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ABSTRACT 

Sentiment analysis has demonstrated that automation and computational recognition 

of sentiments is possible and evolving, due to factors such as, emergence of new 

technological trends and the continued dynamic state the human language. Sentiment 

analysis is therefore an Information extraction task that aims at obtaining private 

sentiments that can either be expressed as ‘positive’ or ‘negative’, toward a specific 

object or subject. However, social media platforms are marred with unstructured texts 

that make extraction and parsing of relevant information a problem for most systems 

and models. This can pose as a challenge to companies, individuals or organizations 

seeking to make specific strategic decisions based on the available data. To overcome 

such inefficiencies, on the first phase of experimentation of this study, the research 

implemented the use of two classifier models, Naïve Bayes and Support Vector 

Machine, based on feature selection and extraction of sentiments from Twitter product 

reviews. This was with the aim of evaluating performance of the classifiers on a 

‘positive’ and ‘negative’ sentiment classification of product reviews. The classifiers 

are commonly used as benchmarks against which state-of-the-art (SOTA) approaches 

and techniques can be compared. The second phase of the experiments involved 

implementation of an ensemble model of the two classifiers, where the two supervised 

classifiers together with the ensemble model were compared and evaluated, based on 

the models’ accuracy measures, precision and robustness. Comparison of the two 

classifiers were concluded, and a competitive performance between Naïve Bayes and 

SVM was recorded. In addition, initial experiments in terms of accuracy and error rate 

measurement with Naive Bayes and SVM classifiers, indicated Naive Bayes classifier 

to be better in performance with progressive increase in the total number of documents 

to be analyzed. SVM classifier on the other hand, equally demonstrated good 

performance on the final phase of Ensemble model experimentations. The results 

indicated that both SVM and Naïve Bayes were good classifiers for text classification, 

where, relatively good performances were achieved on accuracy, with the best 

performing classifiers attaining 99.40%. As there existed significant amount of errors 

for the classifiers, SVM and the Stacked Ensemble model performed at 0.60% on error 

rate. While based on the general performance outcome of the classifiers, Naïve Bayes 

could not be arguably regarded as an unstable classifier. In the final phase, the Stacked 

Ensemble model additionally demonstrated a good ability to cope with errors, resulting 

to the development of a robust model. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Research Background 

Vosoughi, Zhou and Roy (2016) argue that the rise and popularity of the need to mine 

unstructured data, and the use of social media platforms or microblogging, especially 

Twitter, has made Sentiment analysis of tweets an important area of research. At the same 

time, it has given web users a venue for expressing and sharing their thoughts, opinions 

or sentiments on all kind of topics and events. As expressed by Alayba, Palade, England 

and Iqbal (2017) and Ahmad, Aftab, Muhammad and Ahmad (2017), Twitter has millions 

of users worldwide that constantly tweet, making it a gold mine for communities, 

organizations as well as individuals to monitor their reputation, monitor how people feel 

over time about their brands – by extracting and analyzing the tweet sentiments posted by 

the public about them, their market or competitors. These monitoring processes can be 

referred to as Social Listening (Ducange, Fazzolari, Petrocchi, & Vecchio, 2019). In 

addition, popularity of online shopping has also increased. As such, reviews of almost any 

product or business exist and are monitored by the respective stakeholders. One way this 

is being accomplished is through Sentiment Analysis (Ahmad et al., 2017; Sarker, 2021).  

According to Yang, Zhang, Yu, Yu and Zeghlache (2014) these online social interactions 

can be used to reveal individuals’ or groups of individuals’ behavior, or a community 

dynamics, to better understand the public’s perception, by mining the digital traces left by 

users while interacting with cyber-physical space, such as microblogs, for profitable 

reasons. This has led to the emergence of research on Social and Community Intelligence 

that present opportunities to compile these digital footprints into a comprehensive picture 

of individuals’ daily life facets, transform the understanding of our needs, organizations 

and societies; while also enable innovative improvement on products, public safety, 

resource management and environmental monitoring.  
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Such information submitted to the online services are a form of data sources that can be 

used in Sentiment analysis. Models in Sentiment analysis over twitter data and other 

microblogs faces several new challenges due to the short length and irregular structure of 

textual data – also commonly known as high dimensions. These challenges may include 

informal or colloquial content, misspellings errors, use of various languages, voluminous 

data, among others (Chandni, Chandra, Gupta, & Pahade, 2015; Shirbhate & Deshmukh, 

2016; Awachate & Kshirsagar, 2016). As such, a problem of focusing on the most relevant 

information from the voluminously complex data, during Sentiment Analysis, may arise. 

In addition, relevant feature extraction is significant for Sentiment classification as the 

opinionated texts may have high dimensions, which can affect classifier performance 

(Tripathy, Anand, & Rath, 2017; Zheng, Wang, & Gao, 2018). 

Studies in the field of Sentiment Analysis on microbloging, such as research works done 

by Tripathy et al. (2017) and Sarker (2021) indicate that in today’s digital world, standard 

Machine Learning techniques outperform human produced techniques which may include 

manually choosing good indicator words for positive and negative sentiments in textual 

data. Additionally, combination of models, for instance, where a research study in 

Tripathy et al. (2017) studied microblogging reviews and built Unigram. Feature-based 

models for classifying reviews, with models built for two classification tasks, where the 

binary task (positive and negative) found out that a model of combining unigrams with 

selected features, outperformed other combinations of models and was the best performing 

system for the positive versus negative task. 

Yadav, Kudale, Gupta, Rao and Shitole (2020) extracted features inform of unigrams and 

bigrams while at the same time experimented with various classifiers such as Naïve Bayes, 

Decision Tree, Random Forest, XGBoost and SVM. The researchers concluded that using 

sentiment features rather than conventional text classification models gave high accuracy. 

This conclusion was as a result of the various inherent draw backs of the individual 

classifiers. For instance, while experimenting with Naïve Bayes and Decision Tree, it was 

found that it was easier to confirm feature presence, as opposed to identifying the 
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frequency of features, because Naïve-Bayes is essentially built to work better on integer 

features rather than floats. 

From the above researches, it was hypothetical that experimentation of Naïve Bayes and 

SVM could lead to good results since according to Jurafsky and Martin (2017) and as 

demonstrated in Chapter 2.5 in this study, subject category classification is the task for 

which Naïve Bayes algorithm was invented. Meaning that the algorithm’s goal is to take 

a single observation, extract some useful features, and classify the observation into one of 

a set of discrete classes.  

While Naïve Bayes and SVM are commonly used as benchmarks against which state-of-

the-art (SOTA) approaches are compared, other techniques of classifying text such as the 

rule-based classifiers, prove to be fragile, as situations or data change overtime. At the 

same time, humans aren’t necessarily good at coming up with rules for all tasks (Jurafsky 

& Martin, 2017). In addition, Decision Tree classifiers are relatively expensive as 

complexity and time taken to train the model is more (Dhiraj, 2019). However, classifiers 

like Naïve Bayes and SVM are not computationally costly, but neural networks and 

attention models have shown that they are computationally costly (Wankhade, Rao, & 

Kulkarni, 2022). 

SVM is a non-probabilistic binary linear classification algorithm that has the ability to 

linearly separate classes by a large margin and has been proven to be highly effective in 

traditional text categorization and opinion mining, performing better than other machine 

learning techniques (Osisanwo, et al., 2017; Balahur & Perea-Ortega, 2015). Sentiment 

Classification using Naïve Bayes and SVM classifiers has been commonly used as 

benchmarks against which state-of-the-art or newly proposed approaches can be compared 

(Wankhade et al., 2022). 

With this background in mind, the aim of this research was to experiment and evaluate 

the performance of Naïve Bayes and Support Vector Machine (SVM) classifiers, with an 

intension of integrating the two classifiers, and creating an ensemble model for accurate 
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classification purposes. This was aimed at achieving and evaluating a better predictive 

model, as the research problem originates as a combination of a Machine Learning and 

Information Retrieval challenge. By combining these fields, a problem of extraction of 

relevant Features in Sentiment analysis existed.  

1.2 Problem Statement 

Opinionated texts in Sentiment Analysis are dynamic, shortened, have spelling errors and 

generally unstructured, hence, focusing on the most relevant information (features) 

becomes daunting. In addition, Sentiment analysis involves processing of voluminous 

numbers of data points, which results to high computational cost (Wankhade et al., 2022). 

These factors lead to classification inefficiencies. 

Alayba et al. (2017) in their research study established that their model of combining 

unigrams with selected features was the best performing system for positive versus 

negative task in Sentiment Analysis. However, as much as Naïve Bayes classifier was 

regarded as a good classifier for text classification (Jurafsky & Martin, 2017) while both 

Naïve Bayes and SVM were frequently used as base classifiers or benchmarks against 

which state-of-the-art (SOTA) approaches were evaluated, most studies in Machine 

Learning such as the research work done by Tripathy et al. (2017) and Kusumawati, 

D’arofah, & Pramana (2019) demonstrate that SVM performs better than most Machine 

Learning algorithms. Tripathy et al. (2017) and Wankhade et al. (2022) also pointed out 

that Hybrid Machine Learning approaches to sentiment classification of reviews produces 

better accuracies in comparison to the baseline results, and are widely utilized technique 

in sentiment categorization.  

As such, these outcomes intuitively guided our research to therefore study and experiment 

on the impact of Naïve Bayes and SVM as Machine learning sentiment classifiers on 

classification performance in terms of accuracy, precision and robustness; while at the 

same time experiment on combining unigrams with selected features, and finally 

experiment on creating an ensemble of the two classifiers. 
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Our study therefore evaluated the performance of Naïve Bayes and Support Vector 

Machine classifiers as single models, and experimented on integrating the two classifiers 

so as to create an ensemble model. The assumption was that the experiments would lead 

us to achieving a better predictive performance. This was based on the hypothesis that 

ensemble learning helps improve machine learning results by combining several models’ 

benefits (Araque, Corcuera-Platas, Sánchez-Rada, & Iglesias, 2017). SVM classifier has 

been widely used for Sentiment analysis and is also suitable for high-dimensional input 

space (Tellez, et al., 2017), while Naïve Bayes is a simple and intuitive probabilistic 

classifier (Devika, Sunitha, & Ganesh, 2016). A proposed combination of the two 

classifiers was expected to improve the classification process for product reviews (Araque 

et al., 2017). 

1.3 Objectives 

1.3.1 General Objective 

To develop an ensemble model for Target Sentiment classification of product reviews 

using Naïve Bayes and Support Vector classifiers.  

1.3.2 Specific Objectives 

1 To identify a basic workflow for conducting sentiment analysis for product reviews 

from Twitter data. 

2 To assess and validate the performance of Naïve Bayes and Support Vector Machine 

as supervised Machine Learning algorithms in sentiment classification. 

3 To experiment with the proposed algorithms singularly and finally based on the 

resulting outcome, determine a suitable approach for creating an ensemble model of 

the two classifiers. 

4 To develop and validate the performance of the proposed ensemble model, based on 

Naïve Bayes and Support Vector Machine, to be used in sentiment classification of 

products reviews. 
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1.4 Research Questions  

1 What is the basic workflow for conducting sentiment analysis for product reviews 

from Twitter data?  

2 What is the performance of Naïve Bayes and Support Vector Machine as supervised 

Machine learning algorithms in sentiment classification? 

3 Based on the results of the experiments of the two proposed algorithms, what is the 

suitable approach for creating an ensemble model of the two classifiers? 

4 What is the performance of the proposed ensemble model, based on Naïve Bayes and 

Support Vector Machine, as used in Sentiment classification of products reviews?  

1.5 Justification  

Automated softwares have various major impacts on Sentiment Analysis; improved 

processing speed, is one impact that many users can attest to. However, questions that 

relate to conclusiveness, accuracy or the general performance of systems may arise. For 

instance, challenges for automation in Sentiment analysis may include analysis of 

colloquial or unstructured data, and selection of the most relevant features to drive a 

learning process (Dashtipour, et al., 2016; Bagheri, Saraee, & de Jong, 2013). The 

unstructured data or sentiments may include non-standardized languages such as slang. A 

sentiment’s contextual meaning in one informal language setting, may be completely 

different in another, while automated analysis may also be at a greater risk of assigning 

an incorrect sentiment or wrongly classifying a sentiment. This is because it may not take 

into account semantic orientation or context of a sentiment, or the consideration of prior 

posts or sentiments of an author (Vosoughi et al., 2016). Identifying context manually in 

sentences or texts has proven to be easier for human readers, while also allowing readers 

to correctly classify or assign sentiments as they read. However, it has at the same time 

proven to be complex in automation of large scale sentiment analysis (Dashtipour, et al., 

2016). 
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Social media is dynamic in nature (Kapoor, et al., 2018) as it is characterized by constantly 

changing languages that seem to appear almost on a daily basis (Dashtipour, et al., 2016), 

this makes it almost impossible for automation to keep up (Hira & Gillies, 2015). Yet, 

data from analysis such as Social Listening provides a strong base for product 

development, market research, customer insights and consumer profiling (Yang et al., 

2014). These factors encourages more research in the field of Sentiment analysis. 

1.6 Scope of the Study 

Computational analysis for this research was carried out using Twitter and R-Studio 

statistical software. Twitter is an online news and Social networking platform that allows 

users to post and interact by means of messages, popularly referred to as ‘tweets’. It is also 

a widely used online ‘word of mouth’ free microblogging service, which is known to be a 

useful social networking platform for trending analysis in real time, given the amount of 

data and its popularity in different countries (Vilares, Alonso, & Gómez-Rodríguez, 

2017). Access to twitter is through its website interface, SMS or mobile device Apps. 

Users are also enabled to upload video contents. These factors have made twitter an 

important tool for studying the behavior, attitude of people and generally, it has been used 

continually as a social listening tool. Ultimately, it is important to classify these topics or 

information into general categories with high accuracy for better information retrieval, as 

in the case of Sentiment Analysis (Soong, Jalil, Ayyasamy, & Akbar, 2019).  

One of the greatest appeal about Twitter is in its accessibility. It is easy to use for both 

sharing information and collecting it. Most of the trending topics on Twitter are global, 

for instance, ‘#smartphone’ for smartphone features and accessories’ reviews, and 

‘#electronics’ for various electronic products reviews. These characteristics make twitter 

a good place to collect real time and latest data to analyze and do any kind of research for 

real life situations (Mehta, Pandya, & Kotecha, 2021). This research was proposed to use 

datasets that were generated by mining tweets related to product reviews. Authors of these 

tweets were expected to write about the products they use, their experiences, and most 

importantly share their reviews about their ecommerce activities. 
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Additionally, for computational text analysis and data mining, R-Studio statistical 

software (R Core Team, 2022) was also used as a computational environment to carry out 

the sentiment analysis. R-Studio is a free, open-source, cross-platform programming 

environment, and according to Welbers, Atteveldt and Benoit (2017) in contrast to most 

programming languages, R-Studio was specifically designed for statistical analysis, which 

makes it highly suitable for Data science applications such as Sentiment Analysis. 

1.7 Thesis Organization 

The research thesis is basically divided into five chapters. Chapter 1 is an introductory 

chapter in which we have discussions about Sentiment analysis background. This is then 

followed by a description of the problem statement together with the research study 

objectives and questions. The chapter is then finally concluded by the discussion on the 

research justification and scope of the study. 

Chapter 2 begins with a general introduction to Sentiment Analysis and Machine 

Learning. A detailed description is then given on the need and rise of Sentiment Analysis 

over the periods, due to the emergence of technologies such as Social Networking. This 

is then followed by a discussion and analysis of various text and document modeling 

approaches that have been used in the field of Sentiment Analysis, Text Mining and n-

gram document modeling. An analysis of Naïve Bayes and SVM Machine learning 

algorithms and their applications in text categorization is then discussed. 

Chapter 3 presents the research study’s methodology. Scientific experiments were used in 

this research study. The chapter therefore starts by describing the sentiment analysis 

process in R-Studio envirnment, data mining procedures and data preparation. Finally, it 

describes how the Lexicon based sentiment classification process was carried out. 

Chapter 4 is dedicated to giving a detailed explanation on the experiments, results and 

discussions. This starts with an outline of the data preparation techniques and finally 

models creation. The classifiers are first modelled singularly before an ensemble model is 
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created. Finally, Chapter 5 covers all the work done in summary, achievements, 

conclusions, recommendations, limitations of the research study, knowledge contribution 

and future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 General Introduction 

In today’s digital economies, individuals and companies are exchanging business ideas, 

thoughts through online web forums, blogs and social media platforms. A major chunk of 

these information shared online are about reviews and opinions on various aspects of 

human interactions. It is evident that online users give such reviews and sentimental 

opinions on products, brands or services provided. According to Bose, Dey, Roy and 

Sarddar (2020) analyzing reviews on products not only improve product quality, but also 

influences purchase decisions of the consumers. Thus, product review analysis is a widely 

accepted technological trend in Sentiment analysis. 

As indicated by Soong et al. (2019) and Gao, Feng, Song and Wu (2019) in the field of 

Sentiment Analysis, an increased attention is now focused on analysis of social media 

content especially, Twitter. This may facilitate the understanding of social aspects and 

measure confidence level of products, policies, or the perceived image of a company. 

These social media contents are often in form of informal messages that are short and 

textual in nature. As such, these messages bring in new challenges to Sentiment Analysis. 

They are limited in length, tend to have many misspellings errors, shortened form of 

words, over capitalization, an over use of numbers or the use of non-standard expressions 

such as ‘gr8’ instead of ‘great’ (Lo, Cambria, Chiong, & Cornforth, 2017). They also have 

special markers such as hashtags and other characters (Kham, 2019; Gollapalli & Ng, 

2021; Awachate & Kshirsagar, 2016). These challenges can be referred to as high 

dimensions in social media textual data (Gaikwad, Chaugule, & Patil, 2014). According 

to Tellez et al. (2017) along with these challenges, a practical sentiment classifier should 

be able to handle efficiently, large workloads. 
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For this reason, in the field of Artificial Intelligence, Machine Learning approaches have 

been widely applied for the automation of Sentiment Analysis to provide computers with 

the ability to handle large workloads, and also the ability to learn without being explicitly 

programmed, while at the same time improve efficiency for classifiers. With emphasis on 

text sentiment analysis, researches are mostly narrowed down to carrying out studies on 

feature selection or extraction, and analysis of classifiers used in models. This has been 

evidenced in the reports of works done by various researchers as reviewed in the following 

literature. 

According to Yadollahi, Shahraki and Zaiane (2017) Sentiment analysis is an Information 

Extraction task that aims to obtain a writer’s feelings expressed in positive or negative 

comments by analyzing a large number of documents. It is therefore the computational 

technique for extracting, classifying, understanding and determining opinions expressed 

in various contents. Sentiment analysis attempts to identify a sentiment held towards an 

object and helps in the automation of extraction or classification of sentiment from 

unstructured text. Further, in their research, the researchers describe Sentiment Analysis 

as an aim to determine the state of mind of a speaker or writer with respect to some topic 

or even the overall tonality of a document. 

As Mohammad (2017) and Ebrahimi, Yazdavar and Sheth (2017) clearly puts it in their 

research, there are challenges in sentiment analysis such as subjectivity classification, 

word sentiment classification, detecting sentiment, document sentiment classification and 

opinion extraction, among other challenges. These challenges can be resolved through 

various computational approaches for sentiment analysis such as Linguistic Approaches 

and Machine Learning approaches. Linguistic approach relies on disambiguation, using 

background information such as a set of rules and vocabularies. Thus, such a system 

normally contains lexicons, which consist of words and their polarity values such as 

‘positive/ negative’ or ‘bad/good’ (Wankhade et al., 2022; Gao, Feng, Song, & Wu, 2019). 

There are also a set of rules that help produce more accurate results as an integral part of 

such a system. The Machine Learning approaches however, are used for automatic 

sentiment classification and are approved by many researchers as the efficient way to 
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analyze sentiment laden terms in a document. The researchers also recommend that 

improving the quality of these systems is an area for future work. 

With this regard, feature selection and extraction has been exhibited as an important area 

geared towards the improvement of quality and efficiency in Sentiment Analysis by many 

researchers (Tripathy et al., 2017 & Pratiwi, 2018). This partly forms the basis of this 

study. Das, Mishra and Rout (2019) together with Hasan and Abdulazeez (2021) 

suggested that employing various feature reduction and extraction techniques decreases 

the running time of learning while increasing success rate of algorithms. 

Zheng et al. (2018) also acknowledges that feature selection is significant for Sentiment 

Analysis, as opinionated texts may have high dimensions, which have proven to adversely 

affect the performance of classifiers. These high dimensions may include mixed sentiment 

in a piece of text, sarcastic tones present in texts, presence of slang or shorthand writing 

among others (Ebrahimi et al., 2017). 

Das et al. (2019) presented a Firefly algorithm with a very high evolutionary framework 

that delineated outstanding performance for their prediction model. The feature reduction 

and selection method tried to answer common questions that users have when looking for 

new techniques to select distinctive features to result in improvement of classification 

performance. Consequently, it is clear that to reach an optimal performance level, and 

improve efficiency of classifiers during analysis, it is advisable to include important 

features in the prediction and extraction of Sentiment information. These important 

features can be referred to as ‘relevant’ features (Badillo, et al., 2020).  

Deniz and Kiziloz (2017) researched and proposed a model, using n-gram features, 

stemming and feature selection to overcome some Turkish newspaper article classification 

challenges in sentiment analysis. The researchers also acknowledged, according to their 

findings, that feature selection in Sentiment analysis could improve classifier 

performance. The proposed method used different preprocessing techniques, namely; n-
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gram, stemming, and punctuation removal. The researchers then examined the effects of 

each preprocessing method separately, and presented their results. 

Asif, Ishtiaq, Ahmad, Aljuaid and Shah (2020) focused their research on sentimental 

analysis of social media multilingual textual data to discover the intensity of extremist 

sentiments. The study classified the incorporated textual views into four categories that 

included high extreme, low extreme, moderate, and neutral; based on their level of 

extremism. On the initial part of their experiments, a multilingual lexicon with the 

intensity weights was created. This lexicon was validated from domain experts and it 

attained 88% accuracy for validation. Classification was performed by using different 

supervised and unsupervised algorithms and concluded that supervised algorithms 

performed better than unsupervised algorithms. In supervised algorithms, Linear Support 

Vector Classifier resulted in the highest accuracy of 82% as feature selection methods 

were also incorporated. The unsupervised algorithms – KNN, classified with an accuracy 

of 26%. 

Vosoughi et al. (2016) used contextual information to better predict the sentiment of 

tweets by studying the rich metadata of tweets, which included location, timestamp and 

author information. This was achieved by the use of a distant supervised Twitter sentiment 

classifier, Bayesian approach and a standard n-gram model, which achieved better 

accuracy performance as compared to other state of the art distant supervised Twitter 

sentiment classifiers. The Bayesian approach was used to incorporate the relationship 

between the contextual factors and tweet sentiments into standard n-gram based Twitter 

sentiment classification. Probability of the contextual feature sentiments was calculated 

as being positive or negative based on historical tweets. However, the researchers did not 

consider other contextual features that could be predictive of sentiment on Twitter such as 

topic type features, for example hash tags. 

Alayba et al. (2017) carried out a research that detailed a process of collecting tweets, 

filtering, pre-processing and carrying out text normalization. Their initial experiments 

were conducted by utilizing Deep Neural Networks and several other Machine Learning 
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algorithms while, a combination of “Unigram” and “Bigram” techniques were used for 

text feature selection. The best performing classifiers for the study were Machine Learning 

algorithms. 

Apart from feature selection and extraction, Sabri and Saad (2016) acknowledges that 

Feature Engineering is also a very important task in the domain of Sentiment Analysis and 

generally in text categorization, and converting original documents to feature vectors is 

critical. The study proposes a supervised learning approach for sentiment analysis in 

Arabic language, while empirical study was done to evaluate various Feature Selection 

Methods and showcase that selection of the right feature set, determines the overall 

performance of classifiers.  

Shirbhate and Deshmukh (2016) in their research, focused on acquiring a considerably 

reduced amount of features, without affecting the performance of the classifier. The 

classifier was able to determine positive, negative and neutral sentiments from tweets. The 

classifier was based on the multinomial Naïve Bayes classifier that uses Unigram and POS 

tags as features. These researchers also found that different types of features and 

classification algorithms could be combined in order to increase performance, and so, they 

combined Naïve Bayes classifier with Mutual Information Feature selection algorithm 

(MI). They however did not explore other combinations such as combinations of classifier 

algorithms. By using MI feature selection algorithm along with Naïve Bayes classifiers, 

the system recorded an improved performance in terms of accuracy. 

Duwairi and Qarqaz (2014) in their paper, researched on Sentiment Analysis in Arabic 

reviews from a Machine Learning perspective, and employed three classifiers, Naïve 

Bayes, SVM and K-Nearest Neighbor in a parallel experimentation to detect polarity of 

reviews. These classifiers were run on the dataset of tweets and comments that were 

collected from Twitter and Facebook. The tweets and comments addressed general topics 

such as education, sports and political news. Precision and recall were used as 

performance metrics and evaluation for each classifier. 
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Most of these researches involved single models for Sentiment Analysis and classification. 

However, this study was mainly intended to create and use Ensemble Machine Learning 

approach, that is, a combination of Support Vector Machine (SVM) and Naïve Bayes for 

Classification of Sentiments. As Zhou (2021) describes in his book, Ensemble methods, 

also referred to as multiple classifier systems, try to construct a set of learners or 

algorithms and combine them for generalization. Their outputs could also be combine into 

a single prediction. The generalization of ensembles is often assumed by various 

researchers to be much stronger than the use of single learners or algorithm.  Among other 

various advantages, ensembles are able to boost weak learners and are unlikely to over fit 

and improve performance (Rokach L. , 2005). According to Džeroski, Panov, and Ženko 

(2009), the purpose of learning is typically to achieve better predictive performance as 

ensembles can be typically more accurate than single learners. Conclusively, majority of 

state-of-the-art sentiment analysis makes use of accuracy, F1 score, and precision as 

performance evaluation parameters (Wankhade et al., 2022). One of our proposed aim 

was therefore to evaluate the performance of our proposed classifiers for Sentiment 

Classification in terms of accuracy, precision and robustness. 

2.2 Text Mining 

According to Vijayarani and Janani (2016) Text Mining is a domain in Data Mining that 

is used to extract interesting information, knowledge or pattern from both unstructured 

and semi-structured data in databases. This kind of analysis involves processes such as 

document gathering, pre-processing, text transformation, attribute selection, pattern 

selection and finally interpretation and evaluation of results. 

Data mining however, is the process of extracting hidden predictive information from 

databases and transforming it into meaningful and understandable formats for future use 

(Gupta & Chandra, 2020). 

Text mining is used to analyze large quantities of Natural Language text – these include 

text in both Standardized languages and Informal languages, or used in Computational 
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Linguistic. It is assumed universally by researchers that writers or speakers have some 

affective value (sentiment) to entities (Hovy, 2015). Human beings use their 

understanding of emotional intent of words to infer as to whether a text is ‘positive’ or 

‘negative’, or maybe characterized by other more nuanced emotions such as ‘surprise’ or 

‘disgust’ (Silge & Robinson, 2020). Text mining helps detect lexical patterns that are used 

for the ultimate extraction of unseen data or useful information (Vijayarani & Janani, 

2016). This unseen data is useful to organizations and individuals in various Social 

listening applications, for instance, business analytics or trend predictions. Moreover, the 

Text Mining tools can be used to approach the emotional content of text programmatically 

(Silge & Robinson, 2020). 

2.2.1 Opinionated Information 

Textual information can be categorized into Factual and Opinionated information (Pawar, 

Jawale, & Kyatanavar, 2016; Carrillo-de-Albornoz, Rodriguez Vidal, & Plaza, 2018). 

Factual information (facts) are objective expressions that describe entities, events and their 

properties, while, Opinionated information (opinions) are commonly subjective 

expressions that describe individual’s sentiment, opinions or feelings toward entities, 

events and their properties. These kind of information are mostly available on user-

generated content platforms such as Social networks, internet forums, discussion groups 

and blogs (Chaturvedi, Cambria, Welsch, & Herrera, 2018). 

Sentiments and opinions can be analyzed in terms of the topic of the sentiment/ opinion, 

the holder of the sentiment/ opinion, the claim and sentiment within the a document (Li, 

Peng, Sun, Chai, & Wang, 2017). The holder believes a claim about a topic, and associates 

a sentiment, for example ‘good’ or ‘bad’, with his/her belief. Generally, human beings 

love to express their sentiments or opinions and emotions over entities or objects in both 

their physical and online interactions, for example, “this lipstick shade is better than that 

one” or “I hate this food!” As a result, it is evident that there is a great deal of importance 

to opinions especially in decision making. In e-commerce, we sometimes need to review 

other people’s opinion in order to make purchase decisions (Chaturvedi et al., 2018). 
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Large volumes of data are therefore collected from the World Wide Web, while ‘user-

generated’ content forums are also provided to collect such opinions and sentiments, 

which can also be referred to as an online word of mouth, and are later presented to the 

world. To help navigate through these large volumes of data and address challenges that 

are posed during analysis and mining of the said data, adoption of processes such as 

Sentiment Analysis and Opinion Mining have risen to provide automatic and semi-

automatic methods for generalization and interpretation of Sentiments/Opinions in form 

of texts (Liu B. , 2012). 

2.2.2 Social Networking 

Social Networking is a social infrastructure technology that allows microblogging. It is 

the grouping of individuals into specific groups such as cliques. These groups can be 

influenced on various grounds based on friendship, political, religious, business or peer 

preferences; all together sharing information of their interest online. Social networks 

enable users to share information, knowledge and support each other in an informational 

and emotional way (Forouzandeh, Sheikhahmadi, Rezaei Aghdam, & Xu, 2018)  

Social Media however, are the forms of electronic communication such as Websites for 

social networking and microblogging, through which users create online communities to 

share information, ideas, personal messages, and other contents such as videos. Examples 

can include websites like Facebook, Twitter, and LinkedIn (Shah, 2017). 

Social Networking and Social Media are platforms that are characterized by ease of access 

and are mostly free of charge to users. For this reason, as well as the increased dependence 

on technology globally, individuals and organizations indulge in these forms of 

interactions to make new friends, stay in touch with loved ones, give feedback or opinions 

on product or service, and have fun while doing business (Vosoughi et al., 2016; Shah, 

2017). 



 

18 

Consequently, a lot of opinionated information are generated from such interactions that 

are collectively referred to as User-generated content. These are textual information that 

can be inform of known standard languages e.g. English or Informal and mixed linguistic 

languages (Kim & Johnson, 2016 ). 

2.2.3 Microblogging. 

According to Gao and Li (2017) Microblogging is a form of online collaboration that has 

become increasingly popular with time. It is a web service that allows subscribers to relay 

short or ‘micro’ textual messages, links, videos and images to other users of the service. 

These contents can be sent from either a computer or mobile device.  

‘Blog’ is a short word for ‘web blog’ which provides a platform where users write about 

their feelings and activities in form of sentiments or opinions, so other people can read 

them. Blogs are therefore generally website that are periodically updated by authors and 

writers about and around some common theme or topic of interest. Commercial 

microblogs exist to promote service and/or products, websites and collaboration within an 

organization or externally with consumers. Microblogging tools include Twitter, 

Facebook, and Instagram among others (Shirbhate & Deshmukh 2016). 

The major appeal of microblogging is for both its immediacy and profitability in terms of 

ease of use and accessibility. Blog posts are typically brief and short, and can be relayed 

with various computing devices including phones (Gao & Li, 2017). According to Hornak 

(2009) with microblogging, one can get quick tidbits of information to many or hundreds 

of potential user or followers in seconds. Some of the benefits that can be achieved by 

individuals or companies include building brand awareness, growing a business network, 

giving the client base important announcements, and finally, giving and getting feedback 

both internally and externally from stakeholders. 
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2.3 Sentiment Analysis 

Sentiment Analysis is also a text analysis process that can be referred to as an analysis 

involving the use of Machine Learning, Natural Language Processing and Computational 

Linguistics; to identify and extract structured information from the unstructured, 

voluminous and highly dimensional text documents, to drive profitability and foster better 

decision making.  It is also referred to as Opinion mining (Wankhade et al., 2022; 

Bhadane, Dalal, & Doshi, 2015; Ahmad et al., 2017). It is therefore the application of 

Natural language processing, Computational linguistics, Text analytics to identify and 

extract subjective information from source materials (Hovy, 2015) such as internet text 

like documents, Product reviews, Tweets and other social media materials (Tejwani, 

2014). 

The term Sentiment Analysis can be interchangeably used with Opinion Mining, and 

involves the process of computational treatment of opinions, sentiments, and subjectivity 

in texts (Pang & Lee, 2008; Zhang & Liu, 2017). Its basis is to ascertain the attitude of a 

writer or speaker, in reference to certain topic or specific targeted object or entity, or the 

overall contextual polarity of a document (Hovy, 2015). This ‘attitude’ that changes 

overtime, reflects the speaker’s or writer’s appraisal, judgment, opinion, or evaluation; 

his/her affective state, which is the emotional state of the writer at the time of writing, and 

intended emotional communication, which refers to the emotional effect of the writer, the 

writer wishes to have on the reader (Hovy, 2015). 

Sentiments on the other hand are emotions, judgments, opinions or ideas, and can also be 

thoughts or views based on emotion instead of reason. It is a kind of subjective impression, 

and can be termed as the expression of sensitive feeling in art and literature (Yadollahi et 

al., 2017). 

Human beings are subjective creatures by nature (Tejwani, 2014). Our decisions are based 

on or influenced by stimuli, which includes personal feelings, tastes or opinions. 

According to Rana and Cheah (2016) together with Li et al. (2017) as much as sentiments 
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reflect the holder’s emotions or desires, people however, express their sentiments in 

complex ways. These can be in terms of explicit or implicit expressions.  For example, “I 

think that attacking Somali would put the Kenyan Government in a difficult position”, is 

an implicit sentiment, while, “The Kenyan attack on Somali is wrong”, is an explicit 

sentiment. 

Explicit sentiments are aspects explicitly mentioned as nouns or noun phrases in a 

sentence, while, implicit sentiments are those aspects not explicitly mentioned in a 

sentiment or sentence but are implied (Rana & Cheah 2016). 

2.3.1 Sentiment Analysis Process in R-Studio 

With the increasing importance of computational text analysis and Data mining (Boumans 

& Trilling, 2016; Grimmer & Stewart, 2013), many researchers face the challenge of 

learning how to use advanced software that enables Text analysis. Currently, one of the 

most popular environments for computational methods and the emerging field of Data 

Science is the R statistical software, R-Studio (R Core Team, 2017). 

R-Studio is a free, open-source, cross-platform programming environment, and according 

to Welbers, Atteveldt and Benoit (2017) in contrast to most programming languages, R-

Studio was specifically designed for statistical analysis, which makes it highly suitable for 

Data science applications such as Sentiment Analysis. R-Studio has tools that are adequate 

for Sentiment Analysis. The tools now available for carrying out text analysis in R 

environment make it easy to perform powerful, cutting-edge text analytics using only a 

few simple commands. 

Welbers et al. (2017) also points out that one of the main reasons for R’s explosive growth 

has been its densely populated collection of extension software libraries, known in R 

terminology as packages, supplied and maintained by R’s extensive user community. Each 

package extends the functionality of the base R language and core packages, and in 

addition to functions, data must include documentation and examples, often in the form 
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of vignettes demonstrating the use of the package. The best-known package repository, 

the Comprehensive R Archive Network (CRAN), currently has over 10,000 packages that 

have been published, and which have gone through an extensive screening for procedural 

conformity and cross-platform compatibility before being accepted by the archive. R 

software therefore features a wide range of inter-compatible packages, maintained and 

continuously updated by scholars, practitioners, and projects such as R-Studio and 

rOpenSci. Furthermore, these packages may be installed easily and safely from within the 

R environment using a single command. R thus provides a solid bridge for developers and 

users of new analysis tools to meet, making it a very suitable programming environment 

for scientific collaboration. 

Welbers et al. (2017) further explains that Text analysis in particular has become well 

established in R environment. There is a vast collection of dedicated text processing and 

text analysis packages, from low-level string operations (Gagolewski, 2017) to advanced 

text modelling techniques such as fitting Latent Dirichlet Allocation models (Blei, Ng, & 

Jordan, 2003; Roberts, et al., 2014). 

According to Welbers et al. (2017) one of the main advantages of performing text analysis 

in R-Studio is interoperability. This means that it is often possible, and relatively easy, to 

switch between different packages or to combine them. This helps to maximize flexibility 

and choice among users, for example, the tif (Text Interchange Formats) package 

(rOpenSci Text Workshop, 2017) describes and validates standards for common text data 

formats, while R-Studio also has functions that allow reading texts from various types of 

file formats such as, txt, csv and pdf into a raw text corpus. As a result, learning the basics 

for text analysis in R provides access to a wide range of advanced text analysis features. 
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2.3.2 Approaches Used for Informal or Mixed Linguistic Languages’ Sentiment 

Analysis. 

According to Soong et al. (2019) and Lo et al. (2017) based on Sentiment Analysis 

taxonomy, there are two approaches that are fundamentally used for Informal or mixed 

linguistic language Sentiment analysis, these are Subjectivity and Polarity detection.  

2.3.2.1 Subjectivity Detection 

Subjectivity detection involves procedures that help in understanding if contents contain 

personal views and opinions in private state. Subjective expressions may arise from 

cultures or various experiences of an individual or community, and hence can be localized 

and made specific to individuals or society as a whole. According to Sarker (2021), most 

studies on Sentiment analysis focus on highly subjective texts, such as product reviews, 

movie reviews or more generally, textual data reviews.  

2.3.2.2 Polarity Detection 

Polarity detection is about studying subjective expressions in terms of different polarities, 

intensities or rankings. These categories can also be referred to as classes, such as 

‘positive’, ‘negative’ and ‘neutral’ or ‘joy’, ‘sadness’, ‘anger’ and ‘fear’ (Rashid, Anwer, 

Iqbal, & Sher, 2013; Namugera, Wesonga, & Jehopio, 2019). 

2.4 Automation of Sentiment Analysis 

Social Networking and microblogging have revolutionized social interactions on the 

online platform. Individuals and organizations interact online to carryout business 

transactions, share information, connect to friends or loved ones, while also indulge in 

gossip. This has been done with no particular format or standard, as users’ sentiments are 

coupled with rampant errors in spelling, poor punctuations and are written quickly just as 

thought. These sentiments can also be written in both standard and Informal languages. 
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For this reason, Social Networking has become very popular (Shah, 2017; Gao & Li 

2017). 

With the large amount of opinionated information generated from these interactions, it is 

therefore critical to make fact based decisions, analyze user behavior and make real time 

assessments that depend on how fast the individuals or organizations can make insightful 

predictions from these voluminous and disseminated information, so as to drive profitable 

actions (Shirbhate & Deshmukh 2016; Shah, 2017). 

Consequently, there is a need to automate the process of Sentiment Analysis since too 

much work is involved in manual processing. Various approaches in both Machine 

Learning and Natural Language Processing are adopted; however, Machine Learning and 

Artificial Intelligence related approaches are most popular (Jotheeswaran & Koteeswaran, 

2015; Neethu & Rajasree, 2013; Asif et al., 2020). 
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Figure 2.1: Machine Learning 
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2.4.1 Machine Learning. 

According to Chatsiou and Mikhaylov (2020) Machine Learning is a field concerned with 

the question of how to construct computer programs that automatically improve with 

experience. This means that Machine Learning explores the study and construction of 

algorithms that can learn from, and make predictions on data. Precisely put, a computer 

program is said to learn from experience ‘E’ with respect to some class of tasks ‘T’ and 

performance measure ‘P’, if its performance at tasks in ‘T’, as measured by ‘P’, improves 

with experience ‘E’. 

Chatsiou and Mikhaylov (2020) and Cho, Vasarhelyi, Sun and Zhang (2020) state that the 

purpose of Machine Learning is to learn from training data so as to make predictions on 

new or unseen data, this is what is referred to as ‘Generalization’. These learning 

algorithms operate by building specific models through learning or training, while the 

learned model can be called a hypothesis or a learner. There exist different learning 

settings, among which the most common ones are supervised learning and unsupervised 

learning (Chatsiou & Mikhaylov, 2020). 

As demonstrated in Figure 2.1, Machine Learning has sub categories of Supervised 

Learning, Unsupervised Learning and Semi-Supervised Learning. 

2.4.2 Supervised Machine Learning. 

Supervised Learning is a Machine Learning approach where all data is labelled and the 

algorithms learn to predict the output from the input data or the training dataset. Specific 

output values are supplied, and the algorithm iteratively makes predictions on the training 

data, while learning is improved with the experience learned. In this approach, learning 

stops when the algorithm achieves an acceptable level of performance (Hastie, Tibshirani, 

& Friedman, 2009). 

According to Korjus, Hebart and Vicente (2016) and Alpaydin (2014) Supervised 

Machine Learning require splitting of the dataset into a training set and a test set. A 



 

26 

training set is the actual dataset or a sample of the dataset used to train or fit a model. The 

model learns from the training set. A test set on the other hand, is the sample of the dataset 

used to provide an unbiased evaluation of a final model trained on the training dataset. It 

provides the ultimate standard used to evaluate the model. Finally, the goal of Supervised 

Machine Learning for a classification problem is to find a model that accurately classifies 

and generalizes. To test the generality of a learned model, that model is typically applied 

to the test dataset and the prediction outcome then informs a researcher about the 

performance of the model. This therefore informs the understanding that the learning 

process in a simple Machine Learning model is divided into two steps; training and testing 

(Nasteski, 2017). 

Further, Korjus et al. (2016) states that finding an optimally performing model as per the 

researcher’s objective requires a set of assumption and a trade-off in model complexity. 

Too simple parameters lead to under-fitting, meaning that the model is not able to account 

for the complexity of the data; while too complex parameters lead to over-fitting, meaning 

that the model is too complex and fits to noise in the data.  

The trade-off in model complexity refers to the bias-variance trade-off. Bias is the 

difference between the average prediction of a model and the correct value of the 

parameter being predicted. A model with high bias refers to a model that does not 

accurately classify the training data and oversimplifies the model. This leads to high errors 

on training and test data. Variance on the other hand, is the variability of the model’s 

prediction for a given data point. A model with high variance focuses on the training data 

and does not generalize on the data which it has not seen before – the test set. 

Consequently, such models perform very well on training data, but dismally on test data, 

leading to errors (Singh, 2018). 

Maniruzzaman, Rahman, Ahammed and Abedin (2020) and Korjus et al. (2016) explains 

that to test the different research assumptions and optimize the bias-variance trade-off, a 

researcher may have to partition the dataset into training and test set, a common practice 

for model training in the field of machine learning. 
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2.4.2.1 Supervised Learning Classifiers in Text Classification 

The recent explosion of information and the availability of the increasing number of 

electronic documents from a variety of sources, together with the emergence of the 

Information age era, has particularly had an impact on businesses. These involve impact 

on corporate strategies and business decision making processes. Businesses need 

intelligence inform of information to help understand the market trends, and as a tool for 

their day-to-day operations. They therefore need to obtain accurate and relevant 

information about their products, competitor’s activity or consumer feedback in their 

sectors. For this reason, text-mining studies have gained more importance. The main 

purpose of text mining is to enable users extract information from textual resources and 

deal with the operations such as retrieval, summarization and classification (Korde & 

Mahender, 2012). 

2.4.2.2 Text Classification Process 

According to Undhad & Bhalodiya (2017) and Korde and Mahender (2012) the aim of 

research on text classification is to improve the quality of text representation and develop 

high quality performing classifiers. The following steps are therefore included in Text 

classification process; 
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Figure 2.2: Steps in Text Classification 

Documents: This is the first step in text classification process, which entails the collection 

of data from different data formats such as pdf, doc, and html.  

Pre-processing: The data collected from various source is often incomplete, inconsistent 

and likely to contain errors. It is therefore taken through various other procedures such as 

stop word removal, to present the data in the text documents in clear word formats.  

Indexing: This is a document representation, and is one of the pre-processing technique, 

which is used to reduce the complexity of the documents and make them easier to handle. 

The documents are transformed from full text documents to document vectors. 

Feature selection and extraction: The aim of Feature selection and extraction is to select 

and extract subset of features from the main documents. Feature selection is performed by 

keeping the words with the highest score according to predetermined measure of the 

importance of the word. 

Classification: Documents are classified into predetermined categories. This is widely 

done by using Machine Learning approaches such as Naïve Bayes, Decision tree, k-NN, 

SVM, Neural networks among others. 

Performance Measure: This is the last stage of Text classification where the evaluation 

of text classifiers is typically carried out experimentally. The experimental evaluation of 
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classifiers usually tries to evaluate the effectiveness of a classifier, that is, it capability of 

taking the right classification decision. Measures may include measure on accuracy, 

precision and robustness 

Techniques for text classification can be classified in two main commonly used 

approaches; Linear approaches and Probabilistic approaches (Fragos, Belsis, & Skourlas, 

2014). 

2.4.2.2.1 Linear classifiers 

The goal of classification in machine learning is to group items that have similar feature 

values into classes or groups. A linear  classifier achieves  this  by  making  a  classification  

decision  based  on  the  value  of the linear  combination of  the  features (Osisanwo, et 

al., 2017).  If the input feature vector to the classifier is a real vector  �⃗�, then the output 

score can be found in the equation below; 

𝑦 = 𝑓(�⃗⃗⃗�  ⋅  �⃗�) = 𝑓 ( ∑  

𝑗

𝑤𝑖𝑥𝑖)                                                                               2.1 

Linear models for classification such as Support Vector Machine (SVM) separate input 

vectors into classes using linear (hyperplane) decision boundaries (Osisanwo, et al., 2017). 

Osisanwo, et al. (2017) further elaborates that for a two-class classification problem, one 

can visualize the operation of a linear classifier as splitting a high-dimensional input space 

with a hyperplane, such that, all points on one side of the hyper plane can be classified as 

‘yes’, while the others are classified as ‘no’, as shown in Figure 2.3. He further states that 

a linear classifier is often used in situations where the speed of classification is an issue, 

since it is often the fastest classifier, especially when the real vector (�⃗�) is sparse. At the 

same time the researcher points out that linear classifiers often work very well when the 

number of dimensions in  �⃗�  is large, especially in document classification, where each 

element in �⃗� is typically the number of counts of a word in a document. The rate of 

convergence among dataset variables however, depends on the margin. Roughly speaking, 
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the margin quantifies how linearly separable a dataset is, and hence how easy it is to solve 

a given classification problem (Setiono & Loew, 2000 ; Osisanwo, et al., 2017). 

 

  

 

 

             

 

Figure 2.3: A 2-Dimensional Classification 

2.4.2.2.2 Probabilistic Classifiers 

The study of probabilistic classification is the study of approximating a joint distribution 

with a product distribution. Bayes rule is used to estimate the conditional probability of a 

class label, and then assumptions are made on the model, to decompose this probability 

into a product of conditional probabilities (Trivedi & Dey, 2013).  

Trivedi and Dey (2013) further elaborates that a classifier is a function that assigns a class 

label to an example. From the probability perspective, according to Bayes Rule, the 

probability of an example 𝐹 = ( 𝑓1, 𝑓2, … , 𝑓𝑛 ) being class 𝐶 is 

𝑝(𝑐|𝐹) =
𝑝(𝐹|𝑐)𝑃(𝑐)

𝑝(𝐹)
                                                                       2.2 

𝐹 is classified as the class 𝐶 =  + if and only if; 

𝐵𝐶(𝐹) =
𝑝(𝐶 = +|𝐹)

𝑝(𝐶 =  −|𝐹)
 ≥ 1,                                                                       2.3  

Yes 

No 
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Where 𝐵𝐶(𝐹) is called a Bayesian classifier. 

Assume that all attributes are independent given the value of the class variable as in the 

below equation; 

𝑝(E|𝑐) = 𝑝( 𝑓1, 𝑓2, … , 𝑓𝑛|𝑐) =  ∏ 𝑝

𝑛

𝑖=1

(𝑓𝑖|𝑐)                                                     2.4 

The resulting classifier is then; 

𝐵𝑛𝑏(𝐹) =  
𝑝(𝐶=+)

𝑝(𝐶=−)
 ∏  

𝑝(𝑓𝑖|𝐶=+)

𝑝(𝑓𝑖|𝐶=−)

𝑛

𝑖=1
                                                                             2.5  

The function 𝐵𝑛𝑏(𝐹) can be referred to as naïve Bayesian classifier or Naïve Bayes. Naïve 

Bayes classifier being a simplest form of Bayesian network, is one of the most common 

model used in text classification since the original class attribute are assumed to be 

independent given the class label (Trivedi & Dey, 2013). 

2.4.3 Unsupervised Machine Learning  

Unsupervised Learning is a Machine Learning approach where algorithms are trained to 

use data that is not labelled. This means that no training data is provided and the algorithm 

is made to learn by itself while classifying the data without any prior experience (Sethi, 

2020).The goal for unsupervised learning is to model the underlying structure in order to 

learn more about the data, provide insights that were previously unknown and to identify 

hidden patterns (Brownlee, 2019). As such, there aren’t necessarily defined outcomes 

from unsupervised learning algorithms. Rather, this type of learning determines what is 

different or interesting from the given dataset. Unsupervised Learning algorithms can 

therefore be practically applicable in fraud detection and identification of human errors 

during data entry among other applicable areas (Sethi, 2020). 

The goal for this study was to optimize performance criteria using experience (Chatsiou 

& Mikhaylov, 2020). For this reason, the Supervised Learning algorithms applied allowed 



 

32 

the researchers to collect data, label the data and produce a data output from the previous 

experiences. 

According to Jurafsky and Martin (2017), one of the oldest tasks in Text classification is 

assigning a library subject category or topic label to a text. The researchers study reveal 

that subject category classification is the task for which Naïve Bayes algorithm was 

invented, while SVM has been applied successfully in many opinion mining tasks 

(Balahur & Perea-Ortega, 2015). 

2.4.4 Bag-of-Word and n-gram Sentiment Modelling 

Bag-of-word and n-gram Sentiment modelling were used to define a generic way of how 

the text reviews were structured and features extracted. N-gram is a sequence of n words 

from a given sequence of text or speech such as, letters or syllables. The n-grams are 

typically collected from a text or speech corpus. N-grams are commonly used in natural 

language modelling, and assumes that only the previous n-1 word in a sentence have any 

effect on the probabilities for the next word (Nguyen, Nguyen, Duong, & Snasel, 2016; 

Schmidt & Heckendorf, 2017). 

Unigram text model is similar to bag-of-word text model. In unigram model, one word is 

used as a feature, bi-gram model; two words are used, while tri-gram models use three 

words as features. For example, the sentiment ‘This is a great looking phone!’ when 

modeled using unigrams would have ‘This’,  ‘is’,  ‘a’,  ‘great’,  ‘looking’, ‘phone’ as the 

sentiment features. Bigrams would model the sentiments as ‘This is’, ‘a great’, ‘looking 

phone’ as the sentiment features. Trigrams would model the sentiments as ‘This is a’, 

‘great looking phone’ as sentiment features (Nguyen et al., 2016). Trigram and bigram 

models sentiments with dependence or relationship between words which make up the 

sentiments, which can be used to restrict the context within which words are used. The n-

gram model was implemented by the n-gram tokenizer in R-Studio, available in R-Studio 

environment. This was achieved by choosing the minimum and maximum n-gram size.  
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For fixed-length n-grams, the minimum and maximum n-gram number value was equal, 

while in a variable-length, the minimum n-gram size value would have been less than the 

maximum n-gram size value. That is, If N = the number of words in a given sentence K, 

the number of n-grams for sentence K would be Ngrams K = N − (n − 1). The most 

frequent and the most informative words were used as unigram feature vectors, as this 

described the characteristics of the features that were used for classification in the model 

as seen in Figure 3.7 and Figure 3.8 (Nguyen et al., 2016). 

Bag-of-words modelling on the other hand, according to Jurafsky and Martin (2017) was 

used as the simplest representation of text where we had unordered set of words, with their 

exact position ignored. Zhao and Mao (2017) together with Jurafsky and Martin (2017) 

indicated that Bag-of-word features were effective at capturing the general topic of the 

discourse in which the target words had occurred. They also stated that ‘Stop’ words such 

as “the”, “in” and “a”, together with ‘unknown’ words which intuitively seemed 

statistically irrelevant, were often filtered out in various studies, but were nevertheless 

sometimes very helpful in text categorization tasks in other experimental environments. 

Unknown words are words that may appear on the test set and not on the training set, or 

vice vasa, during training (Pawar et al., 2016; Carrillo-de-Albornoz et al., 2018 & Jurafsky 

& Martin, 2017). 

2.5 Sentiment Analysis Classifiers 

This research was regarded as a qualitative research. According to Kumar (2011) a 

qualitative research usually involves studying perceptions, beliefs or feelings and a 

researcher does not make any attempt to establish uniformity in them across respondents.  

The use of algorithms is usually dependent on the type of problem to be studied 

(Osisanwo, et al., 2017). In addition, a researcher can look at a number of dimensions to 

give a sense of what will be a reasonable algorithm or classifier. Some of these could 

include answering questions such as; does the researcher expect the problem to be linearly 

separable? What is the relevance of dimensionality of the feature space? Is over fitting 
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expected to be a problem? And also what are the system's requirement in terms of speed, 

performance, memory usage? In addition, selection of a classification model may also be 

made on the basis of factors such as resources available, accuracy requirement, and 

training time available among other factors (Gupte, Joshi, Gadgul, Kadam, & Gupte, 

2014). Wolpert and Macready (1997) also poses a fundamental question in there research 

that may be of guidance to a researcher; “how should we assess the performance of 

algorithms on problems so that we may programmatically compare those algorithms?” 

The question of identifying a reasonable set of algorithm was therefore addressed by 

following the Occam's Razor principle: ‘Use the least complicated algorithm that can 

address your needs and only go for something more complicated if strictly necessary’. 

However, Osisanwo, et al. (2017) further suggest that, it is essential for a researcher to 

first decide upon a metric to measure performance, then, compare at least a handful of 

different algorithms in order to train and select a best performing model. The commonly 

used metric is classification accuracy, which is defined as the proportion of correctly 

classified instances. 

2.5.1 Naïve Bayes Classifier. 

Most language processing tasks are Classification tasks. According to Khan, et al. (2016) 

Naïve Bayes algorithm is extensively used for text classification and also widely used in 

solving classification problems such as text categorization and is based on Bayes theorem. 

The study focused on the problem of Text categorization, the task of classifying an entire 

text by assigning it a label drawn from some set of labels.   

Sentiment Analysis is an important yet, common text categorization task that involves 

sentiment extraction. At the same time, the ‘positive’ or ‘negative’ orientation that a writer 

expresses toward an object or target is also an important aspect in Sentiment Analysis. A 

review of items such as a book, services or a movie on an online platform, reveals the 

authors’ sentiment towards the items (Wankhade et al., 2022; Bhadane, Dalal, & Doshi, 

2015; Ahmad et al., 2017). 

https://www.quora.com/topic/Occams-Razor
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According to Jurafsky and Martin (2017), one of the oldest tasks in text classification is 

assigning a library subject category or topic label to a text. For instance, deciding whether 

a research paper concerns epidemiology or instead, perhaps, embryology, is an important 

component of information retrieval. The researchers study, also reveal that subject 

category classification is the task for which Naïve Bayes algorithm was invented for in 

the year 1961. The researchers further state that the goal of classification is to take a single 

observation, extract some useful features, and thereby classify the observation into one of 

a set of discrete classes. There are various methods of classifying texts such as the 

application of rule-based classifiers, which, according to the researchers prove to be 

fragile, as situations or data change overtime while for some tasks humans aren’t 

necessarily good at coming up with the rules. For this reason, most problems of 

classification in language processing are done by Supervised Machine Learning. 

However, Decision Tree classifier training in Supervised Learning on the other hand, are 

relatively expensive as complexity and time taken to train the model is more (Dhiraj, 

2019). 

This study therefore implemented Naïve Bayes algorithm for sentiment detection, while 

experiments such as ‘Bag-of-words’ and n-gram were carried out for subjective analysis 

of the datasets. Naïve Bayes has also be been shown by Osisanwo, et al. (2017) and 

Viegas, Gonçalves, Martins and Rocha (2015) to be superior in terms of CPU and memory 

utilization. In addition, the algorithm is a probabilistic classifier and is used to indicate the 

probability of observation being in the class, by calculating the conditional probability of 

each attribute occurring in the predicted classes. The algorithm also assumes attribute 

independence, meaning, each individual feature is assumed to be an indication of assigned 

class, independent of each. 

2.5.1.1 Multinomial Naïve Bayes Classifier 

For the purpose of implementing Naïve Bayes classifier in this study, our focus was the 

Multinomial Naïve Bayes. Multinomial Naïve Bayes classifiers is mostly used in text 
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classification and ultimately makes two simplifying independence assumptions (Jurafsky 

& Martin, 2017; Khan, et al., 2016). 

1. Bag-of-words assumption: where it is assumed that the position of words does not 

matter. A word such as the word ‘great’ has the same effect on classification 

whether it occurs as the 1st or 20th or even the last word in a document. Thus, it is 

also assumed that features  𝑓1, 𝑓2, … , 𝑓𝑛  only encode word identity and not 

position. 

2. Conditional independence assumption: where it is assumed that the probabilities 

of features 𝑃(𝑓𝑖|𝑐) are independent given the class ‘C’, and hence can be ‘naively’ 

multiplied as follows: 

𝑃(𝑓1, 𝑓2, … , 𝑓𝑛|𝑐) = 𝑃( 𝑓1|𝑐)  ·  𝑃( 𝑓2|𝑐)  · … ·  𝑃( 𝑓𝑛|𝑐)                      2.6 

Jurafsky and Martin (2017) further explains that Multinomial Naïve Bayes classifier is 

called so because it is a Bayesian classifier that makes a simplifying ‘naive’ assumption 

about how the features interact. The intuition of Multinomial Naïve Bayes algorithm is 

that text documents are represented as if they were a bag-of-words. This means that 

unordered set of words with their positions on the document ignored are analyzed, while 

keeping only their frequency in the document. For example, instead of representing the 

word order in all the phrases like, ‘I love this movie’ and ‘I would recommend it’, simply, 

what is noted, is the number of times each word occurs in the entire document. 

According to Abbas, et al. (2019) Given a Hypothesis (H) and evidence (E), Bayes' 

Theorem states that the relationship between the probability of the hypothesis before 

getting the evidence, P(H), and the probability of the hypothesis after getting the evidence, 

P(H|E),  is : 

𝑃(𝐻|𝐸) =
𝑃(𝐸|𝐻)𝑃(𝐻)

𝑃(𝐸)
 

Bayes Rule 
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𝑃(𝑐|𝑑) =
𝑃(𝑑|𝑐)𝑃(𝑐)

𝑃(𝑑)
                                                                                   2.7 

To apply the Naïve Bayes classifier to text, we considered word positions, by simply 

introducing an index through every word position in the document as follows; 

Positions   ← all word positions in the test document 

       𝐶𝑁𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝑐) ·  ∏𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑃(𝑤𝑖|𝑐)                                                  2.8 

Naïve Bayes calculations were done in log space (Abbas, et al., 2019; Jurafsky & Martin, 

2017). This was to avoid underflow and increased speed, thus Equation (2.9) was 

generally instead expressed as the final equation; 

𝐶𝑁𝐵 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑙𝑜𝑔𝑃(𝑐) +  Ʃ𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑙𝑜𝑔𝑃(𝑤𝑖|𝑐)                                       2.9 

2.5.1.2Training the Multinomial Naïve Bayes Classifier 

Further, Abbas, et al. (2019) together with Jurafsky and Martin (2017) explains that to 

learn the probabilities of  𝑃(𝑐) and  𝑃(𝑓𝑖|𝑐), that is, the prior probability of a given class 

‘c’ and the probability likelihood of a given feature 𝑓𝑖 given a class ‘c’; we considered the 

maximum likelihood estimate by using frequencies in the data. For  𝑃(𝑐), we identified 

what percentage of documents in the training set were in each class ‘c’. Let 𝑁𝑐 be the 

number of documents in our training data with class ‘c’, and  𝑁𝑑𝑜𝑐 be the total number of 

documents. Thus; 

𝑃(𝑐) =
𝑁𝑐

𝑁𝑑𝑜𝑐
                                                                                  2.10 

To learn the probability  𝑃(𝑓𝑖|𝑐), we assumed a feature is the existence of a word in the 

document’s bag-of-words, and so we had  𝑃(𝑤𝑖|𝑐), which was computed as a fraction 

times the word  𝑤𝑖 appeared among all words in all the documents of class ‘c’. We first 

summed up all documents with category ‘c’ into one big “category c” text. We then used 
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the frequency of 𝑤𝑖 in this summed up document to establish (by counting) a maximum 

likelihood estimate of the probability (Abbas, et al., 2019; Jurafsky & Martin, 2017). 

𝑃(𝑤𝑖|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖|𝑐)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐)𝑤∈𝑣
                                                                             2.11 

A vocabulary ‘V’ of the document which consisted of all the list of words in all classes, 

and not just the words in one class ‘c’, was created (Abbas, et al., 2019; Jurafsky & Martin, 

2017). 

 2.5.1.3 Laplace Smoothing (add-1) 

According to Jurafsky and Martin (2017), Abbas, et al. (2019) together with Liu and 

Martin (2011) Naïve Bayes Classifier has a problem with maximum likelihood training. 

For instance, the problem of ‘unknown word’ particularly in cases where if a feature (or 

word) does not occur in any document in the training set, all documents in the test set that 

contain this same feature will be zero for all classes ‘c’, causing Multinomial Naïve Bayes 

to lose all discriminative power. In addition, rarely occurring features may also be 

problematic if smoothing is not performed. For example, a rare feature that may occur in 

some classes in the training set but does not occur in the test set will dominate probability 

estimates since it will force  𝑃(𝑤𝑖|𝑐) to be zero, regardless of the values of the remaining 

word features. For instance, when trying to estimate the likelihood of the word “great” 

given a class ‘positive’, but there may be no training documents that contain the word 

“great” and are classified as ‘positive’. The word “great” may have occurred sarcastically 

in the class ‘negative’. In such a scenario the probability for this word feature will be zero 

as shown in Equation 2.12. 

𝑃(𝑔𝑟𝑒𝑎𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) =
𝑐𝑜𝑢𝑛𝑡(𝑔𝑟𝑒𝑎𝑡|𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)

∑ 𝑐𝑜𝑢𝑛𝑡(𝑤 ∙ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)𝑤𝑒𝑣
= 0                                                     2.12 

Since Naïve Bayes naively multiplies all the feature likelihoods together, zero probability 

in the likelihood word for any class will cause the probability of the class to be zero, 

despite the evidence (Jurafsky & Martin, 2017). 
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Figure 2.4: The Naïve Bayes algorithm, using Laplace Smoothing  

Source: (Jurafsky & Martin, 2017) 

Therefore Jurafsky and Martin (2017), Abbas, et al. (2019) together with Liu and Martin 

(2011) asserts that the solution to these limitations is parameter smoothing, and for the 

purpose of this study, we applied Laplace smoothing (add-1 smoothing) to prevent cases 

where missing, unknown or rarely occurring features inappropriately dominated the 

probability estimates in Multinomial Naïve Bayes. This approach is commonly used in 

Naïve Bayes text categorization: 

𝑃(𝑤𝑖|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑤𝑖, 𝑐) + 1

Ʃ𝑤∈𝑉(𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐) + 1
=

𝑐𝑜𝑢𝑛𝑡(𝑤𝑖 , 𝑐) + 1

(Ʃ𝑤∈𝑉𝑐𝑜𝑢𝑛𝑡(𝑤, 𝑐)) + |𝑉|
                                       2.13  

A demonstrative example: 

Using a demonstrative example to demonstrate our implementation, we trained and tested 

Naïve Bayes with the Laplace smoothing and used a Sentiment analysis domain with two 

classes; positive (+) and negative (-) (Jurafsky & Martin, 2017; Abbas, et al., 2019; Liu & 
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Martin, 2011). We also used the following miniature training and test document in Figure 

2.5 as simplified from OnePlus mobile product reviews on Twitter. 

 

Figure 2.5: Miniature training and test documents simplified from OnePlus mobile 

product reviews 

From the example in Figure 2.5, we had a total number of 5 documents in the training set, 

with 3 documents in the class ‘positive’ (+), while 2 documents were in the class 

‘negative’ (-). Our goal was then to determine the class of the test document (doc6). 

We therefore first computed the priors as follows;  

𝑃(+) =
3

5
  

𝑃(−) =
2

5
  

We then computed the conditional probabilities or likelihoods, for the words in the test 

set, ‘predictable’, ‘with’, ‘no’, ‘fun’. However, from miniature in Figure 2.5, the word 

‘predictable’ did not occur in the training set therefore, as mentioned previously, we used 

Laplace Smoothing (add 1 smoothing) to find its likelihood. The total summation of words 

in the positive (+) class, for the training set was 23, with a vocabulary of 31 words. While 
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we had a total summation of words in the negative (-) class to be 13. We then established 

the count or appearance of the words in each of the given specific class (+/-). 

Table 2.1: Computations for conditional probabilities for both positive and negative 

class 

𝑃(predictable"| +) =
0 + 1

23 + 31
=

1

54
 𝑃(predictable"| −) =

0 + 1

13 + 31
=

1

44
 

𝑃 (“𝑤𝑖𝑡ℎ”|+)  =     
0 + 1     

23 + 31
=     

 1

54
 𝑃 (“𝑤𝑖𝑡ℎ”|−)  =     

0 + 1     

13 + 31
=     

 1

44
 

𝑃 (“𝑛𝑜”|+)  =     
0 + 1     

23 + 31
=     

 1

54
 𝑃 (“𝑛𝑜”|−)  =     

0 + 1     

13 + 31
=     

 1

44
 

𝑃 (“𝑓𝑢𝑛”|+)  =     
0 + 1     

23 + 31
=     

 1

54
 𝑃 (“𝑓𝑢𝑛”|−)  =     

0 + 1     

13 + 31
=     

 1

44
 

With the use of the Naïve Bayes final Equation (2.9), we thus carried out computation for 

the chosen class as follows; 

𝑃(+) 𝑃(𝑑𝑜𝑐6 | +)   =     
 3

5
× (

1

54
)

4

=
1

14171760
 

= 0.00000007 

𝑃(−) 𝑃(𝑑𝑜𝑐6 | −)   =     
 2

5
×

2

44
× (

1

44
)

3

=
1

4685120
  

= 0.000000213 

With this, the test document could be classified as a ‘negative’ document because the 

highest probability between the two computations was 0.000000213. The model therefore 

predicted the class negative for the test document (doc6). 

2.5.2 Support Vector Machine Classifier. 
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Support Vector Machine (SVM) is a supervised machine learning algorithm which is also 

widely used for classification problems, even though it can also be employed for both 

classification and regression purposes. It is a non-probabilistic binary linear classifier that 

has the ability to linearly separate classes by a large margin (Al Amrani, Lazaar, & El 

Kadiri, 2018). According to Balahur and Perea-Ortega (2015), SVM has been proven to 

be highly effective in traditional text categorization and has been applied successfully in 

many opinion mining tasks, performing better than other machine learning techniques. 

Machine learning algorithms involve, in most cases, minimising an error measure of some 

kind. This measure is often called an objective function or loss function. The objective of 

a linear programming problem would typically be, to maximize or to minimize some 

numerical value. It indicates how much each variable contributes to the value to be 

optimized in a problem (Anderson, 2005; Graves & Jaitly, 2014; Kim & Chung, 2019). 

The objective function therefore takes the following general form: 

Maximize or minimize; 

𝑓 = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑋𝑖                                                                                                   2.14 

Where: ci = is the objective function coefficient corresponding to the ith variable, and; 

 Xi = is the ith decision variable. 

The summation notation for the objective function can be expanded out as follows: 

𝑓 = ∑ 𝑐𝑖

𝑛

𝑖=1

𝑋𝑖   = 𝑐1𝑋1 + 𝑐2𝑋2 + 𝑐3𝑋3 + ⋯ + 𝑐𝑛𝑋𝑛                                  2.15 

The rationale behind SVMs for the purpose of this study, was best explained by 

considering a set of data points that belonged to one of the two classes, ‘positive’ and 

‘negative’, as illustrated in Figure 2.6. 
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Figure 2.6: Linearly Separable Data 

According to Al Amrani et al. (2018), SVM is based on the idea of finding a hyper plane 

that best divides a dataset into two classes, an optimal separating hyper plane that separates 

itself as far as possible from data points from each category as shown in Figure 2.6. These 

datasets could be referred to as, linearly separable datasets or, linear datasets. 

From the Figure 2.6, it was clear that there was a non-zero distance between the two 

closest points, that is, between the categories, therefore, there were infinite numbers of 

possible separation lines. This raised the question as to whether it was possible to choose 

an optimal hyperplane. For SVM, the best or optimal hyperplane was the one that 

maximized the margin, that is, the distance between the separation boundary (the 

hyperplane) and the points that were closest to it (Al Amrani et al., 2018). This is 

illustrated in Figure 2.7. 

 
(+) 

(-) 
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Figure 2.7: Multiple Separation Boundaries (Hyperplanes) 

From the above criterion in Figure 2.7, the position of the hyperplane depends only on the 

data points that are closest to it. This implies that unlike other classification methods, the 

classifier does not depend on any other data points in dataset. The vectors that define the 

hyperplane, or the data points that are closer to the hyperplane and influence the position 

and orientation of the hyperplane are called Support Vectors. The distance between the 

hyperplane and the points closest to it, is referred to as the Euclidean Distance (Ishtiaque 

Ahmed & Nasrin, 2022). This is depicted in Figure 2.8. A direct implication of this was 

that the fewer the support vectors, the better the generalizability of the boundary. A vector 

is a quantity consisting of a magnitude and direction. Geometrically, a vector in a 2-

dimensional plane (x and y graph) is a line from the origin to its coordinates. For instance, 

there would be coordinates (2, 3) where we can sketch a line from the origin to (2, 3) 

which is 2 on the x-axis, and 3 on the y-axis. Additionally, to calculate for magnitude, we 

would have to find the length between the origin (0, 0) and (2, 3) (Ishtiaque Ahmed & 

Nasrin, 2022). 
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Figure 2.8: Optimal Hyperplane in a Supervised Linearly Separable Dataset 

2.5.2.1 Linearly Separable Dataset - Soft Margin Classification  

As depicted in Figure 2.6 linearly separable datasets are datasets in which the hyperplane 

can be easily drawn to separate two classes of data in a 2-dimensionla space, using a 

straight line (Al Amrani et al., 2018; Balahur & Perea-Ortega, 2015). In practice, most 

datasets or real text data sets are seldom linearly separable and demonstrate very high 

dimensional problems, as common in text classification (Osisanwo, et al., 2017; Misra, 

2019). Therefore, when dealing with such real data sets, a simple approach to deal with 

deviations from separating linear datasets was to allow a small number of Support Vectors 

to be misclassified. The number of possible misclassifications were governed by a free 

parameter ‘C’, which was referred to as the Cost. The ‘Cost’ could essentially be referred 

to as the penalty associated with making an error, or more arguably, the tolerance for 

errors was more or less accentuated with the Cost parameter. The higher the value of ‘C’ 

during an algorithm training, the less likely it was that a misclassification would occur. 

This approach is referred to as the Soft Margin Classification, as illustrated in the Figure 

2.9. The ‘Cost’ parameter was therefore used to tune the classifier model. However, when 

‘C’ was too high, the model would tend to over fit while, when ‘C’ was too low, the model 

would on the other hand tend to under fit. With the ‘Cost’ parameter, we were also able 

to develop a robust model with SVM, as our model was robust against the outliers, and 

controlled with the parameter ‘C’ (Mishra, 2020). 

Support (+) 

(-) 

Euclidean distance 
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Figure 2.9: Soft margin classifier of a supervised linearly separable dataset 

Real data sets are much more complicated and complex, and in most cases, cannot be dealt 

with using Soft margin classifiers. For example, Figure 2.10 presents a situation that 

requires the use of multiple and non-linear hyperplanes, while it is also clear that there is 

no single linear decision boundary (hyperplane) to separate the datasets. At the same time, 

the vectors are clearly segregated, and it appears as though it should be easy to separate 

them (Mishra, 2020). 
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Figure 2.10: Non-Linearly Separable Data 

The solution for such a case was to add a third dimension. We continually had two 

dimensions; x and y. We then created a new dimension ‘f’, and ruled that it be calculated 

in a certain convenient way for the study as follows; 

𝑓 = 𝑥2 + 𝑦2                                                                                                           2.16 

This now gave us another higher dimension, and could now introduce us to kernels 

(Bortolussi, Gallo, Křetínský, & Nenzi, 2022). 

2.5.2.2 Non Linearly Separable Dataset - The Kernel Trick  

As discussed earlier in linearly separable datasets, SVM algorithms works by finding an 

optimal hyperplane, which is a boundary that maximizes the margin. This process result 

in a straight line hyperplane, as also illustrated in Figure 2.8, which may not work in most 

cases (Zhang, 2018). This is because the notion of distance can be generalized in terms of 

considering the key properties that any measure of distance must satisfy, which are; Non-

negativity, meaning a distance cannot be negative; Symmetry, which is the distance 

between a point A and a point B is the same as the distance between point B and point A; 

Identity, meaning that the distance between a point and itself is zero; finally, Triangle 

inequality, that is the sum of distances between point A and B and points B and C must 
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be less than or equal to the distance between A and C. Equality holds only if all three 

points lie along the same line (Ciaccia, Patella, & Zezula, 1997). 

Mathematical objects that displays the above properties are related to distance and as such, 

they can be referred to as metrics, while, the mathematical space in which such metrics 

live is called a Metric Space (Sharma, 2019; Ciaccia et al., 1997). Metrics are defined 

using special mathematical functions designed to satisfy the above properties. These 

functions are known as Kernels. A kernel trick essentially maps a classification problem 

to a metric space (feature space), where the problem can be rendered separable by a simple 

hyperplane in the new higher (complex) dimensional space, with which each of the 

dimensions being a combination of the original problem variables. The function of kernel 

is to take data as input and transform it into the required form. SVM algorithms use 

different types of kernel functions such as linear, non-linear and Radial Basis Function – 

RBF (Bortolussi et al., 2022).  

The kernel functions return the inner product between two points in a suitable feature 

space. Thus by defining a notion of similarity, with little computational cost even in very 

high-dimensional spaces. In practice, one does not mess around with the transformations, 

but uses the different kernels in trials to identify the one kernel that completes the job. The 

prediction resulting from using different kernels is then tested against a subset of the data. 

For the purpose of this study, we therefore implemented and experimented with the Linear 

Kernel, since our intension was to have a linearly separable dataset (Zhang, 2018). 
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2.5.2.3 The Classification Concept with Support Vector Machine Classifier 

 

Figure 2.11: Geometric Margin of a point (r) and a decision boundary width  

To formalize the SVM with algebra, a decision hyperplane as shown in Figure 2.11, can 

be defined by an intercept term b and a decision hyperplane normal vector �⃗⃗⃗�  which is 

perpendicular to the hyperplane. In machine learning, the vector �⃗⃗⃗� can be referred to as 

the weight vector (Manning, Raghavan, & Schütze, 2008). To choose among all the 

possible hyperplanes that are perpendicular to the normal vector, we specify the intercept 

term b. Since the hyperplane is perpendicular to the normal vector, all points �⃗�  on the 

hyperplane satisfy  �⃗⃗⃗� �⃗� = −𝑏 . We then have a set of training data points 𝐷 =  { ( 𝑥𝑖⃗⃗⃗⃗ , 𝑦𝑖)},  

where each member is a pair of a point  𝑥𝑖⃗⃗⃗⃗   and a class label 𝑦𝑖  corresponding to it. In 

SVMs, the two data classes are always named +1 and -1, or even 1 and 0; and the intercept 

term is always explicitly represented as b (Manning et al., 2008; Al Amrani et al., 2018). 

The linear classifier is then: 

𝑓(�⃗�) = 𝑠𝑖𝑔𝑛(�⃗⃗⃗��⃗� + 𝑏)                                                                                                       2.17 

We were confident in the classification of a point if it was far away from the decision 

hyperplane (Manning et al., 2008). 

Based on Al Amrani et al. (2018) research, we then used a training dataset of 𝑛 points, 

such that; (𝑥1⃗⃗ ⃗⃗ , 𝑦1), … , (𝑥𝑛⃗⃗⃗⃗⃗, 𝑦𝑛),  a normal vector �⃗⃗⃗�  to the plane and some unknown data 
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point on the plane point  �⃗�. Our main interest was knowing whether the unknown data 

point was on the ‘positive’ class or the ‘negative’ class category. At the same time we 

needed to also employ a constraint (cost) to control and regulate the degree of miss 

classification. When  𝐶 = −𝑏; we therefore found; 

�⃗⃗⃗� ∙ �⃗� = 𝐶                                                                                                    2.18 

�⃗⃗⃗� ∙ �⃗� + 𝑏 ≥ 0                                                                                             2.29 

Without loss of generality if Equation 2.19 was true, with b being a constant, then we 

could make a decision rule that the unknown was a ‘positive’ sample.  

In such a case, we don’t know which �⃗⃗⃗� to use and which constant b to use. However, it is 

clear that �⃗⃗⃗� has to be perpendicular to the hyperplane. 

As seen in the works done by Manning et al. (2008) and Al Amrani et al. (2018), we 

further lay additional constraints to allow us to calculate the constant b and the vector w⃗. 

In a case where the data was linearly separable, the closest points from the two 

classifications, positive and negative, would be found when; 

�⃗� ∙ 𝑥(+)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏 ≥ 1                                                                                            2.20 

With Equation 2.20, any data point on or above this boundary was of positive class. 

�⃗⃗⃗�. 𝑥(−)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ + 𝑏 ≤ −1                                                                              2.21 

While Equation 2.21, demonstrates that any data point on or above this boundary was of 

the negative class. 

  𝑦𝑖This meant that there was a separation of distance of +1 or -1 for all the data point 

samples. We then introduced  where we considered our linear SVM that separated two 

classes   yi = +1 for positive samples, yi = -1 for negative samples. Where we found the 

following; 
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𝑦𝑖(�⃗⃗⃗�. 𝑥𝑖⃗⃗⃗⃗ + 𝑏) ≥ 1 𝑎𝑛𝑑 𝑦𝑖(�⃗⃗⃗�. 𝑥𝑖⃗⃗⃗⃗ + 𝑏) ≥ 1                                                     2.22 

The two equations are the same because when you multiply; (𝑥(−)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )(−1)  =  +1 

Therefore, we concluded that;  

𝑦𝑖(�⃗⃗⃗�. 𝑥𝑖⃗⃗⃗⃗ + 𝑏) − 1 ≥ 0                                                                                     2.23 

We then added a constraint to the equation and set that it would be equal to zero for 

samples that end up in the margin; 

𝑦𝑖(�⃗⃗⃗�. 𝑥𝑖⃗⃗⃗⃗ + 𝑏) − 1 = 0                                                                               2.24 

�⃗⃗⃗�. �⃗� + 𝑏 = 0                                                                                                    2.25 

We then found a hyperplane such that, the set of points could then satisfy the below 

equation; 

2.5.2.4 Finding the Maximum Width of the Geometric Margin 

Al Amrani et al. (2018) also adds that to get width of the margin and compute the 

Euclidean distance (r) as shown in Figure 2.11 we can subtract the negative sample vector 

 𝑥(−)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  from the positive sample vector  𝑥(+)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  and multiply it by a unit vector �⃗⃗⃗�  ̸ ||�⃗⃗⃗�|| which 

is the normal vector �⃗⃗⃗�  divide by magnitude of  �⃗⃗⃗� denoted as  ||�⃗⃗⃗�||, as shown in the 

equation below; 

𝑥(+)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑥(−)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  �⃗⃗⃗�/||�⃗⃗⃗�||                                                                                      2.26 

Using the equation;  𝑦𝑖( �⃗⃗⃗�  ·  𝑥𝑖⃗⃗⃗⃗ + 𝑏) − 1 = 0   we found that,  

𝑋(+)⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗. �⃗⃗⃗�/|�⃗⃗⃗�||                                                                                                                 2.27 

𝑦+1(�⃗⃗⃗�𝑋+1
⃗⃗⃗⃗ ⃗⃗⃗⃗ ) = 1 − 𝑏                                                                                                     2.28 



 

52 

And;  

𝑋(−) 
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  ∙  �⃗⃗⃗�/||�⃗⃗⃗�||                                                                                                           2.29 

𝑦−(�⃗⃗⃗�)𝑋−1
⃗⃗⃗⃗ ⃗⃗⃗⃗ = 1 + 𝑏                                                                                                    2.30 

{(1 + 𝑏) − (1 − 𝑏)} ∙ �⃗⃗⃗�/||�⃗⃗⃗�||                                                                               2.31 

Finally, Equation 2.32 was evident as follows; 

𝑋(+)⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗ −
𝑋(−)⃗⃗ ⃗⃗ ⃗⃗⃗⃗⃗�⃗⃗⃗�

||�⃗⃗⃗�||
=

2

||�⃗⃗⃗�||
                                                                                      2.32 

According to Manning et al. (2008) and Al Amrani et al. (2018) geometrically, the 

distance between the two hyperplanes (width of margin) is 2  ̸ ||�⃗⃗⃗�||, as shown in the 

Equation 2.32. In addition, the shortest distance between a point and a hyperplane is 

perpendicular to the plane, hence, parallel to  �⃗⃗⃗�. The dotted line r as shown in Figure 2.11 

is the translation of the vector  𝑟�⃗⃗⃗�  ̸ ||�⃗⃗⃗�||. The points on the hyperplane closest to �⃗� are 

labelled as �⃗�′ then;  

�⃗� = �⃗� − 𝑦𝑟
�⃗⃗⃗�

||�⃗⃗⃗�||
                                                                                                2.33 

�⃗⃗⃗� (�⃗� − 𝑦𝑟
�⃗⃗⃗�

||�⃗⃗⃗�||
) + 𝑏 = 0                                                                                               2.34 

Where, multiplying by 𝑦 changes the sign for the two cases of �⃗� being on either side of 

the decision surface. Moreover, any data point that lies on the decision boundary will 

satisfy the Equation 2.25. 

Further, to solve r, we had the following;  

𝑟 = 𝑦
�⃗⃗⃗��⃗� + 𝑏

||�⃗⃗⃗�||
                                                                                        2.35 
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As in the Figure 2.11 the points closest to the separating hyperplane are support vectors. 

The geometric margin of the classifier is the maximum width that can be drawn to separate 

the support vectors of the two classes. That is, the margin is equivalently, the maximum 

width of a separating hyperplane. The geometric margin is invariant to scaling of 

parameter (cost) and we can impose any value of a scaling parameter or constraint we 

wish on �⃗⃗⃗� without affecting the margin. This helps prevent data point from falling into 

the margin. For convenience in solving large SVMs, we can choose to require that the 

functional margin of all data points is at least 1 and that it is equal to 1 for at least one data 

vector. That is, Equation 2.22  𝑦𝑖( �⃗⃗⃗�   𝑥𝑖⃗⃗⃗⃗ + 𝑏) ≥ 1; for all items in the data (Manning et 

al., 2008; Al Amrani et al., 2018). 

Further Manning et al. (2008) and Al Amrani et al. (2018) explains that there exist support 

vectors for which the inequality is an equality. Each distance from the hyperplane is; 

𝑟𝑖 = 𝑦𝑖(�⃗⃗⃗� 𝑥1⃗⃗ ⃗⃗ + 𝑏)/||�⃗⃗⃗�||                                                                                              2.36 

The Geometric Margin is 

𝑝 = 2/||�⃗⃗⃗�||                                                                                                                    2.37 

To maximize the Geometric Margin, we want to find �⃗⃗⃗� and constant b such that Equation 

2.37 is maximized. To maximize  2  ̸ ||�⃗⃗⃗�|| , we are tasked with minimizing  ||�⃗⃗⃗�||. Which 

in turn results to; 

1

2
||𝑤||2                                                                                                                   2.38 

Given the constraint in Equation 2.24; the equation that described the boundary or 

hyperplane, we were again tasked with finding an optimized function, which was subject 

to the given constraint. Optimization meant finding the minimum and maximum value of 

our function (Gunal, 2012). 

According to Gunal (2012) we can use the Lagrange Multiplier to find the extreme number 

of the function (maximum or minimum), subject to our constraint in Equation 2.24. This 
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resulted to a new expression which we could optimize. Achieving the maximum possible 

margin was the underlying goal of our SVM classifier. Maximization of the margin 

required the minimization of the training error 

𝑓(𝑥) =
1

2
||𝑤||2 + 𝐶 ∑ 𝑒𝑖

𝑁

𝑖=1

                                                                                2.39 

In the Equation 2.39, Gunal (2012) explains that C is the user defined constant while e is 

the margin error. A margin error occurs if data belonging to a particular class are found 

on the wrong side of the hyperplane. Minimizing the cost was therefore a trade-off issue 

between a large margin and a small number of training margin errors. The solution of this 

optimization problem was obtained as shown in Equation 2.40: 

𝑓(𝑥) = ∑ 𝜆𝑦𝑖

𝑁

𝑖=1

𝑥𝑖                                                                    2.40 

The Equation 2.40 is the weighted average of the training features; where λ is the Lagrange 

Multiplier of the optimizing task, as 𝑦𝑖  remains the class label. The values of λ are nonzero 

(+1 or -1) for all of the points lying outside the margin and which appear on either the 

positive or negative side of the classifier, and exactly zero for those that appear inside or 

on the margin (support vectors), resulting to an SVM classifier (Gunal, 2012) 

2.5.3 Ensemble Learning. 

Ensemble Learning are Machine Learning methods that construct a set of predictive 

models and combine their outputs into a single prediction. Basically, the purpose of 

learning is typically to achieve better predictive performance, as it has been exhibited in 

various works such as Sagi and Rokach (2018) and Zhu, Xie, Wang and Yan (2017) where 

ensembles are shown be more accurate than single models. Sagi and Rokach (2018) gave 

three fundamental reasons why ensemble methods are able to outperform any single 

classifier within the ensemble; which include reasons that are statistical, computational 

and representational related issues. The concept is made simple: train several models from 
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the same data set, or from samples of the same data set, and combine the output 

predictions, typically by voting or stacking for classification problems, and averaging 

output values for estimation problems. 

 

Figure 2.12: Stages of Stacking Algorithm Classification Process 

There are various methods of constructing ensembles with different classifiers for data 

science and analysis. However, just as Wolpert and Macready (1997) puts it, different 

learning methods can be developed to solve different classification problems. Generally 

speaking, according to Seijo-Pardo, Porto-Díaz, Bolón-Canedo and Alonso-Betanzos, 

(2017), there are two kinds of ensembles, homogeneous ensembles and heterogeneous 

ensembles. Homogeneous ensembles are ensembles where all classifiers are of same type 

or family, while heterogeneous ensembles are ensembles where the classifiers are of 

different type or family, that is, diverse (Abuassba, Zhang, Luo, Shaheryar, & Ali, 2017). 

Rokach (2005) explains that there are several factors that can be used to differentiate 

ensemble methods in different dimensions. These include factors to do with Inter-

classifier relationship, classifier combining methods, classifier diversity generator and 

Ensemble size. However, classification can be based on two main dimensions, Inter-

classifier relationship and Combining Methods (Araque et al., 2017). Inter-classifier 
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relationship refer to the methods of achieving learning process, which include Sequential 

and Concurrent methods (Araque et al., 2017). In Sequential approaches, there is an 

interaction between the learning runs and it is possible to take advantage of knowledge 

generated in previous iterations to guide the learning in the next iterations. This approach 

includes techniques such as Model-guided Instance Selection where the classifiers that 

were constructed in previous iterations are used for manipulating the training set for the 

next iteration. Such model-guided algorithms include Boosting, Uncertainty Sampling, 

among others. Sequential approaches also includes Incremental Batch Learning, where 

the classifier produced in one iteration is given as “prior knowledge” to the learning 

algorithm in the following iteration, along with the sub-sample of that iteration. The 

learning algorithm uses the current sub-sample to evaluate the former classifier, and uses 

the former one for building the next classifier.  The classifier constructed at the last 

iteration is chosen as the final classifier (Rokach, 2005). On the other hand, in the 

Concurrent ensemble approaches the original dataset is partitioned into several subsets 

from which multiple classifiers are induced concurrently. The subsets may be disjoint, 

meaning mutually exclusive, or overlapping after which a combining procedure is applied 

in order to produce a single classification for a given instance. Since the method for 

combining the results of induced classifiers is usually independent of the induction 

algorithms, it can be used with different inducers at each subset. Concurrent methods aim 

either at improving the predictive power of classifiers or decreasing the total execution 

time. Algorithms that can be implemented in this approach include Bagging, Cross-

validated Committees among others (Rokach, 2005). 

The second dimension Combining Methods include simple multiple classifier 

combination and Meta combining methods. The simple combining techniques are best 

suited for classification problems where the individual classifiers perform the same task 

and have comparable success. However, these combiners are more vulnerable to outliers 

and to unevenly performing classifiers. The simple combining techniques include 

techniques such as Uniform Voting where each classifier has the same weight, while a 

classification of an unlabelled instance is performed according to the class that obtains the 
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highest number of votes (Rokach, 2005). In addition, in majority voting every classifier 

makes a prediction (votes) for each test instance and the final output prediction is the one 

that receives more than half of the votes (majority). If none of the predictions get more 

than half of the votes, it can be assumed that the ensemble method could not make a stable 

prediction for this instance (Demir, 2015). On the other hand, the Meta learning technique 

means that learning is from the classifiers produced by the base learners (inducers) and 

from the classifications of these classifiers on training data. This includes techniques such 

as Stacking and Arbiter Trees (Rokach, 2005). 

Rocca (2019) identifies three common ways of creating ensembles from these classifiers 

or learners. In bagging approach, the original dataset is partitioned into several subsets 

from which multiple classifiers are concurrently induced. The subsets may be disjoint 

(mutually exclusive) or overlapping. A combining procedure is then applied in some kind 

of deterministic averaging process. Bagging approach can be used to decrease the total 

execution time for classifiers (Rokach, 2005). The second one is boosting, which is also a 

method for improving the performance of any learning algorithm (Rokach, 2005). The 

approach learns the weak leaners sequentially in a very adaptive way and combines them 

following a deterministic strategy (Rocca, 2019). According to Rokach (2005) sequential 

learning can be achieved by repeatedly running a weak learner, on various distributed 

training data. The classifiers produced by the weak learners are then combined into a 

single composite strong classifier in order to achieve a higher accuracy. Finally, the third 

approach is stacking, where meta-learning is done by learning from the classifiers 

produced by the inducers, and from the classifications of these classifiers on training data. 

This method tries to induce which classifiers are reliable and which are not. Stacking is 

usually employed to combine models built by different inducers (Rokach, 2010). 

2.5.3.1 Application of Ensemble Learning 

Ensemble methods can be used for the creation and building of a more conventional 

model. For instance, Ensemble methods can also be used to evaluate the relationship and 

responses in conventional statistical models. As such, Akhtar, Gupta, Ekbal and 
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Bhattacharyya (2017) presented a cascaded framework of feature selection and classifier 

ensemble using Particle Swarm Optimization (PSO) for aspect based sentiment analysis, 

where aspect term extraction and sentiment classification was carried out. The researchers 

used features that were identified based on the properties of different classifiers and 

domains. Three classifiers were used as base learning algorithms, namely Maximum 

Entropy (ME), Conditional Random Field (CRF) and Support Vector Machine (SVM) 

while identified and implemented various lexical, syntactic or semantic level features for 

solving their problems. The eligible classifiers identified were combined using either 

majority or weighted voting. In this study, the ensemble learner was used to find out the 

most eligible models, that when combined together, maximized some classification 

quality measure such as F-measure or accuracy. 

Additionally, Ensemble learning has also been applicable in areas such as deep learning 

techniques for Sentiment Analysis to provide automatic feature extraction, rich in both 

representation capabilities and better performance as compared to traditional feature based 

techniques in social applications (Araque et al., 2017). The focus of deep learning 

techniques is to learn complex features extracted from data with minimum external 

contribution (Bengio, 2009) using deep neural networks (Alpaydin, 2014).  Researchers 

seek to improve performance of deep learning techniques by integrating them with 

traditional feature based techniques, based on manually extracted features, where 

ensemble techniques are used to aggregate baseline classifier (a word embedding model 

and a linear machine learning algorithm) with other traditional classifiers widely used in 

Sentiment Analysis (Araque et al., 2017). As a result from the research, their statistical 

study confirmed that the performance of the proposed ensemble models surpassed that of 

their original baseline models on F1-Score. 

In addition, Ensemble learners have also been used to minimize error rate of models in 

Sentiment Analysis. For instance, Alnashwan, O’Riordan, Sorensen and Hoare (2016) 

employed a four base learners to investigate the effectiveness of using a combination of 

existing lexicon resources as meta-level features in ensemble learning for sentiment 

classification. This offered advantages over using either a single lexicon resource or a 
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single classifier. Moreover, their experiment showed that, based on a combination of 

existing lexicon resources, the ensemble learners minimized the error rate by avoiding 

poor selection from stand-alone classifiers. 

Fersini, Messina, and Pozzi (2014), studied Ensemble Learning to reduce the noise 

sensitivity related to language ambiguity and therefore to provide a more accurate 

prediction of polarity. The researchers asserted that most of the existing approaches in 

Sentiment Analysis select the best classification model leading to over-confident 

decisions that do not take into account the inherent uncertainty of the natural language. 

They addressed the classifier selection problem by proposing a greedy approach that 

evaluated the contribution of each model with respect to the ensemble. 

2.5.3.2 Contributions of Ensemble Learning 

An ensemble learning is a Machine Learning process to get better prediction performance 

by strategically combining the predictions from multiple learning algorithms (Abuassba 

et al., 2017; Tuwe, 2015). Further, Sagi and Rokach (2018) states that an ensemble of 

classifiers is a set of classifiers whose individual decisions are combined in some way to 

classify new examples. This has truly demonstrated that ensembles are usually 

significantly more accurate than single learners, as the base classifiers are trained to solve 

the same original problem but combined to get better results (Araque et al., 2017). 

Ensemble methods have already achieved great success in many real-world applications 

(Zhou, 2012). 

In addition, according to Sagi and Rokach (2018) the three basic reasons that make it 

possible to construct good ensembles in practice include statistical reasons, where a 

learning algorithm or classifier can be viewed as searching a space H of hypotheses to 

identify the best hypothesis in the space. The statistical problem arises when the amount 

of training data available is too small compared to the size of the hypothesis space. 

Without sufficient data, the learning algorithm can find many different hypotheses in H 

that all give the same accuracy on the training data. By constructing an ensemble out of 
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all of these accurate classifiers the algorithm can ‘average’ their votes and reduce the risk 

of choosing the wrong classifier, this can also be referred to as ‘over fitting avoidance’. 

The second reason is a computational reason where the researcher identified that many 

learning algorithms or classifiers work by performing some form of local search that may 

get stuck in local optima. For example, in this study, we demonstrate that classification 

algorithms such as SVM employ Soft Margin Classification approach where the ‘Cost’ 

parameter ‘C’ which is the cost function, is used to tune the model, then cross validation 

is carried out to minimize an error function over the training data. In instances where the 

statistical problem is absent, due to availability of enough training data, it may still be 

difficult computationally for the learning classifier to find the best hypothesis.  An 

ensemble constructed by running the local search from many different starting points may 

provide a better approximation to the true unknown function than any of the individual 

classifiers. Finally, the third reason is representational, which refers to the functions which 

the model can learn. In most applications of machine learning, the true function f cannot 

be represented by any of the hypotheses in H. By forming weighted sums of hypotheses 

drawn from H, it may be possible to expand the space of representable functions. This is 

a somewhat subtle issue because there are many learning algorithms for which H is, in 

principle, the space of all possible classifiers (Sagi & Rokach, 2018). 

Often times, there are various important factors to consider when creating ensembles such 

as biasness or variance of base learners (Rocca, 2019). However, Hansen and Salamon 

(1990) and Sagi and Rokach (2018) points out that accuracy and diversity are some of the 

key metrics used when developing ensembles. With this, the researchers note that a 

necessary and sufficient condition for an ensemble of classifiers to perform better than its 

individual members, is if the individual classifiers are accurate and make independent 

errors (diverse). Diversity is important while creating ensemble models because it allows 

stronger learners from different regions to combine their ability to reduce risk of 

misclassification. While selecting and creating the predictive model in our study, we used 

classification accuracy – the proportion of correctly classified instances, as one of the 

metric. An accurate classifier is one that has an error rate of better than random guessing 
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on new x values. On the other hand, the diversity of the members of an ensemble is known 

to be an important factor in determining its generalization error (Sagi & Rokach, 2018; 

Melville, 2003; Rokach, 2010; Moudřík & Neruda, 2015).  Two classifiers can also be 

said to be diverse if they make different errors on new data points, that is, the errors made 

by the classifiers are uncorrelated (Sagi & Rokach, 2018). 

2.5.3.3 Boosting and Bagging Ensemble Methods 

Boosting is a sequential ensemble approach that works by repeatedly running weak 

learners on the training data (Viola & Jones, 2004). Schapire (1990) in his paper described 

weak learning as a situation where the concept class is weakly learnable if the learner can 

produce a hypothesis that performs only slightly better than random guessing. The 

classifiers that were constructed in previous iterations in boosting are then used for 

manipulating the training set for the next iteration. This makes it possible to take 

advantage of knowledge generated in previous iterations to guide the learning in the next 

iterations. Eventually, the classifiers produced by weak learners are combined into a single 

composite better performing classifier (Sagi & Rokach, 2018; Viola & Jones, 2004). 

A weaker model of learnability drops the requirement that the learner be able to achieve 

arbitrarily high accuracy. Algorithms such as boosting approach can therefore be used to 

improve the performance of a weak learner, that is, boost the low accuracy of a weak 

learning algorithm (Schapire, 1990). Due to the reason that it generates a final classifier 

whose error on the training set is small by combining many hypotheses whose error may 

be large. In addition, it also produces a combined classifier whose variance is significantly 

lower than those produced by the weak learner (Rokach, 2005). Furthermore, in boosting, 

since base classifiers are influenced by the performance of those built previously, the new 

classifier pays more attention to error that were made in the previous ones and to their 

performances (Viola & Jones, 2004). 

Bagging approach main goal is to improve accuracy by creating an improved composite 

classifier, by a means of integrating the various outputs of learned classifiers into a single 
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prediction (Sagi & Rokach, 2018; Rokach, 2005). In comparison to bagging ensemble, 

which require that learning systems be unstable (Quinlan, 1996; Saugata, 2018). Boosting 

however, does not require the use of unstable learning systems, provided that their error 

rate is kept below 50% (Rokach, 2005; Quinlan, 1996). Unstable classifiers are 

characterized by high Variance (Breiman, Arcing classifiers. , 1998). 

Both bagging and boosting reduce bias to some extent, however, their major contribution 

to accuracy is in the large reduction of variance. As such, boosting (arcing) performs better 

than bagging because it does better at variance reduction (Breiman, 1998). 

A major drawback in boosting is over fitting which may lead to deterioration in 

performance. This can be brought about by having many learning runs or iterations 

(Quinlan, 1996). A possible way to avoid this issue of over fitting is by keeping the 

number of iterations as small as possible, where by, setting iterations too high can lead to 

overfitting, while setting it too low may result in underfitting. The selection of the most 

suitable number of iterations is usually done by using a validation set to evaluate the 

overall predictive performance (Sagi & Rokach, 2018). 

2.6 Previous Works and Approaches in Machine Learning to Sentiment detection 

in Social Media Monitoring - Sentiment Analysis. 

Tripathy et al. (2017) considered the problem of classifying documents by overall 

sentiment that is, determining whether a review was positive or negative. The researchers 

used a hybrid machine learning approach to perform a document level sentiment analysis 

by combining two different machine learning algorithms, that is, SVM and ANN, so as to 

classify the sentiments of review data associated with movie reviews. Using uni-grams 

SVM, was used to select the best features from the training data. These features were then 

given as input to ANN method, to process further. Further, they observed that most of 

authors they reviewed preferred either NB, SVM or combination of them for classification, 

however, the proposed approach of combining SVM and ANN was found to be better than 
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results obtained by other authors, as the feature selection process with SVM contributed 

to creating a more accurate model. 

Alayba et al. (2017) studied Twitter as a microblog and introduced a new Arabic dataset 

for sentiment analysis about health services. The research paper detailed a process of 

collecting tweets, filtering, a detailed pre-processing of text by removal of unwanted data 

and some unrelated words, and text normalization. The initial experiments were conducted 

by utilizing Deep Neural Networks and several other Machine Learning algorithms such 

as Naïve Bayes, Logistic Regression and Support Vector Machines; while, a combination 

of “Unigram” and “Bigram” techniques were used for text feature selection. The 

experiment runs had three phases where different sizes for the training set and the testing 

set were used. The objective of their research was to investigate the efficiency of utilizing 

Deep Neural Networks and Machine Learning algorithms in terms of accuracy by using 

the confusion matrix. On the third phase of experimentation, good results were achieved 

for accuracy, where, Logistic Regression performed at 86.94%, Multinomial Naive Bayes 

90.14%; while Linear Support Vector at 91.37% and Stochastic Gradient Descent 

performed at 91.87%. The best performing classifiers for the study were SVM using 

Linear Support Vector Classification and Stochastic Gradient Descent. 

Wankhade et al. (2022) discussed sentiment analysis and associated approaches. Their 

objective was to investigate and complete classification methods with their advantage and 

disadvantages in sentiment analysis. The researchers stated that supervised machine 

learning methods were often widely utilized techniques in Sentiment Analysis. 

Classification using NB and SVM algorithms are commonly used as benchmarks against 

which newly proposed approaches can be compared. 

Drus and Khalid (2019) studied Twitter for Sentiment analysis to offer twitter users a fast 

and effective way to monitor the publics’ feeling towards their brand, businesses’ among 

other entities. The researchers showed the method used in analyzing sentiment in social 

media, and proposed that most common methods uses Lexicon based approaches, while 

in Machine Learning, Naïve Bayes and SVM are commonly used classifiers. They also 
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emphasized that choosing the appropriate method for sentiment analysis depends on the 

data applicable. 

Bouazizi and Ohtsuki (2019) studied the task of multi-class sentiment analysis. The 

researchers analyzed the difficulties of, and the different challenges involved with, multi-

class classification, such as opinion object identification, maintaining opinion time, and 

hidden sentiments identification. They concluded that, even though the task of multi-class 

analysis is important, it could have been more interesting to perform a sentiment detection 

task through which all of the sentiments present within a text were to be extracted. The 

proposed multi-class approach of classification achieved an accuracy of 60.2% for 7 

different sentiment classes which, compared to an accuracy of 81.3% for binary 

classification. 

Elango and Narayanan (2014) considered the problem of classifying hotel reviews as 

‘positive’ or ‘negative’, and thereby analyzing the sentiment of customers. Data used were 

hotel reviews from TripAdvisor and there finding was that standard machine learning 

techniques performed better. In the research, they explored various probabilistic models 

including Naïve Bayes, SVM, Laplace smoothing and semantic orientation to classify the 

reviews. Extraction of frequent words was done using Term Frequency (TF) and Inverse 

Document Frequency (IDF) approaches. Further, the accuracy of different strategic 

models was compared. 

With the increase of dependence on technology by societies globally, and the emergence 

of technologies such as Social networking (Naikoo, Thakur, Guroo, & Lone, 2018), most 

organizations and individuals are faced with feedback about their companies or processes, 

from chat, blogs and other opinionated contents such as Twitter. For this reason they are 

faced with multitudes of decisions to make based on the feedback collected. In this regard, 

such feedback can be used in Sentiment analysis for Predictions, such as, predictions on 

market trends on products. Nguyen and Shirai (2015) carried a Prediction research on the 

Stock Market. Their goal was to develop a model to that would predict a stock price 

movement using information from social media. Classifiers involved were SVM and 
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TSLDA (Topic Sentiment Latent Dirichlet Allocation), on the Historical Price and 

Message Board Datasets. 

On the other hand, E-Commerce and other online businesses on the World Wide Web, are 

popular among customers and other on-line users (Araque et al., 2017). Consequently, 

large amount of textual data inform of product reviews and comments are posted online 

by customers and on-line users frequently. These information is very valuable not only to 

prospective customers who make decisions on buying products, but also for companies 

who also gather data on customers’ satisfaction about their products through Sentiment 

Analysis (Drus & Khalid, 2019). Dey, Chakraborty, Biswas, Bose and Tiwari (2016) 

carried out a supervised machine learning research applicable in on-line Commercial 

ratings, where analysis of hotel and movie reviews toward different entities and products 

for better services for advertisement, recommendation systems and market trend analysis 

were carried out. They employed single models using K-NN and Naïve Bayes classifiers. 

2.7 Related Work to Unstructured Text Sentiment Analysis on Social Media 

According to Vilares et al. (2017) research on Supervised Sentiment analysis in 

multilingual environments, automatically understanding all the information shared on the 

Web and transforming it into knowledge is one of the main challenges in this age of Big 

Data. In terms of NLP (Natural Processing Language), this usually involves 

comprehending different human languages, which are implicitly related with relevant 

human aspects such as cultures, countries or regions.  

Kataria and Shah (2015) research acknowledged that considering modern writing styles 

like misspelled words, abbreviations, concatenated words and emoticons can increase the 

accuracy of sentiment analysis. In addition, they state that, people tend to use different 

words for a particular feature of a product. Thus identifying frequent nouns and noun 

phrases automatically will classify more number of reviews, while also help in identifying 

any new feature of the product that is being talked about.  
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Most focus currently in sentiment analysis is on online reviews. People express their 

opinion on social media which consist of product review sites, social networks or blogs 

such as, Facebook, Amazon, Twitter, Flicker and LinkedIn. Information from these 

sources are very helpful for the customers to make purchase decisions. According to 

researchers such as Bhaskar, Sruthi and Nedungadi (2014), Sentiment analysis has 

become a new knowledge resource after the onset of the Internet and the World Wide 

Web. Its main purpose is to automatically predict the sentiment polarity of users’ opinions 

on the web. Opinions or preferably, ‘Sentiments’, play an important role in the 

understanding of collective sentiments and help to make better decisions. The sentiments 

can be ‘positive’, ‘negative’ or even ‘neutral’. Positive sentiments encourage the 

prospective customer to make positive decisions toward a product; negative sentiments 

may usually result to negative decisions. None the less, Sentiment analysis of textual 

communication extracts subjective information in the text. 

Bhaskar et al. (2014) carried a research on enhanced sentiment analysis of informal textual 

communication in social media by considering objective words and intensifiers. Their aim 

was to improve the sentiment classification by modifying the sentiment values returned 

by SentiWordNet for intensifiers based on the context to the semantic of the words related 

to the intensifiers. They also reassigned some of the objective words to either ‘positive’ 

or ‘negative’ sentiment. The researchers tested their sentiment classification method with 

product reviews of digital cameras gathered from Amazon and e-bay, and showed that the 

method improved the prediction accuracy. 

Abirami, Uma and Prakash (2016) paper proposed an approach to sentiment analysis by 

addressing three major issues in analyzing social media content; computing the intensity 

of a polarity, identifying the more effective sentiment in such cases where various 

sentiments are mentioned, context dependency of opinion words and deliberate spelling 

errors. The researchers acknowledges that there is an increase in interest in developing 

improved opinion mining algorithms for accuracy, and developing a more efficient 

understanding of the dynamics of the human sentiment. Their task was a classification 

ranking problem with a goal of producing mathematical score for the sentiments observed. 
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Using Twitter, the idea took into consideration every aspect of the text and used that 

information to compute final score. The aspects included social media tendencies such as 

use of emoticons, punctuations, casing, vowel stretches, abbreviations, interjections and 

the context in which the opinions are mentioned. Evaluation of the algorithm was then 

done by comparing the result to a baseline produced by manual scoring. 

Vilares et al. (2017) tackles the problem of performing multilingual polarity classification 

on Twitter, comparing three techniques: First, a multilingual model trained on a 

multilingual dataset, obtained by fusing existing monolingual resources that did not need 

any language recognition step. Secondly, a dual monolingual model with perfect language 

detection on monolingual texts, and finally, a monolingual model that acted based on the 

decision provided by a language identification tool. The techniques were evaluated on 

monolingual, synthetic multilingual and code-switching corpora of English and Spanish 

tweets, their goal being to compare the performance of supervised monolingual models 

based on bag-of-words, with respect to their corresponding multilingual version; a model 

that is a collection of weights from English and Spanish features. To do this, they relied 

on standard sets of features. The aim was to show how current state of the art supervised 

approaches can successfully address or not address, situations where monolingual, 

multilingual and code-switching texts appear. They also relied on an L2-regularized 

logistic regression. 
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CHAPTER THREE 

RESEARCH METHODOLOGY  

3.1 Introduction 

This chapter will describe the methodology on data collection, data analysis, data sources 

and design of the study. The main purpose of the study was to create an ensemble model 

for Sentiment Analysis using Naïve Bayes and Support Vector classifiers. However, for 

this chapter, the goal was to create a basic workflow for conducting Sentiment Analysis 

for the product reviews from Twitter data.  

 

Figure 3.1: The Processes of Supervised Machine Learning 

Source: (Osisanwo, et al., 2017)  
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3.2 Sentiment Analysis Process in R-Studio 

To carry out the Sentiment Analysis process in R-Studio, a methodology for the Sentiment 

analysis model using Naïve Bayes and Support Vector classifiers was created, with an 

intension of evaluating the performance of the proposed classifiers, investigating their 

universal reliability and finally, proposing recommendations on how performance 

improvement could be achieved. 

The implementation of the methodology was then achieved in R-Studio environment as 

elaborated in Chapter 2.3.1 and this following Chapter. To achieve a supportive 

infrastructure of the needs of the research, the following activities from Chapter 3.2.1 were 

carried out as depicted in Figure 3.1. 

3.2.1 Data Sources and Collection 

The datasets inform of tweets, were generated by collecting and mining 38,700 text 

documents from a social media platform, Twitter, using a twitter API as indicated in 

Figure 3.2. The tweets were mined in intervals from June 2019 to July 2022. These tweets, 

were expected to address general topics touching on different product reviews and 

confidence level measure for "OnePlus 7 Pro" mobile phone, while being categorized as 

‘positive’ and ‘negative’. 
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Figure 3.2: A representation of the mined tweets  

3.2.2 Setting Working Directory, Install and Load Libraries (Packages) In R. 

When working with R-Studio, it is always important to set the working directory because 

this is where all the charts, graphs, plot images, csv files and other R project files or outputs 

are stored. This is to ensure that the working environment is well organized. The directory 

file path and location is normally also set. 

R requires installation of various packages which are collections of R functions, data, and 

compiled code in a well-defined format, that a user installs using the install.packages() 

function, as desired. The directory where packages are stored is called the library. R comes 

with a standard set of packages. Others are available for download and installation. Once 

installed, the packages have to be loaded into the session to be used with the function 

library(). 
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3.2.3 Authorize Access for Twitter API 

An API - Application Programming Interface is a software intermediary that allows two 

softwares or applications to interact. Twitter provides companies, developers and users 

such as researchers, with programmatic access to twitter data through its APIs. According 

to Strickland and Chandler (2017) Twitter bases its APIs off the Representational State 

Transfer (REST) architecture. REST architecture refers to a collection of network design 

principles that define resources and ways to address and access data. The architecture is a 

design philosophy, not a set of blueprints, meaning that there is no single prescribed 

arrangement of computers, servers and cables. Twitter is compatible with two syndication 

formats used on the Web; Really Simple Syndication (RSS) and Atom Syndication Format 

(Atom) that retrieve data from one resource and send it to another, thus, allowing third-

party developers, and also researchers, partial access to its API. 

For the purpose of this study, an API ‘achieng_rap’ was created with the aim of interacting 

with Twitter, to mine data necessary for the study. This was fundamental because 

Twitter’s API can be used as a Streaming API, to get live statuses or tweets as they are 

sent, by creating a ‘tweet listener’. Twitter’s Search API is able to give access to a data 

set that already exists from tweets that have occurred. The API is able to capture large 

amounts of data, and finally be useful for in house archives such as archiving social 

discussion about product brand(s). 

3.2.4 Tweet Harvesting and Data Mining. 

Tweet harvesting was carried out by using the Twitter’s Search API and the 

searchTwitter() function, which involved pulling Twitter’s data through a search or 

username. The API gave access to a data set that already existed from tweets that had 

occurred. Through the Search API, requests of tweets that matched some sort of ‘search’ 

criteria was made. The criteria can be keywords, usernames, locations, and named places, 

among others. For experiment purposes, we used ‘OnePlus Mobile’ as the key search word 

to search and mine reviews about OnePlus mobile phone products. Specifications on 
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language, for instance English, and the number of latest tweets such as 3000 tweet reviews 

from a specific date, were set. These tweets, were expected to address general topics 

touching on different product reviews and confidence level measure, while being 

categorized as ‘positive’ and ‘negative’. 

3.2.5 Creating a Data Frame 

The data of tweets mined were in character string format, and needed to be converted to a 

data frame in R environment with the ldply() function for analysis. Data frames provide a 

way of grouping a number of related variables into a single data object. The function 

DataFrame() takes a number of vectors and, or factors to returns a single object  

containing all the variables. Creating a data frame was important because, converting the 

extracted data to a data frame made the data more readable and easier to work with in the 

analysis environment, since the data was also organized into rows and columns and saved 

in a csv file format as output – ‘tweets.csv’.  The raw dataset included a 16 feature variable 

as shown in Figure 3.3. 

 

Figure 3.3: The 16-feature variables raw dataset 
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3.2.6 Pre-processing and Data Preparation 

Once Twitter data mining and collection was complete, only the ‘text’ was stripped from 

the entire raw data, and cleaned through a clearly defined pre-processing techniques. This 

was because as shown in Figure 3.3 and Figure 3.4, the raw data contained some 

unnecessary data that attributed to noise in the dataset. The raw data was a collection of 

various feature variables in a csv file format data frame. To analyse the data, the main 

focus was the variable ‘text’ that contained tweets of the product reviews that were textual 

in nature. To accomplish this, it was necessary that only the text was stripped from the 

entire data with the function getText() in R environment, which was applied to the whole 

raw dataset as shown in Figure 3.5.  

 

Figure 3.4: The raw data feature variables in a csv file format data frame 
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Figure 3.5: The stripped text data in a csv file format  

Machine  learning  is  one  of  the  widely  used  approaches  towards  sentiment  

classification  in  addition  to  lexicon  based  methods  and  linguistic  methods (Thelwall, 

Buckley, & Paltoglou, 2011).  According to Iliou, Anagnostopoulos, Nerantzaki and 

Anastassopoulos (2015), data pre-processing describes any type of processing methods or 

data preparations that are performed on raw data to prepare it for another processing 

procedure, and analysis. Commonly used as a preliminary data mining practice, data pre-

processing methods transforms the data into a format that can be easily and effectively 

used for the classification algorithms. These processes are done after the text is ‘stripped’ 

to enhance performances of the classifiers and facilitate feature extraction (Asghar, Khan, 

Ahmad, & Kundi, 2014). Haddi, Liu and Shi (2013) state that pre-processing the data is 

therefore the process of cleaning, that is, removal of data that are not meaningful for the 

analysis; and preparing the text for classification.  

Zin, Mustapha, Murad and Sharef (2017) further states that pre-processing phase in 

Sentiment analysis is the process of cleaning up the dataset from any noisy data or 

irrelevant features, thus reducing the complexity of a document in order to prepare the 
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data for the classification task. If all words or texts were plotted in their raw format, then 

the text analytics was not going to be accurate, since the analysis would include the noisy 

data. Noise may be due to typographic errors or colloquialisms always present in natural 

language or text, which usually result from their unstructured characteristic, eventually 

lowering the data quality in a way that makes the text less accessible to classifiers and 

automated processing.  

Studies by Haddi et al. (2013) and Zin et al. (2017) experimental results showed that 

appropriate text pre-processing methods, extraction and selection of features could 

significantly enhance the algorithm or classifier’s performance. Pre-processing techniques 

will reduce the number of words in reviews and the number of words in vocabulary 

significantly, thereby improving computational costs. In light of these results, the pre-

processing phase was important to help us clean and remove any unnecessary words that 

might have hindered effective computational processes and analysis as large numbers of 

features, or inclusion of all the text would have increased the computational cost for the 

entire analysis, since irrelevant features would have been plotted as features. Schrauwen 

(2010) states that too many features can cause an algorithm to have a higher chance of 

relying on idiosyncrasies of the training data that do not generalize well to new examples. 

For the purpose of this study, the performance of the classifiers were critically examined 

based on the results dependent on performance measure of precision, accuracy, and 

robustness. In order to transform a document into a feature vector, pre-processing was 

therefore critically needed. Pre-processing was done using the gsub() function in R 

environment. As such, the procedure included; 

3.2.6.1 Removing RT retweet texts 

This involved removal of retweets (RT) and user names for twitter users who were 

retweeting, from the text. For instance, in the retweet “RT @OnePlus_USA: Bigger 

battery, faster charging and better performance. Get the inside info on the powerful new 
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OnePlus 7T 5G McLaren from…” ‘RT @OnePlus_USA’ was removed. This was because 

this kind of data was not meaningful for analysis. 

3.2.6.2 Removing html links 

This activity involved removal of http references and links from the text. For example, 

“https://t.co/LC3fmt4Q6L” was removed because it was not required in the text and not 

meaningful for the analysis. 

3.2.6.3 Removing Twitter users’ names 

This was done to remove user names of Twitter sphere users’ such as ‘@muraricodians’. 

3.2.6.4 Removal of punctuation marks 

This activity was done to remove all the punctuation marks from the text. The process was 

also used to remove other words that were not desired in the text. 

3.2.6.5 Removal of all numbers 

This activity was done to remove all the numbers from the text, such as 1, 2, 3, 4, 5, 6, 

105 etc. 

Finally, the partially clean text dataset was then exported to excel and stored as a csv file 

output ‘tweets1.csv’ as demonstrated in Figure 3.6. 

https://t.co/LC3fmt4Q6L
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Figure 3.6: Partially clean text data 

In an attempt to further extract relevant features, we transformed arbitrary data, the text, 

into numerical features usable for machine learning. This process involved selection and 

extraction of subset features into new space, which involved creating a bag-of-word 

corpus, build a Document-Term Matrix and create N-Gram Tokenizer function.  

3.2.7 Creating a Bag-of-Word Corpus 

To create the bag-of-word corpus, the individual words or text were taken into account. 

Bag-of-word is a feature vector representation where each dimension of text corresponds 

to a feature. The assumption was that all features were independent given the class labels. 

In this model, texts were represented as a bag of its words, disregarding grammar, context 

and even word order but keeping multiplicity. The occurrence of each word was used as 

a feature for training the classifiers (RamaKrishna, Rao, Rao, & Chandan, 2015). This was 

suitable for the informal or colloquial content in the text. 

The bag-of-word model learned a vocabulary from all of the documents, then modeled 

each document by counting the number of times each word appeared by implementing a 
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Document Term Matrix (DTM) process. For instance, for demonstrative purposes, we 

considered the following two sentences: 

Sentence 1: “The Samsung foldable phone reinventing the mobile experience” 

Sentence 2: “Samsung finally unveils foldable smartphone” 

From these two sentences, our vocabulary was as follows:  

{the, samsung, foldable, phone, reinventing, mobile, experience, finally, unveils, 

smartphone} 

To get our bags of words, we counted the number of times each word occurred in each 

sentence;  such that in Sentence 1, "the" appears twice, and “Samsung”, “foldable”, 

“phone”, “reinventing”, “mobile”, “experience” each appear once, so, below is the 

procedure that was used for determining the feature vectors for Sentence 1: 

Vocabularies: 

{the, samsung, foldable, phone, reinventing, mobile, experience, finally, unveils, 

smartphone} 

Sentence 1: “the samsung foldable phone reinventing the mobile experience” 

DTM for the above corpus would have the following, as also shown in Table 3.1; 

 features: {2, 1, 1, 1, 1, 1, 1, 0, 0, 0} 

Sentence 2: “samsung finally unveils foldable smartphone” 

Similarly, the features for Sentence 2 were; {0, 1, 0, 0, 0, 0, 0, 1, 1, 1} 
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Table 3.1: Document Term Matrix (DTM) for the sentences 
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Further cleaning activities were also carried out on the corpus, which included 

transforming the entire text to lower case, removal of stop words, stripping white space 

and stemming the document.  

3.2.7.1 Transform texts to lower case 

This was a procedure that converted the entire text in the corpus to lower case. This was 

done because tweets are highly unstructured, while reviewers may capture certain texts as 

capital letter in order to maybe lay emphasis on the text. For uniformity, the texts were 

transformed to lower case. 

3.2.7.2 Removal of Stop words 

Stop words are commonly used words such as ‘me’, ‘a’, ‘the’, ‘who’, ‘them’, ‘shall’, ‘has’, 

‘have’, among others, that are not meaningful for the analysis. They do not portray 

personal sentiments and are merely connecting words. The words were removed and 

ignored because they were so common that including them would greatly increase the size 

of the index without improving performance of the classifiers. This process was basically 

done so as to improve feature extraction as it was expected that this would lead to a 

significant positive impact on classifier accuracy. In addition, R Studio comes with a stop 

word corpus that includes a list of English stop words. 
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3.2.7.3 Strip white space 

There were elements of white spaces in the corpus of text. This was difficult for R Studio 

to comprehend, thus, it was important to strip the white spaces to once again enhance the 

classifier performance.  

3.2.7.4 Stemming 

Stemming is the process of reducing a word to its word stem or parent word that affixes 

to suffixes and prefixes or to the roots of words known as a lemma. Stemming is part of 

information extraction, hence feature extraction, a process of linguistic normalization, in 

which the variant forms of a word are reduced to a common form, for example; 

connection 

connections 

connective          --->   connect 

connected 

connecting 

Stemming was also done with the intension of improving classifier performance. 

3.2.8 Build a Document Term Matrix 

A document-term matrix or term-document matrix is a two dimensional mathematical 

matrix that describes the frequency/ occurrence of terms or word that occur in a collection 

of documents. In a document-term matrix, rows correspond to the terms and columns 

correspond to the documents, so each entry (i, j) represents the frequency of term ‘i’ in 

document ‘j’. For each entry in the matrix, the term frequency measures the number of 
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times that term i appears in document j, and the inverse document frequency measures the 

number of documents in the corpus which contain term i (Dalis, 2014). 

Document Term Matrix function was also used to remove sparse terms by ignoring terms 

that had a document frequency lower than the given threshold (min=1, max=1) to help in 

generalization and prevent over fitting. This was used to eliminate words with very low 

frequency and was done by determining the least number of times a word appeared in a 

document or entry. The ‘min/max’ was set to ‘1’ to set the terms in unigram or n-gram 

format. 

Sparse words were also removed using the removeSparseTerms() function in R 

environment, this means that, low frequency words were removed. Sparsity refers to the 

proportion of cells with 0’s. This reduced the dimension of the Document Term Matrix.  

3.2.8.1 Creating a N-gram Tokenizer Function 

According to Schmidt and Heckendorf, (2017) an n-gram is an ordered sequence of n 

“words” taken from a body of text. In natural language processing, tokenization is the 

process of breaking human-readable text into machine readable components. The most 

obvious way to tokenize a text is to split the text into words. 

We then used the NgramTokenizer() function to allow us specify our words in the 

Document Term Matrix as unigrams. 

3.2.8.2 Word Frequencies and Selection of Feature Vectors 

Adequate feature selection techniques in Sentiment analysis have significant impact for 

identifying relevant features, while also increasing classification accuracy (Asghar et al., 

2014; Konez & Paralic, 2011). 

Statistical feature selection methods are one of categories in feature selection methods that 

can be applicable in feature selection. These techniques are further divided into sub-types 
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such as univariate, multivariate and hybrid. Univariate methods, which are also referred 

to as Feature filtering methods, take attributes separately, and includes techniques such as 

Occurrence Frequency and Minimum Frequency thresholds (Asghar et al., 2014). 

Univariate methods have computational efficiency, however, they ignore attribute 

interactions (Asghar et al., 2014; Konez & Paralic, 2011). 

Saraee and Bagheri (2013) also indicate that Feature Selection methods sort features on 

the basis of a numerical measure computed from the documents in the dataset collection, 

and select a subset of the features by thresholding that measure. Various information 

measures such as Document Frequency (DF), Term Frequency Variance (TFV) and 

Mutual Information (MI) among others can also be implemented for Feature selection in 

sentiment analysis.  

Word Frequencies is a filtering and weighting process. The term-frequency is used as a 

counting function to return how many times the term ‘t’ or word, is present in the 

document. The most frequent words are then used as feature vectors, basing on their 

scores. This is demonstrated in Figure 3.7 and Figure 3.8. A feature vector is just a vector 

that contains information describing an object's important characteristics (Girard, 2015). 

For the purpose of this study, we employed an Occurrence Frequency technique, a 

Document-Term Matrix (Term-Document Matrix). The selection was basically a process 

for filtering irrelevant or redundant features from the dataset. A measure of term-

frequency was then used as a counting function to return how many times the term t (word) 

was present in the documents. 
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Figure 3.7: Word Frequencies 

 

Figure 3.8: A graphical presentation of Word Frequencies 
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3.2.9 Analysis for the Tweets 

According to Ahmad et al. (2017) and Alayba et al. (2017) one approach to Sentiment 

analysis is to use a lexicon with information about which words are positive or negative. 

The lexicon is used to assign each word a sentiment (positive or negative). This method 

uses a variety of words annotated by polarity score, to decide the general assessment score 

of a given content. The lexicon used in this study were acquired automatically in RStudio 

environment from the tidytext package, as shown in Figure 3.9. 

3.2.9.1 Lexicon Based Sentiment Classification Process 

At this point of the study, text data were already tokenized by individual words. When 

human readers approach a text, we normally use our understanding of the emotional intent 

of words to infer as to whether a section of text is ‘positive’ or ‘negative’, or perhaps 

characterized by some other more nuanced emotion like surprise or disgust. To 

accomplish this analysis in R environment, we used the tidytext package that contains 

some useful tools (Silge and Robinson, 2019). 

 

Figure 3.9: A flowchart of a typical text analysis that uses tidy data principles with 

tidytext package  

Source: (Silge & Robinson, 2019) 
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Lexicons can either be manually compiled or acquired automatically. The annotation of 

lexica or corpora is usually done by hand, and classifiers are then trained with large sets 

of features to classify a new batch of words or phrases. However, according to Silge and 

Robinson (2019) there are a variety of methods and dictionaries that exist for evaluating 

the opinion or emotion in text, in R environment. For this reason, the tidytext package 

contains several sentiment lexicons in the sentiments Dataset. The three general-purpose 

lexicons in R environment are AFINN from (Nielsen, 2011), bing from (Ding, Liu, & Yu, 

2008) and (Hu & Liu, 2004), and nrc from (Mohammad & Turney, 2013) as shown in 

Figure 3.10 to Figure 3.12. All three of these lexicons are based on unigrams, that is, single 

words. These lexicons contain many English words and the words are assigned scores for 

‘positive’ or ‘negative’ sentiment, and also possibly emotions like joy, anger, sadness 

among others. 

The nrc lexicon categorizes words or text in a binary fashion into categories of positive, 

negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust (Mohammad 

& Turney, 2013). The bing lexicon also categorizes words in a binary fashion into positive 

and negative categories (Ding et al., 2008). The AFINN lexicon assigns words with a score 

that runs between -5 and 5, with negative scores indicating negative sentiment and positive 

scores indicating positive sentiment (Nielsen, 2011). All of this information is tabulated 

in the sentiments dataset, and tidytext provides a function get_sentiments() to get specific 

sentiment lexicons without the columns that are not used in that lexicon. Silge and 

Robinson (2019) states that the sentiment lexicons were constructed via either 

crowdsourcing or manually by the labour of one of the authors, and were validated using 

some combination of crowdsourcing again, restaurant or movie reviews, or Twitter data. 
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Figure 3.10: The AFINN Lexicon 

 

Figure 3.11: The bing Lexicon 



 

87 

 

Figure 3.12: The nrc Lexicon 

We then used the syuzhet package in R environment to incorporate the three sentiment 

lexicons AFINN, bing and nrc with a goal to introduce the main functions in the package 

so that one could quickly extract plots and sentiment data from the text files. Thus, syuzhet 

package extracts sentiment and sentiment-derived plot arcs from text using a variety of 

sentiment dictionaries conveniently packaged for consumption by R environment users 

(R Core Team, 2018). 

According to R Core Team (2018), the package syuzhet has various basic functions. 

However, for the purpose of the study, our main focus was on get_nrc_sentiment() 

function. This is a function in syuzhet used to get emotions and Valence from the nrc 

dictionary. The function calls the nrc sentiment dictionary to calculate the presence of 

eight different emotions; "anger", "anticipation", "disgust", "fear", "joy", "sadness", 

"surprise" and "trust", with their corresponding valence in a text file. It then provide a 

Value data frame where each row represents a sentence from the original file. As shown 

in Figure 3.13, the columns include one for each emotion type as well as a positive or 

negative valence. The ten columns were as follows: "anger", "anticipation", "disgust", 

"fear", "joy", "sadness", "surprise", "trust", "negative", and “positive." 
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Figure 3.13: A Sample of Sentiment Emotion Types with Their Scores 

The Sentiment Score data were then plotted on a data frame using nrc lexicon and syuzhet 

package so as to summarize the nrc values using the nrc lexicon, which provided the 

sentiment scores for each row of text and rated words based on specific emotions. 

3.2.9.2 Segregating Positive and Negative Tweets 

We further sum up the emotions from the entire dataset into specific categories of 

‘positive’ and ‘negative’. To achieve this, we carried out a text classification process 

which identified the ‘Most Common Positive’ and ‘Most Common Negative’ sentiments 

using bing lexicon, tidytext() and inner_join() function in R. 
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Figure 3.14: Comparison of Number of words by Sentiment Lexicon 

From the Figure 3.14, both bing and nrc lexicons have more negative than positive words, 

but the ratio of negative to positive words is higher in the bing lexicon than in the nrc 

lexicon. This formed the basis as to why bing lexicon was used to find the most common 

positive and negative sentiments. 

The bing lexicon from the syuzhet Package, as discussed earlier, categorizes words in a 

binary fashion into ‘positive’ and ‘negative’ categories. This was done to find a sentiment 

score for each word using the lexicon, then count the number of ‘positive’ and ‘negative’ 

words in the dataset. Bing was originally created to evaluate the sentiment of social media 

such as twitter data, reviews, forum discussions, and blogs (Ding et al., 2008). One way 

to analyze the sentiment of a text is to consider the text as a combination of its individual 

words and the sentiment content of the whole text as the sum of the sentiment content of 

the individual words. This is an often-used approach that naturally takes advantage of the 

tidy tool in R environment (Silge & Robinson, 2019). 

Using tidy data principles tidytext makes text mining tasks easier, more effective, and 

consistent with tools that exist in R environment. The infrastructure needed for text mining 

with tidy data frames already existed in packages like dplyr, tidyr and ggplot2. To work 



 

90 

with the data as a tidy dataset, it was restructured as one-token-per-row format. This 

function uses the tokenizer’s package to separate each line into words (Silge & Robinson, 

2019). The default tokenizing is for words, but for this research analysis, it was tokenized 

to n-grams as shown in Figure 3.15. 

 

Figure 3.15: Words tokenized to n-grams for Analysis 

Now that the data was in one-word-per-row format, it was then manipulated with tidy 

tools like dplyr, that for instance, enabled us to count using count() function. First, we 

found a sentiment score for each word using the bing lexicon and inner_join() function. 

The inner_join() function is a mutating join that combines variables from the two data 

frames, Document Term Matrix data frame (dtm_tidy) and the bing lexicon. inner_join() 

function returned all rows from the ‘one-token-per-row’ format data (dtm_tidy) where 

there were matching values in bing lexicon, and all columns from dtm_tidy and bing 

lexicon. If there were multiple matches between dtm_tidy and bing lexicon, all 

combination of the matches were returned as shown in the Figure 3.16 and Figure 3.17, 

thereby creating a four variable dtm_tidy_sentiments data frame. We finally used the 
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count() function to find the ‘Most Common Positive’ sentiments and the ‘Most Common 

Negative’ sentiments. 

 

Figure 3.16: Head return of matching rows and columns from dtm_tidy and bing 

lexicon 



 

92 

 

Figure 3.17: Tail return of matching rows and columns from dtm_tidy and bing 

lexicon 
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CHAPTER FOUR 

EXPERIMENTS AND RESULTS 

4.1 Introduction 

Experiments in this study were devised with the aim of producing a Sentiment Analysis 

model that can categorize twitter product reviews into ‘positive’ and ‘negative’ classes 

based on a supervised learning. 

In order to assess the performance and behaviour of the model, bag-of-words and topic 

modelling techniques were evaluated with respect to Machine Learning algorithms. The 

objective of the experiments at this stage was to assess and validate the performance of 

the single model classifiers, and ascertain patterns of accuracy, error rate and precision of 

the machine learning algorithms with respect to the value of the classification models. 

Finally, it was also necessary to assess whether training a classification ensemble model 

would results to better performance measures as opposed to the single classifier models. 

With this, evaluation of performance trend of Naïve Bayes, Support Vector Machine and 

the ensemble was carried out. 

The evaluation results of the study were then evaluated based on various performance 

metrics as shown in Table 4.3 in Chapter 4.2.1.6. These performance criteria were chosen 

because they were commonly used in evaluation metrics of text classification researches 

(Kalaivani & Shunmuganathan, 2013). However, with regard to the study, emphasis was 

made on accuracy, precision and robustness. Robustness is the ability of a model to cope 

with errors (Rodriguez, 2019). 

4.2 Models Creation in R 

As depicted in the Literature Review in Chapter 2.4, it was evident from the researches 

that every Machine Learning algorithm or classification model had its own benefits and 

drawbacks. There was no solution or one approach that could fit all Machine Learning 
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problems. As such, different algorithms were demonstrated to have been developed to 

solve different problems for different tasks. Normally, several factors can affect a 

researcher’s choice or selection of an algorithm for a model. For instance, selection of a 

classification model may mostly be made on the basis of factors such as resources 

available, accuracy requirement, and training time available among other factors (Gupte, 

et al., 2014). In addition, Wolpert and Macready (1997) also poses a fundamental question 

in there research; “how should we assess the performance of algorithms on problems so 

that we may programmatically compare those algorithms?” 

According to Osisanwo et al., (2017) each classification algorithm has its inherent biases, 

and no single classification model enjoys superiority if no assumptions are made about 

the task. The researchers further suggest that, it is essential to first decide upon a metric 

to measure performance, then, compare at least a handful of different algorithms in order 

to train and select a best performing model. The commonly used metric is classification 

accuracy, which is defined as the proportion of correctly classified instances. 

This chapter therefore describes the experiment criteria and model creation for the 

research in R programming language environment. 

4.2.1 Naïve Bayes Classifier Model Creation in R 

There are various types of Naïve Bayes, such as, Gaussian Naive Bayes, Complement 

Naive Bayes and Bernoulli Naive Bayes that are used for various implementation of the 

Naïve Bayes classifier. For the purpose of implementation of the classifier in this study, 

our focus was the Multinomial Naïve Bayes. 

4.2.1.1 Multinomial Naïve Bayes  

As discussed in the Literature Review chapter 2.5.1, the Multinomial Naïve Bayes 

classifiers is mostly used in text classification. It ultimately makes two simplifying 

independence assumptions; the Bag-of-words assumption, where it is assumed that the 

position of words does not matter, and the conditional independence assumption, where it 
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is assumed that the probabilities of features P(fi|c) are independent given the class c 

(Jurafsky & Martin, 2017; Khan, et al., 2016). The intuition of Multinomial Naïve Bayes 

classifier is that text documents are represented as if they were a bag-of-words. This means 

that we have unordered set of words with their positions ignored, while only keep their 

frequency in the document.  

In R environment, Naïve Bayes Classifier model creates a binomial or multinomial 

probabilistic classification model. It creates a relationship between a set of predictor 

variables and a categorical target variable.  The classifier assumes that all predictor 

variables are independent of one another and predicts, based on an input and a probability 

distribution over a set of classes, thus calculating the probability of belonging to each class 

of the target variable. 

4.2.1.2 Data Preparation 

We had a data frame dtm_tidy_sentiments from our previous chapter that was used to 

further carryout experimentations for this chapter. To further analyze dtm_tidy_sentiments 

data frame as shown in Figure 3.16 and Figure 3.17 with Naïve Bayes Multinomial 

Probabilistic classification model in R, a necessary data preparation process was carried 

out to prepare it for the model analysis procedure (Iliou et al., 2015). Therefore, for Naïve 

Bayes training, the dtm_tidy_sentiments data frame was converted to a csv file using the 

unlist() function in R which simply converts the list (the data set) to vectors with all the 

atomic components in the data frame being preserved, followed by creating the csv file 

classified_sentiments_df.csv as shown in Figure 4.1. This was important because 

conversion to a csv file was crucial in the data preparation and analysis. 
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Figure 4.1: The classified_sentiments_df.csv data frame 

The csv file classified_sentiments_df.csv was then stored in another data frame 

classifiedwords_df  in R environment. 

We then used the sample command and set.seed() functions in R to randomize and sample 

the dataset. Sample command was used to generate a random sample from the 

classifiedwords_df data frame, randomly selecting rows from the larger set of observations 

in the data frame. set.seed() function on the other hand was used for setting the random 

number generator. A sample of the randomized data was then stored in the index, 

sample_index as shown in the tables below to depict some of the random data or 

documents. 

Sampling is a method that allows researchers to get information about the population 

based on the statistics from a subset of the population or sample, without having to 

investigate every individual component (Gangwal, 2019). This was done to draw 

conclusions about the dataset population from samples, and it enabled us to determine the 

population’s characteristics by directly observing only a portion or sample of the 

population. 
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Figure 4.2: Randomized Observations Corresponding to the Sample Index 

Factorizing Variables 

Factors are statistical data type that stores categorical variables (Ngo, 2020). These are 

used to represent categorical data such as ‘positive’ and ‘negative’, as was in the case of 

this study. The data frame classifiedwords_df was a five variable data frame as shown in 

Figure 4.2. The variables 'word' and 'sentiment' from the classifiedwords_df data frame 

were inform of character data types. For the purpose of analysis, we changed them to 

factors with factor() or as.factor() functions in R, as was appropriate. These functions 

were used to convert character or integer variables into factor variables. The as.factor() 

function creates data objects which represent sentiment variables containing unordered 

categorical data with predefined set values or levels such as positive and negative. The 

function takes a character vector as an argument and returns a factor. Categorical variable 

are variables that have two or more categories with no intrinsic ordering, such as ‘positive’ 

and ‘negative’ categories. Using factors also made it easier to generate graphical plots. 
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Factors in R are stored as a vector of integer values with a corresponding set of character 

values to use when the factor is displayed. The only required argument to a factor was a 

vector of values which would be returned as a vector of factor values.  

 

Figure 4.3: Data frame with character data types 

 

Figure 4.4: A Factorized data frame with two Factor levels ‘positive’, ‘negative’ 

From the above output, factor level “negative” is assigned the value 1 while factor level 

“positive” is assigned the value 2. This is because factors are stored as vectors of integer 

values, with a set of character values, and the integer values also correspond to a category. 

This saves a lot of memory space and was also useful during model training. 
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Figure 4.5: Bar plot of Sentiment grouping for 2000 Product Reviews from the 

classifiedwords_df data frame 

Figure 4.5 indicated that the ‘positive’ class category was more than the ‘negative’ class 

category. This was important because if one class was less than or more than the other, as 

depicted in the summary of the variable ‘sentiment’ in Table 4.1, then a classification 

model could be created. The interpretation of Figure 4.5 and Table 4.1 created a good 

condition that advised our model training procedure. 

Table 4.1: Summary of the data frame classifiedwords_df  

x word document         count Sentiment 

Min   :     1.0 best:   187 Min.   :    1.0 Min.:     1.000 negative: 290 

1st Qu. : 327.8 better :115 1st Qu.:   443.8 1st Qu.:1.000 positive:1018   

Median : 654.5 win  :   94    Median : 901.0 Median :1.000  

Mean. :   654.5 hard :   84    Mean   :   919.6 Mean   :  1.009  

3rd Qu.: 981.2 work :  74 3rd Qu.:    1354.5 3rd Qu.:  1.000  

Max. :    1308.0 super :  69 Max.   :      2000.0 Max.   :     3.000  

4.2.1.3 Naïve Bayes Classifier Model Training and Partitioning of the Data Frame 

classifiedwords_df for Analysis  

The Naïve Bayes Classifier model was built using a training data (training set), while 

prediction was carried out by analyzing the test data (test set) which contained data not 

seen by the model during training. The test set was basically used for estimating the 
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model’s generalization performance. The action of separating the test data normally 

creates a difficult trade-off between having more statistical power in estimating 

generalization performance versus selecting better parameters and fitting a better model 

(Korjus et al., 2016). 

The goal of a Supervised Machine Learning model for a classification problem is normally 

to find a model that accurately classifies and generalizes. Korjus et al. (2016) and 

Alpaydin (2014) emphasizes that Supervised Machine Learning processes require data 

splitting. To finally test the generality of our learned model, the model was typically 

applied to the test data and the prediction outcome was then used to informed us about the 

performance of the model. Finding an optimally performing model as per our objective 

required a set of assumption and also trade-offs (bias-variance trade-offs) in model 

complexity as explained in chapter 2.4.2 in the Literature Review.  

We therefore split the dataset classifiedwords_df into a training set at a portion of 67% of 

the population, while the remaining portion of 33% was set for the test set. The proportions 

varied in other various researches; however, it was advisable to partition a larger portion 

as a training set. 

We then trained our Naïve Bayes Model nb_model in R environment, with the target 

variable (dependent variable) being ‘sentiment’ trained as a function of the variable ‘word’ 

which was the predictor (independent variable) in the formula. According to Kumar 

(2011) the independent variable is the causal variable responsible for bringing about 

change in the study, while the dependent variable is the outcome variable or change 

brought about by the introduction of the independent variable (predictors). The dataset 

used was the training set. 
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Figure 4.6: A Portion of the Naïve Bayes Classifier output for 2000 Product Reviews 

The above output in Figure 4.6 was an output showing the prior probabilities of the class 

positive and negative, also referred to as A-priori probabilities, and conditional probability 

tables - the likelihoods, from the Naïve Bayes model nb_model. The prior probabilities 

indicated the class ‘negative’ was at 22.31% while the ‘positive’ was at 77.69%. The 

conditional probabilities demonstrated the probabilities of how likely (likelihoods) a word 

was categorized as either positive or negative. The initial training was done without the 

application of Laplace Smoothing (add-1 approach). It was also evident that certain word 

likelihoods had zero probabilities, such as; ‘bump’ .  
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Figure 4.7: Summary of the trained model for 2000 Product Reviews 

Figure 4.7 demonstrate a view of the summary of the trained model in R for 2000 Product 

Reviews. 

4.2.1.4 Naïve Bayes Classifier – Model Prediction 

The trained nb_model was then predicted with the unseen test data. We created the 

prediction model pred_nb by using the predict() function in R environment. The function 

was used to predict the class of the words in the test set document. This was to determine 

as to whether the predicted words could be categorized as either ‘positive’ or ‘negative’ 

sentiments, based on the learning experience of the nb_model model that was trained with 

the training data. 
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Figure 4.8: A Sample of Naïve Bayes Prediction Outcome for the Test Document for 

2000 Product Reviews 

By further using an argument type = "raw" in the predict() function code, we were able 

to identify the actual probability measures for the first 20 individual words. 

 

Figure 4.9: pred_nb model Probability Measures for the first 20 Individual Words  
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4.2.1.5 Naïve Bayes Classifier Performance Metrics for the Classification Problem - 

The Confusion Matrix 

Our study was a binary classification problem in which sentiments were classified as 

either positive or negative. According to Hossin and Sulaiman (2015), the discrimination 

evaluation of the optimal solution during a classification training was defined based on 

the Confusion Matrix as depicted in the Table 4.2. The confusion matrix was used for 

determining the correctness and accuracy of the model.  The rows of the confusion matrix 

table represented the predicted class, while the column represented the actual class. 

Table 4.2: Confusion Matrix Table for Binary Classification and the Array 

Representation Used in the Study 

 Actual negative Class Actual Positive Class 

Predated Negative Class  True Negative Class (TN) False Negative Class (FN) 

Predated Positive Class False Positive (FP) True Positive (TP) 

True Negatives (TN): The cases in which we predicted Negative and the actual output 

was also negative. 

True Positive (TP): The cases in which we predicted Positive and the actual class of the 

data point was also positive. 

False Negative (FN): False Negatives were the cases in which the actual class of the data 

point were Positive and the predicted were Negative. False because the model predicted 

incorrectly and Negative, because the class predicted was a negative. 

False Positive (FP): False Positives were the cases in which the actual class of the data 

point was Negative and the predicted was Positive. False because the model predicted 

incorrectly and Positive, because the class predicted was positive. 



 

105 

Table 4.3: Performance Metrics for Model Evaluation 

Metrics  Formula Evaluation  

Accuracy (acc) 𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 The accuracy metric 

measures the ratio of 

correct predictions over the 

total number of instances 

evaluated 

Error Rate (err) 𝑓𝑝 + 𝑓𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 The metric is a 

misclassification error 

measure that measures the 

ratio of incorrect 

predictions over the total 

number of instances 

evaluated 

Sensitivity (sn) 𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 The metric measures the 

fraction of positive patterns 

that are correctly classified 

Specificity (sp) 𝑡𝑛

𝑡𝑛 + 𝑓𝑝
 The metric was used to 

measure the fraction of 

negative patterns that are 

correctly classified 

Precision (p) 𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 Precision was used to 

measure the positive 

patterns that are correctly 

predicted from the total 

predicted 
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Figure 4.10: Confusion Matrix Results for Training Naïve Bayes Model without 

Laplace Smoothing 

Figure 4.10 indicated the Confusion Matrix results for the first round of training without 

Laplace Smoothing.  

Table 4.4: Naïve Bayes Confusion Matrix for 2000 Product Review Analysis 

 Actual 

Predicted Negative Positive 

Negative 88 0 

Positive  7 339 

Accuracy 

From Table 4.4, 7 words were incorrectly classified. Accuracy for the matrix was 

calculated by taking average of the values lying across the “main diagonal” as shown in 

the Formula 4.1. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    =
True Negatives (TN)   +   True Positive (TP)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑤𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑇𝑒𝑠𝑡 𝑆𝑒𝑡
    4.1 

Total Number of Rows in the Test Set = TN + FN + FP + TP 

= 88 + 0 + 7 + 339 

= 434 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    
=    88 +  339

434
 

= 0.9839 

=98.4% 

4.2.1.6 Kappa Statistic 

Kappa statistic is the measure of agreement between the predictions and the actual labels 

(precision). Kappa can be used to compare the ability of different raters to classify subjects 

into one of several groups. From the confusion matrix table, columns correspond to one 

"rater" (actual labels) while rows correspond to another "rater" (predicted labels). Kappa 

is calculated from the observed (actual) and expected (predicted/ random chance) 

frequencies on the diagonal of the confusion matrix. It is also interpreted as a comparison 

of the overall accuracy to the expected random chance accuracy. 
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Table 4.5: Summary of Confusion Matrix for 2000 Product Review Analysis 

 Actual  

Predicted  Negative Positive Row Total 

Negative 88 0 88 

Positive 7 339 346 

From the confusion matrix in Table 4.5 we were able to see that there were 434 total 

instances in the test set (88 + 0 + 7 + 339 = 434). The first column 95 were labelled as 

negative (88 + 7 = 95), and according to the second column 339 were labelled as positive 

(0 + 339 = 339). We also observed that the model classified 88 instances as negative (88 

+ 0 = 88) and 346 instances as positive (7 + 339 = 346), while the model’s Observed 

accuracy was 0.9839. 

We were then required to calculate the value of the Expected Accuracy. This value is 

defined as the accuracy that any random classifier would be expected to achieve based on 

the confusion matrix. The Expected Accuracy is directly related to the number of instances 

of each class (negative and positive), along with the number of instances that the Machine 

Learning Classifier (predicted labels) agreed with the ground truth label (actual labels). 

To calculate Expected Accuracy for our confusion matrix, we first multiplied the marginal 

frequency of negatives for one "rater" by the marginal frequency of negatives for the 

second "rater", and divided by the total number of instances. 

Actual label negative (88 + 7 = 95) 

Predicted label negative (88 + 0 = 88) 

(95 ∗  88) 

434
=  19.26 

We then multiplied the marginal frequency of positive for one "rater" by the marginal 

frequency of positives for the second "rater", and divided by the total number of instances. 
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Actual positive (0 + 339 = 339) 

Predicted positive (7 + 339 = 346) 

(339 ∗  346 

 434
==  270.26 

Finally, we added all the outcome values together, and finally divided again by the total 

number of instances, resulting in an Expected Accuracy.  

Expected Accuracy = (19.26 + 270.26) / 434 = 0.6671 

As previous, Observed Accuracy was 0.9839 

Kappa = (observed accuracy - expected accuracy)/ (1 - expected accuracy)       4.2 

=  
(0.9839–  0.6671) 

(1 –  0.6671)
 

=0.9516 

Further, according to Viera and Garrett (2005) the Kappa statistic varies from 0 to 1 as 

shown in Table 4.6, where; 

Table 4.6: Kappa Statistic Interpretation 

Range Interpretation 

0 Agreement Equivalent to Chance 

0.1 – 0.20 Slight Agreement 

0.21 – 0.40 Fair Agreement 

0.41 – 0.60 Moderate Agreement 

0.61 – 0.80 Substantial Agreement 

0.81 – 0.99 Near Perfect Agreement 

1 Perfect agreement 

The higher the Kappa metric is, the better a classifier is compared to a random chance 

classifier. With the interpretations as demonstrated in Table 4.6, a Kappa Statistic output 
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of 0.9516 indicate that our Naïve Bayes classifier is a model with a ‘Near Perfect 

Agreement’. Further, the overall performance in terms of accuracy was at 98.4% while, 

the error rate was at 1.6%, a clear indication of a range below 50%, hence a stable model. 

4.2.1.7 Improving the Model Training Using Laplace Smoothing 

When carrying out the experiments, there were instances where negative words were 

predicted and classified as positive words (incorrectly classified). This could have caused 

significant problems for the model, such as misclassification. We therefore investigated 

to see whether we could slightly improve the model to achieve better performance. This 

was carried out by introducing Laplace Smoothing (add-1 approach) to our model. We 

then set a value for the Laplace estimator to 1 while training our model. This now allowed 

words that had zero probabilities to have some sort of significance in the classification 

process. Laplace Smoothing was used as a parameter smoothing, and for the purpose of 

improving our model training in this study. We applied the add-1 smoothing approach to 

prevent cases where missing, unknown or rarely occurring features inappropriately 

dominated the probability estimates in Multinomial Naïve Bayes as shown in the Figure 

4.11. 
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Figure 4.11: A Sample of Training 2000 Product Reviews with Laplace Smoothing 

From Figure 4.11, it was clear that with the add-1 smoothing, words such as ‘bump’ 

no longer had word likelihood with zero probabilities.  

However, the Figure 4.12 of the Confusion Matrix indicated a similar performance when 

we compared our training with or without Laplace Smoothing.  
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Figure 4.12: Confusion Matrix Results with Laplace Smoothing 

From the output of Figure 4.11, it was also clear that there were no zero probability words 

anymore. In addition, the words ‘bump’ and ‘delay’ now had probabilities;  

and  respectively, and were classified as ‘negative’ sentiments. This was an 

early indicator of slight model improvement, however, further verification was done while 

building the Confusion Matrix, so as to establish further, the performance. The only 

difference between nb_model in Figure 4.6 and nb_model2 in Figure 4.11 was that we no 

longer had zero probabilities in the second improved nb_model2 model. 
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4.2.2 Support Vector Machine Classifier Model Creation in R  

SVM is based on the idea of finding a hyper plane that best divide a dataset into two 

classes, that is, an optimal separating hyper plane, which is a hyper plane that is as far as 

possible from data points from each category (Osisanwo, et al., 2017). 

  

Figure 4.13: Given a particular data point (y and x) a classification a or b is made 

Burges (1998) explains that support vectors as shown in Figure 4.13, are the data points 

that are nearest to the hyper plane, that is, the points of data sets that if removed, would 

alter the position of the dividing hyper plane. This implies that Support vectors are the 

critical elements of a data set. As described in the Literature Review Chapter 2.5, a hyper 

plane however, is a line that linearly separates and classifies a set of data. Intuitively, the 

further from the hyper plane the data points lie, the more exist a confidence that correct 

classification has been achieved. Data points are therefore expected to be as far away from 

the hyper plane as possible, while still being on the correct side of the hyper plane. 

The ultimate goal of a Support Vector Machine is therefore to find the optimal separating 

hyper plane which maximizes the ‘margin’ of the training data, as depicted in Figure 2.8 

in the Literature Review. A margin, given a particular hyper plane, is where one can 

compute the distance between the hyper plane and the closest data point. Once a value is 
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established, and it is doubled, the outcome is a margin. The margin is “a no man’s land”, 

meaning that there will never be any data point inside the margin. Certainly, the following 

observations can therefore be made; if a hyper plane is very close to a data point, its margin 

will be small, while also, the further a hyper plane is from a data point, the larger its margin 

will be. It can therefore, be concluded that the optimal hyper plane will be the one with 

the biggest margin and can correctly classify the training data, while at the same time, 

finally generalize better with unseen data (Burges, 1998).  

Datasets for our study were textual in nature, and most Text Categorization problems are 

linearly separable. SVM only seems to work when two classes are linearly separable 

(Patil, Galande, Kekan, & Dange, 2014; Joachims, 1998). Another relevant information 

that encouraged the use of SVM was that the study was carried out in a highly dimensional 

space. For instance, according to Tripathy et al. (2017) SVMs have been universally 

reported to work better for text classification, as textual data are known to be highly 

dimensional. A remarkable property of SVM is that their ability to learn can be 

independent of dimensionality of feature space. SVM measures the complexity of 

hypothesis based on margin that separates the plane and not the number of features. SVM 

also uses over fitting protection which helps in minimizing over fitting tendencies during 

learning (Patil et al., 2014; Joachims, 1998). 

As demonstrated earlier in the Literature Review Chapter 2.5, the goal of our Support 

Vector Machine (SVM) was to find a hyperplane that best separated our two possible 

independent categorical variables ‘positive class’ and ‘negative class’, this was the 

classification problem. Intuitively, the model tried to find a decision boundary that could 

‘best’ split the data values based on the potential target value of our ‘positive’ and 

‘negative’ classes. 

Maximizing the margin was good for SVM because the support vectors near the decision 

boundary represented uncertain classification decisions, meaning there was almost a 50% 

chance of the classifier deciding either way. Any SVM classifier with a large margin 

makes certain or good classification decisions, this is because a slight error in 

https://en.wikipedia.org/wiki/Linear_separability
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measurement or a slight document variation will not cause a misclassification, as the large 

margin takes care of that. This can also be referred to as, a classification safety margin. 

SVM classifiers insists on a large margin around the decision boundary, where, the 

optimal hyperplane is at the maximum distance from the positive and negative data points. 

To satisfy this, and also to classify the data points accurately, the margin is maximized, 

this is why SVM is popularly known as the large margin classifier. Large margins also 

help to avoid overfitting (Manning et al., 2008).  

4.2.2.1 Data preparation and Feature Engineering for SVM Model 

The main data frame from our experiments, classifiedwords_df as shown in Figure 4.2 

contained unordered categorical features, positive and negative. SVM learning required 

that we prepare our data in a specific way before fitting the Machine Learning model. This 

was because the SVM classifier required that all input variables and output variables be 

transformed to numeric as it could not operate on label data directly. This meant that we 

had to convert the categorical data to a numerical form. However, it was evident even 

from our experiments with Naïve Bayes classifiers that some algorithms in Machine 

Learning can work with categorical data directly. 

A two-step process of experimentation; One-Hot Encoding and Integer Encoding was 

therefore implemented to convert the categorical data to a numerical form.  

4.2.2.2 One-Hot Encoding 

This is the process where the categorical variables were converted into binary variables 

(0, 1) for SVM representation, also known as “dummy variables” in other fields such as 

statistics. The fundamental idea behind dummy variables is to replace a categorical 

variable with one or more new features that can have the values 0 and 1. One-Hot 

Encoding assumes that all features are categorical. The values 0 and 1 are useful in the 

formula for linear binary classification.  
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To create dummy variables for the object ‘dummysvMM’ from the data frame 

classifiedwords_df  in Figure 4.2 in the R environment, with the feature “sentiment”, we 

had possible values of positive and negative. To encode these two possible values, we 

created two new features, called “sentimentpositive” and “sentimentnegative” as shown 

in the Figure 4.15. A feature 1 (one) was assigned if the “sentiment” for the feature had 

the corresponding value and 0 (zero) otherwise, so exactly one of the two new features 

was 1 for each data point. This is what resulted to One-hot encoding. 

 

Figure 4.14: One-Hot Encoding for 2000 Product Reviews from the 

classifiedwords_df data frame 

We the further used the cbind() function to bind columns and recreated classifiedwords_df 

and dummysvMM in order to create a data frame classifiedwords_df2 as shown in the 

Figure 4.15. The cbind() function is used to combine columns of the same dimension.  
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Figure 4.15: A Sample Output for the Data Frame classifiedwords_df2 

While using the above data in Figure 4.15 in a Machine Learning algorithm, one can drop 

the original “sentiment” feature and only keep the 0–1 features. 

 

Figure 4.16: A One-Hot Encoding Output 

One-Hot encoding adds a heavy amount of dimensionality to datasets (Andre, 2020). 

Based on the study’s assumptions, the optimal dataset Figure 4.2 consists of features 

whose information are independently valuable. However, from the above output in Figure 

4.16 as generated from Figure 4.15, each of the information-sparse columns have a linear 

relationship with each other. This leads to a ‘Dummy Variable Trap’, where one variable 

can be easily predicted using the others, this can eventually cause a problem of 

multicollinearity in high dimensions (Krishna, 2019; Andre, 2020). Multicollinearity, a 

serious issue in Machine Learning models, which occurs where there is a dependency 

between the independent features.  
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Granted, if there were maybe only three or even four classes, one-hot encoding may have 

not been a bad choice, as in order to overcome the problem of multicollinearity, one of 

the dummy variables would have been dropped. On the other hand, with a large number 

of categories or classes, one-hot encoding can lead to high memory consumption. 

For this reason, further encoding experimentations were carried out using Integer 

Encoding. 

4.2.2.3 Integer Encoding 

The study employed the use of only two categorical variables, positive and negative. 

Often, categorical variables are encoded as integers for ease of storage or because of the 

way the data is collected. For status, each unique category value positive and negative, 

was assigned an integer value. For instance, for the purpose of our study, we transformed 

the output of the data frame classifiedwords_df in Figure 4.2 and encoded values for the 

feature “sentiment” with binary variables (0, 1). To do this, we first extracted the second, 

third, fourth and fifth columns of the data frame classifiedwords_df as shown below to 

create classifiedwords_df3 data frame.  
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Figure 4.17: Creation of classifiedwords_df3 data frame 

To then encode the dependent variable ‘sentiment’ values as binary variables (0, 1), we 

removed the data frame variable titles by using a method; header = FALSE, and created 

a data frame dataset_svm  as shown below. 

 

Figure 4.18: dataset_svm data frame 

Finally, we encoded the ‘sentiment’ feature value negative as integer 0 and positive as 1. 

This was shown in the output Figure 4.19 in variable v5. In addition, during Integer 

Encoding in R the variables were renamed as features ‘word’ to ‘V2’, ‘document’ to ‘V3’, 

‘count’ to ‘V4’ and ‘sentiment’ to ‘V5’ respectively. 
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Figure 4.19: Sample Observations for Encoded dataset_svm  data frame 

Further, to have an accurate representation of the features necessary for training SVM,     

we removed the first observation (row) as shown in Figure 4.19 and captured only four 

variables; V2, V3, V4 and V5 for our new training dataset dataset_svm1 as shown in 

Figure 4.19. 

 

Figure 4.20: Sample Observations for Encoded dataset_svm1  data frame 

While viewing the structure of the data frame dataset_svm1 in R environment, we noticed 

that the target variable v5 data type was in form of numbers as shown in Figure 4.20. 
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Figure 4.21: dataset_svm1 data frame Structure 

However, for SVM algorithm training purposes, it was fundamental that the target variable 

was encoded as a factor variable. This was achieved as shown in the Figure 4.21. 

 

Figure 4.22: Factorised dataset_svm1 data frame Structure 

4.2.2.2 Support Vector Machine Classifier – Model Training and Partitioning of the 

Data Frame dataset_svm1 for Analysis 

To embark on training the SVM model, the dataset dataset_svm1 was first split into a 

training and a test set. The model was built using a training data, while validation was 

carried out by using a test set which contained data not seen by the model during training. 

We therefore split the dataset dataset_svm1 into a training set at a portion of 67% of the 

population, while the remaining portion of 33% was set for the test set as shown in Figure 

4.23. 
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Figure 4.23: Partitioning of the Data Frame dataset_svm1 for Analysis with Support 

Vector Machine 

The SVM model was trained with different values of the cost parameter ‘C’ so as to tune 

the classifier model as shown in Figure 4.24 to Figure 4.26. The higher the value of ‘C’ 

during training, the less likely it was that a misclassification would occur. This approach 

is called Soft Margin Classification, as illustrated and discussed in the Literature Review 

Chapter 2.5.2.  
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Figure 4.24: Training SVM model at a value of 0.1 for the Cost Parameter 

 

Figure 4.25: Training SVM model at a value of 1 for the Cost Parameter 

 

Figure 4.26: Training SVM model at a value of 10 for the Cost Parameter 

To identify a ‘best’ SVM model from our experimented models of interest, we carried out 

a 10-fold cross validation process using the tune() function in the e1071 library in R 

environment as shown in Figure 4.27 and Figure 4.28. This was a technique for evaluating 

and validating the stability of the model, an assurance that the model had got most of the 

patterns from the data correct, and was low on bias. 
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Figure 4.27: A ten-fold Cross Validation for the ‘best’ SVM Model 

 

Figure 4.28: The ‘best’ Model obtained 

From the output in Figure 4.27, it was clear that we were able to achieve a ‘best’ model 

outcome at a cost parameter of the value 5 onwards.  
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Equally, when we fit the Support Vector classifier and plot the resulting hyperplane, using 

a very large value of cost (1e5) so that no observations were misclassified in Figure 4.29, 

we obtained an output similar to the ‘best’ model output in Figure 4.28. 

 

Figure 4.29: A trained SVM Model with the Largest Cost value 

4.2.2.3 Support Vector Machine Classifier – Model Prediction 

The trained SVM best_model was then predicted with the unseen test data, testsv_set. We 

then also created the SVM prediction model sv_pred by using the predict() function in R 

environment. The function was used to predict the class of the support vectors in the test 

set document. This was to determine as to whether the predicted support vectors could be 

categorized as either 1 (positive) or 0 (negative) sentiments, based on the learning 

experience of the SVM’s ‘best’ best_model that was trained with the trainsv_set data. 
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Figure 4.30: A sample of the Predicted SVM Model 

4.2.2.4 Support Vector Machine Classifier Performance Metrics for the 

Classification Problem - The Confusion Matrix 

A Confusion Matrix as in the Table 4.2 was used to present a discriminative evaluation of 

an optimal solution during the classification training for SVM. In addition, the evaluation 

results for the SVM model were then based on various performance metrics as shown in 

Table 4.3 in Chapter 4.2.1.6. 

Table 4.7: SVM Confusion Matrix for 2000 Product Review Analysis  

 Actual 

pred_nb 0 1 

0 95 3 

1 8 338 



 

127 

From Table 4.7, 8 support vectors were incorrectly classified. Accuracy for the matrix was 

calculated by taking the average of the values lying across the “main diagonal” (TN + TP/ 

Total Number of Rows in the Test Set) 

1.   
 

Total Number of Rows in the Test Set = TN + FN + FP + TP 

     = 95 + 3 + 8 + 338 

     = 444 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    =    
95 +  338

444
 

  = 0.9752 

  = 97.5% 

Error rate (err)     =      
False Positive (FP)    +    False Negative (FN)

Total Number of Rows in the Test Set
      

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 (𝑒𝑟𝑟)         =   
 8 +  3

444
 

= 0.0247 

= 2.5% 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑠𝑛)     =              
 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)      

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃)   +    𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (𝐹𝑁)
 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑠𝑛)     =          
 338

338+3
 

   = 0.9912 

Specificity =  
True Negatives (TN)

True Negatives (TN) + False Posives (FP)
 



 

128 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑠𝑝)     =           
95

95 +  8
 

= 0.9223 

𝐾𝑎𝑝𝑝𝑎 =  
(observed accuracy −  expected accuracy)

(1 −  expected accuracy)
 

Actual label negative (95 + 8 = 103) 

Predicted label negative (95 + 3 = 98) 

103 ∗ 98

444
 

= 22.73 

Actual positive (3 + 338 = 341) 

Predicted positive (8 + 338 = 346) 

(341 * 346 / 444 = 265.73) 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(22.73 +  265.73)

 444
==  0.6496 

As previous, Observed Accuracy was 0.9752 

Kappa = (observed accuracy - expected accuracy)/ (1 - expected accuracy) 

=  
(0.9752– 0.6496) 

(1 – 0.6496)
  

= 0.9292 

From the various outputs as demonstrated above, SVM proved to be a strong and stable 

classifier. For instance, performance in relation to accuracy was at 97.5% and the error 
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rate was also kept below 50%. On the other hand, the interpretations from Kappa Statistic 

indicated a ‘Near Perfect Agreement’ model.  

4.2.3 The Ensemble Model Creation in R  

The experimentations of the Ensemble Model was done using the Caret package, a 

different modelling function in R-Studio environment. Kuhn (2019) explains that 

Classification And REgression Training (Caret) is a set of functions in R-Studio that 

attempt to streamline the process for creating predictive models. This was achieved by 

using tools for model tuning using resampling, and variable importance estimation tools 

in Caret package. 

The Caret package has several functions that attempt to streamline the model building and 

evaluation process. For instance, the train() function was be used to; 

 Evaluate, using resampling, the effect of model tuning parameters on performance 

 Choose the “optimal” model across these parameters 

 Estimate model performance from a training set 

This was also achieved by implementing the steps in the algorithm proposed by Kuhn 

(2019) as shown in Figure 4.31 for model tuning. 
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Figure 4.31: Ensemble Model Tuning Algorithm (Kuhn, 2019) 

Initial experiment results as shown in Table 4.8 and Table 4.9 demonstrated that the errors 

made by the classifiers were uncorrelated. These outcomes indicated that the classifiers 

were strong, yet very diverse, a condition that supported the building of the predictive 

ensemble model. A class of concepts is strongly learnable if there exist a polynomial-time 

algorithm that achieves low error with high confidence for all concepts in the class 

(Schapire, 1990). 

Table 4.8: Comparative Results for Classifiers Accuracy 

Sr. No. No. of Tweet Reviews Accuracy 

Naïve Bayes SVM 

1 500 89.10% 90.80% 

2 700 94% 95.70% 

3 1,000 95.80% 93.50% 

4 1,500 97.90% 95.80% 

5 2,000 98.40% 97.50% 

6 3,000 93.80% 97.50% 

7 5,000 97.40% 80.40% 

8 10,000 98.20% 82.30% 

9 15,000 98.90% 86.70% 

Total  38,700 
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Table 4.9: Comparative Results for Classifiers Error Rates (err) 

Sr. No. No. of Tweet Reviews Error Rate (err) 

Naïve Bayes SVM 

1 500 10.90% 9.20% 

2 700 6% 4.30% 

3 1,000 4.20% 6.50% 

4 1,500 2.10% 4.20% 

5 2,000 1.60% 2.50% 

6 3,000 6.20% 2.50% 

7 5,000 2.60% 19.60% 

8 10,000 1.80% 17.70% 

9 15,000 1.10% 13.30% 

Total  38,700 
 

  

With this in mind, the main assumption was that if Naïve Bayes and SVM classifiers were 

adequately and correctly combined, an even more accurate and robust model could be 

obtained from these results with an intension of improving predictions. 

4.2.3.1 The Meta Classifier Model 

A Meta classifier technique was therefore implemented, the outputs of the base classifiers 

were treated as inputs for the meta-learning model. In this approach, the model was 

expected to learn and adapt to different situations (Araque et al., 2017). 

4.2.3.2 Stacking Ensemble 

Stacking is an ensemble approach where predictions by each different model is given as 

input for a Meta level classifier whose output is the final class (Wolpert, 1992). This has 

been depicted in Figure 4.32 (as adopted from Saugata, 2018; Tang, Alelyani, & Liu, 

2015). Stacking is usually employed to combine models built by different inducers as in 

Figure 2.1, that is, heterogeneous models (Rokach, 2010) and is equally regarded as a 

technique for achieving the highest generalization accuracy for strong learners (Wolpert, 

1992). Using a meta-learner, the method tries to induce which classifiers are reliable vis-
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a-vie the ones that are not. Most importantly, Stacking actively seeks to improve the 

performance of an ensemble as the Meta classifier is trained to learn and correct the errors 

of the base classifiers (Breiman, 1996; Wolpert, 1992). The pseudo code in Figure 4.32 

elaborates the stacking algorithm (as adapted from Saugata, 2018; Tanget al., 2015). 

 

Figure 4.32: Stacking Algorithm  

Source: (Saugata, 2018; Tanget al., 2015) 

This study focused on how the two heterogeneous classifiers, Naïve Bayes and SVM could 

be improved by combining them to get an even better performance. Stacking has been 

used by various researchers to achieve greater predictive accuracy for strong leaners 

(Džeroski & Ženko, 2004; Moudřík & Neruda, 2015). As depicted by experimental results 

in Table 4.8 and Table 4.9, the study uses the two strong yet diverse base leaners which 

are then aggregated by a Stacking ensemble. 

Mathematically, if an ensemble has H base classifiers with an error rate of 𝑒 <
1

2
, while at 

the same time, the base classifiers’ errors are uncorrelated, then the probability that the 

ensemble will make an error is the probability that more than 
H

2
 base classifiers misclassify 

the example. Simply, if an input-output pair is (𝑥, 𝑦) left out of the training set of  ℎ𝑖, 

ℎ𝑖(𝑥) after training is complete for  ℎ𝑖 , the output y can still be used to evaluate the 
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classifier’s error. Since (𝑥, 𝑦) was not in the training set of  ℎ𝑖, ℎ𝑖(𝑥) may differ from the 

desired output y. A new classifier is then trained to estimate this discrepancy, given by 

𝑦 − ℎ𝑖(𝑥) . 

Essentially, a second classifier is trained to learn the error the first classifier made. Adding 

the estimated errors to the outputs of the first classifier can improve generalization (Oza 

& Tumer, 2008). 

4.2.3.3 Training the Ensemble Model  

A binary classification model was then fit with caretEnsemble package in R-Studio. 

caretEnsemble has three primary functions: caretList, caretEnsemble and caretStack. 

caretList is used to build lists of caret models on the same training data, with the same re-

sampling parameters. caretEnsemble and caretStack are used to create ensemble models 

from such lists of Caret models. caretEnsemble uses a Generalized Linear Models (GLMs) 

to create a simple linear blend of binary classification models, while caretStack uses a 

Caret model to combine the predicted outputs from several component Caret models 

(Mayer, 2019). Using the caretList function, the base caret models Naïve Bayes “nb” and 

SVM “svmLinear” were fit to the same datasets. The function returned a list of objects 

which were then passed to caretEnsemble and caretStack respectively. 

(a) Defining the training control 

The first step in this process was to define the training control by setting up a 10-fold 

cross-validation in 3 iterations, and saving the resulting predictions and class probabilities 

as indicated in the Figure 4.33.  

(b) Learning the First Base Classifier – the Naïve Bayes Model 

To compute the Ensemble model, we followed the steps in the Stacking Algorithm as 

shown in Figure 4.32 and first trained the base level classifiers nbmodel on the train set, 
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made predictions on the test set and generated the Confusion Matrix to help identify the 

performance measures. This is depicted in the Figures below. 

 

Figure 4.33: Defining the Training control and a training output for the first base 

classifier nbmodel 
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Figure 4.34: Summary of the trained nbmodel 

During training, the resampling indices were chosen using random numbers as shown in 

Figure 4.33. We therefore used set.seed() function just prior to calling train() to control 

the randomness in order to assure reproducible results and have a possible guarantee that 

the same random numbers are used during training. 

The next aspect was to carry out predictions. Prediction for the nbmodel was carried out 

on the test set as shown on Figure 4.35. 

 

Figure 4.35: A sample of the Predicted nbmodel base Model 
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Finally, we established the performance metrics for the first base classifier -  nbmodel  by 

using a  Confusion Matrix as shown in Table 4.10 and performance measure shown in 

Figure 4.36. 

Table 4.10: nbmodel Confusion Matrix for the Ensemble Model Computation 

 Actual 

predicted negative positive 

negative 0 0 

positive 130 295 

 

Figure 4.36: A 2000 Product Review Analysis Sample of the nbmodel Performance 

for the Ensemble Model Computation 

Interpretations of Table 4.10 and Figure 4.36 indicated that the nbmodel base classifier 

achieved a performance of 69.4% in terms of accuracy and an error rate of 30.6% among 

other performance measures. 
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(c) Learning the Second Base Classifier – the SVM Model 

The second base classifier – the SVM Model was then trained with the train set as per the 

steps depicted in Figure 4.32. At this point, the sentiment levels for SVM were “0” and 

“1”, while at this stage these weren’t valid variable names in R-Studio, meaning we could 

not compute “0”. This posed as a challenge hence an error “Error: At least one of the 

class levels is not a valid R variable name” occurred. To resolve this, we renamed the 

levels of the response variable back to “negative”, "positive" for both the train and test 

set as shown in Figure 4.37 and Figure 4.38, and also removed missing values if there 

were any. 

 

Figure 4.37: Renaming the Levels of the Response Variable for the Train Set 
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Figure 4.38: Renaming the Levels of the Response Variable for the Test Set 

We again defined the training control for SVM Model by setting up a 10-fold cross-

validation in 3 iterations, and saving the resulting predictions and class probabilities as 

indicated in the Figure 4.39.  

 

Figure 4.39: Defining the Training control for the SVM Model  
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Figure 4.40: The training output for the Second base classifier SVM Model 

 

Figure 4.41: A Training plot for the SVM Model 

Finally, we carried out predictions for the second base classifier – the SVM Model and 

generated a confusion matrix to generate performance measures as shown in Figure 4.42 

and Figure 4.43. 
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Figure 4.42: A sample of the Predicted SVM base Model 

 

Figure 4.43: A 2000 Product Review Analysis Sample of the SVM Model 

Performance for the Ensemble Model Computation 
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In summary, the Interpretations of Figure 4.43 indicated that the SVM Model base 

classifier achieved a performance of 97.4% in terms of accuracy and an error rate of 2.6% 

among other performance measures. 

(d) Learning the Meta Classifier – the Ensemble Model 

Eventually, the outputs of the base classifiers (in terms of predictions) were treated as 

inputs for the meta-learning model as shown in Figure 4.32 and Figure 2.12. In this 

approach, the model was expected to learn and adapt to different situations as the 

demonstrations in training the ensemble process in chapter 4.2.3.2 indicated highly diverse 

base learners. 

We then defined the training control for Ensemble Model by setting up a 10 fold cross-

validation in 3 iterations, and saving the resulting predictions and class probabilities as 

indicated in the Figure 4.44.  

 

Figure 4.44: Defining the Training control for the Ensemble Model  
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Figure 4.45: The Trained Ensemble Output for 2000 Reviews 

Further, predictions were carried out and a summary for the resulting output is as shown 

in Figure 4.46. 

 

Figure 4.46: The Ensemble Summary Prediction Performance Results for 2000 

Reviews 
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Figure 4.47: The Resampling Results in terms of Accuracy 

 

Figure 4.48: Comparison of the Base Models 
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Figure 4.49: The Correlation between the Base Classifiers Results 

(e) Learning the Stacked Ensemble Model 

Finally, the models were aggregated by a Stacking Ensemble. The Stacked Ensemble was 

trained by defining the training control, setting up a 10-fold cross-validation in 3 

iterations, and saving the resulting predictions and class probabilities as indicated in the 

Figure 4.50. This was done using a Generalized Linear Model (GLM) to create a simple 

linear blend of binary classification model. The outputs are as depicted in the figures 

below. 
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Figure 4.50: Defining the Stacked Ensemble Training control and the Training 

output  
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Figure 4.51: Summary of the Resulting Stacked Ensemble Model 

In addition, predictions were again carried out with the Stacked Ensemble Model to give 

a final output for the Model. Hence, the Confusion Matrix was also generated to 

demonstrate the varied performances as shown in Figure 4.52 and Table 4.11. 

 



 

147 

 

Figure 4.52: The Confusion Matrix Result for the Stacked Ensemble Model 

Table 4.11: The Stacked Ensemble Model Confusion Matrix Table 

 Actual 

predicted negative positive 

negative 122 12 

positive 0 320 

From the Confusion Matrix in Figure 4.52 and Table 4.11, the Stacked Ensemble accuracy 

performance was at 97.4% while the error rate was at 2.6% in the analysis of 2000 reviews. 

4.3 Experiment Results and Discussions  

Finally, a summary based on the confusion matrix as depicted in Table 4.2, for the varied 

performances for the various datasets and number of reviews, which were carried out in 

the experiments and shown in Table 4.12 and Table 4.13. Figure 4.53 also gives a brief 

summary of the Resulting Stacked Ensemble Model performance. 
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Figure 4.53: Resulting Stacked Ensemble Model Performance 

Table 4.12: Comparative Results for Classifiers Performance in terms of Accuracy 

– with Caret Package 

Sr. No. 
No. of Tweet 

Reviews 

Accuracy (acc) 

Naïve Bayes SVM 
Stacked 

Ensemble 

1 500 91.60% 97.50% 97.50% 

2 700 81.10% 96.90% 96.10% 

3 1,000 80.90% 96.60% 96.60% 

4 1,500 87.40% 98.10% 98.10% 

5 2,000 69.40% 97.40% 97.40% 

6 3,000 75.90% 96.50% 96.50% 

7 5,000 32.00% 98.20% 97.80% 

8 10,000 32.10% 98.70% 98.70% 

9 15,000 33.00% 99.40% 99.40% 

Total  38,700       
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Table 4.13: Comparative Results for Classifiers Performance in terms of Error Rate 

– with Caret Package 

Sr. No. 
No. of Tweet 

Reviews 

Error Rate (err) 

Naïve Bayes SVM Stacked Ensemble 

1 500 8.40% 2.50% 2.50% 

2 700 18.90% 3.10% 3.90% 

3 1,000 19.10% 3.40% 3.40% 

4 1,500 12.60% 1.90% 1.90% 

5 2,000 30.60% 2.60% 2.60% 

6 3,000 24.10% 3.50% 3.50% 

7 5,000 68.00% 1.80% 2.20% 

8 10,000 67.90% 1.30% 1.30% 

9 15,000 67.00% 0.60% 0.60% 

Total  38,700       

R programming language allows implementation and experimentation of various 

modelling functions or packages in one environment. For this reason, analytical 

experiments were carried out in different phases in R-Studio environment, with an aim of 

validating the model. As depicted in Chapter 4.2, the model creation experiments were 

first carried out with the Multinomial Naïve Bayes model found in the Naïve Bayes 

package. Secondly, the SVM model was then implemented with the e1071 package, while, 

to carry out experiments for the ensemble model, we finally fit the model with 

caretEnsemble package R environment.  

The experimental analysis of these classifier models involved setting up of various 

parameters for each phase, as shown in Chapter 4.2. This provided a varied comparison 

of results as shown in Table 4.8, Table 4.9, Table 4.12 and Table 4.13. Further, Table 4.14 

through to Table 4.16 demonstrate the classifier’s performances in terms of precision, 

recall and F-Measure.  
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Table 4.14: Comparative Results for Classifiers Performance in terms of Precision 

(p) 

Sr. No. 
No. of Tweet 

Reviews 

Precision (p) 

Naïve Bayes SVM 
Stacked 

Ensemble 

1 500 91.63% 97.31% 97.31% 

2 700 81.12% 96.41% 1.00% 

3 1,000 80.97% 95.97% 95.97% 

4 1,500 87.35% 1.00% 1.00% 

5 2,000 69.41% 1.00% 1.00% 

6 3,000 75.86% 1.00% 95.60% 

7 5,000 0.00% 97.40% 1.00% 

8 10,000 0.00% 98.20% 98.20% 

9 15,000 0.00% 1.00% 1.00% 

Total  38,700       

Table 4.15: Comparative Results for Classifiers Performance in terms of Recall (r) 

Sr. No. 
No. of Tweet 

Reviews 

Recall (r) 

Naïve Bayes SVM 
Stacked 

Ensemble 

1 500 1.00% 93.78% 93.78% 

2 700 1.00% 86.35% 83.00% 

3 1,000 1.00% 83.71% 83.71% 

4 1,500 1.00% 88.76% 88.76% 

5 2,000 1.00% 72.40% 72.40% 

6 3,000 1.00% 74.10% 77.71% 

7 5,000 0.00% 67.44% 65.48% 

8 10,000 0.00% 67.39% 67.39% 

9 15,000 0.00% 65.91% 65.91% 

Total 38,700       
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Table 4.16: Comparative Results for Classifiers Performance in terms of F-Measure 

(FM) 

Sr. No. 
No. of Tweet 

Reviews 

F-Measure  (FM) 

Naïve Bayes SVM Stacked Ensemble 

1 500 1.98% 95.51% 95.51% 

2 700 1.98% 91.10% 1.98% 

3 1,000 1.98% 89.42% 89.42% 

4 1,500 1.98% 1.98% 1.98% 

5 2,000 1.97% 1.97% 1.97% 

6 3,000 1.97% 1.97% 85.73% 

7 5,000 0.00% 79.70% 1.97% 

8 10,000 0.00% 79.93% 79.93% 

9 15,000 0.00% 1.97% 1.97% 

Total  38,700       

Table 4.17: Comparative Results for Feature Vectors 

Sr. No. No. of 

Tweet 

Reviews 

Feature Vectors 

Most 

common (+) 

Features 

Most 

common (-) 

Features 

Total No. 

of 

Feature 

Percentage 

(%) of Most 

common (+) 

Features 

Percentage 

(%) of Most 

common (-) 

Features 

1 500 565 54 619 91% 9% 

2 700 610 130 740 82% 18% 

3 1,000 806 192 998 81% 19% 

4 1,500 1733 198 1931 90% 10% 

5 2,000 893 381 1274 70% 30% 

6 3,000 1549 514 2063 75% 25% 

7 5,000 2920 1401 4321 68% 32% 

8 10,000 4879 2372 7251 67% 33% 

9 15,000 6621 3265 9886 67% 33% 

Total 38,700 
     

The classifiers’ performance results with regard to precision, as shown in Table 4.14 

indicated that best performance for SVM and the Stacked Ensemble was competitive at 

98.20% compared to Naive Bayes whose best performance was at 91.63%. On the other 

hand, SVM and the Stacked Ensemble also performed best at 93.78% and 95.51% on 

recall and F-Measure (FM) respectively. 
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However, as shown in Table 4.14 there were instances where the performance on precision 

was at 1% for both SVM and the Stacked Ensemble. This was attributed to the classifiers 

yielding no false positive instances on their respective confusion matrices. At the same 

time there were also instances where Naive Bayes recorded 0%. This on the other hand 

was attributed to the classifier yielding no false positive and true positive instances as 

depicted on the confusion matrices. 

The goal of the final phase of experiments was to evaluate the performance for Sentiment 

classification in terms of accuracy and robustness, while subjecting the Ensemble Model 

to a different modelling function in R-Studio - the Caret package. We therefore compared 

the two supervised Machine Learning algorithms, for sentiment classification of 38,700 

Twitter product reviews. From the experiments, as much as there existed significant 

amount of errors, Naïve Bayes could not be regarded as an unstable learning system. 

Arguably, the experiments indicated that SVM and Naïve Bayes were good classifiers for 

Sentiment analysis and Text Classification due to the relatively good performances 

achieved in Table 4.12 and Table 4.13. The Stacked Ensemble Model additionally 

demonstrated a good ability to cope with errors as indicated in Table 4.13. Generally 

speaking, all the classifiers coped well with errors, as the highest record of error rate 

measure was realized by Naïve Bayes at 68%. However, it was also noticed that there was 

a reduction in percentage of the error rate for Naïve Bayes with progressive increase of 

reviews to be analyzed from 10,000 reviews onwards. 

The relatively good performance results for SVM and the Stacked Ensemble with regard 

to recall, as depicted Table 4.15 indicated that the models significantly estimated the 

probability that a randomly selected true positive instance was predicted as positive. The 

minimal performance for Naive Bayes on the other hand, was because there were instances 

where Naive Bayes classifier yielded no false positive and true positive instances for 

reviews from 5,000 to 15,000 reviews. Additionally, Naive Bayes recorded performances 

of 1% for 500 to 3,000 reviews since the classifier yielded no true negative instances on 

the respective confusion matrices. 



 

153 

As mentioned earlier there were good performance results for SVM and the Stacked 

Ensemble with regard to F-Measure while Naïve Bayes’ best performance was at 1.98%. 

This was attributed to the fact that Naïve Bayes had no performance on recall and precision 

in the analysis of 5,000 to 15,000 reviews. 

With regard to the varied result on the performance measure in Table 4.12 to 4.13, 

information on Table 4.17 depicts that in terms of structure, our datasets were significantly 

imbalanced. This was evidenced by the fact that the target class ‘sentiment’ had an uneven 

distribution of observations, that is, the ‘positive’ class (the majority class) had high 

numbers of observations, as compared to the ‘negative’ class (the minority class) which 

had low numbers of observations. With this, our classification model was therefore biased 

towards the predictions as seen in Figure 4.8, Figure 4.30 and Figure 4.50. In this case, 

the confusion matrix for the classification problem was used to show how well our model 

classified the target classes and arrived at the performance accuracies in Table 4.8 and 

4.12. These were based on the confusion matrices principles in Table 4.2 and 4.3 

respectively. 

Using accuracy as a performance measure may be good enough for a well-balanced class 

problem, but not preferable for an imbalanced class problem (Mazumder, 2021). 

Therefore, the building of the Ensemble model together with the use of F-Measure (FM) 

as a performance metric was adequately used to deal with the class imbalance problem. 

F-Measure (FM) was used as an evaluation metric, since it is a harmonic mean of precision 

and recall. This means that if the classifier predicts the minority class but the prediction is 

erroneous and false-positive increases, the precision metric and F-Measure will be low. In 

addition, if the classifier identifies the minority class poorly, in a way that more of the 

minority class is wrongfully predicted as the majority class, then false negatives will 

increase, so recall and F-Measure will be low. At the same time, F-Measure only increases 

if both the number and quality of prediction improves (Tripathi, 2019; Mazumder, 2021).  
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On the other hand, the class imbalance problem as depicted in Table 4.17 was relatively 

low from 5,000 to 15,000 reviews. This resulted in minimal impact on our model’s 

performance evaluation. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORK 

5.1 Introduction 

This section covers all the work done in summary, achievements, conclusions, 

recommendations, limitations of the research study, knowledge contribution and future 

work.  

5.2 Summary 

In the analysis of the two classification approaches, as shown in Chapter 4 Table 4.12 and 

Table 4.13, the results in the summary indicated that in terms of error rate, Naïve Bayes 

seemed to be generating a significant amount of errors during computation as compared 

to SVM. From the Confusion Matrices as depicted in Chapter 4 Figure 4.36 and Figure 

4.43, basically, there were two kinds of errors, False Negative (FN) and False Positive 

(FP), while the experiments in Chapter 4 Figure 4.36 indicated that for instance, Naïve 

Bayes had a significant rate of False Positive (FP) with 130 instances. As indicated in 

Chapter 4, Table 4.12 and Table 4.13, SVM performances were better than Naïve Bayes 

in terms of accuracies and error rate measure. However, the Stacked Ensemble Model’s 

performances were similar to that of SVM performances, except for experiments carried 

out for 700 and 5,000 reviews where the ensemble had a significant amount of errors at 

3.9% and 2.2% respectively. A 10-fold cross validation was also carried out during 

classifier training with the intension of tuning and developing a ‘best’ model – a model 

with minimum amount of errors. The aim for the study was to experiment on the 

accuracies and the error rates of the base classifiers, to establish the impact and 

effectiveness of building the ensemble model. From the outcomes in Tables 4.8, 4.9, 4.12 

and 4.13, generally speaking, the results indicated that Naïve Bayes and SVM were 

considerably strong, yet diverse good text classifiers.  

Finally, R-Studio was used as a tool for the research study, analysis, implementation of 
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the research methodology and generation of graphical plots. It is a free, open-source, 

cross-platform programming environment designed for statistical analysis, which makes 

it highly suitable for Data science applications such as Sentiment Analysis. The models 

were validated with data sets of tweet reviews of "OnePlus 7 Pro" mobile phone product, 

in the rounds of experiments where the data was categorized as positive and negative. 

5.3 Achievements 

The general objective of this research was to develop an ensemble model for target 

Sentiment classification of product reviews using Naïve Bayes and Support Vector 

classifiers. This was achieved by assembling tools provided for in R-Studio platform that 

were then run to experiment with an aim of producing a Sentiment Analysis model that 

could categorize twitter product reviews into ‘positive’ and ‘negative’ classes based on 

supervised learning. The conclusions of the experiments are as discussed in Chapter 4.3. 

The first specific objective was to identify a basic workflow for conducting sentiment 

analysis for product reviews from Twitter data. This was achieved by creating a step-by-

step Sentiment Analysis methodology that enabled the segregation of ‘positive’ 

sentiments from ‘negative’ sentiments. This has been described in Chapter 3.2. 

The second specific objective was to assess and validate the performance of Naïve Bayes 

and Support Vector Machine as supervised Machine learning algorithms in sentiment 

classification. The classifiers were subjected to metrics for binary classification problems, 

which were derived from various confusion matrices from the different datasets. The 

confusion matrices depicted two by two contingency tables of the predicted and observed 

class labels. However, emphasis was made on accuracy, precision and robustness. The 

final results for the performance metrics as shown in Table 4.12 through to Table 4.17 are 

discussed in Chapter 4.3. 

The third specific objective was to experiment with the proposed algorithms singularly, 

and finally based on the resulting outcome, determine a suitable approach of creating an 
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ensemble model of the two classifiers. This was achieved by carrying out experiments 

with an aim of assessing and validating the performance of the single model classifiers, 

and ascertaining patterns of accuracy, error rate and precision of the machine learning 

algorithms with respect to analyzing the impact of the classifiers in terms of performance, 

during the creation of the ensemble model. With the evaluation of Naïve Bayes and 

Support Vector Machine classifiers, for instance, the error rate results demonstrated that 

the errors made by the classifiers were uncorrelated. These were shown in Tables 4.8 and 

4.9. In addition, a class imbalance problem during experimentations, depicted in Table 

4.17, was also very significant in this study. The outcomes of these experiments in Chapter 

4.3 supported the building of the predictive ensemble model. 

The fourth specific objective was to finally develop and validate the performance of the 

proposed ensemble model, based on Naïve Bayes and Support Vector Machine, to be used 

in Sentiment classification of products reviews. This was achieved by using tools for 

model tuning, using resampling; and variable importance estimation tools, in Caret 

package - R-Studio. The results and discussions are also as discussed in Chapter 4.3. 

Other achievements with regards to journal publications for the research study are shown 

in Table 5.1. 
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Table 5.1: Publication Achievements 

TITLE JOURNAL STATUS 

Target Sentiment 

Analysis Ensemble 

for Product Review 

Classification 

Journal of Information Technology 

Research (JITR) 15(1), 1-13. 

http://doi.org/10.4018/JITR.299382 

(ISSN 1938-7857) – EI Indexed  

Published 

Target Sentiment 

Analysis Model with 

Naïve Bayes and 

Support Vector 

Machine for Product 

Review Classification  

International Journal of Computer 

Science and Information Security 

(IJCSIS), Vol. 17, No. 7, July 2019 

Published 

Towards the Creation 

of an Ensemble Model 

for Sentiment 

Analysis Based on 

Naïve Bayes and 

Support Vector 

Machine for Product 

Review 

Classification: A 

Literature Survey 

The RUFORUM Sixth Biennial 

Regional Conference 22 - 26 

October 2018, Nairobi, Kenya. 

RUFORUM Working Document 

Series (ISSN 1607-9345), 2018, 

No. 17 (3): 736-749 

Retrieved from 

http://repository.ruforum.org 

 

Published 

5.4 Conclusion 

As evidenced from our experiments, the key assumption when dealing with Machine 

Learning classifiers is not whether a learning algorithm is superior to others, but the ability 

to investigate under which conditions a particular classifier can significantly outperform 

others on a given application problem.  

Our Sentiment Analysis model was regarded to be a stable model since the performance 

on the error rates were kept at a minimal range. These resulted to the development of a 

robust model as demonstrated in Table 4.13.  

Finally the Stacked Ensemble model was also adequately used to deal with the class 

http://repository.ruforum.org/


 

159 

imbalance problem, as the ensemble technique was used to combine the resulting 

performance of the two base classifiers so as to improve performance as shown in Table 

4.16. F-Measure was also adequately used to keep the balance between precision and 

recall, and to improve the performance score only if the classifier identified more of a 

certain class correctly. In addition, while computing the Ensemble model using the Caret 

package, the meta-learner, induced which classifier was reliable as compared to the one 

that was not. The outcome indicated that the reliable classifier was SVM, since it generally 

performed better in the text classification process. These outcomes resulted to the 

contributions that the Stacked Ensemble made to the research study. 

5.5 Recommendations 

Based on the conclusive results of the experiments carried out with Naïve Bayes and SVM 

as single classification models, the research recommends the adoption of these classifier 

in Text Mining and Sentiment analysis, as it was found out that both the classifiers are 

strong and very good text classification models. In addition, the research can also advise 

on the use of these classifiers to reduce costs sourced from complexity with keeping 

success rates in Sentiment Analysis.  

Secondly, to adequately carryout the Sentiment Analysis with machine learning 

approaches during the research study, a basic workflow for conducting sentiment analysis 

for product reviews from Twitter data was identified and implemented. The research 

therefore recommends the adoption of this workflow, or a similar one, so as to facilitate 

data preparation and cleaning tasks in the domain of Machine Learning. 

Further, the experimental results from this study are not dependent on any specific 

language. For this reason, proposed method is implementable for Sentiment Analysis in 

other language. 

5.6 Limitations of the Research Study 

The research study encountered a number of challenges. To begin with, Complexity of 
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Natural Language was a big challenge in Text Mining and Sentiment Analysis. The natural 

language is not free from the problem of ambiguity. One word may have multiple 

meanings and multiple words can have same meaning.  

Secondly, analysis of colloquial/ multilingual languages was also a major challenge as the 

researchers faced a challenge of building resources, that is, lexicons and dictionaries for 

these languages. The research therefore only relied on the available lexicons in R-Studio. 

Finally, instead of relying on natural existence of language as data or evidence in Natural 

Processing Language as they occur, in the research study, the text classification process 

with Machine Learning aimed to make classifications based on past observations, that is, 

data training had to be done. 

5.7 Knowledge Contribution to the field of study 

Based on the new experiments carried out in this research study with Naïve Bayes and 

Support Vector Machine classification models, our accomplished tasks contributed some 

knowledge in the field of Sentiment Analysis, Text Mining and Machine Learning. This 

has been outlined from our main research task that was to develop an ensemble model for 

target sentiment classification of product reviews using Naïve Bayes and Support Vector 

Machine classifiers. An ensemble comprises of individually trained base classifiers whose 

predictions are combined when classifying instances. Some of the currently popular 

ensemble methods in prior research works include Boosting, Bagging and Stacking. In 

this research study, we reviewed these methods and demonstrated why ensembles may 

perform better than single models, however, from our results, SVM produced better 

performances as seen in Chapter 4.3. Additionally, some new experiments were presented 

to demonstrate the computational ability of Naïve Bayes classifier, SVM classifier and 

finally, aggregation by Stacking approach. 

Secondly, another goal in the research study was to identify a basic workflow for 

conducting sentiment analysis for product reviews from Twitter data. This was 
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accomplished by the basic aspect of creating a methodology that produced relevant 

features for the Sentiment classification model, using data preparation techniques, Naïve 

Bayes and Support Vector Machine classifiers, while also evaluating the performance of 

the classifiers and investigating their universal reliability. The outlined methodology in 

Chapter 3 therefore also contributed some knowledge in this field of study. 

5.8 Future Work/ Further Gaps in Related Research 

For status, implementation of experiments on R-Studio lexicons (‘bing’ and ‘nrc’) 

constituted to a significant limiting factor. For this reason, we are planning to implement 

experiments on other English and multilingual corpuses as an extension of this study. 

Secondly, from our analysis and experiments, Feature Engineering and Data Preparations 

came out as very important tasks in the domain of Machine Learning, and generally 

Sentiment Analysis, since converting original documents to feature vectors is critical in 

this area of study. As a result, we are also planning to carry out further research and 

experimentation to identify ways and criteria of engineering features for Machine 

Learning. Additionally, experiments carried out at the Ensemble phase indicated that 

further research can be done to investigate the correlations between meta-attributes and 

the performance of the learning algorithms. 

Finally, other text classification methods except for the ones employed in this research 

study should be used and their effects on the research problem in Sentiment Analysis 

should be observed and studied. 
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APPENDICES 

Appendix I: Data Mining and Sentiment Analysis Experiment Sheet  

These codes were variously retrieved from RStudio-Community (2018) and Github 

(2019). 

DATA MINING IN R-STUDIO 

rawtweets = searchTwitter("OnePlus", n=2000, since = "2019-12-01", lang = "en") 

legnth.rawtweets <- length(rawtweets) 

legnth.rawtweets 

rawtweets.df <- ldply(rawtweets, function(t) t$toDataFrame()) 

write.csv(rawtweets.df, "tweets.csv") 

SENTIMENT ANALYSIS 

txt = sapply(rawtweets, function(x) x$getText()) 

txt1 = gsub("RT|via)((?:\\b\\w*@\\w+)+)", " ", txt) 

txt2 = gsub("http[^[:blank:]]+", " ", txt1) 

txt3 = gsub("@\\w+", " ", txt2) 

txt4 = gsub("[[:punct:]]", " ",txt3) 

txt5 = gsub("[^[:alnum:]]", " ",txt4) 

write.csv(txt5, "tweets1.csv") 

txt6 <- Corpus(VectorSource(txt5)) 

txt6 <- tm_map(txt6, content_transformer(tolower)) 

txt6 <- tm_map(txt6, removeWords, stopwords("english")) 

txt6 <- tm_map(txt6, stripWhitespace) 
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txt6 <- tm_map(txt6, stemDocument) 

for (i in 1:50) { 

  cat(paste("[[", i, "]] ", sep = "")) 

  writeLines(as.character(txt6[[i]])) 

} 

library(rJava) 

library(RWeka) 

token_delimtr <- " \\t\\r\\n.!?,;\"()" 

NgramTokenizer <- function(min, max) { 

  result <- function(x){ 

    RWeka::NGramTokenizer(x, RWeka::Weka_control(min = min, max = max, 

delimiters=token_delim)) 

  } 

  return(result) 

}  

textTDM <- TermDocumentMatrix(txt6, control=list(tokenize=NgramTokenizer(min=1, 

max=1))) 

inspect(textTDM)  

textTDM_sparse  = removeSparseTerms(textTDM, 0.98) 

textTDM_sparse 

dtm <- TermDocumentMatrix(txt6) 

m <- as.matrix(textTDM_sparse) 

v <- sort(rowSums(m),decreasing=TRUE) 
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d <- data.frame(word = names(v),freq=v) 

head(d, 50) 

str(dtm) 

features <- sort(rowSums(as.matrix(dtm)), decreasing=TRUE) 

barplot(features[1:25], col="sky blue", las=2, main = "Most Frequent Words", ylab = 

"Frequencies") 

str(features) 

summary(features) 

length(features) 

head(features, 10) 

tail(features, 10) 

library(tm) 

library(SnowballC) 

library(wordcloud) 

library(RColorBrewer) 

pal <- brewer.pal(8, "Dark2") 

png("wordcloud_packages.png", width=1000,height=1000) 

wordcloud(txt6, min.freq = 2, max.words=100, random.order=FALSE, rot.per=0.35,  

          colors=pal) 

get_sentiments("afinn") 

get_sentiments("bing") 

get_sentiments("nrc") 

library(ggplot2) 



 

188 

library(syuzhet) 

library(tidytext) 

library(dplyr) 

mysentiment <- get_nrc_sentiment(txt5) 

SentimentScores <- data.frame(colSums(mysentiment[,])) 

names(SentimentScores) <- "Score" 

SentimentScores <- cbind("sentiment" = rownames(SentimentScores), SentimentScores) 

rownames(SentimentScores) <- NULL 

View(SentimentScores) 

write.csv(mysentiment, "mysentiment_apendix.csv") 

mysentiment 

str(mysentiment) 

colnames(mysentiment) 

summary(SentimentScores[c("sentiment","Score")]) 

library(textdata) 

nrc_lexicon <- get_sentiments("nrc") 

head(nrc_lexicon) 

ggplot(data = SentimentScores, aes(x = sentiment, y = Score)) +  

  geom_bar(aes(fill = sentiment), stat = "identity") + 

  theme(legend.position = "none") + 

  xlab("Sentiment") + ylab("Score") +  

  ggtitle("Total Sentiment (Emotion) Score Based on Tweets")   
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bing_lexicon <- get_sentiments("bing") 

head(bing_lexicon) 

get_sentiments("nrc") %>%  

  filter(sentiment %in% c("positive",  

                          "negative")) %>%  

  count(sentiment) 

get_sentiments("bing") %>%  

  count(sentiment) 

library(tidytext) 

dtm_tidy <- tidy(dtm) 

head(dtm_tidy, 15) 

tail(dtm_tidy, 15) 

colnames(dtm_tidy) 

colnames(dtm_tidy)[colnames(dtm_tidy)=="term"] <- "word" 

colnames(dtm_tidy) 

nrc_anticipation <- get_sentiments("nrc") %>%  

  filter(sentiment == "anticipation") 

nrc_anticipation 

dtm_tidy %>% 

  semi_join(nrc_anticipation) %>% 

  count(word, sort = T) 

dtm_tidy_sentiments <- dtm_tidy %>% inner_join(get_sentiments("bing"), by = 

c(word="word")) 
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str(dtm_tidy_sentiments) 

summary(dtm_tidy_sentiments) 

head(dtm_tidy_sentiments, 15) 

tail(dtm_tidy_sentiments, 15) 

countclass <- length(which(dtm_tidy_sentiments == 'positive')) 

countclass 

countclass <- length(which(dtm_tidy_sentiments == 'negative')) 

countclass 

library(naivebayes) 

library(dplyr) 

library(ggplot2) 

library(psych) 

dtm_tidy_sentiments 

str(dtm_tidy_sentiments) 

dtm_tidy_sentiments$word <- unlist(dtm_tidy_sentiments$word) 

dtm_tidy_sentiments$document<- unlist(dtm_tidy_sentiments$document) 

dtm_tidy_sentiments$count <- unlist(as.character(dtm_tidy_sentiments$count)) 

dtm_tidy_sentiments$sentiment<- unlist(dtm_tidy_sentiments$sentiment) 

classifiedsentiments.df <- dtm_tidy_sentiments 

classifiedsentiments.df 

write.csv(classifiedsentiments.df, "classified_sentiments_df.csv") 

classifiedwords_df<- read.csv("classified_sentiments_df.csv", stringsAsFactors = 

FALSE) 
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glimpse(classifiedwords_df) 

set.seed(1) 

classifiedwords_df <- classifiedwords_df[sample(nrow(classifiedwords_df)), ] 

classifiedwords_df <- classifiedwords_df[sample(nrow(classifiedwords_df)), ] 

glimpse(classifiedwords_df) 

head(classifiedwords_df) 

tail(classifiedwords_df) 

sample_index <- sample(1:nrow(classifiedwords_df), 30, replace = FALSE) 

sample_index 

classifiedwords_df[sample_index, ] 

classifiedwords_df$sentiment <- as.factor(classifiedwords_df$sentiment) 

classifiedwords_df$word <- as.factor(classifiedwords_df$word) 

glimpse(classifiedwords_df) 

str(classifiedwords_df$sentiment) 

classifiedwords_df 

write.csv(classifiedwords_df, "classifiedwords_df_apendix.csv")  

classifiedterms_df[,] 

levels(classifiedwords_df$sentiment) 

table(classifiedwords_df$sentiment) 

barplot(table(classifiedwords_df$sentiment)) 

proportional_table <- table(classifiedwords_df$sentiment) 

proportional_table 
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round(prop.table(proportional_table)*100,3)# output in percentage 

MODEL TRAINING 

ind <- sample(2, nrow(classifiedwords_df), replace = TRUE, prob = c(0.67, 0.33)) 

nbtrain_set <-classifiedwords_df[ind == 1,] 

nbtest_set <- classifiedwords_df[ind == 2,] 

head(nbtrain_set) 

head(nbtest_set) 

nrow(nbtrain_set) 

nbtrain_set 

write.csv(nbtrain_set, "nbtrainset_apendix.csv") 

nb_model <- naiveBayes(sentiment ~ word, data = nbtrain_set) 

nb_model 

summary(nb_model) 

nrow(nbtest_set) 

nbtest_set 

write.csv(nbtest_set, "nbtestset_apendix.csv") 

pred_nb <- predict(nb_model, nbtest_set) 

pred_nb 

confusionMatrix(table(pred_nb, nbtest_set$sentiment)) 

pred_nb <- predict(nb_model, nbtest_set, type = "raw") 

pred_nb 

head(pred_nb, 20) # this returns a view of the first 20 rows of the predicted model 
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write.csv(pred_nb, "prednbprobabilites_apendix.csv") 

head(nbtest_set) 

nbtest_set 

nb_model2 <- naiveBayes(sentiment ~ word, data = nbtrain_set, laplace = 1) 

nb_model2 

pred_nb2 <- predict(nb_model2, nbtest_set) 

pred_nb2 

confusionMatrix(table(pred_nb2, nbtest_set$sentiment)) 

classifiedwords_df 

head(classifiedwords_df) 

summary(classifiedwords_df) 

classifiedwords_df$sentiment 

dummysvMM <- model_matrix(classifiedwords_df,  word ~ sentiment ) 

dummysvMM  

summary(dummysvMM) 

dummysvMM <- model_matrix(classifiedwords_df,  word ~ sentiment-1 ) 

dummysvMM 

write.csv(dummysvMM, "dummysvMM_1.csv") 

classifiedwords_df2 <- cbind(classifiedwords_df[,1:5], dummysvMM) 

head(classifiedwords_df2) 

write.csv(classifiedwords_df2, "dummysvMM_2.csv") 

classifiedwords_df 
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classifiedwords_df3 <- classifiedwords_df[,c(2,3,4,5)] 

classifiedwords_df3 

write.csv(classifiedwords_df3, "classifiedwords_df3.csv") 

dataset_svm <- read.csv("classifiedwords_df3.csv",header = FALSE) 

dataset_svm 

dataset_svm$v5[dataset_svm$V5 == "negative" ] <- 0 

dataset_svm$v5[dataset_svm$V5 == "positive" ] <- 1 

dataset_svm 

write.csv(dataset_svm, "dataset_svm.csv") 

dataset_svm1 <- dataset_svm[-1,c(2,3,4,6)] 

dataset_svm1 

str(dataset_svm1) 

write.csv(dataset_svm1, "dataset_svm1.csv") 

dataset_svm1$v5 = factor(dataset_svm1$v5, levels = c(0, 1))  

str(dataset_svm1) 

ind <- sample(2, nrow(dataset_svm1), replace = TRUE, prob = c(0.67, 0.33)) 

trainsv_set <-dataset_svm1[ind == 1,] 

testsv_set <- dataset_svm1[ind == 2,] 

head(trainsv_set) 

head(testsv_set) 

str(trainsv_set) 

write.csv(trainsv_set, "trainsv_set.csv") 
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write.csv(testsv_set, "testsv_set.csv") 

set.seed (1) 

x=matrix (rnorm (20*2) , ncol =2) 

y=c(rep (0,10) , rep (1 ,10) ) 

x[y==1 ,]= x[y==1,] + 1 

plot(x, col = y + 3, pch = 19) 

library (e1071) 

sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  

               kernel = 'linear', 

               scale =FALSE)  

sv_model 

sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  

               kernel = 'linear',cost =10, 

               scale =FALSE)  

sv_model 

sv_model$index 

sv_model$SV 

summary (sv_model ) 
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sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  

               kernel = 'linear',cost =0.1, 

               scale =FALSE)  

sv_model 

sv_model$index 

set.seed(1) 

tune.out <- tune(svm ,v5 ~ .,  

                 data = trainsv_set,  

                 type = 'C-classification',  

                 kernel = 'linear', 

                 ranges =list(cost=c(0.001, 0.01, 0.1, 1, 5, 10, 100) )) 

summary(tune.out) 

best_model <- tune.out$best.model 

summary(best_model) 

sv_pred <- predict (best_model ,testsv_set ) 

sv_pred 

table(predict =sv_pred , actual= testsv_set$v5 ) 

sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  
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               kernel = 'linear',cost =.01, 

               scale =FALSE)  

sv_model 

sv_pred=predict (sv_model ,testsv_set ) 

table(predict =sv_pred , actual= testsv_set$v5 ) 

sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  

               kernel = 'linear',cost =1e5, 

               scale =FALSE)  

summary(sv_model) 

sv_model = svm(formula = v5 ~ .,  

               data = trainsv_set,  

               type = 'C-classification',  

               kernel = 'linear',cost =1, 

               scale =FALSE)  

summary (sv_model) 

rmse 

mae 

qae 

library(parallel) 

library(caret) 
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library(nnet) 

library(e1071) 

library(caretEnsemble) 

library(parallel) 

library(doParallel) 

numCores <- detectCores() 

classification_error <- function(conf_mat) { 

  conf_mat = as.matrix(conf_mat) 

  error = 1 - sum(diag(conf_mat)) / sum(conf_mat) 

  return (error) 

} 

library(klaR) 

control <- trainControl(method="repeatedcv", number=10, repeats=3, 

savePredictions=TRUE, # To save out of fold predictions  

                        classProbs=TRUE) # To save the class probabilities of the out of fold 

predictions 

set.seed(123) 

nbmodel <- train(as.factor(sentiment)~ word, data = nbtrain_set, method = "nb",  

                 trControl=control) 

nbmodel 

summary(nbmodel) 

predicted.classes <- nbmodel %>% predict(nbtest_set) 

predicted.classes 
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confusionMatrix(predicted.classes, nbtest_set$sentiment ) 

nb_conf_mat <- table(predicted = predicted.classes, actual = nbtest_set$sentiment ) 

nb_conf_mat 

cat("Classification Error for nbmodel for Sentiment Predictions:", 

classification_error(nb_conf_mat), "\n") 

print(nbmodel) 

write.csv(predicted.classes, "predicted.classes.csv") 

mean(predicted.classes == nbtest_set$sentiment) 

str(trainsv_set) 

head(trainsv_set) 

levels(trainsv_set$v5) <- c("negative", "positive") 

head(trainsv_set) 

head(testsv_set) 

levels(testsv_set$v5) <- c("negative", "positive") 

head(testsv_set) 

str(trainsv_set) 

str(trainsv_set) 

anyNA(trainsv_set) 

sample_n(trainsv_set, 3) 

summary(trainsv_set) 

head(trainsv_set) 

svcontrol <- trainControl(method="repeatedcv", number=10, repeats=3, 

savePredictions=TRUE, classProbs=TRUE)  
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grid <- expand.grid(C = c(0,0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2,5)) 

set.seed(3233) 

svm_Linear_Grid <- train(v5 ~ V2, data = trainsv_set, method = "svmLinear", 

                         trControl= svcontrol, 

                         preProcess = c("center", "scale"), 

                         tuneGrid = grid, 

                         tuneLength = 10) 

svm_Linear_Grid 

plot(svm_Linear_Grid) 

test_pred_grid <- predict(svm_Linear_Grid, newdata = testsv_set) 

test_pred_grid 

write.csv(test_pred_grid, "test_pred_grid.csv") 

mean(test_pred_grid == testsv_set$v5) 

confusionMatrix(test_pred_grid, testsv_set$v5 ) 

svm_conf_mat <- table(predicted = test_pred_grid, actual= testsv_set$v5 )  

svm_conf_mat 

cat("Classification Error for SVM Model Sentiment Predictions:", 

classification_error(svm_conf_mat), "\n") 

print(svm_Linear_Grid) 

library(parallel) 

library(caret) 

library(nnet) 

library(e1071) 
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library(caretEnsemble) 

enscontrol <- trainControl(method="repeatedcv", number=10, repeats=3, 

savePredictions=TRUE, classProbs=TRUE)  

algorithmList <- c("nb", "svmLinear") 

models <- caretList(v5 ~ V2, data=trainsv_set, trControl=enscontrol, 

methodList=algorithmList) 

models 

ens_pred <- predict(models, newdata = testsv_set) 

ens_pred 

write.csv(ens_pred, "ens_pred.csv") 

xyplot(resamples(models)) 

results <- resamples(models) 

summary(results) 

dotplot(results) 

modelCor(results) 

splom(results) 

stackControl=trainControl( 

  method="repeatedcv", 

  number=10, 

  repeats=3, 

  savePredictions=TRUE, 

  classProbs = TRUE, 

  summaryFunction=twoClassSummary 
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) 

stacked_ensemble <- caretStack( 

  models, 

  method="glm", 

  metric="ROC", 

  trControl=stackControl 

) 

stacked_ensemble  

summary(stacked_ensemble) 

stack_prediction <- predict(stacked_ensemble, newdata = testsv_set) 

stack_prediction 

write.csv(stack_prediction, "stack_prediction.csv") 

mean(stack_prediction == testsv_set$v5) 

confusionMatrix(stack_prediction, testsv_set$v5 ) 

stack_ens_confmat<- table(predicted = stack_prediction, actual= testsv_set$v5 )  

stack_ens_confmat 

cat("Classification Error for the Stacked Ensemble Model for Sentiment Predictions:", 

classification_error(stack_ens_confmat), "\n") 

print(stacked_ensemble) 
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