROCESS

Goal:

–Determine Metrics

–Gather Threat,

Vulnerability, and

Impact Information

–Identify and Assess

Risks

PA04: Assess threat No Most relevant literature cover

the modelling of risk and do not

give a comprehensive approach

to risk (Ransome &

Schoenfield, 2021a). Others

like Siponen et al. (2005),

Peeters (2005) suggested a

simple risk analysis process

(Pohl & Hof, 2015). Code

analysis (Finch, 2009) for PA05

PA05: Assess vulnerability No

PA02: Assess impact No

PA03: Assess security risk No

ENGINEERING

PROCESS

Goal: Identify,

Implement and Track

Security

PA10: Specify security needs Insufficient Developers transform security

needs to engineering tasks. Use

of automated tests has been

suggested (Evans, 2008) and

story-based tests (Sutherland et

al., 2008). For PA07, PA08 the

use of a “security manager”

was suggested in (Azham,

Zulkarnain, 2011)

PA09: Provide security input Insufficient

PA08: Monitor security posture No

PA01: Administer security

control

No

PA07: Coordinate security

ASSURANCE

PROCESS

Goal: Build security

argument

PA11: Verify and validate

security

Insufficient Through tests and definition of

done (Bostrm et al., 2006;

Woody, 2013).

PA06: Build assurance

argument

Insufficient Code documentation, test

driven development (Sutherland

et al., 2008).

2.10 Approaches to Secure Agile Software Development Process

There have been previous research attempts done on ensuring quality software

products during agile development in the areas of reliability and security. Some are

environment specific, while some are not. The last column of table 2.3 shows how

some researchers have tried to solve the issue. In this section, the previous works will

be discussed further.

The study (Baskerville, 2004; Woody, 2013), has shown the need for researchers to

develop organisational approaches and methodologies that respond to the

dramatically changing context of information security. The conflation of information

warfare and short cycle development theories promise new security practices that

anticipate threats and rapidly deploy necessary safeguards in the context of changing

47

system environments (landscapes) and ever evolving systems threats (Baskerville,

2004). Baskerville (2004) further analysed important ways in which the context of

Information security has become a more dynamic setting, leading to emergent

vulnerabilities and highly novel threats. He then described the need for different

forms of security organisations to respond to this new context. His work framed

some research questions which must be addressed for Information security to

respond to these needs. This study agrees with Baskerville in that information

Security is a dynamic phenomenon in today’s world and that there is a need for a

review of the practice of information security. This work is not an attempt to extend

or modify short cycle development, but to modify security engineering to fit into or

to the agile short cycle without affecting agility. The goal is producing a theoretical

security framework which will be tested in a development cycle. This work attempts

to cover the whole security engineering development life cycle as laid out in SSE-

CMM. It spans out from the risk analysis to engineering and finally to the assurance

area. In this section, contributing work to the various phases are discussed as per the

security engineering phases provided by SSE-CMM.

Risk assessment is the overall process of risk identification, risk analysis, and risk

evaluation (ISO 73). It has been identified as essential for effective security

engineering (Sommerville, 2018). Somerville (2018) also cements the importance of

an initial preliminary risk assessment like the one proposed by SSE-CMM as a tool

to gather security requirements. The difference is, while Somerville admits that at

this level the details are incomplete, SSE-CMM follows the traditional approach

assuming that all the detailed designs have been availed, and all conclusions can be

made at this level. Apart from these, for security to be included throughout the

process, it is important to have all members of the project understand the importance

and have an awareness of security (Bartsch, 2011; Sommerville, 2018). This

understanding will promote security throughout and reduce the conflict of stature

between security and functional requirements. Bacca (2017) has also emphasised the

need for customer involvement as a prerequisite for adequate security measures.

Customers or a representative of them should be involved early in the project in

addressing risks and non-functional security requirements. With respect to this, this

research has included a preliminary risk assessment that will be carried out before the

48

actual production begins. Within what has been dubbed as the security sprint zero. In

this, all the stakeholders are involved as some roles like deciding controls are not the

software engineers' roles but rather management.

Another aspect is the inclusion of security requirements in the product backlog.

Azam et al. (2017) proposed a security backlog which would create a separate list

from the traditional PB and a security manager to champion security within the

process. This approach creates two sources of requirements and an introduction of an

additional role. In scrum the PB is the sole authoritative source of requirements for

the teams (K. Schwaber & Sutherland, 2011), hence their efforts redefine scrum.

Further, if the PO does not understand security, there is no guarantee that security

requirements will have equal consideration to functional requirements in the PB

prioritisation. This is because the PO has the sole mandate to prioritise the PB. Other

works suggest additional roles like the Security master, software security architects,

security champions, etc. (Bezerra, Sampaio & Marinho, 2020; Ransome &

Schoenfield, 2021). As already mentioned, this would lead to redefining scrum as

scrum is defined by specific roles. These suggested roles carry out essential functions

as far as security engineering is concerned, and they can be assigned as part of the

cross-functional team without interfering with the basic model of scrum. This work

integrates security requirements into the normal PB, with associations to related user

stories. It emphasised the need for customer involvement as a prerequisite for

adequate security measures.

Rindell et al. (2021) performed a survey and observed that the activities taking place

early in the life cycle were also considered most impactful. A major contribution of

this work is this initial risk area. From it, we define security goals, security abuse

stories and initial security requirements. Clarity of these would guide the process and

prioritise the security throughout the process. It would also be important in

formulating the definition of done for security requirements.

In their work, Rindell et al. (2021), also observed a discrepancy between the level of

use and the perceived security impact of many security activities was observed. They

called for research and methodological development for better integration of security

49

engineering activities into software development processes, methods, and tools.

Integrating security futures in agile methods would serve to capacitate agile

methodologies to handle security. The question is how. One research work (Siponen

et al., 2005) has tried to answer this. It agrees that most existing security methods

hinder development but argues that you can integrate security into agile methods

seamlessly provided the security measures meet certain requirements. They

suggested the following requirements.

1. Security approach must be adaptive to the agile software development

methods.

2. They must be simple; they should not hinder the development project.

3. The security approach, to be integrated successfully with agile

development methods, should offer concrete guidance and tools at all

phases of development, i.e., from requirements capture to testing.

4. A successful security component should be able to adapt rapidly to ever-

changing requirements owing to a fast-paced business environment,

including support for handling several incremental iterations.

They suggested a generic security process consisting of key security elements (from

information security “meta-notation,” or notation for notations) in distinct phases of

software development (requirements analysis, design, implementation, and testing).

The steps are not necessarily sequential, and, in any case, every step is optional. The

practicality of their approach has not been tested in their paper.

Integrating some heavyweight activities with agile processes may reduce agility. An

algorithm termed ART (Agility Reduction Tolerance) was suggested (Keramati &

Mirian-Hosseinabadi, 2008). In this method, all the security activities are extracted

from the software process and guidelines, and then the agility degree of activities is

defined to measure their nimbleness. Integration issues of agile and security activities

are handled and an algorithm to integrate security activities with organisation's agile

process is introduced; finally, agility reduction tolerance (ART) parameter and its

optimum value are discussed. Other studies have taken a similar approach, e.g., Real

Agility Degree (RAD) (Sonia, 2011) to determine the compatibility of security

50

activities with agile. In this work, the driving theory is Security engineering. This

work looks at the goals of each phase of security engineering, and then through

literature arguments it determined the best way to achieve them in an agile manner.

Another issue of concern in agile security is the generation of the assurance

argument. Secure scrum (Pohl & Hof, 2015) recommended implicit documentation,

such as the use of test cases, as well as other artefacts such as authorization policies.

Another suggestion was towards moving the security documentation to code and, in

effect, doing away with heavy security documentation (Bartsch, 2011). This

approach has been backed by Baca and Carlsson (2011), they recommended doing

away with “outdated security documentation and replacing them with implicit

documentation”. It suggested the use of test cases as well as other artefacts such as

authorization policies as a way of moving away from the out-dated heavy

documentation. Another suggestion in the paper was towards moving the security

documentation to code.

This work is not a first attempt in trying to tackle this problem. In (Pohl & Hof,

2015), an improved scrum framework labelled ‘Secure-Scrum’ is introduced. It bears

four components put on top of the standard Scrum framework. Secure Scrum

influences six stages of the standard Scrum process. It was implemented in a small

software development and found to be practical, though further investigations were

recommended as it was only tested by a group of 16 students once. The components

of Secure-Scrum also have not been evaluated for effectiveness on the software

security.

Another attempt was the Viewnext-UEx model (Núñez, 2020). It comprises four

development areas, which include some organisational level activities. These

activities are out of the scope of this work. The present study focuses on the SDL

methodology. Also, some of the recommendations like the testing done by a different

team from the development team composed of security experts would compromise

the agility of the process in this research’s opinion. In some agile frameworks like

scrum, they would disrupt the flow of the process. The paper does not detail the logic

behind the framework organisation nor give much detail about these areas.

51

Sonia (2011) introduced an agile security framework bearing five phases of an agile

process. They present a technique for eliciting security requirements overlapping

abuser stories with attack trees, resulting in an approach adopting the best

characteristics in an attempt of avoiding making the approach anti-agile. Though the

attempt was modest, the practicality of the approach has not been tested.

This research has taken a retrospective approach rather than producing a whole new

concept. An agile security-engineering framework modelled after the ISSEA’s

System Security Engineering Capability Maturity Model (SSE-CMM) is designed

and introduced. SSE-CMM does not specify processes but offer guidance and

standards for organisations processes, and thus we use the guidance to try and

formulate a model that aims towards a standardised security engineering approach.

Case studies (Cho, 2008; Ghani et al., 2014; Núñez, 2020) have shown that it is

possible to integrate the so-called heavy-weight security practices, in contrast to

other sceptical literature. The idea is to tweak their implementation to maintain

agility of the process. The design of the proposed framework is discussed in the next

chapter.

52

CHAPTER THREE

OVERVIEW OF THE SECURE AGILE PROCESS FRAMEWORK

3.1 OverviewThe SSE-CMM emphasises that security engineers are part of a larger

team and need to coordinate their activities with engineers from other disciplines

(SSE-CMM Project, 1999). This helps to ensure that security is an integral part of the

larger process, and not a separate and distinct activity.

In this work, we develop a framework to achieve security engineering in an agile

development set up. Theoretically, Scrum is built for coordination of teams; the

hypothesis is that this quality of Scrum can be used as an advantage to build security.

To achieve this, the activities should be lean and should not collide with the agile

method process. Also, the security engineer is part of the cross-functional scrum

team. It should also not slow down the sprint to the extent that a sprint will not

deliver the artefact at the set time.

It is important to acknowledge that sticking with the traditional security process and

activities as they are doomed to fail due to a conflict in cultures. Preliminary research

has produced the following recommendations for the framework development:

• SSE-CMM gives the general understanding of a security engineering

framework. The aim is not to exactly match the activities, but to meet the

security goals and targets.

• Discipline is necessary to achieve security. Discipline has proven to be an

essential ingredient in building secure software (Barry Boehm & Turner,

2004; Jakobsen & Johnson, 2008). An example is the correctness by

construction (CbyC) methodology (Kourie & Watson, 2012) mentioned in a

previous segment which insists on application of rigour with remarkable

results (Chapman, 2006). This work will demand some level of discipline to

achieve security. This will be supported and implemented by the CMMI

activities recommended in (Jakobsen & Sutherland, 2009).

• From the above, the framework should bring to focus security requirements,

making them and their level of criticality visible to the entire team and to the

53

users. It should also provide a way to track the requirement through

implementation, to testing up to the definition of done.

• Security engineer is a role, not an individual. Since agile teams are small (five

to nine people in scrum) the addition of another security engineer to the team

who will need to be involved in the daily meetings is redefining the scrum

model.

3.2 Features of the Proposed Framework:

The agile security framework is divided into three parts, following the model of SSE-

CMM:

• Agile risk process

• Agile security engineering

• Agile assurance.

In the spirit of agile software development, these three do not necessarily have to

follow each other, in practice they will be iterative, overlapping, feeding, and

improving each other as depicted in figure 3.1. The figure shows an iterative high-

level framework that futures an initial risk analysis. This initial risk analysis is

important in that it promotes a common understanding of the system and consensus

on security objectives. It is almost impossible to design and build a secure

application without security awareness (Taati & Modiri, 2015). This phase ensures

there is security awareness across the board, i.e., within the development team as

well as among the stakeholders.

54

Figure 3.11: High Level Security Engineering Framework Design

Notice from the diagram (Figure 2.7) that risk analysis continues within the

development iterations, this is because the design is more detailed and hence security

being an emergent feature can now be described in detail.

Security engineering appears within the development iterations in the form of design

and implementation of mitigations. Lastly, the assurance comes in the form of tests

and the development of lightweight documentation.

The following section describes this framework in terms of the three areas; risk,

engineering, and assurance. Later, how to implement it in scrum is explained.

3.2.1 Agile Risk process

Security Risk purpose is the identification of the combinations of threat, vulnerability

and impact that deserve further attention (Mailloux et al., 2013). The specific goals

being the determination of metrics, gathering threat, vulnerability and impact

information as well as identifying and assessing risks (ISO, 2008). In SSE-CMM the

risk process end product is the risk information which embodies the goal of the risk

process i.e. basically to find the combinations of threat, vulnerability and impact that

https://lucid.app/documents/edit/6a66949f-5de8-4610-b6a9-11a95f67bdb6/0?callback=close&name=docs&callback_type=back&v=175&s=612

55

are deemed sufficiently risky to justify action. This information will form the basis of

the security needs that will develop the security requirements.

Figure 3.2: Security Risk Analysis Model (In et al., 2005)

According to SSE-CMM the information from the risk process and other information

about system requirements, will be used to produce relevant laws, and policies. Also,

security engineers working with the customer will be able to identify security needs.

Once needs are identified, security engineers identify and track specific

requirements.

The SSE-CMM’s risk process is modelled as depicted in the figure 2.1. It is divided

into four areas; 1) assess threats, 2) assess vulnerabilities 3) assess impact 4) assess

security risk. Note that all these are interdependent and do not have to follow the

sequence given. The threat report, vulnerabilities report and impact all are used to

generate the risk report.

The information on the potential impact of risks should be considered important

while choosing from the product backlog what should go into the sprint (sprint

planning). It can be used to give weight to the security requirement and in that way

make the relevance of the particular security item explicit to the user.

56

This work advocates for an initial security risk process which will highlight threats

and assets. In a bid to reduce cost of change, it would aim at providing a minimum-

security threshold and awareness from the onset of the project that would go a long

way in building a secure system.

Requirements engineering builds a bridge to design and construction (Ransome &

Schoenfield, 2021). This bridge can originate from the project's holders (e.g.,

managers, customers, end users) or from a broader system definition, where the

software is viewed as a component of a larger system domain. In the specific case of

security requirements, one cannot rely on project stakeholders alone; this is because

software security issues are best understood by experts (Oueslati et al., 2015). The

stakeholders can know the data they want protected, but they might not know how it

needs to be protected within that system.

From the book “Risk Centric threat modelling” (Ucedavélez & morana, 2015), risk

assessment formats and frameworks, including the one proposed here, seek to answer

the following basic questions:

• What needs to be protected?

• Who/What are the threats and vulnerabilities?

• What are the implications if they were damaged or lost?

• What is the value to the organisation?

• What can be done to minimise exposure to the loss or damage?

In this work, while trying to maintain agility, the initial risk analysis should not be

exhaustive or even conclusive as it is in the case of traditional security engineering

methodologies where it is assumed requirements are static. This risk assessment

model will be used to produce the basic threats, vulnerabilities, and impact, and

seeks to give a skeleton risk report in the form of abuser stories, which are associated

with some risk impact metric. This will provide a starting point which will be refined

further within the iterations or even changed.

Traditional security engineering standards like CbyC (Chapman, 2006) and SSE-

CMM naturally inherited the waterfall approach of requirement gathering, which was

57

based on a sequential, non-iterative lifecycle and assumed stable development

environments where project plans and security requirements are defined, fixed, and

documented upfront. This approach is quite the opposite of agile methods, in that

they bore extensive documentation and were criticised for being both time and

resource consuming processes. Agile methods do not really need an initial deep

knowledge of the requirements. According to (Sillitti & Succi, 2005), it is accepted

that:

• A precise understanding of all customer needs is not practical, requirements

are not stable, the customers may even change their requirements during the

development process, and therefore a priori specification of requirements in a

complete way is not possible.

• Apart from that, there are also some software features that are irreversible, or

hard to change after they are implemented without seriously impacting the

scheduling and the budget of the project.

• Often, the customers are not even able to specify all required main

functionalities of the applications.

Within agile Scrum, the Product Owner is responsible for the Product Backlog,

including its content, availability, and ordering. The early PB is just a list of initial

and best understood requirements. The scrum development team will participate in

the refinement of the product backlog throughout the lifetime of the product. All

scrums process (the kick-off, the sprint planning meeting, the sprint, the daily scrum,

and the sprint review meetings) provide an avenue for iterative processing.

In SCRUM, due to the fact that developers get to choose from the PB what they

should work at and the high stakes given to customer satisfaction pushes security

requirements further lower the pecking order but if security requirement is attached

to a particular user story that user story will not be defined as done if the security

requirement is not implemented. To achieve this, it is important to first identify the

risks which inform the security requirements and ensure they are implemented and

tested.

58

Requirement elicitation and management in agile is a topic of interest in itself (Sillitti

& Succi, 2005), but in the case of security it is important to note that the

requirements are different in that: 1) The customer may not be the best source of

what is needed, the customer may know the business value of his/her assets but has

no idea of the threats and vulnerabilities present in order for the customer to be able

to understand and be able to make the right decisions, he/she must have a picture of

the risk scenario. 2) We have seen that some level of discipline is needed to have

security requirements tracked and implemented. To track the implementation of

security, you must have a clear understanding of what you are protecting to start

with. Once you have a clear understanding of the threats and vulnerabilities within

the system and the system environment all together, it makes it easier to see new

risks as user requirements evolve during development.

This work adopts the suggestions of (Sutherland et al., 2008) discussed previously

right from the beginning in the following manner; the initial risk evaluation be

carried out in the Sprint zero. The sprint zero should be used to produce the basic

skeleton and plumbing for the project and not exhaustive requirements to leave room

for the agile flexible requirements to be refined within the iterations. Jacobsen

recommended the use of user stories (abuser stories/abuse case in the case of

security) but we find this to be unsatisfactory, that is, mare stories would be

insufficient in advising the product owner in terms of priority levels. It would be of

great contribution to extend these stories to include threat levels and risks.

In the formulation of the agile process, we consider focusing on promoting an

understanding of risk knowledge rather than the documentation generated. Within

sprints, we can assume the risk of knowledge as the “customer value” added and the

developing team as the customer since they are the main consumers of the

information.

SSE-CMM views risk as a product of vulnerabilities and potential threats. We adopt

this view and recommend a semi structured approach to achieving the risk

information. We borrow from the model in figure 3.2 (In et al., 2005) to formulate

59

the risk assessment process, as it follows the same approach as SSE-CMM. Figure

3.3 depicts our proposed semi structured risk analysis approach.

The risk method proposed in this work takes a system-centric approach, as opposed

to either asset or attacker centric. Asset-centric approach is the common-sense

approach, but it is not actually the best. According to (Mailloux et al., 2013) system

centric approach is the best because it dissolves differing understandings and

unrealistic assumptions about the system among developers and the stakeholders at

large. In this model, assets assessment helps to determine criticality and costs, but

not to drive the process. This research finds this particularly attractive because the

design details are not yet defined at this stage. Risk can be investigated from a high-

level system architecture and grow the understanding as the project progresses. The

intention is to continue discovering threats and risks with sprint iterations as the

design continues to take shape.

Figure 3.3: Proposed Risk Model.

60

The general process of this architectural risk analysis is to analyse the application's

architecture; identify potentially vulnerabilities that may allow a user, mistakenly, or

an attacker with malicious intent, to compromise the application's security; and

evaluate the risk of security breach; finally suggest the implementation of

countermeasures (Karim et al., 2016).

All scrum roles should participate and if deemed necessary a representative from the

client or end user should be available. This is employed to build consensus about

security requirements and eventually improve their prioritisation stake in the product

backlog.

The risk process has the following steps:

1. Learning about the target System: it takes in the user stories from the PB as

input. This involves learning about the analysis target and promoting a

common understanding across the board. It will include going through and

understanding specifications, understanding the business environment

including assets, the access rights, discussing and brainstorming with the

group; producing a high-level architecture diagram; determining system

boundary and data sensitivity/criticality; discussion of current system if any

exists.

2. Uncovering security issues surrounding the software: taking the system

information as input, it involves arguing about how the product works and

determining areas of disagreement; establishing trust boundaries; identifying

system assets, identifying threats, and agreeing on relevant sources of threat.

Identifying vulnerabilities (aided by using tools or lists of common

vulnerabilities where possible); mapping out exploits and discussing

criticalities; exploiting current and planned security controls (Shostack,

2014). The actual method for this part is left to the team to decide and can

range from informed brainstorming to the use of other techniques.

3. Determine the probability of compromise: Involves assessing attack scenarios

for vulnerability exploitation and balancing controls against threat capacity to

determine likelihood (Viega & McGraw, 2011).

61

4. Perform Risk impact analysis: Sub-steps include determining the impact on

asset and business goals and considering the impact on security. Note that:

Risk=Impact X Threat Probability (ISO, 2008)

5. Rank risks

6. Develop mitigation strategies: Involves recommending countermeasures to

mitigate risks.

For example, consider a team with a task to develop online payment functionality in

an e-shop. The asset will of course be the money. The security goal can be to protect

users’ money. This can then be broken down to protect users' Personal Identifiable

Information (PII) data.

The threats can be hackers, rogue employees, etc.

An abuser story for an attack method can be e.g. A crook obtains and later misuses

operator passwords for the e-shop by tapping messages sent through a compromised

network host during operator log on.

The probability of such an attack in such systems is obtained, and the risk impact can

be calculated as a product of this probability and asset loss value metric.

The team will decide whether the risk is acceptable or not.

The methods to use are beyond the scope of this work. The only concern is that the

security engineering objectives or goals defined are met in an agile manner. Any of

the methods proposed in other works would suffice as long as they adhere to the

values and principles of agility.

As mentioned, the security requirements produced should not be exhaustive nor

conclusive, but rather dynamic and hence subject to change with consecutive

iterations.

Including security requirements into the product backlog bears its own challenges.

Security comprises security attributes, functions and architectural futures. The

62

security attributes desired are actually quality aspects and therefore addressed during

the sprint retrospective. The architectural and functional attributes on the other hand

provide greater challenges in that; 1) There are some that are obvious and mostly

stakeholders request for them. This will fit in the PB like any other feature. 2) There

are others that can only be defined during system or feature design. This happens

within the sprint. 3) Most security features are connected to certain levels of

functional requirements. In this case, we adapt the s-tag (Pohl & Hof, 2015)

approach of security tag linking user stories to security issues.

The concept of s-tags was introduced by Pol and Hof (2015). S-tags link the security

requirement to a product backlog item. We find this appropriate since you now have

one pool to pick from. This work extends it further by putting weights to security

requirements. These weights will be determined by the business cost of breach to the

user or the system. The user will be involved in assigning these weights to promote

awareness of security requirements to the user. After calculating the 3-point effort

estimate of each task, it is now easier to pick tasks from the backlog which can be

done in pairs with the security implementation or separately depending on the effort

estimate and the threat level and risk involved.

In sprint, risk evaluations would be carried out in almost an equivalent manner. The

reason it is important to have this form of evaluation is: 1) the design is more

elaborate and thus the risks are clearer. 2) In anticipation of changing requirements in

the iterative agile environment. Also, tests might reveal new risks that were not

factored into the initial backlog.

3.2.2 Agile Security Engineering

This is where the security is built in. SSE-CMM security engineering area general

purpose is solving engineering problems involving security. It seeks to determine

customers' security needs, develop solutions and guidance on security issues,

coordinate the security engineering with other involved engineering groups involved

in the project as well as monitoring the security posture (ISO, 2008). The security

engineering consists of the PAs specified in table 2.2. These can be summarised as

taking the security inputs, designing, and implementing the right solutions that best

63

suit the organisation’s goals as well as meeting user needs. It emphasises that

Security engineers should coordinate their activities with other team members.

From this, security engineering, like other engineering disciplines, is a process that

proceeds through concept, design, implementation, test, deployment, operation,

maintenance, and decommission, though it is important to note that SCRUM does

not provide any process (sequence of activities) of actual development like waterfall

but rather collaboration and schedule of meetings.

In this research, this collaboration is viewed as a strong point in Scrum since it is one

of its main emphases. We make use of Scrum’s transparent mechanisms to

coordinate security. Security Engineers (in case of any), as other members of the

team, should be able to give daily feedback to the entire team in the Scrum meetings.

Also, we propose involving everyone in the risk meetings, to promote a mutual

understanding of security for every stakeholder including the users, hence satisfying

PA10 (ISO, 2008).

Security engineer is a role which can be acted by a team member or an invited

domain or security expert, depending on the stage of development. Since scrum has a

fixed number of members for a developing team, increasing the individuals would be

redefining the framework. Scrum teams are supposed to be cross-functional, and

therefore assigning a security expert as part of the development team does not alter

the dynamics of the framework. For highly security critical software, a security

expert can be brought in as a team member.

Current work also supports the recommendation from previous research of security

training for the whole team to create a security aware team, at least at the basic level

(Rindell, 2021).

In the proposed framework, the security engineering area will have the team design,

implement, and test the security requirements. The design like any other PB item is

done during the sprint planning and within the sprint. A team member (preferably

with security knowledge) should be assigned to develop tests based on threat

scenarios associated with the user story being worked on. Static code and dynamic

64

code analysis are recommended. These involve the use of testing tools that a

developer can subject generated code to uncover vulnerabilities within it. These tests

should mark the definition of done (K Schwaber & Sutherland, 2011) for the security

requirements and hence check the effectiveness of the security safeguards

implemented. This provides a mechanism to monitor security posture within the

process (PA08). In a case where there is a need to give the user guidelines on how to

safely interact with the system implementation without creating breaches, it should

be noted, discussed in the sprint review, and added into the PB as an item to be

implemented by the training team or to be included in the user documentation. Tests

might also generate new security concerns that should be discussed in the sprint

review, and depending on the decision they might end up in PB.

This work also recommends extending the role of a product owner to also include

playing the role of a security advisor who is an expert in security, preferably with

some experience. The security advisor role would be; 1) Advising the client on

requirement prioritization. 2) Coordinating security development. 3) Training the

team on security. This will ensure that at any one point a team member can be used

to implement security. Also, it ensures that no additional requirements that would be

brought in by third parties would interfere with the strict timelines (Sven & Poller,

2017).

3.2.3 Security Assurance

It is considered a product of process (Mailloux et al., 2013). The maturity of the

software security processes contributes to one aspect of assurance (Chaudhary &

Chopra, 2017), the trust generated from a reputation of successful results achieved

from a particular process system employed over time. In simple terms, the fact that a

mature organisation is more likely to repeat results than an immature organisation

instils trust. Traditionally and in SSE-CMM assurance is often communicated in the

form of an argument which includes a set of claims about properties of the system.

To support claims, evidence is required which is usually in the form of

documentation developed during the normal course of security engineering activities.

In scrum we have two main challenges: 1) Time is limited therefore the production

65

of detailed documents might not be accommodated by the stipulated time. 2) Heavy

documentation is not a priority in agile development.

Figure 3.4: The Proposed Security Assurance Checklist

This thesis also recommends documentation within code, as suggested in previous

works (Pohl & Hof, 2015). Artefacts resulting from the process can be compiled as

documented evidence. Examples are security stories developed.

Automatic Project management tools (for example Jira, Trello, etc. for scrum) can

also be used to keep track of security throughout the process. Their reports alongside

other automatically generated evidence like the automatic tests' reports can be

components of the assurance argument. In case of a manual board, a member can be

assigned to take security notes that will be compiled into a document.

66

A story completion checklist was introduced in previous research (Jakobsen &

Johnson, 2008). We use the same concept to introduce “security story completion

checklist” (Figure 3.4) to complement and add to the assurance argument. The

product owner prepares it by filling the top part from security board details. Then the

team fills the middle part as they design the tests. After the review demonstration, the

product owner will fill in the evidence provided, and finally during the retrospective

the validity will be assessed before signing. This provides a strong mechanism to

monitor security and provide evidence.

This chapter has provided an overview of the proposed framework design; it has

given general expectations at every level. For each component, agility must be

maintained as well as meeting the goals stated in SSE-CMM. In the next section the

framework is subjected to tests, apart from the earlier mentioned principles of agility,

agility will be measured with a4-Dimensional Analytical Tool (Asif Qumer &

Henderson-Sellers, 2006b). This was discussed in a previous section, as this work

finds it simple as well as capturing all the aspects of agility.

In achieving this it is the belief of this research that the goal of a framework for

secure agile software development will be achieved.

3.3 The proposed framework and its implementation in scrum

Figure 3.1 gives a high-level description of the proposed framework, showing the

area of implementation or influence in the general Scrum process for each level of

the framework. Note that the three security areas defined do not have a definite

order, and sometimes overlaps are expected. As mentioned earlier, it is the security

goals that we seek to achieve rather than define a strict process. Note that most of the

actual implementations are left to the agile teams to determine.

To achieve security following the standardised SSE-CMM model, standard scrum

had to be enhanced. We seek to do this while maintaining the identity of scrum, i.e.,

we are not introducing a new framework but rather achieving security within scrum.

The contributions of the framework to standard scrum are as listed below:

67

1. The security sprint zero, accommodating a semi structured risk analysis

approach as a means of gathering security requirements, setting security goals,

setting security metrics, and agreeing on security policies e.g., access policies

etc. it also promoted awareness across the board.

2. Security requirements presence in the PB.

3. The security story completion checklist, as an added artefact. To enhance

monitoring as well as strengthening the assurance argument.

4. Within sprints, security development, tests, and monitoring.

5. Security assurance in the sprint review and retrospective meetings.

The risk process:

It is used to identify security issues and assign value to them according to the risk

calculated. The issues identified are included into the product backlog as abuser

stories. It is implemented during the initial sprint zero, product backlog refinement

and in the sprint planning and sprint review.

In the security sprint zero, vulnerabilities are identified and analysed, threats are also

identified and characterised by modelling the threats, and impact is assessed by

assessing the risk models developed.

In the PB refinement meeting security user stories are developed, security coding

guidelines are set, prioritisation and estimations are also calculated.

Sprint planning involves, decomposing the security requirements in the form of user

stories to tasks and the cost calculated. Also, this is the stage where decisions are

made on the compromises to be made in cases where security might affect other

factors like efficiency.

Note that at this stage the understanding of customers’ security needs is further made

concrete and security requirements are being determined, this has slipped over to

security engineering but are all influenced and guided by the abuser stories

developed in the risk process.

68

Security engineering:

This is used in sprint planning and daily scrum. In SSE-CMM it solves security

engineering problems by determining customer security needs, developing solutions

and guidance, and monitoring security posture of the system.

In this framework, security engineering activities start at the sprint planning meeting

with determination of customer security needs and arriving at specific solutions. It

continues through the daily sprints where the actual modelling, implementations and

testing are done. In this case, abuser case guided testing might be necessary as well

as other security tests such as static code analysis. In case of emerging security risks

after testing, abuser stories are drawn and added into the PB to be considered in the

next sprint planning meeting.

Assurance:

Confidence can be communicated through test results e.g., results from automated

tests like static code analysis, confirmed through definition of done defined for each

security user story, and lastly in the sprint review discussions, security goals not met

will be discussed and improvements to the process will be suggested. In these, a

sufficient argument can be drawn to ensure customers’ confidence about the security

of the system is upheld.

69

Figure 3.5: Proposed Framework Activities Within The Scrum Circle

70

CHAPTER FOUR

METHODOLOGY

4.1 Introduction

The methodology assumed for this work is a combination of several techniques that

were modelled to form an empirical research, designed to meet the goals of this work.

This work assumes a design science research (DSR) approach (Wieringa, 2014). DSR is

the design and investigation of artefacts in context. The artefact in this case is the

framework designed to interact with the problem context (security in agile development)

to improve the situation. This work aims at improving the performance of agile

methodologies where the development of secure software is concerned. It is an

improvement problem and therefore a design problem (Wieringa, 2014).

A major strength of DSR is the practical exhibition of the utility of the artefact by

placing it in the area in which it is designed to work and using it to solve a real problem

(Peffers et al., 2007). DSR provided room for the design as well as demonstrate the

hypothesis of the research.

Figure 4.1 gives an overview of design science. From it, two concepts are introduced;

design problem and knowledge questions.

Figure 4.1: Design science iteration: between design problem and answering

knowledge questions.

71

The design in this work commenced with a literature review of knowledge context that

aided in the design, followed by a case study aided by a combination of tools to collect,

and analyse the findings. This contributed knowledge to the knowledge base. The main

reason for choosing an empirical case study for the test and investigation was to get

feedback from an actual group of developers involved in an actual project in which the

main aim is not actually security. The intent being to generate and affirm knowledge

concepts based on observation and inductive conclusions (Runeson et al., 2012). The

rationale for adopting the methodology and tools for this study is discussed below, as

well as a detailed elaboration of the research design.

4.2 Empirical Research in software development

Empirical research in software engineering collects and studies quantitative/qualitative

data to understand and improve the software product, software development process and

software management (Xu, 2017). In simple terms, it is a test that compares convictions

to what we observe. It is crucial in such disciplines since it allows for incorporating

human behaviour into the research approach taken (Easterbrook et al., 2008). The main

motivation for an empirical study is that, from an engineering perspective, it is needed to

allow for informed and well-grounded decisions. Empirical methods are best suited to

gather information about the costs and benefits of software tools and methods, hence

promoting founded decisions.

Empirical research methods are classified into controlled experiment, case study,

surveys, and post-mortem analysis. These methods all have known flaws, and each can

only provide limited, qualified evidence about the phenomena being studied. However,

each method is flawed differently, and good research strategies use multiple methods,

chosen in such a way that the weaknesses of each method are addressed by use of

complementary methods (Runeson & Höst, 2009). Runeson et al. (2012) concluded that

complementary between both qualitative and quantitative research methodologies could

provide better solutions and eliminate limitations and bias of individual approaches.

72

In this work, a case study approach is chosen as the main method since it is a thorough

analysis of one or more objects (cases). Through it, a broad and detailed knowledge of

these objects is acquired (Runeson, 2009). This will deepen the knowledge about a

problem not sufficiently defined, to encourage understanding, suggesting hypotheses

and/or development of the theory (Wieringa, 2014).

The problem in this research is to try to investigate whether security can be implemented

in a scrum project. The proposed solution introduces a new phenomenon as a theory to

the agile environment that calls for investigations to gain detailed knowledge about it as

well as ascertain hypotheses. Runeson et al. (2012) champions case studies in software

engineering as a tool that facilitates the testing of theories and the collection of data in

an “unmodified setting”.

4.3 Research Design

It refers to the overall strategy chosen to integrate different components of the study in a

coherent and logical way, thereby facilitating the effective address of the research

problem; it constitutes the blueprint for the collection, measurement, and analysis of data

(Runeson et al., 2012). In the process of selecting a method or methods for a particular

research problem, one must tap into its strengths, while mitigating its weaknesses

(Easterbrook et al., 2008, p. 62). Validity of the results is determined by the ability of the

research design to compensate for the weaknesses of the methods.

An important aspect of design science in relation to this research is the knowledge

context. This consists of existing theories from science and engineering, specifications of

currently known designs, useful facts about currently available products, lessons learned

from the experience of researchers in earlier design science projects, and plain common

sense (Wieringa, 2014). In this work, it would be made up of knowledge garnered from

literature, including standards like SCC-CMM, previous research on this topic, etc. This

knowledge is used to create or design the framework. The research seeks to add to it by

producing an innovative design and answering some knowledge questions.

73

The commencement point for this study was to understand security engineering

concepts, including their goals and objectives and their impact in an agile development

life cycle found in the existing literature that made up the knowledge context. At this

point, a qualitative research approach in the form of a literature review was adopted. The

surveyed literature covered agile methodologies with an aim to give a brief background

on the practice, and on security engineering. There was also an inclusion of some CMMs

that are security oriented to enhance the understanding of the study area. In

understanding security engineering discipline, this work also embarked to investigate

their impact on agility. Then a study on some recent research on security in agile

software development was done. This literature was meant to aid in the understanding of

available contributions, their contexts, general current state of implementing security in

the software development industry, and recommendations that have been put forward for

further improvements. This contributed to designing the proposed theoretical

framework.

After the conceptual framework was designed, there was a need for it to be tested and

the performance observed for improvement. At this stage, a case study approach was

adopted to observe the phenomena in an “unmodified setting”. The data gathered (both

quantitative and qualitative) were analysed to validate either a success or failure verdict.

This approach was both exploratory in that feedback from the developers was used to

improve the framework in the next iteration, and confirmatory in that it either confirmed

the hypothesis or failed it. Concepts and practices of software engineering taken from

experiments and observations should have empirical observations. Easterbrook et al.

(2008) argue that empirical validation helps link theory with practices. They also

encourage the same, especially for academic study of software engineering projects.

4.4 Research Methods

It is sometimes necessary to combine several research methods in order to fully

understand a problem (Easterbrook et al., 2008). The combination of several research

methods provides a platform where the flaws of one method are complemented by the

74

other. In selecting a research method (or methods), several factors are put into

consideration, for instance the theoretical stance of the researcher(s), access to resources

(e.g., students or professionals as subjects/participants) and how closely the method

aligns with the question(s) that have been posed (Easterbrook et al., 2008).

The general goal of this research work was to assess the perception of Scrum team

members on the implementation of the agile security development framework in terms

of agility and also test its impact on the resulting software. An additional intention was

to generate knowledge through observations that will be used to improve the process and

test the improvement.

75

Figure 4.2: Knowledge Flow in the Research design (Vaishnavi, Kuechler & Petter

2017)

76

The arrows illustrate the knowledge-creating activities, and the boxes represent the

levels and types of knowledge that is created.

Figure 4.3: Interplay between problem and solution, theory and practice of the

research. (Engstrom et.al.)

A case study was the preferred approach. The data would be collected via a triangulation

of observations, structured interviews and questionnaires. The case study was used in

order to observe the novel concept to the Scrum development framework, and the

questionnaire further complimented by structured interviews was used to determine if

the introduction of these factors would achieve security goals and have an impact on the

development process from the perspective of the Scrum team members. The interviews

enabled the interviewer to ask arising questions and therefore extract more information.

77

4.4.1 Methodological triangulation

In order to gain a broader picture and thus gain a stronger argument for the conclusion, a

case study complemented by a survey was used. The case study is exploratory in nature

while the survey was descriptive (Runeson, 2009). Further, the kind of case study picked

was representative in nature of the normal programming environment. In order to

provide data source triangulation, data was sought through different methods and

approaches like observations and interviews. The following section describes the two

methods.

4.4.2 Case study

A case study in software engineering is an empirical enquiry that draws on multiple

sources of evidence to investigate one instance (or a few instances) of a contemporary

software engineering phenomenon within its real-life context, especially when the

boundary between phenomenon and context cannot be clearly stated (Runeson et al.,

2012, pg 12).

The applicability of case studies in software engineering has been discussed before

(Peffers et al., 2007; Runeson et al., 2012). The case study in this thesis has deductive

characteristics by trying to test and apply theory in a real-world setting. They provide a

platform for scrutinising the phenomenon (proposed framework) in its natural settings.

In this work, the case study was conducted with minimum interference from the

researchers to avoid bias. The study chose a case which took a period of one month and

employed various ethnographic data collection techniques such as observation,

structured interviews and questionnaires. The literature survey was used to build the

base concept and the case study was used to investigate the framework in a real

development environment with an aim of proving the hypothesis as well as generating

knowledge through observation as well as extracting developers’ opinions through

structured interviews. The detailed research design follows in the next section. An

additional questionnaire survey was also included to further ground the evidence.

78

4.4.3 Justification for Case study

Case study research has a proven track record in capturing knowledge in real life

settings, and in the subsequent extrapolation and presentation of theoretical findings

(Runeson & Höst, 2009). Furthermore, case study research is usually employed when

the researcher has little or no control over the events occurring within the real-life

context; and should be used to contribute to existing knowledge of “individual, group,

organisational, social, political and related phenomena”(Easterbrook et al., 2008),

especially when how and why type questions are being posed(Roopa & Rani, 2012).

These depictions of case study traits complement both the research questions and the

approach of this thesis, this being to explore the practices of Scrum teams as they go

about delivering software systems for clients. The literature reflects an abundance of

case study reports in related research fields, including agile software development

(Alvarez et al., 2012; Runeson, Per, 2009; Runeson et al., 2012; Xu, 2017) and software

management (Voss et al., 2002; Miettinen et al., 2010). Best practice guidelines are

available in a plethora of publications, such as (Chaudhary & Chopra, 2017; Chaudhary

& Chopra, 2017; Easterbrook et al., 2008; Taherdoost, 2018; Xu (2017).

Among the several types of case study designs considered, single case was found most

suitable for this particular work, putting into perspective the time limit and willingness

of developers to participate in research work. The need for triangulation and avoiding

results subjected to a particular group dynamic was countered by the survey that was

carried out. Triangulation was achieved by the increased number of data sources.

In this case, the security framework was a well formulated theory that needed to be

tested. The case chosen represented a typical development case in regard to the software

industry, and therefore it would generate further knowledge about the phenomenon

under study. Further, the selected case had to be critical since the subject of investigation

is related to security. The knowledge gained from case study has several applications;

for example, in this work, it would guide in deciding between several methods and

techniques look for quantitative relationships among variables and also confirm theories.

79

The case would also be ideal to observe other aspects of agility, e.g., the interactions and

collaborations within a scrum software development environment. In reference to the

principles of agile development, one of the principles is that the most effective and

efficient way of relaying information to and within the team is face-to-face interaction.

Although these are not measured in the study, they are essential as part of the simulation

of a SCRUM team development including all its associated interactions and processes in

a real-time, real-life situation.

Participant’s selection criteria were:

1. Knowledge or experience using scrum. Some of the participants had gained

scrum experience during their internship and were quite comfortable.

2. Knowledge about secure software development, at least in theory

The group was constructed to harbour all required skills to develop the application. In

this case, the key aspect of investigation was security of the resultant software as well as

agility of the process. This was not revealed to the participants in order to avoid bias. In

terms of security, the number of vulnerabilities generated, security requirements

generated by the team and the ones that were achieved were considered. The effect on

agility was also considered, in terms of the speed as well as calculating the overall using

an agility measuring tool. The standards of measuring these two were SSE-CMM

standardisation for security and the principles of agility embodied in the 4-dimensional

tool by (Qumer & Henderson-Sellers, 2006b).

4.4.4 The Case

The case was conducted in a software development company that would not be

mentioned due to a request made by the company to remain anonymous. The selected

team was mainly made up of new recruits fresh from graduating with little experience in

scrum. They were trained in the development framework as a company policy to

develop secure software, and then given a task to develop a prototype for an online car

hiring company. The company had requested the developing company to develop an

80

online e-wallet platform where the clients can use to manage transport cost and even

earn credit facilities from the application to facilitate transport payments either on public

commuter means or taxis. This was aimed at giving the company an edge over its

competitors. The system was supposed to be as secure as possible and also very user-

friendly.

Because of time constraints, the findings were only made for the first two sprints. The

results gained coupled with the survey findings were found to be sufficient to deduce a

valid conclusion on the subject of research. Further, the agility of the process and the

degree of attainment of SSE-CMM security process areas goals were evaluated in terms

of practitioners’ opinions. This was facilitated as a focus group discussion in the scrum

retrospective meeting. The evaluation method required for participants to be interviewed

to gather this information. They were allowed to give further details and their opinions

about the process and further contributions to better the process.

4.4.5 Sampling for Case and project organisation

While sampling for a suitable industrial case some of the factors taken into consideration

were; first the company had to be using agile and especially scrum as a development

framework since it would be less cumbersome in terms of training to implement the

concept than with a team that is not familiar with agile methodologies. Another reason

for this familiarity with agile methods meant that they would easily notice anytime the

addition of the security framework interferes with the agility of the whole software

process. Secondly, the project had to be security critical.

The participants were preferred to have at least some knowledge or experience with

SCRUM and also security engineering. Also, the particular task being web based

required familiarity with the technologies to be utilised. Because of this, Purposive

sampling was conducted. It is the method where the researcher chooses the sample with

a particular purpose in mind. The participants were deliberately chosen based on their

qualities (in this case those with experience of security and software development).

81

The researcher together with the company’s project coordinator made the decision about

the participants’ prerequisites. They were selected from the pool of the company’s

employees and interns with the success of the project in mind, in that the cross-

functional team was made up of different skills required in the project. Apart from the

many experienced team members, an experienced scrum master as well as a security

expert was provided for this project. This was critical in this work to maintain the agility

of scrum, as well as not missing out on security concerns due to inexperience and a lack

of skills.

4.4.6 Preparation Training

The training course prepared the participant for the project. It familiarised them with

software development using the security framework and also some basics of security

engineering.

The team was taken through training as a new company policy to give the company an

edge over competitors. The participants were required to view each project as a normal

development task.

4.4.7 Data Collection techniques

This work settled on ethnographic techniques in its data collection. Ethnography is often

defined as a research framework in its own right (Creswell, 2009) and is commonly

based on observational work within a certain environment (Silverman, 2013). It is

important to note that ethnography and fieldwork are not synonymous. It is an approach

used to enhance and support Case studies like the one in this study.

Ethnography provides the basis for data analysis in that it highlights not how data will be

collected, but rather how this data will be interpreted. The process is flexible and

typically evolves contextually in response to the lived realities encountered in the field

setting (Creswell, 2009; Zhang et al., 2019). It basically recreates the situation under

study for the reader.

82

Despite the fact that ethnography is immersed within the research environment, a

significant level of separation maintained between the researcher and the participants in

their work environment is necessary for ethnography to work best. In this work a

balance had to be struck in that though the researcher did participate in certain project

activities, he could not influence the activities of the developers and management of the

project.

The guidelines and principles that were considered in the ethnographic data collection

were as proposed by Zhang et al. (2019). These were found to be most appealing to the

nature of this work. To begin with, he emphasised on the importance of in-depth

knowledge of the environment and the settings where this work is done. For this

research, the environment aspects that were taken into consideration were a company

that uses scrum for its development work and also seeking to build security critical

software. The experience of scrum was important, and also the scrum version had to be

the traditional scrum, that is not a variant or hybrid version. All these were ascertained in

the findings also, as a plus, there was a fairly good pool of skills to pick from.

The second guideline this thesis adhered to was not to strictly prescribe to early pre-

determined research questions. This is in contrast to the positivist stance, which sets up

the experiment early on and religiously follows that plan throughout the study. This was

integral to this work since it is strongly aligned with the hermeneutic circle of thinking,

whereby the fieldwork can have an influence on theory formulation and vice versa.

The importance of filtering the data collected during interviews and observation could

not be overlooked. This was because of the logic that human beings are not always able

to accurately portray their daily tasks or elaborate on their thought processes (Stol &

Fitzgerald, 2020).

Sometimes the behavioural and organisational patterns which are mostly occasional

might occur and appear to the researcher as the norm. Triangulation of different data

sources including literature were considered before drawing conclusions.

83

To complement these guidelines, Zhang et al. (2019) proposes three basic principles for

conducting ethnography as follows: First, it is essential to consider suitable techniques,

such as observation, formal and informal interviewing, and viewing of artefacts.

Secondly, the theory being used for data analysis influences these techniques. And

lastly, the application of the chosen techniques is considerably influenced by the

philosophical background of the study.

Techniques such as semi-structured interviews, observation, and artefact analysis are

used in this work governed by the guidelines and principles aforementioned. The next

section discusses these techniques in detail.

4.4.7.1 Observation

Observation is an important tool for data collection in a qualitative study as it builds

confidence by giving a sense of “being there” (Stol & Fitzgerald, 2020), a first-hand

witness if you may. Creswell (2009) has defined observation as “the act of noting a

phenomenon in the field setting”.

In an observational case study, observation of a case is done without intervening; i.e.,

any influence the researcher may have on the case is minimised.

Observational case studies are useful for implementation evaluation and problem

investigation because they give potential access to the underlying mechanisms that

produce real-world phenomena. Their advantage is that they may give access to all

aspects of the studied phenomena. Their disadvantages are that they may disturb the

phenomena (being observed is disturbing), that they give information about only a few

cases, and that about each case an unanalysable mountain of data may be collected

(Wieringa, 2014).

There were instances where the researcher participated in project activities such as

training workshops, scrum zero and sprint retrospectives in different capacities. When

participating, the researcher was mindful not to influence the outcomes.

84

For observation the guidelines conformed to, were as presented in Silverman (2013).

They were: 1) determining which project team members and processes will be observed

and for how long; 2) the observer role; and 3) the structure and method of recording

observations.

Immediate recording of observations was highly regarded and adhered to. In this case

our observations were mainly on the teams’ behaviour with regard to agility as well as

the security requirements, from generation to implementation taking note on the

particular solutions and security setup.

4.4.7.2 Interview procedure

For the researcher to collect practitioners' views on the phenomenon of interest

interviews were used. They provided a means for the researcher to gain further clarity on

ambiguous and difficult to comprehend data originating from other ethnographic

techniques (Runeson, 2009). They were used to eliciting opinions and comments from

the individuals who formed part of the research environment. Interviews are used for

gaining insight into a situation. They are flexible since they involve asking questions and

listening for the answers, further the interviewer can frame follow-up questions to gain

more understanding on the subject. In such, interviews allow for structure towards the

purpose of the study and at the same time allow for the researcher to further clarify or

probe into points that are raised.

Techniques and guidelines proposed by Easterbrook et al. (2008); Taherdoost (2018)

provided basic directions when conducting the interviews. According to the first

guideline, the interviewees were assured of the confidentiality of the information they

provided. Secondly, the questions asked were open-ended, and the researcher only stated

the contextual area for discussion via the use of prompts based on the security

engineering process areas identified during the literature review.

85

Towards the end of an interview session, interviewees were encouraged to make any

comments or express opinions on the research or express any other related opinions.

Probing was the third technique of the interview. This occurred when the researcher was

unclear on certain responses and required clarity, or when the response required

decomposition. All interviews were recorded using a smart phone. This is the fourth

guideline proposed by Roopa and Rani (2012), who suggests that open-ended interviews

be recorded verbatim. Respondents were assured that the recording was for the

researcher’s ears only and would not be published as a podcast or any similar

technology. The fifth guideline was adhered to by the researcher being mindful of age,

education, gender difference, and not presenting himself such that he appeared superior

to the respondent. The final guideline aimed to overcome vocabulary and terminology

barriers. This did not present a huge problem as all interviews were conducted in English

and the terminology was well understood by both the participant and the researcher due

to a shared familiarity with Scrum.

4.4.7.3 Questionnaire survey

Surveys are used to basically collect information from a group of people by sampling

individuals from a large population. The rationale for including a survey was in order to

achieve triangulation of the methods. The case study alone could not harbour a large

enough sample size to draw sufficient conclusions, hence the need for further

investigations. Questionnaire surveys were particularly picked since they provide the

ease of access and their similarity to full interviews (Runeson et al., 2012) which were

used in the case study. Questionnaires are also recommended by SSAM as a data

collection method alongside interviews and process evidence analysis.

Sampling for the survey followed the same criteria as the participants for the case study,

i.e., knowledge or experience with scrum as well as security engineering knowledge.

The researchers’ targeted 100 participants and received 43 responses, of which 32 fitted

the criteria for the research.

86

Questionnaire development

The questionnaires were distributed in order to solicit practitioners’ perception about the

development framework with respect to agility and security. To achieve this, some ideal

requisites for a questionnaire from Roopa and Rani (2012) were adopted for this work.

The questions had to be drawn from the research questions under investigation in order

not to divert from the goals of the research. Also, SSAMs directive that the questions

must directly reflect the contents of the model was adhered to. The question's design

was aimed at capturing respondents’ degree of agreement or disagreement with the

hypothesis put forward about the use of the framework in terms of the security sprint

zero and other activities within the agile development environment. This formed the

quantitative element of the questionnaire, but there were few other questions that were

open in order to elicit perceptions in a qualitative manner. SSAM gives a sample

questionnaire but since this work aims at achieving the SSE-CMM’s Process Area goals

the questions were framed to solicit respondents' view in regard to this.

First, we came up with some hypothesis statements related to the research questions

stated in section 5.4.

Table 4.1: Hypothesis Statements from Research Questions

H1 Standard software security can be achieved in an agile development environment.

H2 An initial risk analysis will go a long way in discovering security requirements

which can be included in the backlog and prioritised factoring the risk weight.

H3 The implementation of these requirements through security activities within the

agile life cycle can be achieved without affecting agility?

H4 Software assurance can be achieved in agile techniques

87

The following example demonstrates how the questionnaire questions were drawn from

the given hypothesis:

Consider H1 from table 4.1: It takes into account the general goal of security

engineering; that is, to apply scientific and engineering principles to identify security

vulnerabilities and minimise or contain risks. This means that security requirements

need to be identified, prioritised and managed to ensure implementation. The supporting

questions derived from this hypothesis are:

Was it easy to identify security requirements (H1, H2)

Was it easy to prioritise security requirements (H1, H2)

Did you manage security requirements effectively (H1)

For H3, considering agility in terms of the five variables; Flexibility (FY), Speed (SD),

Leanness (LS), Learning (LG) and Responsiveness (RS) (A. Qumer & Henderson-

Sellers, 2008), the participants are given an opportunity to give their opinion using a

Likert scale. Example: In the initial sprint zero, you found it easy to adapt to changing

requirements. (1) Strongly disagree (2) Disagree (3) Don’t know (4) Agree (5) strongly

agree.

88

Table 4.2: Mapping of Questionnaire Questions to Hypothesis and Process Area

Hypothesis Question SSE_CMM PA Metric/Measure

ment

H1,H3 Were Security controls properly

configured in terms of

mechanisms put in place?

01

L
ik

ert scale

H2 Was security awareness and a

common understanding of

security needs reached between all

applicable parties, including the

customer achieved?

01

H1,H2 Were everyone's responsibilities

as far as security is concerned

clear?

01

H3 Were the activities effective in

maintaining a security posture?

08

H2 Were you able to identify and

characterise security impacts of

risks to the system?

04,05,02

H2 Were you able to understand the

security risk?

03

H2 Were you able to prioritise the

risks in the PB?

03

H4 Were you able to build the

assurance argument to satisfactory

levels?

06

H2 Were you able to capture and

monitor security requirements

changes?

04,08

H3 Was the system security designed

and implemented according to the

understanding established?

11

H3, H4 Did the solutions meet the

system's security requirements?

11

H3 Was agility affected in any phase?

Please describe the phase and

how?

H4 Was assurance achieved?

Table 4.2 gives a mapping of the questions to the hypothesis; the full questionnaire is

attached in the appendix.

89

4.4.8 Evaluation Method

To assess how well the new framework handles secure development in an agile manner,

a combination of two methods were used and customised to be in line with the nature of

this particular research work in terms of the scope and goals sought to be achieved. As

already mentioned, the SSE-CMM Appraisal Method (SSAM) was selected reasons

being it is an appraisal method primarily intended for internal process improvement

(Barzin, 2007) in regard to the capability of the process in handling security engineering,

and also it allows for customization to fit the goals of the specific organisation (ISO,

2008). The fact that SSE-CMM was our benchmark tool for security engineering; it was

found appropriate to use its recommended evaluation tool for the evaluation. In simple

terms, SSAM is a framework used to assess the availability and capability of security

activities in the security process. The SSAM is an organisational or project-level

appraisal method, in this work the focus will be the level achieved within the project

since there are no organisations that have adapted the model at this stage. The project

that was analysed was a pilot project for the process of which the researchers had gained

consent from the owners for use in the research work. SSAM also recommends the use

of multiple data gathering methods to obtain information on the processes being

practised within the organisation or project selected for appraisal (SSE-CMM Project,

1999). The data gathering methods put forward by it consists of 1) questionnaires that

directly reflect the contents of the model, 2) a series of structured and unstructured

interviews with key personnel involved in the performance of the organisation’s

processes, and 3) review of security engineering evidence generated.

In this case, the evaluation was conducted only for the security engineering process

areas due to the scope of this work. The approach taken checked if the goals of the

process area were met, and not actual activities or artefacts produced.

The evaluation takes four phases:

The planning phase: The framework under which the appraisal will be conducted is

established, as well as looking at the logistical aspects for the on-site phase. In this work,

90

the process areas to be looked at were selected from the SSE-CMM. The security

engineering process areas were selected for this due to the scope of the work and also

considering the fact that the framework was being evaluated for a project and not for an

organisation's continuous production. The evaluation dimensions were also discussed

putting into consideration agility and the process areas application in an agile manner.

The appraisal would be conducted during the sprint retrospective meeting where every

member would contribute their opinions and also an interview with the product owner

and the scrum master would further validate the findings.

Preparation phase: this is the familiarisation phase, where the interviewees’ team

conducting the appraisal is guided through the tasks ahead. For this work, since the

appraisal was primarily conducted by the researcher, there was found no need for

familiarisation. For the appraisal that was conducted during the training of the team, an

informal interview was conducted in terms of questions and discussions to get

preliminary data on the levels of security activities available. This was found to be

profound in finding a point of comparison between the theoretical and the practitioner's

view. It gave insight about the security engineering knowledge to the team.

On site: at this point, the practitioners are given an opportunity to participate in the data

collection and validation process. In that, an interview is conducted to assess their views

on the phenomenon of interest. This will be carried out during the sprint retrospective

meeting.

Post appraisal: Data analysis phase where data will be analysed, and conclusions drawn.

This will be presented in chapter V of this report.

4.4.8.1 Capability Evaluation

The SSE-CMM provides an appraisal method known as SSAM (SSE-CMM Appraisal

Method). It provides for organisational or project-level appraisal using multiple data

gathering methods to extract information about the practices within the organisations or

91

project’s processes (ISO, 2008). It provides five levels that point to the ability to deliver

secure products:

• Level 1: Performed informally, - just the base practices are incorporated in the

project process.

• Level 2: Planned and Tracked, - project team define, plan and check performance

issues at their level.

• Level 3: Well Defined, - the organisation has adopted a disciplined approach

tailored from defined processes.

• Level 4: Quantitatively Controlled, - focuses on measurements that are attached to

the business goals.

• Level 5: Continuously Improving

As mentioned, we conducted post-implementation interviews as mentioned. These were

within the sprint retrospective meeting, augmented by a review of process evidence. The

interviews were semi-structured to give the participants room to express themselves and

give their opinions on improvement. The general interview questions were designed to

gather the practitioners’ views concerning security guided by the SSE-CMM. Since it

was a group set up, negotiations were allowed to check on differing views.

4.4.8.2 Maturity level assessment:

An important tool to use in this assessment is a maturity level model. In this work, we

adopt the maturity level criteria in Table 4.3 (Riadi & Prayudi, 2016), which include

ranges to each level.

This offers a more accurate identification framework for each level of maturity.

Further, the analysis levels are grouped into the major divisions of risk process, security-

engineering process and assurance to give clear pointers to areas of improvement that

have a level of grouping capabilities of the company.

92

Table 4.3: Maturity Level Criteria

Maturity index Maturity level

0.00-0.50 0 – Non-Existent

0.51-1.50 1 – Initial / Ad hoc

1.51-2.50 2 – Repeatable but Intuitive

2.51-3.50 3 – Defined Process

3.51-4.50 4 – Managed and Measurable

4.51-5.00 5 – Optimised

The interview questions were structured to check for the availability of SSE-CMM best

practices with a focus on the goal achieved and not particular activities. The position of

the questions and subjects on the dimension were then used to give them a numerical

value.

93

CHAPTER FIVE

CASE STUDY

5.1 IntroductionChapter II revealed some limitations agile methodologies have in the

development of secure software. The literature reviewed highlighted the discrepancy

between agile methodologies and traditional security engineering, but it also pointed out

commendable progress in the attempts to make agile methodologies more secure. In

building up on that, this chapter clearly describes the core contribution of this work. Its

discussions are concentrated on an implementation of the proposed framework in a

scrum-controlled software development process.

5.2 Demonstrating the Utility of the Framework –The Case

The project discussed in this section is the industrial case that was selected. The

application developed was an online booking system for car rental systems. It was found

suitable since it is a web application, and the researchers were privileged to have access

to the code. Further reasons behind choosing a web application were the manifold risks

in the environment (the web) as well as the characteristics of web applications

development is most compatible with agile. Rao et al. (2011) listed the characteristics of

a web application building project.

In this section, we give a report on how the development was undertaken as a sample for

demonstration. Only one project was picked for this purpose to avoid repetition since all

the cases were carried out using the secure scrum framework, but all the results were

analysed. The reason for picking this particular project was the experience and

professionalism of the developers, coupled with the fact that the researchers were

allowed access to the code.

94

One of the major shortcomings of ASD in the development of secure systems has been

pointed to the failure of these methodologies in prioritising security requirements in the

development (Irvine & Nguyen, 2010) this can be traced to the fact that security

requirements are not really functional requirements that the user puts forth (Adams,

2015, p. 56). Most security problems are usually unintended functionalities in the

system, and the user is most of the time unaware of these. It has been noted that failure

of most systems can be traced to the inability to capture and trace requirements in the

development cycle (Sonia, 2011). The failure of ASD to capture and trace security

requirements of a system is a major impediment in the development of secure software.

In an attempt to tackle this issue, this work proposes a security sprint zero to capture

security requirements and to put forth an argument for their importance to the

development team and also an extension of the product owner roles to that of a project

security champion. Also, this work has adapted a concept of a security aware product

owner so that he will advise the customer on security issues and champion security as a

customer requirement to the team.

The rest of this report spans through the scrum phases of the project, from the sprint zero

to the sprint review. It starts with giving an understanding of the roles with respect to

security in this project. It only covers one sprint, as this was found sufficient to

demonstrate applicability of the framework.

5.3 Roles

As mentioned, this section reflects on the responsibilities the scrum actors played to

produce secure software. Not all SCRUM roles are affected by the proposed framework,

only the product owner and the team. This is because the main goal is to make security

requirements have a significant presence in the process and this cannot be achieved

without the input of the product owner who is the main custodian of the product

backlog. The second goal is to make the team more security aware so that they can

implement security within iterations and consider security while picking items for the

sprint backlog. The aim is to incorporate security minded thinking into all the phases of

95

development. This calls for specific measures to be taken by the team to ensure this. The

scrum-master's role will remain the same, with a few security inputs regarding his/her

services to the PO as well as the scrum team.

5.3.1 Product Owner

The availability of a security aware product owner can be vital to creating security

awareness to both the customer and the development team. It would be vital in capturing

and tracking security requirements all through the development cycle. This work

proposes the extension of the product owner role to include a security advisor role. This

is important as:

1) He can advise the customer on the importance of protecting their business assets

and how, and hence enlighten them on what to expect from a security point of

view i.e., their security needs.

2) He is responsible for developing the product backlog, and hence it is unlikely

for him to overlook security in his prioritisation.

3) Coordinate security during development since he works closely with the teams

during development.

4) He will also be responsible in conducting security trainings to the team

The above calls for the product owner to have, as a minimum; domain knowledge of

security and some security experience. The roles of the product owner will be discussed

further as we move through the development cycle.

The other contribution of this work is a security sprint zero. Within it, the team plus the

stakeholders were introduced to the system concept, developed a high-level architecture,

and highlighted within it the business assets, threats and vulnerabilities involved and the

risk impact in business value. A common general knowledge of the risk model is key

and important to the developers as they develop.

96

In this project, the product owner was well experienced in scrum and had a good grasp

on online security.

5.3.2 Scrum Master

His primary responsibility is to ensure that scrum is understood and enacted. This

includes ensuring scrum theory; practices and rules are understood and adhered to. He is

also responsible for ensuring that the stakeholders have understood and are practising

agility (Schwaber & Sutherland, 2011). To achieve this, he offers several services to the

various roles in scrum; he is regarded as a servant leader.

For the success of this framework, the scrum-master needs to be very alert in his role to

keep the team from diverting from agility. In assisting the product owner in finding

techniques for effective Product Backlog management and ensuring the PO has the

capacity to arrange the Product Backlog to maximise value, there should also be a

consideration for security in all these. For example, the choice of metrics should include

metrics that quantify the security criticality of a component or requirement. Value

should be redefined; it should not be limited to business gain when the functionality

works properly only, but also the protection of loss if the undesired happens. In this

project, the scrum-master had a scrum-master certificate coupled with more than five

years in agile software development. With this, he was professionally qualified in

assessing the deviation from agility whenever they would appear and correct.

5.3.3 Scrum Development Team

A key element of this framework is a security conscious scrum team. The participation

of the development team in the security sprint zero introduced earlier is supposed to

expose them to security in terms of its importance and the critical areas within the

system in development.

97

In scrum, the team is self-organising and cross-functional (Schwaber & Sutherland,

2011). This work proposes at least one security expert within the team for complex

projects. This will promote learning for the whole team, as well as a holistic

understanding of the security requirements of the system and how to implement them.

Note that Scrum does not recognize any other titles for development team members.

Regardless of the role one plays within the team, to scrum he/she is just a developer. It

also does not recognize sub teams within the development team; the collective

responsibility lies with the team. The aim in this work is to build a team that with time

and experience they can have the capacity in terms of the necessary skills to build a

system that is secure within the set domain.

The teams were supposed to have enough capacity to design and implement security, as

well as test and propose new security futures.

5.4 The project

The project included all phases of the application development lifecycle, combining

requirements, design, construction, and test into an overall system pack that could, with

further development, be deployed in the real world. In parallel, an analysis of each

phase, highlighting the challenges and lessons gained, is documented, and discussed

within this document.

It involved nine people: a Scrum Master, a dedicated Product Owner, a Security expert

(in basic scrum, part of the development team in the role of a developer). The project

brought specialists from these various teams together, at least online every day, for the

15-minute stand-up meeting. Due to the team's multiple physically separated locations,

the meetings were without exception held virtually. The teams were utilised in distinct

phases of the project in such a way that only the Scrum Master, security developer (i.e.,

the architect) and the Product Owner had personal activities in every single sprint

throughout the project. The developers were part of a larger resource pool and drawn

98

into the sprints or spikes in various phases of the project whenever their expertise was

required.

The project was to develop an online platform for a small car rental company to

manage their bookings and fleet. It also provided their customers a platform to book

vehicles. The requirements of the system were wide-ranging. They were gathered with

the help of the product owner and organised into a product backlog. Appendix 233 gives

the initial product backlog.

The technologies required were Node.js, NPM registry, VS Code, Postman to test the

API. The project was developed with MERN Stack as per the preference of the

developers. GitHub was used for version control and Coverity Scan Static Analysis, an

open-source tool for testing web apps and web APIs security.

5.5 Events

To achieve security, security engineering must be part of the development process (Ross

& Oren, 2016). Scrum defines several events that are integral to it. The purpose of this

section is to describe scrum events and what can be done within the events to improve

the capture and residency of security within the process, including tracking security

requirements, generating new requirements as well as the “definition of done” within the

security concern.

This work advocates for an inclusion of a security sprint zero as a security requirement

capturing tool as well as a learning and awareness building activity. Apart from this, it

proposes metrics for gauging security criticality of requirements as well as how security

engineering activities can be coordinated within the scrum events.

5.5.1 Security Sprint Zero

In previous sections, the sprint zero has been introduced as a pseudo sprint that does not

necessarily deliver customer value. It was outlined as to what it should be and what it

99

should not be, as it can easily be misunderstood and take us back to the traditional long

and heavy pre-planning with static requirements. In (Baca & Carlsson, 2011) it was

suggested that from a security engineering point of view the artefacts produced are the

product, so in this case since a risk process is a security engineering procedure, we can

rightfully assume a risk report to be a product. So, in this case, the expected outcome of

the security sprint zero is a risk impact report, security requirements in form of abuser

stories that are weighted according to an agreed metric that reflects business value.

Chapter 3 gives a high-level risk process. Note that the actual methodologies and metrics

to be used are not given, this is left to the teams to decide. It depends on the project as

well as the skill and experiences within the team. This work recommends that heavy

documentation should be avoided, since this is against agility. The initial risk process

should not be exhaustive but should give a general picture of the risks involved in

running the application in the given environment. Its agenda is not to transform the

SCRUM into a heavy, document centric, plan-driven process, but to build security

awareness throughout the development process.

100

Figure 5.1: High Level Data Flow Diagram of the Application Architecture.

The product owner with help from the security expert coordinated this sprint. The

system was identified by developing a high-level architecture diagram. The PO

explained that the purpose of the meeting was to develop a general understanding of the

task ahead, both in terms of achieving functional requirements and other desirable

qualities like security. To achieve this, it was important to determine what was being

protected and why.

He took the team through an initial overview of the system, developing an architectural

design of the system like Figure 5.1 above. This was guided by the initial PB. This

exercise helped identify the essential components of the system and provided a visual

understanding of the flow of data as well as potential attack points. In this case, the

components identified included the web server, application server, and database server.

Further, some security controls were also agreed upon such as encryption,

authentication, input validation, authorisation, session management, etc. Trust

boundaries were also determined relative to the design at this point, together with the

different interfaces where the data is entered.

101

The security engineering activities involved were not detailed, since the design was not

elaborate at this point. The overall essence of these was to conduct a preliminary secure

architecture analysis to reveal the presence of security controls at the level of the system

architecture. For example, in this case, a database storing confidential data requires the

data to be protected by enforcing the access to only authorised and authenticated users.

A general vulnerability assessment in key areas, threat assessment, and impact analysis

with respect to business loss in case of an attack at architectural level was carried out.

The product backlog ensured that scope was maintained. The threat identification was

carried out using the OWASP Top 10 list method. This provided consistency and an

uncomplicated way of identifying and listing threats with their probability of occurrence.

Other methods like STRIDE, threat trees, etc can be employed in this area as already

stated in previous sections.

This will give way to an in-sprint security risk analysis that would be useful in

identifying solutions as well as generating further security requirements, hence

embracing agile dynamism.

Table 5.1: Partial Risk Table

Risk vulnerability Threat Threat

Source

Likelihood Severity Risk

rating

R1
Unvalidated

inputs

DDOs

Attacks

Malicious

humans
medium critical medium

R2 Storage

mechanisms not

redundant

Storage

failure

Structural Low High Medium

R3 Purchase

validation

DoS Malicious

humans

medium Critical Medium

102

A statement of Information security goals was also developed, and privilege levels

determined. From this, abuser stories were created and analysed in terms of the risk. In

this work risk was in terms of qualitative business value (Table 5.1) that the loss would

bring considering also the likelihood of occurrence. This was given mostly by the

OWASP vulnerability report (Appendix C). In doing this, good risk information was

created in the form of risk analysed abuser stories.

Table 5.2: Partial Risk Analysed Abuser Stories

Abuse

case ID

ABUSE CASE RISK

ID

AB1 As a malicious user, I want to expose people’s accounts

information.

R3

AB2 As a malicious buyer, I would book cars to create a non-existent

shortage.

R3

The last part of the process is undertaken during the product backlog refinement process.

This can either be an event on its own or part of the sprint zero for small projects. This is

where the abuser stories are checked and attached to a corresponding user requirement

future that it is associated with. Negotiations for the mitigations are performed, and a

score is attached to the requirement. This will lead into a refined product background

with integrated security requirements.

5.5.1.1 Prioritisation and Estimations

The items on the product backlog should be prioritised and with estimations before the

sprint planning so that the sprint planning would achieve its objectives.

The estimations and prioritisation are not inherently valuable in scrum, but they are a

means to an end. In this framework the importance is a little bit higher since it gives the

103

guidance on what objects to be picked, especially highlighting the state of security

requirements within the PB. Many prioritisation and estimation formulas have been

suggested (Zulkarnain, 2011; Pohl & Hof, 2015; Sillitti & Succi, 2005; Woody, 2013).

This research builds on several of these ideas to produce the following recommendation.

It seeks to achieve security requirements within the PB having the same residence as

functional requirements. This is partially achieved through the awareness created.

Including security requirements into the product backlog bears its own challenges.

Security comprises security attributes, functions, and architectural futures (Sven &

Poller, 2017). The security attributes desired are quality aspects and therefore addressed

during the sprint retrospective. The architectural and functional attributes on the other

hand provide greater challenges in that; 1) There are some that are obvious and mostly

stakeholders request for them. This will fit in the PB like any other feature. 2) There are

others that can only be defined during system or feature design. This happens within the

sprint. 3) Most security features are connected to certain levels to functional ones. In this

case, this work adapts the approach of security tag linking user stories to security issues

(Pohl & Hof, 2015).

For example, for integrating credit card payments in the system, the team had agreed on

the mitigation “the transaction should be encrypted and also data should not be

accessible beyond the context of the application.”

This would appear on the PB as an item “secure payment security information”. The

problem with this is that the user might not be aware of this or know how to validate that

it was implemented. Other security features might seem not as important as other

functionalities that relate to them directly or seem to directly contribute to business

value. So, for updating PB and prioritisation the following were taken in consideration;

(i) Security requirement’s risk, which is calculated considering the impact and

the likelihood of occurrence as already stated. This should be taken in

perspective with the general understanding of risk drawn by the process.

104

(ii) The security requirements relating to existing PB items.

In this work we draw an association between the PB item and the abuse case and also the

risk table item so that all these can be considered and looked at together. Sometimes

security requirements are related to some functional requirement, for instance in the

example already given, the PB item can be related to the item “facilitate for credit card

payments”. We make relationship marks that are classified in two levels; 1) Tightly tied

and 2) Loosely tied. If tightly tied, it means that the item cannot be completed if the

security item has not been completed, as in the case in the given example. Otherwise, the

Definition of Done of the item is independent of any other item in the list.

5.5.2 Threat modelling and secure coding

5.5.2.1 Sprint Planning

In this event, the work to be performed in the particular sprint is planned. The planning

involves the collaboration of the entire scrum team. It is a time boxed to a maximum of

eight hours for a one-month sprint, and it answers the following questions;

1. What can be delivered as an increment of the project (software) in the upcoming

sprint and

2. How will the work be achieved?

The figure 5.2 below gives an overview of the sprint planning meeting.

105

Figure 5.2: Sprint Planning

The key for a good sprint planning meeting is a good refined PB, this makes it easy to

figure out what.

The sprint backlog needs to be detailed enough so that the development team can

forecast the work needed. The team should keep in mind that the aim is a forecast and

not a blueprint plan of the work to be done.

The framework introduced in this work provides the following benefits when carrying

out the sprint planning;

• A good, refined product backlog with integrated security requirements

• Everybody has a good grasp of the importance of the security requirements

106

Figure 5.3: Use Case Diagram with Malicious Actors

In sprint planning, the security activities to look at are:

1) drawing of mitigations where there are two viable solutions to a risk situation:

o Develop security user stories; i.e., functions that counter abuser stories

are conceived. For example; “Encrypt all communications between user

A and Database.”

o Definition of secure coding standards; not all the abuser stories can be

countered by security user stories, some are contributed by the security

concerns of chosen implementation language, environment e.g.,

implementation platforms, frameworks, etc. for example in a case where

C is the language of implementation; “all the listed vulnerable C

functions should not be used.”

107

2) Security negotiations where the product owner together with the team guided by

abuser stories risk analysis and cost of implementation negotiate the appropriate

mitigation.

Note: The planning should be sufficient enough to help the team know just what is

required of them. The end product being the sprint backlog should not be a bulletproof

plan but a forecast of what is to be expected (Pohl & Hof, 2015).

In this case, the use case diagram, (Figure 5.3) was developed basically giving a pictorial

view of the actors including the malicious actors. It was agreed that the first sprint would

mainly involve setting up of the environment, which would involve research that would

inform secure configurations to meet the requirements set. The team also picked two

other user stories to fulfil.

In considering these use cases, the team considered the following security requirements:

The Sprint backlog is basically made by designing the system through decomposing the

PB items taken into the sprint. For sprint 1 the backlog was as given in the figure 5.4

below.

Figure 5.4: Screenshot of Sprint Backlog for Sprint 1

108

5.5.2.2 Sprint development with code review

At this stage, the developers were set to translate their design into code. As

recommended in the secure framework, developers are advised to use a development

environment they are familiar with. In this project Node.js was used for back end, NPM

registry as the package management, VS Code was the coding environment, Postman to

test the API. The project was developed with MERN Stack as per the preference of the

developers. GitHub was used for version control and Coverity Scan Static Analysis, an

open-source tool for testing web apps and web APIs security. This enabled the source

code to be reviewed for security issues and fix them by introducing code changes prior

to release.

Figure 5.5: Jira Board for Midway through Sprint 1

Sprint 1 consisted of research and set up of the development environment. With Jenkins

server for managing continuous integration, the technical stack chosen as MERN, it was

now required that the environment be set up and working as expected. In addition to the

Setup, two user stories were picked from the initial sprint: (i) a user being able to

register an account and (ii) a user being able to log in using their registered credentials.

These two user stories were chosen for several reasons. It would be the initial step for

both employee and customer when they access the application, and it would also test the

109

full functionality of the stack, as these stories involve writing to, and reading from, the

database via user inputs on the front-end. The steps involved in these user stories also

required the use of a Node.js framework called Mongoose.js, and several libraries. A

task that was mutual for both user stories of this sprint was to define the user schema

with use of the Mongoose framework. Although the database is schema less it is useful

to define a schema to be loosely followed, Mongoose allows for the developer to specify

what attributes are required on the creation of a user. It is worth noting that the access

level field is default: 0 if the user is an employee of the company and admin will be

required to alter the access level to a value of 1. These access values were implemented

as per what was decided initially. Figure 5.5 shows a screenshot of the Jira board

midway through sprint 1.

110

Figure 5.6: MongoDB Configuration

5.5.2.3 Testing within sprint

Configuration for MongoDB was done with security in mind with the awareness that by

default Mongo Db does not have authentication. The team configuring the bind-up with

only the necessary interfaces. Figure 5.6 above shows a screenshot of this configuration.

Notice the authorisation has been enabled while the http and rest interfaces have been

removed.

As for the login, considering the architecture diagram and the risks associated with it the

story could not be completed if it did not address injections, encryption and validation.

The tests are shown in the appendices.

111

The static analysis could not be performed at this juncture because there was no code to

be analysed. Figure 5.7 show sample static analysis code that would have been produced

during the integration push.

Figure 5.7: Static Analysis Results

5.5.3 Sprint review

Usually held at the end of sprint to facilitate the collaborative inspection of the

increment and consequently adapt the PB in case of new requirements.

It involved the Scrum team and the stakeholders holding an informal meeting where the

increment is presented with the intention of eliciting feedback and foster collaborations.

All the work should meet the definition of done that the team has agreed upon. In this

project, it also involved checking the security checklist and filling it up. The checklist is

appended to the document.

5.6 Data collection

The main methods of data collection were focus group discussion and artefacts analysis.

The researcher also performed informal observations during the development process, in

particular participation in scrum meetings, observing the generated security artefacts,

112

number of security requirements and how they were handled, as well as playing the

scrum master role. During these sessions, it was possible to track participants’ progress

and answer questions pertaining to problems they had in applying the methodology.

After using the methodology to develop their systems, a focus group discussion was held

with the group to establish the views of the participants on the applicability and effect of

the practices as proposed in the case theory. A two-hour long focus group discussion

was held at the end of the sprint. It was conducted to collect the participants’ perceptions

on the applicability of the practices embedded in the methodology. A research assistant

was responsible for the data capture of the responses. A focus group guide and data

capturing template was prepared to help with the data capture. The group was

enlightened about these contents before the meeting started by the moderator also noting

key points. Appendix III bears the focus group guide, while the data capture template

with sample data for the first question is attached in Appendix IV. For systematic data

capturing, this work adapted Nili, Tate and Johnstone (2017)’s template. The template

was designed to capture ten participants’ responses per question, but since the focus

group discussion had numerous participants (thirty-seven) a modification of the template

designed using Microsoft Excel was used. After the discussion, the researcher’s captured

points were synchronised with the research assistant notes. The researcher also analysed

the documentation for intermediate artefacts defined in the methodology. The

intermediate artefacts' analysis was done to confirm the perceptions of the participants

on the usability of the secure framework. Intermediate artefacts analysed include

prioritised product backlog, sprints, and sprint backlogs, use cases and misuse cases,

design models, test cases, contents of the security repositories, security, and reasons for

not having them.

In the following subsections, results of the data collected in this case study are

presented. The next section focuses on the group discussion results. This work has

adopted editing and template analysis as suggested by Wohlin et al. (2012) mainly

because of the use of pre-formulated questions during the discussions. The responses

collected by the researcher and the research assistant were synchronised into a single

113

document. Responses were captured per question. Table 5.3 shows general opinions

gathered about the emergent process.

Table 5.3: General Opinions from Focus Group Discussions

 Question Responses

1 Is the Agile Secure Development

Framework a solution to a real

problem/need in the agile

software development

environment currently?

-To some extent, when working on some crucial software one

needs guidance.

-I found it to be filling a gap that exists at the moment

-It is to some extent.

- Due to my lack of experience, I can’t tell.

2 Would you rate the practices

embedded in the methodology

adequate to build quality and

secure software, if not what

would you add?

-The practices are adequate

 -the help of more automated tools to support the process would

greatly improve the utility of the methodology.

3 Was it easy to follow the

practices in the process?

Which practices would you

consider helpful, and which

would you consider to be not?

- The methodology is not that easy to follow

-Following a methodology while developing software is not an

easy task

- The lack of security engineering knowledge and experience

hindered application of the process.

 -At times users do not have time for meetings

 -Security design and testing are not easy

4 Did you at any point feel you

were asked to do more than just

developing software?

- security engineering seemed like a derailment to the actual

work of software development

-There seems to be more documentation and extra meetings

 -Models can be used selectively

5 What available tools would you

suggest to ease the development

process at any of the

methodology stages?

-Jira, Trello, etc. for project management

-Brackets (free open source front end editing and web

development)

-Bootstrap eases website development

 -IBM Watson Assistant API

-Node.js, supports both front end and back end development

114

6 What practices in the framework

would you consider to be

important in developing quality

and secure software?

-All the practices are necessary, but that should depend on the

kind of software

 -the secure sprint zero seemed to be the core of the process

-Secure coding to me was new, and I feel is key

-To me, designing test cases seem to serve for the expected

quality

7 What improvements would you

add to the methodology if you

were given the opportunity to?

-Automate most activities

 -At times users are too busy for user education

 -User education should only highlight the user’s roles

8 Would you consider using the

Secure process in your future

projects?

- I would use it on serious projects

-Yes, it brings order into the development process

 -I would, it makes the user think I know what I am doing

-I would use it but trim some practices

9 Would you recommend the

methodology to any fellow

developers?

-I think developers should adopt the methodology, particularly

for online applications

 -just to be used on large and critical projects

10 Do you think the Secure process

can be used to develop any kind

of software system?

- To some extent

 -I feel it can be adapted to any environment

A phase-by-phase evaluation of the methodology was also conducted through the

questionnaires and the results are as shown in table 6.1.

115

CHAPTER SIX

DATA ANALYSIS AND DISCUSSIONS

6.1 Introduction This chapter presents the findings of the evaluation cases. The data

analysis objective is to test the hypotheses of this research. The groups engaged in the

research were questioned about their experience. As already stated, the questions were

designed to reveal if there was an effect on the agility and the management of security

requirements as well as assurance. This was required to verify the hypotheses of this

study. The results include a comparison between the diverse groups and correlation

analysis.

From the group discussions, the participants agreed that the secure agile development

framework was a solution to a real problem that sometimes goes unnoticed, especially to

novice developers. The general perception was that the framework can be used in

development environments to build quality software and in the process creating

information assurance. The practices in the methodology are perceived as important in

building quality software. Some developers had reservations on the models produced in

the initial stages. They argued that if not properly guided, the design can be too detailed.

This reservation was also raised by the industry developers. While developers have these

reservations on models, they agree that the system understanding generated went a long

way in justifying why security implementations were crucial during development. Also,

the risk analysis products e.g., use case and misuse cases are important in modelling user

requirements. Table 6.1 also shows that developers would opt to use the methodology in

future projects, and they would also recommend the methodology to other developers.

They also felt that the methodology could be used to develop any type of software with

minimal adjustments.

An overview of the table is as follows; in all phases, the participants found the practices

adequate. However, there are some who felt that in practice it was difficult to adhere to

some of the practices, citing inadequate experience and training as a major hindrance.

116

Table 6.1: Summary of Practitioners View of the Process in Light of Best Practices

Process Area Best Practices Implementation During Process

(Practitioners View)

PA01-

Administer

Security

Control

Management of security awareness,

training, and education programs for

all users and administrators;

establishment of responsibilities,

accountability for security controls,

their effective communication, and

management of periodic

maintenance of security services.

-Everybody was aware throughout the

development course.

Communications was maintained

through the scrum board

PA02 / PA03 /

PA04 /PA05 -

Assess Impact/

Assess Security

Risk/Assess

Threat / Assess

Vulnerability

the identification of assets that

support key operations of the system

in focus, the selection of appropriate

metrics for assessment in the

different areas, the characterization

and identification of impacts, risks,

threats and vulnerabilities, and the

monitoring of on-going changes to

ensure that the understanding of

processes is preserved.

Initially achieved through the sprint

zero. Assets were identified, metrics

determined.

Within the sprints and after tests

(including automated) and goals

provided a reference point for

monitoring.

PA06 - Build

Assurance

Argument

Identification of security objectives,

identification and gathering of

evidence supporting these objectives,

defining a strategy to address the

security objectives, and providing an

assurance argument that clearly

demonstrates that the security needs

of the customers are met.

Although the process brought some

level of assurance. The information on

the Trello board as well as test

software reports was insufficient and

not easily understandable to all. It was

suggested that a person be assigned to

compile and create simple security

documentation in future iterations as

they were going on. They should be

looked at as the deliverables for the SE

process.

PA07 –

Coordinate

Security

This particular practice is concerned

about security coordination and open

communication among all project

personnel and external groups.

Scrum inbuilt communication

mechanisms assisted by the tools used

were sufficient enough for facilitating

these communications.

Process Area Best Practices Implementation During Process

(Practitioners View)

117

PA08- Monitor

Security

Posture

Security Posture serves as a follow

up of every external or internal

security related event and ensures

that all breaches and potential events

that could lead to a breach are

reported and addressed properly.

Hence this practice is also very

closely related to the vulnerability

and security assessment practices

previously discussed.

The knowledge promoted in sprint

zero plus the security assurance

checklist helped maintain this posture

throughout the process.

PA09/PA10 -

Provide

Security Input/

Specify

security Needs

The specification of security needs

involves defining the security

requirements of the system in order

to meet the legal, functional, and

organisational objectives taking into

account the current environment of

the system. This process should

identify the purpose of the system

and provide high level views of

system operations, as well as the

goals of the system under a security

context.

The sprint zero which produced Use

Cases and related Misuse Cases

(Sindre & Opdahl, 2005) provided a

clear view of needs, actors, and also

gave guidance to the security design.

PA 11 - Verify

and Validate

Security

Ensures the right measures are put in

place in the right way. In this process

area, the applied solutions would

also need to be verified against

specific operational security needs of

the customer.

Similar to PA06, assessment tools

such as network vulnerability

scanners/auditing, enterprise product

solutions like TSOM (Karim et al.,

2016), or in-house software validation

tools can be used. In this project

Coverity scan was also used.

This helped to verify the applied

solutions against the security

requirements and architectures using

testing, demonstration, analysis and

other methods - while still providing

traceability between solutions and

requirements.

118

6.2 Maturity Level Analysis

As mentioned, only the security engineering process areas were considered. This was

even more so because the study was being based on a single project process and not an

entire organisation.

For each of the process areas, the practitioners’ opinions about activities were gathered

through the questionnaires, sampled and were analysed. For example, for PA01-

Administer Security Controls, the chart in table 6.2 is a summary of the findings.

Table 6.2: Security Engineering Process Areas Index and Levels Attained

 Process Area Index Level

1. PA01 3.65 4

2. PA02 2.66 3

3. PA03 2.21 2

4. PA04 1.89 2

5. PA05 2.06 2

6. PA06 2.1 2

7. PA07 2.40 2

8. PA08 2.67 3

9. PA09 2.45 2

10. PA10 2.86 3

11. PA11 2.31 2

 Average 2.478 2

119

It can be concluded that most of the practitioners felt that security awareness was

achieved to great levels while periodic maintenance of security controls was not well-

defined, managed, or measurable.

Figure 6.1: Administer Security Control

The calculated average mean for the whole Process Area was 3.26 which according to

the maturity index meant it was at level 3.

A summary of the whole process area indexes is as in the table 6.2 and figure 6.4. The

results were categorised according to the three main security engineering areas of SSE-

CMM i.e., risk area, security engineering area and assurance areas to evaluate and

compare the area of strength of the framework.

6.2.1 Security Risk Area

This area is made up of PA02- assess impact, PA03- assess security risk, PA04- assess

threat and PA05- assess vulnerabilities. Note, this work does not define the particular

process, but it was left for the team to define the approach that they would use. For

example, in the particular case study project undertaken the team chose a reference list

of common vulnerabilities to identify possible vulnerabilities, OWASP top ten in

120

particular. Then the PO presented the client's assets, they discussed and included in the

list some system assets. The threats were modelled, and impact assessed, in the sprint 0

and later designed and implemented within sprints. The summary findings in this area

are given in figure 6.2.

An average index of 2.105 was calculated, which means as far as the risk area is

concerned, the framework has managed to assist the organisation achieve level 2

maturity according to our analysis.

Figure 6.2: SSE-CMM Risk Area Maturity Level Attained

6.2.2 Security Engineering Area

From a security point of view, Information from the risk process, requirement, policies

and even governing laws are considered to identify security needs and produce actual

security requirements. SSE-CMM defines five process areas for the engineering area;

PA10, PA08, PA09, PA01 and PA07. These PAs shift the process from requirement

definition, through designing solutions, implementation, monitoring and finally

coordination.

121

Figure 6.3: SSE-CMM Engineering Area Maturity Level Attained

The results from the questionnaire in this area are summarised in the chart, figure 6.2.

The average index was 2.9075 placing it at level 3.

6.2.3 Assurance Area

This is developing the confidence that the measures taken will work. SSE-CMM guides

that the Verification and validation of security (PA11) results together with evidence

from other Process Areas be used to build the assurance argument (PA06). In the case

study, the evidence from automated tests and security goals among other artefacts like

the definition of done for security items were used to build the argument. The average

score from the research was low, with a level of 2 achieved.

122

Figure 6.4: Maturity Level Summary Graph

6.3 Agility Level Analysis

In this subsection, the final version of the resulting methodology is evaluated using the

four-dimensional analytical tool (4-DAT) (Qumer & Henderson-Sellers, 2008; Asif

Qumer & Henderson-Sellers, 2006b). This model evaluates the secure development

model compliance with agile principles. It has been used in other research (Ghani et al.,

2014; González-Sanabria et al., 2017; Sánchez et al., 2020) for similar purposes.

 Using this model, a methodology is assessed according to four dimensions. The four

dimensions are method scope, method agility, agile values characterisation and software

process characterisation. The4-DAT framework is a flexible framework. Method

evaluators (or researchers) can choose what dimensions to evaluate the methodology

against, depending on the purpose of the evaluation. In this thesis, only two dimensions

are applied; the method agility and the agile values' characterisation since these met the

goal of the evaluation.

Method agility evaluates the existence of five agility features, (i.e., flexibility, speed,

leanness, learning and responsiveness) in the method practices and phases. The

framework suggests the computation of the degree of agility of each method component

as a fraction out of five, based on whether a feature is available (1) or not (0). Degrees of

123

agility can be computed for both practices and phases in a methodology. Agile values

characterisation seeks to identify those components of the methodology which portray

the six agile values.

Just to mention, the method scope is normally used to perform a high-level analysis of a

given method (Qumer & Henderson-Sellers, 2008, p. 285) including at the organisation

level, which is beyond the scope of this work. Similarly, characterisation evaluates a

methodology’s processes for their ability to support project management as well as

process management. In this dimension, a methodology is evaluated to check its

coverage of the system's development cycle (SDLC). Process characterisation also

checks for the existence of practices focused on project management, and therefore it

falls beyond the scope of the current work.

In the 4-DAT framework, flexibility is defined as the measure of the ease with which an

object or process accommodates emergent changes. This assesses the ability of method

processes to respond to changes. Speed is the time taken by a process to obtain the

expected deliverables. Leanness refers to the general resources used by a process to

achieve a desired outcome. Learning assesses the ability of a process to support

knowledge management. Knowledge management is important in agile since it anchors

process improvement.

Finally, responsiveness is the ability to adapt to the environment (Asif Qumer &

Henderson-Sellers, 2006b)

Table 6.3: Agility level attained by the process

Process phase Agility Features

FY SD LS LG RS Total

Sprint Zero 1 0 0 1 1 3

Sprint 1 0 0 1 1 3

Reviews 1 1 0 1 1 4

Agility 3/3 1/3 0/3 3/3 3/3 10/15

Key 1: FY- Flexibility, SD- Speed, LS-Leanness, LG-Learnability, RS-Responsiveness

124

Table 6.3 shows the agility level attained by this framework. Sprint zero and in sprint

produced the least agility. It was agreed that it was easy to manage knowledge, and it

had sufficient mechanisms to respond to changes, but it lacked speed and leanness. This

was attributed to the extra documentation involved, plus the fact that the framework was

being used for the first time by the group. The inadequate knowledge of security

engineering as a whole in the team also contributed to the slowness of the process. In the

second sprint there was slight improvement in this, and it was concluded that with

practice it can be refined further.

All the phases of the resultant process have agile degrees greater than 0.5, with the

stages of the methodology having an average agility degree of 0.67. A value of greater

than 0.5 is regarded as agile. In addition, the analysis of the practices embedded in the

framework shows that all the agile values are supported by at least one practice in the

methodology. The practices: individuals and interactions over processes and tools;

working software over comprehensive documentation; responding to change over

following a plan; and keeping the process agile are each supported by three or more

practices. Customer collaboration over contract negotiation is supported by two

practices, while keeping the process cost-effective is supported by one practice. This

evaluation therefore serves to show that the secure framework fulfils one of its

objectives of maintaining agility in the overall process.

125

CHAPTER SEVEN

CONCLUSION AND FUTURE WORKS

7.1 IntroductionThis work developed a framework for agile security and implemented

it in scrum by adding a secure sprint zero among other security practices. Its aim was to

achieve a resultant process that meets industrial standards. To test it, a case study was

undertaken, and data gathered through questionnaires and interviews of some key

players. The results from the questionnaires produced a 2.48 average index, which meant

a level 2 (planned and tracked) of maturity for that particular project. Note that it only

missed 0.02 points for it to make it to level 3. The model scored fairly highly on the risk

area, high on the engineering, but poorly on the assurance area. Further, the strengths of

the model were; provision for gathering of security requirements, involving everyone in

the project, disseminating responsibilities and providing a mechanism for monitoring

security. As for the assurance argument, the feedback suggested dissatisfaction in the

evidence, the evidence was scattered and sometimes needed interpretation.

Table 7.1: How the process fulfils SSE-CMM process areas

Sse-Cmm Security

Eng. Area

Intended

Product

Equivalent In The Secure Agile

Risk Risk

information

- Ranked Risks

- Vulnerability list

- Asset list

Engineering Product, system

or service

Secure system

Assurance Assurance

argument

- Stakeholders agreement since they are

involved.

- Security assurance checklist.

- Tests and test results

126

The interviewed practitioners suggested a person be assigned to gather and compile the

evidence and present it in a manner that is understandable to even non-technical users in

order to build a stronger assurance argument. Further, it was also suggested security

training and experience would also improve the levels. The general expectation is, with

every iteration circle, the self-improving teams would achieve higher levels. Finally,

considering the results of the case study for a single sprint, it can be concluded that the

model introduced can achieve appropriate maturity levels of security for an agile team.

7.2 Research Goals achieved

In the literature review, the first and second objectives were addressed. To be specific, in

section 2.3-2.5 a background discussion of agile software engineering and security

engineering is discussed. Further, section 2.6 provides a discussion of some capability

maturity models to elaborate further the standard status quo of security issues handling

in software development. In 2.7 the impacting issues of agile and the traditional security

engineering are highlighted and lastly in 2.8, work by other researchers in this area is

discussed. This literature study informed the design of the framework presented in the

consequent chapter.

For objective three, an agile framework based on the SSE-CMM security engineering

model was developed with security engineering goals in mind. The SSE-CMM model

gave the goals to be met by the agile framework. It also broke down the security

engineering process into three phases i.e., Risk process which can be regarded as the

requirement gathering, Security engineering and assurance. To implement the goals,

agility was a key consideration. The agile design was informed by previous works as

well as the agile principles. Finally, the framework is implemented in scrum.

To show practicability, a case study was conducted and evaluated for performance and

also to gather recommendations for future improvements. The results were good in that

the framework achieved security to acceptable standards, Agility loss was negligible as

well as there was room for improvement with automation and an increase in learning.

127

7.3 Contributions

In this work, a secure scrum zero was implemented; it bore a semi structured, system

centric risk process. It also introduces a security assurance checklist as an additional

artefact to strengthen the assurance argument. This artefact proved to be simple enough

to fill during the course of the process and displayed a contribution to customer’s

confidence in the case of the system developed.

This research work also showed that standard security engineering can be achieved in an

agile environment. By basing the agile secure development framework after the SSE-

CMM standard, it achieved the desired benchmark of level 1 and attained level 2.

Throughout this work knowledge was generated which contributed to the development

of the framework. A scan through the research process from the literature to the design

up to the evaluation it’s evident that new knowledge in the area is built. In the literature,

the conflicting issues between agile and traditional security engineering were

highlighted and also existing solutions were discussed. The framework itself contributes

to knowledge in relation to the research hypothesis in agreeing that security can be

achieved and further explaining how.

The research produced a research publication (Kagombe et al., 2021) and presented in

ICICM 2021: The 11th International Conference on Information Communication and

Management

7.4 Limitations of the study

As a limitation in the design, the knowledge used to design might have been limited in

terms of the literature studied. Some papers which could have contributed to the research

were not accessible within the researchers’ rights. Another limitation was experienced

during the case selection. A multiple case in diverse companies would have been ideal to

remove subjectivity to a particular group. To counter this, a survey was carried out.

128

Time constraints as well as finding the right company to carry out the evaluation were a

challenge.

Another limitation is that for the most part, the evaluation was based on practitioners’

perceptions rather than evidence from the case. This would have greatly countered the

subjectivity of the results' argument.

7.5 Recommendations for future works

Further research can build on this work by conducting more evaluation in terms of case

studies or even controlled experiments. They could go further and evaluate the quality of

the products built in terms of security and compare them with others not built with the

framework.

Further, a project management tool can be developed to assist the developers in working

with the framework. It can include AI analysis and identification of risks. This would

make work easier and eliminate sprint bottlenecks further.

129

REFERENCES

Abbas, J. (2016). Quintessence of traditional and agile requirement engineering. Journal

of Software Engineering and Applications, 09(03), 63–70.

Abdel-Hamid, A. N., & Hamouda, A. E. (2015). Lean CMMI: An Iterative and

Incremental Approach to CMMI-Based Process Improvement. Agile

Conference (AGILE), 2015, 65–70.

Adams, K. MacG. (2015). Non-functional requirements in systems analysis and design.

New York: Springer.

Agile adoption in organisations. (2016). In the Art of Agile Practice (pp. 402–443).

Auerbach Publications. http://dx.doi.org/10.1201/b13085-16

Alotaibi, M. (2015). Extending Scrum Framework to Emphasise Security: How a

‘Security Owner’ is integrated into the Scrum Team. Proceedings of the

Eighth Saudi Students Conference in the UK.

Alvarez, A., Matalonga, S., & Feliu, T. S. (2012). A case study on process composition

using the Enterprise SPICE model. International Conference on Software

Process Improvement and Capability Determination. Communications in

Computer and Information Science, 290, 85–92.

Anderson, R. J. (2010). Security engineering: A guide to building dependable distributed

systems. New York: John Wiley & Sons.

Association, I. S. S. E. (2002). Information technology - Systems security engineering -

Capability maturity model (SSE-CMM): International standard.

Azham, Zulkarnain, I. G. (2011). Security Backlog in Scrum Security Practices. 2011

Malaysian Conference in Software Engineering. IEEE, 414–417.

130

Baca, D., & Carlsson, B. (2011). Agile development with security engineering activities.

Proceedings - International Conference on Software Engineering, 149–158.

Bajta, M. El, Idri, A., Fernández-Alemán, J. L., Ros, J. N., & Toval, A. (2015). Software

cost estimation for global software development a systematic map and

review study. 2015 International Conference on Evaluation of Novel

Approaches to Software Engineering (ENASE), 197–206.

Bartsch, S. (2011). Practitioners’ perspectives on security in agile development. 2011

Sixth International Conference on Availability, Reliability and Security,

479–484.

Barzin, P. (2007). SSE-CMM. Datenschutz Und Datensicherheit-DuD, 31(12), 917.

Baskerville, R. (2004). Agile Security for Information Warfare: A Call for Research.

European conference on information systems (ecis), 13.

Beck, K., Beedle, M., Bennekum, A. van, Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., … & Thomas, D. (2001). Agile Manifesto. Retrieved from

http://agilemanifesto.org/

Bellenzier, M., Audy, J. H. N., Prikladnicki, R., & Luciano, E. M. (2015, October). How

the scrum adoption relates to productivity of software development teams?

2015 6th Brazilian Workshop on Agile Methods (WBMA).

Bezerra, C.M.M. Sampaio, S.C.B. & Marinho, M. L. (2020). Secure Agile Software

Development: Policies and Practices for Agile Teams. Shepperd M., Brito e

Abreu F., Rodrigues Da Silva A., Pérez-Castillo R. (Eds) Quality of

Information and Communications Technology. QUATIC 2020.

Communications in Computer and Information Science, 1266., 343–357.

http://agilemanifesto.org/

131

Boehm, B., & Turner, R. (2003, June). Observations on balancing discipline and agility.

In Proceedings of the Agile Development Conference, 2003. ADC 2003 (pp.

32-39). IEEE.

Boehm, Barry, & Turner, R. (2004). Balancing agility and discipline: Evaluating and

integrating agile and plan-driven methods. Proceedings - International

Conference on Software Engineering, 26, 718–719.

Bostrm, G., W yrynen, J., Bodn, M., Beznosov, K., & Kruchten, P. (2006). Extending xp

practices to support security requirements engineering. Proceedings -

International Conference on Software Engineering, 2006-May 11–17.

Brauch, H. G. (2011). Concepts of Security Threats, Challenges, Vulnerabilities and

Risks. In H. G. Brauch, Ú. Oswald Spring, C. Mesjasz, J. Grin, P. Kameri-

Mbote, B. Chourou, P. Dunay, & J. Birkmann (Eds.), Coping with Global

Environmental Change, Disasters and Security: Threats, Challenges,

Vulnerabilities and Risks (pp. 61–106). Springer Berlin Heidelberg.

Carlson, D., & Soukop, E. (2017). Why is Sprint Zero a Critical Activity. Cross Talk,

35–37.

Chapman, R. (2006). Correctness by Construction: A Manifesto for High Integrity

Software. ACM International Conference Proceeding Series, 162, 43–46.

Chaudhary, M., Chopra, A., Chaudhary, M., & Chopra, A. (2017). CMMI

Overview. CMMI for Development: Implementation Guide, 1-7.

Cho, J. (2008). Issues and Challenges of Agile Software Development with Scrum.

Issues in Information Systems, 9(2), 188–195.

Conboy, K., & Fitzgerald, B. (2004). Toward a Conceptual Framework of Agile

Methods. Extreme Programming and Agile Methods - XP/Agile Universe

132

2004.Lecture Notes in Computer Science, 3134, 105–115.

Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods

approaches (3rd ed.). London: SAGE Publications, Inc.

Daneva, M., & Wang, C. (2018a, August). Security Requirements Engineering in the

Agile Era: How Does it Work in Practice? 2018 IEEE 1st International

Workshop on Quality Requirements in Agile Projects (QuaRAP).

Daneva, M., & Wang, C. (2018b, August). Security Requirements Engineering in the

Agile Era: How Does it Work in Practice? 2018 IEEE 1st International

Workshop on Quality Requirements in Agile Projects (QuaRAP).

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development:

Introduction to the special section on continuous value delivery. Information

and Software Technology, 77, 56–60.

Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008). Selecting Empirical

Methods for Software Engineering Research. In F. Shull, J. Singer, & D. I.

K. Sjøberg (Eds.), Guide to advanced Empirical Software Engineering (pp.

285–311). London: Springer.

Erdogan, G., & Per, H. (2010). Security Testing in Agile Web Application Development -

A Case Study Using the EAST. 14–27.

Evans, K. (2008). Testing in Scrum Projects. London: Ross Publishing.

Finch, L. (2009). Towards Fit for Purpose Security in High Assurance and Agile

Environments. United Kingdom: Cardiff University.

Gandomani, T. J. (2014). Agility assessment model to measure agility degree of agile

software companies. Indian Journal of Science and Technology, 7(7), 955–

959.

133

Ghani, I., Azham, Z., & Jeong, S. R. (2014). Integrating software security into agile-

Scrum method. KSII Transactions on Internet and Information Systems,

8(2), 646–663.

González-Sanabria, J. S., Morente-Molinera, J. A., & Castro-Romero, A. (2017).

DeSoftIn: a methodological proposal for individual software development.

Revista Facultad de Ingenieria, 26(45).

Goodpasture, J. C. (2015). Project Management the Agile Way, Second Edition: Making

it Work in the Enterprise. J. London: Ross Publishing.

Hefner, R. (1997). Lessons learned with the systems security engineering capability

maturity model. Proceedings - International Conference on Software

Engineering, September, 566–567.

Hneif, M., & Ow, S. H. (2009). Review of Agile Methodologies in Software

Development 1. International Journal of Research and Reviews in Applied

Sciences, 1(1), 2076–2734.

In, H. P., Kim, Y., Lee, T., Moon, C., Jung, Y., & Kim, I. (2005). A Security Risk

Analysis Model for Information Systems 2 Security Risk Analysis Model.

505–513.

Irvine, C. & Nguyen, T.D. (2010). Educating the Systems Security Engineer’s

Apprentice. IEEE Security & Privacy, 8(4), 58–61.

ISO. (2008). ISO/IEC 21827: 2002-10-01 (e) Information technology—Systems security

engineering capability maturity model (SSE-CMM). Washington, DC:

International System Security Engineering Association.

J. C. S. Núñez, A. C. L. and P. G. R. (2020). A Preventive Secure Software

Development Model for a Software Factory: A Case Study. IEEE Access, 8,

134

77653–77665.

Jakobsen, C. R., & Johnson, K. A. (2008). Mature agile with a twist of CMMI. Agile

2008 Conference. 10

Jakobsen, C. R., & Sutherland, J. (2009). Scrum and CMMI - Going from good to great:

Are you ready-ready to be done-done? Proceedings - 2009 Agile

Conference, AGILE 2009, 333–337.

Jamissen, H.-G. (2012). The Challenges to the Safety Process When Using Agile

Development Models. London: Ross Publishing.

Jurjens, J. (2004). Developing Security-Critical Applications with UMLsec A Short

Walk-Through. London: Ross Publishing.

Kagombe, G. G., Mwangi, R. W., & Wafula, J. M. (2021). Achieving Standard Software

Security in Agile Developments. ACM International Conference Proceeding

Series, 24–33.

Karim, N. S. A., Albuolayan, A., Saba, T., & Rehman, A. (2016). The practice of secure

software development in SDLC: an investigation through existing model and

a case study. Security and Communication Networks, 9(18), 5333–5345.

Keramati, H., & Mirian-Hosseinabadi, S. H. (2008). Integrating software development

security activities with agile methodologies. AICCSA 08 - 6th IEEE/ACS

International Conference on Computer Systems and Applications, May, 749–

754.

Koc, G., & Aydos, M. (2017, October). Trustworthy scrum: Development of secure

software with scrum. 2017 International Conference on Computer Science

and Engineering (UBMK).

135

Kourie, D. G., & Watson, B. W. (2012). The correctness-by-construction approach to

programming. London: springer science & Business media.

Lacerda, T. C., & Wangenheim, C. G. (2018). Systematic literature review of usability

capability/maturity models. Computer Standards & Interfaces, 55, 95–105.

Landoll, D. (2011). The Security Risk Assessment Handbook: A Complete Guide for

Performing Security Risk Assessments, Second Edition. In Auerbach

Publications. Retrieved from

https://books.google.ae/books?hl=en&lr=&id=ek3 MBQAAQBAJ

&oi=fnd&pg=PP1&dq=security+risk+assessments+%22complete+guide%2

2&ots=Em8yYbEuUp&sig=6exYzeiR2mtGs6xo4zonjr7QggY&redir_esc=y

#v=onepage&q=security risk assessments %22complete

guide%22&f=false%0Ahttp://

Larman, C., Deemer, P., Vodde, B., & Benefield, G. (2012). Scrum Primer: A

Lightweight Guide to the Theory and Practice of Scrum. In Scrum Prime

(2nd ed.). Boston: scrum alliance. Retrieved from

https://scrumprimer.org/scrumprimer20.pdf

Leffingwell, D. (2007). Scaling Software Agility - Best Practices for Large Enterprises.

New Delhi: Pearson Education.

Leffingwell, D. (2011). Agile Software Requirements; Practices for Teams, Programs

and the Enterprise (Addison Wesley (ed.)). New Delhi: Pearson Education.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., & Brinkkemper, S. (2015, August).

Forging high-quality User Stories: Towards a discipline for Agile

Requirements. 2015 IEEE 23rd International Requirements Engineering

Conference (RE).

https://books.google.ae/books?hl=en&lr=&id=ek3

136

Mailloux, L. O., Grimaila, M. R., Colombi, J. M., Hodson, D. D., & Baumgartner, G.

(2013). System Security Engineering for Information Systems. In Emerging

Trends in ICT Security. Elsevier Inc. London: Ross Publishing.

Mailloux, L. O., McEvilley, M. A., Khou, S., & Pecarina, J. M. (2016). Putting the

“Systems” in Security Engineering: An Examination of NIST Special

Publication 800-160. IEEE Security & Privacy, 14(4), 76–80.

Maqsood, H., & Bondavalli, A. (2020a). Agility of security practices and agile process

models: An evaluation of cost for incorporating security in agile process

models. Proceedings of the 15th International Conference on Evaluation of

Novel Approaches to Software Engineering.

Maqsood, H., & Bondavalli, A. (2020b). Agility of security practices and agile process

models: An evaluation of cost for incorporating security in agile process

models. Proceedings of the 15th International Conference on Evaluation of

Novel Approaches to Software Engineering.

Martin, R. C. (2013). Agile software development: Principles, patterns, and practices.

London: Ross Publishing.

Matinnejad, R. (2011). Agile model driven development: An intelligent compromise.

Proceedings - 2011 9th International Conference on Software Engineering

Research, Management and Applications, SERA 2011, 197–202.

Mcdermott, J., & Fox, C. (2002). Using Abuse Case Models for Security Requirements

Analysis. 15th Annual Computer Security Applications Conference

(ACSAC’99).

McGraw, G. (2006). Software Security- Build Security In. In addison-wesley. London:

springer.

137

McGraw, G., Chess, B., & Miques, S. (2011). Building security In maturity model. 2012

Faulkner Information Services, May 1–61.

Merkow, M. (2019). Secure, resilient, and agile software development. Boston: CRC

Press.

Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel Hybrid Model: Integrating Scrum and

XP. International Journal of Information Technology and Computer Science

(IJITCS), 6, 39–44.

Oueslati, H., Rahman, M. M., & Othmane, L. Ben. (2015). Literature review of the

challenges of developing secure software using the agile approach.

Proceedings - 10th International Conference on Availability, Reliability and

Security, ARES 2015, 540–547.

Paudel, S., Tauber, M., & Brandic, I. (2013). Security standards taxonomy for Cloud

applications in Critical Infrastructure IT. 2013 8th International Conference

for Internet Technology and Secured Transactions, ICITST 2013, 645–646.

Peeters, J. (2005). Agile Security Requirements Engineering. Symposium on

Requirements Engineering for Information Security, 12.

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design

science research methodology for information systems research. Journal of

Management Information Systems, 24(3), 45–77.

Pohl, C., & Hof, H.-J. (2015). Secure Scrum: Development of Secure Software with

Scrum. ArXiv Preprint ArXiv:1507. 02992. Retrieved from

http://arxiv.org/abs/1507.02992

Poppendieck, B. M., & Poppendieck, T. (2003). Lean software development: an agile

toolkit Software Development Managers. In Computer (Vol. 36, Issue 8).

138

London: Ross Publishing.

Prakash, A. (2022). What Is Sprint Zero? Motivation for Sprint Zero in a software

project. Retrieved from https://resources.scrumalliance.org/Article/sprint-

zero

Pries-Heje, L., & Pries-Heje, J. (2011, August). Why scrum works: A case study from an

agile distributed project in Denmark and India. 2011 AGILE Conference.

Qumer, A., & Henderson-Sellers, B. (2008). An evaluation of the degree of agility in six

agile methods and its applicability for method engineering. Information and

Software Technology, 50(4), 280–295.

Qumer, Asif, & Henderson-Sellers, B. (2006a). Comparative evaluation of XP and

scrum using the 4d analytical tool (4-DAT). European and Mediterranean

Conference on Information Systems (EMCIS) 2006.

Qumer, Asif, & Henderson-Sellers, B. (2006b). Measuring agility and adoptability of

agile methods: A 4-dimensional analytical tool. The IADIS International

Conference on Applied Computing 2006, January.

Ransome, J., & Schoenfield, B. S. E. (2021a). Secure design through threat modeling. In

Building in Security at Agile Speed (pp. 185–235). Boston: Auerbach

Publications.

Ransome, J., & Schoenfield, B. S. E. (2021b). Building in security at agile speed. New

York: CRC Press.

Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A study of the Agile software

development methods, applicability and implications in industry.

International Journal of Software Engineering and Its Applications, 5(2),

35–46.

https://resources.scrumalliance.org/Article/sprint-zero
https://resources.scrumalliance.org/Article/sprint-zero

139

Riadi, I., & Prayudi, Y. (2016). A Maturity Level Framework for Measurement of

Information Security Performance. 141(8), 1–6.

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2015). A comparison of security assurance

support of agile software development methods. ACM International

Conference Proceeding Series, 1008(January), 61–68.

Rindell, K., Ruohonen, J., Holvitie, J., Hyrynsalmi, S., & Leppänen, V. (2021). Security

in agile software development: A practitioner survey. Information and

Software Technology, 131, 106488.

Roopa, S., & Rani, M. (2012). Questionnaire Designing for a Survey. The Journal of

Indian Orthodontic Society, 46(December), 273–277.

Ross, R. O. N., & Oren, J. C. (2016). Systems Security Engineering. NIST Special

Publication, 800, 33.

Rover, D., Ullerich, C., Scheel, R., Wegter, J., & Whipple, C. (2014, October).

Advantages of agile methodologies for software and product development in

a capstone design project. 2014 IEEE Frontiers in Education Conference

(FIE) Proceedings.

Runeson, P., Host, M., Rainer, A., & Regnell, B. (2012). Case Study Research in

Software in Software. Retrieved from http://www.worldcat.org/title/case-

study-research-in-software-engineering-guidelines-and-

examples/oclc/828789615&referer=brief_results

Runeson, Per, and M. H. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering, 14(2),

131–164.

http://www.worldcat.org/title/case-study-research-in-software-engineering-guidelines-and-examples/oclc/828789615&referer=brief_results
http://www.worldcat.org/title/case-study-research-in-software-engineering-guidelines-and-examples/oclc/828789615&referer=brief_results
http://www.worldcat.org/title/case-study-research-in-software-engineering-guidelines-and-examples/oclc/828789615&referer=brief_results

140

Sameen Mirza, M., & Datta, S. (2019). Strengths and weakness of traditional and agile

processes - A systematic review. Journal of Software, 14(5), 209–219.

Sánchez, M. C., De Gea, J. M. C., Fernández-Alemán, J. L., Garcerán, J., & Toval, A.

(2020). Software vulnerabilities overview: A descriptive study. Tsinghua

Science and Technology, 25(2), 270–280.

Schön EM., Winter D., Escalona M.J., T. J. (2017). Key Challenges in Agile

Requirements Engineering. Lecture Notes in Business Information

Processing, 283. Retrieved from https://doi.org/10.1007/978-3-319-57633-

6_3

Schwaber, K, & Sutherland, J. (2011). The Scrum guide. 2(July), 17. Retrieved from

http://www.scrum.org/scrumguides/%5Cnhttp://pdf4420.psxbook.com/scru

m_1868546.pdf

Schwaber, Ken, & Sutherland, J. (2017). The Scrum Guide: The Definitive Guide to

Scrum: The Rules of the Game. London: Ross Publishing.

Shawky, D. M., & Ali, A. F. (2013). A Practical Measure for Software Development

Process Agility. November 2010. London: Ross Publishing.

Shostack, A. (2014). Threat modeling: designing for security. John Wiley & Sons, Inc.

Sillitti, A., & Succi, G. (2005). Requirements engineering for agile methods.

Engineering and Managing Software Requirements, 309–326.

Silverman, D. (2013). Doing Qualitative Research: A Practical Handbook (4th ed.).

London: SAGE Publications, Inc.

Singh, N., Patel, P., & Datta, S. (2021, December). A survey on security and human-

related challenges in agile software deployment. 2021 International

Conference on Computational Science and Computational Intelligence

141

(CSCI).

Singh, R. (2011). Impact of requirement engineering processes on software development

cost. Indian Journal of Applied Research, 4(5), 200–209.

Siponen, M., Baskerville, R., & Kuivalainen, T. (2005). Integrating security into agile

development methods. Proceedings of the 38th Annual Hawaii International

Conference on System Sciences, 185a--185a.

Sonia, S. A. (2011). Development of Agile Security Framework Using a Hybrid

Technique for Requirements Elicitation. Advances in Computing,

Communication and Control. ICAC3 2011, Communications in Computer

and Information Science, 125, 178–188.

SSE-CMM Project. (1999). Systems Security Engineering Capability Maturity Model

SSECMM Model Description Document. London: Ross Publishing.

Stol, K.-J., & Fitzgerald, B. (2020). Guidelines for Conducting Software Engineering

Research. In M. Felderer & G. H. Travassos (Eds.), Contemporary

Empirical Methods in Software Engineering (pp. 27–62). London: Springer,

Cham.

Sutherland, J., Jakobsen, C. R., & Johnson, K. (2008). Scrum and CMMI level 5: The

magic potion for code warriors. Proceedings of the Annual Hawaii

International Conference on System Sciences.

Sven, T., & Poller, A. (2017). Managing Security Work in Scrum: Tensions and

Challenges. SecSE. London: Ross Publishing.

Taati, A., & Modiri, N. (2015). An Approach for Secure Software Development

Lifecycle Based on ISO / IEC 27034. International Journal of Information

Technology (IJOCIT), 601–608.

142

Taherdoost, H. (2018). Validity and Reliability of the Research Instrument; How to Test

the Validation of a Questionnaire/Survey in a Research. SSRN Electronic

Journal, 5(3), 28–36.

Telemaco, U., Oliveira, T., Alencar, P., & Cowan, D. (2020). A catalogue of agile

smells for agility assessment. IEEE Access, 8, 79239–79259.

Terlecka, K. (2012). Combining kanban and scrum -- lessons from a team of sysadmins.

2012 Agile Conference. http://dx.doi.org/10.1109/agile.2012.20

UCEDAVÉLEZ, T., & MORANA, M. M. (2015). Risk Centric Threat Modelling:

Process for Attack Simulation and Threat Analysis. New York: John Wiley

& Sons, Inc.

Viega, J., & McGraw, G. (2011). Building Secure Software: How to Avoid Security

Problems the Right Way (paperback) (Addison-Wesley Professional

Computing Series). New York: Addison-Wesley Professional.

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and

Software Engineering. Springer. https://doi.org/10.1007/978-3-662-43839-8

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).

Experimentation in Software Engineering. Berlin Heidelberg Springer.

Woody, C. (2013). Agile Security – Review of Current Research and Pilot Usage. SEI

White Paper.

Xu, S. (2017). Empirical research methods for software engineering: Keynote address.

2017 IEEE 15th International Conference on Software Engineering

Research, Management and Applications (SERA).

Zhang, H., Huang, X., Zhou, X., Huang, H., & Babar, M. A. (2019). Ethnographic

Research in Software Engineering: A Critical Review and Checklist.

143

ESEC/FSE 2019: Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 659–670.

144

APPENDICES

Appendix I: Questionnaire

1. What is your role in the project? ________________________________

2. How long did the sprint take? _______________

3. Security engineering activities questions, indicating the level attained by each

measure implemented.

For each question, answer according to the level attained indicated by the

key table provided.

 0 1 3 Additional comment

 Question

1 Were Security controls

properly configured in

terms of mechanisms put in

place?

2 Was security awareness and

a mutual understanding of

security needs reached

between all applicable

parties, including the

customer achieved?

3 Was everyone's

responsibility as far as

security is concerned clear?

4 Were the activities effective

in maintaining a security

posture?

5 Were you able to identify

and characterise security

impacts of risks to the

system?

6 Were you able to

understand the security

risk?

145

7 Were you able to prioritise

the risks in the PB?

8 Were you able to build the

assurance argument to

satisfactory levels?

9 Were you able to capture

and monitor security

requirements changes?

10 Was the system security

designed and implemented

according to the

understanding established?

11 Did the solutions meet the

system's security

requirements?

12 Was agility affected in any

phase? Please describe the

phase and how?

13 Was assurance achieved?

146

Appendix II: Initial product backlog

ID
User Story Priority Story

Point

1 As an owner/manager/employee I want to login to my

account so that I have access to my drive application.

A 5

2 As an owner/manager/employee I want to logout of my

account so that the computer no longer has access to my

drive account.

A 2

3 As an owner/manager/employee I want to access the

map view so that I can view the rental car’s location in

real time.

A 8

4 As an owner/manager/employee I want select a car so

that I can see information about it.

A 5

5 As an owner/manager I want to add another user to a

company so that he has access to the company.

A 3

7 As an owner I want to assign a tracking device to a

company so that the company has access to its tracking

information.

A 5

31 As an owner/manager I want to add information about a

car so that I can remember information about it.

A 5

6 As an owner/manager I want to remove another user

from a company so that he no longer has access to the

company.

B

2

147

8 As an owner/manager I want to add a geofence to a

company so that I could track if a rental car went to a

forbidden area.

B

5

9 As an owner/manager I want to remove a geofence from

a company so that I am no longer tracking if a rental car

went outside the geofence.

B 2

10 As an owner/manager I want to create a group of rental

cars so I can easily filter the cars in the group from the

others.

B 3

12 As an owner/manager/employee I want to filter the

mapview by group so that I only see the cars in the

group.

B 3

19 As an owner/manager/employee I want to assign a car

plate number to a rental car so that I can identify it

better.

B 2

20 As an owner/manager/employee I want to see a car’s

information online and when I select it so that I can see

more information about it.

B 5

11 As an owner/manager I want to remove a group so that I

no longer see it as an available filter.

C 2

13 As an owner/manager/employee I want to see if a car is

online/offline so that I can see which rental cars are in

use.

C 3

14 As an owner I want to filter the mapview by company

so that I can see only the rental cars in that company.

C 3

148

15 As an owner/manager/employee I want to see popular

stops so that I can better analyse my customers’

behaviour.

C 13

16 As an owner/manager/employee I want to see popular

routes so that I can better analyse my customers’

behaviour.

C 13

17 As an owner/manager/employee I want to see the

bandwidth usage for each rental car so that I can

respond if any of them are not behaving as expected.

C 5

18 As an owner/manager/employee I want to see the total

bandwidth usage for the rental cars that are filtered in

the map view so that I can keep track of the usage.

C 3

32 As an owner/manager/employee I want to be able to

change the language of the website so that I can

understand it better

C 2

21 Setup Jenkins continuous integration server for the

project.

A 1

22 Integrate a unit test framework into the project so that it

is run in the commit stage on Jenkins.

A 2

23 Integrate a code coverage framework into the project

that runs in the commit stage on Jenkins and fails the

build if a specific amount of coverage is not met.

A 2

24 Integrate a style checker framework into the project that

runs in the commit stage on Jenkins and fails the build

if it does not follow the coding rules.

A 3

149

25 Setup a process of creating acceptance tests that will run

on the acceptance test stage on Jenkins Server.

A 3

26 Setup a process of creating capacity tests that will run

on the capacity test stage on Jenkins Server.

A 3

27 Create a deployment script that deploys the app to a

development server.

A 3

28 Integrate MongoDB into the project. A 1

29 Integrate Here API into the project. A 2

30 Integrate React into the project. A 1

150

Appendix III: OWASP Top 10

151

Appendix IV: Security Assurance Checklist Signed for an abuse case.

