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ABSTRACT 

Real-world data suffer from corruption caused by human errors, for instance, 

rounding errors, wrong measurements, biases, faults, or rare events, including 

malicious activities like credit card fraud or cyber activities that cause unusual 

patterns or outliers in data. The detection of outliers is a difficult task that requires 

complex ensemble models. The ideal outlier detection ensemble should assess the 

strengths and optimize the results of its base detectors while carefully combining 

their outputs to create a robust overall model and achieve unbiased accuracy with 

minimal variance. Existing outlier detection ensembles fuse numerous detectors 

(weak learners) in either parallel or sequential order to increase detection accuracy 

by obtaining a combined result through a majority vote. However, trusting the results 

of all weak learners may deteriorate overall ensemble performance as some learners 

may produce erroneous results depending on the types of data and their underlying 

rules. The general objective was to develop an outlier detection model by integrating 

multiple yet different (heterogeneous) base detectors into one model (ensemble), by 

first selecting highly accurate base detectors through training and evaluating every 

model by their error rates, and then implementing the adaptive boosting technique, 

where misclassified samples got to be feedback for the next detector (to minimize 

bias), then strategically combining all their decisions (to minimize variance), in order 

to obtain a strong detector by a combination function. The research’s specific 

objectives were: identifying weak learners by analyzing their initial biases and 

variances, analyzing fusion strategies, developing and evaluating an outlier detection 

model with a focus on minimizing bias, variance, and order of base learners. The 

CRISP-DM methodology was employed. Outlier datasets were drawn from ODDS 

library. The model was validated against four other baselines, and test results were 

compared using performance measures such as Recall, Precision, ROC and AUC 

values. The experiments showed improvement in results in at least 8 out of ten 

datasets in terms of average AUCROC even when the least of outliers (single cases 

up to 10%) were used.  

 

Keywords:  Outliers, Weak learners, Ensembles, Bias, Variance 
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CHAPTER ONE 

INTRODUCTION 

1.1 Motivation 

Outlier detection, also known as anomaly detection, is a critical task in various 

domains such as finance, cyber security, and fraud detection (Varun & Bhatia, 2020). 

The goal is to identify data points that deviate significantly from the normal behavior 

of the majority of the data, which could indicate potential anomalies or abnormalities 

that require further investigation. Traditional approaches for outlier detection often 

rely on statistical methods or rule-based techniques, but these methods may have 

limitations in handling complex and high-dimensional data. 

In recent years, deep learning techniques have gained significant attention in outlier 

detection due to their ability to automatically learn complex patterns and 

representations from raw data (Li et al., 2021). Deep learning techniques, such as 

autoencoders, recurrent neural networks (RNNs), and convolutional neural networks 

(CNNs), have shown promising results in outlier detection tasks. These methods 

have been able to capture intricate patterns and representations from the data, 

enabling them to detect outliers with high accuracy (Buda et al., 2018). However, 

despite the success of deep learning techniques, they still have some limitations. 

Deep learning models are known to be data-hungry and require large amounts of 

labeled data for training, which may not always be available in outlier detection 

scenarios, especially when dealing with rare or novel anomalies (Gupta et al., 2019). 

Moreover, they are typically black-box models, making it difficult to interpret and 

explain their decisions, which may be a concern in applications where interpretability 

is crucial, such as in finance or healthcare (Lipton, 2018). Furthermore, training deep 

learning models can be computationally expensive, and they are prone to overfitting, 

which may not be feasible in resource-constrained environments.  

In contrast, traditional machine learning algorithms like k-nearest neighbors and 

decision trees are more suitable for resource-constrained environments since they 

require fewer computational resources and are less prone to overfitting. 



2 

 

Moreover, heterogeneous ensembles, which combine multiple diverse models or 

algorithms, have emerged as a promising approach for outlier detection (Chen et al., 

2019). Heterogeneous ensembles leverage the strengths of different models or 

algorithms, allowing them to compensate for each other's weaknesses and improve 

overall performance. For example, an ensemble may combine a decision tree-based 

method with a deep learning-based method, or a clustering-based method with an 

instance-based method. By integrating diverse models or algorithms, heterogeneous 

ensembles can enhance outlier detection performance, even when limited labeled 

data or resources are available, and provide interpretability through model diversity 

(Huang et al., 2019). 

Several studies have demonstrated the effectiveness of heterogeneous ensembles in 

outlier detection. For instance, Liu et al. (2018) proposed an ensemble approach 

combining multiple outlier detection algorithms, including clustering-based, density-

based, and distance-based methods, to achieve better performance compared to 

individual methods. Chen et al. (2019) developed a heterogeneous ensemble 

approach that combined autoencoders with one-class SVMs to detect anomalies in 

network traffic data, achieving higher accuracy and interpretability compared to 

standalone models. Xu et al. (2020) proposed a hybrid ensemble approach that 

combined deep learning-based autoencoders with clustering-based KNNs for 

detecting fraud in credit card transactions, demonstrating superior performance in 

terms of accuracy and robustness compared to single models. 

In light of these, while deep learning techniques have shown promising results in 

outlier detection tasks, they still have limitations in terms of data requirements, 

interpretability, and computational efficiency. Heterogeneous ensembles, on the 

other hand, offer a viable alternative by combining diverse models or algorithms to 

compensate for weaknesses and enhance performance, even in challenging scenarios 

with limited data or resources. By leveraging the strengths of different methods, 

heterogeneous ensembles can provide improved outlier detection accuracy, 

interpretability, and robustness, making them a compelling choice for outlier 

detection tasks. 
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1.2 Background of the Study 

Machine learning (ML) refers to the process of training computer systems to learn 

and improve their performance on specific tasks by utilizing algorithms and 

statistical models (Murty et al., 2021). These algorithms are designed to learn from 

data and make predictions or decisions based on that data. ML algorithms are 

commonly used in classification, clustering, association rule mining, and other fields 

that require pattern recognition (Alpaydin, 2020). ML algorithms are also widely 

used in outlier detection, which involves the identification of observations that 

deviate from expected patterns or behaviors (Barnett & Lewis, 2021). As the field of 

ML continues to evolve, new algorithms and techniques are being developed to 

improve performance and enable new applications across various industries.  

In data analysis tasks, one of the first steps towards obtaining a clear study is the 

detection of outlying observations, that is, observations that don’t fit a clear 

definition of what constitutes typical behaviour or what constitutes outlier behaviour 

(Aggarwal, 2021). In a variety of application disciplines, these observations or 

behaviours are frequently referred to as outliers, contaminants, anomalies, 

discordants, faults, oddities, defects, aberrations, noise, errors, damages, unexpected, 

or quirks (Chen, Du, & B, 2020). Although outliers are often considered unusual, 

errors or noise, they may carry important information. Sometimes if left undetected, 

outliers may lead to model misspecification and incorrect results. Therefore, it is 

critical to recognize them before modeling and analysis (Prasada et al., 2020).  

Several definitions for outliers have been put forward. According to Grubbs, outlier 

detection is the process of identifying patterns in data that differ from what would be 

considered normal behaviour (Grubbs, 1969). According to Hawkins, an outlier is an 

observation that deviates so much from other observations that it raises the 

possibility that it was generated by a different mechanism (Hawkins, 1980). 

According to Johnson, it is an observation in a data collection that seems discordant 

with the rest of the data (Johnson, 2022). Similarly, Barnett and Lewis (Barnett & 

Lewis, 2021) indicate that an observation that appears to differ significantly from 

other members of the sample in which it occurs is referred to as an outlier. 
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The process of detecting outliers in datasets dates back to the 18th century. In 1850, 

the first statistical method was created (Beckman & Cook, 1983) to address the 

problem of outliers in the data. There have been arguments on whether outliers 

should be kept as part of data as they provide very useful information about the data. 

For instance, Barnett (Barnett & Lewis., 2021) says that one should not delete 

extreme observations just due to their gap from the remaining data. Prior, other 

researchers favored cleaning the data from outliers as they distorted the estimates. 

Cousineau and Chartier (2010) claims that outliers are always the result of some 

spurious activity and should be deleted. Whether to delete or keep the outliers in the 

data may depend on the domain of use of that data.  

Numerous applications, such as the identification of credit card fraud, have called for 

the use of outlier detection techniques (Allam, 2019), clinical trials, voting 

irregularity analysis (Aggarwal, 2021), data cleansing, network intrusion (Aggarwal, 

2020), severe weather prediction (Kalinichenko et al., 2014), geographic information 

systems, athlete performance analysis (Pawar & Mahindrakar, 2015), and other data-

mining tasks to anomaly pattern detection for disease outbreaks (Skelsey et al., 

2021).  

Foorthuis (2021) point out that anomalies are of interest because they may represent 

both novel, interpretable results and artifacts of the data, such as measurement flaws, 

sampling errors, standardization failures, and false distributional assumptions. 

Because they can be the basis for comparisons and help identify underlying reasons, 

outliers can occasionally be more beneficial to research than specific data points. For 

example, a scenario of an entire town being infected by a disease: if there is any case 

of a disease-negative person, studying this outlier would be more medically useful 

than studying the rest of the population. The case of the discovery of one HIV-1 

resistant woman in Nairobi, Kenya (Fowke et al., 1996) led to the discovery of 

natural immunity and more insight into combatting the virus. 

Identifying fraudulent activity is another practical usage of outlier detection (Roy & 

Garg, 2022). Suspicious activity, such as money laundering, should have different 

signatures in the data than normal usage (Gomez et al., 2021). In computer science, 
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malware can be identified by creating baseline usage models of safe programs and 

then identifying attacks based on the deviation (Tang et al., 2014). Manufacturing 

and industrial processes require similar identification of defects to prevent costly 

recalls (Niemann et al., 2022). Genomic abnormalities such as differential gene 

expression in malignant cell lines are also anomalies compared to benign cells 

(Tasaki et al., 2020).  

Outlier detection acts as an essential intermediate step in data analysis. Outliers can 

make modeling difficult due to the discordance they introduce into the data. As a 

measure, the isolation of outliers can improve the performance of predictive 

modeling by offering better data quality and reducing outlier's influence on the 

model fitting. In other applications, however, identifying outliers is the primary 

purpose of analysis, for instance, in the case of fraud detection. Several studies have 

been conducted to handle issues of detecting outliers. Defining outliers by their 

distance to neighboring examples is a popular approach to finding unusual examples 

in a dataset, among other techniques. However, because seemingly normal behaviour 

is grouped in the dataset, outlier detection algorithms may not be able to detect all 

forms of fraud. It is also possible that the outlier detection approach misses the 

genuine outlier. Assume, for instance, that the intruder completes a routine 

transaction amount to a bank account that is not on a denylist within the expected 

timeframe. In that situation, the transaction won’t be classified as unusual and won’t 

ever be marked as such.  

Outliers can significantly affect the performance of machine learning algorithms, 

leading to biased models and unreliable predictions. Outlier detection ensembles are 

a popular approach to improve the robustness and accuracy of outlier detection 

algorithms. These ensembles combine the outputs of multiple outlier detection 

algorithms to identify and remove outliers that are consistent across different 

algorithms while retaining non-outlying data points. The use of outlier detection 

ensembles has been shown to improve the accuracy and robustness of outlier 

detection algorithms in a variety of applications, including finance, healthcare, and 

cyber security (Barnett & Lewis, 2021).  
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However, the design and optimization of outlier detection ensembles can be 

challenging due to the trade-off between bias and variance. Ensembles that use 

multiple weak learners can reduce the bias but increase the variance, while 

ensembles that use multiple strong learners can reduce the variance but increase the 

bias. Therefore, careful selection and combination of outlier detection algorithms are 

critical to achieving optimal performance in outlier detection ensembles. 

Imbalance datasets are another common challenge in many applications of machine 

learning, where the number of data points in one class is significantly smaller than 

that in the other classes. Imbalance datasets can lead to biased models and poor 

performance, especially in applications where the minority class is of particular 

interest, such as fraud detection, disease diagnosis, or anomaly detection (Cervantes 

et al., 2020). Outlier detection ensembles can also be used to address the challenges 

of imbalance datasets. Specifically, outlier detection ensembles can identify and 

remove outliers that are present in the majority class but not in the minority class, 

which can help to reduce the bias and improve the performance of machine learning 

models. However, the design and optimization of outlier detection ensembles for 

imbalance datasets can be more complex than that for balanced datasets due to the 

trade-off between detection accuracy and minority class retention. Careful selection 

of outlier detection algorithms and appropriate combination techniques are required 

to achieve optimal performance in outlier detection ensembles for imbalance datasets 

(Xu et al., 2019; Wang & Sun, 2018). 

In general, outliers may indicate fraudulent cases or just entry errors or may exist in 

datasets due to one reason or another – but either way, detection of outliers is vital 

for database consistency and integrity (Carter, 2019), and when detected at an early 

stage, can reduce financial losses in many organizations or save a life in case of 

medical or health-related instances. It is against such encounters that outliers are 

examined in this research. This research investigated outliers, outlier detection, the 

various detection techniques, and how heterogeneous detection methods could be 

combined to improve the accuracy of detecting anomalies in high-dimensional data 

sets. 
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1.3 Problem Statement 

An ideal outlier detection ensemble should take into account the strengths of 

individual base learners while carefully combining their outputs in order to create a 

strong learner so as to achieve non-biased overall detection accuracy with minimal 

variance. Existing outlier detection ensembles utilize either parallel or sequential 

combination structures to fuse multiple detectors (weak base learners) in order to, 

hopefully, improve the overall detection performance by taking a joint overall result 

(majority vote) from the detectors. The parallel combination structure is designed 

with the intention to reduce variance while the serial combination is designed with 

the intention to reduce bias (Zhao et al., 2019).  

Unfortunately, trusting the results from all the weak learners may have a negative 

effect on the ensemble’s performance as a whole because some learners may produce 

inaccurate results depending on the type of data and the learner’s underlying rules, 

particularly in the context of outliers - which lack ground truth (Chen et al., 2019). 

Outlier detection ensembles that mark instances as anomalous when they are not, or 

anomalous instances being marked as safe, can make the outlier detection ensembles 

unsafe, untrustworthy, or redundant. In certain applications, such as medical 

diagnosis, misclassifications could have catastrophic or irreparable consequences 

(Khullar, Jha, & Jena, 2015). In the financial industry, misclassifying fraudulent 

transactions as legitimate ones can have severe economic consequences (Kieu & 

Nguyen, 2020). In cybersecurity, misclassifying a malicious file as benign can result 

in the failure of intrusion detection systems and can have significant implications for 

an organization’s security (Bhattacharyya & Kalita, 2019). 

The need arose to study which detectors to select as base learners and in what way, 

on what kind of data, and in what order. This research engaged in a cross-industry 

process for data mining (CRISP-DM) involving various tests and experiments to 

measure the effect of combining heterogeneous base detectors (weak learners) on 

high dimensional data with the aim of improving overall detection accuracy while 

prioritizing the minimization of bias, variance, and the order of base learners.  
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1.4 Objectives 

1.4.1 General Objective  

This study’s main objective was to create and evaluate a model for outlier detection 

utilizing a heterogeneous hybrid ensemble to provide improved performance and 

accuracy while prioritizing the minimization of bias and variance and order of base 

learners.  

1.4.2 Specific Objectives 

(i) To determine which classifiers constitute weak learners for constructing the 

base (detectors) for outlier detection. 

(ii) To analyse different combination methods or fusion strategies (order) using 

the selected base learners for the outlier detection ensemble. 

(iii) To create a model for outlier detection that combines several selected weak 

learners into a hybrid ensemble to improve performance while prioritizing 

minimizing bias, variance, and order of base learners. 

(iv) To evaluate the developed ensemble model for outlier detection accuracy. 

1.5 Study Questions 

The following research questions guided the study:  

(i) What classifiers make good base detectors (weak learners) for building an 

outlier detection ensemble? 

(ii) Do combinations of heterogeneous detectors for outlier detection improve 

accuracy? 

(iii)What combination sequences or fusion strategies are compatible for weak 

learners for better outlier detection? 

(iv) How does the combination or fusion of weak learners affect variance and 

bias?  

(v) How can the developed ensemble model be tested for outlier detection 

accuracy? 
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1.6 Assumptions of the Study 

The following assumptions guided the study:  

(i) Combining opinions of multiple weak learners into one strong learner 

achieves better performance and accuracy. 

(ii) Combination sequence or order of weak learners affects performance and 

accuracy. 

(iii)The choice of structure, whether parallel (independent) or serial, affects the 

variance and bias of an ensemble outcome. 

1.7 Justification of the Study 

The following grounds justified the work in this research:  

Firstly, the rapid development of classification ensembles enabled efficient 

approaches for other machine learning problems, including outlier detection (Rayana, 

Zhong, & Akoglu, 2017). While ensemble techniques for classification and 

clustering have undergone many studies and are already being successfully used, 

little research has been done on ensemble learning for outlier detection because it is 

challenging to get ground truth. It was necessary to conduct research, capitalize on 

this gap, and develop a new or enhanced ensemble approach for outlier detection. 

Secondly, in many data analysis tasks, a large number of variables are recorded or 

sampled, and one of the initial stages to getting a clear analysis is the detection of 

outlying observations. Although often considered errors or noise, they may carry 

important information. Detected outliers are candidates for peculiar patterns that may 

otherwise lead to wrong modeling, bias, and incorrect results. Therefore, it’s critical 

to recognize them before modeling and analysis (Prasada et al., 2020). 

Thirdly, it is often the case that groups of people can often make better decisions 

than individuals, especially when group members each come in with their own 

biases. The same concept could be applied to machine learning. Since classifiers are 
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learning models, it was necessary to investigate whether models could achieve 

overall performance and accuracy by combining the opinions in an ensemble. In 

contemporary decisions making, it is always also the case to leave out alternatives 

that do not yield good results and use the alternatives that yield better results. This 

concept could further be applied to classifiers by finding out whether combining the 

strengths of accurate learners while alleviating the weaknesses of the less accurate 

ones could build better ensembles for outlier mining. 

1.8 Scope of the Study 

This study limited itself to machine learning. It limited itself to the study of outliers 

and methods for outlier detection - and how those methods could be tuned in such a 

way as to provide improved performance and accuracy in the detection of outliers in 

high dimensional data. The researcher sought to find out what classifiers composed 

weak learners for building an outlier detection ensemble based on different 

classification methods and then identified a combination strategy that could fuse the 

weak learners to achieve a strong learner. Moreover, the researcher tested the 

combination sequences and fusion structures used to provide improved performance 

and accuracy while minimizing variance and bias in outlier detection ensembles. 

This research used publicly available and online databases as data sources. The data 

sources included the ODDS machine learning repository datasets; ten datasets were 

utilized in training and testing the model. Four existing state-of-the-art ensembles 

were compared to the proposed model to verify improvements. 

1.9 Organization of Thesis 

The following is how the rest of the thesis is structured: Chapter 2 reviews existing 

literature based on the research objectives. Issues addressed include discussion on 

various outlier detection algorithms, aspects of outlier detection, ensemble formation 

methods, concepts of bias and variance, outlier detection methods, evaluation metrics 

and performance measures, and an analysis of existing related works. This chapter 

completes by emphasizing the research gap. 
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Chapter 3 provides a description of the research methods used in this study. Issues 

discussed include data collection methods and preprocessing approaches. The 

chapter concludes by providing a detailed description of the proposed method for the 

study. 

Chapter 4 provides the results of the experiments. The experiments examine the 

performance of the proposed technique, the comparative performance of outlier 

detection ensembles, and comparisons of the effectiveness of the proposed approach 

with other existing approaches. The chapter concludes by providing a summary of 

the experimental findings. 

Chapter 5 offers a summary and discussion of the study. The summary includes a 

review of the objectives, methodology, and experimental findings. Discussion 

includes issues of outlier detection and bias-variance reduction, results for outlier 

detection using the proposed method, and performance of the proposed method in 

relation to the literature provided in chapter 2. 

Chapter 6 provides conclusions and future work of the research study. The chapter 

highlights the significant contributions made based on the study findings. It explains 

the achievements of the research and ends by offering recommendations for further 

work. 

1.10 Chapter Summary 

A brief background of the study has been given in this chapter. The basic concepts of 

outlier detection, aspects of outlier detection, and ensemble formation have been 

introduced. The research objectives, justification, and scope have been provided. The 

next chapter reviews existing literature. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

This chapter reviews existing literature dealing with ensembles and model learning 

approaches in relation to outlier detection.  

2.2 The Ensemble Concept 

An Ensemble is a collection of trained classifier models whose predictions are 

combined to reach a final decision (Sabzevari et al., 2022). In ensemble learning, a 

machine learning paradigm, multiple learners are trained to tackle the same issue. 

Ensemble methods strive to generate many hypotheses and combine them, unlike 

traditional machine learning approaches that try to learn one hypothesis from training 

data (Pintelas & Livieris, 2020). The base learners of an ensemble are a group of 

learners that make up the ensemble. The ability of an ensemble to generalize is 

typically substantially higher than that of base learners. Ensemble learning is 

superior to random guessing because it can elevate poor learners to strong learners 

who can make more accurate predictions. Weak learners are also known as base 

learners. A base learning method, such as a decision tree or a neural network, 

generates base learners from training data. Most ensemble methods produce 

homogeneous base learners using a single base learning algorithm. However, some 

approaches produce heterogeneous learners using multiple learning algorithms. 

Hansen and Salamon’s pioneering research in the 1980s discovered that predictions 

made by a group of classifiers are typically more accurate than predictions made by 

the best single classifier (Hansen & Salamon, 1990). The second research was 

conducted in 1989, where Schapire proved that weak learners could be boosted to 

strong learners, and the proof resulted in boosting, one of the most influential 

ensemble methods (Schapire, 1990). 

Kumar (2022) gives four main reasons why classifiers are combined: Firstly, for 

statistical reasons: By averaging numerous classifiers, the worst classifier can be 
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avoided. This reason supported the earlier works of (Fumera & Roli, 2005) as it was 

efficient; however, it did not ensure that the combination would outperform the best 

classifier. 

 

Figure 2.1: The concept of an ensemble. 

In figure 2.1, the outputs of the base learners (weak learners) Hm (x) with m ∈ {1,..., 

M} are combined to produce the output of the ensemble given by H(x). x is the 

training sample. 

Secondly, for representational reasons: in some cases, adding more classifiers can 

enhance the performance of the best classifiers used alone. Many experimental 

pieces of evidence show that this is possible if the classifiers in an ensemble generate 

varying predictions. This idea has a theoretical basis in specific situations, such as 

linear combinations (Kumar, 2022).  

Thirdly, for computational reasons: some algorithms carry out an optimization task 

to discover local minima and suffer from them. To avoid finding locally optimal 

solutions, the back propagation technique for neural networks, for instance, uses a 

random initialization. Finding the best classifier is complex and is used to create 

multiple initializations to find an optimal classifier. The fusion of such classifiers 

stabilized and improved the best single classifier result (Breve et al., 2007). 

Finally, some applications need to utilize more than just a single classifier; for 

instance, in sensor fusion, a set of learners are required. The availability of classifiers 



14 

 

that have varying abilities in various feature subspaces and the difficulty of building 

a pattern of classifiers by adjusting parameters are necessary (Chen et al., 2019). 

2.3 Constructing Ensembles 

An ensemble is constructed in two steps. To begin with, a large number of base 

learners are created in a parallel structure, as demonstrated in figure 2.2. All 

classifiers are run separately, and the results are combined using a combination rule, 

such as taking the average or using weighted voting. 

 

Figure 2.2: Independent (parallel) Combination of Weak Learners 

In a sequential structure, a primary classifier is used. When the first classifier cannot 

classify a new pattern because it was rejected, a second classifier is introduced that is 

trained to be accurate on the errors of the first classifier. Using a third and fourth 

classifier, and so forth, is an option, as depicted in figure 2.3. This way, less 

iterations can be expected as errors reduce from level to level to the final classifier. 

After that, the base learners’ results are combined, and a final optimal decision is 

made by either taking a majority vote in case of classification or a weighted average 

in case of regression (Pintelas & Livieris, 2020). 
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Figure 2.3: Sequential or Serial Combination 

 

Bagging (Breiman, 1996) and boosting (Schapire, 1990; Freund & Schapire, 1996) 

are two of the various ways that ensembles of detectors can be trained and integrated. 

2.3.1 Bootstrapping and Bagging 

Bagging, also known as bootstrap aggregation (Breiman, 1996), is a method that may 

be used in both classification and regression. It uses bootstrap sampling to lower 

variance and increase the accuracy of specific predictors. Bagging uses a base-

learning technique to train many base learners from a specific bootstrap sample. A 

bootstrap sample is created by subsampling the training data set with replacement 

and ensuring that the sample size is the same as the training data set. Some training 

examples may appear in a bootstrap sample, while others may not, with the 

probability of seeing an example at least once being around 63.2% (Bauer & Kohavi, 

1999). After obtaining the base learners’ results, bagging combines them by taking a 

majority vote, and the most-voted class is predicted. Bagging conventionally uses 

classifiers of the same type e.g., decision trees. Figure 2.4 shows the bootstrapping 

approach. Using bootstrap, produce several training samples z1…zn; then each is fed 

to a weak learner Hm. A majority vote produces the final decision H(x). 
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Figure 2.4: The Bagging Approach.  

The bootstrap procedure is as shown in algorithm 1: 

 

Algorithm 2.1: Procedure for Bootstrapping 

Bagging offers two key advantages over learning a classifier traditionally, that is, 

from the entire training set: first, it improves classifier stability and accuracy, and 

second, it lowers classifier variation. Algorithm 2 below depicts the bagging 

procedure. Bagging, however, omitted the bias term and only reduced variance. 

(Schapire & Freund, 1997) later developed an ensemble known as boosting to make 

up for this shortfall.  
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Algorithm 2.2: Procedure for Bagging 

2.3.2 Boosting 

Boosting uses a different method of resampling than bagging. The weak learners are 

created in stages, with examples that were incorrectly classified by previous 

classifiers being chosen more frequently than those that were correctly classified. 

The boosting procedure is listed in point in Algorithm 3 below.  

 

Algorithm 2.3: Technique of Boosting 

The training set is randomly partitioned into three partitions without replacement, as 

shown in Algorithm 3, Z1∗, Z2∗, and Z3∗. For a given instance, if the first two 

classifiers (H1 and H2) agree on the class label, this is the final decision for that 

instance. The set of instances on which they disagree defines the partition Z3∗, which 

is used to learn H3. Schapire has shown that this learning method is strong. 

Furthermore, using this approach repeatedly can reduce the overall error. In other 
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words, each learner can serve as their boosting mechanism. Figure 2.5 shows the 

boosting approach.  
3 Boosting Algorithms: A Review of Methods, Theory, and Applications 7

Fig. 3.4 A graphical idea of the first boosting approach proposed in [94]. Notice that each learner

can be itself learned by the boosting algorithm in a recursive fashion.

accuracy of algorithms for learning binary classifiers, by combining a large number

of classifiers, each of which is obtained by running the given learning algorithm on

a different set of examples. As in [94], Freund’s new proposals also suffered from

several drawbacks, namely the need for a very large training set, due to the fact that

this set is divided into subsets.

3.2.4 Relationship Between Boosting, Bagging, and Bootstrapping

Fig. 3.5 shows the connection between bootstrapping, bagging, and boosting, focus-

ing on what they produce and how they handle the training data. The figure empha-

sizes the fact that these three techniques are all built upon random sampling, being

that bootstrapping and bagging perform sampling with replacement while boosting

does not. Bagging and boosting have in common the fact that they both use provide

a final classifier that is a majority vote of the individual classifiers.

In [28], a comparison of the effectiveness of randomization, bagging, and boost-

ing for improving the performance of the decision-tree algorithm C 4.5 [87] is pre-

sented. The experimental results show that for cases with little or no classification

noise, randomization is competitive with (and perhaps slightly superior to) bagging

but not as accurate as boosting. For situations with substantial classification noise,

bagging is much better than boosting, and sometimes better than randomization.

3.3 The AdaBoost Algorithm

After their initial separate work on boosting algorithms, Freund and Schapire pro-

posed the adaptive boosting (AdaBoost) algorithm [46], [47], [49]. The key idea

behind AdaBoost is to use weighted versions of the same training data instead of

 

Figure 2.5: A Boosting Approach 

2.3.3 Adaptive Boosting (Ada-Boost) 

(Freund, 1996) proposed a boosting algorithm called adaptive boosting, based on, 

and improving, the ideas presented by (Schapire, 1990). By integrating multiple 

classifiers, each of which is acquired by applying a specific learning method to a 

separate collection of instances, he increases the accuracy of learning binary 

classifiers. Adaptive boosting uses weights of instances of similar training data in 

place of random subsamples. Due to the fact that the training set is utilized 

repeatedly, its size is not critical. To create the final classifier, AdaBoost uses a weak 

learner to learn a group of classifiers. Using reweighted copies of the training data, 

the weak classifiers are designed successively, with the weights based on the 

performance of the prior classifiers. In this manner, the weak learner concentrates on 

patterns that the preceding weak learner failed to classify at each iteration accurately. 

This is illustrated in algorithm 4 below: 

The adaboost algorithm pseudocode (Freund, 1996) 

1. Given examples (x1, y1), … , (xn, yn)  

where: yi = 0, 1 for negative and positive examples respectively.  

2. Initialize weights wi = 1/2M, 1/2L for yi = zero, one respectively  
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Algorithm 2.4: Adaptive Boosting 

Where; M, L are the no. of negatives & positives.  

3. For r = 1 to R  

a) Normalize w, to ∑ i=1:n wi = 1  

b) Choose classifier hj, with the lowest error εj : εj = ∑i wi | hj(xi) – yi |.  

c) Update the weights for each example: 

 

 

 

4. The final strong classifier is: 

 

 

 

Because of normalization, the number of iterations increases, and the error rates 

increase, which leads to smaller α values for weak learners selected later in the 

training process. The final classification function is the sum of the predictions of the 

selected weak learners multiplied by the corresponding α values.  

 

Figure 2.6: Adaptive Boosting Algorithm.  

In figure 2.6, a distinct weighted copy of the training examples is used to train each 

weak learner. The final prediction is a product of those weights with a majority vote 

from the selected weak learners that were adaptively trained on the weighted 

examples. 
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2.2.4 Stacking 

Stacking combines numerous detectors by learning a meta-level (or level-1) model 

based on the decisions of the base-level (or level-0) classifiers. The output of the 

detectors for a test instance, along with the true class of that instance, forms a meta-

instance. After that, the meta-instances are used to train a meta-detector, and all the 

training data is used to train the base-level classifiers. When a new instance must be 

classified, the output of the base-level classifiers is computed first, followed by the 

output of the meta-level classifier, which yields the final result (Aggarwal, 2017). 

The algorithm 5 below summarizes stacking. 

 

Algorithm 2.5: Staking Algorithm  

Two main challenges when handling an ensemble of heterogeneous base detectors 

are: selecting what detectors to use as base learners and combining the detectors’ 

outcomes into a single final decision. 

2.4 Selecting Detectors  

A simple method is an evaluation and selection where each model is evaluated 

typically using the 10-fold cross-validation on the training set and selecting the best 

one on the test set (Tsoumakas et al., 2014). Other research proposes selecting a 

learning algorithm based on its performance in similar learning domains. Training 
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meta-instances are produced by recording the predictions of each algorithm, using 

the whole training data both for training and testing. Performance data is generated 

using m k-fold cross-validations and averaging the m evaluations for each training 

instance. Although every ensemble combines multiple detector outcomes into a 

single decision, their building paradigms usually differ in the diversity generation 

mechanism among the base learners and the strategy of combining them. 

2.5 Combining Detectors  

Since base learners may make mistakes in different instances, strategically 

combining them can reduce the total error (Khullar, 2015). Therefore, diversity 

among the base detectors is one of the key issues in ensemble formation.  The 

homogeneous formation is the popular approach where different sets of the original 

training dataset are used to train other instances of one base classifier, for example, 

in bagging and boosting. These formations could be biased to some specific 

characteristics of the dataset because of their training using a single type of base 

learner. These formations could be biased to some specific characteristics of the 

dataset because of their training using a single type of base learner. Using different 

base learners to create an ensemble is one approach for introducing diversity, i.e., a 

heterogeneous ensemble, which is beneficial for learning other characteristics of the 

training dataset.  

The other critical point is the combination of base learners’ outcomes into a final 

decision. There are numerous combination approaches, such as majority voting, 

weighted majority voting, summation, product, maximum and minimum, fuzzy 

integral, Dempster-Shafer-based fusion, or decision templates (Zhao et al., 2019). 

Voting, unweighted or weighted, are two main methods for combining not only 

Heterogeneous but also Homogeneous models (Sabzevari et al., 2022). In voting, 

each model generates a class value (or ranking, or probability distribution), and the 

ensemble proposes the class with the most votes (or the highest average ranking or 

average probability). The winning class must receive at least 50% (the majority) of 

the votes. In contrast to majority voting, weighted voting assigns each model a 

coefficient (weight), which is often equivalent to its classification accuracy.  
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2.6 Outlier Detection  

Outlier detection is the process of identifying patterns in data that differ from what 

would be considered normal behaviour (Aggarwal, 2021). Outliers are detected by 

analyzing the system's events, where each event is designated by a data instance. 

Features (i.e., attributes) are used to describe the data instance. The ability to 

distinguish normal from deviant is reliant on features. 

Hawkins defines an outlier as “an observation that deviates so substantially from 

other observations as to provoke suspicion that a separate mechanism generated it” 

(Hawkins, 1980). In most literature, authors have described an outlier as an 

observation that “appears to be inconsistent” with the remainder of a data set; this is 

the main problem when dealing with outliers. Outlier detection methods try to solve 

this problem using different approaches, including statistical and probabilistic 

knowledge, distance and similarity-dissimilarity functions, metrics and kernels, 

accuracy when dealing with labeled data, association rules, properties of patterns, 

and other specific domain features. 

2.7 Key Aspects of Outlier Detection Problem  

Exploring the invisible data spaces is a significant obstacle in outlier detection. 

Finding the outlying points by computing a measure of normalcy or ordinariness 

with respect to their nearby points is an easy way to locate outliers. However, several 

aspects make this very challenging. (Bii, Rimiru & Mwangi, 2020) described seven 

factors: (i) it is quite challenging to define a normal zone that includes every 

conceivable normal activity. (ii) Normal behaviour frequently evolves, therefore a 

current understanding may not be accurate in the future. 

(iii) The line separating a normal point from an outlier is frequently blurry, making it 

possible for the outlying point to be normal and vice versa. (iv) Every application 

domain imposes a unique set of criteria and limitations, hence the precise definition 

of an outlier varies for each. (v) Labelled data for training or testing is not always 

available. (vi) It might be difficult to define normal behaviour when outliers are 

caused by malicious behaviour because the malicious opponents adjust to make the 
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outlying observations seem normal. (vii) Noise is present in most data and simulates 

the actual outliers, making it difficult to separate and eliminate.  

Due to these difficulties, the majority of outlier detection algorithms introduce 

numerous elements, such as the nature of the data, the characteristics of the outliers 

that need to be found, the significance of the normal, etc. The aspects are, in most 

scenarios, determined by the application domain in which the technique is applied. 

For these reasons, numerous approaches to the outlier detection problem have been 

investigated across multiple fields. e.g., data mining, statistics, information theory, 

and machine learning. Narrowing down Hawkins’s concept, for example, two major 

outlier detection techniques were derived: distance-based techniques and density-

based techniques. While density based strategies identify data points located in a 

lower density area than their closest neighbours, distance based techniques identify 

data points far from their nearest neighbours (Xu et al., 2022).  

2.8 Ingredients of Outlier Detection  

The first ingredient of any outlier detection technique is taking into account the 

data’s characteristics, the outliers’ characteristics, and the limits and rules that form 

the problem design. Secondly is the application area in which the technique is to be 

used. Some techniques target particular domains, while others are general and are 

developed in a more general way. Finally, the concepts and ideas from one or more 

knowledge disciplines are non-trivial (Merza, 2021). 

2.8.1 Type of Outliers 

Point outliers, contextual outliers, and collective outliers can be categorized based on 

the number of data instances included in the idea of outliers.  

2.8.1.1 Point Outliers  

A point outlier is a data instance that has an anomaly but is not part of a larger 

dataset. For example, a system event occurs when a user attempts to visit a restricted 

server. Point outliers do not fit the situations where outlying behavior is an aggregate 
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of data instances (Merza, 2021). Figure 2.7 illustrates point outliers. N1 and N2 are 

regions of normal behavior; Points o1 and o2 are outliers. 

2.8.1.2 Contextual Outliers  

These are data points that are considered anomalous in a particular context. Each 

data point is defined by contextual and behavioural attributes (Aggarwal, 2021). 

Examples are the time of day, season, and geographical location. Figure 2.8 

illustrates contextual outliers. T1 is normal, but T2 is an outlier. 

 

 

Figure 2.7: Point outliers   

 

Figure 2.8: Contextual Outliers 

 

 

Figure 2.9: Collective Outlier - showing an anomalous subsequence 

2.8.1.3 Collective Outliers 

It defines a group of instances that exhibits an anomalous behavior compared to the 

other groups of instances (Merza et al., 2021). An individual instance is not 

necessarily anomalous on its own. Collective outliers are meaningful only when the 

data has spatial or sequential nature (Aggarwal, 2021). Sequence outliers are 

 



25 

 

presented sequentially (Figure 2.9). E.g., an unusual sequence of commands could 

signal malicious action that jeopardizes system security. 

2.8.1.4 Vector Outliers and Trajectory Outliers 

Vector outliers are detected in vector-like data representations, such as relational 

databases. The data is presented in tuples, each of which has its attributes. Based on 

numbers, the data collection can be split into low-dimensional or high-dimensional 

data (Zhang, 2008). Trajectory outliers are characterized by key movement features, 

such as the average, minimum, and maximum values and velocities. A weighted sum 

distance function is defined to compute the difference in trajectory based on the key 

features (Knorr et al., 2000). 

2.8.2 Type of Input Data 

The type of data for input to a detection technique is vital. Every data instance is 

described using a set of attributes called features, variables, fields, dimensions, or 

characteristics. They might have a single characteristic (univariate) or numerous 

attributes (multivariate), which can be binary, categorical, or continuous. Any outlier 

detection technique's goal is to identify the ideal combination of features that will 

enable the detection algorithm to produce more accurate findings while consuming 

fewer resources. 

2.8.2.1 Point Input Data 

If input data has no structure amongst its instances, they are referred to as point data. 

Algorithms taking point data sets are found in the medical records outlier detection 

domain (Barai & Dey, 2017). 

2.8.2.2 Sequential Input Data 

If data instances are ordered, i.e., defined sequentially in a data set, they’re sequential 

data. E.g. time-series data (Javier, 2017).  
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2.8.2.3 Spatial Input Data 

When data instances have a well-specified spatial structure, i.e., the location of a data 

instance with respect to other data is significant and well specified, they are spatial 

data. For example, ecological data (Larson & Moore, 2022).  

2.8.2.4 Spatio-Temporal Input Data 

Data instances can be structured to have temporal or sequential component, they give 

rise to Spatio-temporal data, for instance, the climate data (Wu et al., 2008).  

2.8.3 Type of Detection  

In order to build a predictive model, a training data set is required. The labels 

associated with a data instance signify if that instance is normal or an outlier. And 

based on the extent to which these labels are utilized, outlier detection techniques are 

categorized on whether labeled instances of outliers can be obtained or whether the 

objects can be assumed as normal or outliers. Within each category, there are 

methods for detecting and evaluating outliers. The techniques under user-labeled 

instances are supervised, semi-supervised, and unsupervised techniques. Algorithms 

for supervised learning use labeled data to find outliers, where records are classified 

as “normal” or “outlier”. Since unsupervised learning approaches use unlabeled data, 

outliers (and normals) are unknown (Carter, 2019). Concerning detecting outliers on 

the assumption of normal data versus outliers, the techniques used include clustering, 

statistical, and distance-based or proximity techniques. Figure 2.10 summarizes the 

techniques under this section. 

2.8.3.1 Supervised Outlier Detection  

Supervised detection approaches use examples and rules to identify characteristics 

distinguishing normal behaviour from an outlier. Each new observation is given a 

class, one of the two. The supervised method could be faced with the problem 

associated with an imbalance class where the outlier datasets may be observed to be 

the minority class.  
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This can be alleviated by re-sampling the dataset by either under sampling the 

majority normal classes or oversampling the minority outlier classes. Alternatively, 

artificial or synthetic data sets for outlier classes can be generated to boost the 

number of outlier samples. The performance assessment metric should be based on 

recall and receive operating characteristics rather than accuracy (Sun et al., 2019). 

 

 

 

 

 

 

 

 

 

2.8.3.2 Semi-supervised Outlier Detection  

A semi-supervised method combines the advantages of both supervised and 

unsupervised methods. If there are some labeled normal items, the labeled examples 

and nearby unlabeled objects can be utilized to train a model for normal objects. 

Outliers are data objects that do not fit the model of normal items in this context 

(Ruff et al., 2019).   
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Figure 2.10: Taxonomy of Outlier Detection Techniques 
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2.8.3.3 Unsupervised Outlier Detection  

Unsupervised detection methods rely less on rules or examples and more on data 

distribution. Based on a version of this distribution, the data distribution and 

unsupervised algorithms find outliers in datasets. As a result, these algorithms do not 

require tagged instances, which makes processes like fraud detection more realistic 

since the information is not readily available. The two underlying presumptions for 

this detection are that outlying behaviour may be distinguished from normal 

behaviour and that the number of “normal” records is significantly higher than the 

number of “outlier” records. One of the main challenges and weaknesses of the 

unsupervised method of outlier detection is the failure of the method to detect 

collective outliers effectively. This is explained by the fact that while normal items 

may not exhibit strong patterns, a group of outliers may exhibit great similarities in a 

restricted space. For instance, routine activities vary in some intrusion or virus 

detection systems, and unsupervised methods may have a high false-positive rate but 

still miss many true outliers. The clustering method for detecting outliers can be 

affected by the presence of noise in the dataset since it is hard to distinguish between 

noise and outliers. Unsupervised algorithms for outlier detection have the advantage 

of spotting previously unknown outlier records (Zhao & Hryniewicki, 2018). 

2.8.3.4 Statistical Outlier Detection  

According to Amil, (2019) statistical outlier detection techniques depend on the 

statistical approaches that assume a distribution to fit the given dataset. Data is 

assumed to be generated following established distribution models like Gaussian 

mixture, Poisson distribution, etc. Statistical approaches presume that outliers are 

data that do not fit a statistical model, such as a stochastic model, and that normal 

data do. Whether the data support the statistical model’s underlying assumption 

determines their effectiveness. They use discordance tests depending on data 

distribution parameters like mean, variance, etc. A drawback of statistical techniques 

is that the method assumes that the data modeled consists of a single feature or 

attribute and that data distribution follows a known distribution. It is vital to note that 

real-life data may consist of multivariate high-dimensional objects whose statistical 



29 

 

distribution model may not be prior known or difficult to establish. Statistical 

techniques can model parameterized or non-parameterized data (Amil et al., 2019). 

2.8.3.5 Parametric Outlier Detection 

The parameterized technique, like the Mahalanobis distance technique, is the 

distance between two points in multivariate space. It measures distance relative to the 

centroid - a point in multivariate space where all means from all variables intersect. 

The bigger the distance, the further the data point is from the centroid. Between two 

objects, the Mahalanobis distance is calculated as: 

d (Mahalanobis) = [(XB – XA)T  * C-1 * (XB – XA)]0.5                    Equation (2.1) 

Where XA and XB are two objects, and C is the sample covariance matrix.  

The disadvantage here is the inverse correlation matrix needed for the calculations, 

which can’t be calculated if variables are highly correlated (Hamid, 2019).  

2.8.3.6 Non-parametric Detection  

With non-parameterized techniques, the model of normal data is learned from input 

data without any prior structure. Histograms are used to detect outliers. A problem 

faced in the structure of histograms is the establishment of appropriate bin sizes. 

Where the bin size is too small, the normal object can be observed as in outlying bins 

or being empty, resulting in a false positive. Where the bin size is too large, the 

outliers can be observed in some frequent bins resulting in a false negative. By using 

kernel density estimation to determine the probability density distribution of the data, 

the histogram's bin size issue can be resolved (Jiawei et al., 2012). The object is most 

likely normal if the predicted density function is high; otherwise, it is an outlier. 

2.8.3 Distance based Outlier Detection 

Knorr and Ng (1998) introduced the concept of local neighborhood or k-nearest 

neighbors (kNN) of the data points. KNN uses the distance to the kth nearest 

neighbors of every point, denoted as Dk, to rank points so that outliers can be 
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discovered and ranked. Formally, given k and n points, a point is an outlier if the 

distance to its kth nearest neighbor is smaller than the corresponding value for no 

more than n − 1 other point. Importantly, the distance-based methods require a user 

to specify a distance threshold. Figure 2.11 shows the steps of determining the class 

of a new instance using KNN. There are three algorithms under this category, namely 

index-based, nested-loop, and cell-based algorithms (Xu et al., 2022).  

In the nested loop, for any object o, calculate its distance from other objects and 

count the number of other objects in the r-neighborhood. If other objects are within r 

distance, the inner loop is terminated; else, o is an outlier. In cell-based, also called 

grid-based, an attempt is made to improve efficiency by reducing the computation 

cost of objects in the data set. Rather than evaluating each object, it evaluates groups 

of objects. The grid-based method partition the data space into a multi-dimensional 

grid. Each cell is a hypercube with a diagonal length. It applies the process of 

pruning using the level-1 & level 2 cell properties, i.e., for any possible point x in 

cell C and any possible point y in a level-1 cell, dist(x,y) ≤ r; and for any possible 

point x in cell C and any point y such that dist(x,y) ≥ r, y is in a level-2 cell.  
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Figure 2.11: K-Nearest Neighbour with k=3 

In Shaikh and Kitagawa’s (2012) work, managing and mining outlier data was 

becoming vital with the increased use of devices responsible for generating outlier 

data, e.g., sensors. Their work extended the notion of distance-based outliers for 

outlier data of Gaussian distribution. Since the distance function for Gaussian 

distributed objects was computationally costly, they proposed a cell-based approach 

to accelerate the computation. 

The work of (Angiulli et al., 2010) and (Chander et al., 2022) surveyed a distributed 

method for detecting distance-based outliers in large data sets. They talked about a 

modification to the fundamental technique that decreases the quantity of data needed 

to be exchanged to decrease communication costs and increase overall runtime. 
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2.7.3.8 Density-Based Outlier Detection 

Density-based methods find outliers in spatial data, where outliers are objects having 

a low local density of an object’s neighborhood of objects. The definition of the 

spatial neighborhood is based on Euclidean distance and graph connectivity 

(Aggarwal, 2017). Breuning (2000) proposed a more robust scheme than distance-

based schemes, focusing on local outliers compared to their local neighborhoods 

instead of the global data distribution. The density around an outlaying object 

significantly differs from the density around its neighbors. It involves examining the 

local density of the point being studied and the local densities of its nearest 

neighbors. Figure 2.12 illustrates the density-based outliers, where O1, O2 represent 

local outliers in C1, while O3 is global, and O4 is an inlier. 

 

Figure 2.12: Density-based clusters and outliers 

Liu and Cao (Liu et al. 2018 and Cao et al. 2014) examined the problem of density-

based local outlier detection on outlier data sets described by discrete instances. They 

proposed a density-based local outlier concept based on uncertain data. The local 

outlier factor (LOF) is described in terms of an object's reachability distance and 

local reachability density. From figure 2.13, the reachability distance from o’ to o is: 

reachdistk (o←o′) = max{distk(o), dist(o, o′)}     Equation  (2.2) 

where: k is a user-defined parameter and local reachability density of o is:    

 

           Equation (2.3) 
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hence, LOF of an object o is the average of the ratio of lrdk (o) and o’s k-nearest 

neighbors:  

 

                         Equation (2.4)  

The lower the lrdk(o) and the higher the local reachability density of the kNN of o,  

the higher LOF. This way, a local outlier whose local density is relatively low 

compared to the local densities of its kNN is captured. 

 

Figure 2.13: Determining Local Outlier Factors (LOF) 

In a nutshell, distance-based approaches counter the limitations of statistical 

approaches. E.g., Manhattan or Euclidean metrics measure the distances between 

pairs of points. Their effectiveness depends on the proximity measure. The advantage 

is that, unlike distribution-based methods, distance-based methods are non-

parametric and do not rely on any assumed distribution to fit the data (Zhao et al., 

2019). The disadvantage is that they are ineffective in high-dimensional space due to 

the curse of dimensionality, noise, and abnormal deviations that may be rooted in 

lower-dimensional subspaces that cannot be observed in the full data space.  

2.8.3.9 Clustering-based Outlier Detection  

Clustering-based outlier detection approaches presumptively assign outliers to small 

or sparse clusters or none, while normal data are assumed to belong to large, dense 

clusters. Prior to the initial iteration, K-Means initializes k centroids. Every other 
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iteration involves assigning each data point to the closest centroid, which is followed 

by a calculation of a new cluster mean, which serves as the new centroid. The model 

is said to be stable when the previous iteration's centroid equals the present iteration's 

result. When the size of the data increases, it uses linear time complexity and 

converges to a local minimum. On the other hand, k-means clustering is highly 

sensitive to outliers and cannot be perceived as robust. Whereas k-means clustering 

selects the mean of a cluster as a centroid, k-median selects the median. Hence k-

median clustering is a more robust technique for outlier detection (Angelin & 

Geetha, 2020). It minimizes every point's 1-norm distance (Manhattan) to its 

assigned cluster centroid. A local minimum of the Manhattans distance between the 

centroid and its assigned points is reached by computing the sum of differences 

between two vectors in a dimensional space.  

Some advantages of using the clustering method include: data labels are not required, 

it works for many types of data, clusters can be viewed as summaries of the data, and 

once the clusters are obtained, you need only to compare any object against the 

clusters to determine whether it is an outlier. However, many researchers disagree 

and claim that clustering algorithms shouldn’t be viewed as outlier detection 

techniques because their sole goal is to organize the objects in a dataset so that 

clustering functions can be optimized. The purpose of removing outliers from a 

dataset using clustering is to lessen their negative impact on the clustering output, 

which contrasts with the various definitions of outliers in outlier detection, which are 

more objective and independent of how clusters in the input dataset are identified. 

The critical variation between clustering and density-based methods is that clustering 

methods segment the points, whereas density-based methods segment the space. In 

nearest neighbor methods, the distance of each data point to its nearest neighbor is 

determined, while in clustering, the first step is to use a clustering algorithm to 

determine the dense regions of the data set. Secondly, a measure of the fit of the data 

points to the different clusters is used to compute an outlier score for the data point.  
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2.8.3.10 Sliding Window Technique in Outlier Detection  

The sliding window is utilized in this method for streaming data. The sliding window 

is correctly selected, and the window size is not based on the data point. This strategy 

is ineffective since certain outliers were viewed as inliers in another window (Kaur & 

Garg, 2016).  

2.8.3.11 DSS and LDSS Techniques in Outlier Detection 

Outlier detection in large data sets can be accomplished using distributed 

methodologies such as the Distributed Solving Set (DSS) and Lazy Distributed 

Solving Set (LDSS). Although the DSS method has a supervisor node, other nodes 

concurrently do its core calculation, and the partial result synchronises once the work 

is finished. In Lazy DSS, subsets of the nearest neighbours are computed for each 

node, starting with the smallest, and sent to the supervisor node (Angiulli et al., 

2010; Chander et al., 2022). Table 2.1 compares various outlier detection algorithms. 
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Table 2.1: Comparisons of Outlier Detection Techniques (Thudumu et. al., 2020) 

 Technique 

Efficiency 

(L=Low; 

A=Average

H=High) 

Computational 

Cost (L=Low; 

Avg=Average; 

H=High) 

Scalability 

(N=No; 

Y=Yes) 

Application 

High 

Dimensional 

Data (N=No; 

Y=Yes)  

1  Statistical Based 

Outlier Detection  

L H N Statistical  N 

2  Depth Based Outlier 

Detection  

L H N Statistical N 

3  Distance Based 

Outlier Detection  

A L Y According to the 

distance between 

each point 

Y 

 4  Density Based 

Outlier Detection  

H H Y Local density 

neighborhood of 

the data points  

Y 

5  Clustering Based 

Outlier Detection  

H L Y Basing on the 

data clusters  

Y 

6  Classification Based 

Outlier Detection  

H L Y Normal training 

data   

Y 

7  Sliding Window  

technique for outlier 

detection  

L H Y Streaming Data  Y 

8  DSS & LDSS 

detection techniques 

H L Y Large/high 

dimensional 

datasets  

Y 

 

2.8.4 Outlier Detection Methods in High Dimensional Data 

In statistics, a dataset’s dimensionality is the number of attributes, and when there are 

several attributes, the dataset is said to be high dimensional, and computations 

become very challenging (Kamalov, 2020). The number of features may be more 

than the number of observations in high-dimensional data. The curse of 

dimensionality refers to what happens when more variables are added to a 

multivariate model. The more dimensions added to a data set, the more difficult it 
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becomes to predict certain quantities. In these cases, the traditional outlier detection 

approaches such as PCA are ineffective. Distance and probability density metrics are 

created to calculate the differences between one object and the other, but they lose 

meaning across the entire space in high-dimensional datasets (Tang, 2015).  

As dimensionality increases, the range between the nearest and farthest neighbors 

gets closer. Adopting techniques based on the nearest neighborhood, will result in 

outlier scores close to one another. Therefore, identifying outliers in different 

subspaces becomes an option for solving practical outlier detection problems. 

Subspace selection and outlyingness measurement are the two main issues examined 

in the majority of studies on subspace outlier detection. On the basis of the various 

assumptions, many subspace selection techniques have been presented. As standard 

outlier identification procedures, distinct metrics are created for different reasons. 

Using statistical approaches, Keller et al. (2012) selected subspaces with high 

contrast. Kriegel et al. (2009) explained the outlyingness of a data object in a 

subspace made up of its nearest neighbors. Muller et al. (2008) created a data 

object’s outlier score using the dimensions of the relevant reference cluster. SOD, a 

technique to identify data objects that do not fit well into their axis-parallel 

subspaces, was first introduced by Kriegel et al. in 2009. A reference point that spans 

the axis-parallel subspace of a data object o shares at least n of its k-nearest 

neighbours with that of o is said to be the reference point. Here, n and k are two user-

input parameters; n is the bare minimum of neighbours a reference point and o must 

share, and k is the minimal number of neighbours a data object must take into 

account. The variation of reference points in each dimension and the distance 

between the outlier and the mean values of the reference points in each dimension 

are used to determine the outlier score of o. Additionally, Rehman et al. (2020) 

provided a method to evaluate the contribution of a few chosen subspaces when an 

item deviates from the area indicated by the closest cluster. The chosen subspaces are 

designed to offer a clear distinction between the object and its immediate 

surroundings, which are modelled as a collection of objects within a given radius. 

The selected radius depends on the subspace. It calculates an overall outlier score for 

a selected object that only considers contributions from subspaces where the object 

has a noticeably low density (twice standard deviations from the mean). An 
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adaptable neighbourhood that expands in accordance with the amount of features in 

the subspace is used to overcome the difficulty of calibrating density metrics in 

various subspaces. The caliber of the chosen subspaces and the suitability of the 

adopted outlyingness measurements determine how efficient subspace identification 

approaches are (Rehman & Khan, 2020). 

2.8.5 Output of Outlier Detection 

A key requirement for any outlier detection technique is the manner in which the 

outliers are reported. Guo et al. (2018) address two reporting techniques: 

2.8.5.1 Labelling Techniques 

Each test case is given a label (normal or outlier). The methods operate as 

classification algorithms; given a set of instances for the test input, they output a set 

of outliers and a set of typical instances. Such methods have the advantage of giving 

a precise set of outliers. The disadvantage is that they do not rank various outliers or 

distinguish between them. A 0-1 judgment isn’t useful as a weight is typically 

connected to an outlier in a trend.  

2.8.5.2 Scoring Techniques 

Depending on how much a pattern is thought to be an outlier, these techniques give it 

an outlier score. So, a ranked list of outliers is the result. The top few outliers may be 

examined, or outliers may be chosen using a cut-off criteria. The decision of the 

threshold to select a set of outliers is the drawback of a ranked list of outliers since it 

requires random selection and is not simple to execute. 

2.8.6 Evaluation of Outlier Detection Technique - Performance  

Evaluation metrics are defined from a matrix with the number of examples correctly 

and incorrectly classified for each class, called a confusion matrix. The binary 

classification problem’s confusion matrix (which has only two classes - positive and 

negative), is shown in Table 2.2. 
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Table 2.2: Confusion Matrix 

 Predicted Class 

Actual Class Positive Negative 

Positive TP FN 

Negative FP TN 

 

False positives (FP) are examples detected as positive, whose true class is negative. 

False negatives (FN) are examples detected as negative, whose true class is positive. 

True positives (TP) are examples correctly predicted as positive and are actually 

from the positive class. True negatives (TN) are examples correctly predicted as 

belonging to the negative class.  

2.8.6.1 Accuracy Measure (Acc.) 

The accuracy rate (Acc.) evaluates the effectiveness of the classifier by its percentage 

of correct predictions. It determines how close the measurement comes to the 

quantity's true value. Equation (2.5) shows how accuracy is calculated:  

                 Equation (2.5) 

Where; |X| denotes the cardinality of set X. 

2.8.6.2 Error Rate (Err.) 

The error rate is the complement of accuracy defined as (Err) in Equation (2.6). It 

evaluates a classifier by its percentage of incorrect predictions. Acc and Err are 

general measures and can be directly adapted to ensemble outlier detection. 

                Equation (2.6) 
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2.8.6.3 Sensitivity / Recall (R) and Specificity (Spe.) 

Sensitivity or recall (R), or true positive rate, is the proportion of examples belonging 

to the positive class which was correctly predicted as positive. The specificity (Spe) 

is the percentage of negative examples correctly predicted as negative. R and Spe are 

shown in Equation (2.7) and Equation (2.8) as: 

                                Equation (2.7) 

                                     Equation (2.8) 

2.8.6.4 Precision (P) 

Precision (P) is a measure that estimates the probability that a positive prediction is 

correct. It is given by Equation (2.9) and may be combined with the recall originating 

from the F-measure. A constant β controls the trade-off between the precision and 

the recall, as in Equation (2.10). Usually set to 1. 

                         Equation (2.9) 

                      Equation (2.10) 

2.8.6.5 Mean Squared Error (MSE)  

MSE is used to evaluate individual detectors and ensemble as a whole. It measures 

the squared difference between predicted and actual values, with lower MSE values 

indicating better performance. Adaptive ensembles use MSE to monitor and adjust 

the contribution of individual detectors to improve accuracy by giving more weight 

to those performing well and reducing the influence of those not (Johnson, 2022). 
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2.8.6.6 ROC 

Receiver Operating Characteristic which relates R and spe, give way for the 

comparison of models by showing False Positive Rates on the X-axis, the probability 

of target=Y when its true value is N, against True Positive Rate on Y axis, the 

probability of target=Y when its true value is Y. 

2.9 Bias-Variance Trade-off for Outlier Detection 

As quantification of bias-variance necessitates labeled data, the bias-variance trade-

off is effectively explained in the context of supervised learning, for example, in 

classification. However, as there is no ground truth available, outlier detection 

problems must be tackled using unsupervised methods. By considering the dependent 

variable (actual labels) as an unobserved variable, the bias-variance trade-off can be 

measured. Most anomaly detection methods produce ratings for the data points' 

anomalousness, unlike classification. By converting the anomalousness scores to 

class labels, these anomaly detection techniques could be thought of as two-class 

classification problems with a majority class (normal points) and an uncommon class 

(anomalous points) (Rayana & Akoglu, 2016). The points which achieve scores 

above a threshold are considered anomalies and get label 1, and those below get label 

0. However, deciding a threshold is difficult for heterogeneous detectors as they 

provide scores with different scaling and ranges. Fortunately, there exist unification 

methods that turn these anomalousness scores into probability estimates to make 

them comparable without altering the order of the data points (Gao & Tan, 2006; 

Kriegel et al., 2009). 

The bias-variance trade-off for outlier detection could be explained using concepts 

from classification because the unsupervised outlier detection problem now 

resembles a classification problem with only real unobserved labels. According to 

Rayana and Akoglu (2016), the expected error of outlier detection can be separated 

into two main categories: irreducible error and reducible error, that is, noise). The 

accuracy of the detector can be improved by minimizing the reducible error. 

Additionally, the reducible error can be divided into two types: (i) error resulting 

from squared bias and (ii) variance-related error. While reducing both of these types 
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of errors, there is a trade-off. The difference between the prediction of the target 

model and the average models is the bias given as: 

               Equation (2.11) 

  

Such that,  returns the predicted value of  by the fitted weak/base learner or 

model ; and  returns the average of all the predicted values of  predicted using 

all possible models fitted over all possible samples. 

Variance is the difference between the mean of the obtained values and the 

predictions of each model obtained from various samples. This gives information of 

how much the models from the sample vary from the mean model. 

             Equation (2.12) 

Where,  returns the predicted value of  using the estimated (predicted) model 

on the sample. Noise is defined as the irreducible error that a model cannot predict. 

In defining bias-Variance trade-off, two parts are necessary: bias-variance noise 

decomposition and bias-variance complexity tradeoff.  

In considering a true function , where  is normally distributed with 

zero mean and standard deviation σ, and given a set of training sets , an 

unknown function   is fitted to the data by minimizing the squared 



43 

 

error . So that, given a new data instance  with the observed 

value  , the objective is to understand the expected 

error . Thus, expected error is broken down as bias, variance and 

noise such that: 

Expanding the error;  

 =  

 

 

     

 

 

  

Equation (2.13)  

The predicted error comprises three components, bias, variance, and noise, according 

to Equation (2.13). The learning algorithm is mostly to cause the reduction in bias, 

which results from the discrepancy between the average and the best prediction. The 

variance, which is the discrepancy between any prediction and the mean prediction, 

is frequently introduced by utilizing several training sets. Since the difference 

between the ideal prediction and the true function is so small, the noise is frequently 

insignificant. Typically, this noise is difficult to reduce as it is always unknown. 
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Hence the expected error becomes fairly equal to the sum of the squared bias and 

variance, as shown in Equation (2.14). 

Expected error   Equation (2.14) 

  

It is clear that when complexity (i.e., the number of weak learners) increases, the bias 

of an ensemble decreases and the variance of a model increases. This supports the 

claim in the work of (Rayana et al., 2017). Bias, variance, and complexity all have a 

close relationship as depicted in Figure 2.14. There is a trade-off between the three 

components and from this point; the ideal model complexity can be established. 

Furthermore, the bias as well as variance can be the least since the combination of 

both can reach the lowest in the error curve as shown in figure 2.14. 

 

Figure 2.14: Bias, Variance, and Ensemble Complexity 

The bias and variance trade-off could be conceptualized as follows:  

(i) A detector with low bias is particularly flexible in fitting data well and will fit 

each training set differently, yielding high variation; and  

(ii) The rigid detectors will have low variance and perhaps high bias.  
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The objective is to increase accuracy as far as possible by minimizing both bias and 

variance while enhancing the outlier ensemble approach by adding the concept of 

complexity in the ensemble formation (Bii, Rimiru & Mwangi, 2020). 

2.10 Bias Variance Reduction Methods 

Outlier ensemble learning tries to reduce the variance by combining different base 

detectors. An approach proposed by (Lazarevic & Kumar, 2005) created an ensemble 

to find outliers in high-dimensional, noisy datasets using randomly chosen feature 

subsets from the original features. (Prasada et al., 2020) used various training data 

subsamples to create an ensemble of trees to identify outliers based on the length of 

the path from the root to the leaves. (Aggarwal, 2017) discussed algorithmic trends, 

classification, and key components of outlier ensembles, such as base model 

diversity and model combination. (Zimek et al., 2013), without discussing the 

subsample selection, the subsampling technique was investigated analytically and 

empirically, and results were enhanced by layering an ensemble of subsamples on 

top of one another. (Aggarwal & Sathe, 2015) elaborated the concepts of 

classification borrowed into outlier detection, the bias-variance trade-off theory, and 

clarified some subsampling techniques. It further suggested some improved 

subsampling and feature bagging methods.  

On base detector fusion, Rayana and Akoglu, (2015) presented unsupervised 

strategies to select a subset of trusted detectors while omitting inaccurate ones in an 

unsupervised way. It further proposed a method (CARE) that incorporates either 

sequential or parallel framework building blocks to reduce bias and variance (Rayana 

et al., 2016). These two phases correspondingly involve (i) consecutively eliminating 

outliers from the dataset to build a better data model on which outlierness is 

estimated (sequentially) and (ii) combining the results from individual base detectors 

and across iterations (independently). (Jiang et al., 2022) selects strong learners by 

AUC scores and introduces a Meta learner (stacking) to improve predictions and 

reduce bias.  
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2.11 Theories Underlying Outlier Detection Ensembles  

Outlier detection ensembles are ML techniques used to identify anomalies or outliers 

in data. They typically combine multiple outlier detection algorithms to improve the 

accuracy and robustness of the results. The main theories applied in this study 

underlying outlier detection ensembles are: 

2.11.1 The Diversity Theory 

The Diversity Theory suggests that combining outlier detection methods that are 

diverse in terms of their underlying assumptions, feature selection techniques, and 

decision rules can lead to better detection accuracy and robustness. This is because 

the diversity in the methods helps to cover a wider range of possible outlier patterns 

and reduces the risk of false positives and false negatives (Liu et al., 2018). 

2.11.2 The Decision Fusion Theory  

The Decision Fusion Theory proposes that combining the decisions of multiple 

outlier detection algorithms can lead to better results than any individual algorithm. 

This is achieved by using a voting scheme, where each algorithm gives a vote for the 

presence or absence of an outlier, and the final decision is made based on the 

majority of votes (Kandhari et al., 2018). 

2.11.3The Meta-learning Theory 

The Meta-learning Theory suggests that a meta-classifier can be trained to combine 

the outputs of multiple outlier detection algorithms. The meta-classifier is trained on 

a labeled dataset of both normal and outlier instances and learns to predict whether a 

new instance is an outlier or not based on the outputs of the underlying algorithms 

(Rayana, 2016). 

These theories can be applied in various ways to develop outlier detection ensembles. 

For example, Liu et al. (2014) proposed a method called Copula-Based Outlier 

Detection (COFOD), which combines multiple outlier detection methods using a 

clustering-based approach that maximizes diversity. Kandhari et al. (2018) developed 
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an ensemble method called Outlier Ensemble Detection (OED), which uses a voting 

scheme to combine the outputs of multiple outlier detection algorithms. Rayana 

(2016) proposed a meta-learning approach called Meta Outlier Detection (MetaOD), 

which trains a meta-classifier on the outputs of multiple outlier detection algorithms. 

2.12 Related Works to the Proposed Problem  

According to the research on classification ensembles, combining the outputs of 

many heterogeneous base algorithms will reduce the ensemble's overall variance 

(Aggarwal & Sathe, 2015). This is also true for outlier ensembles. Contrariwise, this 

combination does not provide enough ground for reducing bias in the outlier 

ensemble. For an ensemble to outperform its constituent classifiers in classification, 

two fundamental requirements must be met: (i) the base classifiers must be accurate 

(better than random), and (ii) they must be diverse (making uncorrelated errors) 

(Brownlee, 2019). Getting better-than-random accuracy in supervised learning is 

easy, and studies have shown that ensembles frequently perform better when the 

models are significantly diverse (Zhao et. al., 2019).  

An ensemble based on diversity (Div-E) was proposed by (Schubert et al., 2012). For 

anomaly ensembles, it is unreasonable to assume that all detectors will be somewhat 

accurate (i.e., better than random), in contrast to classification ensembles, as some 

may not be able to recognize the (type of) anomalies in the given data. The diversity-

based strategy Div-E would probably produce subpar results if inaccurate detectors 

existed since it is prone to choosing inaccurate detectors for the sake of diversity. 

The Full-Ensemble (Full-E) chooses all of the detector findings and then all of the 

consensus outcomes to aggregate at both stages (Rayana & Akoglu, 2017). It is thus 

a naive method that, in the face of unreliable detectors, is likely to produce subpar 

results. Base detectors and consensus methods are arbitrarily chosen in selective 

ensemble procedures to produce the outcome. By doing this, the algorithms that are 

not chosen are eliminated and do not affect the outcome. Estimating 

detector/consensus result weights and using a weighted rank aggregation technique 

to combine the findings are alternatives to utilizing binary selection criteria.  
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In order to improve the relative influence of individual detectors on the final ranking 

by learning relative weights wi for the individual rank lists, (Klementiev et al., 2007) 

previously suggested an unsupervised learning algorithm called ULARA for this type 

of rank aggregation (where P ni=1 wi= 1) (Rayana & Akoglu, 2015). Their strategy is 

informed by the idea that each individual rank list’s relative contribution to the final 

ranking should be decided by how frequently it agrees with other rank lists in the 

pool. Large relative weights are assigned to rank lists that concur with the majority, 

whereas small relative weights are assigned to rank lists that do not. The total 

deviation from the average ranking of the various data points is used to calculate the 

agreement. Therefore, the objective is to distribute weights in a way that minimizes 

the overall weighted variance. 

The bias-variance decomposition approach was employed in studies by Rayana, 

Zhong, and Akoglu (2017) that sought to better understand the theoretical 

underpinnings of ensemble performance. Initially, (Tumer & Gosh, 1996) provided a 

framework for analyzing the simple averaging combination rule based on 

manipulation used in bias-variance decomposition, stating that the ensemble error 

will be M times smaller than the error of the individuals if the classifiers are 

statistically independent and just equal to the average error of the individuals if the 

classifiers are correlated. When low-biased detectors with high variance are 

combined, the variance can be decreased, and when low variance detectors are 

combined, the bias can be decreased. 

The SELECT technique by Rayana and Akoglu (2015) is based on the presumption 

that there are erroneous detectors out there that, when paired with accurate ones, can 

harm the ensemble as a whole. By using a pseudo-ground truth algorithm that 

averages the outputs for a vertical selection and uses majority voting for a horizontal 

selection among the many detectors, each of which may have biases in different 

directions, the method eliminates the inaccurate detectors. In order to lessen bias and 

variance and hence increase accuracy, it carefully chooses detectors and combines 

their outputs in another two steps.  
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As stated in the reduction of bias and variance, the other three techniques (Full-E, 

Div-E, and ULARA) can fall short of producing results that are more accurate than 

SELECT. Full-E damages the final ensemble because it mixes all of the base 

detectors’ output, including the biased ones. ULARA determines relative weights 

depending on how well the detectors agree with one another, although it does not 

completely ignore detectors with significant bias. Just for the sake of diversity, Div-E 

chooses the more diverse detectors, which ultimately means choosing the ones with 

greater bias, lowering the accuracy as a whole. The SELECT strategy is heuristic 

since it cannot be relied upon to deliver the best result for various datasets. As a 

result, it may act unexpectedly for some data sets. Bias reduction in unsupervised 

learning, such as outlier detection, is a challenging task, and adopting the heuristic 

method to accomplish short-term objectives is quite reasonable to increase accuracy. 

Prasada et al. (2020) combined both point and global outlier detection methods and 

proposed a method which handles data having imbalanced classes, which enhanced 

the performance of outlier detection but did not consider complete elimination of 

bias and variance. Other works, like MEOD (Jiang et al., 2022) select strong learners 

by their AUC scores and introduce a Meta learner by stacking method to improve 

predictions. This method was able to reduce ensemble bias and variance because of 

two levels of base learner combination. Of importance is that it agreed that different 

detection methods can be used together to detect outliers and reduce overall bias. 

Christy et al., (2015) proposed a technique where two algorithms are used for outlier 

detection. They suggested the use of distance-based outlier detection and cluster-

based outlier detection algorithm as an ensemble. The later proved better than the 

former method. 

According to Ma et al. (2021), large dimensional data does not make it difficult to 

identify outliers using distance-based techniques. It is widely believed that distance-

based approaches identify all locations about equally as good outliers as the 

dimension of the data grows (Ma et al., 2021). Feldbauer and Flexer (2018) offered 

evidence to support the assertion that such a perspective is overly simplistic in their 

study on nearest neighbors in unsupervised distance-based outlier detection. They 

showed that in high-dimensional environments, distance-based techniques could 
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provide more disparate outlier scores. The ensemble bias and variance were not their 

main concerns (Feldbauer & Flexer, 2018).  

In order to identify outliers, Yan et al. (2016) developed a novel hybrid approach 

called pruning-based K-nearest neighbor (PB-KNN), which combines the density-

based, cluster-based, and K-nearest neighbor algorithm (KNN). The detection 

efficiency of KNN decreases with increasing data size. The PB-KNN method 

significantly reduces and prunes data dimensionality for outlier detection, 

outperforming the k-nearest neighbor (KNN) and local outlier factor (LOF) in terms 

of accuracy and efficiency, according to experimental results. When forming an 

ensemble, however, it does not take the learners’ order or the bias-variance 

perspective into account (Yan et al., 2016).  

All of the current attempts to create outlier ensembles either integrate the results 

from every base detector (Zhang et al., 2016) or enhance detector diversity to 

increase the likelihood that individual errors will be made (Shebuti, 2017; Kriegel et 

al., 2018). The concept of data locality in DCSO (Zhao & Hryniewicki, 2018) and 

dynamic learner fusion in (Wang & Mao, 2019), and learner combination methods in 

LSCP (Zhao et al., 2019) emphasized the importance of data relationships in local 

domains and showed that outliers could be global and local.  

SVM is another effective algorithm for classification tasks. Its key advantage is its 

ability to generalize better by maximizing class margins. It tries to find the decision 

boundary that maximizes the distance between the nearest data points of different 

classes. By doing so, it improves the separation of data classes through contrast, 

making it easier to distinguish between them. It is also less susceptible to overfitting, 

as it focuses on finding the most significant features of the data. Overall, SVM has 

proven useful in various applications, from image recognition to text classification, 

and its principle can be borrowed into outlier detection tasks (Cervantes et al., 2020). 

(Jaw, 2021) however, suggests that neither of these strategies would work well in the 

presence of inaccurate detectors as combining all outcomes, including inaccurate 

outcomes, deteriorates the overall ensemble performance. 
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Table 2.3: Critique of work done for outlier detection ensembles 

Author Year Approach Findings Weaknesses 

Feldbauer & 

Flexer 

2018 Nearest neighbors 

in unsupervised 

distance-based 

outlier detection 

Distance-based techniques 

may provide more disparate 

outlier scores in high-

dimensional environments. 

Does not completely 

ignore detectors with 

significant bias. 

Shebuti 2017 Enhancing 

detector diversity 

Enhancing detector diversity 

increases the likelihood that 

individual errors will be made. 

Chooses inaccurate 

detectors for the sake of 

diversity. 

Zhao & 

Hryniewicki 

2018 Dynamic 

Classifier 

Selection  

Data relationships in local data 

domains are important for 

outlier detection. 

Did not consider bias-

variance perspective 

Aggarwal & 

Sathe 

2015 Classification 

Ensembles 

Combining outputs of many 

heterogeneous algorithms 

reduces overall variance. 

Not adaptive in training 

its learners 

Rayana & 

Akoglu 

2017 Full-Ensemble Base detectors and consensus 

methods are arbitrarily chosen 

It is likely to produce 

poor results in the face 

of unreliable detectors. 

Rayana, Zhong, 

& Akoglu 

2017 Bias-Variance 

Decomposition by 

V-Select and H-

Select 

Variance can be decreased 

when low-biased detectors 

with high variance are 

combined, and the bias can be 

decreased when low variance 

detectors are combined. 

Does not consider high 

dimensional data. 

Training is not 

adaptive, hence does 

not utilize errors of 

other learners. 

Zhao et al 2019 Dynamic learner 

fusion  

Outliers can be both global 

and local. 

Not adaptive 

Brownlee 2019 Classification 

Ensembles 

For an ensemble to 

outperform its constituent 

classifiers in classification, 

the base classifiers must be 

accurate and diverse. 

Does not utilize 

unsupervised 

approach to outlier 

detection which is key 

Prasada et al. 2020 Combined Point 

and Global 

Outliers 

Enhanced performance of 

outlier detection. 

Does not consider 

elimination of bias 

and variance. 

Ma et al. 2021 Distance-based 

techniques 

Use of distance-based 

algorithms enhances outlier 

detection.  

Does not consider 

ensemble bias 

Jiang et al. 2022 Stacking of the 

outputs of base 

detectors 

Able to reduce ensemble bias 

and variance using two 

levels of learner fusion. 

It is not adaptive in its 

training approach. 

 

2.13 Research Gap 

Effective ensembles for outlier detection are still one of the challenging tasks in 

machine learning and data mining. Existing outlier detection ensembles utilize either 

parallel or sequential combination structures to fuse multiple detectors (weak base 

learners) in order to, hopefully, improve the overall detection performance by taking 
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a joint overall result (majority vote) from the detectors. The parallel or independent 

combination of base detectors is intended to reduce variance, while the serial or 

sequential combination is intended to reduce bias. The literature review has shown 

that there is no general approach for completely reducing the bias or variance or 

ensemble complexity problem. Detecting outliers is a difficult task because outliers 

are not only always very few but also mimic true labels in a dataset. Some learners 

may provide inaccurate results in an outlier detection ensemble, which may decrease 

the ensemble's overall performance, especially in the case of outlier datasets lacking 

ground truth. This depends on the type of data and the underlying rules of each 

learner. One of the directions of addressing the bias-variance dilemma is to study the 

underlying nature of the data. This way, both local and global outliers are considered. 

It is also vital that once outliers are discovered, a contrast between them is 

maximized to improve detection efficiency. More research is needed for the ever-

challenging and emerging outlier problems in real-life applications. The review 

established that combining different base detectors in an ensemble induces diversity, 

enabling learning of different data characteristics and discovery of new information. 

2.14 Chapter Summary 

The literature has surveyed ensembles for outlier detection and methods for bias-

variance decomposition. The review found that the goal of detection is to accurately 

predict the target class for each case in the data. Outlier detection is an unsupervised 

problem that requires unsupervised learning. The most commonly used learning 

algorithms have been discussed. The review found that different algorithms perform 

differently, and the choice of datasets may affect the performance of the base 

detectors. Some of the algorithms reviewed include distance-based metrics like KNN 

and density-based metrics like LOF. Different combinations of base detectors 

through bagging, boosting, and stacking methods (ensembles) were also discussed.  

The review found that ensemble techniques produce models that perform better than 

individual algorithms used in constructing an ensemble. Outliers can be found in 

dense regions, that is, local to the other data points or neighbourhoods, and also, they 

can be global, that is, in far-off regions compared to other data. Identifying outliers in 
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local and global domains improve models’ accuracy. Outliers can be detected and 

analyzed using different methods. The methods under user-labeled examples include 

supervised, semi-supervised, and unsupervised methods. When detecting outliers on 

assumptions about normal data or outliers, the methods used include statistical, 

proximity, and clustering-based methods. An ensemble of several algorithms that 

detect outliers in different domains improves outlier detection performance. The 

review also established that existing outlier detection ensembles combined all base 

model outcomes, including poor biased base models hurting the ensemble's overall 

accuracy. The bias-variance dilemma or tradeoff is difficult since high bias can 

reduce variance, and high variance can reduce bias. Most learning algorithms were 

developed for binary classes and are biased towards certain points. The literature 

found that the bias-variance dilemma can be handled by applying decomposition 

techniques such as bagging, boosting, and stacking. 

The literature review found that detecting outliers is difficult because the size of 

outlier representation in most datasets is too small, and a large number of detection 

algorithms were designed to be biased towards the prediction of the majority class 

(inliers). Most outliers mimic true classes and are hard to identify. More research is 

needed for the ever-challenging outlier detection problem in real-life applications. 

Separating the margin between outliers and inliers can bring a contrast between the 

two and can make outlier detection efficient. 

The review found that outlier detection models and ensembles can be tested and 

evaluated using different performance metrics. The common approaches for 

evaluating the performance of classifiers include cross-validation, k-fold cross-

validation, random subsampling, confusion matrix, receiver operating curves 

characteristic (ROC), and area under the curve (AUC). The review also found that 

outlier detection has continued to be an active research field in data mining, and a 

unifying framework of outlier detection methods does not exist. The review 

concludes by providing the research gap identified in the study. The review study 

established a need for further research in outlier detection methods for high-

dimensional datasets. The next chapter introduces the research methodology used in 

this study. 
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2.15 Conclusion 

Ultimately, this study’s goal is to enhance the performance and accuracy of outlier 

detection by a hybrid heterogeneous classifier ensemble while reducing bias and 

variance. The literature on ensembles demonstrates that merging results from 

different base methods reduces the ensemble’s total variance, which is also the case 

for outlier ensembles. However, due to the absence of ground truth, controlled bias 

reduction is fairly challenging; hence this combination does not offer any evidence 

for doing so. Some heuristic approaches for reducing bias and variance, like 

SELECT, could build up the researcher’s concept. This method is considered a 

hybrid ensemble. By translating the outlier-ness scores to class labels, the outlier 

identification problem can be viewed as a binary classification task with a majority 

class (inliers) and a minority class (outliers). Outliers with label 1 are the points with 

scores over a certain threshold (label 0 for inliers below the threshold). The 

unsupervised outlier detection problem is then transformed into a classification 

challenge using only unobserved labels. The researcher was able to explain the bias-

variance trade-off for outlier detection using concepts from classification. Reducible 

error and irreducible error are the two primary parts of the predicted error in outlier 

detection (i.e., error due to noise). The reducible error can be reduced to the absolute 

minimum to increase the detector's accuracy. The reducible error can be divided into 

bias- and variance-related errors. While reducing both of these types of errors, there 

is a trade-off. The degree to which a detector’s expected output deviates from the 

actual label (unobserved) throughout training data is known as the detector’s bias. 

The predicted difference between a detector’s output from one training set and its 

expected output from all the training sets is called a detector’s variance. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

In this chapter, the study’s methodology is explained. The first section provides an 

overview of the research methodology used. The second section describes the 

methods for data collection and pre-processing. The third section entails a detailed 

description of the proposed method. The chapter comes to a close with an 

introduction to the next chapter. 

3.2 Methodology 

The Cross-Industry Process for Data Mining was employed in this research. This 

methodology outlines a process for planning a data mining project in a structured 

manner. It is a reliable and consistent approach comprising six stages that are all 

linked together. Business understanding comes first, followed by data understanding, 

data preparation, modeling, evaluation, and deployment. The first through the fifth 

stages follow a loop pattern because of the complexity involved in data mining. The 

looping processes ensure that the outcomes are not only consistent but also reliable. 

Stage one is about understanding the business goals as it emphasizes stating the 

objectives or aims of a project in general. In relation to this study, the objectives 

below were put forward: 

(i) To find out what classifiers constitute weak learners for constructing 

the base (detectors) for the outlier detection ensemble. 

(ii) To identify different combination sequences or fusion strategies 

(order) from the selected base learners for the outlier detection 

ensemble. 

(iii) To create a model for outlier detection that utilizes multiple weak 

learners in a hybrid ensemble structure to provide improved 

performance and accuracy while prioritizing the minimization of bias, 

variance, and classifier fusion order. 
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(iv) To evaluate the developed ensemble model for outlier detection 

accuracy. 

The second stage is data understanding. This stage starts with data collection, 

followed by tasks that enable the identification of data quality issues, data insights, 

and detection of interesting patterns, which form hypotheses for hidden information. 

In this study, we adopted secondary datasets from the Outlier Detection Datasets 

(ODDS) library of Stony Brook University (Rayana, 2016), New York. Section 3.3 

provides a detailed description of the datasets.  

The third stage is data preparation, also known as the data preprocessing stage. This 

stage encompasses all activities that transform the initial raw data into a final cleaned 

dataset ready for analysis. It has four major steps: step one is data consolidation, 

which involves data collection, data selection, and data integration. The second step 

is data cleaning, which involves imputing all missing data values and eliminating the 

noise and inconsistency in the data. Step three is data transformation. Details of this 

step are discussed in section 3.4. The fourth step is data reduction, which entails 

feature reduction and data resampling. In this study, feature reduction was based on 

the importance of features as determined by their weight.  

In phase four, modeling techniques are chosen and applied to a ready dataset to solve 

specific business needs. As part of the process of developing a new model, existing 

models are assessed and compared. In this study, an outlier detection model was 

proposed, as discussed in section 3.5.  

The fifth phase is model testing and evaluation, where the models' accuracy and 

generalizability are assessed to ensure that they generalize well against unknown 

data. Data tables, charts, and other visualization techniques are frequently used to 

interpret knowledge patterns. Several experiments were carried out in this study to 

evaluate the models' performance, as discussed in Chapter 4. 

The last phase is model deployment, which involves code writing and execution. It 

entails configuring the model code for scoring, classifying, or categorizing 

previously unseen data, as well as creating a mechanism for incorporating that data 

into the solution of the original business problem. The coded model should follow all 
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the steps discussed above to generate an executable model that transforms new 

unprocessed data in the same way as was during its development. Figure 3.1 below 

illustrates the cross-industry standard process for data mining. 

 

Figure 3.1: Cross-industry Standard Process for Data Mining 

3.3 Data Collection Approaches 

3.3.1 Dataset Description 

This study focused on outlier detection; hence, outlier detection datasets from ODDS 

were adopted. The study used 10 multidimensional datasets, i.e. 3 digits datasets, 1 

alphabet dataset, 4 medical datasets, 1 time-series dataset, and 1 biological dataset. 

These datasets had both high and low dimensionality. Each of them is explained 

below: 

(i) Mnist Dataset 

The MNIST dataset originally included 60,000 handwritten digits spanning from 0 to 

9 for training and 10,000 for testing. In a gray-scale image with a size of 28px 

(height) x 28px (width), each digit is normalized and centered. The digit-0 class is 

sampled as inliers, and 700 images from the digit-6 class are sampled as outliers, 
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transforming it for outlier detection. In addition, 100 features are randomly selected 

from a pool of 784.  

The classes have samples represented as: 

Class 0  (digit 0) 6903 (90.793%) 

Class 1 (digit 6) 700 (9.207%) 

A total of 7603 images were sampled, of which digit 6 with 700 (9.207%) images 

was considered a rare/outlier class.  

(ii) Letter Dataset 

The original letter dataset included 26 capital letters in the English alphabet 

represented in 16 dimensions. To transform it for outlier detection, three data letters 

are randomly selected to represent the normal class, and then their pairs are joined 

randomly, doubling their dimensionality. A few letters that don't fit into the normal 

class are randomly selected for the outlier class. 1500 normal data points and 100 

outliers (6.25%) are sampled across 32 dimensions. Class samples are represented as: 

Class 0 1500 (93.75%) 

Class 1 100 (6.25%)  

A total of 1600 data points were sampled, of which class 1 with 100 (6.25%) samples 

was considered as rare/outlier class.  

(iii)  Cardio Dataset 

Expert obstetricians divided fetal heart rate and uterine contraction scans into 3 

groups in the Cardio dataset: pathogenic, normal, and suspect. The pathologic class 

of 176 (9.61%) was converted into outliers for the purpose of outlier detection, the 

normal class was considered as inliers, and the suspect class was discarded. The 

dataset has 21 attributes, 2 classes, and 1831 instances. 

The classes have sample representations as follows: 

Class0 (normal) 1655 (90.387%) 
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Class1 (pathologic) 176 (9.612%) 

Class2 (suspect) 295 (discarded) 

Pathologic class was considered a rare/outlier class and was down sampled to 176 

points, while the suspect class was discarded. 

(iv) Breastw Dataset 

Breast Cancer Wisconsin (breastw) contains records of scans for breast cancer cases. 

It has two classes: benign and malignant. It is a 9-dimensional dataset containing 683 

instances, of which 239 represent malignant tumors and were taken as the outlier 

class. The classes have samples represented as: 

Class0 (benign) 444 (65.01%) 

Class1 (malignant) 239 (34.99%) 

(v) Ann Thyroid Dataset 

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing 

instances. The issue is determining whether or not a patient referred to the clinic is 

hypothyroid. Hence, three classes are created: normal, hyperfunction, and subnormal 

functioning. For outlier detection, both training and testing instances are used. The 

normal class is used as inliers, while the hyperfunction and subnormal classes are 

considered outliers. The dataset consists of 7200 instances, 3 classes, and 6 real 

attributes. The classes have samples represented as: 

Class0 (normal)     6666 (92.58%) 

Class1 (hyper function) + Class 2 (subnormal) 534 (7.42%) 

Class 1 (hyper function) and class 2 (subnormal) were both considered as outliers.  

(vi) Pima Dataset 

The original Pima dataset for diabetes is a dataset for binary classification. The 

selection of examples from the wider database was subject to a number of restrictions 

including; all patients being female, at least 21 years of age, and of Pima heritage. It 
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has 8 attributes, 2 classes, and 768 instances, of which 268 (34.9%) are considered 

outliers.  

The classes have sample representations as follows: 

Class0 (normal) 500 (65.105%) 

Class1 (diabetic) 268 (34.895%) - outliers 

(vii) Vowels Dataset 

The original Vowels dataset is a multivariate time series data with 9 male speakers’ 

utterances of two Japanese vowels, ‘a’ and ‘e.’ A single utterance gives a time series 

range of lengths 7-29, with every point consisting of 12 features. For the purpose of 

outlier detection, each frame in the training set is treated as a separate data point. 50 

(3.43%) outliers (Class 1-Speaker) are included in the sample. Classes 6, 7, and 8 are 

regarded as inliers, while other classes are disregarded. The ODDS dataset has 12 

attributes, 2 classes, and 1456 instances. Classes have sample representations as: 

Class0 (Class6 + Class7 + Class8) 1406 (96.566%)  

Class1 (speaker)   50 (3.434%) 

Class1 (speaker) was considered as the outlier.  

(viii) Thyroid Dataset 

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing 

instances. The issue is determining whether or not a patient referred to the clinic is 

hypothyroid. Hence, three classes are created: normal, hyperfunction, and subnormal 

functioning. For outlier detection, only the training instances are used. The normal 

and subnormal classes are used as inliers, while the hyperfunction class is considered 

outliers. The dataset has 6 real attributes, 3 classes, and 3772 instances. The classes 

have samples represented as: 

Class0 (normal) + Class 3 (subnormal) 3679 (97.534%) 

Class1 (hyper function)   93 (2.466%) 



61 

 

Class 1 (hyper function) was considered as outliers.  

(ix) Pendigits Dataset 

The original Pen-Based Recognition of Handwritten Digits (pendigits) dataset has 16 

features and classes 0 to 9. A collection of 250 samples from 44 writers, of which 

samples from 30 writers are taken as training and cross-validation data while the rest 

are for testing. For outlier detection, the original collection of handwritten samples is 

reduced to 6,870 points, of which 156 are outliers. The quantity of objects in one 

class, digit-0, is decreased by 10% because all classes have similar frequencies. The 

classes have sample representations as follows: 

Class0 (digits1-9) 6714 (97.729%) 

Class1 (digit-0)   156 (2.271%) – outliers 

Digit 0 was taken as the outliers. 

(x) Optdigits Dataset 

The original Optical Recognition of Handwritten Digits (Optdigits) is a multi-class 

classification dataset that includes inliers made up of the instances of digits 1 through 

9, and outliers made up of the instances of digit 0, which are down-sampled to 150. 

The dataset has 5,216 instances with 64 attributes and two classes with sample 

representation as follows: 

Class0 (digits 1-9) 5066 (97.14%) 

Class1 (digit-0)   150 (2.86%) - outliers 

Table 3.1 shows a summary description of the datasets. The details of the datasets 

and scatter plots are presented in appendix1.  
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Table 3.1: Summary Description of Datasets Used in the Study 

Dataset Dim (d) Inst. (n) Normal Outliers Frequency (%) Attribute 

Mnist 100 7603 6903 700 0.0921 (9.21%) All numeric 

Letter 32 1600 1500 100 0.0625 (6.25%) All numeric 

Cardio 21 1831 1655 176 0.0961 (9.61%) All numeric 

Annthyroid 6 7200 6666 534 0.0742 (7.42%) All numeric 

Pima 8 768 500 268 0.3490 (34.9%) All numeric 

Vowels 12 1456 1406 50 0.0343 (3.43%) All numeric 

Thyroid 6 3772 3679 93 0.0247 (2.47%) All numeric 

Pendigits 16 6870 6714 156 0.0227 (2.27%) All numeric 

Breastw 9 683 444 239 0.3599 (34.9%) All numeric 

Optdigits 64 5216 5066 150 0.0286 (2.86%) All numeric 

 

3.4 Data Preprocessing 

The datasets used in the study were first converted into comma-separated values 

(CSV) files from their original mat format using the python command. The CSV files 

were then loaded into Python programming language. Python comes with several 

useful libraries and frameworks for data analysis. NumPy, SciPy, and Scikit libraries, 

in particular, are used for scientific calculations, advanced computations, and 

learning data mining and data analysis. In all ten datasets, there were no missing 

values. Numerical and categorical features were sorted out, and identical columns 

where all data points had the same values were removed. Further preprocessing 

entailed data normalization since the data were not a distribution and the features 

also had negative values occurring frequently. The data was standardized (rescaled) 

to between 0-1. The weak learners were all based on distance metric, that is, K-

Nearest-Neighbours, and therefore feature scaling was important. Otherwise, features 

with a large range would have greatly influenced computing the distance. To retain 

outliers in the datasets, Feature scaling using python standardizer was used to 

maintain the outlier relationships. This was done by subtracting the mean value from 
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all values and dividing it by the standard deviation. The resulting variable had a 

mean of zero and a standard deviation of 1, and most importantly, not skewed by 

outliers, and the outliers were still present with the same relative relationships to 

other values. Afterwards, the entire dataset was randomly shuffled to reduce the risk 

of learning models with a single class. For all models, k nearest neighbours were set 

to a minimum of 10 and a maximum of the square root of n, where n is the number of 

instances in a dataset. 

3.5 Proposed Method 

This work proposed the development of a hybrid model for outlier detection utilizing 

heterogeneous weak learners to provide improved performance. It proposed an 

optimized adaptive boosting technique for outlier detection. This method combined a 

set of heterogeneous weak learners to obtain an optimized composite model that 

provided more accurate and reliable predictions than a single model. It used weighted 

versions of a single training dataset combined with random subsampling. The 

training dataset needed not to be as large as that required by many other methods. 

Successive weak classifiers (detectors) were trained using reweighted copies of the 

training instances based on the earlier classifiers' accuracy. Error rates were 

computed in the context of an instance’s local neighbours rather than the global 

training set. Testing focused on local domains or regions within a training dataset. At 

every iteration, the training instances were weighted according to the 

misclassifications (errors) of previous classifiers and parameters optimized. This 

allowed weak learners to focus on poorly classified patterns by previous classifiers. 

The final result was a fusion of carefully selected results from individual learners.  

The main steps in the proposed method are presented in Algorithm 1. Step 1: 

Different detection algorithms (base detectors) were selected with unique measures 

to score individual vectors. Step 2: Using a selection approach, a subset of the 

detector results were chosen. Step 3: The chosen results were fused using different 

fusion methods to create intermediate aggregate outcomes. Step 4: Subsets of the 

outcomes from Step 3 were selected. Step 5: The selected subset of outcomes was 

fused. In a nutshell, the method entailed the creation of heterogeneous weak learners 



64 

 

that would become the base detectors for the ensemble, assessing the capability or 

competency of each weak learner/base detector before fusion, selection of optimal 

detectors, the fusion of selected base detectors, the building of a hybrid 

heterogeneous model, and finally testing the model. To ascertain the presence of 

outliers in our datasets, scatter plots were created, as depicted in Appendix AI. 

3.5.1 Phase 1: Weak learners 

The proposed outlier detection model uses different types of weak learners 

(heterogeneous) to create a set of diverse base models. Heterogeneous weak learners 

were selected because ensemble methods are very effective when base classifiers of 

dissimilar types are used (Rayana, Zhong, & Akoglu, 2017). Based on the differences 

between classifiers, the unique properties in data can be discovered or learned. When 

base learners of the same type (homogeneous) are used, the advantages of learner 

fusion are lost unless different data subsamples, parameters, or features are used for 

training each classifier (Zhang et al., 2020). The proposed model uses different base 

learners (heterogeneous) to construct a group of models to improve efficiency. 

Distance-based and density-based methods were selected as unsupervised methods 

for outlier detection, as discussed in section 2.7. This study concentrated on 

unsupervised outlier detection methods, which score each individual data point and 

allow ranking according to the likelihood that the point is an outlier. Motivated by 

the critical importance of data locality and dynamic learner fusion in DCSO and 

LSCP and the concept of heterogeneous detector formations in SELECT (as 

discussed in section 2.11), we adopted a distance-based algorithm to detect global 

outliers and a density-based algorithm to detect local outliers. The k-NN and LOF 

algorithms were chosen as base algorithms because they are well established for 

identifying outliers. The former is based on distance, while the latter is based on 

density. Distance-based methods attempt to identify global outliers that lay far 

(distant) from the rest of the data. Contrarily, density-based approaches attempt to 

find local outliers that lay in less dense regions compared to their k-nearest 

neighbours. Other algorithms, such as the distribution-based algorithms, were not 

considered as they assume a distribution (Jiang & An, 2008). Furthermore, distance 



65 

 

and density-based algorithms have since outperformed distribution and cluster-based 

algorithms in high-dimensional datasets (Papadimitriou et al., 2003). 

The weak learners have two characteristics: high bias, that is, low degree of freedom, 

and high variance, that is, too much degree of freedom. Through the combination of 

several weak learners, ensemble methods aim to create a strong learner that performs 

better by attempting to reduce bias and variance (section 2.9). Finding the best or 

most appropriate weak learner from a vast pool of weak learners and enhancing the 

performance of the final model based on the data at hand are the two key challenges 

in weak learner selection (i.e., optimization or improvement). To overcome these 

difficulties, a bias reduction-variance reduction trade-off was employed (section 2.9). 

We point out that increasing the ensemble's complexity could lead to better model 

selection and that an ensemble of the top models could enhance overall performance. 

As stated in Chapter 2, the choice of an ensemble model that is efficient or high-

performing is based on the bias variance trade-off. By prioritizing the minimization 

of these components, we obtained a criterion for determining a well-performing 

ensemble. The goal of creating an ensemble using this trade-off is to improve the 

overall performance on subsequent test data, that is, to better generalize results. As 

previously noted, if the ensemble model is too sophisticated for the training data, it 

will learn (memorize) certain data elements, such as noise and issues with the 

underlying structure, leading to high variance and low bias. The detectors may show 

low performance in the testing data or exhibit poor generalizations. However, where 

the ensemble model is not sufficiently complex, in which case, it may be unable to 

represent the underlying data structure regardless of the amount of data provided, 

which results in excessive bias. Hence well-performing ensemble is a formation of 

the minimization of bias, variance and the number of base detectors such that: 

Detector selection = minimization_of (bias, variance, complexity) 

In as much as the well-performing base learners can be selected using the bias-

variance trade-off criterion above, the base learners still do not necessarily generalize 

well because of the challenges related to complex ensemble formations. For an 
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ensemble to detect outliers well, improving and optimizing the selected base learners 

from the previous phase is necessary. This discussion is given in section 3.5.4.  

The ensemble formation made it possible to increase generalization performance by 

joining numerous dissimilar base learners and training them to do similar tasks. We 

pointed out that the generalization error could be lowered if the base learners 

(detectors) on which the averaging is done disagree or make different mistakes. For 

our outlier detection ensemble model  comprising of  base learners 

(detectors), ; its representation is such that; 

 

Equation (3.1) 

where, the detector coefficients  are represented as , and  as  of the rth 

base detector in section 3.5.2. For a test dataset , the 

ensemble mean squared error (MSE) is defined as: 

 

Equation (3.2) 

By introducing the average detector  the MSE was broken into 

bias and variance in terms (Eq. 3.3, 3.4) such that: 

 

Equation (3.3) 
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Equation (3.4) 

Equations (3.3) and (3.4) enabled us to find out the effects of bias and variance in the 

ensemble. It was evident that the bias term depended on the label , while the 

variance was not the case. The variance term of the ensemble was broken down as: 

 

 

 

Equation (3.5) 

where the expectation  was taken w.r.t. dataset . The first summation of Equation 

(3.5) indicates the lowest boundary of the ensemble variance, which essentially is the 

variance’s weighted average of base learners (detectors). The subsequent summation 

encompasses multiplied terms of the base learners, which disappear when the base 

learners become uncorrelated. Hence, the segment of interest in Eq. (3.5) was in the 

second part so that the variance of the ensemble was lowered or reduced. 

Equations (3.3) and (3.5) presented many possible ways that could be used to lower 

the expected error of the outlier detection model anchoring on the bias-variance-

complexity paradigm. The following ways were implemented: (i) increased the 

number of dissimilar-type base detectors with the train data to the greatest extent to 
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reduce bias, (ii) combined selected base detectors using different combination 

methods to lower variance; and (iii) maintained a suitable computational complexity 

of the overall model. This way, the overall model improved accuracy by lowering the 

expected error by the rational trade-off dispensation based on this bias-variance 

reduction theory. 

In defining a weak learner, a model is a weak learner if it shows a misclassification 

rate lower than 0.5, i.e., ( ) or predicts the class labels more accurately than 

random guessing. Formally, given a dataset  of 

 size features that yields the hypothesis , for each ; and in 

addition, with some small probability, the learner’s training error is slightly below the 

one of a random guesser; and since the expected training error of a random guessing 

learner is 0.5, it implies, that if error  

 

Equation (3.6) 

is true for every real  such that , then  signifies a weak hypothesis, 

and the classifier is referred to as weak learner. 

In the proposed method, the dataset  of d size features is first divided into training 

and testing sets as:  to signify training data with  data points, and 

 to signify test data with  points in the ratio 70%:30% respectively. 
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Next, a pool of heterogeneous base models is generated by 

initializing the two weak learning algorithms (k-NN and LOF) using a variety of 

parameter settings for each. Both of these algorithms use k number of neighbours and 

a distance metric, which could be Manhattan or Euclidean. All base detectors are 

then trained and used to classify outliers in . In this phase, an adaptive boosting 

technique is adopted to create a strong learner from the weak learners that were 

initialized. This technique samples a training set  from the initial dataset  

according to a uniform distribution, meaning the initial weight distributions  are 

given a value of , where  is the number of training data. These weight 

distributions are updated adaptively in each iteration based on prediction results. 

Correctly predicted samples from weak learners receive low weights because they 

are considered to be easy samples. Difficult samples receive higher weights. In this 

manner, in the next iteration, the learners are able to focus on the difficult samples 

and attempt to provide better predictions. The weighted error  of each learner is 

then calculated, as shown in Algorithm 6, Step 1, and (Eq. 3.12). The weak learner 

with  is discarded, as shown in Algorithm 1, Step 2. The learner with the 

lowest error is selected and its outputs are used for future fusion (Algorithm 6, step 

3). In Step 4 in Algorithm 6, every learner’s error rate  is estimated using (Eq. 

3.12) and a combination weight  is calculated using (Eq. 3.14) for every learner. 

The weighted coefficients of base learners are used to calculate the overall outputs. 

The greater a weight is, the more influence the corresponding learner has on the 
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overall results. Therefore, over T iterations, the ensemble considers l weak learners 

with different combination weights or weighted coefficients , as shown in 

Algorithm 6, Step 5. The results of the selected base learners form an outlier score 

matrix  as follows: 

, 
Equation (3.7) 

where  is the score vector from the rth base detector. Each base detector score 

 is normalized using the Z-norm function (Aggarwal, 2020) 

as , where  is the mean and  is the standard deviation. This process 

is summarized in figure 3.2 part A. 

3.5.2 Phase 2: Establishing Weak Learners Local Domains  

The proposed model assesses the capability or competency of each base detector 

prior to fusion; but most outlier data have no actual labels or ground truth 

information. Therefore,  in Eq. (3.7) was utilized to generate a simulated 

ground truth for  (called target) using two methods: by mean denoted as 

(ADAHO_Avg), averaging all scores, (Eq. 3.8) and by maximization denoted as 

(ADAHO_Max), obtaining a maximum score across all detectors, (Eq. 3.9). 

 

Equation (3.8) 
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Equation (3.9) 

Both ADAHO_Max and ADAHO_Avg generate scores for training data, unlike the 

conventional (generic) methods that take the global average, denoted here as 

(G_AVG) and global maximization, denoted here as (G_MAX), and which only 

generate scores for test data. An aggregation  representing ADAHO_Avg or 

ADAHO_Max (ADAHO_Avg  ADAHO_Max) was then performed across all base 

detectors to yield the , which is used for initial detector selection. Thus, 

. 
Equation (3.10) 

In terms of precision, avgkNN yields better results than kNN, so it is used here for 

selecting the local domain (Burnaev, Erofeev, & Smolyakov, 2015). For a test 

instance , the local domain  is derived as a set of its -nearest training objects 

based on Euclidean distance (Zhao & Hryniewicki, 2018) as:  

, 
Equation (3.11) 

where  is the average of a set of a ’s nearest neighbours bound by 

the ensemble. In an attempt to tame the curse of dimensionality, this technique was 

adopted by borrowing the concept of feature bagging (Lazarevic & Kumar, 2005). 

This process is captured in figure 3.2 part B. 

Input: Dataset   where:  and y ; a set of 
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heterogeneous weak learning algorithms {L}; number of iterations T. 

Initialize: a set of weights by setting  

For  rounds; 

1.  Fit/train  using a weak learning algorithm to get a classifier (base detector) 

:  and calculate weighted error of  for the  training instance as:  

, 

where;  

, 

where  indicates the neighborhood of the  training instance and  is an 

indicator function such that: 

. 

2.  If , set  and go to 1. 

 

 

 

 

(3.12) 

3.           1st Selection: Goal: select  with the lowest  

4.  Estimate the weighted error rate of this base detector for X as 

. 

 

(3.13) 

5.  Calculate the weighted coefficient of  for detector  as (3.14) 
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. 

6.  Re-weight and update examples (i.e., those incorrectly classified receive more weight 

and those correctly classified receive less weight) as follows: 

, 

where  is a normalization factor. 

 

 

 

 

(3.15) 

7.  Iterate: for each test instance, output the outlier score of  

            while (test instance  in  ) 

                 { - Set local domain  using kNN 

- From , pick elements in  to generate local simulated  

while (detector  in ) 

{ - Obtain outlier scores related to  in the local domain (  

- Using (1), assess the local competency of  (i.e.,between  and ( ) } 

- Do: score margin maximization as described in section 3.5.4 

2nd selection: if (Maximization or Averaging) 

{ Pick , where  has the greatest Pearson correlation with  } 



74 

 

else { Pick subgroup  among similar base learners and 

add to  

fusion: if (AvgM or MaxA) 

{  Output: } else  

Output: }} 

                   } end while 

Output: Final ensemble (strong) detector .  

 ,  

where  is the Pearson correlation between the new test instance and  training instance. 

Algorithm 3.1: ADAHO_OAAE 

3.5.3 Phase 3: Optimal Weak Learner / Base Detector Selection 

In addition to the first selection that was based on the error rate of each weak learner, 

a second selection was performed to filter out noisy outcomes by obtaining the local 

simulated label  for every test instance, where the values of  with 

respect to the local domain  were used as follows:  

, 
Equation (3.16) 
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where  is the size of  The local training outlier scores  (figure 3.2, part C) 

were obtained from the previously generated training score matrix  as 

follows: 

. 
Equation (3.17) 

To determine the competence of each base detector in a local domain, we calculated 

the Pearson correlation similarity measure between the base detector score 

 and simulated label  This method was considered to be more 

reliable for outlier detection because it used a similarity measure for evaluating 

detectors instead of absolute accuracy (Schubert, 2013), which was helpful because 

most outlier datasets were unpredictable and imbalanced. We then picked the base 

detector  with the greatest similarity measure relative to the optimal base detector 

in a test sample  and its outlier score  was retained as an intermediate 

result for later use. 

3.5.4 Improving Detectors by Score Margin Maximization 

The scores separate the anomalies from the rest of the data, resulting in high scores 

for the former and low scores for the latter. A contrast between the two scores helps 

distinguish the anomalies from the other data in a dataset. These scores, however, do 

not usually represent a clear contrast between anomalies and the rest of the data, thus 

the need for score optimization. This method creates a clear contrast by maximizing 

the anomalies' scores and minimising the other data's scores. This clear contrast 

between scores simplifies the problem of anomaly detection, making it more 

effective. The adaptive score threshold (Clark, Liu, & Japkowicz, 2018) would be 
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ideal for separating anomalies from a dataset, but the anomaly scores do not always 

match. Our method is inspired by the work in (Cervantes et al., 2020) as discussed in 

section 2.11, which classifies data by determining the maximum margin separating 

the hyperplane. This algorithm is effective and can better generalize by maximizing 

class margins, which improves the separation of data classes through contrast. In this 

context, we refer to this contrast as the score margin and use it in Equation (3.18). 

3.5.4.1 Optimization Maximization 

In order to bring a clear distinction between the anomalies and the rest of the data, 

the anomaly score distributions of the two must have a positive margin (Reunanen, 

Raty, & Lintonen, 2020). However, the analysed dataset, here initialized as , 

contains unknown anomalies that prevent accurate margin calculations. Therefore, a 

robust measurement is necessary to establish the magnitude of the score margin. Let 

 signify the normalized scores of the analyzed data of the th base model 

and let   signify the normalized scores of the known anomaly samples by 

the th base model. We define the score margin as the 

difference . The unknown or unseen anomalies present in 

the dataset should not affect this difference, and so we introduce the median (MED) 

value of the score distributions because it takes the 50th percentile of the distribution. 

Since anomalies are rare and few by definition, using the median method provides a 

robust measurement of the anomaly scores as it is not greatly affected by the 

unknown or unseen anomalies in the dataset . For the th base model, its 

optimization maximization is based on the values of the parameters that maximize 

the distance   between the medians of 



77 

 

 scores. By maximizing this score margin, base models are more likely to 

distinguish between anomalies and the rest of the data, which improves the efficiency 

of the overall model. We achieve this maximization through minimization of the 

negative score margin using an objective function to be minimized for the th base 

model as: 

 

Equation (3.18) 

In every loop, the base models are optimized, one at a time, and provided with 

updated parameters that maximize the distances between the anomalies and the rest 

of the data distribution scores. Most anomaly detection ensembles only select well-

performing base models for fusion (Xu et al., 2019); however, in our work, instead of 

only selecting the well-performing base models, we first optimize their parameters 

and then adaptively train them to detect anomalies before fusion. Our approach is the 

first to explicitly optimize the parameters of the base models within an adaptive 

framework for anomaly detection. 

3.5.4.2 Diversity between Outcomes 

The base model optimization by score margin maximization enlarges the contrast 

between the scores of the anomalies and other data. It tries to improve the detection 

accuracy of every base model. However, on top of this, the results of the base models 

must also be diverse. Their errors should differ (Kriegel et al., 2009) in that they can 

be fused into one model to address the shortcomings of the individual base models. 

The contrast maximization equation (3.18) gives no assurance of diversity of 

outcomes from the base models. To introduce diversity between the base models’ 

outcomes, we use equation (3.18) to account for the correlation and then adjust the 

optimization to reduce it, similar to (Reunanen, Raty, & Lintonen, 2020). Applying 

Pearson correlation  shows the dependency between the score vectors  
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and of the th and th base models. For any two vectors (s, t), Pearson 

correlation (Murphy, 2012) is defined as: 

 

Equation (3.19) 

where  represents the covariance and  the standard deviation. Once we 

calculate the correlation  between the base models’ scores, we take the average and 

use it to measure the margin at that point. Thus, the final expression of the function 

of the th base model takes the form: 

 

Equation (3.20) 

where  represents the absolute value,  represents the correlation measure,  

represents the total number of base models,  represents the optimization 

maximization in equation (3.18),  and  represents the normalized scores 

of the th and th base models respectively,  represents the dataset with unknown 

anomalies and  represents the anomaly examples. Our function   uses  

primarily for two reasons: first, to create a contrast between the anomalies and other 

data, and second, to obtain diverse outcomes from the models prior to final fusion. 
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3.5.5 Phase 4: Fusion of Base Detector’s Outcomes 

Because our base detectors were heterogeneous, their scores varied in terms of range 

and interpretation. Therefore, fusing scores directly would have been inappropriate; 

hence an agreement was needed within the ensemble. Based on the literature (chapter 

2), agreement methods could be grouped into two main categories: rank-based and 

score-based methods. In rank-based methods, detector scores are ordered into ranked 

lists, which make all detector scores equivalent and allow for easy fusion. 

Aggregation is then performed to merge all of the scores into a single ranked list. 

Similarly, score-based methods convert outlier scores into probabilities using either 

exponential or Gaussian scaling based on posterior probabilities, regularization, or 

normalization. This makes the outlier scores across different detectors comparable, 

meaning a final score could be calculated via averaging or maximization. Because 

rank-based aggregation yielded a relatively crude ordering of data instances (Rayana 

& Akoglu, 2016), we adopted the score-based method, which converted outlier 

scores into probabilities and provided binary classes for instances with probabilities 

greater than 50% receiving a value of one (i.e., outliers) and those with probabilities 

less than 50% receiving a value of zero (i.e., inliers). We then applied 

ADAHO_MaxA to the top-h performing detectors with respect to their targets or 

applied ADAHO_AvgM, where the average of h chosen detectors with respect to 

their targets was taken as a subgroup score. The final score was obtained by taking 

the maximum among all subgroup scores. To reduce bias, ADAHO_MaxA and 

ADAHO_AvgM were used to reduce the risk of picking only the best-performing 

base detector. The bias in the ensemble was significantly reduced by the fact that 

only the top-h performing base detectors with respect to their targets were selected 

and that the h detectors did not increase overall variance. The final result is a fusion 

of carefully selected outcomes  from different optimized 

learners. Finally, after all E boosting ensembles were trained, the totals H(j)( x ) were 

combined and the sign[H ( x )] taken as the decision label of point x . The modeling 

process is depicted in Figure 3.2 (showing information flow from leaner creation to 

fusion. Colors represent different stages. WkL are heterogeneous weak learners) and 

the algorithm is summarized in figure 3.3. 
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Figure 3.2: Proposed ADAHO_OAAE Model Ensemble.  
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3.5.6 Phase 5: Testing and Validating the Proposed Method 

Phase 5 involved testing the performance of the proposed method. Several weak 

learner combination methods were tested for outlier detection accuracy under 

AUROC. The different error rates were monitored and compared with the weights 

assigned to the weak learners in different training rounds. These error rates 

represented either a reduction or an increase in either the ensemble’s bias or variance. 

The bias and variance were monitored as different combinations were applied.   

Stratified 10-fold cross-validation was used to validate the performance of the model. 

The initial dataset was first partitioned into 5 subsets with an approximately equal 

number of records in each subset. Each subset was used as the test partition, while 

the remaining subsets were combined to perform the role of the training partition. A 

paired T-test was employed for testing the difference in performances of the proposed 

model and the selected baseline algorithms. The paired t-tests were used to determine 

Figure 3.3: Summary of the Key Steps in Algorithm 6 (ADAHO_OAAE) 
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whether the difference between two algorithms was significant or not. The paired T-

test used a p-value set at 95% confidence interval. Several other tests were 

performed, including testing the merit for including each model in the method and 

the comparison of the method with the other well-known classification algorithms. 

The final test involved comparing the performance of the proposed model with other 

techniques for outlier detection. Values of ROC (Receiver Operating Characteristic) 

were utilized to gauge the effectiveness of the classifiers. The model’s performance 

was assessed using other metrics, including True Positive, Precision, Recall, and 

AUROC scores. 

3.6 Experimental Set Up 

A heterogeneous outlier detection model was created using the proposed method 

discussed in section 3.5. The identification and qualification of appropriate but 

different types of weak learners for the heterogeneous ensemble for outlier detection 

were made. Both distance and density-based methods were selected. Experiments 

were done to prove the advantage of combining multiple learners as compared to just 

one. Also, further experiments were done by combining different kinds of weak 

learners and comparing their results to homogeneous combinations, as described in 

3.5.1. To assess the capability or competency of each weak learner prior to fusion, 

tests at level 1 (weak learners), as described in 3.5.2, were done. The competencies of 

each base detector in their local domains were evaluated, as discussed in section 

3.5.3. Optimization of base models was done to enlarge the contrast between inliers 

and outliers, as illustrated in 3.5.4. Because our model used weak learners of different 

types, i.e. heterogeneous, their outcomes were not combined directly. Several fusion 

techniques were compared in order to combine the weak learners. This is described in 

3.5.5. A heterogeneous ensemble model was created and validated as described in 

section 3.5.6. 

 Experiments carried out included the following: 

(i) Establishing the initial bias and variance of different kinds of weak 

learners (heterogeneous) combinations over the selected datasets.  
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(ii) Finding out the different error rates and various weight coefficients 

assigned to the weak learners over the different rounds of training so 

as to weed out those with high error rates. 

(iii) Selecting and combining best performing or optimal learners and their 

overall effect in outlier detection performance. 

(iv) Testing outlier detection performance by AUROC of the proposed 

method. 

(v) T-Statistical test of proposed model verses other existing models 

(vi) Comparisons of performance of proposed method and other existing 

algorithms in terms of kernel density estimates. 

We contrasted the effectiveness of the suggested combination techniques with other 

existing combination techniques to reaffirm the performance of outlier detection. We 

also assessed the effectiveness of the suggested method with other existing ensemble 

formations such as ALOI (Schubert et al., 2013), BASE (Micenkova, McWilliams, 

and Assent, 2014), SELECT (Rayana & Akoglu, 2016) and ADAHO (Bii, Rimiru, & 

Mwangi, 2020) in order to demonstrate the superiority of the proposed method. The 

first two formations are symbolically referred to here as ALOI and BASE because of 

their relative design with respect to our proposed method. The results of the 

experiments were presented in the form of tables and graphs. Details of the 

experiment results are shown and discussed in Chapter 4. 

3.7 Chapter Summary 

This chapter presented the methodology known as Cross-Industry Process for Data 

Mining which provides a structured method for planning and executing a data mining 

project. The description of the datasets and the preprocessing process have been 

discussed. A detailed explanation of the proposed heterogeneous ensemble method 

for outlier detection has been provided. In a nutshell, for a given set of data in , an 

outlier detection ensemble was built using , that is,  weak learners were 
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grouped into  boosting ensembles, each of which comprised  weak learners. 

Basically, the ensemble had two levels: the first, or low level, contained all weak 

learners, and the second, or high level, contained all boosting ensembles. Because of 

this bi-level configuration, the model benefited from both bagging and boosting 

throughout her training. The bagging method generated multiple training subsamples 

from  on stratified sampling without replacement. Each subsample was then used 

for training the boosting ensemble. In every boosting ensemble, the weak learners 

were of different kinds (heterogeneous). One ensemble was built with distance-based 

weak learners, while another with density-based weak learners. The ensembles 

executed adaptive boosting where weighted versions of the training dataset subsets  

were used. The training data was reweighted, with the weights based on the accuracy 

of the previous weak learners, and used to train new weak learners. Error rates were 

computed in the context of an instance’s local neighbors, rather than a global training 

set. Testing instances focused on local domains or regions within a training dataset. 

The reweighting of data samples in every iteration allowed detectors to emphasize on 

patterns that were poorly predicted by the previous weak learners. Base detector 

scores were improved by a margin maximization process that brought a clear contrast 

between the classes. A final fusion of non-biased, low variance detectors was 

presented for outlier detection. 

The next chapter provides the results of the experiments conducted in the study. 
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CHAPTER FOUR 

RESEARCH RESULTS FINDINGS 

4.1 Introduction 

The findings of the experiments carried out for this research study are presented in 

this chapter. The experiments focused on examining different candidate base learners 

for the outlier detection ensemble, establishing their misclassification rates, local 

domains or regions of expertise, choosing optimal learners, testing the proposed 

method's detection performance, and comparing the proposed method with other 

existing methods. The chapter concludes by providing a summary of the 

experimental findings. 

4.2 Examining the Base Detectors / Weak Learners 

The framework creation process started with examining a set of candidate individual 

base classifiers for which KNN, DT, LOF, and LR were investigated. These four 

were considered simple yet met the base requirements of the description of weak 

learners from sections 3.5.1. KNN and LOF were selected because they are distance 

and density-based classifiers. The other two, DT and LR, widely used in 

homogeneous ensembles in most literature, were used to compare their performance 

to the distance and density-based methods in heterogeneous ensembles. This phase 

established a baseline for subsequent evaluations. Here, the classifiers were 

examined for three conditions necessary for a classifier to be admitted as a weak 

learner in an ensemble (sections 2, 3). That is, (i) they must exhibit a certain degree 

of bias and (ii) variance, (iii) and have an error rate less than 0.5, i.e., better than 

random guessing, and be simple and fast in terms of execution because several of 

them would be enjoined to form an ensemble. The results of the qualifying 

(individual) classifiers tested against the selected datasets are summarized in Table 

4.1. KNN and LOF variants were selected for this study, as described in sections 

3.5.1. Studies suggest that the base classifiers selected for a successful ensemble 

should be diverse (sections 2.4; 3.5.4.2) and have good individual performance. For 

the subsequent experiments and ensemble generation, these classifiers were 
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employed. Details of the experiment are first shown using the MNIST dataset, and a 

summary for the other nine datasets is provided thereafter. 

4.2.1 Experiment 1: Establishing Weak Learners’ Initial Bias over Different 

Number of Samples – Prior to Ensemble Formation (Criteria 1) 

The experiment was conducted as per the description provided in section 3.5.1 Eq. 

3.6. Table 4.1 represents the results of bias tests from 4 algorithms. We set the 

number of models for each classifier at 20 for consistency. We observed that with the 

increase in the number of training samples, the bias of the base learners decreased. 

This was seen as samples varied from the least at 100 samples to the highest at 5000 

samples. The bias of the selected classifiers (KNN and LOF) decreased from 0.0028 

to 0.0000007 and 0.0148 to 0.00003, respectively. The other classifiers did not show 

much change or reduction ability in bias and hence were not considered in other 

experiments as they did not satisfy criteria 1. Discussions are given in section 5. 

Table 4.1: Initial Biases of Base Learners on MNIST Dataset over Different 

Samples 

No. of samples LR (20 models) DT(20 models) KNN(20models) LOF(20 models) 

100 2.13E-05 0.0000 0.0028 0.0148 

300 1.63E-05 0.0000 0.0016 0.0129 

500 1.61E-05 0.0000 0.0012 0.0101 

700 1.56E-05 0.0000 0.0009 0.0085 

1000 1.44E-05 0.0000 0.0007 0.0062 

3000 1.43E-05 0.0000 0.0002 0.0015 

5000 1.50E-05 0.0000 7.69E-07 0.00003 
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Figure 4.1: The Effect of Increasing the Training Samples on Model Bias 

4.2.2 Experiment 2: Establishing Weak Learners’ Initial Variances over 

Different Number of Samples (Criteria 2) 

In experiment 2, the initial variances of the base classifiers were recorded, as shown 

in Table 4.2. Variations in the size of the training set on variance were not so huge. 

For the two selected classifiers, KNN and LOF, their variances tend to drop from 

0.02 to 0.001 and 0.003, respectively. It implied that the more samples given in 

training, the more the classifiers’ performance stabilizes. A high variance indicates 

that any little change in the dataset affects the behaviour of the classifier, and as a 

result, it generates different predictions in different training rounds. 

Table 4.2: Initial Variances on MNIST over Different Number of Samples 

No. of samples LR(20 models) DT(20 models) KNN(20 models) LOF(20 models) 

100 0.0010 0.0000 0.0200 0.0190 

300 0.0000 0.0000 0.0150 0.0200 

500 0.0020 0.0000 0.0140 0.0180 

700 0.0010 0.0000 0.0110 0.0190 

1000 0.0010 0.0000 0.0110 0.0180 

3000 0.0010 0.0000 0.0080 0.0140 

5000 0.0010 0.0000 0.0010 0.0030 
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Figure 4.2 shows the different variances over different data sample sizes. The 

variance of each classifier seemed to drop with an increase in the size of the 

samples. It implies that the variance of a weak learner can be lowered by 

subsampling or by increasing the k-value in both KNN and LOF so that a high 

value of k lowers variance and a small value would cause model overfitting. 

 

 

Figure 4.2: The Effect of Increasing Training Samples on Model Variance 

For the MNIST dataset, figure 4.3 compares the classifiers bias with variance. 

The high variance indicated that the model was too flexible, and might have 

memorized the training data hence it does not generalize well because it is a sign 

of overfitting. This however qualified two classifiers, KNN and LOF, as good 

candidates for weak learners for the ensemble. 
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Table 4.3: Summary of Initial Biases and Variances on Selected Datasets 

Dataset KNN LOF 

 BIAS VARIANCE MSE BIAS VARIANCE MSE 

Mnist 1.1741 0.0170 1.1912 1.3202 0.1044 1.4246 

Letter 1.2024 0.0364 1.2388 1.2530 0.1203 1.3733 

Cardio 1.2226 0.0280 1.2506 1.2842 0.1165 1.4006 

Annthyroid 1.2420 0.0178 1.2597 1.3682 0.1167 1.4849 

Pima 0.9994 0.0205 1.0199 1.0856 0.1037 1.1893 

Vowels 1.2018 0.0387 1.2405 1.3477 0.1211 1.4687 

Thyroid 1.2515 0.0189 1.2705 1.3396 0.1019 1.4415 

Pendigits 1.3837 0.0327 1.4164 1.4004 0.1112 1.5116 

Breastw 0.8499 0.0245 0.8745 1.2890 0.0708 1.3598 

Optdigits 1.2950 0.0249 1.3199 1.3493 0.1022 1.4515 

 

From Table 4.3 and figure 4.3, the initial biases and variances of the two 

detectors, KNN and LOF, were high. These high bias/variance base learners met 

the requirement of a ‘weak’ classifier as described in sections 3.5.1. These biases 

and variances would then be reduced through an ensemble whose goal is to learn 

the different characteristics of data – which is beneficial for outlier detection. 

 

Figure 4.3: Comparison between Bias and Variance on MNIST Dataset 
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It was clear from Table 4.3 that as bias increased, variance decreased. This was 

true for all datasets applied in both KNN and LOF. For example, the bias of 

KNN over pendigits dataset was 1.3837, while its variance was 0.0327. This bias 

and variance combined, gave a total Mean Squared Error of 1.4164 (Table 4.3). 

In this study, the two algorithms were selected for the reasons discussed in section 3: 

KNN and LOF. The former detects outliers far from the rest of the data instances, 

and the latter detects outliers in dense regions. KNN is distanced-based, while LOF is 

a density-based outlier detection algorithm. We generated g subsets of data for each 

ensemble formation. Each subset's samples were given uniform initial weights, 

which were then adjusted adaptively in every round of boosting depending on the 

error rates of the previous learners. 

Initial Weak learner Selection by Trade-off: Bias-Variance 

Based on the discussions of base detector selection by bias variance complexity 

trade-off in section 2.8, the outcomes of individual base algorithms were reported in 

Table 4.4. It was evident that the best performing base model was the Md_KNN in 

terms of the bias-variance complexity criterion over the two test datasets that were 

used. As regards detector complexity (i.e., the chosen model parameters like the 

choice of k or the distance metrics), LOF was able to give the most reduced selection 

values at model complexity of 30 and 37 base learners with selection values 

0.110219 and 0.300299 respectively. Table 4.4 indicates the Selection value: = (Bias2 

+ Variance) × influence of complexity (No. of models). 
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Table 4.4: Results of the Base Model’s Bias and Variance.  

Dataset 

Base Model Bias2 

 

Variance 

 

Complexity Selection 

value 

Mnist 

Lg_KNN 0.065413  0.053815 10 0.129164 

Avg_KNN 0.058445  0.081252 14 0.156271 

Md_KNN 0.075854  0.078639 12 0.171241 

LOF 0.032587  0.054014 30 0.110219 

Letter 

Lg_KNN 0.184577  0.084758 14 0.301290 

Avg_KNN 0.223143  0.105472 13 0.364666 

Md_KNN 0.254876  0.085347 8 0.351490 

LOF 0.128114  0.094756 37 0.300299 

It was also observed that the bias of the LOF ensemble was the least of the 4 base 

models. To generate a committee of experts, we selected the models with the lowest 

error rates as they exhibited lesser bias and variance overall. The experiment also 

noted that the variance of the LOF model was comparatively large among the four 

base detectors, suggesting that different data characteristics were learned by its 

different base learners – which were important for outlier detection. 

4.2.3 Experiment 3: Establishing the Error Rates of Learners (MNIST Dataset) 

The third criterion was selecting weak learners for the ensemble by their error 

rates. Our method selected learners whose error rates  as per the 

description in section 3.5.1. Tables 4.5 – 4.12 show the error rates , and the 

performance weights assigned to every learner at every iteration during 

training. Lg_KNN utilized the largest distance between neighbours, and 

Ag_KNN utilized the mean distance, while Md_KNN utilized the median 

distance of the neighbourhood as the method for scoring outlierness of a data 
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point. To qualify learners as ‘weak’, those whose predictions were slightly better 

than random guessing ( ) were chosen as intermediate learners for later 

use. The bold red font   signified discarded learners based on this criterion. 

Table 4.5: Weak Learners’ Error Rates per Iteration using MNIST Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.1266 0.9657 0.1336 0.9347 0.1396 0.9093 0.2028 0.6844 0.1282 0.9585 

1 0.2038 0.6814 0.2036 0.682 0.2146 0.6487 0.2688 0.5004 0.2081 0.6682 

2 0.3348 0.3433 0.3306 0.3527 0.3216 0.3732 0.3481 0.3137 0.3129 0.3933 

3 0.4084 0.1853 0.4104 0.1812 0.4229 0.1554 0.4212 0.1589 0.4139 0.1739 

4 0.4725 0.0551 0.4625 0.0751 0.4472 0.1060 0.4588 0.0826 0.4652 0.0697 

5 0.4795 0.0410 0.4881 0.0238 0.478 0.0440 0.4637 0.0727 0.4937 0.0126 

6 0.4836 0.0328 0.4767 0.0466 0.4982 0.0036 0.4936 0.0128 0.3647 0.2775 

7 0.5203 -0.0406 0.4904 0.0192 0.4996 0.0008 0.4993 0.0014 0.4206 0.1602 

8 0.4844 0.0312 0.5113 -0.0226 0.5038 -0.0076 0.4957 0.0086 0.4713 0.0575 

9 0.4865 0.0270 0.4909 0.0182 0.5062 -0.0124 0.5015 -0.003 0.4851 0.0298 

 

Table 4.5 shows error rates per iteration using the MNIST dataset. The red 

bolded values indicate the misclassification rates where  that were 

dropped. Out of 10 Lg_KNNs, 9 were set aside for future use. The same applied 

for Ag_KNN, and LOF. 8 Md_KNN weak learners were also put aside. For the 

combined heterogeneous weak learners, all 10 had misclassification rates less 

than 0.5 and were set aside for future use. A total of 5/50 learners were dropped, 

representing 10% of the total learners. Fig. 4.4 depicts the relationship between 
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error rates and weights. It was observed that as  increased,  decreased. 

 

Figure 4.4: Comparison between Error Rates and Weights on MNIST Dataset 

 

4.2.3 Experiment 4: Establishing Weak Learners’ using LETTER Dataset 

Table 4.6 shows error rates per iteration using LETTER dataset. The red bolded 

values indicate where . 9 Ag_KNN weak learners out of 10 were put 

aside for future use. The same applied for Lg_KNN and LOF. All 10 Md_KNN 

and 10 heterogeneous weak learners were put aside, since their . A total 

of 3 learners were dropped during training representing 6% of the total learners. 
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Table 4.6: Weak Learners’ Error Rates per Iteration using LETTER Dataset 

 Lg_KNN 

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.1256 0.9702 0.1208 0.9924 0.1208 0.9924 0.1112 1.0393 0.1232 0.9812 

1 0.2379 0.5821 0.2156 0.6457 0.2197 0.6337 0.2343 0.5921 0.2366 0.5857 

2 0.3453 0.3199 0.2975 0.4296 0.3585 0.2909 0.3386 0.3348 0.3070 0.4071 

3 0.4187 0.1641 0.4271 0.1468 0.4053 0.1917 0.4000 0.2027 0.3690 0.2683 

4 0.4531 0.0941 0.4411 0.1183 0.4704 0.0593 0.4506 0.0991 0.4349 0.1309 

5 0.4831 0.0338 0.4768 0.0464 0.4839 0.0322 0.4667 0.0667 0.4754 0.0492 

6 0.4786 0.0428 0.4873 0.0254 0.4870 0.0260 0.5057 -0.0114 0.3999 0.2029 

7 0.5124 -0.0248 0.5026 -0.0052 0.4830 0.0340 0.4996 0.0008 0.4534 0.0935 

8 0.4870 0.0260 0.4983 0.0034 0.4977 0.0046 0.4889 0.0222 0.4638 0.0725 

9 0.4917 0.0166 0.4981 0.0038 0.4927 0.0146 0.4875 0.0250 0.4703 0.0595 

 

Figure 4.5: Comparison between Error Rates and Weights on LETTER Dataset 

Figure 4.5 shows the relationship between  and . As error rates increased 

learner weights decreased per iteration. The negative were eliminated in 

rounds. 
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4.2.4 Experiment 5: Establishing Weak Learners’ Error Rates (Cardio Dataset) 

Table 4.7 shows error rates per iteration using the CARDIO dataset. The red 

bolded values indicate the misclassification rates where . Out of 10 

Lg_KNNs, 10 Ag_KNNs and 10 Md_KNNs, 2 weak learners from each were 

dropped because their , i.e. 0.503, 0.5023, 0.5048, 0.5088, 0.5062 and 

0.5008 respectively. Both LOF and the heterogeneous combined learners were all 

successful. A total of 6 learners were dropped representing 12%. This was 

attributed to the dense outlier clusters in the CARDIO dataset. 

Table 4.7: Weak Learners’ Error Rates per Iteration using Cardio Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.1169 1.0111 0.1176 1.0077 0.1218 0.9877 0.1232 0.9812 0.1218 0.9877 

1 0.2413 0.5728 0.2473 0.5565 0.2407 0.5744 0.2434 0.5671 0.239 0.5791 

2 0.3621 0.2831 0.3547 0.2992 0.3699 0.2663 0.3584 0.2912 0.3328 0.3478 

3 0.4325 0.1358 0.4188 0.1639 0.4305 0.1399 0.443 0.1145 0.4234 0.1544 

4 0.4665 0.0671 0.4543 0.0917 0.4612 0.0778 0.4598 0.0806 0.4539 0.0925 

5 0.4887 0.0226 0.4797 0.0406 0.4825 0.035 0.4725 0.0551 0.4809 0.0382 

6 0.4825 0.035 0.4854 0.0292 0.4781 0.0438 0.4934 0.0132 0.4574 0.0854 

7 0.5030 -0.0060 0.4983 0.0034 0.5062 -0.0124 0.4964 0.0072 0.4919 0.0162 

8 0.4964 0.0072 0.5048 -0.0096 0.5008 -0.0016 0.4992 0.0016 0.4541 0.0921 

9 0.5023 -0.0046 0.5088 -0.0176 0.4737 0.0526 0.4917 0.0166 0.4998 0.0004 
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Figure 4.6: Comparison between Error Rates and Weights on Cardio Dataset 

Figure 4.6 shows the relationship between error rates against weights when using 

the Cardio dataset. Again, as error rates increased, the weights assigned to 

learners decreased since examples became harder in successive iterations.  

4.2.5 Experiment 6: Establishing Weak Learners’ Error Rates using Annthyroid 

Table 4.8 represents misclassification rates per iteration using the 

ANNTHYROID dataset. The red bolded values indicate the leaner’s error rates 

where  that were dropped. Out of 10 Ag_KNN learners, 8 were set aside 

for future use as 2 learners were dropped. Lg_KNN and Md_KNN lost one 

learner each. The rest 18 were set aside for future use. All 10 LOFs and the 10 

combined heterogeneous learners had their misclassification rates < 0.5 and were 

all set aside for future use. A total of 4 learners were dropped representing 8%. 
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Table 4.8: Weak Learners’ Error Rates per Iteration (ANNTHYROID Dataset) 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.0962 1.1201 0.0914 1.1483 0.0980 1.1098 0.1156 1.0174 0.0974 1.1132 

1 0.1847 0.7424 0.1658 0.8078 0.1840 0.7447 0.1921 0.7182 0.1717 0.7868 

2 0.3237 0.3684 0.3031 0.4163 0.3214 0.3737 0.3208 0.3750 0.2946 0.4366 

3 0.4079 0.1863 0.4084 0.1853 0.3894 0.2249 0.4161 0.1694 0.3928 0.2178 

4 0.4687 0.0627 0.449 0.1024 0.4523 0.0957 0.4462 0.1080 0.4462 0.1080 

5 0.467 0.0661 0.4744 0.0512 0.4887 0.0226 0.4787 0.0426 0.4765 0.0470 

6 0.4704 0.0593 0.4911 0.0178 0.4864 0.0272 0.4877 0.0246 0.4254 0.1503 

7 0.4977 0.0046 0.5006 -0.0012 0.4891 0.0218 0.4980 0.0040 0.4652 0.0697 

8 0.4992 0.0016 0.4961 0.0078 0.5009 -0.0018 0.4985 0.0030 0.4728 0.0545 

9 0.5040 -0.008 0.5103 -0.0206 0.4999 0.0002 0.4941 0.0118 0.4793 0.0414 

 

Figure 4.7: Comparison between  and Weights on ANNTHYROID Dataset 

Figure 4.7 shows the relationship between training error rates against weights 

assignment on weak learners when using the Annthyroid dataset. With an 

increase in misclassification errors, decreasing learner weights were assigned. 

 



98 

 

4.2.6 Experiment 7: Establishing Weak Learners’  using PIMA Dataset 

Table 4.9 shows error rates per iteration using PIMA dataset. The red bolded 

values are  that were dropped. Out of 10 Lg_KNN and 10 LOF learners, 8 

of each were set aside for future use as 2 learners, from each, were dropped 

because their . Ag_KNN and Md_KNN dropped one learner each. The 10 

combined learners had their   and none was dropped. 6 (12%) learners 

were dropped in total. The relationships with  assigned over different iterations 

are depicted in fig. 4.8. Learners with negative  were eliminated as well. 

Table 4.9: Weak Learners’ Error Rates per Iteration using PIMA Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.336 0.3406 0.3328 0.3478 0.3232 0.3696 0.336 0.3406 0.3376 0.337 

1 0.4172 0.1671 0.4268 0.1475 0.4131 0.1756 0.4239 0.1534 0.4282 0.1446 

2 0.4589 0.0824 0.4623 0.0755 0.4718 0.0565 0.4578 0.0846 0.4581 0.0840 

3 0.4801 0.0398 0.4727 0.0547 0.4635 0.0731 0.4757 0.0486 0.4822 0.0356 

4 0.4785 0.043 0.4885 0.023 0.4905 0.019 0.49 0.02 0.4744 0.0512 

5 0.4928 0.0144 0.4935 0.013 0.5039 -0.0078 0.4947 0.0106 0.4979 0.0042 

6 0.4848 0.0304 0.4925 0.015 0.4882 0.0236 0.5065 -0.013 0.4933 0.0134 

7 0.5017 -0.0034 0.5081 -0.0162 0.4917 0.0166 0.4983 0.0034 0.4974 0.0052 

8 0.5025 -0.0050 0.4992 0.0016 0.4989 0.0022 0.5001 -0.0002 0.4964 0.0072 

9 0.4914 0.0172 0.4976 0.0048 0.4981 0.0038 0.5064 -0.0128 0.4946 0.0108 
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Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset 

Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset 

 

4.2.7 Experiment 8: Establishing Learners’ Error Rates using Vowels Dataset 

Table 4.10 represents misclassification rates per iteration using the VOWELS 

dataset. The red bolded values indicate the misclassification rates where . 

Out of 10 Lg_KNNs, 10 Ag_KNNs, and 10 LOF learners, 9 of each were set 

aside for future use. 1 learner from each was dropped because their error rates 

were greater than 0.5 (red font, bolded). Md_KNN lost two learners whose error 

rates were 0.5006 and 0.5034 respectively. The 10 combined heterogeneous 

learners had all their  and therefore none was dropped. A total of 5 

learners were dropped representing 10% of the total learners. Weights 

assignment in relations to these error rates are as depicted in Fig. 4.9. The 

learners whose coefficients were negative (black font, bold) were also dropped. 
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Table 4.10: Weak Learners’ Error Rates per Iteration using VOWELS Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.0972 1.1144 0.0684 1.3058 0.0855 1.1849 0.0855 1.1849 0.1098 1.0464 

1 0.1776 0.7663 0.1601 0.8287 0.1307 0.9474 0.1266 0.9657 0.1585 0.8347 

2 0.2968 0.4313 0.2633 0.5144 0.2486 0.553 0.2055 0.6761 0.2186 0.6369 

3 0.3648 0.2773 0.3478 0.3144 0.3709 0.2642 0.3304 0.3532 0.3298 0.3545 

4 0.4408 0.1190 0.4055 0.1913 0.398 0.2069 0.3996 0.2036 0.4073 0.1876 

5 0.4530 0.0943 0.4808 0.0384 0.4675 0.0651 0.4568 0.0866 0.4755 0.049 

6 0.4697 0.0607 0.4852 0.0296 0.4711 0.0579 0.4476 0.1052 0.446 0.1084 

7 0.4959 0.0082 0.5033 -0.0066 0.4996 0.0008 0.4954 0.0092 0.4819 0.0362 

8 0.4919 0.0162 0.4944 0.0112 0.5006 -0.0012 0.5079 -0.0158 0.4592 0.0818 

9 0.5263 -0.0526 0.4947 0.0106 0.5034 -0.0068 0.4949 0.0102 0.4651 0.0699 

 

Figure 4.9: Comparison between  and Weights  using Vowels Dataset 

4.2.8 Experiment 9: Establishing Weak Learners Error Rates (Thyroid Dataset) 

Table 4.11 shows training error rates per iteration using the THYROID dataset. 

The red font bold values indicate the misclassification rates where . Out 

of 10 Lg_KNNs, 10 Ag_KNNs, 9 of each were set aside for future use as one 

learner from each group was dropped because of their misclassification rates 
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being greater than 0.5 (red font, bold) i.e. 0.5171 and 0.5079 respectively. The 

other three, i.e. Md_KNNs, LOFs and the combined heterogeneous learners had 

their misclassification rates less than 0.5 and none was dropped. A total of 2 

learners were dropped, while training using the THYROID dataset representing 

4% of the total learners. Fig. 4.10 depicts the weights at every iteration. 

Table 4.11: Weak Learners’ Error Rates per Iteration using THYROID Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          
0 0.0588 1.3865 0.0603 1.3731 0.0573 1.4002 0.0543 1.4287 0.0711 1.285 

1 0.1395 0.9097 0.147 0.8792 0.1374 0.9185 0.1397 0.9089 0.1233 0.9808 

2 0.2582 0.5277 0.2767 0.4804 0.2859 0.4577 0.2923 0.4421 0.2698 0.4978 

3 0.3571 0.294 0.3932 0.2169 0.3648 0.2773 0.3548 0.299 0.3844 0.2355 

4 0.447 0.1064 0.4325 0.1358 0.3973 0.2084 0.4527 0.0949 0.4346 0.1316 

5 0.4603 0.0796 0.4643 0.0715 0.4711 0.0579 0.4541 0.0921 0.4644 0.0713 

6 0.4623 0.0755 0.497 0.006 0.4978 0.0044 0.4901 0.0198 0.2966 0.4318 

7 0.475 0.05 0.4791 0.0418 0.4699 0.0603 0.4914 0.0172 0.4233 0.1546 

8 0.5171 -0.0342 0.4985 0.003 0.488 0.024 0.4927 0.0146 0.4105 0.1809 

9 0.4948 0.0104 0.5079 -0.0158 0.4962 0.0076 0.4963 0.0074 0.4963 0.0074 

 

Figure 4.10: Comparison between  and Weights  using THYROID Dataset 
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4.2.9 Experiment 10: Establishing Weak Learners’ Error  (Pendigits Dataset) 

Table 4.12 represents training error rates per iteration using the PENDIGITS 

dataset. The red font bold values indicate the error rates . Out of 10 

Lg_KNNs, 10 Md_KNNs, and 10 LOFs, 9 of each were put aside for future use 

as one learner from each category was dropped due to misclassification rates 

greater than 0.5 (red font, bold) i.e. 0.5018, 0.5009 and 0.5092 respectively. For 

Ag_KNN, 2 weak learners were dropped as their error rates were higher at 

0.5011 and 0.5212. All ten of the combined heterogeneous weak learners had 

their misclassification rates < 0.5 and all were set aside for future use. A total of 

5 learners were dropped while training using the PENDIGITS dataset, which 

represents 10% of total learners. Negative learner coefficients were eliminated. 

Table 4.12: Weak Learners Error Rates per Iteration over PENDIGITS Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.0776 1.2377 0.0738 1.2649 0.0744 1.2605 0.0886 1.1654 0.0824 1.2051 

1 0.1277 0.9607 0.1249 0.9734 0.128 0.9594 0.1512 0.8626 0.1177 1.0072 

2 0.248 0.5547 0.2675 0.5037 0.2571 0.5305 0.2713 0.494 0.2254 0.6172 

3 0.3663 0.2741 0.3619 0.2836 0.3633 0.2805 0.3729 0.2599 0.3287 0.357 

4 0.4258 0.1495 0.4404 0.1198 0.4308 0.1393 0.4163 0.169 0.4236 0.154 

5 0.4635 0.0731 0.4606 0.079 0.4618 0.0765 0.4578 0.0846 0.4567 0.0868 

6 0.47 0.0601 0.4739 0.0522 0.4757 0.0486 0.4939 0.0122 0.3409 0.3296 

7 0.5018 -0.0036 0.4801 0.0398 0.4932 0.0136 0.4964 0.0072 0.433 0.1348 

8 0.4919 0.0162 0.5011 -0.0022 0.4735 0.053 0.4899 0.0202 0.428 0.145 

9 0.4852 0.0296 0.5212 -0.0424 0.5009 -0.0018 0.5092 -0.0184 0.4715 0.0571 
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Figure 4.11: Comparison between  and Weights  using Pendigits Dataset 

4.2.10 Experiment 11: Establishing Learners’ Error Rates (Breastw Dataset) 

Table 4.13 shows training error rates per iteration using the BREASTW dataset. 

The red font bold values indicate the misclassification rates where . Out 

of 10, 2-Lg_KNN learners were dropped with  0.5004 and 0.5097, respectively. 

1 Ag_KNN was dropped having  0.5095. Both Md_KNN and the combined 

heterogeneous learners dropped 3 weak learners each. All 10 LOF weak learners 

were retained as their misclassification rates were less than 0.5. Overall, a total 

of 9 learners were dropped while training using the BREASTW dataset, which 

represents 18% of the total learners. The high error rate learners were assigned 

lesser weights in every iteration as depicted in figure 4.12. The negative learner 

coefficients that were assigned were also dropped. 
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Table 4.13: Weak Learners’ Error Rates per Iteration over BREASTW Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.2574 0.5298 0.2898 0.4482 0.2484 0.5536 0.2862 0.457 0.2628 0.5157 

1 0.3882 0.2274 0.3632 0.2808 0.3803 0.2441 0.393 0.2174 0.3786 0.2477 

2 0.4358 0.1291 0.47 0.0601 0.4418 0.1169 0.4514 0.0975 0.4513 0.0977 

3 0.4456 0.1092 0.4864 0.0272 0.4764 0.0472 0.482 0.036 0.4734 0.0533 

4 0.4643 0.0715 0.4574 0.0854 0.4787 0.0426 0.4955 0.009 0.4772 0.0456 

5 0.4927 0.0146 0.485 0.03 0.4936 0.0128 0.4859 0.0282 0.4967 0.0066 

6 0.5004 -0.0008 0.493 0.014 0.4678 0.0645 0.4849 0.0302 0.4935 0.013 

7 0.5097 -0.0194 0.4979 0.0042 0.5038 -0.0076 0.4876 0.0248 0.5013 -0.0026 

8 0.4849 0.0302 0.5095 -0.019 0.5233 -0.0466 0.4943 0.0114 0.5101 -0.0202 

9 0.4989 0.0022 0.496 0.008 0.5055 -0.011 0.495 0.01 0.5024 -0.0048 

 

Figure 4.12: Comparison between  and Weights   using Breastw Dataset 

4.2.11 Experiment 12: Establishing Weak Learners’  using Optdigits Dataset 

Table 4.14 represent the training error rates of 10 iterations using the 

OPTDIGITS dataset. The red font bold values indicate the learners’ 
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misclassification rates where  and that were dropped. Out of 10 Lg_KNNs, 

10 Ag_KNNs, 10 Md_KNNs and 10 LOFs, one weak learner was dropped in 

each group with error rates of 0.5111, 0.5021, 0.5095, and 0.5021 respectively. 

All the 10 heterogeneous weak learners were retained as their misclassification 

rates were less than 0.5. Overall, a total of 4 learners were dropped while training 

using the OPTDIGITS dataset, which represents 8% of the total learners. Figure 

4.13 depicts the assignment of decreasing weights to the different learners over 

the iterations depending on the error rates. 

Table 4.14: Weak Learners’ Error  per Iteration using OPTDIGITS Dataset 

 Lg_KNN  

(Learners = 10) 

Ag_KNN 

(Learners = 10) 

Md_KNN 

(Learners = 10) 

LOF 

(Learners = 10) 

COMBINED 

(Learners = 10) 

# 

          

0 0.0976 1.1121 0.0978 1.111 0.0974 1.1132 0.1032 1.0811 0.101 1.0931 

1 0.2169 0.6419 0.2131 0.6532 0.208 0.6685 0.2106 0.6607 0.2166 0.6428 

2 0.3155 0.3873 0.3248 0.3659 0.3199 0.3771 0.3231 0.3698 0.2958 0.4337 

3 0.4090 0.1841 0.4329 0.135 0.4055 0.1913 0.3999 0.2029 0.4033 0.1959 

4 0.4311 0.1387 0.4448 0.1109 0.45 0.1003 0.4288 0.1434 0.4329 0.1350 

5 0.4772 0.0456 0.4529 0.0945 0.4517 0.0969 0.4753 0.0494 0.4782 0.0436 

6 0.4719 0.0563 0.4957 0.0086 0.4914 0.0172 0.4819 0.0362 0.4027 0.1971 

7 0.4971 0.0058 0.4846 0.0308 0.4942 0.0116 0.4971 0.0058 0.4465 0.1074 

8 0.5111 -0.0222 0.4862 0.0276 0.4918 0.0164 0.4986 0.0028 0.4623 0.0755 

9 0.4879 0.0242 0.5021 -0.0042 0.5095 -0.019 0.5021 -0.0042 0.4836 0.0328 
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Figure 4.13: Comparison between Error Rates and Weights (Optdigits Dataset) 

4.2.12 Summary of Selection of Weak Learners Based on Error Rates 

From 50 weak learners, an average of 45.1, representing 90.2%, was selected 

based on their error rates being less than 0.5. These weak learners satisfied the 

third requirement of having better predictions than random guessing, as 

described in section 3.5.1. The highest number of weak learners at 48 

(representing 96%) was selected when training using the Thyroid dataset. This 

could be attributed to the fact that this dataset was the smallest as it had the least 

number of dimensions (6) with only 2.74% outliers. It was also evident that this 

dataset’s outliers were clustered as densities as Md_KNN, LOF, and COMB had 

all 10 weak learners predicting at least more than half the outliers correctly, and 

no weak learner was dropped. The lowest number of weak learners at 41 

(representing 82%) was selected when training using the Breastw dataset. This is 

possible because this dataset had the highest number of outliers, as shown in 

table 3.1 (34.99%); hence, as the number of training iterations increased, harder 

examples increased, and more weak learners made more errors at every round. 

Only all 10 (100%) LOF weak learners could predict with error rates less than 

0.5, and all were selected for future use. Md_KNNs were the least selected 

learners, as only 7 out of 10 were selected for this dataset. On average, 8.7 weak 

learners from three groups, Lg_KNN, Ag_KNN and Md_KNN, were selected in 

every dataset, as shown in Table 4.15. This represented 87% selection from each 

of the three groups. 
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Furthermore, on average, another 9.3 weak learners from the LOF category were 

selected for all datasets training. This represented 93% of LOF learners selected. 

Lastly, the highest selected learners by all datasets training rounds were the 

combination of all the heterogeneous weak learners (COMB) with 9.7 learners 

on average selection when using any dataset. This represented 97% selection 

when heterogeneous learners were used. 

Table 4.15: Summary of Selected Weak Learners Based on their Error Rates 

Dataset Lg_KNN Ag_KNN Md_KNN LOF COMB Total Rep. % 

Mnist 9 9 8 9 10 45 0.90 

Letter 9 9 10 9 10 47 0.94 

Cardio 8 8 8 10 10 44 0.88 

Annthyroid 9 8 9 10 10 46 0.92 

Pima 8 9 9 8 10 44 0.88 

Vowels 9 9 8 9 10 45 0.90 

Thyroid 9 9 10 10 10 48 0.96 

Pendigits 9 8 9 9 10 45 0.90 

Breastw 8 9 7 10 7 41 0.82 

Optdigits 9 9 9 9 10 46 0.92 

AVERAGE 8.7 (87%) 8.7 (87%) 8.7 (87%) 9.3 (93%) 9.7 (97%) 45.1 0.90 

 

4.3 Comparison of the Proposed Fusion Methods with Generic Methods  

Optimal learners were carefully selected for fusion based on their performances in 

their local domains, as described in sections 3.5.2 and 3.5.3. This process was 

followed by evaluating different fusion strategies for the qualified base learners for 

the ensemble formation. To this far, two more experiment groups were performed. 

One group compared existing generic (global) methods (as mentioned in Section 

3.5.2) to the proposed variants, and the other group compared outlier score outcomes, 

which helped determine whether there were improvements. 
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4.3.1 Experiment 13: Comparing ADAHO_Avg and ADAHO_maxA vs. G_Avg  

Table 4.16 shows the mean AUCROC scores for G_Avg compared with 

ADAHO_Avg and ADAHO_MaxA. ADAHO_MaxA had better results in at least 

5 datasets, representing 50% of the overall performance. This was followed by 

G_Avg, which had better results in 3 datasets representing 30% in performance. 

ADAHO_Avg was best in only 2 datasets representing 20%. It was clear that 

averaging the group scores of the selected base learners and then taking the 

maximum from every group yielded better results. In terms of bias, this method 

reduced individual biases through averaging in the second level, unlike G_Avg 

or ADAHO_Avg, which only had one combination level.     

Table 4.16: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 

 

4.3.2 Experiment 14: Comparing ADAHO_Avg and ADAHO_maxA vs. G_mov 

Table 4.17 shows the mean AUCROC scores for ADAHO_Avg and 

ADAHO_MaxA compared with G_Mov. It was evident that both 

ADAHO_MaxA and G_MoV had similar performances, with each predicting 

better in at least 4 datasets representing 40% overall performance. ADAHO_Avg 

Dataset G_Avg ADAHO_Avg ADAHO_MaxA 

Mnist 0.8456 0.8475 0.8522 

Letter 0.7824 0.7717 0.7853 

Cardio 0.8669 0.8590 0.8807 

Annthyroid 0.7583 0.7444 0.7866 

Pima 0.6929 0.6958 0.6890 

Vowels 0.9164 0.9175 0.9084 

Thyroid 0.9555 0.9478 0.9523 

Pendigits 0.8277 0.8137 0.8555 

Breastw 0.7261 0.6452 0.6943 

Optdigits 0.8845 0.8787 0.8618 
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was better in only 2 datasets representing 20%. In both ADAHO_MaxA and 

G_MoV, it was clear that by having two levels of fusion, these two models 

yielded better results in Mnist, Cardio, Annthyroid, Pendigits, and in Letter, 

Thyroid, Breastw and Optdigits, respectively.     

Table 4.17: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 

 

4.3.3 Experiment 15: Comparing ADAHO_Max and ADAHO_maxA vs. G_Max 

Table 4.18 shows the mean AUCROC scores for G_Max compared with 

ADAHO_Max and ADAHO_MaxA. ADAHO_MaxA had better results overall 

in at least 7 datasets, representing 70% of the datasets. This was followed by 

G_Max, which had better results in 2 datasets, i.e., Letter and Vowels. 

ADAHO_Max was last as it was best in only 1 dataset (Breastw). The 

performance of ADAHO_MaxA was attributed to the fact that it had two fusion 

levels. First, by averaging the group scores of the selected base learners, then 

taking the maximum score of every group. In terms of bias, this method greatly 

reduced individual learner biases through averaging in the first level, unlike 

G_Max and ADAHO_Max, which only had one level of fusion. 

Dataset G_MoV ADAHO_Avg ADAHO_MaxA 

Mnist 0.8487 0.8475 0.8522 

Letter 0.7930 0.7717 0.7853 

Cardio 0.8764 0.8590 0.8807 

Annthyroid 0.7768 0.7444 0.7866 

Pima 0.6902 0.6958 0.6890 

Vowels 0.9174 0.9175 0.9084 

Thyroid 0.9546 0.9478 0.9523 

Pendigits 0.8408 0.8137 0.8555 

Breastw 0.7039 0.6452 0.6943 

Optdigits 0.8926 0.8787 0.8618 
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Table 4.18: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 

 

4.3.4 Experiment 16: Comparing ADAHO_Max, ADAHO_maxA vs. G_AoM 

Table 4.19 shows the mean AUCROC scores for G_AoM compared with 

ADAHO_Max and ADAHO_MaxA. ADAHO_MaxA had better results overall 

in at least 60% of the datasets in this experiment. G_AoM and ADAHO_Max 

performed better in 2 datasets, i.e., Vowels and Optidigits with AUC values 

0.9170 and 0.8662, respectively; and in Letter and Breastw with AUC 0.8260 

0.7135, respectively. Once again, the best performance of ADAHO_MaxA could 

be attributed to the fact that it had two levels of fusion, i.e., by averaging group 

scores of the selected base learners and taking the maximum of the group 

averages after. This reduced ensemble bias and variance overall. 

Dataset G_Max ADAHO_Max ADAHO_MaxA 

Mnist 0.8248 0.7711 0.8522 

Letter 0.8333 0.8260 0.7853 

Cardio 0.8697 0.8390 0.8807 

Annthyroid 0.7556 0.7460 0.7866 

Pima 0.6629 0.6539 0.6890 

Vowels 0.9212 0.9137 0.9084 

Thyroid 0.9284 0.9312 0.9523 

Pendigits 0.8387 0.7137 0.8555 

Breastw 0.6489 0.7135 0.6943 

Optdigits 0.8458 0.8424 0.8618 
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Table 4.19: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 

 

4.3.5 Experiment 17: Comparing ADAHO_Max, ADAHO_MaxA versus G_mov 

Table 4.20 shows the mean AUCROC scores for G_MoV compared with 

ADAHO_Max and ADAHO_MaxA. From the results, both ADAHO_MaxA and 

G_MoV had similar performances, with each predicting better in at least 4 

datasets. ADAHO_Max was better in only 2 datasets, i.e., Letter and Breastw 

datasets with AUC ROC of 0.8260 and 0.7135, respectively. ADAHO_MaxA and 

G_MoV fused their outcomes in two levels, yielding better outcomes in most 

datasets. Overall, the AUC ROC scores for ADAHO_MaxA were consistently 

superior in most datasets. This was possible because its base learners were 

evaluated based on local domain competency (section 3.5.2) whereas G_MoV 

did not. The AUC values in Table 4.20 represent an average of 20 trials.  

Dataset G_AoM ADAHO_Max ADAHO_MaxA 

Mnist 0.8452 0.7711 0.8522 

Letter 0.8209 0.8260 0.7853 

Cardio 0.8802 0.8390 0.8807 

Annthyroid 0.7538 0.7460 0.7866 

Pima 0.6755 0.6539 0.6890 

Vowels 0.9170 0.9137 0.9084 

Thyroid 0.9409 0.9312 0.9523 

Pendigits 0.8521 0.7137 0.8555 

Breastw 0.6737 0.7135 0.6943 

Optdigits 0.8662 0.8424 0.8618 
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Table 4.20: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 

 

4.3.6: Summary of Performances using Different Generic (Global) Fusion 

Methods Compared to the Proposed Method in Terms of AUCROC 

A total of ten datasets from different domains were considered (section 3.3). The 

various baseline outcomes of the generic or global fusion methods like average-

of-maximum, maximum-of-average, weighted averaging, and global threshold 

summation versus our proposed variants (ADAHO_Avg, ADAHO_Max, 

ADAHO_MaxA, and ADAHO_AvgM) were compared. Our variants yielded 

better results, particularly ADAHO_AvgM (table 4.21). This strongly indicated 

that the proposed method was better considering a data point’s local domains. It 

achieved better results in at least 6 out of 10 datasets, as in table 4.21.  

Overall, the performances of the selected baselines (Table 4.21), G_Max 

exhibited improvement in two datasets (letter and vowels) with high ROC of 

0.8333 and 0.9212, respectively, in the first experiment. In contrast, G_AoM 

exhibited improvement in only one dataset (annthyroid) with 0.2415 in the 

second experiment of average precision (Table 4.22). The proposed (ADAHO 

variants) exhibited superior results for the other tests in both experiments.  

Dataset G_MoV ADAHO_Max ADAHO_MaxA 

Mnist 0.8487 0.7711 0.8522 

Letter 0.7930 0.8260 0.7853 

Cardio 0.8764 0.8390 0.8807 

Annthyroid 0.7768 0.7460 0.7866 

Pima 0.6902 0.6539 0.6890 

Vowels 0.9174 0.9137 0.9084 

Thyroid 0.9546 0.9312 0.9523 

Pendigits 0.8408 0.7137 0.8555 

Breastw 0.7039 0.7135 0.6943 

Optdigits 0.8926 0.8424 0.8618 
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Furthermore, regarding global methods, G_AoM and G_Max were superior to 

simple maximization or averaging. This is attributed to the fact that fusion 

considers a second dimension and yields stable outcomes, which is why ADAHO 

yielded higher scores. For G_Avg and G_Max, local competency assessment 

gave weaker results but lesser variance and bias based on global averaging. All 

outcomes should be used in the final fusion process to reduce bias. However, this 

could deteriorate ensemble performance because low-performance learners could 

be included. In contrast, selecting one optimal learner yields a smaller variance 

drop than averaging, which also deteriorates ensemble performance overall 

because of strong bias from a single selected learner. Using the maximum value 

to generate ground truth, global and ADAHO_Max became less stable. E.g., 

ADAHO_Max was better than G_AoM on letter and breast (0.8260 and 0.7135), 

respectively, in our first experiment (Table 4.21) and in letter dataset in our 

second experiment (Table 4.22) with an average precision of 0.3245. 
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Table 4.21: Summary of ROC Values (Highest Values Bolded) Between ADAHO Fusion Methods and Generic Fusion Methods 

Table 4.22:  Summary of Mean Average Precision Values (Highest Values Bolded) for ADAHO vs Generic Fusion Methods 

Dataset G_Avg G_MoV G_Max G_AoM G_Wa G_Ts ADAHO_Avg ADAHO_MaxA ADAHO_Max    ADAHO_AvgM 

Mnist 0.8456 0.8487 0.8248 0.8452 0.8462 0.8171 0.8475 0.8522 0.7711 0.8532 

Letter 0.7824 0.7930 0.8333 0.8209 0.7807 0.7900 0.7717 0.7853 0.8260 0.7766 

Cardio 0.8669 0.8764 0.8697 0.8802 0.8681 0.8729 0.8590 0.8807 0.8390 0.8912 

Annthyroid 0.7583 0.7768 0.7556 0.7538 0.7664 0.7651 0.7444 0.7866 0.7460 0.7886 

Pima 0.6929 0.6902 0.6629 0.6755 0.6936 0.6248 0.6958 0.6890 0.6539 0.6960 

Vowels 0.9164 0.9174 0.9212 0.9170 0.9160 0.9198 0.9175 0.9084 0.9137 0.9098 

Thyroid 0.9555 0.9546 0.9284 0.9409 0.9564 0.9543 0.9478 0.9523 0.9312 0.9699 

Pendigits 0.8277 0.8408 0.8387 0.8521 0.8324 0.8447 0.8137 0.8555 0.7137 0.8643 

Breastw 0.7261 0.7039 0.6489 0.6737 0.7352 0.6184 0.6452 0.6943 0.7135 0.7743 

Optdigits 0.8845 0.8926 0.8458 0.8662 0.8852 0.8803 0.8787 0.8618 0.8424 0.8884 

Dataset G_Avg G_MoV G_Max G_AoM G_Wa G_Ts ADAHO_Avg ADAHO_MaxA ADAHO_Max    ADAHO_AvgM 

Mnist 0.3810 0.3840 0.3800 0.3795 0.3817 0.3735 0.3832 0.3873 0.3252 0.3878 

Letter 0.2287 0.2372 0.3059 0.2766 0.2271 0.2317 0.2201 0.2295 0.3245 0.2306 

Cardio 0.3415 0.3607 0.3565 0.3763 0.3434 0.3528 0.3274 0.3859 0.3096 0.4016 

Annthyroid 0.2200 0.2294 0.2312 0.2415 0.2205 0.2176 0.2182 0.2274 0.2248 0.2352 

Pima 0.4988 0.4953 0.4712 0.4819 0.4994 0.4498 0.4991 0.4944 0.4615 0.5041 

Vowels 0.3682 0.3689 0.3659 0.3631 0.3683 0.3682 0.3812 0.3577 0.3381 0.3438 

Thyroid 0.3944 0.4022 0.2749 0.3387 0.4029 0.3070 0.3443 0.3854 0.2537 0.4550 

Pendigits 0.0676 0.0722 0.0732 0.0794 0.0679 0.0731 0.0608 0.0792 0.0524 0.0843 

Breastw 0.4894 0.4748 0.4148 0.4476 0.4984 0.4265 0.4233 0.4665 0.4627 0.5554 

Optdigits 0.3593 0.3559 0.3043 0.3286 0.3605 0.3537 0.3497 0.3209 0.3092 0.3678 
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It was evident that if only a single learner’s maximum score was used, the overall 

ensemble had a high variance. However, applying a second fusion, such as 

averaging, mitigated this effect. This finding was also reported in (Zimek et al., 

2013). Furthermore, to reduce the variance of an ensemble, ADAHO took 

advantage of the G_AoM effect by calculating the mean of outlier scores from 

subsets of optimal learners, implying ADAHO_AvgM further reduced the 

variance of the final ensemble compared to ADAHO_Max. To reduce ensemble 

bias, ADAHO_AvgM calculated an average in the second-level fusion, 

improving accuracy. This is evident in the experimental results as 

ADAHO_AvgM yielded higher scores in 6 datasets in terms of the ROC, namely 

mnist, cardio, pima, thyroid, breast, and optdigits (Table 4.21), and for seven 

datasets in terms of average precision, namely mnist, cardio, pima, thyroid, 

pendigits, breastw, and optdigits (Table 4.22). Based on these experiments, it was 

clear that calculating the maximum after the mean did not significantly improve 

classification results. This was evident for ADAHO_MaxA, which was not 

improved significantly by either global averaging or maximum-of-averaging. In 

summary, ADAHO_AvgM was a superior fusion strategy based on its ability to 

minimize both variance and bias, which answered the question regarding the best 

fusion strategy for outlier detection ensembles. 

4.4 Comparing Performance of the Proposed Ensemble with Other Outlier 

Detection Ensembles using 10 Datasets  

Additional experiments were conducted using other outlier detection ensembles 

to verify if the hypothesis enhanced anomaly detection and further examine the 

proposed method’s performance. Therefore, its performance was compared 

against four other existing outlier detection ensemble formations (ALOI 

(Schubert et al., 2014), BASE (Micenkova et al., 2014), SELECT (Rayana & 

Akoglu, 2016)), which do not use distinct local data domains in their approach 

but use similar base models. The first two formations were symbolically referred 

to here as ALOI and BASE because of their relative design with respect to our 

proposed method. Both formations, similar to our proposed method 

ADAHO_OAAE, utilize LOF and KNN algorithms, with the only difference 
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being that they used a heuristic method instead of optimizing model parameters. 

It is important to note that while our proposed method weights its samples and its 

base models by adaptive boosting, these two apply feature bagging with only 

model weights being fused by summation or mean. In principle, ALOI and 

BASE follow our Algorithm 1, but their  values are empty. In addition, the 

two do not follow steps 1–4 of boosting but use equal weights  for 

all . ALOI and BASE set parameters for their base models in the same 

way as ours. Since the base models are similar, they utilize similar distance 

metrics as well as some of the fusion approaches like sum, median, average and 

maximum. Specifically, both approaches utilize summation and Euclidean 

distances. Our fusion, however, utilizes median for optimization and takes the 

final scores in two levels: by maximum of average and average of maximum.  

The third formation, named SELECT (Rayana & Akoglu, 2016), presents two 

sub-formations: vertical-SELECT and horizontal-SELECT.  We compared our 

method to horizontal-SELECT because, according to (Rayana & Akoglu, 2016), 

this formation achieves better overall performance. It works by converting 

anomaly scores into probabilities, representing the scores as samples from a 

combination of Gaussian and exponential distributions for anomalous and 

normal data, respectively. It bases its hypothesis on this assumption and creates 

base models based on how well each base model fit the pseudo-target. This 

ensemble’s final scores emanate from a fusion of selected base models via robust 

rank aggregation.  

The fourth and final baseline is the modified ADAHO (Bii et al., 2020), which 

partly learns the same base models as our proposed method ADAHO_OAAE and 

weights its samples and base models by adaptive boosting. The main difference 

is that it does not consider margin maximization between anomalous and normal 

data. Hence it does not loop through step 5 of algorithm 1 in the same way as 

ours.  
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We tested our proposed approach against these four baselines using the least 

known anomaly percentage. We considered that using the least percentage is the 

hardest test since very little prior information about the dataset was provided. If 

our proposed method outperformed these baselines, a significant improvement 

would have been achieved overall. Ensemble performance was measured using 

AUROC values. Results of the experiments were provided in the form of tables 

and figures. 

4.4.1 Experiment 18: Comparing the Performance of Proposed Method with 

ALOI Ensemble using 10 Outlier Detection Datasets 

Figure 4.14 and Table 4.23 depict results of the experiment. It indicates that 

while using Mnist, Letter, Annthyroid, Pima, Vowels, Pendigits, Breastw, and 

Optdigits, the proposed method had significant ROC (shaded green) than ALOI. 

The results revealed that our method edged marginally with ALOI using Cardio 

and underperformed in Thyroid. This was attributed to the fact that this dataset 

(Thyroid) had the least number of dim 
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Proposed Method verses ALOI 

 

Figure 4.14: Proposed Method verses ALOI Ensemble using 10 Datasets 

Table 4.23: Proposed Method vs. ALOI Ensemble using 10 Datasets 

 

Section 4.4 reveals that ALOI uses feature bagging to diversify its base models, 

unlike the proposed method that uses decision weights. The proposed method 

yield better results in 8 of 10 datasets (shaded green in Table 4.23) as harder 

samples were revised in every training round, unlike ALOI. 

4.4.2 Experiment 19: Comparing the Performance of Proposed Method with 

BASE Ensemble using 10 Outlier Detection Datasets 

Figure 4.15 and Table 4.24 show the results of the experiment, which indicate 

that while using Mnist, Letter, Annthyroid, Cardio, Pima, Thyroid, Pendigits, and 

Breastw datasets, the proposed method had better ROC than BASE. It further 

revealed that BASE slightly outperformed our method while using Vowels and 

Optdigits datasets (shaded yellow). Like ALOI, BASE utilized feature bagging, 

and a constant k-metric of 20; with base learner combination by summation and 

that explains the difference in performance. In 8 datasets out of 10 (shaded 
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green), our method demonstrated better improvement because of boosting and 

optimization. 

Proposed Method verses BASE 

 

Figure 4.15: Proposed Method verses BASE Ensemble using 10 Datasets 

Table 4.24: Proposed Method vs. BASE Ensemble using 10 Datasets 

 

4.4.3 Experiment 20: Comparing the Performance of Proposed Method with 

Horizontal-SELECT Ensemble Using 10 Outlier Detection Datasets 

Figure 4.16 and Table 4.25 show the results of the experiment, which indicate 

that our method performed well while using Mnist, Cardio and Vowels, and even 

performed better while using Letter, Annthyroid, Pima, Pendigits, and Breastw 

datasets (shaded green) compared to horizontal-SELECT. It also revealed that 

SELECT outperformed our method while using Thyroid and Optdigits datasets 

with ROC of 0.5149 and 0.9757, respectively (shaded yellow). SELECT did not 

boost its samples like our method but selected good learners in two levels like 

our method. That could explain the difference in performance. In 8 datasets out 

of 10, our method demonstrated significant improvement in scores because of the 
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adaptive boosting that revises harder examples and the optimization by margin 

maximization that gave a clear contrast between the inliers and outliers. 

Proposed Method verses SELECT 

 

Figure 4.16: Proposed Method vs. Horizontal-SELECT Ensemble using 10 

Datasets 

Table 4.25: Proposed Method vs. Horizontal-SELECT Ensemble using 10 

Datasets 

 

4.4.4 Experiment 21: Comparing the Performance of Proposed Method with 

ADAHO Ensemble Using 10 Outlier Detection Datasets 

Figure 4.17 and Table 4.26 show the results of the experiment, which indicate 

that our proposed method performed considerably well in at least 7 datasets 

(shaded green), i.e., Letter, Annthyroid, Cardio, Pima, Vowels, Thyroid, and 

Pendigits with ROC values 0.8642, 0.8280, 0.8449, 0.7538, 0.6238, 0.4283, and 

0.8451, respectively. It also revealed that ADAHO outperformed our method 

using Mnist, Breastw, and Optdigits datasets with 0.9297, 0.7303, and 0.9396, 

respectively (shaded yellow). This could be credited to the fact that ADAHO 
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boosted its samples just like our method and selected good learners in two levels 

like our method but did not optimize models in iteration rounds by margin 

maximization as our method. In 7 out of 10 datasets, our method demonstrated 

improvement in scores (shaded green). 

Proposed Method verses ADAHO 

 

Figure 4.17: Proposed Method with Margin Maximization vs. ADAHO 

Ensemble 

 

Table 4.26: Proposed Method with Margin Maximization vs. ADAHO  

 

 

Table 4.27 summarizes the analysis of the performance in terms of AUC scores 

of the various baseline outcomes of ALOI, BASE, SELECT and ADAHO 

(without margin maximization) techniques versus our method ADAHO_OAAE 

(with margin maximization optimization) over all the datasets in Table 3.1. When 

compared to the baselines, ADAHO_OAAE showed improvement in 4 datasets, 
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with substantial improvements noted in bold. This proposed method generated 

better results due to the optimization and the diverse set of its base models. As 

for the performance of the selected baselines, BASE showed improvement in one 

dataset (vowels) with an AUC score of 0.6298, while ALOI showed 

improvement in dataset cardio with 0.8304. SELECT, on the other hand, 

improved performance in two datasets, Thyroid and Optdigits, with AUC values 

of 0.5149 and 0.9757, respectively. ADAHO (without optimization) showed 

improvement in two datasets (Mnist and breastw) as well, with high AUC scores 

of 0.9297 and 0.7303, respectively. For the rest of the tests, ADAHO_OAAE 

(with optimization) exhibited superior results in four datasets (Letter, 

Annthyroid, Pima and Pendigits) with AUC scores of 0.8642, 0.8449, 0.7538, 

and 0.8451, respectively. In addition, with regards to the four baselines that 

either took the overall average score or the maximum score, our proposed 

method used that which produced better results between the average-of-

maximum and the maximum-of-average and hence produced much better results. 

This was so because the score combination took place twice in two levels, one 

after the averaging and the other after the maximization and vice versa, aiming at 

a more stable result. It is worth noting that ADAHO_OAAE (with optimization) 

and ADAHO (without optimization) baseline performed almost similarly in 

terms of AUC scores, with a very close absolute average AUC difference of 

0.0332, i.e., (0.7693-0.7361). The other baselines, ALOI, BASE, and SELECT 

differed significantly with absolute average score differences of 0.0437, 0.0395, 

and 0.0701, respectively. This was attributed to the fact that both ADAHO 

(without optimization) and ADAHO_OAAE (with optimization) similarly 

followed steps 1 to 4 of Algorithm 6, and only differed in score margin 

maximization. While ADAHO (without optimization) focused on only the local 

neighbourhood strengths of a weak learner like ADAHO_OAAE further focused 

on score margin maximization between the anomalous and normal data to build a 

contrast, which improved detection accuracy. The two methods dynamically 

weighted their samples as well as their weak learners before fusion, hence the 

close similarity in their AUC scores. 
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In terms of bias and variance reduction, the tests revealed that combining only a 

few well-performing base models led to more biased results. To reduce bias, it 

was preferable if all base models participated in the final decision; however, this 

was risky because poor models could have degraded overall ensemble 

performance. Since ADAHO_OAAE combined scores of optimized yet diverse 

base models at two levels, this effect was considerably reduced, as evidenced by 

higher AUROC scores in the test results of four datasets, namely Letter, 

Annthyroid, Pima, and Pendigits, at 0.8642, 0.8449, 0.7538, and 0.8451, 

respectively. It was also clear that combining only a base model's maximum 

score yields a high-variance ensemble, but using a second level combination, 

such as averaging, mitigated this effect (similarly to (Zhao et al., 2019). As for 

ADAHO_OAAE, rather than take the highest anomaly score, it computes the 

average from the selected subsets of optimized models, thereby reducing the 

overall ensemble’s variance. 

Table 4.27: Summary of AUC scores of OAAE, ALOI, BASE and SELECT 

(Highest Values Bolded) 

Dataset  ALOI BASE SELECT ADAHO OAAE 

Mnist 0.8849 0.8703 0.8572 0.9297 0.8916 

Letter 0.7529 0.7385 0.7285 0.8059 0.8642 

Cardio 0.8304 0.7907 0.7979 0.8248 0.8280 

Annthyroid 0.7435 0.7592 0.7405 0.7036 0.8449 

Pima 0.6876 0.7213 0.6093 0.7279 0.7538 

Vowels 0.5622 0.6298 0.5622 0.5134 0.6238 

Thyroid 0.4827 0.4177 0.5149 0.4278 0.4283 

Pendigits 0.7450 0.7303 0.6184 0.7981 0.8451 

Breastw 0.6734 0.6671 0.5877 0.7303 0.7019 

Optdigits 0.8933 0.9735 0.9757 0.9396 0.9114 

AVERAGE 0.7256 0.7298 0.6992 0.7401 0.7693 
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Table 4.28 shows the mean of test results of ALOI, BASE, SELECT, ADAHO, 

and OAAE with the highest values bolded. The diagonal values show each 

technique's average AUC values. The other values off diagonal (shaded) reflect 

the average differences in the AUC values between these techniques over all the 

selected datasets. Since the paired t test produced p values less than 0.05, the 

average difference in AUC values of our proposed algorithm OAAE versus the 

baselines ALOI, BASE, SELECT and ADAHO are statistically significant, i.e., 

0.0095, 0.0204, 0.0166, and 0.0476, respectively as depicted and bolded in Table 

4.29 with confidence level at 95 percent.  

Table 4.28: OAAE, ALOI, BASE, SELECT, and ADAHO Mean AUC Values 

and Average Differences over the Datasets in Table 3.1. 

Versus ALOI BASE SELECT ADAHO OAAE 

ALOI 0.7256 0.0042 -0.0264 0.0105 0.0437* 

BASE  0.7298 -0.0306* 0.0063 0.0395* 

SELECT   0.6992 0.0369 0.0701* 

ADAHO    0.7361 0.0332* 

OAAE     0.7693 

 

In figure 4.18, the Area Under Receiver Operating Characterstic Curve (AUC-

ROC) values represent the densities for each method against the selected 

datasets. The short vertical lines below the line curves show AUC values, 

representing each method’s Kernel Density Estimates (KDE). Figure 4.18 

demonstrates that outliers in at least half the datasets were easier to detect while 

others were not. It’s also important to note that the AUCROC values of ALOI 

and BASE had near-similar kernel density estimates, which affirms the fact that 

there was not much significance in terms of the AUC difference even in the 

paired t-test between the two (p-value of 0.3859, which is higher than 0.05) and 

therefore not statistically significant. 
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Figure 4.18: Kernel Density Estimates of ALOI, BASE, SELECT, ADAHO and 

ADAHO_OAAE 

Lastly, in figure 4.18, it is also worth mentioning that the mass of the KDE of the 

AUC values of OAAE is drifting more towards the right as compared to ALOI, 

BASE, SELECT, and ADAHO, which implies that OAAE achieved higher 

AUCROC values overall. Table 4.29 of p-values validates this observation. 

Table 4.29: The p-values for Average Differences of the Methods from Table 

4.27 

Paired_Test p values 

OAAE vs. ALOI 0.0095 

OAAE vs. BASE 0.0204 

OAAE vs. SELECT 0.0166 

OAAE vs. ADAHO 0.0476 

ADAHO vs. ALOI 0.1690 

ADAHO vs. BASE 0.3036 

ADAHO vs. SELECT 0.0864 

SELECT vs. ALOI 0.0922 

SELECT vs. BASE 0.0736 

BASE vs. ALOI 0.3859 
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Table 4.29 shows the associated p values for the paired t-test. The statistically 

significant values, i.e., p < 0.05, are emphasized in bold. With p values of 

0.0095, 0.0204, 0.0166, and 0.0476, these tests revealed that OAAE (with 

optimization) outperformed ALOI, BASE, SELECT, and ADAHO on a 

statistically significant level. This was not the case with ADAHO versus ALOI, 

BASE, and SELECT, or SELECT versus ALOI, and BASE, or BASE versus 

ALOI, as their tests produced p-values above 0.05, i.e., 0.169, 0.3036, 0.0922, 

0.0736, and 0.3859, respectively. Compared to others, ALOI had the least 

significant result at 0.0095. 

Figure 4.19 shows the AUC difference between OAAE and ADAHO while using 

only one known outlier example in both ensembles. The average confidence 

interval at the center is 0.95, indicating that most datasets were classifiable. 

Furthermore, at the very extreme ends are the AUC difference points where each 

method is superior in terms of the kernel density estimates, specifically in 

MNIST and letter datasets (marked red), respectively. The short vertical pointers 

along the x-axis and at density zero define AUC scores of each dataset, with 

scores beyond zero indicating datasets where OAAE outperformed ADAHO. 

 

Figure 4.19: Differences in AUC between OAAE and ADAHO  
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4.5 Model Improvement by Reduction of Ensemble Bias and Variance 

To improve the performance of the base detectors, we used the ensemble technique 

with adaptive boosting, as discussed in section 3.5. In order to lower the overall 

ensemble variance, the selected weak learners must be uncorrelated, as indicated in 

sections 2.8 and equations in 3.5.4.2. This was achieved by our model diversity 

(using heterogeneous base detectors) to reduce average error of bias and variance. In 

the case of KNN, the three variants used the median, the average, and the largest k 

values. Furthermore, different k distances and distance metrics were chosen. The re-

weighting of samples at each training round introduced sample diversity. The choice 

of different training algorithms introduced model diversity, and the use of 

uncorrelated learner scores for model combination introduced score diversity, which 

guaranteed overall variance reduction. We calculated the bias and variance for every 

benchmark ensemble model with varying number of base detectors and the outcomes 

are presented in Table 4.30. 

Table 4.30: Comparison Between the Benchmark Ensembles vs the Proposed 

Ensemble in Terms of Overall Bias -Variance. Expected error = (Bias2 + 

Variance) 

Dataset Ensemble Complexity 

(No. of 

learners) 

Bias2 

 

Variance 

 

Expected 

Error  

 

Mnist 

Benchmark(SELECT) 1 0.0326  0.0540 0.0866 

ADAHO_OAAE1 50 0.0322  0.0503 0.0825 

ADAHO_OAAE2 100 0.0321  0.0483 0.0804 

ADAHO_OAAE3 150 0.0322  0.0489 0.0810 

ADAHO_OAAE4 200 0.0323  0.0489 0.0811 

ADAHO_OAAE5 250 0.0325  0.0488 0.0814 

Letter 

Benchmark(SELECT) 1 0.1281  0.0948 0.2229 

ADAHO_OAAE1 50 0.1275  0.0900 0.2175 

ADAHO_OAAE2 100 0.1266 0.0895 0.2161 

ADAHO_OAAE3 150 0.1271 0.0849 0.2120 

ADAHO_OAAE4 200 0.1278  0.0871 0.2149 

ADAHO_OAAE5 250 0.1280 0.0898 0.2178 
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From Table 4.30, we note that the ensemble with 100 weak learners performed better 

using the MINST dataset, with the least bias-variance at 0.0804 (bold), while for the 

LETTER dataset, the ensemble with 150 weak learners was better, having the least 

bias-variance at 0.2120 (bold). The main reason is that these datasets with high 

dimensionality are a little harder to classify; secondly, compared to the benchmark 

ensembles (i.e., using single homogeneous models as weak learners), the proposed 

ensemble model reduces bias and variance better. Still, the bias drop is less than the 

variance drop, suggesting that the ensemble may successfully reduce the overall 

variance. Thirdly, of all the ensembles, the most complex one does not necessarily 

yield the best performance, as revealed by the experiment, implying that an ensemble 

model should have a suitable or appropriate complexity, that is, neither too complex 

nor too basic. Lastly, all the ensemble models performed better by reducing the 

expected error, which implies that the ensemble technique is an effective modeling 

technique for improving detection accuracy and performance in outlier detection. 

4.6 Test of Generalizability of the Proposed Method OAAE 

Since outliers (anomalies) are not always the same, it is highly improbable that 

the known anomalies cover every type of possible anomaly (Ruff et al., 2019). In 

light of this, we tested ADAHO_OAAE’s applicability to detecting a broader 

range of previously unknown anomalies. To complete this test, we utilize four 

datasets containing different classes, namely MNIST, LETTER, THYROID, and 

OPTDIGITS. In each dataset, we first sample the normal data from the most 

recurring data points to form the normal class and, secondly, we used the 

remainder of the data points in two ways: (i) by randomly sampling to create the 

anomalous class, (ii) by letting the rest of the data to be used as previously 

unknown anomalous cases. In addition, we further split the normal data into a 

training set consisting of sixty percent of normal data and ten percent of the 

known anomalies. Lastly, using the remaining normal data, we formed two 

testing sets: one containing a portion of these normal data along with the 

anomalies and the other containing a portion of these normal data along with the 

previously unknown anomalies, each at a ratio of 60-40, respectively. 
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We then fitted the models on the training set and tested them using the two sets 

containing known and previously unknown anomalies. The model that 

consistently attained near-similar scores over both tests passed the 

generalizability test. This test was repeated five times and computed the mean so 

that each model generated two scores from the two independent testing sets.  

Table 4.31 summarizes the outcomes of these tests, with each outcome having 

two values: the first is from the test that contained known anomalies, and the 

second, placed inside the brackets, is from the test that contained the previously 

unknown anomalies. The highest values are bolded and italic, respectively. It was 

evident from the outcomes that OAAE (optimized), ADAHO (without 

optimization), and SELECT attained near-similar scores and that they could 

often discern previously unseen or even novel data anomalies. It was not the case 

for the BASE as unknown or novel cases of anomalies appeared to deteriorate 

their ability to detect overall, especially with dataset thyroid that yielded 0.590 

(0.732) with a single known anomaly and 0.402 (0.646) with 10% known 

anomalies.  

It was also apparent from these findings that the more known anomalies are in a 

training set, the better the detection accuracy overall. This was the case when 

having 10% of known anomalies in OAAE (MNIST improved from 0.958(0.978) 

to 0.962(0.986)), in ADAHO (OPTDIGITS improved from 0.937 (0.966) to 

0.939 (0.974)), in SELECT (THYROID improved from 0.631 (0.644) to 0.634 

(0.664)), and in ALOI (THYROID improved from 0.600(0.751) to 0.606(0.757)) 

as shown in Table 4.31. The AUC averages generally moved up from as low as 

0.001 to 0.1; for example, OAAE’s AUC average moved up from 0.868 to 0.871, 

a difference of 0.003, and ADAHO’s average moved up from 0.851(0.878) to 

0.854(0.880), a difference of 0.003(0.002). The known anomalies positively 

contributed to the margin maximization contrast of outliers vs. inliers because 

they effectively increased the detection accuracy of weak learners. 
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Table 4.31: Summary of AUC Outcomes from the Generalizability Test 

a) Summary of AUC in generalizability test with a single known anomaly example 

Dataset ALOI BASE SELECT ADAHO OAAE 

Mnist 0.748 (0.988) 0.750(0.910) 0.949 (0.882) 0.925 (0.934) 0.958 (0.978) 

Letter 0.913 (0.976) 0.921 (0.978) 0.952 (0.918) 0.926 (0.943) 0.925 (0.966) 

Thyroid 0.600(0.751) 0.590 (0.732) 0.631 (0.644) 0.614 (0.670) 0.639 (0.770) 

Optdigits 0.922 (0.971) 0.914 (0.967) 0.978 (0.954) 0.937 (0.966) 0.950 (0.973) 

Average 0.796(0.922) 0.794(0.897) 0.878(0.850) 0.851(0.878) 0.868(0.922) 

b) Summary of AUC outcomes in the generalizability test with 10% known anomalies 

Mnist 0.767 (0.989) 0.730(0.927) 0.955 (0.878) 0.934 (0.930) 0.962 (0.986) 

Letter 0.913 (0.944) 0.929 (0.979) 0.951 (0.912) 0.928 (0.944) 0.925 (0.942) 

Thyroid 0.606(0.757) 0.402 (0.646) 0.634 (0.664) 0.616 (0.670) 0.639 (0.774) 

Optdigits 0.928 (0.970) 0.922 (0.950) 0.979 (0.961) 0.939 (0.974) 0.959 (0.973) 

Average 0.804(0.915) 0.746(0.876) 0.880(0.854) 0.854(0.880) 0.871(0.919) 

 

4.7 Chapter summary 

In this chapter, a novel optimized adaptive outlier detection ensemble was presented 

together with the experiments conducted. The ensemble adaptively boosts the 

performance of its weak predecessor learners by using decision weights and 

optimizing model parameters. It uses a set of heterogeneous weak learners to induce 

diversity at the model level, and then it re-weights training samples to induce 

diversity at the sample level. Express optimization of parameters in adaptive 

anomaly detection ensembles is novel. It is an attempt to tune the parameters of the 

base models to ensure diverse but accurate results. The proposed ensemble was 

tested on ten benchmark datasets and found superior to the baselines selected. 

Experiments depicted an improvement in results, even when the least of known 

anomalies, single cases up to 10%, were used. This means that the proposed 

ensemble was effective even with a limited number of anomalies. 
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CHAPTER FIVE 

SUMMARY AND DISCUSSION 

5.1 Introduction 

This study’s primary goal was to create a model for outlier detection utilizing a 

heterogeneous hybrid ensemble of weak learners to improve performance while 

prioritizing minimization of bias, variance, and order of base learners. The specific 

objectives were: 

(i) To find out what classifiers constitute weak learners for constructing 

the base (detectors) for the outlier detection ensemble. 

(ii) To identify different combination sequences or fusion strategies 

(order) from the selected base learners for the outlier detection 

ensemble. 

(iii) To create a model for outlier detection that utilizes multiple weak 

learners in a hybrid ensemble structure to provide improved 

performance and accuracy while prioritizing minimization of bias, 

variance, and classifier fusion order. 

(iv) To evaluate the developed ensemble model for outlier detection 

accuracy. 

5.2 Objectives re-examination 

The overall objective of this study was to create a model for outlier detection 

utilizing a heterogeneous hybrid ensemble of weak learners to provide improved 

performance. This research’s particular objectives are listed in section 1.2.2. The first 

objective was to provide a literature review on existing and state-of-the-art detection 

models used in outlier detection ensembles. The study reviewed the ensemble 

concept in section 2.1, ensemble construction methods in section 2.2, selecting 

ensemble learners in 2.3, combining ensemble learners in 2.4, outlier detection 

overview in section 2.5, aspects of outlier detection in section 2.6, ingredients of 

outlier detection in section 2.7, bias-variance trade-off in outlier detection including 
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reduction methods in sections 2.8 and 2.9, respectively. Section 2.10 provided a 

critique, and section 2.11 provided the research gap from closely related work in 

outlier detection using different ensembles.  

Using the review findings of objective 1, the research gap in section 2.11 was 

identified. The literature review showed that no standard or best method for outlier 

detection problems reduced bias and variance or focused on the order of weak 

learners. The advantages and disadvantages of each technique varied hence the need 

to develop an ensemble for outlier detection with a focus on minimizing bias, 

variance, and order of base learners. Although there were several techniques for 

detecting outliers for a given dataset, not one technique was deemed to be the 

universal choice. An outlier detection ensemble was proposed. The method used 

heterogeneous weak learners to reduce ensemble bias and variance. Existing 

literature did not show much work on outlier detection using heterogeneous weak 

learners, whose performances were assessed based on their regions of competency, 

nor improved by margin optimization, hence the opportunity to develop an outlier 

detection ensemble that took advantage of the base learners’ areas of expertise in 

different datasets to improve detection accuracy. 

The second objective intended to identify different combination sequences or fusion 

strategies (order) from the selected base learners for outlier detection. The objective 

aimed at harnessing the strength of selection as well as alleviating single learner 

weaknesses. The literature in sections 2.2, 2.3, 2.4, 2.8, 2.9, and 2.10 informed the 

development of the proposed hybrid outlier detection ensemble method in section 3.5 

The third objective was to create a model for outlier detection that utilized multiple 

weak learners in a hybrid ensemble to provide better overall performance and 

accuracy while prioritizing the minimization of bias, variance, and order of base 

learners. This objective was intended to address the issues identified in section 2.11 

using the proposed method in section 3.5. Experiments for creating the models, 

selecting the models, and improving the models' performance were conducted in 

sections 4.1 to section 4.3.6. 
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The fourth objective was to evaluate the developed ensemble model for outlier 

detection accuracy. The objective intended to evaluate the performance of the 

developed model. Performance evaluation metrics for data mining tasks were 

reviewed in section 2.7.6. Experimental tests for assessing and comparing the 

performance of the proposed ensemble with existing ensembles were conducted in 

sections 4.4, 4.5 to 4.6. 

5.3 Selection of Base Learners by Error Rates and Local Domain Competence 

This study proposed a heterogeneous adaptive boosting ensemble for outlier 

detection. Different base learners were selected since it was deemed effective when 

base learners of dissimilar types were used. This finding was also true and in line 

with the conclusions drawn by (Rayana et al., 2017). Through their differences, 

unique properties in data are discovered or learned. It was clear that when base 

learners of the same type (homogeneous) were used, the advantage of learner fusion 

was lost unless different data subsamples for training, different data features, or tuned 

learner parameters were used. This work focused on unsupervised outlier detection, 

techniques that assigned a score to individual data points and allowed ranking those 

points based on their outlierness score. Distance and density-based methods were the 

chosen unsupervised methods for the task of outlier detection. This choice was 

influenced by the idea that outliers were by themselves observations that deviate so 

much from other observations (Hawkins, 1980). The distance-based algorithm, 

i.e., k-NN, was selected to detect global outliers, and the density-based algorithm, 

i.e., LOF, was selected to detect local outliers. For k-NN, the distance of individual 

instances was used to generate outlierness score, while for LOF, the local deviation 

of a given instance with respect to its neighbours was used to generate outlierness 

score.  

Furthermore, this work was motivated by the importance of data locality and 

dynamic learner fusion from DCSO (Zhao & Hryniewicki, 2018; Wang & Mao, 

2019) and the concept of heterogeneous detector formation by SELECT (Rayana & 

Akoglu, 2016). Our method used same but weighted training versions of the data as 

opposed to random subsampling or boot-strapping. The same training set was 
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repeatedly used, so it did not need to be as large as other methods required. 

Successive weak learners were trained using re-weighted versions of the training 

data, re-weighted according to the misclassification (error) by the previous weak 

learners. This allowed weak learners to focus on outliers that the previous ones did 

not detect well. The ensemble first selected optimal base learners by their error rates 

in every iteration, hence eliminating the weak learners that did not predict at least 

half the datasets correctly. The testing instances focused on local domains or regions 

within the training datasets. Our method assessed the capability or competency of 

each base detector before fusion, and since most outlier data had no actual labels or 

ground truth, a simulated ground truth called 'target' was created using maximization 

or averaging of scores of the selected weak learners. Both maximization and 

averaging methods generated scores for training data, unlike those of generic/global 

methods that generated scores for the test data. AvgkNN was used for setting the 

local domain, such that, for every test instance, its local domain was derived as a set 

of its k nearest training objects by Euclidean distance.  

In addition to the first selection, that was based on the error rate of each weak 

learner, a second selection was performed by obtaining the local simulated label 

 for every test instance, where the values of  with respect to the local 

domain  were used. The local training outlier scores  were obtained from the 

previously generated training score matrix. To determine the competence of each 

base detector in the local domain, a Pearson Correlation similarity measure between 

the base detector score  and the simulated label was taken. This 

method was considered more reliable in outlier detection as it took a similarity 

measure in evaluating detectors instead of absolute accuracy, as most outlier datasets 

had no ground truth and were unpredictable and imbalanced in most cases. This 

method was also earlier used by (Isadora et. al., 2016). The base detector  with the 



135 

 

highest similarity measure was chosen as the optimal base detector, with its outlier 

score  retained as an intermediate result for later use. 

5.4 Model Diversity and Optimization by Margin Maximization 

Each detector scores separated the potential outliers from the rest of the data, with 

high scores assigned to the outliers and low scores to the inliers. A contrast between 

the two scores distinguished the outliers from the other data in a dataset. However, 

these scores did not represent a clear contrast between the outliers and the rest of the 

data, so score optimization was required. This method created a clear contrast by 

maximizing outlier scores and minimizing inlier scores, which improved outlier 

detection. (Clark, Liu, & Japkowicz, 2018) utilized adaptive score threshold to 

separate outliers from other data, and their method would have been ideal but not 

applicable in our case since outlier scores did not always match. Our method 

conforms to other methods like (Cervantes et al., 2020) about margin maximization 

hyperplane, which are effective and generalize data better. 

The score margin was defined as the difference between the known and unknown or 

unseen outliers present in the already analysed dataset. For the unknown or unseen 

outliers not to affect this difference, the median value of the score distributions was 

introduced, which took the 50th percentile of the distribution. Outliers were few 

(rare), so using the median method provided a robust measurement of the outlier 

scores as it was not greatly affected by the unknown or unseen outliers in the dataset. 

For every selected base model, the optimization maximization was based on the 

values of the parameters that maximized the distance between the medians of the 

scores. In most outlier detection ensembles, only well-performing base models were 

selected for fusion (Xu et al., 2019); however, in our work, instead of only selecting 

the well-performing base models, we further optimized their parameters and then 

adaptively trained them to detect anomalies before fusion. 

The base model optimization by score margin maximization only improved the 

detection accuracy of the model but did not guarantee that the scores of base models 
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were diverse. Their errors needed to differ so that when fused into one model, it 

addresses the shortcomings of the individual base models. This technique in this 

study conforms with the study by (Zimek et al., 2014), who utilized varying errors to 

improve their model performance. In our case, this was intended to reduce the overall 

model's biases further. For the diversity between base models’ scores, we adjusted 

the optimization to reduce the correlation between two score vectors similar to 

(Reunanen et al., 2020). In a nutshell, the known outliers from the analyzed dataset 

were utilized in two ways: first, to create a contrast between the outliers and other 

data, and second, to obtain diverse outcomes from the base models before final 

fusion. 

5.5 Fusion of Scores of the Heterogeneous Base Learners 

Our final result was a fusion of carefully selected results from the individual learners. 

As base detectors were heterogeneous, their scores varied in range and interpretation, 

and fusing them directly would have been erroneous. An agreement was needed 

within the ensemble. From chapter 2, section 2.7.5, agreement methods were 

grouped into rank-based and score-based. In rank-based, detector scores are ordered 

into ranked lists then aggregation is performed where they are merged into a single 

ranked list. 

On the other hand, score-based methods convert outlier scores into probabilities 

either by exponential or Gaussian scaling, by posterior probabilities, regularization, 

or normalization, to make outlier scores across detectors comparable, then take a 

final score by either averaging or maximization. Other score-based methods like 

mixture modeling convert outliers using a model where scores are samples from a 

combination of exponential (representing inliers) and Gaussian (representing 

outliers) distributions, and one can convert scores into probabilities and then provide 

binary classes for the instances with probabilities greater than half getting value 1, 

i.e., outliers and 0 otherwise, i.e., inliers. Our work adopted score-based probabilities 

and took the maximum-of-average of top h performing detectors in relation to their 

target, or average-of-maximum of h chosen detector subgroups in relation to their 

target as the subgroup’s score; then obtained the final score by picking the maximum 
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among all subgroups’ scores. These two methods were utilized to reduce bias, which 

reduced the risk of only picking one best-performing base detector. Biasness of the 

ensemble was greatly reduced by the fact that only top h performing base detectors in 

relation to target were selected and for with which h detectors did not increase 

variance overall. 

In general, four fusion variants were created at different levels: maximization and 

averaging in the first level, and maximum-of-average and the average-of-maximum 

of base learners’ scores in the second level. The selected optimal base learners’ 

outcomes were carefully fused to reduce variance and bias while improving overall 

ensemble accuracy. Our method was tested on ten benchmark datasets and showed 

improved results compared to existing baselines using global scores (section 5.6). 

The fusion by the average-of-maximum method showed promising results compared 

to the other three variants and was deemed a better fusion strategy. 

5.6 Performance Assessment of the Proposed Method 

This research sought to determine the performance of the proposed heterogeneous 

ensemble method in relation to other existing algorithms. The first comparative study 

was done using various baselines’ outcomes of generic or global fusion by averaging 

(G_Avg), maximization (G_Max), average-of-maximum (G_AvgM), maximum-of-

average (G_MaxA), weighted averaging (G_Wa), and global threshold summation 

(G_Ts) versus the proposed methods’ variants for fusion by local domain averaging 

(ADAHO_Avg), maximization (ADAHO_Max), maximum-of-average 

(ADAHO_MaxA) and average-of-maximum (ADAHO_AvgM). The second 

comparative study was done using various outlier detection ensembles appreviated as 

ALOI, BASE, ADAHO and SELECT, because of their relative design with respect to 

our method. ALOI and BASE, similar to our proposed method, used LOF and KNN 

algorithms, with the only difference being that they used a heuristic method instead 

of optimizing model parameters. In principle, ALOI and BASE followed our 

Algorithm 6 but their  values as described in section 3.5.4.1 were empty. In 

addition, the two did not follow steps 2–5 of Algorithm 6 but used equal weights 



138 

 

 for all . The two baselines set parameters for their base models in 

the same way as our proposed method and since the base models were similar, they 

utilized similar distance metrics as well as some of the fusion approaches like 

summation, median, averaging and maximization. Specifically, both approaches 

utilized summation and Euclidean distances. Our method however, utilized the 

median during optimization and took the final score in two levels, that is, by 

maximum of average and by average of maximum. SELECT presented two sub-

formations referred to as vertical-SELECT and horizontal-SELECT.  We compared 

our method to horizontal-SELECT because, according to (Rayana & Akoglu, 2016), 

it achieved better performance. ADAHO (Bii et al., 2020), which partly learned 

similar base models as our proposed method and weighted its samples as well as its 

base models by adaptive boosting, was also compared. The main difference was that 

it did not consider margin maximization between outlier data and normal data. Hence 

it did not loop through the last part of step 7 of algorithm 6. The proposed method 

was tested against these baselines using the least known outlier percentage. It was 

assumed that using the least percentage of outliers was the hardest test since very 

little prior information about the dataset was provided, which meant, if the proposed 

method outperformed baselines, a major improvement was achieved overall. 

The proposed method was tested on ten benchmark datasets and was superior to the 

baselines. Experiments showed an improvement in results, even when the least of 

known outliers, single cases up to 10%, were used, which meant that our method was 

effective even where there was a limited number of outliers. The strength of our 

method was in three pillars: adaptive boosting, sample and detector weighting, and 

parameter optimization. We ignored base models whose error rates were more than 

half. In every round of training, samples gained new weights based on previous 

model errors, and base model parameters were adjusted to optimize the margin 

maximization between outliers and the inliers. Classification performance metrics of 

recall (REC), false positive rate (FPR), receiver operating characteristics curve 

(ROC), and the area under ROC (AUROC) were used. These metrics are widely used 

in anomaly detection (Zhao & Hryniewicki, 2018). According to (Campos et al., 

2016), a recall metric performance measure is strongly recommended for binary and 
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multiclass datasets. Thus this study used Recall (TPR) as one of the evaluation 

performance metrics for testing the performance of the proposed method, as 

discussed in chapter 2. Scores above a threshold (T = 0.5) were considered outliers 

and vice versa. Furthermore, a value of T inversely affected both REC and FPR 

values as a higher T value caused low REC and FPR values, and the reverse was 

true; that is, T was a tradeoff. ROC graph was used with different T values to 

evaluate the proposed model’s efficiency with FPR plotted on the horizontal axis, 

and REC plotted on the vertical axis. AUROC values were computed ranging (0, 1) 

from the ROC graph so that an optimal AUC value was close to 1.  

The AUC values were compared to determine the overall performance of the model.  

Other related works, such as (Isadora et al., 2016), utilized 1-10% of the anomalies 

without adaptive learner boosting, while (Micenkova et al., 2014) utilized half of the 

anomalies. The strength of the proposed method was in three pillars: adaptive 

boosting, point weighting based on the local domain, and score optimization. The 

method ignored weak learners whose error rates were more than half, which could 

deteriorate the final ensemble. In every iteration, samples gained new weights based 

on previous errors and parameters that were adjusted. To decide if two outcomes 

contained significant differences, the paired t-test was utilized to statistically analyse 

results of experiments (Rietveld & Van Hout, 2017), which measured the average 

difference between paired samples. In this test, the null hypothesis H0 is zero, given 

that the difference (z) in AUC scores of two diverse base models is zero. If the p-

value was less than 0.05 the test was declared statistically significant. 

The study findings of this work showed that the proposed method had statistically 

significant performance compared with the baseline ensembles in outlier detection. 

Further observation revealed that there was no uniform performance with the 

datasets. Thus the choice of datasets may affect the performance of base detectors. 

Literature in chapter 2 echoed that heterogeneous learners had the advantage of 

generating different errors in different domains, which improves the ensemble’s 

stability and outlier detection. This study supports the claim by (Zhao et al., 2019), 

who empirically showed that ensembles often produce better results when there is a 

substantial disparity among the base learners. 
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The similarity measure between the base learner outcomes and the simulated ground 

truth determined the evaluation of weak learner competency. It was, however, clear 

that not much difference was observed when a Friedman test was performed on both 

Euclidean distance and Person correlation about the Receiver Operating 

Characteristic and the average Precision as the performance variance was so 

minimal, that is, less than one percent. Furthermore, the weight assignment to base 

learners did affect the proposed model positively in terms of performance, as it 

helped detect harder examples in every iteration. The setting of the local domain for 

every test instance proved to be computationally expensive. To lessen computational 

cost, other measures, like the determination of the value of k for the size of the local 

domain, could be normalized as long as it does not affect performance, even when 

outliers are within dense domains. In this study, the Euclidean distance between the 

two became the most effective when the size of k was set to a large value so that the 

local target and the detector outcomes were normalized. 

5.7 Chapter summary 

A discussion of the research study findings has been provided. The discussion 

compared the study findings with the literature provided in chapter 2. The discussion 

has shown that the proposed method outperformed most of the existing ensembles in 

terms of accuracy in outlier detection because of optimization and reduced bias and 

variance. The next chapter provides conclusions and recommendations for future 

work. 
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CHAPTER SIX 

CONCLUSION AND FUTURE WORK 

6.1 Introduction 

This chapter provides knowledge contributions that were realized in the course of the 

study. A conclusion for the study is provided. The chapter ends by providing a list of 

the various journals and publications produced and conferences presented based on 

this research study. 

6.2 Knowledge contributions 

The major contribution of the research was the development of an optimized 

adaptive boosting model of heterogeneous ensembles for outlier detection. The 

model utilized well-known distance-based and density-based algorithms as its weak 

base learners. Thus the technique applied many strategies and ensemble techniques 

in developing the model. 

This study provides a set of contributions. In this research study, well-performing or 

optimal heterogeneous base learners were first selected based on their ability to 

detect at least half the data instances correctly, that is, by their error rates being less 

than half, and secondly by assessing their capability in reference to their local 

domains or areas of expertise before optimization; this was because every outlier 

detection technique performed best within a specific domain in the entire space. This 

selection positively impacted the performance of base models and made the method 

empirically testable, justifiable, reliable, and stable. We have no knowledge of any 

previous similar work. 

In this study, distance-based and density-based outlier detection algorithms formed 

the weak base learners that enabled the discovery of both local and global outliers. 

This was in line with Hawkins’s classical definition of outliers. The study 

demonstrated that outliers could be found by assessing the distances of the 

neighborhood of every data point from other data points; and that heterogeneous base 

models could be combined into a single function for evaluating overall outlierness, 
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where each base model performed differently in certain spaces and produced outlier 

scores of different types and scales. Furthermore, outliers can be found in dense or 

less dense (distant) neighborhoods, and finding all outliers is critical. 

The study showed that decision weights could be used adaptively to boost the 

outcomes of predecessor base models. In this study, the proposed method utilized 

decision weights to adaptively boost the outcomes of its predecessor base models in 

the first phase, and then optimized the parameters that maximized the score margins 

of its base models in the second phase. Finally, it fused selected heterogeneous well-

performing base models in the last phase to achieve better predictions. The margin 

maximization created a clear contrast between outliers and normal data samples by 

maximizing the outliers' scores and minimizing the rest of the data. This score 

contrast was critical in optimizing outlier detection and improving overall detection 

accuracy by reducing bias and variance. We have no knowledge of any previous 

similar work. 

The study also demonstrated how bias and variance could be reduced by combining 

models in a bi-level structure that guaranteed diversity at different levels. The 

method in this study used different kinds of base models and re-weighted training 

samples in every training round, thereby not only inducing diversity at the model 

level (through model heterogeneity) but also at the sample level (through re-

weighting samples) and at the score level, which made it effective even where there 

was a limited number of outliers. The order of base learners showed that the first 

detector in the ensemble had priority to decide about the outlierness of a given 

instance. The higher the accuracy of the first detector, the fewer the number of 

training iterations. The study produced a model that depicted better performance in 

outlier detection. We have no knowledge of any previous similar work.  

Finally, the study findings reaffirmed that ensemble learning of several weak learners 

over similar tasks results in better performance than any individual learner. 
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6.3 Conclusion 

The primary research’s goal was to create a model for outlier detection that utilizes 

multiple weak learners in a hybrid ensemble structure to improve performance and 

accuracy while prioritizing the minimization of bias and variance. An adaptive 

boosting heterogeneous ensemble model for outlier detection was developed using 

distance-based and density-based algorithms as the base classifiers. It selects optimal 

base learners in relation to their local domains and fuses their outputs with the aim of 

reducing variance and bias. The model effectively assessed learners’ prediction 

capability through error rates. The score margin maximization technique was applied 

to increase the contrast between classes, so as to increase the predictability of outlier 

classes. Since poor-performing learners degrade the performance of the ensemble, 

they are eliminated. The proposed model was tested on ten benchmark datasets and 

found to be superior in performance to the baselines using Recall, Precision, and 

ROC performance measures. The research study demonstrated that the more diverse 

the base learners’ errors are, the better the combination power. The results of 

experiments were presented as cross-tabulations, with detailed explanations and 

interpretations. 

6.4 Future work 

This study determined a test instance’s local domain using nearest neighbors. Some 

areas that can be investigated include setting local domains to reduce the time taken 

establishing nearest neighbors. Also, a way of defining the value of k should be 

considered as features keep changing, and k must be dynamic. This method is 

extensively applicable to other kinds of ensembles that not only lean toward outlier 

detection. It unlocks endless possibilities for research, including furthering 

investigations into the choice of base models, dynamic parameter adjustments, bias-

variance supervision frameworks, and adaptive evolutionary methods that could 

accelerate margin optimization, among others, that could reduce the cost of 

computation overall. Finally, as regards the proposed method’s scalability, deep 

learning techniques could further extend its application to ultrahigh-dimensional 

spaces. 
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6.5 Publications and Conferences 

1st Publication (SCI-Indexed): 

Paper:  Adaptive Boosting in Ensembles for Outlier Detection: Base Learner 

Selection and Fusion by Local Domain Competence 

Important dates: Submitted: 12 Apr 2019 | Revised: 29 Oct 2019 | Accepted: 

12 Dec 2019. First published: March 30, 2020 

 Journal: ETRI Journal, Volume 42, Issue 6 December 2020 Pages 886-898 

 DOI: 10.4218/etrij.2019-0205  

 Link: https://onlinelibrary.wiley.com/doi/full/10.4218/etrij.2019-0205 

2nd Publication (EI-Indexed):  

Paper:  OAAE: Optimized Adaptive Anomaly Detection Ensemble: Base 

Model Boosting By Parameter Optimization 

Important dates: Submitted: 19 Mar 2021 | Revised: 13 Jul 2021 | Accepted: 

27 Jul 2021. First published: August 22, 2021  

 Peer Review link: https://publons.com/publon/49146156/ 

 Journal: Engineering Reports, Volume 4, Issue 2 February 2022                   

 DOI: 10.1002/eng2.12449   

 Link: https://onlinelibrary.wiley.com/doi/10.1002/eng2.12449 

Conference: Bii, J., Rimiru, R., & Waweru, M. (2018, September). Improved 

adaptive boosting in heterogeneous hybrid ensembles for outlier detection: 

prioritizing minimization of bias, variance and order of base learners. In Proceedings 

of the 2018 4th Annual International Maasai Mara University Conference (pp. 40 - 

41). Narok, Kenya — September 11- 13, 2018 
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APPENDICES 

Appendix I: Details of Datasets and Scatter Plots 

Table APX1 1.0: Description for MNIST Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 100(numeric) 7603 700 (9.21) 2 None 

 

Additional information 

This modified MNIST dataset has digits (0s) from the original MNIST dataset, with 

(6s) added as outliers. A random sample of 100 features out of the initial 784 pixels 

was taken. It comprises 100 columns and 7603 rows, which means that there are 

many features for a limited number of observations. It also has a high outlier 

fraction of 9.2 %. 

 

Table APX1 1.1: Sample MNIST Dataset 

x91 x93 x94 x96 x97 x98 x99 Class 

188.0556 -4.46997 158.3814 27.13142 -2.27463 -0.00065 -12.3513 0 

186.0556 -4.46997 123.3814 157.1314 -2.27463 -0.00065 -12.3513 0 

149.0556 -4.46997 -93.6186 -75.8686 -2.27463 -0.00065 -12.3513 0 

-64.9444 -4.46997 94.89937 -93.8686 -2.27463 -0.00065 -12.3513 1 

-64.9444 -4.46997 -137.101 -53.8686 -2.27463 -0.00065 -12.3513 1 

-64.9444 -4.46997 23.89937 -93.8686 -2.27463 -0.00065 125.6487 1 

-64.9444 -4.46997 -9.10063 -93.8686 -2.27463 -0.00065 -12.3513 1 
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Figure APX1 1.0: Scatter Plot for the MNIST Dataset 

Table APX1 2.0: Description for Letter Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 32 (numeric) 1600 100 (0.0625) 2 None 

 

Additional information 

The original letter dataset included 26 capital letters in the English alphabet 

represented in 16 dimensions. To convert it for outlier detection, 3 letters of data are 

sampled to create the inliers, and then their pairs are randomly joined to double their 

dimensionality. A few letters that are not inliers are selected at random to make up 

the outlier class. A total of 1600 data points were sampled with a positive class 

fraction of 6.250% 
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Table APX1 2.1: Sample Letter Dataset 

 

 

 

Figure APX1 2.0: Scatter Plot for the Letter Dataset 

Table APX1 3.0: Description for Cardio Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 21(numeric) 1831 176 (0.0961) 2 None 

 

Additional information 

Expert obstetricians divided fetal heart rate and uterine contraction scans into 3 

groups in the Cardio dataset: pathogenic, normal, and suspect. The pathologic class 

of 176 (9.61%) was converted into outliers for the purpose of outlier detection, the 
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normal class was transformed into inliers, and the suspect class was discarded. The 

dataset has 21 attributes, 2 classes, and 1831 instances. 

 

Table APX1 3.1: Sample Cardio Dataset 

 

 

 

Figure APX1 3.0: Scatter Plot for the Cardio Dataset 

Table APX1 4.0: Description for Annthyroid Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 6 (numeric) 7200 534 (0.0742) 2 None 
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Additional information 

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing 

instances. The issue is determining whether or not a patient who has been referred to 

the clinic is hypothyroid. Hence, three classes were created: normal, hyperfunction, 

and subnormal functioning. For outlier detection, both training and testing instances 

are used. The normal class is used as inliers, while the hyperfunction and subnormal 

classes are considered outliers. The dataset has 6 real attributes, 2 classes, and 7200 

instances. 

Table APX1 4.1: Sample Annthyroid Dataset 

 

 

 

Figure APX1 4.0: Scatter Plot for the Annthyroid Dataset 
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Table APX1 5.0: Description for Pima Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 8(numeric) 768 268 (0.3490) 3 None 

Additional information 

The original Pima dataset for diabetes is a dataset for binary classification. The 

selection of examples from the wider database was subject to a number of restrictions 

including; all patients being female, at least 21 years of age, and of Pima heritage. It 

has 8 attributes, 3 classes, and 768 instances, of which 268 (34.9%) are considered 

outliers. The objective is to foresee if a patient has diabetes. 

Table APX1 5.1: Sample Pima Dataset 

 

 

Figure APX1 5.0: Scatter Plot for the Pima Dataset 
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Table APX1 6.0: Description for Vowels Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 12(numeric) 1456 50 (0.0343) 2 None 

Additional information 

The original Vowels dataset is a multivariate time series data with 9 male speakers’ 

utterances of two Japanese vowels, ‘a’ and ‘e.’ A single utterance gives a time series 

range of lengths 7-29, with every point consisting of 12 features. For the purpose of 

outlier detection, each frame in the training set is treated as a separate data point. 50 

(3.43%) outliers (Class 1-Speaker) are included in the sample. Classes 6, 7, and 8 are 

regarded as inliers, while other classes are disregarded. 

Table APX1 6.1: Sample Vowels Dataset 

 

 

Figure APX1 6.0: Scatter Plot for the Vowels Dataset 
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Table APX1 7.0: Description for Thyroid Dataset 

Type Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 6(numeric) 3772 93 (0.0247) 3 None 

Additional information 

The original thyroid (ann-thyroid) dataset has 3772 training and 3428 testing 

instances. The issue is determining whether or not a patient is hypothyroid. Hence, 

three classes are created: normal, hyperfunction, and subnormal functioning. For 

outlier detection, only the training instances are used. The normal and subnormal 

classes are used as inliers, while the hyperfunction class with 93 instances (2.466%) 

was considered outliers. The dataset has 6 real attributes, 3 classes, and 3772 

instances.  

Table APX1 7.1: Sample Thyroid Dataset 

 

 

Figure APX1 7.0: Scatter Plot for the Thyroid Dataset 
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Table APX1 8.0: Description for Pendigits Dataset 

Type (Int.) Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 16(Integers) 6870 156 (0.0227) 2 None 

Additional information 

The original Pen-Based Recognition of Handwritten Digits (pendigits) dataset has 16 

features and classes 0 to 9. A collection of 250 samples from 44 writers, of which 

samples from 30 writers are taken as training and cross-validation data while the rest 

are for testing. For outlier detection, the original collection of handwritten samples is 

reduced to 6,870 points, of which 156 are outliers. The quantity of objects in one 

class, digit-0, is decreased by 10% because all classes have similar frequencies. 

Table APX1 8.1: Sample Pendigits Dataset 

 

 

Figure APX1 8.0: Scatter Plot for Pendigits Dataset 
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Table APX1 9.0: Description for Breastw Dataset 

Type (Int.) Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 9(Integers) 683 239 (0.3499) 2 None 

Additional information 

Breast Cancer Wisconsin (breastw) contains records of measurements for breast 

cancer cases. It has two classes: benign and malignant. It is a 9-dimensional dataset 

containing 683 instances, of which 239 represent malignant tumors here taken as 

outliers. 

Table APX1 9.1: Sample Breastw Dataset 

 

 

 

Figure APX1 9.0: Scatter Plot for the Breastw Dataset 
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Table APX1 10.0: Description for Optdigits Dataset 

Type (Int.) Features Instances Outliers (%) Classes Missing Values? 

Outlier detection 64(numeric) 5216 150 (0.0286) 2 None 

Additional information 

The original Optical Recognition of Handwritten Digits (Optdigits) is a multi-class 

classification dataset that includes inliers made up of the instances of digits 1 through 

9, and outliers made up of the instances of digit 0, which are down-sampled to 

2.86%. 

Table APX1 10.1: Sample Optdigits Dataset 

 

 

Figure APX1 10.0: Scatter Plot for Optdigits Dataset 
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Appendix II: Experiment screenshots 
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