

IMPROVED ADAPTIVE BOOSTING IN

HETEROGENEOUS ENSEMBLES FOR OUTLIER

DETECTION: PRIORITIZING MINIMIZATION OF

BIAS, VARIANCE AND ORDER OF BASE LEARNERS

JOASH KIPROTICH BII

DOCTOR OF PHILOSOPHY

(Computer Science)

JOMO KENYATTA UNIVERSITY

 OF

AGRICULTURE AND TECHNOLOGY

 2023

Improved Adaptive Boosting in Heterogeneous Ensembles for

Outlier Detection: Prioritizing Minimization of Bias, Variance and

Order of Base Learners

Joash Kiprotich Bii

A Thesis Submitted in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy in Computer Science of the Jomo

Kenyatta University of Agriculture and Technology

2023

ii

DECLARATION

This thesis is my original work and has not been presented for a degree in any other

university.

Signature ………………………………. Date ……………………………………..

Joash Kiprotich Bii

This thesis has been submitted for examination with our approval as university

supervisors

Signature ………………………………. Date ……………………………………..

Dr. Richard Rimiru, PhD

JKUAT, Kenya

Signature ………………………………. Date ……………………………………..

Prof. Waweru Ronald Mwangi, PhD

JKUAT, Kenya

iii

DEDICATION

To my dear parents, Rev. Dr. Stephen K. Ngenoh and Mrs. Alice Ngenoh, my father

and mother in law Dr. Waititu and Mrs. Waititu, my dear wife Phyllis Bii and my

children Abigael Chepkemoi and Mark Kipkorir. You are my source of strength and

joy in life. God bless you ALL.

iv

ACKNOWLEDGEMENT

My appreciation goes to the management of the Jomo Kenyatta University of

Agriculture and Technology (JKUAT) for according me an opportunity to study my

PhD in their esteemed institution of higher learning. Special thanks to my supervisors

Dr. Richard Rimiru and Prof. Waweru Mwangi who guided me throughout the

programme. Their high degree of professionalism and commitment enabled me

complete the study within the acceptable period. My other gratitude goes to Dr.

Lawrence Nderu, Chairman of Computing Department, and Dr. Rimiru who inspired

and mentored me in the field of Data Mining, Prof. Waweru in his guidance and

support throughout the journals and publications. My sincere gratitude goes to the

director of the School of Computing and Information Technology (SCIT), Dr.

Michael Kimwele, and including Prof. Stephen Kimani, Dr. Kaburu, Dr. Petronilla

Muriithi, Dr. Ann Kibe, Dr. Musau, Prof. George Okeyo, Dr. Agnes Mindila, Prof.

Wilson Cheruiyot, Prof. Wafula, Dr. Ogada Kennedy, Dr. Tobias Mwalili and other

staff of JKUAT who actively participated in providing feedback, comments and

guidance during the coursework, project thesis and seminar presentations. May God

Bless You All.

v

TABLE OF CONTENTS

DECLARATION .. ii

DEDICATION ... iii

ACKNOWLEDGEMENT .. iv

TABLE OF CONTENTS ... v

LIST OF TABLES ... xii

LIST OF FIGURES .. xiv

LIST OF ALGORITHMS .. xvi

LIST OF APPENDICES ... xvii

LIST OF ABBREVIATIONS .. xviii

ABSTRACT .. xx

CHAPTER ONE .. 1

INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Background of the Study .. 3

1.3 Problem Statement ... 7

1.4 Objectives ... 8

1.4.1 General Objective.. 8

1.4.2 Specific Objectives.. 8

vi

1.5 Study Questions ... 8

1.6 Assumptions of the Study .. 9

1.7 Justification of the Study .. 9

1.8 Scope of the Study ... 10

1.9 Organization of Thesis ... 10

1.10 Chapter Summary... 11

CHAPTER TWO ... 12

LITERATURE REVIEW .. 12

2.1 Introduction .. 12

2.2 The Ensemble Concept .. 12

2.3 Constructing Ensembles ... 14

2.3.1 Bootstrapping and Bagging ... 15

2.3.2 Boosting .. 17

2.3.3 Adaptive Boosting (Ada-Boost) .. 18

2.2.4 Stacking ... 20

2.4 Selecting Detectors... 20

2.5 Combining Detectors ... 21

2.6 Outlier Detection .. 22

2.7 Key Aspects of Outlier Detection Problem .. 22

vii

2.8 Ingredients of Outlier Detection... 23

2.8.1 Type of Outliers .. 23

2.8.2 Type of Input Data .. 25

2.8.3 Type of Detection .. 26

2.8.3 Distance based Outlier Detection .. 29

2.8.4 Outlier Detection Methods in High Dimensional Data 36

2.8.5 Output of Outlier Detection .. 38

2.8.6 Evaluation of Outlier Detection Technique - Performance....................... 38

2.9 Bias-Variance Trade-off for Outlier Detection .. 41

2.10 Bias Variance Reduction Methods ... 45

2.11 Theories Underlying Outlier Detection Ensembles 46

2.11.1 The Diversity Theory .. 46

2.11.2 The Decision Fusion Theory ... 46

2.11.3The Meta-learning Theory ... 46

2.12 Related Works to the Proposed Problem ... 47

2.13 Research Gap ... 51

2.14 Chapter Summary... 52

2.15 Conclusion ... 54

CHAPTER THREE ... 55

viii

RESEARCH METHODOLOGY ... 55

3.1 Introduction .. 55

3.2 Methodology .. 55

3.3 Data Collection Approaches .. 57

3.3.1 Dataset Description ... 57

3.4 Data Preprocessing ... 62

3.5 Proposed Method ... 63

3.5.1 Phase 1: Weak learners ... 64

3.5.2 Phase 2: Establishing Weak Learners Local Domains 70

3.5.3 Phase 3: Optimal Weak Learner / Base Detector Selection 74

3.5.4 Improving Detectors by Score Margin Maximization 75

3.5.5 Phase 4: Fusion of Base Detector’s Outcomes ... 79

3.5.6 Phase 5: Testing and Validating the Proposed Method 81

3.6 Experimental Set Up .. 82

3.7 Chapter Summary... 83

CHAPTER FOUR .. 85

RESEARCH RESULTS FINDINGS .. 85

4.1 Introduction .. 85

4.2 Examining the Base Detectors / Weak Learners .. 85

ix

4.2.1 Experiment 1: Establishing Weak Learners’ Initial Bias over Different

Number of Samples – Prior to Ensemble Formation (Criteria 1) 86

4.2.2 Experiment 2: Establishing Weak Learners’ Initial Variances over

Different Number of Samples (Criteria 2) ... 87

4.2.3 Experiment 3: Establishing the Error Rates of Learners (MNIST Dataset)

 .. 91

4.2.4 Experiment 4: Establishing Weak Learners’ using LETTER Dataset .. 93

4.2.5 Experiment 5: Establishing Weak Learners’ Error Rates (Cardio Dataset)

 .. 95

4.2.6 Experiment 6: Establishing Weak Learners’ Error Rates using Annthyroid

 .. 96

4.2.7 Experiment 7: Establishing Weak Learners’ using PIMA Dataset 98

4.2.8 Experiment 8: Establishing Learners’ Error Rates using Vowels Dataset 99

4.2.9 Experiment 9: Establishing Weak Learners Error Rates (Thyroid Dataset)

 .. 100

4.2.10 Experiment 10: Establishing Weak Learners’ Error (Pendigits

Dataset) .. 102

4.2.11 Experiment 11: Establishing Learners’ Error Rates (Breastw Dataset) 103

4.2.12 Experiment 12: Establishing Weak Learners’ using Optdigits Dataset

 .. 104

4.2.13 Summary of Selection of Weak Learners Based on Error Rates 106

4.3 Comparison of the Proposed Fusion Methods with Generic Methods 107

x

4.3.1 Experiment 13: Comparing ADAHO_Avg and ADAHO_maxA vs.

G_Avg .. 108

4.3.2 Experiment 14: Comparing ADAHO_Avg and ADAHO_maxA vs.

G_mov .. 108

4.3.3 Experiment 15: Comparing ADAHO_Max and ADAHO_maxA vs.

G_Max ... 109

4.3.4 Experiment 16: Comparing ADAHO_Max, ADAHO_maxA vs. G_AoM

 .. 110

4.3.5 Experiment 17: Comparing ADAHO_Max, ADAHO_MaxA versus

G_mov .. 111

4.3.6: Summary of Performances using Different Generic (Global) Fusion

Methods Compared to the Proposed Method in Terms of AUCROC 112

4.4 Comparing Performance of the Proposed Ensemble with Other Outlier

Detection Ensembles using 10 Datasets ... 115

4.4.1 Experiment 18: Comparing the Performance of Proposed Method with

ALOI Ensemble using 10 Outlier Detection Datasets 117

4.4.2 Experiment 19: Comparing the Performance of Proposed Method with

BASE Ensemble using 10 Outlier Detection Datasets 118

4.4.3 Experiment 20: Comparing the Performance of Proposed Method with

Horizontal-SELECT Ensemble Using 10 Outlier Detection Datasets 119

4.4.4 Experiment 21: Comparing the Performance of Proposed Method with

ADAHO Ensemble Using 10 Outlier Detection Datasets................................ 120

4.5 Model Improvement by Reduction of Ensemble Bias and Variance 127

4.6 Test of Generalizability of the Proposed Method OAAE 128

xi

4.7 Chapter summary ... 130

CHAPTER FIVE .. 131

SUMMARY AND DISCUSSION ... 131

5.1 Introduction .. 131

5.2 Objectives re-examination ... 131

5.3 Selection of Base Learners by Error Rates and Local Domain Competence . 133

5.4 Model Diversity and Optimization by Margin Maximization 135

5.5 Fusion of Scores of the Heterogeneous Base Learners 136

5.6 Performance Assessment of the Proposed Method .. 137

5.7 Chapter summary ... 140

CHAPTER SIX .. 141

CONCLUSION AND FUTURE WORK ... 141

6.1 Introduction .. 141

6.2 Knowledge contributions ... 141

6.3 Conclusion ... 143

6.4 Future work .. 143

6.5 Publications and Conferences .. 144

REFERENCES ... 145

APPENDICES .. 160

xii

LIST OF TABLES

Table 2.1: Comparisons of Outlier Detection Techniques (Thudumu et. al., 2020) . 36

Table 2.2: Confusion Matrix ... 39

Table 2.3: Critique of work done for outlier detection ensembles 51

Table 3.1: Summary Description of Datasets Used in the Study 62

Table 4.1: Initial Biases of Base Learners on MNIST Dataset over Different Samples

 .. 86

Table 4.2: Initial Variances on MNIST over Different Number of Samples 87

Table 4.3: Summary of Initial Biases and Variances on Selected Datasets 89

Table 4.4: Results of the Base Model’s Bias and Variance. 91

Table 4.5: Weak Learners’ Error Rates per Iteration using MNIST Dataset 92

Table 4.6: Weak Learners’ Error Rates per Iteration using LETTER Dataset 94

Table 4.7: Weak Learners’ Error Rates per Iteration using Cardio Dataset 95

Table 4.8: Weak Learners’ Error Rates per Iteration (ANNTHYROID Dataset) 97

Table 4.9: Weak Learners’ Error Rates per Iteration using PIMA Dataset 98

Table 4.10: Weak Learners’ Error Rates per Iteration using VOWELS Dataset 100

Table 4.11: Weak Learners’ Error Rates per Iteration using THYROID Dataset .. 101

Table 4.12: Weak Learners Error Rates per Iteration over PENDIGITS Dataset ... 102

Table 4.13: Weak Learners’ Error Rates per Iteration over BREASTW Dataset ... 104

Table 4.14: Weak Learners’ Error per Iteration using OPTDIGITS Dataset 105

Table 4.15: Summary of Selected Weak Learners Based on their Error Rates 107

Table 4.16: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 108

xiii

Table 4.17: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 109

Table 4.18: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 110

Table 4.19: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 111

Table 4.20: ROC Performances (Mean of 20 Trials, Highest Scores Bolded) 112

Table 4.21: Summary of ROC Values (Highest Values Bolded) Between ADAHO

Fusion Methods and Generic Fusion Methods 114

Table 4.22: Summary of Mean Average Precision Values (Highest Values Bolded)

for ADAHO vs Generic Fusion Methods ... 114

Table 4.23: Proposed Method vs. ALOI Ensemble using 10 Datasets 118

Table 4.24: Proposed Method vs. BASE Ensemble using 10 Datasets 119

Table 4.25: Proposed Method vs. Horizontal-SELECT Ensemble using 10 Datasets

 .. 120

Table 4.26: Proposed Method with Margin Maximization vs. ADAHO 121

Table 4.27: Summary of AUC scores of OAAE, ALOI, BASE and SELECT

(Highest Values Bolded) ... 123

Table 4.28: OAAE, ALOI, BASE, SELECT, and ADAHO Mean AUC Values and

Average Differences over the Datasets in Table 3.1. 124

Table 4.29: The p-values for Average Differences of the Methods from Table 4.27

 .. 125

Table 4.30: Comparison Between the Benchmark Ensembles vs the Proposed

Ensemble in Terms of Overall Bias -Variance. Expected error = (Bias2

+ Variance) ... 127

Table 4.31: Summary of AUC Outcomes from the Generalizability Test 130

xiv

LIST OF FIGURES

Figure 2.1: The concept of an ensemble. .. 13

Figure 2.2: Independent (parallel) Combination of Weak Learners 14

Figure 2.3: Sequential or Serial Combination ... 15

Figure 2.4: The Bagging Approach... 16

Figure 2.5: A Boosting Approach ... 18

Figure 2.6: Adaptive Boosting Algorithm. ... 19

Figure 2.7: Point outliers ... 24

Figure 2.8: Contextual Outliers ... 24

Figure 2.9: Collective Outlier - showing an anomalous subsequence 24

Figure 2.10: Taxonomy of Outlier Detection Techniques .. 27

Figure 2.11: K-Nearest Neighbour with k=3 .. 31

Figure 2.12: Density-based clusters and outliers .. 32

Figure 2.13: Determining Local Outlier Factors (LOF) ... 33

Figure 2.14: Bias, Variance, and Ensemble Complexity .. 44

Figure 3.1: Cross-industry Standard Process for Data Mining 57

Figure 3.2: Proposed ADAHO_OAAE Model Ensemble. 80

Figure 3.3: Summary of the Key Steps in Algorithm 6 (ADAHO_OAAE) 81

Figure 4.1: The Effect of Increasing the Training Samples on Model Bias 87

Figure 4.2: The Effect of Increasing Training Samples on Model Variance 88

Figure 4.3: Comparison between Bias and Variance on MNIST Dataset 89

Figure 4.4: Comparison between Error Rates and Weights on MNIST Dataset 93

xv

Figure 4.5: Comparison between Error Rates and Weights on LETTER Dataset 94

Figure 4.6: Comparison between Error Rates and Weights on Cardio Dataset 96

Figure 4.7: Comparison between and Weights on ANNTHYROID Dataset ... 97

Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset 99

Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset 99

Figure 4.9: Comparison between and Weights using Vowels Dataset 100

Figure 4.10: Comparison between and Weights using THYROID Dataset . 101

Figure 4.11: Comparison between and Weights using Pendigits Dataset 103

Figure 4.12: Comparison between and Weights using Breastw Dataset 104

Figure 4.13: Comparison between Error Rates and Weights (Optdigits Dataset) .. 106

Figure 4.14: Proposed Method verses ALOI Ensemble using 10 Datasets 118

Figure 4.15: Proposed Method verses BASE Ensemble using 10 Datasets 119

Figure 4.16: Proposed Method vs. Horizontal-SELECT Ensemble using 10 Datasets

 .. 120

Figure 4.17: Proposed Method with Margin Maximization vs. ADAHO Ensemble

 .. 121

Figure 4.18: Kernel Density Estimates of ALOI, BASE, SELECT, ADAHO and

ADAHO_OAAE ... 125

xvi

LIST OF ALGORITHMS

Algorithm 2.1: Procedure for Bootstrapping .. 16

Algorithm 2.2: Procedure for Bagging ... 17

Algorithm 2.3: Technique of Boosting ... 17

Algorithm 2.4: Adaptive Boosting.. 19

Algorithm 2.5: Staking Algorithm .. 20

Algorithm 3.1: ADAHO_OAAE .. 74

xvii

LIST OF APPENDICES

Appendix I: Details of Datasets and Scatter Plots .. 160

Appendix II: Experiment screenshots .. 171

xviii

LIST OF ABBREVIATIONS

Acc Accuracy Rate

ANN Artificial Neural Network

AUC Area Under the Curve

AUROC Area Under Receiver Operating Characteristic

CNN Convolutional Neural Networks

CRISP-DM Cross-Industry Process for Data Mining Methodology

DT Decision Tree

Err Error Rate

FN False Negative

FP False Positive

GA Genetic Algorithm

K-NN K -Nearest Neighbours

LOF Local Outlier Factor

LOoP Local Outlier Probability

LR Linear Regression

ML Machine Learning

NB Naive Bayes Classifier

ODDS Outlier Detection Datasets

xix

P Precision

PCA Principle Component Analysis

R Recall

RNN Recurrent Neural Networks

ROC Receiver Operating Curve

Spe Specificity

SVM Support vector machine

TN True Negative

TP True Positive

xx

ABSTRACT

Real-world data suffer from corruption caused by human errors, for instance,

rounding errors, wrong measurements, biases, faults, or rare events, including

malicious activities like credit card fraud or cyber activities that cause unusual

patterns or outliers in data. The detection of outliers is a difficult task that requires

complex ensemble models. The ideal outlier detection ensemble should assess the

strengths and optimize the results of its base detectors while carefully combining

their outputs to create a robust overall model and achieve unbiased accuracy with

minimal variance. Existing outlier detection ensembles fuse numerous detectors

(weak learners) in either parallel or sequential order to increase detection accuracy

by obtaining a combined result through a majority vote. However, trusting the results

of all weak learners may deteriorate overall ensemble performance as some learners

may produce erroneous results depending on the types of data and their underlying

rules. The general objective was to develop an outlier detection model by integrating

multiple yet different (heterogeneous) base detectors into one model (ensemble), by

first selecting highly accurate base detectors through training and evaluating every

model by their error rates, and then implementing the adaptive boosting technique,

where misclassified samples got to be feedback for the next detector (to minimize

bias), then strategically combining all their decisions (to minimize variance), in order

to obtain a strong detector by a combination function. The research’s specific

objectives were: identifying weak learners by analyzing their initial biases and

variances, analyzing fusion strategies, developing and evaluating an outlier detection

model with a focus on minimizing bias, variance, and order of base learners. The

CRISP-DM methodology was employed. Outlier datasets were drawn from ODDS

library. The model was validated against four other baselines, and test results were

compared using performance measures such as Recall, Precision, ROC and AUC

values. The experiments showed improvement in results in at least 8 out of ten

datasets in terms of average AUCROC even when the least of outliers (single cases

up to 10%) were used.

Keywords: Outliers, Weak learners, Ensembles, Bias, Variance

1

CHAPTER ONE

INTRODUCTION

1.1 Motivation

Outlier detection, also known as anomaly detection, is a critical task in various

domains such as finance, cyber security, and fraud detection (Varun & Bhatia, 2020).

The goal is to identify data points that deviate significantly from the normal behavior

of the majority of the data, which could indicate potential anomalies or abnormalities

that require further investigation. Traditional approaches for outlier detection often

rely on statistical methods or rule-based techniques, but these methods may have

limitations in handling complex and high-dimensional data.

In recent years, deep learning techniques have gained significant attention in outlier

detection due to their ability to automatically learn complex patterns and

representations from raw data (Li et al., 2021). Deep learning techniques, such as

autoencoders, recurrent neural networks (RNNs), and convolutional neural networks

(CNNs), have shown promising results in outlier detection tasks. These methods

have been able to capture intricate patterns and representations from the data,

enabling them to detect outliers with high accuracy (Buda et al., 2018). However,

despite the success of deep learning techniques, they still have some limitations.

Deep learning models are known to be data-hungry and require large amounts of

labeled data for training, which may not always be available in outlier detection

scenarios, especially when dealing with rare or novel anomalies (Gupta et al., 2019).

Moreover, they are typically black-box models, making it difficult to interpret and

explain their decisions, which may be a concern in applications where interpretability

is crucial, such as in finance or healthcare (Lipton, 2018). Furthermore, training deep

learning models can be computationally expensive, and they are prone to overfitting,

which may not be feasible in resource-constrained environments.

In contrast, traditional machine learning algorithms like k-nearest neighbors and

decision trees are more suitable for resource-constrained environments since they

require fewer computational resources and are less prone to overfitting.

2

Moreover, heterogeneous ensembles, which combine multiple diverse models or

algorithms, have emerged as a promising approach for outlier detection (Chen et al.,

2019). Heterogeneous ensembles leverage the strengths of different models or

algorithms, allowing them to compensate for each other's weaknesses and improve

overall performance. For example, an ensemble may combine a decision tree-based

method with a deep learning-based method, or a clustering-based method with an

instance-based method. By integrating diverse models or algorithms, heterogeneous

ensembles can enhance outlier detection performance, even when limited labeled

data or resources are available, and provide interpretability through model diversity

(Huang et al., 2019).

Several studies have demonstrated the effectiveness of heterogeneous ensembles in

outlier detection. For instance, Liu et al. (2018) proposed an ensemble approach

combining multiple outlier detection algorithms, including clustering-based, density-

based, and distance-based methods, to achieve better performance compared to

individual methods. Chen et al. (2019) developed a heterogeneous ensemble

approach that combined autoencoders with one-class SVMs to detect anomalies in

network traffic data, achieving higher accuracy and interpretability compared to

standalone models. Xu et al. (2020) proposed a hybrid ensemble approach that

combined deep learning-based autoencoders with clustering-based KNNs for

detecting fraud in credit card transactions, demonstrating superior performance in

terms of accuracy and robustness compared to single models.

In light of these, while deep learning techniques have shown promising results in

outlier detection tasks, they still have limitations in terms of data requirements,

interpretability, and computational efficiency. Heterogeneous ensembles, on the

other hand, offer a viable alternative by combining diverse models or algorithms to

compensate for weaknesses and enhance performance, even in challenging scenarios

with limited data or resources. By leveraging the strengths of different methods,

heterogeneous ensembles can provide improved outlier detection accuracy,

interpretability, and robustness, making them a compelling choice for outlier

detection tasks.

3

1.2 Background of the Study

Machine learning (ML) refers to the process of training computer systems to learn

and improve their performance on specific tasks by utilizing algorithms and

statistical models (Murty et al., 2021). These algorithms are designed to learn from

data and make predictions or decisions based on that data. ML algorithms are

commonly used in classification, clustering, association rule mining, and other fields

that require pattern recognition (Alpaydin, 2020). ML algorithms are also widely

used in outlier detection, which involves the identification of observations that

deviate from expected patterns or behaviors (Barnett & Lewis, 2021). As the field of

ML continues to evolve, new algorithms and techniques are being developed to

improve performance and enable new applications across various industries.

In data analysis tasks, one of the first steps towards obtaining a clear study is the

detection of outlying observations, that is, observations that don’t fit a clear

definition of what constitutes typical behaviour or what constitutes outlier behaviour

(Aggarwal, 2021). In a variety of application disciplines, these observations or

behaviours are frequently referred to as outliers, contaminants, anomalies,

discordants, faults, oddities, defects, aberrations, noise, errors, damages, unexpected,

or quirks (Chen, Du, & B, 2020). Although outliers are often considered unusual,

errors or noise, they may carry important information. Sometimes if left undetected,

outliers may lead to model misspecification and incorrect results. Therefore, it is

critical to recognize them before modeling and analysis (Prasada et al., 2020).

Several definitions for outliers have been put forward. According to Grubbs, outlier

detection is the process of identifying patterns in data that differ from what would be

considered normal behaviour (Grubbs, 1969). According to Hawkins, an outlier is an

observation that deviates so much from other observations that it raises the

possibility that it was generated by a different mechanism (Hawkins, 1980).

According to Johnson, it is an observation in a data collection that seems discordant

with the rest of the data (Johnson, 2022). Similarly, Barnett and Lewis (Barnett &

Lewis, 2021) indicate that an observation that appears to differ significantly from

other members of the sample in which it occurs is referred to as an outlier.

4

The process of detecting outliers in datasets dates back to the 18th century. In 1850,

the first statistical method was created (Beckman & Cook, 1983) to address the

problem of outliers in the data. There have been arguments on whether outliers

should be kept as part of data as they provide very useful information about the data.

For instance, Barnett (Barnett & Lewis., 2021) says that one should not delete

extreme observations just due to their gap from the remaining data. Prior, other

researchers favored cleaning the data from outliers as they distorted the estimates.

Cousineau and Chartier (2010) claims that outliers are always the result of some

spurious activity and should be deleted. Whether to delete or keep the outliers in the

data may depend on the domain of use of that data.

Numerous applications, such as the identification of credit card fraud, have called for

the use of outlier detection techniques (Allam, 2019), clinical trials, voting

irregularity analysis (Aggarwal, 2021), data cleansing, network intrusion (Aggarwal,

2020), severe weather prediction (Kalinichenko et al., 2014), geographic information

systems, athlete performance analysis (Pawar & Mahindrakar, 2015), and other data-

mining tasks to anomaly pattern detection for disease outbreaks (Skelsey et al.,

2021).

Foorthuis (2021) point out that anomalies are of interest because they may represent

both novel, interpretable results and artifacts of the data, such as measurement flaws,

sampling errors, standardization failures, and false distributional assumptions.

Because they can be the basis for comparisons and help identify underlying reasons,

outliers can occasionally be more beneficial to research than specific data points. For

example, a scenario of an entire town being infected by a disease: if there is any case

of a disease-negative person, studying this outlier would be more medically useful

than studying the rest of the population. The case of the discovery of one HIV-1

resistant woman in Nairobi, Kenya (Fowke et al., 1996) led to the discovery of

natural immunity and more insight into combatting the virus.

Identifying fraudulent activity is another practical usage of outlier detection (Roy &

Garg, 2022). Suspicious activity, such as money laundering, should have different

signatures in the data than normal usage (Gomez et al., 2021). In computer science,

5

malware can be identified by creating baseline usage models of safe programs and

then identifying attacks based on the deviation (Tang et al., 2014). Manufacturing

and industrial processes require similar identification of defects to prevent costly

recalls (Niemann et al., 2022). Genomic abnormalities such as differential gene

expression in malignant cell lines are also anomalies compared to benign cells

(Tasaki et al., 2020).

Outlier detection acts as an essential intermediate step in data analysis. Outliers can

make modeling difficult due to the discordance they introduce into the data. As a

measure, the isolation of outliers can improve the performance of predictive

modeling by offering better data quality and reducing outlier's influence on the

model fitting. In other applications, however, identifying outliers is the primary

purpose of analysis, for instance, in the case of fraud detection. Several studies have

been conducted to handle issues of detecting outliers. Defining outliers by their

distance to neighboring examples is a popular approach to finding unusual examples

in a dataset, among other techniques. However, because seemingly normal behaviour

is grouped in the dataset, outlier detection algorithms may not be able to detect all

forms of fraud. It is also possible that the outlier detection approach misses the

genuine outlier. Assume, for instance, that the intruder completes a routine

transaction amount to a bank account that is not on a denylist within the expected

timeframe. In that situation, the transaction won’t be classified as unusual and won’t

ever be marked as such.

Outliers can significantly affect the performance of machine learning algorithms,

leading to biased models and unreliable predictions. Outlier detection ensembles are

a popular approach to improve the robustness and accuracy of outlier detection

algorithms. These ensembles combine the outputs of multiple outlier detection

algorithms to identify and remove outliers that are consistent across different

algorithms while retaining non-outlying data points. The use of outlier detection

ensembles has been shown to improve the accuracy and robustness of outlier

detection algorithms in a variety of applications, including finance, healthcare, and

cyber security (Barnett & Lewis, 2021).

6

However, the design and optimization of outlier detection ensembles can be

challenging due to the trade-off between bias and variance. Ensembles that use

multiple weak learners can reduce the bias but increase the variance, while

ensembles that use multiple strong learners can reduce the variance but increase the

bias. Therefore, careful selection and combination of outlier detection algorithms are

critical to achieving optimal performance in outlier detection ensembles.

Imbalance datasets are another common challenge in many applications of machine

learning, where the number of data points in one class is significantly smaller than

that in the other classes. Imbalance datasets can lead to biased models and poor

performance, especially in applications where the minority class is of particular

interest, such as fraud detection, disease diagnosis, or anomaly detection (Cervantes

et al., 2020). Outlier detection ensembles can also be used to address the challenges

of imbalance datasets. Specifically, outlier detection ensembles can identify and

remove outliers that are present in the majority class but not in the minority class,

which can help to reduce the bias and improve the performance of machine learning

models. However, the design and optimization of outlier detection ensembles for

imbalance datasets can be more complex than that for balanced datasets due to the

trade-off between detection accuracy and minority class retention. Careful selection

of outlier detection algorithms and appropriate combination techniques are required

to achieve optimal performance in outlier detection ensembles for imbalance datasets

(Xu et al., 2019; Wang & Sun, 2018).

In general, outliers may indicate fraudulent cases or just entry errors or may exist in

datasets due to one reason or another – but either way, detection of outliers is vital

for database consistency and integrity (Carter, 2019), and when detected at an early

stage, can reduce financial losses in many organizations or save a life in case of

medical or health-related instances. It is against such encounters that outliers are

examined in this research. This research investigated outliers, outlier detection, the

various detection techniques, and how heterogeneous detection methods could be

combined to improve the accuracy of detecting anomalies in high-dimensional data

sets.

7

1.3 Problem Statement

An ideal outlier detection ensemble should take into account the strengths of

individual base learners while carefully combining their outputs in order to create a

strong learner so as to achieve non-biased overall detection accuracy with minimal

variance. Existing outlier detection ensembles utilize either parallel or sequential

combination structures to fuse multiple detectors (weak base learners) in order to,

hopefully, improve the overall detection performance by taking a joint overall result

(majority vote) from the detectors. The parallel combination structure is designed

with the intention to reduce variance while the serial combination is designed with

the intention to reduce bias (Zhao et al., 2019).

Unfortunately, trusting the results from all the weak learners may have a negative

effect on the ensemble’s performance as a whole because some learners may produce

inaccurate results depending on the type of data and the learner’s underlying rules,

particularly in the context of outliers - which lack ground truth (Chen et al., 2019).

Outlier detection ensembles that mark instances as anomalous when they are not, or

anomalous instances being marked as safe, can make the outlier detection ensembles

unsafe, untrustworthy, or redundant. In certain applications, such as medical

diagnosis, misclassifications could have catastrophic or irreparable consequences

(Khullar, Jha, & Jena, 2015). In the financial industry, misclassifying fraudulent

transactions as legitimate ones can have severe economic consequences (Kieu &

Nguyen, 2020). In cybersecurity, misclassifying a malicious file as benign can result

in the failure of intrusion detection systems and can have significant implications for

an organization’s security (Bhattacharyya & Kalita, 2019).

The need arose to study which detectors to select as base learners and in what way,

on what kind of data, and in what order. This research engaged in a cross-industry

process for data mining (CRISP-DM) involving various tests and experiments to

measure the effect of combining heterogeneous base detectors (weak learners) on

high dimensional data with the aim of improving overall detection accuracy while

prioritizing the minimization of bias, variance, and the order of base learners.

8

1.4 Objectives

1.4.1 General Objective

This study’s main objective was to create and evaluate a model for outlier detection

utilizing a heterogeneous hybrid ensemble to provide improved performance and

accuracy while prioritizing the minimization of bias and variance and order of base

learners.

1.4.2 Specific Objectives

(i) To determine which classifiers constitute weak learners for constructing the

base (detectors) for outlier detection.

(ii) To analyse different combination methods or fusion strategies (order) using

the selected base learners for the outlier detection ensemble.

(iii) To create a model for outlier detection that combines several selected weak

learners into a hybrid ensemble to improve performance while prioritizing

minimizing bias, variance, and order of base learners.

(iv) To evaluate the developed ensemble model for outlier detection accuracy.

1.5 Study Questions

The following research questions guided the study:

(i) What classifiers make good base detectors (weak learners) for building an

outlier detection ensemble?

(ii) Do combinations of heterogeneous detectors for outlier detection improve

accuracy?

(iii)What combination sequences or fusion strategies are compatible for weak

learners for better outlier detection?

(iv) How does the combination or fusion of weak learners affect variance and

bias?

(v) How can the developed ensemble model be tested for outlier detection

accuracy?

9

1.6 Assumptions of the Study

The following assumptions guided the study:

(i) Combining opinions of multiple weak learners into one strong learner

achieves better performance and accuracy.

(ii) Combination sequence or order of weak learners affects performance and

accuracy.

(iii)The choice of structure, whether parallel (independent) or serial, affects the

variance and bias of an ensemble outcome.

1.7 Justification of the Study

The following grounds justified the work in this research:

Firstly, the rapid development of classification ensembles enabled efficient

approaches for other machine learning problems, including outlier detection (Rayana,

Zhong, & Akoglu, 2017). While ensemble techniques for classification and

clustering have undergone many studies and are already being successfully used,

little research has been done on ensemble learning for outlier detection because it is

challenging to get ground truth. It was necessary to conduct research, capitalize on

this gap, and develop a new or enhanced ensemble approach for outlier detection.

Secondly, in many data analysis tasks, a large number of variables are recorded or

sampled, and one of the initial stages to getting a clear analysis is the detection of

outlying observations. Although often considered errors or noise, they may carry

important information. Detected outliers are candidates for peculiar patterns that may

otherwise lead to wrong modeling, bias, and incorrect results. Therefore, it’s critical

to recognize them before modeling and analysis (Prasada et al., 2020).

Thirdly, it is often the case that groups of people can often make better decisions

than individuals, especially when group members each come in with their own

biases. The same concept could be applied to machine learning. Since classifiers are

10

learning models, it was necessary to investigate whether models could achieve

overall performance and accuracy by combining the opinions in an ensemble. In

contemporary decisions making, it is always also the case to leave out alternatives

that do not yield good results and use the alternatives that yield better results. This

concept could further be applied to classifiers by finding out whether combining the

strengths of accurate learners while alleviating the weaknesses of the less accurate

ones could build better ensembles for outlier mining.

1.8 Scope of the Study

This study limited itself to machine learning. It limited itself to the study of outliers

and methods for outlier detection - and how those methods could be tuned in such a

way as to provide improved performance and accuracy in the detection of outliers in

high dimensional data. The researcher sought to find out what classifiers composed

weak learners for building an outlier detection ensemble based on different

classification methods and then identified a combination strategy that could fuse the

weak learners to achieve a strong learner. Moreover, the researcher tested the

combination sequences and fusion structures used to provide improved performance

and accuracy while minimizing variance and bias in outlier detection ensembles.

This research used publicly available and online databases as data sources. The data

sources included the ODDS machine learning repository datasets; ten datasets were

utilized in training and testing the model. Four existing state-of-the-art ensembles

were compared to the proposed model to verify improvements.

1.9 Organization of Thesis

The following is how the rest of the thesis is structured: Chapter 2 reviews existing

literature based on the research objectives. Issues addressed include discussion on

various outlier detection algorithms, aspects of outlier detection, ensemble formation

methods, concepts of bias and variance, outlier detection methods, evaluation metrics

and performance measures, and an analysis of existing related works. This chapter

completes by emphasizing the research gap.

11

Chapter 3 provides a description of the research methods used in this study. Issues

discussed include data collection methods and preprocessing approaches. The

chapter concludes by providing a detailed description of the proposed method for the

study.

Chapter 4 provides the results of the experiments. The experiments examine the

performance of the proposed technique, the comparative performance of outlier

detection ensembles, and comparisons of the effectiveness of the proposed approach

with other existing approaches. The chapter concludes by providing a summary of

the experimental findings.

Chapter 5 offers a summary and discussion of the study. The summary includes a

review of the objectives, methodology, and experimental findings. Discussion

includes issues of outlier detection and bias-variance reduction, results for outlier

detection using the proposed method, and performance of the proposed method in

relation to the literature provided in chapter 2.

Chapter 6 provides conclusions and future work of the research study. The chapter

highlights the significant contributions made based on the study findings. It explains

the achievements of the research and ends by offering recommendations for further

work.

1.10 Chapter Summary

A brief background of the study has been given in this chapter. The basic concepts of

outlier detection, aspects of outlier detection, and ensemble formation have been

introduced. The research objectives, justification, and scope have been provided. The

next chapter reviews existing literature.

12

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter reviews existing literature dealing with ensembles and model learning

approaches in relation to outlier detection.

2.2 The Ensemble Concept

An Ensemble is a collection of trained classifier models whose predictions are

combined to reach a final decision (Sabzevari et al., 2022). In ensemble learning, a

machine learning paradigm, multiple learners are trained to tackle the same issue.

Ensemble methods strive to generate many hypotheses and combine them, unlike

traditional machine learning approaches that try to learn one hypothesis from training

data (Pintelas & Livieris, 2020). The base learners of an ensemble are a group of

learners that make up the ensemble. The ability of an ensemble to generalize is

typically substantially higher than that of base learners. Ensemble learning is

superior to random guessing because it can elevate poor learners to strong learners

who can make more accurate predictions. Weak learners are also known as base

learners. A base learning method, such as a decision tree or a neural network,

generates base learners from training data. Most ensemble methods produce

homogeneous base learners using a single base learning algorithm. However, some

approaches produce heterogeneous learners using multiple learning algorithms.

Hansen and Salamon’s pioneering research in the 1980s discovered that predictions

made by a group of classifiers are typically more accurate than predictions made by

the best single classifier (Hansen & Salamon, 1990). The second research was

conducted in 1989, where Schapire proved that weak learners could be boosted to

strong learners, and the proof resulted in boosting, one of the most influential

ensemble methods (Schapire, 1990).

Kumar (2022) gives four main reasons why classifiers are combined: Firstly, for

statistical reasons: By averaging numerous classifiers, the worst classifier can be

13

avoided. This reason supported the earlier works of (Fumera & Roli, 2005) as it was

efficient; however, it did not ensure that the combination would outperform the best

classifier.

Figure 2.1: The concept of an ensemble.

In figure 2.1, the outputs of the base learners (weak learners) Hm (x) with m ∈ {1,...,

M} are combined to produce the output of the ensemble given by H(x). x is the

training sample.

Secondly, for representational reasons: in some cases, adding more classifiers can

enhance the performance of the best classifiers used alone. Many experimental

pieces of evidence show that this is possible if the classifiers in an ensemble generate

varying predictions. This idea has a theoretical basis in specific situations, such as

linear combinations (Kumar, 2022).

Thirdly, for computational reasons: some algorithms carry out an optimization task

to discover local minima and suffer from them. To avoid finding locally optimal

solutions, the back propagation technique for neural networks, for instance, uses a

random initialization. Finding the best classifier is complex and is used to create

multiple initializations to find an optimal classifier. The fusion of such classifiers

stabilized and improved the best single classifier result (Breve et al., 2007).

Finally, some applications need to utilize more than just a single classifier; for

instance, in sensor fusion, a set of learners are required. The availability of classifiers

14

that have varying abilities in various feature subspaces and the difficulty of building

a pattern of classifiers by adjusting parameters are necessary (Chen et al., 2019).

2.3 Constructing Ensembles

An ensemble is constructed in two steps. To begin with, a large number of base

learners are created in a parallel structure, as demonstrated in figure 2.2. All

classifiers are run separately, and the results are combined using a combination rule,

such as taking the average or using weighted voting.

Figure 2.2: Independent (parallel) Combination of Weak Learners

In a sequential structure, a primary classifier is used. When the first classifier cannot

classify a new pattern because it was rejected, a second classifier is introduced that is

trained to be accurate on the errors of the first classifier. Using a third and fourth

classifier, and so forth, is an option, as depicted in figure 2.3. This way, less

iterations can be expected as errors reduce from level to level to the final classifier.

After that, the base learners’ results are combined, and a final optimal decision is

made by either taking a majority vote in case of classification or a weighted average

in case of regression (Pintelas & Livieris, 2020).

15

Figure 2.3: Sequential or Serial Combination

Bagging (Breiman, 1996) and boosting (Schapire, 1990; Freund & Schapire, 1996)

are two of the various ways that ensembles of detectors can be trained and integrated.

2.3.1 Bootstrapping and Bagging

Bagging, also known as bootstrap aggregation (Breiman, 1996), is a method that may

be used in both classification and regression. It uses bootstrap sampling to lower

variance and increase the accuracy of specific predictors. Bagging uses a base-

learning technique to train many base learners from a specific bootstrap sample. A

bootstrap sample is created by subsampling the training data set with replacement

and ensuring that the sample size is the same as the training data set. Some training

examples may appear in a bootstrap sample, while others may not, with the

probability of seeing an example at least once being around 63.2% (Bauer & Kohavi,

1999). After obtaining the base learners’ results, bagging combines them by taking a

majority vote, and the most-voted class is predicted. Bagging conventionally uses

classifiers of the same type e.g., decision trees. Figure 2.4 shows the bootstrapping

approach. Using bootstrap, produce several training samples z1…zn; then each is fed

to a weak learner Hm. A majority vote produces the final decision H(x).

16

Figure 2.4: The Bagging Approach.

The bootstrap procedure is as shown in algorithm 1:

Algorithm 2.1: Procedure for Bootstrapping

Bagging offers two key advantages over learning a classifier traditionally, that is,

from the entire training set: first, it improves classifier stability and accuracy, and

second, it lowers classifier variation. Algorithm 2 below depicts the bagging

procedure. Bagging, however, omitted the bias term and only reduced variance.

(Schapire & Freund, 1997) later developed an ensemble known as boosting to make

up for this shortfall.

17

Algorithm 2.2: Procedure for Bagging

2.3.2 Boosting

Boosting uses a different method of resampling than bagging. The weak learners are

created in stages, with examples that were incorrectly classified by previous

classifiers being chosen more frequently than those that were correctly classified.

The boosting procedure is listed in point in Algorithm 3 below.

Algorithm 2.3: Technique of Boosting

The training set is randomly partitioned into three partitions without replacement, as

shown in Algorithm 3, Z1∗, Z2∗, and Z3∗. For a given instance, if the first two

classifiers (H1 and H2) agree on the class label, this is the final decision for that

instance. The set of instances on which they disagree defines the partition Z3∗, which

is used to learn H3. Schapire has shown that this learning method is strong.

Furthermore, using this approach repeatedly can reduce the overall error. In other

18

words, each learner can serve as their boosting mechanism. Figure 2.5 shows the

boosting approach.
3 Boosting Algorithms: A Review of Methods, Theory, and Applications 7

Fig. 3.4 A graphical idea of the first boosting approach proposed in [94]. Notice that each learner

can be itself learned by the boosting algorithm in a recursive fashion.

accuracy of algorithms for learning binary classifiers, by combining a large number

of classifiers, each of which is obtained by running the given learning algorithm on

a different set of examples. As in [94], Freund’s new proposals also suffered from

several drawbacks, namely the need for a very large training set, due to the fact that

this set is divided into subsets.

3.2.4 Relationship Between Boosting, Bagging, and Bootstrapping

Fig. 3.5 shows the connection between bootstrapping, bagging, and boosting, focus-

ing on what they produce and how they handle the training data. The figure empha-

sizes the fact that these three techniques are all built upon random sampling, being

that bootstrapping and bagging perform sampling with replacement while boosting

does not. Bagging and boosting have in common the fact that they both use provide

a final classifier that is a majority vote of the individual classifiers.

In [28], a comparison of the effectiveness of randomization, bagging, and boost-

ing for improving the performance of the decision-tree algorithm C 4.5 [87] is pre-

sented. The experimental results show that for cases with little or no classification

noise, randomization is competitive with (and perhaps slightly superior to) bagging

but not as accurate as boosting. For situations with substantial classification noise,

bagging is much better than boosting, and sometimes better than randomization.

3.3 The AdaBoost Algorithm

After their initial separate work on boosting algorithms, Freund and Schapire pro-

posed the adaptive boosting (AdaBoost) algorithm [46], [47], [49]. The key idea

behind AdaBoost is to use weighted versions of the same training data instead of

Figure 2.5: A Boosting Approach

2.3.3 Adaptive Boosting (Ada-Boost)

(Freund, 1996) proposed a boosting algorithm called adaptive boosting, based on,

and improving, the ideas presented by (Schapire, 1990). By integrating multiple

classifiers, each of which is acquired by applying a specific learning method to a

separate collection of instances, he increases the accuracy of learning binary

classifiers. Adaptive boosting uses weights of instances of similar training data in

place of random subsamples. Due to the fact that the training set is utilized

repeatedly, its size is not critical. To create the final classifier, AdaBoost uses a weak

learner to learn a group of classifiers. Using reweighted copies of the training data,

the weak classifiers are designed successively, with the weights based on the

performance of the prior classifiers. In this manner, the weak learner concentrates on

patterns that the preceding weak learner failed to classify at each iteration accurately.

This is illustrated in algorithm 4 below:

The adaboost algorithm pseudocode (Freund, 1996)

1. Given examples (x1, y1), … , (xn, yn)

where: yi = 0, 1 for negative and positive examples respectively.

2. Initialize weights wi = 1/2M, 1/2L for yi = zero, one respectively

19

Algorithm 2.4: Adaptive Boosting

Where; M, L are the no. of negatives & positives.

3. For r = 1 to R

a) Normalize w, to ∑ i=1:n wi = 1

b) Choose classifier hj, with the lowest error εj : εj = ∑i wi | hj(xi) – yi |.

c) Update the weights for each example:

4. The final strong classifier is:

Because of normalization, the number of iterations increases, and the error rates

increase, which leads to smaller α values for weak learners selected later in the

training process. The final classification function is the sum of the predictions of the

selected weak learners multiplied by the corresponding α values.

Figure 2.6: Adaptive Boosting Algorithm.

In figure 2.6, a distinct weighted copy of the training examples is used to train each

weak learner. The final prediction is a product of those weights with a majority vote

from the selected weak learners that were adaptively trained on the weighted

examples.

20

2.2.4 Stacking

Stacking combines numerous detectors by learning a meta-level (or level-1) model

based on the decisions of the base-level (or level-0) classifiers. The output of the

detectors for a test instance, along with the true class of that instance, forms a meta-

instance. After that, the meta-instances are used to train a meta-detector, and all the

training data is used to train the base-level classifiers. When a new instance must be

classified, the output of the base-level classifiers is computed first, followed by the

output of the meta-level classifier, which yields the final result (Aggarwal, 2017).

The algorithm 5 below summarizes stacking.

Algorithm 2.5: Staking Algorithm

Two main challenges when handling an ensemble of heterogeneous base detectors

are: selecting what detectors to use as base learners and combining the detectors’

outcomes into a single final decision.

2.4 Selecting Detectors

A simple method is an evaluation and selection where each model is evaluated

typically using the 10-fold cross-validation on the training set and selecting the best

one on the test set (Tsoumakas et al., 2014). Other research proposes selecting a

learning algorithm based on its performance in similar learning domains. Training

21

meta-instances are produced by recording the predictions of each algorithm, using

the whole training data both for training and testing. Performance data is generated

using m k-fold cross-validations and averaging the m evaluations for each training

instance. Although every ensemble combines multiple detector outcomes into a

single decision, their building paradigms usually differ in the diversity generation

mechanism among the base learners and the strategy of combining them.

2.5 Combining Detectors

Since base learners may make mistakes in different instances, strategically

combining them can reduce the total error (Khullar, 2015). Therefore, diversity

among the base detectors is one of the key issues in ensemble formation. The

homogeneous formation is the popular approach where different sets of the original

training dataset are used to train other instances of one base classifier, for example,

in bagging and boosting. These formations could be biased to some specific

characteristics of the dataset because of their training using a single type of base

learner. These formations could be biased to some specific characteristics of the

dataset because of their training using a single type of base learner. Using different

base learners to create an ensemble is one approach for introducing diversity, i.e., a

heterogeneous ensemble, which is beneficial for learning other characteristics of the

training dataset.

The other critical point is the combination of base learners’ outcomes into a final

decision. There are numerous combination approaches, such as majority voting,

weighted majority voting, summation, product, maximum and minimum, fuzzy

integral, Dempster-Shafer-based fusion, or decision templates (Zhao et al., 2019).

Voting, unweighted or weighted, are two main methods for combining not only

Heterogeneous but also Homogeneous models (Sabzevari et al., 2022). In voting,

each model generates a class value (or ranking, or probability distribution), and the

ensemble proposes the class with the most votes (or the highest average ranking or

average probability). The winning class must receive at least 50% (the majority) of

the votes. In contrast to majority voting, weighted voting assigns each model a

coefficient (weight), which is often equivalent to its classification accuracy.

22

2.6 Outlier Detection

Outlier detection is the process of identifying patterns in data that differ from what

would be considered normal behaviour (Aggarwal, 2021). Outliers are detected by

analyzing the system's events, where each event is designated by a data instance.

Features (i.e., attributes) are used to describe the data instance. The ability to

distinguish normal from deviant is reliant on features.

Hawkins defines an outlier as “an observation that deviates so substantially from

other observations as to provoke suspicion that a separate mechanism generated it”

(Hawkins, 1980). In most literature, authors have described an outlier as an

observation that “appears to be inconsistent” with the remainder of a data set; this is

the main problem when dealing with outliers. Outlier detection methods try to solve

this problem using different approaches, including statistical and probabilistic

knowledge, distance and similarity-dissimilarity functions, metrics and kernels,

accuracy when dealing with labeled data, association rules, properties of patterns,

and other specific domain features.

2.7 Key Aspects of Outlier Detection Problem

Exploring the invisible data spaces is a significant obstacle in outlier detection.

Finding the outlying points by computing a measure of normalcy or ordinariness

with respect to their nearby points is an easy way to locate outliers. However, several

aspects make this very challenging. (Bii, Rimiru & Mwangi, 2020) described seven

factors: (i) it is quite challenging to define a normal zone that includes every

conceivable normal activity. (ii) Normal behaviour frequently evolves, therefore a

current understanding may not be accurate in the future.

(iii) The line separating a normal point from an outlier is frequently blurry, making it

possible for the outlying point to be normal and vice versa. (iv) Every application

domain imposes a unique set of criteria and limitations, hence the precise definition

of an outlier varies for each. (v) Labelled data for training or testing is not always

available. (vi) It might be difficult to define normal behaviour when outliers are

caused by malicious behaviour because the malicious opponents adjust to make the

23

outlying observations seem normal. (vii) Noise is present in most data and simulates

the actual outliers, making it difficult to separate and eliminate.

Due to these difficulties, the majority of outlier detection algorithms introduce

numerous elements, such as the nature of the data, the characteristics of the outliers

that need to be found, the significance of the normal, etc. The aspects are, in most

scenarios, determined by the application domain in which the technique is applied.

For these reasons, numerous approaches to the outlier detection problem have been

investigated across multiple fields. e.g., data mining, statistics, information theory,

and machine learning. Narrowing down Hawkins’s concept, for example, two major

outlier detection techniques were derived: distance-based techniques and density-

based techniques. While density based strategies identify data points located in a

lower density area than their closest neighbours, distance based techniques identify

data points far from their nearest neighbours (Xu et al., 2022).

2.8 Ingredients of Outlier Detection

The first ingredient of any outlier detection technique is taking into account the

data’s characteristics, the outliers’ characteristics, and the limits and rules that form

the problem design. Secondly is the application area in which the technique is to be

used. Some techniques target particular domains, while others are general and are

developed in a more general way. Finally, the concepts and ideas from one or more

knowledge disciplines are non-trivial (Merza, 2021).

2.8.1 Type of Outliers

Point outliers, contextual outliers, and collective outliers can be categorized based on

the number of data instances included in the idea of outliers.

2.8.1.1 Point Outliers

A point outlier is a data instance that has an anomaly but is not part of a larger

dataset. For example, a system event occurs when a user attempts to visit a restricted

server. Point outliers do not fit the situations where outlying behavior is an aggregate

24

of data instances (Merza, 2021). Figure 2.7 illustrates point outliers. N1 and N2 are

regions of normal behavior; Points o1 and o2 are outliers.

2.8.1.2 Contextual Outliers

These are data points that are considered anomalous in a particular context. Each

data point is defined by contextual and behavioural attributes (Aggarwal, 2021).

Examples are the time of day, season, and geographical location. Figure 2.8

illustrates contextual outliers. T1 is normal, but T2 is an outlier.

Figure 2.7: Point outliers

Figure 2.8: Contextual Outliers

Figure 2.9: Collective Outlier - showing an anomalous subsequence

2.8.1.3 Collective Outliers

It defines a group of instances that exhibits an anomalous behavior compared to the

other groups of instances (Merza et al., 2021). An individual instance is not

necessarily anomalous on its own. Collective outliers are meaningful only when the

data has spatial or sequential nature (Aggarwal, 2021). Sequence outliers are

25

presented sequentially (Figure 2.9). E.g., an unusual sequence of commands could

signal malicious action that jeopardizes system security.

2.8.1.4 Vector Outliers and Trajectory Outliers

Vector outliers are detected in vector-like data representations, such as relational

databases. The data is presented in tuples, each of which has its attributes. Based on

numbers, the data collection can be split into low-dimensional or high-dimensional

data (Zhang, 2008). Trajectory outliers are characterized by key movement features,

such as the average, minimum, and maximum values and velocities. A weighted sum

distance function is defined to compute the difference in trajectory based on the key

features (Knorr et al., 2000).

2.8.2 Type of Input Data

The type of data for input to a detection technique is vital. Every data instance is

described using a set of attributes called features, variables, fields, dimensions, or

characteristics. They might have a single characteristic (univariate) or numerous

attributes (multivariate), which can be binary, categorical, or continuous. Any outlier

detection technique's goal is to identify the ideal combination of features that will

enable the detection algorithm to produce more accurate findings while consuming

fewer resources.

2.8.2.1 Point Input Data

If input data has no structure amongst its instances, they are referred to as point data.

Algorithms taking point data sets are found in the medical records outlier detection

domain (Barai & Dey, 2017).

2.8.2.2 Sequential Input Data

If data instances are ordered, i.e., defined sequentially in a data set, they’re sequential

data. E.g. time-series data (Javier, 2017).

26

2.8.2.3 Spatial Input Data

When data instances have a well-specified spatial structure, i.e., the location of a data

instance with respect to other data is significant and well specified, they are spatial

data. For example, ecological data (Larson & Moore, 2022).

2.8.2.4 Spatio-Temporal Input Data

Data instances can be structured to have temporal or sequential component, they give

rise to Spatio-temporal data, for instance, the climate data (Wu et al., 2008).

2.8.3 Type of Detection

In order to build a predictive model, a training data set is required. The labels

associated with a data instance signify if that instance is normal or an outlier. And

based on the extent to which these labels are utilized, outlier detection techniques are

categorized on whether labeled instances of outliers can be obtained or whether the

objects can be assumed as normal or outliers. Within each category, there are

methods for detecting and evaluating outliers. The techniques under user-labeled

instances are supervised, semi-supervised, and unsupervised techniques. Algorithms

for supervised learning use labeled data to find outliers, where records are classified

as “normal” or “outlier”. Since unsupervised learning approaches use unlabeled data,

outliers (and normals) are unknown (Carter, 2019). Concerning detecting outliers on

the assumption of normal data versus outliers, the techniques used include clustering,

statistical, and distance-based or proximity techniques. Figure 2.10 summarizes the

techniques under this section.

2.8.3.1 Supervised Outlier Detection

Supervised detection approaches use examples and rules to identify characteristics

distinguishing normal behaviour from an outlier. Each new observation is given a

class, one of the two. The supervised method could be faced with the problem

associated with an imbalance class where the outlier datasets may be observed to be

the minority class.

27

This can be alleviated by re-sampling the dataset by either under sampling the

majority normal classes or oversampling the minority outlier classes. Alternatively,

artificial or synthetic data sets for outlier classes can be generated to boost the

number of outlier samples. The performance assessment metric should be based on

recall and receive operating characteristics rather than accuracy (Sun et al., 2019).

2.8.3.2 Semi-supervised Outlier Detection

A semi-supervised method combines the advantages of both supervised and

unsupervised methods. If there are some labeled normal items, the labeled examples

and nearby unlabeled objects can be utilized to train a model for normal objects.

Outliers are data objects that do not fit the model of normal items in this context

(Ruff et al., 2019).

Outlier detection techniques

Statistical Spectral Information

theoretic

Machine Learning Streaming

Parametric Non-parametric Supervised Unsupervised

Gaussian

Regression

Mixture

Histogram

Kernel fn-based
Regression Classification

Nearest Neighbour

Naïve Bayes

SVM

Rule based

Distance Based

Density Based

Clustering

Hidden Makov Model

KMeans, KMedoids,

Fuzzy, CMeans

Neural Networks

Gaussian Mixture

Decision tree

Linear Rg, Neural Nets

Figure 2.10: Taxonomy of Outlier Detection Techniques

28

2.8.3.3 Unsupervised Outlier Detection

Unsupervised detection methods rely less on rules or examples and more on data

distribution. Based on a version of this distribution, the data distribution and

unsupervised algorithms find outliers in datasets. As a result, these algorithms do not

require tagged instances, which makes processes like fraud detection more realistic

since the information is not readily available. The two underlying presumptions for

this detection are that outlying behaviour may be distinguished from normal

behaviour and that the number of “normal” records is significantly higher than the

number of “outlier” records. One of the main challenges and weaknesses of the

unsupervised method of outlier detection is the failure of the method to detect

collective outliers effectively. This is explained by the fact that while normal items

may not exhibit strong patterns, a group of outliers may exhibit great similarities in a

restricted space. For instance, routine activities vary in some intrusion or virus

detection systems, and unsupervised methods may have a high false-positive rate but

still miss many true outliers. The clustering method for detecting outliers can be

affected by the presence of noise in the dataset since it is hard to distinguish between

noise and outliers. Unsupervised algorithms for outlier detection have the advantage

of spotting previously unknown outlier records (Zhao & Hryniewicki, 2018).

2.8.3.4 Statistical Outlier Detection

According to Amil, (2019) statistical outlier detection techniques depend on the

statistical approaches that assume a distribution to fit the given dataset. Data is

assumed to be generated following established distribution models like Gaussian

mixture, Poisson distribution, etc. Statistical approaches presume that outliers are

data that do not fit a statistical model, such as a stochastic model, and that normal

data do. Whether the data support the statistical model’s underlying assumption

determines their effectiveness. They use discordance tests depending on data

distribution parameters like mean, variance, etc. A drawback of statistical techniques

is that the method assumes that the data modeled consists of a single feature or

attribute and that data distribution follows a known distribution. It is vital to note that

real-life data may consist of multivariate high-dimensional objects whose statistical

29

distribution model may not be prior known or difficult to establish. Statistical

techniques can model parameterized or non-parameterized data (Amil et al., 2019).

2.8.3.5 Parametric Outlier Detection

The parameterized technique, like the Mahalanobis distance technique, is the

distance between two points in multivariate space. It measures distance relative to the

centroid - a point in multivariate space where all means from all variables intersect.

The bigger the distance, the further the data point is from the centroid. Between two

objects, the Mahalanobis distance is calculated as:

d (Mahalanobis) = [(XB – XA)T * C-1 * (XB – XA)]0.5 Equation (2.1)

Where XA and XB are two objects, and C is the sample covariance matrix.

The disadvantage here is the inverse correlation matrix needed for the calculations,

which can’t be calculated if variables are highly correlated (Hamid, 2019).

2.8.3.6 Non-parametric Detection

With non-parameterized techniques, the model of normal data is learned from input

data without any prior structure. Histograms are used to detect outliers. A problem

faced in the structure of histograms is the establishment of appropriate bin sizes.

Where the bin size is too small, the normal object can be observed as in outlying bins

or being empty, resulting in a false positive. Where the bin size is too large, the

outliers can be observed in some frequent bins resulting in a false negative. By using

kernel density estimation to determine the probability density distribution of the data,

the histogram's bin size issue can be resolved (Jiawei et al., 2012). The object is most

likely normal if the predicted density function is high; otherwise, it is an outlier.

2.8.3 Distance based Outlier Detection

Knorr and Ng (1998) introduced the concept of local neighborhood or k-nearest

neighbors (kNN) of the data points. KNN uses the distance to the kth nearest

neighbors of every point, denoted as Dk, to rank points so that outliers can be

30

discovered and ranked. Formally, given k and n points, a point is an outlier if the

distance to its kth nearest neighbor is smaller than the corresponding value for no

more than n − 1 other point. Importantly, the distance-based methods require a user

to specify a distance threshold. Figure 2.11 shows the steps of determining the class

of a new instance using KNN. There are three algorithms under this category, namely

index-based, nested-loop, and cell-based algorithms (Xu et al., 2022).

In the nested loop, for any object o, calculate its distance from other objects and

count the number of other objects in the r-neighborhood. If other objects are within r

distance, the inner loop is terminated; else, o is an outlier. In cell-based, also called

grid-based, an attempt is made to improve efficiency by reducing the computation

cost of objects in the data set. Rather than evaluating each object, it evaluates groups

of objects. The grid-based method partition the data space into a multi-dimensional

grid. Each cell is a hypercube with a diagonal length. It applies the process of

pruning using the level-1 & level 2 cell properties, i.e., for any possible point x in

cell C and any possible point y in a level-1 cell, dist(x,y) ≤ r; and for any possible

point x in cell C and any point y such that dist(x,y) ≥ r, y is in a level-2 cell.

31

Figure 2.11: K-Nearest Neighbour with k=3

In Shaikh and Kitagawa’s (2012) work, managing and mining outlier data was

becoming vital with the increased use of devices responsible for generating outlier

data, e.g., sensors. Their work extended the notion of distance-based outliers for

outlier data of Gaussian distribution. Since the distance function for Gaussian

distributed objects was computationally costly, they proposed a cell-based approach

to accelerate the computation.

The work of (Angiulli et al., 2010) and (Chander et al., 2022) surveyed a distributed

method for detecting distance-based outliers in large data sets. They talked about a

modification to the fundamental technique that decreases the quantity of data needed

to be exchanged to decrease communication costs and increase overall runtime.

32

2.7.3.8 Density-Based Outlier Detection

Density-based methods find outliers in spatial data, where outliers are objects having

a low local density of an object’s neighborhood of objects. The definition of the

spatial neighborhood is based on Euclidean distance and graph connectivity

(Aggarwal, 2017). Breuning (2000) proposed a more robust scheme than distance-

based schemes, focusing on local outliers compared to their local neighborhoods

instead of the global data distribution. The density around an outlaying object

significantly differs from the density around its neighbors. It involves examining the

local density of the point being studied and the local densities of its nearest

neighbors. Figure 2.12 illustrates the density-based outliers, where O1, O2 represent

local outliers in C1, while O3 is global, and O4 is an inlier.

Figure 2.12: Density-based clusters and outliers

Liu and Cao (Liu et al. 2018 and Cao et al. 2014) examined the problem of density-

based local outlier detection on outlier data sets described by discrete instances. They

proposed a density-based local outlier concept based on uncertain data. The local

outlier factor (LOF) is described in terms of an object's reachability distance and

local reachability density. From figure 2.13, the reachability distance from o’ to o is:

reachdistk (o←o′) = max{distk(o), dist(o, o′)} Equation (2.2)

where: k is a user-defined parameter and local reachability density of o is:

 Equation (2.3)

33

hence, LOF of an object o is the average of the ratio of lrdk (o) and o’s k-nearest

neighbors:

 Equation (2.4)

The lower the lrdk(o) and the higher the local reachability density of the kNN of o,

the higher LOF. This way, a local outlier whose local density is relatively low

compared to the local densities of its kNN is captured.

Figure 2.13: Determining Local Outlier Factors (LOF)

In a nutshell, distance-based approaches counter the limitations of statistical

approaches. E.g., Manhattan or Euclidean metrics measure the distances between

pairs of points. Their effectiveness depends on the proximity measure. The advantage

is that, unlike distribution-based methods, distance-based methods are non-

parametric and do not rely on any assumed distribution to fit the data (Zhao et al.,

2019). The disadvantage is that they are ineffective in high-dimensional space due to

the curse of dimensionality, noise, and abnormal deviations that may be rooted in

lower-dimensional subspaces that cannot be observed in the full data space.

2.8.3.9 Clustering-based Outlier Detection

Clustering-based outlier detection approaches presumptively assign outliers to small

or sparse clusters or none, while normal data are assumed to belong to large, dense

clusters. Prior to the initial iteration, K-Means initializes k centroids. Every other

34

iteration involves assigning each data point to the closest centroid, which is followed

by a calculation of a new cluster mean, which serves as the new centroid. The model

is said to be stable when the previous iteration's centroid equals the present iteration's

result. When the size of the data increases, it uses linear time complexity and

converges to a local minimum. On the other hand, k-means clustering is highly

sensitive to outliers and cannot be perceived as robust. Whereas k-means clustering

selects the mean of a cluster as a centroid, k-median selects the median. Hence k-

median clustering is a more robust technique for outlier detection (Angelin &

Geetha, 2020). It minimizes every point's 1-norm distance (Manhattan) to its

assigned cluster centroid. A local minimum of the Manhattans distance between the

centroid and its assigned points is reached by computing the sum of differences

between two vectors in a dimensional space.

Some advantages of using the clustering method include: data labels are not required,

it works for many types of data, clusters can be viewed as summaries of the data, and

once the clusters are obtained, you need only to compare any object against the

clusters to determine whether it is an outlier. However, many researchers disagree

and claim that clustering algorithms shouldn’t be viewed as outlier detection

techniques because their sole goal is to organize the objects in a dataset so that

clustering functions can be optimized. The purpose of removing outliers from a

dataset using clustering is to lessen their negative impact on the clustering output,

which contrasts with the various definitions of outliers in outlier detection, which are

more objective and independent of how clusters in the input dataset are identified.

The critical variation between clustering and density-based methods is that clustering

methods segment the points, whereas density-based methods segment the space. In

nearest neighbor methods, the distance of each data point to its nearest neighbor is

determined, while in clustering, the first step is to use a clustering algorithm to

determine the dense regions of the data set. Secondly, a measure of the fit of the data

points to the different clusters is used to compute an outlier score for the data point.

35

2.8.3.10 Sliding Window Technique in Outlier Detection

The sliding window is utilized in this method for streaming data. The sliding window

is correctly selected, and the window size is not based on the data point. This strategy

is ineffective since certain outliers were viewed as inliers in another window (Kaur &

Garg, 2016).

2.8.3.11 DSS and LDSS Techniques in Outlier Detection

Outlier detection in large data sets can be accomplished using distributed

methodologies such as the Distributed Solving Set (DSS) and Lazy Distributed

Solving Set (LDSS). Although the DSS method has a supervisor node, other nodes

concurrently do its core calculation, and the partial result synchronises once the work

is finished. In Lazy DSS, subsets of the nearest neighbours are computed for each

node, starting with the smallest, and sent to the supervisor node (Angiulli et al.,

2010; Chander et al., 2022). Table 2.1 compares various outlier detection algorithms.

36

Table 2.1: Comparisons of Outlier Detection Techniques (Thudumu et. al., 2020)

 Technique

Efficiency

(L=Low;

A=Average

H=High)

Computational

Cost (L=Low;

Avg=Average;

H=High)

Scalability

(N=No;

Y=Yes)

Application

High

Dimensional

Data (N=No;

Y=Yes)

1 Statistical Based

Outlier Detection

L H N Statistical N

2 Depth Based Outlier

Detection

L H N Statistical N

3 Distance Based

Outlier Detection

A L Y According to the

distance between

each point

Y

 4 Density Based

Outlier Detection

H H Y Local density

neighborhood of

the data points

Y

5 Clustering Based

Outlier Detection

H L Y Basing on the

data clusters

Y

6 Classification Based

Outlier Detection

H L Y Normal training

data

Y

7 Sliding Window

technique for outlier

detection

L H Y Streaming Data Y

8 DSS & LDSS

detection techniques

H L Y Large/high

dimensional

datasets

Y

2.8.4 Outlier Detection Methods in High Dimensional Data

In statistics, a dataset’s dimensionality is the number of attributes, and when there are

several attributes, the dataset is said to be high dimensional, and computations

become very challenging (Kamalov, 2020). The number of features may be more

than the number of observations in high-dimensional data. The curse of

dimensionality refers to what happens when more variables are added to a

multivariate model. The more dimensions added to a data set, the more difficult it

37

becomes to predict certain quantities. In these cases, the traditional outlier detection

approaches such as PCA are ineffective. Distance and probability density metrics are

created to calculate the differences between one object and the other, but they lose

meaning across the entire space in high-dimensional datasets (Tang, 2015).

As dimensionality increases, the range between the nearest and farthest neighbors

gets closer. Adopting techniques based on the nearest neighborhood, will result in

outlier scores close to one another. Therefore, identifying outliers in different

subspaces becomes an option for solving practical outlier detection problems.

Subspace selection and outlyingness measurement are the two main issues examined

in the majority of studies on subspace outlier detection. On the basis of the various

assumptions, many subspace selection techniques have been presented. As standard

outlier identification procedures, distinct metrics are created for different reasons.

Using statistical approaches, Keller et al. (2012) selected subspaces with high

contrast. Kriegel et al. (2009) explained the outlyingness of a data object in a

subspace made up of its nearest neighbors. Muller et al. (2008) created a data

object’s outlier score using the dimensions of the relevant reference cluster. SOD, a

technique to identify data objects that do not fit well into their axis-parallel

subspaces, was first introduced by Kriegel et al. in 2009. A reference point that spans

the axis-parallel subspace of a data object o shares at least n of its k-nearest

neighbours with that of o is said to be the reference point. Here, n and k are two user-

input parameters; n is the bare minimum of neighbours a reference point and o must

share, and k is the minimal number of neighbours a data object must take into

account. The variation of reference points in each dimension and the distance

between the outlier and the mean values of the reference points in each dimension

are used to determine the outlier score of o. Additionally, Rehman et al. (2020)

provided a method to evaluate the contribution of a few chosen subspaces when an

item deviates from the area indicated by the closest cluster. The chosen subspaces are

designed to offer a clear distinction between the object and its immediate

surroundings, which are modelled as a collection of objects within a given radius.

The selected radius depends on the subspace. It calculates an overall outlier score for

a selected object that only considers contributions from subspaces where the object

has a noticeably low density (twice standard deviations from the mean). An

38

adaptable neighbourhood that expands in accordance with the amount of features in

the subspace is used to overcome the difficulty of calibrating density metrics in

various subspaces. The caliber of the chosen subspaces and the suitability of the

adopted outlyingness measurements determine how efficient subspace identification

approaches are (Rehman & Khan, 2020).

2.8.5 Output of Outlier Detection

A key requirement for any outlier detection technique is the manner in which the

outliers are reported. Guo et al. (2018) address two reporting techniques:

2.8.5.1 Labelling Techniques

Each test case is given a label (normal or outlier). The methods operate as

classification algorithms; given a set of instances for the test input, they output a set

of outliers and a set of typical instances. Such methods have the advantage of giving

a precise set of outliers. The disadvantage is that they do not rank various outliers or

distinguish between them. A 0-1 judgment isn’t useful as a weight is typically

connected to an outlier in a trend.

2.8.5.2 Scoring Techniques

Depending on how much a pattern is thought to be an outlier, these techniques give it

an outlier score. So, a ranked list of outliers is the result. The top few outliers may be

examined, or outliers may be chosen using a cut-off criteria. The decision of the

threshold to select a set of outliers is the drawback of a ranked list of outliers since it

requires random selection and is not simple to execute.

2.8.6 Evaluation of Outlier Detection Technique - Performance

Evaluation metrics are defined from a matrix with the number of examples correctly

and incorrectly classified for each class, called a confusion matrix. The binary

classification problem’s confusion matrix (which has only two classes - positive and

negative), is shown in Table 2.2.

39

Table 2.2: Confusion Matrix

 Predicted Class

Actual Class Positive Negative

Positive TP FN

Negative FP TN

False positives (FP) are examples detected as positive, whose true class is negative.

False negatives (FN) are examples detected as negative, whose true class is positive.

True positives (TP) are examples correctly predicted as positive and are actually

from the positive class. True negatives (TN) are examples correctly predicted as

belonging to the negative class.

2.8.6.1 Accuracy Measure (Acc.)

The accuracy rate (Acc.) evaluates the effectiveness of the classifier by its percentage

of correct predictions. It determines how close the measurement comes to the

quantity's true value. Equation (2.5) shows how accuracy is calculated:

 Equation (2.5)

Where; |X| denotes the cardinality of set X.

2.8.6.2 Error Rate (Err.)

The error rate is the complement of accuracy defined as (Err) in Equation (2.6). It

evaluates a classifier by its percentage of incorrect predictions. Acc and Err are

general measures and can be directly adapted to ensemble outlier detection.

 Equation (2.6)

40

2.8.6.3 Sensitivity / Recall (R) and Specificity (Spe.)

Sensitivity or recall (R), or true positive rate, is the proportion of examples belonging

to the positive class which was correctly predicted as positive. The specificity (Spe)

is the percentage of negative examples correctly predicted as negative. R and Spe are

shown in Equation (2.7) and Equation (2.8) as:

 Equation (2.7)

 Equation (2.8)

2.8.6.4 Precision (P)

Precision (P) is a measure that estimates the probability that a positive prediction is

correct. It is given by Equation (2.9) and may be combined with the recall originating

from the F-measure. A constant β controls the trade-off between the precision and

the recall, as in Equation (2.10). Usually set to 1.

 Equation (2.9)

 Equation (2.10)

2.8.6.5 Mean Squared Error (MSE)

MSE is used to evaluate individual detectors and ensemble as a whole. It measures

the squared difference between predicted and actual values, with lower MSE values

indicating better performance. Adaptive ensembles use MSE to monitor and adjust

the contribution of individual detectors to improve accuracy by giving more weight

to those performing well and reducing the influence of those not (Johnson, 2022).

41

2.8.6.6 ROC

Receiver Operating Characteristic which relates R and spe, give way for the

comparison of models by showing False Positive Rates on the X-axis, the probability

of target=Y when its true value is N, against True Positive Rate on Y axis, the

probability of target=Y when its true value is Y.

2.9 Bias-Variance Trade-off for Outlier Detection

As quantification of bias-variance necessitates labeled data, the bias-variance trade-

off is effectively explained in the context of supervised learning, for example, in

classification. However, as there is no ground truth available, outlier detection

problems must be tackled using unsupervised methods. By considering the dependent

variable (actual labels) as an unobserved variable, the bias-variance trade-off can be

measured. Most anomaly detection methods produce ratings for the data points'

anomalousness, unlike classification. By converting the anomalousness scores to

class labels, these anomaly detection techniques could be thought of as two-class

classification problems with a majority class (normal points) and an uncommon class

(anomalous points) (Rayana & Akoglu, 2016). The points which achieve scores

above a threshold are considered anomalies and get label 1, and those below get label

0. However, deciding a threshold is difficult for heterogeneous detectors as they

provide scores with different scaling and ranges. Fortunately, there exist unification

methods that turn these anomalousness scores into probability estimates to make

them comparable without altering the order of the data points (Gao & Tan, 2006;

Kriegel et al., 2009).

The bias-variance trade-off for outlier detection could be explained using concepts

from classification because the unsupervised outlier detection problem now

resembles a classification problem with only real unobserved labels. According to

Rayana and Akoglu (2016), the expected error of outlier detection can be separated

into two main categories: irreducible error and reducible error, that is, noise). The

accuracy of the detector can be improved by minimizing the reducible error.

Additionally, the reducible error can be divided into two types: (i) error resulting

from squared bias and (ii) variance-related error. While reducing both of these types

42

of errors, there is a trade-off. The difference between the prediction of the target

model and the average models is the bias given as:

 Equation (2.11)

Such that, returns the predicted value of by the fitted weak/base learner or

model ; and returns the average of all the predicted values of predicted using

all possible models fitted over all possible samples.

Variance is the difference between the mean of the obtained values and the

predictions of each model obtained from various samples. This gives information of

how much the models from the sample vary from the mean model.

 Equation (2.12)

Where, returns the predicted value of using the estimated (predicted) model

on the sample. Noise is defined as the irreducible error that a model cannot predict.

In defining bias-Variance trade-off, two parts are necessary: bias-variance noise

decomposition and bias-variance complexity tradeoff.

In considering a true function , where is normally distributed with

zero mean and standard deviation σ, and given a set of training sets , an

unknown function is fitted to the data by minimizing the squared

43

error . So that, given a new data instance with the observed

value , the objective is to understand the expected

error . Thus, expected error is broken down as bias, variance and

noise such that:

Expanding the error;

 =

Equation (2.13)

The predicted error comprises three components, bias, variance, and noise, according

to Equation (2.13). The learning algorithm is mostly to cause the reduction in bias,

which results from the discrepancy between the average and the best prediction. The

variance, which is the discrepancy between any prediction and the mean prediction,

is frequently introduced by utilizing several training sets. Since the difference

between the ideal prediction and the true function is so small, the noise is frequently

insignificant. Typically, this noise is difficult to reduce as it is always unknown.

44

Hence the expected error becomes fairly equal to the sum of the squared bias and

variance, as shown in Equation (2.14).

Expected error Equation (2.14)

It is clear that when complexity (i.e., the number of weak learners) increases, the bias

of an ensemble decreases and the variance of a model increases. This supports the

claim in the work of (Rayana et al., 2017). Bias, variance, and complexity all have a

close relationship as depicted in Figure 2.14. There is a trade-off between the three

components and from this point; the ideal model complexity can be established.

Furthermore, the bias as well as variance can be the least since the combination of

both can reach the lowest in the error curve as shown in figure 2.14.

Figure 2.14: Bias, Variance, and Ensemble Complexity

The bias and variance trade-off could be conceptualized as follows:

(i) A detector with low bias is particularly flexible in fitting data well and will fit

each training set differently, yielding high variation; and

(ii) The rigid detectors will have low variance and perhaps high bias.

45

The objective is to increase accuracy as far as possible by minimizing both bias and

variance while enhancing the outlier ensemble approach by adding the concept of

complexity in the ensemble formation (Bii, Rimiru & Mwangi, 2020).

2.10 Bias Variance Reduction Methods

Outlier ensemble learning tries to reduce the variance by combining different base

detectors. An approach proposed by (Lazarevic & Kumar, 2005) created an ensemble

to find outliers in high-dimensional, noisy datasets using randomly chosen feature

subsets from the original features. (Prasada et al., 2020) used various training data

subsamples to create an ensemble of trees to identify outliers based on the length of

the path from the root to the leaves. (Aggarwal, 2017) discussed algorithmic trends,

classification, and key components of outlier ensembles, such as base model

diversity and model combination. (Zimek et al., 2013), without discussing the

subsample selection, the subsampling technique was investigated analytically and

empirically, and results were enhanced by layering an ensemble of subsamples on

top of one another. (Aggarwal & Sathe, 2015) elaborated the concepts of

classification borrowed into outlier detection, the bias-variance trade-off theory, and

clarified some subsampling techniques. It further suggested some improved

subsampling and feature bagging methods.

On base detector fusion, Rayana and Akoglu, (2015) presented unsupervised

strategies to select a subset of trusted detectors while omitting inaccurate ones in an

unsupervised way. It further proposed a method (CARE) that incorporates either

sequential or parallel framework building blocks to reduce bias and variance (Rayana

et al., 2016). These two phases correspondingly involve (i) consecutively eliminating

outliers from the dataset to build a better data model on which outlierness is

estimated (sequentially) and (ii) combining the results from individual base detectors

and across iterations (independently). (Jiang et al., 2022) selects strong learners by

AUC scores and introduces a Meta learner (stacking) to improve predictions and

reduce bias.

46

2.11 Theories Underlying Outlier Detection Ensembles

Outlier detection ensembles are ML techniques used to identify anomalies or outliers

in data. They typically combine multiple outlier detection algorithms to improve the

accuracy and robustness of the results. The main theories applied in this study

underlying outlier detection ensembles are:

2.11.1 The Diversity Theory

The Diversity Theory suggests that combining outlier detection methods that are

diverse in terms of their underlying assumptions, feature selection techniques, and

decision rules can lead to better detection accuracy and robustness. This is because

the diversity in the methods helps to cover a wider range of possible outlier patterns

and reduces the risk of false positives and false negatives (Liu et al., 2018).

2.11.2 The Decision Fusion Theory

The Decision Fusion Theory proposes that combining the decisions of multiple

outlier detection algorithms can lead to better results than any individual algorithm.

This is achieved by using a voting scheme, where each algorithm gives a vote for the

presence or absence of an outlier, and the final decision is made based on the

majority of votes (Kandhari et al., 2018).

2.11.3The Meta-learning Theory

The Meta-learning Theory suggests that a meta-classifier can be trained to combine

the outputs of multiple outlier detection algorithms. The meta-classifier is trained on

a labeled dataset of both normal and outlier instances and learns to predict whether a

new instance is an outlier or not based on the outputs of the underlying algorithms

(Rayana, 2016).

These theories can be applied in various ways to develop outlier detection ensembles.

For example, Liu et al. (2014) proposed a method called Copula-Based Outlier

Detection (COFOD), which combines multiple outlier detection methods using a

clustering-based approach that maximizes diversity. Kandhari et al. (2018) developed

47

an ensemble method called Outlier Ensemble Detection (OED), which uses a voting

scheme to combine the outputs of multiple outlier detection algorithms. Rayana

(2016) proposed a meta-learning approach called Meta Outlier Detection (MetaOD),

which trains a meta-classifier on the outputs of multiple outlier detection algorithms.

2.12 Related Works to the Proposed Problem

According to the research on classification ensembles, combining the outputs of

many heterogeneous base algorithms will reduce the ensemble's overall variance

(Aggarwal & Sathe, 2015). This is also true for outlier ensembles. Contrariwise, this

combination does not provide enough ground for reducing bias in the outlier

ensemble. For an ensemble to outperform its constituent classifiers in classification,

two fundamental requirements must be met: (i) the base classifiers must be accurate

(better than random), and (ii) they must be diverse (making uncorrelated errors)

(Brownlee, 2019). Getting better-than-random accuracy in supervised learning is

easy, and studies have shown that ensembles frequently perform better when the

models are significantly diverse (Zhao et. al., 2019).

An ensemble based on diversity (Div-E) was proposed by (Schubert et al., 2012). For

anomaly ensembles, it is unreasonable to assume that all detectors will be somewhat

accurate (i.e., better than random), in contrast to classification ensembles, as some

may not be able to recognize the (type of) anomalies in the given data. The diversity-

based strategy Div-E would probably produce subpar results if inaccurate detectors

existed since it is prone to choosing inaccurate detectors for the sake of diversity.

The Full-Ensemble (Full-E) chooses all of the detector findings and then all of the

consensus outcomes to aggregate at both stages (Rayana & Akoglu, 2017). It is thus

a naive method that, in the face of unreliable detectors, is likely to produce subpar

results. Base detectors and consensus methods are arbitrarily chosen in selective

ensemble procedures to produce the outcome. By doing this, the algorithms that are

not chosen are eliminated and do not affect the outcome. Estimating

detector/consensus result weights and using a weighted rank aggregation technique

to combine the findings are alternatives to utilizing binary selection criteria.

48

In order to improve the relative influence of individual detectors on the final ranking

by learning relative weights wi for the individual rank lists, (Klementiev et al., 2007)

previously suggested an unsupervised learning algorithm called ULARA for this type

of rank aggregation (where P ni=1 wi= 1) (Rayana & Akoglu, 2015). Their strategy is

informed by the idea that each individual rank list’s relative contribution to the final

ranking should be decided by how frequently it agrees with other rank lists in the

pool. Large relative weights are assigned to rank lists that concur with the majority,

whereas small relative weights are assigned to rank lists that do not. The total

deviation from the average ranking of the various data points is used to calculate the

agreement. Therefore, the objective is to distribute weights in a way that minimizes

the overall weighted variance.

The bias-variance decomposition approach was employed in studies by Rayana,

Zhong, and Akoglu (2017) that sought to better understand the theoretical

underpinnings of ensemble performance. Initially, (Tumer & Gosh, 1996) provided a

framework for analyzing the simple averaging combination rule based on

manipulation used in bias-variance decomposition, stating that the ensemble error

will be M times smaller than the error of the individuals if the classifiers are

statistically independent and just equal to the average error of the individuals if the

classifiers are correlated. When low-biased detectors with high variance are

combined, the variance can be decreased, and when low variance detectors are

combined, the bias can be decreased.

The SELECT technique by Rayana and Akoglu (2015) is based on the presumption

that there are erroneous detectors out there that, when paired with accurate ones, can

harm the ensemble as a whole. By using a pseudo-ground truth algorithm that

averages the outputs for a vertical selection and uses majority voting for a horizontal

selection among the many detectors, each of which may have biases in different

directions, the method eliminates the inaccurate detectors. In order to lessen bias and

variance and hence increase accuracy, it carefully chooses detectors and combines

their outputs in another two steps.

49

As stated in the reduction of bias and variance, the other three techniques (Full-E,

Div-E, and ULARA) can fall short of producing results that are more accurate than

SELECT. Full-E damages the final ensemble because it mixes all of the base

detectors’ output, including the biased ones. ULARA determines relative weights

depending on how well the detectors agree with one another, although it does not

completely ignore detectors with significant bias. Just for the sake of diversity, Div-E

chooses the more diverse detectors, which ultimately means choosing the ones with

greater bias, lowering the accuracy as a whole. The SELECT strategy is heuristic

since it cannot be relied upon to deliver the best result for various datasets. As a

result, it may act unexpectedly for some data sets. Bias reduction in unsupervised

learning, such as outlier detection, is a challenging task, and adopting the heuristic

method to accomplish short-term objectives is quite reasonable to increase accuracy.

Prasada et al. (2020) combined both point and global outlier detection methods and

proposed a method which handles data having imbalanced classes, which enhanced

the performance of outlier detection but did not consider complete elimination of

bias and variance. Other works, like MEOD (Jiang et al., 2022) select strong learners

by their AUC scores and introduce a Meta learner by stacking method to improve

predictions. This method was able to reduce ensemble bias and variance because of

two levels of base learner combination. Of importance is that it agreed that different

detection methods can be used together to detect outliers and reduce overall bias.

Christy et al., (2015) proposed a technique where two algorithms are used for outlier

detection. They suggested the use of distance-based outlier detection and cluster-

based outlier detection algorithm as an ensemble. The later proved better than the

former method.

According to Ma et al. (2021), large dimensional data does not make it difficult to

identify outliers using distance-based techniques. It is widely believed that distance-

based approaches identify all locations about equally as good outliers as the

dimension of the data grows (Ma et al., 2021). Feldbauer and Flexer (2018) offered

evidence to support the assertion that such a perspective is overly simplistic in their

study on nearest neighbors in unsupervised distance-based outlier detection. They

showed that in high-dimensional environments, distance-based techniques could

50

provide more disparate outlier scores. The ensemble bias and variance were not their

main concerns (Feldbauer & Flexer, 2018).

In order to identify outliers, Yan et al. (2016) developed a novel hybrid approach

called pruning-based K-nearest neighbor (PB-KNN), which combines the density-

based, cluster-based, and K-nearest neighbor algorithm (KNN). The detection

efficiency of KNN decreases with increasing data size. The PB-KNN method

significantly reduces and prunes data dimensionality for outlier detection,

outperforming the k-nearest neighbor (KNN) and local outlier factor (LOF) in terms

of accuracy and efficiency, according to experimental results. When forming an

ensemble, however, it does not take the learners’ order or the bias-variance

perspective into account (Yan et al., 2016).

All of the current attempts to create outlier ensembles either integrate the results

from every base detector (Zhang et al., 2016) or enhance detector diversity to

increase the likelihood that individual errors will be made (Shebuti, 2017; Kriegel et

al., 2018). The concept of data locality in DCSO (Zhao & Hryniewicki, 2018) and

dynamic learner fusion in (Wang & Mao, 2019), and learner combination methods in

LSCP (Zhao et al., 2019) emphasized the importance of data relationships in local

domains and showed that outliers could be global and local.

SVM is another effective algorithm for classification tasks. Its key advantage is its

ability to generalize better by maximizing class margins. It tries to find the decision

boundary that maximizes the distance between the nearest data points of different

classes. By doing so, it improves the separation of data classes through contrast,

making it easier to distinguish between them. It is also less susceptible to overfitting,

as it focuses on finding the most significant features of the data. Overall, SVM has

proven useful in various applications, from image recognition to text classification,

and its principle can be borrowed into outlier detection tasks (Cervantes et al., 2020).

(Jaw, 2021) however, suggests that neither of these strategies would work well in the

presence of inaccurate detectors as combining all outcomes, including inaccurate

outcomes, deteriorates the overall ensemble performance.

51

Table 2.3: Critique of work done for outlier detection ensembles

Author Year Approach Findings Weaknesses

Feldbauer &

Flexer

2018 Nearest neighbors

in unsupervised

distance-based

outlier detection

Distance-based techniques

may provide more disparate

outlier scores in high-

dimensional environments.

Does not completely

ignore detectors with

significant bias.

Shebuti 2017 Enhancing

detector diversity

Enhancing detector diversity

increases the likelihood that

individual errors will be made.

Chooses inaccurate

detectors for the sake of

diversity.

Zhao &

Hryniewicki

2018 Dynamic

Classifier

Selection

Data relationships in local data

domains are important for

outlier detection.

Did not consider bias-

variance perspective

Aggarwal &

Sathe

2015 Classification

Ensembles

Combining outputs of many

heterogeneous algorithms

reduces overall variance.

Not adaptive in training

its learners

Rayana &

Akoglu

2017 Full-Ensemble Base detectors and consensus

methods are arbitrarily chosen

It is likely to produce

poor results in the face

of unreliable detectors.

Rayana, Zhong,

& Akoglu

2017 Bias-Variance

Decomposition by

V-Select and H-

Select

Variance can be decreased

when low-biased detectors

with high variance are

combined, and the bias can be

decreased when low variance

detectors are combined.

Does not consider high

dimensional data.

Training is not

adaptive, hence does

not utilize errors of

other learners.

Zhao et al 2019 Dynamic learner

fusion

Outliers can be both global

and local.

Not adaptive

Brownlee 2019 Classification

Ensembles

For an ensemble to

outperform its constituent

classifiers in classification,

the base classifiers must be

accurate and diverse.

Does not utilize

unsupervised

approach to outlier

detection which is key

Prasada et al. 2020 Combined Point

and Global

Outliers

Enhanced performance of

outlier detection.

Does not consider

elimination of bias

and variance.

Ma et al. 2021 Distance-based

techniques

Use of distance-based

algorithms enhances outlier

detection.

Does not consider

ensemble bias

Jiang et al. 2022 Stacking of the

outputs of base

detectors

Able to reduce ensemble bias

and variance using two

levels of learner fusion.

It is not adaptive in its

training approach.

2.13 Research Gap

Effective ensembles for outlier detection are still one of the challenging tasks in

machine learning and data mining. Existing outlier detection ensembles utilize either

parallel or sequential combination structures to fuse multiple detectors (weak base

learners) in order to, hopefully, improve the overall detection performance by taking

52

a joint overall result (majority vote) from the detectors. The parallel or independent

combination of base detectors is intended to reduce variance, while the serial or

sequential combination is intended to reduce bias. The literature review has shown

that there is no general approach for completely reducing the bias or variance or

ensemble complexity problem. Detecting outliers is a difficult task because outliers

are not only always very few but also mimic true labels in a dataset. Some learners

may provide inaccurate results in an outlier detection ensemble, which may decrease

the ensemble's overall performance, especially in the case of outlier datasets lacking

ground truth. This depends on the type of data and the underlying rules of each

learner. One of the directions of addressing the bias-variance dilemma is to study the

underlying nature of the data. This way, both local and global outliers are considered.

It is also vital that once outliers are discovered, a contrast between them is

maximized to improve detection efficiency. More research is needed for the ever-

challenging and emerging outlier problems in real-life applications. The review

established that combining different base detectors in an ensemble induces diversity,

enabling learning of different data characteristics and discovery of new information.

2.14 Chapter Summary

The literature has surveyed ensembles for outlier detection and methods for bias-

variance decomposition. The review found that the goal of detection is to accurately

predict the target class for each case in the data. Outlier detection is an unsupervised

problem that requires unsupervised learning. The most commonly used learning

algorithms have been discussed. The review found that different algorithms perform

differently, and the choice of datasets may affect the performance of the base

detectors. Some of the algorithms reviewed include distance-based metrics like KNN

and density-based metrics like LOF. Different combinations of base detectors

through bagging, boosting, and stacking methods (ensembles) were also discussed.

The review found that ensemble techniques produce models that perform better than

individual algorithms used in constructing an ensemble. Outliers can be found in

dense regions, that is, local to the other data points or neighbourhoods, and also, they

can be global, that is, in far-off regions compared to other data. Identifying outliers in

53

local and global domains improve models’ accuracy. Outliers can be detected and

analyzed using different methods. The methods under user-labeled examples include

supervised, semi-supervised, and unsupervised methods. When detecting outliers on

assumptions about normal data or outliers, the methods used include statistical,

proximity, and clustering-based methods. An ensemble of several algorithms that

detect outliers in different domains improves outlier detection performance. The

review also established that existing outlier detection ensembles combined all base

model outcomes, including poor biased base models hurting the ensemble's overall

accuracy. The bias-variance dilemma or tradeoff is difficult since high bias can

reduce variance, and high variance can reduce bias. Most learning algorithms were

developed for binary classes and are biased towards certain points. The literature

found that the bias-variance dilemma can be handled by applying decomposition

techniques such as bagging, boosting, and stacking.

The literature review found that detecting outliers is difficult because the size of

outlier representation in most datasets is too small, and a large number of detection

algorithms were designed to be biased towards the prediction of the majority class

(inliers). Most outliers mimic true classes and are hard to identify. More research is

needed for the ever-challenging outlier detection problem in real-life applications.

Separating the margin between outliers and inliers can bring a contrast between the

two and can make outlier detection efficient.

The review found that outlier detection models and ensembles can be tested and

evaluated using different performance metrics. The common approaches for

evaluating the performance of classifiers include cross-validation, k-fold cross-

validation, random subsampling, confusion matrix, receiver operating curves

characteristic (ROC), and area under the curve (AUC). The review also found that

outlier detection has continued to be an active research field in data mining, and a

unifying framework of outlier detection methods does not exist. The review

concludes by providing the research gap identified in the study. The review study

established a need for further research in outlier detection methods for high-

dimensional datasets. The next chapter introduces the research methodology used in

this study.

54

2.15 Conclusion

Ultimately, this study’s goal is to enhance the performance and accuracy of outlier

detection by a hybrid heterogeneous classifier ensemble while reducing bias and

variance. The literature on ensembles demonstrates that merging results from

different base methods reduces the ensemble’s total variance, which is also the case

for outlier ensembles. However, due to the absence of ground truth, controlled bias

reduction is fairly challenging; hence this combination does not offer any evidence

for doing so. Some heuristic approaches for reducing bias and variance, like

SELECT, could build up the researcher’s concept. This method is considered a

hybrid ensemble. By translating the outlier-ness scores to class labels, the outlier

identification problem can be viewed as a binary classification task with a majority

class (inliers) and a minority class (outliers). Outliers with label 1 are the points with

scores over a certain threshold (label 0 for inliers below the threshold). The

unsupervised outlier detection problem is then transformed into a classification

challenge using only unobserved labels. The researcher was able to explain the bias-

variance trade-off for outlier detection using concepts from classification. Reducible

error and irreducible error are the two primary parts of the predicted error in outlier

detection (i.e., error due to noise). The reducible error can be reduced to the absolute

minimum to increase the detector's accuracy. The reducible error can be divided into

bias- and variance-related errors. While reducing both of these types of errors, there

is a trade-off. The degree to which a detector’s expected output deviates from the

actual label (unobserved) throughout training data is known as the detector’s bias.

The predicted difference between a detector’s output from one training set and its

expected output from all the training sets is called a detector’s variance.

55

CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

In this chapter, the study’s methodology is explained. The first section provides an

overview of the research methodology used. The second section describes the

methods for data collection and pre-processing. The third section entails a detailed

description of the proposed method. The chapter comes to a close with an

introduction to the next chapter.

3.2 Methodology

The Cross-Industry Process for Data Mining was employed in this research. This

methodology outlines a process for planning a data mining project in a structured

manner. It is a reliable and consistent approach comprising six stages that are all

linked together. Business understanding comes first, followed by data understanding,

data preparation, modeling, evaluation, and deployment. The first through the fifth

stages follow a loop pattern because of the complexity involved in data mining. The

looping processes ensure that the outcomes are not only consistent but also reliable.

Stage one is about understanding the business goals as it emphasizes stating the

objectives or aims of a project in general. In relation to this study, the objectives

below were put forward:

(i) To find out what classifiers constitute weak learners for constructing

the base (detectors) for the outlier detection ensemble.

(ii) To identify different combination sequences or fusion strategies

(order) from the selected base learners for the outlier detection

ensemble.

(iii) To create a model for outlier detection that utilizes multiple weak

learners in a hybrid ensemble structure to provide improved

performance and accuracy while prioritizing the minimization of bias,

variance, and classifier fusion order.

56

(iv) To evaluate the developed ensemble model for outlier detection

accuracy.

The second stage is data understanding. This stage starts with data collection,

followed by tasks that enable the identification of data quality issues, data insights,

and detection of interesting patterns, which form hypotheses for hidden information.

In this study, we adopted secondary datasets from the Outlier Detection Datasets

(ODDS) library of Stony Brook University (Rayana, 2016), New York. Section 3.3

provides a detailed description of the datasets.

The third stage is data preparation, also known as the data preprocessing stage. This

stage encompasses all activities that transform the initial raw data into a final cleaned

dataset ready for analysis. It has four major steps: step one is data consolidation,

which involves data collection, data selection, and data integration. The second step

is data cleaning, which involves imputing all missing data values and eliminating the

noise and inconsistency in the data. Step three is data transformation. Details of this

step are discussed in section 3.4. The fourth step is data reduction, which entails

feature reduction and data resampling. In this study, feature reduction was based on

the importance of features as determined by their weight.

In phase four, modeling techniques are chosen and applied to a ready dataset to solve

specific business needs. As part of the process of developing a new model, existing

models are assessed and compared. In this study, an outlier detection model was

proposed, as discussed in section 3.5.

The fifth phase is model testing and evaluation, where the models' accuracy and

generalizability are assessed to ensure that they generalize well against unknown

data. Data tables, charts, and other visualization techniques are frequently used to

interpret knowledge patterns. Several experiments were carried out in this study to

evaluate the models' performance, as discussed in Chapter 4.

The last phase is model deployment, which involves code writing and execution. It

entails configuring the model code for scoring, classifying, or categorizing

previously unseen data, as well as creating a mechanism for incorporating that data

into the solution of the original business problem. The coded model should follow all

57

the steps discussed above to generate an executable model that transforms new

unprocessed data in the same way as was during its development. Figure 3.1 below

illustrates the cross-industry standard process for data mining.

Figure 3.1: Cross-industry Standard Process for Data Mining

3.3 Data Collection Approaches

3.3.1 Dataset Description

This study focused on outlier detection; hence, outlier detection datasets from ODDS

were adopted. The study used 10 multidimensional datasets, i.e. 3 digits datasets, 1

alphabet dataset, 4 medical datasets, 1 time-series dataset, and 1 biological dataset.

These datasets had both high and low dimensionality. Each of them is explained

below:

(i) Mnist Dataset

The MNIST dataset originally included 60,000 handwritten digits spanning from 0 to

9 for training and 10,000 for testing. In a gray-scale image with a size of 28px

(height) x 28px (width), each digit is normalized and centered. The digit-0 class is

sampled as inliers, and 700 images from the digit-6 class are sampled as outliers,

58

transforming it for outlier detection. In addition, 100 features are randomly selected

from a pool of 784.

The classes have samples represented as:

Class 0 (digit 0) 6903 (90.793%)

Class 1 (digit 6) 700 (9.207%)

A total of 7603 images were sampled, of which digit 6 with 700 (9.207%) images

was considered a rare/outlier class.

(ii) Letter Dataset

The original letter dataset included 26 capital letters in the English alphabet

represented in 16 dimensions. To transform it for outlier detection, three data letters

are randomly selected to represent the normal class, and then their pairs are joined

randomly, doubling their dimensionality. A few letters that don't fit into the normal

class are randomly selected for the outlier class. 1500 normal data points and 100

outliers (6.25%) are sampled across 32 dimensions. Class samples are represented as:

Class 0 1500 (93.75%)

Class 1 100 (6.25%)

A total of 1600 data points were sampled, of which class 1 with 100 (6.25%) samples

was considered as rare/outlier class.

(iii) Cardio Dataset

Expert obstetricians divided fetal heart rate and uterine contraction scans into 3

groups in the Cardio dataset: pathogenic, normal, and suspect. The pathologic class

of 176 (9.61%) was converted into outliers for the purpose of outlier detection, the

normal class was considered as inliers, and the suspect class was discarded. The

dataset has 21 attributes, 2 classes, and 1831 instances.

The classes have sample representations as follows:

Class0 (normal) 1655 (90.387%)

59

Class1 (pathologic) 176 (9.612%)

Class2 (suspect) 295 (discarded)

Pathologic class was considered a rare/outlier class and was down sampled to 176

points, while the suspect class was discarded.

(iv) Breastw Dataset

Breast Cancer Wisconsin (breastw) contains records of scans for breast cancer cases.

It has two classes: benign and malignant. It is a 9-dimensional dataset containing 683

instances, of which 239 represent malignant tumors and were taken as the outlier

class. The classes have samples represented as:

Class0 (benign) 444 (65.01%)

Class1 (malignant) 239 (34.99%)

(v) Ann Thyroid Dataset

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing

instances. The issue is determining whether or not a patient referred to the clinic is

hypothyroid. Hence, three classes are created: normal, hyperfunction, and subnormal

functioning. For outlier detection, both training and testing instances are used. The

normal class is used as inliers, while the hyperfunction and subnormal classes are

considered outliers. The dataset consists of 7200 instances, 3 classes, and 6 real

attributes. The classes have samples represented as:

Class0 (normal) 6666 (92.58%)

Class1 (hyper function) + Class 2 (subnormal) 534 (7.42%)

Class 1 (hyper function) and class 2 (subnormal) were both considered as outliers.

(vi) Pima Dataset

The original Pima dataset for diabetes is a dataset for binary classification. The

selection of examples from the wider database was subject to a number of restrictions

including; all patients being female, at least 21 years of age, and of Pima heritage. It

60

has 8 attributes, 2 classes, and 768 instances, of which 268 (34.9%) are considered

outliers.

The classes have sample representations as follows:

Class0 (normal) 500 (65.105%)

Class1 (diabetic) 268 (34.895%) - outliers

(vii) Vowels Dataset

The original Vowels dataset is a multivariate time series data with 9 male speakers’

utterances of two Japanese vowels, ‘a’ and ‘e.’ A single utterance gives a time series

range of lengths 7-29, with every point consisting of 12 features. For the purpose of

outlier detection, each frame in the training set is treated as a separate data point. 50

(3.43%) outliers (Class 1-Speaker) are included in the sample. Classes 6, 7, and 8 are

regarded as inliers, while other classes are disregarded. The ODDS dataset has 12

attributes, 2 classes, and 1456 instances. Classes have sample representations as:

Class0 (Class6 + Class7 + Class8) 1406 (96.566%)

Class1 (speaker) 50 (3.434%)

Class1 (speaker) was considered as the outlier.

(viii) Thyroid Dataset

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing

instances. The issue is determining whether or not a patient referred to the clinic is

hypothyroid. Hence, three classes are created: normal, hyperfunction, and subnormal

functioning. For outlier detection, only the training instances are used. The normal

and subnormal classes are used as inliers, while the hyperfunction class is considered

outliers. The dataset has 6 real attributes, 3 classes, and 3772 instances. The classes

have samples represented as:

Class0 (normal) + Class 3 (subnormal) 3679 (97.534%)

Class1 (hyper function) 93 (2.466%)

61

Class 1 (hyper function) was considered as outliers.

(ix) Pendigits Dataset

The original Pen-Based Recognition of Handwritten Digits (pendigits) dataset has 16

features and classes 0 to 9. A collection of 250 samples from 44 writers, of which

samples from 30 writers are taken as training and cross-validation data while the rest

are for testing. For outlier detection, the original collection of handwritten samples is

reduced to 6,870 points, of which 156 are outliers. The quantity of objects in one

class, digit-0, is decreased by 10% because all classes have similar frequencies. The

classes have sample representations as follows:

Class0 (digits1-9) 6714 (97.729%)

Class1 (digit-0) 156 (2.271%) – outliers

Digit 0 was taken as the outliers.

(x) Optdigits Dataset

The original Optical Recognition of Handwritten Digits (Optdigits) is a multi-class

classification dataset that includes inliers made up of the instances of digits 1 through

9, and outliers made up of the instances of digit 0, which are down-sampled to 150.

The dataset has 5,216 instances with 64 attributes and two classes with sample

representation as follows:

Class0 (digits 1-9) 5066 (97.14%)

Class1 (digit-0) 150 (2.86%) - outliers

Table 3.1 shows a summary description of the datasets. The details of the datasets

and scatter plots are presented in appendix1.

62

Table 3.1: Summary Description of Datasets Used in the Study

Dataset Dim (d) Inst. (n) Normal Outliers Frequency (%) Attribute

Mnist 100 7603 6903 700 0.0921 (9.21%) All numeric

Letter 32 1600 1500 100 0.0625 (6.25%) All numeric

Cardio 21 1831 1655 176 0.0961 (9.61%) All numeric

Annthyroid 6 7200 6666 534 0.0742 (7.42%) All numeric

Pima 8 768 500 268 0.3490 (34.9%) All numeric

Vowels 12 1456 1406 50 0.0343 (3.43%) All numeric

Thyroid 6 3772 3679 93 0.0247 (2.47%) All numeric

Pendigits 16 6870 6714 156 0.0227 (2.27%) All numeric

Breastw 9 683 444 239 0.3599 (34.9%) All numeric

Optdigits 64 5216 5066 150 0.0286 (2.86%) All numeric

3.4 Data Preprocessing

The datasets used in the study were first converted into comma-separated values

(CSV) files from their original mat format using the python command. The CSV files

were then loaded into Python programming language. Python comes with several

useful libraries and frameworks for data analysis. NumPy, SciPy, and Scikit libraries,

in particular, are used for scientific calculations, advanced computations, and

learning data mining and data analysis. In all ten datasets, there were no missing

values. Numerical and categorical features were sorted out, and identical columns

where all data points had the same values were removed. Further preprocessing

entailed data normalization since the data were not a distribution and the features

also had negative values occurring frequently. The data was standardized (rescaled)

to between 0-1. The weak learners were all based on distance metric, that is, K-

Nearest-Neighbours, and therefore feature scaling was important. Otherwise, features

with a large range would have greatly influenced computing the distance. To retain

outliers in the datasets, Feature scaling using python standardizer was used to

maintain the outlier relationships. This was done by subtracting the mean value from

63

all values and dividing it by the standard deviation. The resulting variable had a

mean of zero and a standard deviation of 1, and most importantly, not skewed by

outliers, and the outliers were still present with the same relative relationships to

other values. Afterwards, the entire dataset was randomly shuffled to reduce the risk

of learning models with a single class. For all models, k nearest neighbours were set

to a minimum of 10 and a maximum of the square root of n, where n is the number of

instances in a dataset.

3.5 Proposed Method

This work proposed the development of a hybrid model for outlier detection utilizing

heterogeneous weak learners to provide improved performance. It proposed an

optimized adaptive boosting technique for outlier detection. This method combined a

set of heterogeneous weak learners to obtain an optimized composite model that

provided more accurate and reliable predictions than a single model. It used weighted

versions of a single training dataset combined with random subsampling. The

training dataset needed not to be as large as that required by many other methods.

Successive weak classifiers (detectors) were trained using reweighted copies of the

training instances based on the earlier classifiers' accuracy. Error rates were

computed in the context of an instance’s local neighbours rather than the global

training set. Testing focused on local domains or regions within a training dataset. At

every iteration, the training instances were weighted according to the

misclassifications (errors) of previous classifiers and parameters optimized. This

allowed weak learners to focus on poorly classified patterns by previous classifiers.

The final result was a fusion of carefully selected results from individual learners.

The main steps in the proposed method are presented in Algorithm 1. Step 1:

Different detection algorithms (base detectors) were selected with unique measures

to score individual vectors. Step 2: Using a selection approach, a subset of the

detector results were chosen. Step 3: The chosen results were fused using different

fusion methods to create intermediate aggregate outcomes. Step 4: Subsets of the

outcomes from Step 3 were selected. Step 5: The selected subset of outcomes was

fused. In a nutshell, the method entailed the creation of heterogeneous weak learners

64

that would become the base detectors for the ensemble, assessing the capability or

competency of each weak learner/base detector before fusion, selection of optimal

detectors, the fusion of selected base detectors, the building of a hybrid

heterogeneous model, and finally testing the model. To ascertain the presence of

outliers in our datasets, scatter plots were created, as depicted in Appendix AI.

3.5.1 Phase 1: Weak learners

The proposed outlier detection model uses different types of weak learners

(heterogeneous) to create a set of diverse base models. Heterogeneous weak learners

were selected because ensemble methods are very effective when base classifiers of

dissimilar types are used (Rayana, Zhong, & Akoglu, 2017). Based on the differences

between classifiers, the unique properties in data can be discovered or learned. When

base learners of the same type (homogeneous) are used, the advantages of learner

fusion are lost unless different data subsamples, parameters, or features are used for

training each classifier (Zhang et al., 2020). The proposed model uses different base

learners (heterogeneous) to construct a group of models to improve efficiency.

Distance-based and density-based methods were selected as unsupervised methods

for outlier detection, as discussed in section 2.7. This study concentrated on

unsupervised outlier detection methods, which score each individual data point and

allow ranking according to the likelihood that the point is an outlier. Motivated by

the critical importance of data locality and dynamic learner fusion in DCSO and

LSCP and the concept of heterogeneous detector formations in SELECT (as

discussed in section 2.11), we adopted a distance-based algorithm to detect global

outliers and a density-based algorithm to detect local outliers. The k-NN and LOF

algorithms were chosen as base algorithms because they are well established for

identifying outliers. The former is based on distance, while the latter is based on

density. Distance-based methods attempt to identify global outliers that lay far

(distant) from the rest of the data. Contrarily, density-based approaches attempt to

find local outliers that lay in less dense regions compared to their k-nearest

neighbours. Other algorithms, such as the distribution-based algorithms, were not

considered as they assume a distribution (Jiang & An, 2008). Furthermore, distance

65

and density-based algorithms have since outperformed distribution and cluster-based

algorithms in high-dimensional datasets (Papadimitriou et al., 2003).

The weak learners have two characteristics: high bias, that is, low degree of freedom,

and high variance, that is, too much degree of freedom. Through the combination of

several weak learners, ensemble methods aim to create a strong learner that performs

better by attempting to reduce bias and variance (section 2.9). Finding the best or

most appropriate weak learner from a vast pool of weak learners and enhancing the

performance of the final model based on the data at hand are the two key challenges

in weak learner selection (i.e., optimization or improvement). To overcome these

difficulties, a bias reduction-variance reduction trade-off was employed (section 2.9).

We point out that increasing the ensemble's complexity could lead to better model

selection and that an ensemble of the top models could enhance overall performance.

As stated in Chapter 2, the choice of an ensemble model that is efficient or high-

performing is based on the bias variance trade-off. By prioritizing the minimization

of these components, we obtained a criterion for determining a well-performing

ensemble. The goal of creating an ensemble using this trade-off is to improve the

overall performance on subsequent test data, that is, to better generalize results. As

previously noted, if the ensemble model is too sophisticated for the training data, it

will learn (memorize) certain data elements, such as noise and issues with the

underlying structure, leading to high variance and low bias. The detectors may show

low performance in the testing data or exhibit poor generalizations. However, where

the ensemble model is not sufficiently complex, in which case, it may be unable to

represent the underlying data structure regardless of the amount of data provided,

which results in excessive bias. Hence well-performing ensemble is a formation of

the minimization of bias, variance and the number of base detectors such that:

Detector selection = minimization_of (bias, variance, complexity)

In as much as the well-performing base learners can be selected using the bias-

variance trade-off criterion above, the base learners still do not necessarily generalize

well because of the challenges related to complex ensemble formations. For an

66

ensemble to detect outliers well, improving and optimizing the selected base learners

from the previous phase is necessary. This discussion is given in section 3.5.4.

The ensemble formation made it possible to increase generalization performance by

joining numerous dissimilar base learners and training them to do similar tasks. We

pointed out that the generalization error could be lowered if the base learners

(detectors) on which the averaging is done disagree or make different mistakes. For

our outlier detection ensemble model comprising of base learners

(detectors), ; its representation is such that;

Equation (3.1)

where, the detector coefficients are represented as , and as of the rth

base detector in section 3.5.2. For a test dataset , the

ensemble mean squared error (MSE) is defined as:

Equation (3.2)

By introducing the average detector the MSE was broken into

bias and variance in terms (Eq. 3.3, 3.4) such that:

Equation (3.3)

67

Equation (3.4)

Equations (3.3) and (3.4) enabled us to find out the effects of bias and variance in the

ensemble. It was evident that the bias term depended on the label , while the

variance was not the case. The variance term of the ensemble was broken down as:

Equation (3.5)

where the expectation was taken w.r.t. dataset . The first summation of Equation

(3.5) indicates the lowest boundary of the ensemble variance, which essentially is the

variance’s weighted average of base learners (detectors). The subsequent summation

encompasses multiplied terms of the base learners, which disappear when the base

learners become uncorrelated. Hence, the segment of interest in Eq. (3.5) was in the

second part so that the variance of the ensemble was lowered or reduced.

Equations (3.3) and (3.5) presented many possible ways that could be used to lower

the expected error of the outlier detection model anchoring on the bias-variance-

complexity paradigm. The following ways were implemented: (i) increased the

number of dissimilar-type base detectors with the train data to the greatest extent to

68

reduce bias, (ii) combined selected base detectors using different combination

methods to lower variance; and (iii) maintained a suitable computational complexity

of the overall model. This way, the overall model improved accuracy by lowering the

expected error by the rational trade-off dispensation based on this bias-variance

reduction theory.

In defining a weak learner, a model is a weak learner if it shows a misclassification

rate lower than 0.5, i.e., () or predicts the class labels more accurately than

random guessing. Formally, given a dataset of

 size features that yields the hypothesis , for each ; and in

addition, with some small probability, the learner’s training error is slightly below the

one of a random guesser; and since the expected training error of a random guessing

learner is 0.5, it implies, that if error

Equation (3.6)

is true for every real such that , then signifies a weak hypothesis,

and the classifier is referred to as weak learner.

In the proposed method, the dataset of d size features is first divided into training

and testing sets as: to signify training data with data points, and

 to signify test data with points in the ratio 70%:30% respectively.

69

Next, a pool of heterogeneous base models is generated by

initializing the two weak learning algorithms (k-NN and LOF) using a variety of

parameter settings for each. Both of these algorithms use k number of neighbours and

a distance metric, which could be Manhattan or Euclidean. All base detectors are

then trained and used to classify outliers in . In this phase, an adaptive boosting

technique is adopted to create a strong learner from the weak learners that were

initialized. This technique samples a training set from the initial dataset

according to a uniform distribution, meaning the initial weight distributions are

given a value of , where is the number of training data. These weight

distributions are updated adaptively in each iteration based on prediction results.

Correctly predicted samples from weak learners receive low weights because they

are considered to be easy samples. Difficult samples receive higher weights. In this

manner, in the next iteration, the learners are able to focus on the difficult samples

and attempt to provide better predictions. The weighted error of each learner is

then calculated, as shown in Algorithm 6, Step 1, and (Eq. 3.12). The weak learner

with is discarded, as shown in Algorithm 1, Step 2. The learner with the

lowest error is selected and its outputs are used for future fusion (Algorithm 6, step

3). In Step 4 in Algorithm 6, every learner’s error rate is estimated using (Eq.

3.12) and a combination weight is calculated using (Eq. 3.14) for every learner.

The weighted coefficients of base learners are used to calculate the overall outputs.

The greater a weight is, the more influence the corresponding learner has on the

70

overall results. Therefore, over T iterations, the ensemble considers l weak learners

with different combination weights or weighted coefficients , as shown in

Algorithm 6, Step 5. The results of the selected base learners form an outlier score

matrix as follows:

,
Equation (3.7)

where is the score vector from the rth base detector. Each base detector score

 is normalized using the Z-norm function (Aggarwal, 2020)

as , where is the mean and is the standard deviation. This process

is summarized in figure 3.2 part A.

3.5.2 Phase 2: Establishing Weak Learners Local Domains

The proposed model assesses the capability or competency of each base detector

prior to fusion; but most outlier data have no actual labels or ground truth

information. Therefore, in Eq. (3.7) was utilized to generate a simulated

ground truth for (called target) using two methods: by mean denoted as

(ADAHO_Avg), averaging all scores, (Eq. 3.8) and by maximization denoted as

(ADAHO_Max), obtaining a maximum score across all detectors, (Eq. 3.9).

Equation (3.8)

71

Equation (3.9)

Both ADAHO_Max and ADAHO_Avg generate scores for training data, unlike the

conventional (generic) methods that take the global average, denoted here as

(G_AVG) and global maximization, denoted here as (G_MAX), and which only

generate scores for test data. An aggregation representing ADAHO_Avg or

ADAHO_Max (ADAHO_Avg ADAHO_Max) was then performed across all base

detectors to yield the , which is used for initial detector selection. Thus,

.
Equation (3.10)

In terms of precision, avgkNN yields better results than kNN, so it is used here for

selecting the local domain (Burnaev, Erofeev, & Smolyakov, 2015). For a test

instance , the local domain is derived as a set of its -nearest training objects

based on Euclidean distance (Zhao & Hryniewicki, 2018) as:

,
Equation (3.11)

where is the average of a set of a ’s nearest neighbours bound by

the ensemble. In an attempt to tame the curse of dimensionality, this technique was

adopted by borrowing the concept of feature bagging (Lazarevic & Kumar, 2005).

This process is captured in figure 3.2 part B.

Input: Dataset where: and y ; a set of

72

heterogeneous weak learning algorithms {L}; number of iterations T.

Initialize: a set of weights by setting

For rounds;

1. Fit/train using a weak learning algorithm to get a classifier (base detector)

: and calculate weighted error of for the training instance as:

,

where;

,

where indicates the neighborhood of the training instance and is an

indicator function such that:

.

2. If , set and go to 1.

(3.12)

3. 1st Selection: Goal: select with the lowest

4. Estimate the weighted error rate of this base detector for X as

.

(3.13)

5. Calculate the weighted coefficient of for detector as (3.14)

73

.

6. Re-weight and update examples (i.e., those incorrectly classified receive more weight

and those correctly classified receive less weight) as follows:

,

where is a normalization factor.

(3.15)

7. Iterate: for each test instance, output the outlier score of

 while (test instance in)

 { - Set local domain using kNN

- From , pick elements in to generate local simulated

while (detector in)

{ - Obtain outlier scores related to in the local domain (

- Using (1), assess the local competency of (i.e.,between and () }

- Do: score margin maximization as described in section 3.5.4

2nd selection: if (Maximization or Averaging)

{ Pick , where has the greatest Pearson correlation with }

74

else { Pick subgroup among similar base learners and

add to

fusion: if (AvgM or MaxA)

{ Output: } else

Output: }}

 } end while

Output: Final ensemble (strong) detector .

 ,

where is the Pearson correlation between the new test instance and training instance.

Algorithm 3.1: ADAHO_OAAE

3.5.3 Phase 3: Optimal Weak Learner / Base Detector Selection

In addition to the first selection that was based on the error rate of each weak learner,

a second selection was performed to filter out noisy outcomes by obtaining the local

simulated label for every test instance, where the values of with

respect to the local domain were used as follows:

,
Equation (3.16)

75

where is the size of The local training outlier scores (figure 3.2, part C)

were obtained from the previously generated training score matrix as

follows:

.
Equation (3.17)

To determine the competence of each base detector in a local domain, we calculated

the Pearson correlation similarity measure between the base detector score

 and simulated label This method was considered to be more

reliable for outlier detection because it used a similarity measure for evaluating

detectors instead of absolute accuracy (Schubert, 2013), which was helpful because

most outlier datasets were unpredictable and imbalanced. We then picked the base

detector with the greatest similarity measure relative to the optimal base detector

in a test sample and its outlier score was retained as an intermediate

result for later use.

3.5.4 Improving Detectors by Score Margin Maximization

The scores separate the anomalies from the rest of the data, resulting in high scores

for the former and low scores for the latter. A contrast between the two scores helps

distinguish the anomalies from the other data in a dataset. These scores, however, do

not usually represent a clear contrast between anomalies and the rest of the data, thus

the need for score optimization. This method creates a clear contrast by maximizing

the anomalies' scores and minimising the other data's scores. This clear contrast

between scores simplifies the problem of anomaly detection, making it more

effective. The adaptive score threshold (Clark, Liu, & Japkowicz, 2018) would be

76

ideal for separating anomalies from a dataset, but the anomaly scores do not always

match. Our method is inspired by the work in (Cervantes et al., 2020) as discussed in

section 2.11, which classifies data by determining the maximum margin separating

the hyperplane. This algorithm is effective and can better generalize by maximizing

class margins, which improves the separation of data classes through contrast. In this

context, we refer to this contrast as the score margin and use it in Equation (3.18).

3.5.4.1 Optimization Maximization

In order to bring a clear distinction between the anomalies and the rest of the data,

the anomaly score distributions of the two must have a positive margin (Reunanen,

Raty, & Lintonen, 2020). However, the analysed dataset, here initialized as ,

contains unknown anomalies that prevent accurate margin calculations. Therefore, a

robust measurement is necessary to establish the magnitude of the score margin. Let

 signify the normalized scores of the analyzed data of the th base model

and let signify the normalized scores of the known anomaly samples by

the th base model. We define the score margin as the

difference . The unknown or unseen anomalies present in

the dataset should not affect this difference, and so we introduce the median (MED)

value of the score distributions because it takes the 50th percentile of the distribution.

Since anomalies are rare and few by definition, using the median method provides a

robust measurement of the anomaly scores as it is not greatly affected by the

unknown or unseen anomalies in the dataset . For the th base model, its

optimization maximization is based on the values of the parameters that maximize

the distance between the medians of

77

 scores. By maximizing this score margin, base models are more likely to

distinguish between anomalies and the rest of the data, which improves the efficiency

of the overall model. We achieve this maximization through minimization of the

negative score margin using an objective function to be minimized for the th base

model as:

Equation (3.18)

In every loop, the base models are optimized, one at a time, and provided with

updated parameters that maximize the distances between the anomalies and the rest

of the data distribution scores. Most anomaly detection ensembles only select well-

performing base models for fusion (Xu et al., 2019); however, in our work, instead of

only selecting the well-performing base models, we first optimize their parameters

and then adaptively train them to detect anomalies before fusion. Our approach is the

first to explicitly optimize the parameters of the base models within an adaptive

framework for anomaly detection.

3.5.4.2 Diversity between Outcomes

The base model optimization by score margin maximization enlarges the contrast

between the scores of the anomalies and other data. It tries to improve the detection

accuracy of every base model. However, on top of this, the results of the base models

must also be diverse. Their errors should differ (Kriegel et al., 2009) in that they can

be fused into one model to address the shortcomings of the individual base models.

The contrast maximization equation (3.18) gives no assurance of diversity of

outcomes from the base models. To introduce diversity between the base models’

outcomes, we use equation (3.18) to account for the correlation and then adjust the

optimization to reduce it, similar to (Reunanen, Raty, & Lintonen, 2020). Applying

Pearson correlation shows the dependency between the score vectors

78

and of the th and th base models. For any two vectors (s, t), Pearson

correlation (Murphy, 2012) is defined as:

Equation (3.19)

where represents the covariance and the standard deviation. Once we

calculate the correlation between the base models’ scores, we take the average and

use it to measure the margin at that point. Thus, the final expression of the function

of the th base model takes the form:

Equation (3.20)

where represents the absolute value, represents the correlation measure,

represents the total number of base models, represents the optimization

maximization in equation (3.18), and represents the normalized scores

of the th and th base models respectively, represents the dataset with unknown

anomalies and represents the anomaly examples. Our function uses

primarily for two reasons: first, to create a contrast between the anomalies and other

data, and second, to obtain diverse outcomes from the models prior to final fusion.

79

3.5.5 Phase 4: Fusion of Base Detector’s Outcomes

Because our base detectors were heterogeneous, their scores varied in terms of range

and interpretation. Therefore, fusing scores directly would have been inappropriate;

hence an agreement was needed within the ensemble. Based on the literature (chapter

2), agreement methods could be grouped into two main categories: rank-based and

score-based methods. In rank-based methods, detector scores are ordered into ranked

lists, which make all detector scores equivalent and allow for easy fusion.

Aggregation is then performed to merge all of the scores into a single ranked list.

Similarly, score-based methods convert outlier scores into probabilities using either

exponential or Gaussian scaling based on posterior probabilities, regularization, or

normalization. This makes the outlier scores across different detectors comparable,

meaning a final score could be calculated via averaging or maximization. Because

rank-based aggregation yielded a relatively crude ordering of data instances (Rayana

& Akoglu, 2016), we adopted the score-based method, which converted outlier

scores into probabilities and provided binary classes for instances with probabilities

greater than 50% receiving a value of one (i.e., outliers) and those with probabilities

less than 50% receiving a value of zero (i.e., inliers). We then applied

ADAHO_MaxA to the top-h performing detectors with respect to their targets or

applied ADAHO_AvgM, where the average of h chosen detectors with respect to

their targets was taken as a subgroup score. The final score was obtained by taking

the maximum among all subgroup scores. To reduce bias, ADAHO_MaxA and

ADAHO_AvgM were used to reduce the risk of picking only the best-performing

base detector. The bias in the ensemble was significantly reduced by the fact that

only the top-h performing base detectors with respect to their targets were selected

and that the h detectors did not increase overall variance. The final result is a fusion

of carefully selected outcomes from different optimized

learners. Finally, after all E boosting ensembles were trained, the totals H(j)(x) were

combined and the sign[H (x)] taken as the decision label of point x . The modeling

process is depicted in Figure 3.2 (showing information flow from leaner creation to

fusion. Colors represent different stages. WkL are heterogeneous weak learners) and

the algorithm is summarized in figure 3.3.

80

Figure 3.2: Proposed ADAHO_OAAE Model Ensemble.

, ,

C. Select

optimal

learners:

Score margin

maximization

Compute

Pearson

correlation
between

and

 D. Fusion:

Max_Avg
Avg_Max

A. Base learner creation

Outlier score matrix

B. Establish labels (artificial) as target: either by Maximization or

Averaging as:

B*. Set local domain for each in , as set of its

training objects by Euc. dist. i.e.

Local sim. label:

Discard

…

Local train score:

Weight

Dataset 1

WkL1

Dataset 2

WkL2

Dataset n

WkLn

Weight

Weight

Weight

Dataset 1

WkL1

Dataset 2

WkL2

Dataset n

WkLn

Weight

Weight

Weight

Dataset 1

WkL1

Dataset 2

WkL2

Weight

81

3.5.6 Phase 5: Testing and Validating the Proposed Method

Phase 5 involved testing the performance of the proposed method. Several weak

learner combination methods were tested for outlier detection accuracy under

AUROC. The different error rates were monitored and compared with the weights

assigned to the weak learners in different training rounds. These error rates

represented either a reduction or an increase in either the ensemble’s bias or variance.

The bias and variance were monitored as different combinations were applied.

Stratified 10-fold cross-validation was used to validate the performance of the model.

The initial dataset was first partitioned into 5 subsets with an approximately equal

number of records in each subset. Each subset was used as the test partition, while

the remaining subsets were combined to perform the role of the training partition. A

paired T-test was employed for testing the difference in performances of the proposed

model and the selected baseline algorithms. The paired t-tests were used to determine

Figure 3.3: Summary of the Key Steps in Algorithm 6 (ADAHO_OAAE)

82

whether the difference between two algorithms was significant or not. The paired T-

test used a p-value set at 95% confidence interval. Several other tests were

performed, including testing the merit for including each model in the method and

the comparison of the method with the other well-known classification algorithms.

The final test involved comparing the performance of the proposed model with other

techniques for outlier detection. Values of ROC (Receiver Operating Characteristic)

were utilized to gauge the effectiveness of the classifiers. The model’s performance

was assessed using other metrics, including True Positive, Precision, Recall, and

AUROC scores.

3.6 Experimental Set Up

A heterogeneous outlier detection model was created using the proposed method

discussed in section 3.5. The identification and qualification of appropriate but

different types of weak learners for the heterogeneous ensemble for outlier detection

were made. Both distance and density-based methods were selected. Experiments

were done to prove the advantage of combining multiple learners as compared to just

one. Also, further experiments were done by combining different kinds of weak

learners and comparing their results to homogeneous combinations, as described in

3.5.1. To assess the capability or competency of each weak learner prior to fusion,

tests at level 1 (weak learners), as described in 3.5.2, were done. The competencies of

each base detector in their local domains were evaluated, as discussed in section

3.5.3. Optimization of base models was done to enlarge the contrast between inliers

and outliers, as illustrated in 3.5.4. Because our model used weak learners of different

types, i.e. heterogeneous, their outcomes were not combined directly. Several fusion

techniques were compared in order to combine the weak learners. This is described in

3.5.5. A heterogeneous ensemble model was created and validated as described in

section 3.5.6.

 Experiments carried out included the following:

(i) Establishing the initial bias and variance of different kinds of weak

learners (heterogeneous) combinations over the selected datasets.

83

(ii) Finding out the different error rates and various weight coefficients

assigned to the weak learners over the different rounds of training so

as to weed out those with high error rates.

(iii) Selecting and combining best performing or optimal learners and their

overall effect in outlier detection performance.

(iv) Testing outlier detection performance by AUROC of the proposed

method.

(v) T-Statistical test of proposed model verses other existing models

(vi) Comparisons of performance of proposed method and other existing

algorithms in terms of kernel density estimates.

We contrasted the effectiveness of the suggested combination techniques with other

existing combination techniques to reaffirm the performance of outlier detection. We

also assessed the effectiveness of the suggested method with other existing ensemble

formations such as ALOI (Schubert et al., 2013), BASE (Micenkova, McWilliams,

and Assent, 2014), SELECT (Rayana & Akoglu, 2016) and ADAHO (Bii, Rimiru, &

Mwangi, 2020) in order to demonstrate the superiority of the proposed method. The

first two formations are symbolically referred to here as ALOI and BASE because of

their relative design with respect to our proposed method. The results of the

experiments were presented in the form of tables and graphs. Details of the

experiment results are shown and discussed in Chapter 4.

3.7 Chapter Summary

This chapter presented the methodology known as Cross-Industry Process for Data

Mining which provides a structured method for planning and executing a data mining

project. The description of the datasets and the preprocessing process have been

discussed. A detailed explanation of the proposed heterogeneous ensemble method

for outlier detection has been provided. In a nutshell, for a given set of data in , an

outlier detection ensemble was built using , that is, weak learners were

84

grouped into boosting ensembles, each of which comprised weak learners.

Basically, the ensemble had two levels: the first, or low level, contained all weak

learners, and the second, or high level, contained all boosting ensembles. Because of

this bi-level configuration, the model benefited from both bagging and boosting

throughout her training. The bagging method generated multiple training subsamples

from on stratified sampling without replacement. Each subsample was then used

for training the boosting ensemble. In every boosting ensemble, the weak learners

were of different kinds (heterogeneous). One ensemble was built with distance-based

weak learners, while another with density-based weak learners. The ensembles

executed adaptive boosting where weighted versions of the training dataset subsets

were used. The training data was reweighted, with the weights based on the accuracy

of the previous weak learners, and used to train new weak learners. Error rates were

computed in the context of an instance’s local neighbors, rather than a global training

set. Testing instances focused on local domains or regions within a training dataset.

The reweighting of data samples in every iteration allowed detectors to emphasize on

patterns that were poorly predicted by the previous weak learners. Base detector

scores were improved by a margin maximization process that brought a clear contrast

between the classes. A final fusion of non-biased, low variance detectors was

presented for outlier detection.

The next chapter provides the results of the experiments conducted in the study.

85

CHAPTER FOUR

RESEARCH RESULTS FINDINGS

4.1 Introduction

The findings of the experiments carried out for this research study are presented in

this chapter. The experiments focused on examining different candidate base learners

for the outlier detection ensemble, establishing their misclassification rates, local

domains or regions of expertise, choosing optimal learners, testing the proposed

method's detection performance, and comparing the proposed method with other

existing methods. The chapter concludes by providing a summary of the

experimental findings.

4.2 Examining the Base Detectors / Weak Learners

The framework creation process started with examining a set of candidate individual

base classifiers for which KNN, DT, LOF, and LR were investigated. These four

were considered simple yet met the base requirements of the description of weak

learners from sections 3.5.1. KNN and LOF were selected because they are distance

and density-based classifiers. The other two, DT and LR, widely used in

homogeneous ensembles in most literature, were used to compare their performance

to the distance and density-based methods in heterogeneous ensembles. This phase

established a baseline for subsequent evaluations. Here, the classifiers were

examined for three conditions necessary for a classifier to be admitted as a weak

learner in an ensemble (sections 2, 3). That is, (i) they must exhibit a certain degree

of bias and (ii) variance, (iii) and have an error rate less than 0.5, i.e., better than

random guessing, and be simple and fast in terms of execution because several of

them would be enjoined to form an ensemble. The results of the qualifying

(individual) classifiers tested against the selected datasets are summarized in Table

4.1. KNN and LOF variants were selected for this study, as described in sections

3.5.1. Studies suggest that the base classifiers selected for a successful ensemble

should be diverse (sections 2.4; 3.5.4.2) and have good individual performance. For

the subsequent experiments and ensemble generation, these classifiers were

86

employed. Details of the experiment are first shown using the MNIST dataset, and a

summary for the other nine datasets is provided thereafter.

4.2.1 Experiment 1: Establishing Weak Learners’ Initial Bias over Different

Number of Samples – Prior to Ensemble Formation (Criteria 1)

The experiment was conducted as per the description provided in section 3.5.1 Eq.

3.6. Table 4.1 represents the results of bias tests from 4 algorithms. We set the

number of models for each classifier at 20 for consistency. We observed that with the

increase in the number of training samples, the bias of the base learners decreased.

This was seen as samples varied from the least at 100 samples to the highest at 5000

samples. The bias of the selected classifiers (KNN and LOF) decreased from 0.0028

to 0.0000007 and 0.0148 to 0.00003, respectively. The other classifiers did not show

much change or reduction ability in bias and hence were not considered in other

experiments as they did not satisfy criteria 1. Discussions are given in section 5.

Table 4.1: Initial Biases of Base Learners on MNIST Dataset over Different

Samples

No. of samples LR (20 models) DT(20 models) KNN(20models) LOF(20 models)

100 2.13E-05 0.0000 0.0028 0.0148

300 1.63E-05 0.0000 0.0016 0.0129

500 1.61E-05 0.0000 0.0012 0.0101

700 1.56E-05 0.0000 0.0009 0.0085

1000 1.44E-05 0.0000 0.0007 0.0062

3000 1.43E-05 0.0000 0.0002 0.0015

5000 1.50E-05 0.0000 7.69E-07 0.00003

87

Figure 4.1: The Effect of Increasing the Training Samples on Model Bias

4.2.2 Experiment 2: Establishing Weak Learners’ Initial Variances over

Different Number of Samples (Criteria 2)

In experiment 2, the initial variances of the base classifiers were recorded, as shown

in Table 4.2. Variations in the size of the training set on variance were not so huge.

For the two selected classifiers, KNN and LOF, their variances tend to drop from

0.02 to 0.001 and 0.003, respectively. It implied that the more samples given in

training, the more the classifiers’ performance stabilizes. A high variance indicates

that any little change in the dataset affects the behaviour of the classifier, and as a

result, it generates different predictions in different training rounds.

Table 4.2: Initial Variances on MNIST over Different Number of Samples

No. of samples LR(20 models) DT(20 models) KNN(20 models) LOF(20 models)

100 0.0010 0.0000 0.0200 0.0190

300 0.0000 0.0000 0.0150 0.0200

500 0.0020 0.0000 0.0140 0.0180

700 0.0010 0.0000 0.0110 0.0190

1000 0.0010 0.0000 0.0110 0.0180

3000 0.0010 0.0000 0.0080 0.0140

5000 0.0010 0.0000 0.0010 0.0030

88

Figure 4.2 shows the different variances over different data sample sizes. The

variance of each classifier seemed to drop with an increase in the size of the

samples. It implies that the variance of a weak learner can be lowered by

subsampling or by increasing the k-value in both KNN and LOF so that a high

value of k lowers variance and a small value would cause model overfitting.

Figure 4.2: The Effect of Increasing Training Samples on Model Variance

For the MNIST dataset, figure 4.3 compares the classifiers bias with variance.

The high variance indicated that the model was too flexible, and might have

memorized the training data hence it does not generalize well because it is a sign

of overfitting. This however qualified two classifiers, KNN and LOF, as good

candidates for weak learners for the ensemble.

89

Table 4.3: Summary of Initial Biases and Variances on Selected Datasets

Dataset KNN LOF

 BIAS VARIANCE MSE BIAS VARIANCE MSE

Mnist 1.1741 0.0170 1.1912 1.3202 0.1044 1.4246

Letter 1.2024 0.0364 1.2388 1.2530 0.1203 1.3733

Cardio 1.2226 0.0280 1.2506 1.2842 0.1165 1.4006

Annthyroid 1.2420 0.0178 1.2597 1.3682 0.1167 1.4849

Pima 0.9994 0.0205 1.0199 1.0856 0.1037 1.1893

Vowels 1.2018 0.0387 1.2405 1.3477 0.1211 1.4687

Thyroid 1.2515 0.0189 1.2705 1.3396 0.1019 1.4415

Pendigits 1.3837 0.0327 1.4164 1.4004 0.1112 1.5116

Breastw 0.8499 0.0245 0.8745 1.2890 0.0708 1.3598

Optdigits 1.2950 0.0249 1.3199 1.3493 0.1022 1.4515

From Table 4.3 and figure 4.3, the initial biases and variances of the two

detectors, KNN and LOF, were high. These high bias/variance base learners met

the requirement of a ‘weak’ classifier as described in sections 3.5.1. These biases

and variances would then be reduced through an ensemble whose goal is to learn

the different characteristics of data – which is beneficial for outlier detection.

Figure 4.3: Comparison between Bias and Variance on MNIST Dataset

90

It was clear from Table 4.3 that as bias increased, variance decreased. This was

true for all datasets applied in both KNN and LOF. For example, the bias of

KNN over pendigits dataset was 1.3837, while its variance was 0.0327. This bias

and variance combined, gave a total Mean Squared Error of 1.4164 (Table 4.3).

In this study, the two algorithms were selected for the reasons discussed in section 3:

KNN and LOF. The former detects outliers far from the rest of the data instances,

and the latter detects outliers in dense regions. KNN is distanced-based, while LOF is

a density-based outlier detection algorithm. We generated g subsets of data for each

ensemble formation. Each subset's samples were given uniform initial weights,

which were then adjusted adaptively in every round of boosting depending on the

error rates of the previous learners.

Initial Weak learner Selection by Trade-off: Bias-Variance

Based on the discussions of base detector selection by bias variance complexity

trade-off in section 2.8, the outcomes of individual base algorithms were reported in

Table 4.4. It was evident that the best performing base model was the Md_KNN in

terms of the bias-variance complexity criterion over the two test datasets that were

used. As regards detector complexity (i.e., the chosen model parameters like the

choice of k or the distance metrics), LOF was able to give the most reduced selection

values at model complexity of 30 and 37 base learners with selection values

0.110219 and 0.300299 respectively. Table 4.4 indicates the Selection value: = (Bias2

+ Variance) × influence of complexity (No. of models).

91

Table 4.4: Results of the Base Model’s Bias and Variance.

Dataset

Base Model Bias2

Variance

Complexity Selection

value

Mnist

Lg_KNN 0.065413 0.053815 10 0.129164

Avg_KNN 0.058445 0.081252 14 0.156271

Md_KNN 0.075854 0.078639 12 0.171241

LOF 0.032587 0.054014 30 0.110219

Letter

Lg_KNN 0.184577 0.084758 14 0.301290

Avg_KNN 0.223143 0.105472 13 0.364666

Md_KNN 0.254876 0.085347 8 0.351490

LOF 0.128114 0.094756 37 0.300299

It was also observed that the bias of the LOF ensemble was the least of the 4 base

models. To generate a committee of experts, we selected the models with the lowest

error rates as they exhibited lesser bias and variance overall. The experiment also

noted that the variance of the LOF model was comparatively large among the four

base detectors, suggesting that different data characteristics were learned by its

different base learners – which were important for outlier detection.

4.2.3 Experiment 3: Establishing the Error Rates of Learners (MNIST Dataset)

The third criterion was selecting weak learners for the ensemble by their error

rates. Our method selected learners whose error rates as per the

description in section 3.5.1. Tables 4.5 – 4.12 show the error rates , and the

performance weights assigned to every learner at every iteration during

training. Lg_KNN utilized the largest distance between neighbours, and

Ag_KNN utilized the mean distance, while Md_KNN utilized the median

distance of the neighbourhood as the method for scoring outlierness of a data

92

point. To qualify learners as ‘weak’, those whose predictions were slightly better

than random guessing () were chosen as intermediate learners for later

use. The bold red font signified discarded learners based on this criterion.

Table 4.5: Weak Learners’ Error Rates per Iteration using MNIST Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.1266 0.9657 0.1336 0.9347 0.1396 0.9093 0.2028 0.6844 0.1282 0.9585

1 0.2038 0.6814 0.2036 0.682 0.2146 0.6487 0.2688 0.5004 0.2081 0.6682

2 0.3348 0.3433 0.3306 0.3527 0.3216 0.3732 0.3481 0.3137 0.3129 0.3933

3 0.4084 0.1853 0.4104 0.1812 0.4229 0.1554 0.4212 0.1589 0.4139 0.1739

4 0.4725 0.0551 0.4625 0.0751 0.4472 0.1060 0.4588 0.0826 0.4652 0.0697

5 0.4795 0.0410 0.4881 0.0238 0.478 0.0440 0.4637 0.0727 0.4937 0.0126

6 0.4836 0.0328 0.4767 0.0466 0.4982 0.0036 0.4936 0.0128 0.3647 0.2775

7 0.5203 -0.0406 0.4904 0.0192 0.4996 0.0008 0.4993 0.0014 0.4206 0.1602

8 0.4844 0.0312 0.5113 -0.0226 0.5038 -0.0076 0.4957 0.0086 0.4713 0.0575

9 0.4865 0.0270 0.4909 0.0182 0.5062 -0.0124 0.5015 -0.003 0.4851 0.0298

Table 4.5 shows error rates per iteration using the MNIST dataset. The red

bolded values indicate the misclassification rates where that were

dropped. Out of 10 Lg_KNNs, 9 were set aside for future use. The same applied

for Ag_KNN, and LOF. 8 Md_KNN weak learners were also put aside. For the

combined heterogeneous weak learners, all 10 had misclassification rates less

than 0.5 and were set aside for future use. A total of 5/50 learners were dropped,

representing 10% of the total learners. Fig. 4.4 depicts the relationship between

93

error rates and weights. It was observed that as increased, decreased.

Figure 4.4: Comparison between Error Rates and Weights on MNIST Dataset

4.2.3 Experiment 4: Establishing Weak Learners’ using LETTER Dataset

Table 4.6 shows error rates per iteration using LETTER dataset. The red bolded

values indicate where . 9 Ag_KNN weak learners out of 10 were put

aside for future use. The same applied for Lg_KNN and LOF. All 10 Md_KNN

and 10 heterogeneous weak learners were put aside, since their . A total

of 3 learners were dropped during training representing 6% of the total learners.

94

Table 4.6: Weak Learners’ Error Rates per Iteration using LETTER Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.1256 0.9702 0.1208 0.9924 0.1208 0.9924 0.1112 1.0393 0.1232 0.9812

1 0.2379 0.5821 0.2156 0.6457 0.2197 0.6337 0.2343 0.5921 0.2366 0.5857

2 0.3453 0.3199 0.2975 0.4296 0.3585 0.2909 0.3386 0.3348 0.3070 0.4071

3 0.4187 0.1641 0.4271 0.1468 0.4053 0.1917 0.4000 0.2027 0.3690 0.2683

4 0.4531 0.0941 0.4411 0.1183 0.4704 0.0593 0.4506 0.0991 0.4349 0.1309

5 0.4831 0.0338 0.4768 0.0464 0.4839 0.0322 0.4667 0.0667 0.4754 0.0492

6 0.4786 0.0428 0.4873 0.0254 0.4870 0.0260 0.5057 -0.0114 0.3999 0.2029

7 0.5124 -0.0248 0.5026 -0.0052 0.4830 0.0340 0.4996 0.0008 0.4534 0.0935

8 0.4870 0.0260 0.4983 0.0034 0.4977 0.0046 0.4889 0.0222 0.4638 0.0725

9 0.4917 0.0166 0.4981 0.0038 0.4927 0.0146 0.4875 0.0250 0.4703 0.0595

Figure 4.5: Comparison between Error Rates and Weights on LETTER Dataset

Figure 4.5 shows the relationship between and . As error rates increased

learner weights decreased per iteration. The negative were eliminated in

rounds.

95

4.2.4 Experiment 5: Establishing Weak Learners’ Error Rates (Cardio Dataset)

Table 4.7 shows error rates per iteration using the CARDIO dataset. The red

bolded values indicate the misclassification rates where . Out of 10

Lg_KNNs, 10 Ag_KNNs and 10 Md_KNNs, 2 weak learners from each were

dropped because their , i.e. 0.503, 0.5023, 0.5048, 0.5088, 0.5062 and

0.5008 respectively. Both LOF and the heterogeneous combined learners were all

successful. A total of 6 learners were dropped representing 12%. This was

attributed to the dense outlier clusters in the CARDIO dataset.

Table 4.7: Weak Learners’ Error Rates per Iteration using Cardio Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.1169 1.0111 0.1176 1.0077 0.1218 0.9877 0.1232 0.9812 0.1218 0.9877

1 0.2413 0.5728 0.2473 0.5565 0.2407 0.5744 0.2434 0.5671 0.239 0.5791

2 0.3621 0.2831 0.3547 0.2992 0.3699 0.2663 0.3584 0.2912 0.3328 0.3478

3 0.4325 0.1358 0.4188 0.1639 0.4305 0.1399 0.443 0.1145 0.4234 0.1544

4 0.4665 0.0671 0.4543 0.0917 0.4612 0.0778 0.4598 0.0806 0.4539 0.0925

5 0.4887 0.0226 0.4797 0.0406 0.4825 0.035 0.4725 0.0551 0.4809 0.0382

6 0.4825 0.035 0.4854 0.0292 0.4781 0.0438 0.4934 0.0132 0.4574 0.0854

7 0.5030 -0.0060 0.4983 0.0034 0.5062 -0.0124 0.4964 0.0072 0.4919 0.0162

8 0.4964 0.0072 0.5048 -0.0096 0.5008 -0.0016 0.4992 0.0016 0.4541 0.0921

9 0.5023 -0.0046 0.5088 -0.0176 0.4737 0.0526 0.4917 0.0166 0.4998 0.0004

96

Figure 4.6: Comparison between Error Rates and Weights on Cardio Dataset

Figure 4.6 shows the relationship between error rates against weights when using

the Cardio dataset. Again, as error rates increased, the weights assigned to

learners decreased since examples became harder in successive iterations.

4.2.5 Experiment 6: Establishing Weak Learners’ Error Rates using Annthyroid

Table 4.8 represents misclassification rates per iteration using the

ANNTHYROID dataset. The red bolded values indicate the leaner’s error rates

where that were dropped. Out of 10 Ag_KNN learners, 8 were set aside

for future use as 2 learners were dropped. Lg_KNN and Md_KNN lost one

learner each. The rest 18 were set aside for future use. All 10 LOFs and the 10

combined heterogeneous learners had their misclassification rates < 0.5 and were

all set aside for future use. A total of 4 learners were dropped representing 8%.

97

Table 4.8: Weak Learners’ Error Rates per Iteration (ANNTHYROID Dataset)

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.0962 1.1201 0.0914 1.1483 0.0980 1.1098 0.1156 1.0174 0.0974 1.1132

1 0.1847 0.7424 0.1658 0.8078 0.1840 0.7447 0.1921 0.7182 0.1717 0.7868

2 0.3237 0.3684 0.3031 0.4163 0.3214 0.3737 0.3208 0.3750 0.2946 0.4366

3 0.4079 0.1863 0.4084 0.1853 0.3894 0.2249 0.4161 0.1694 0.3928 0.2178

4 0.4687 0.0627 0.449 0.1024 0.4523 0.0957 0.4462 0.1080 0.4462 0.1080

5 0.467 0.0661 0.4744 0.0512 0.4887 0.0226 0.4787 0.0426 0.4765 0.0470

6 0.4704 0.0593 0.4911 0.0178 0.4864 0.0272 0.4877 0.0246 0.4254 0.1503

7 0.4977 0.0046 0.5006 -0.0012 0.4891 0.0218 0.4980 0.0040 0.4652 0.0697

8 0.4992 0.0016 0.4961 0.0078 0.5009 -0.0018 0.4985 0.0030 0.4728 0.0545

9 0.5040 -0.008 0.5103 -0.0206 0.4999 0.0002 0.4941 0.0118 0.4793 0.0414

Figure 4.7: Comparison between and Weights on ANNTHYROID Dataset

Figure 4.7 shows the relationship between training error rates against weights

assignment on weak learners when using the Annthyroid dataset. With an

increase in misclassification errors, decreasing learner weights were assigned.

98

4.2.6 Experiment 7: Establishing Weak Learners’ using PIMA Dataset

Table 4.9 shows error rates per iteration using PIMA dataset. The red bolded

values are that were dropped. Out of 10 Lg_KNN and 10 LOF learners, 8

of each were set aside for future use as 2 learners, from each, were dropped

because their . Ag_KNN and Md_KNN dropped one learner each. The 10

combined learners had their and none was dropped. 6 (12%) learners

were dropped in total. The relationships with assigned over different iterations

are depicted in fig. 4.8. Learners with negative were eliminated as well.

Table 4.9: Weak Learners’ Error Rates per Iteration using PIMA Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.336 0.3406 0.3328 0.3478 0.3232 0.3696 0.336 0.3406 0.3376 0.337

1 0.4172 0.1671 0.4268 0.1475 0.4131 0.1756 0.4239 0.1534 0.4282 0.1446

2 0.4589 0.0824 0.4623 0.0755 0.4718 0.0565 0.4578 0.0846 0.4581 0.0840

3 0.4801 0.0398 0.4727 0.0547 0.4635 0.0731 0.4757 0.0486 0.4822 0.0356

4 0.4785 0.043 0.4885 0.023 0.4905 0.019 0.49 0.02 0.4744 0.0512

5 0.4928 0.0144 0.4935 0.013 0.5039 -0.0078 0.4947 0.0106 0.4979 0.0042

6 0.4848 0.0304 0.4925 0.015 0.4882 0.0236 0.5065 -0.013 0.4933 0.0134

7 0.5017 -0.0034 0.5081 -0.0162 0.4917 0.0166 0.4983 0.0034 0.4974 0.0052

8 0.5025 -0.0050 0.4992 0.0016 0.4989 0.0022 0.5001 -0.0002 0.4964 0.0072

9 0.4914 0.0172 0.4976 0.0048 0.4981 0.0038 0.5064 -0.0128 0.4946 0.0108

99

Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset

Figure 4.8: Comparison between Error Rates and Weights using PIMA Dataset

4.2.7 Experiment 8: Establishing Learners’ Error Rates using Vowels Dataset

Table 4.10 represents misclassification rates per iteration using the VOWELS

dataset. The red bolded values indicate the misclassification rates where .

Out of 10 Lg_KNNs, 10 Ag_KNNs, and 10 LOF learners, 9 of each were set

aside for future use. 1 learner from each was dropped because their error rates

were greater than 0.5 (red font, bolded). Md_KNN lost two learners whose error

rates were 0.5006 and 0.5034 respectively. The 10 combined heterogeneous

learners had all their and therefore none was dropped. A total of 5

learners were dropped representing 10% of the total learners. Weights

assignment in relations to these error rates are as depicted in Fig. 4.9. The

learners whose coefficients were negative (black font, bold) were also dropped.

100

Table 4.10: Weak Learners’ Error Rates per Iteration using VOWELS Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.0972 1.1144 0.0684 1.3058 0.0855 1.1849 0.0855 1.1849 0.1098 1.0464

1 0.1776 0.7663 0.1601 0.8287 0.1307 0.9474 0.1266 0.9657 0.1585 0.8347

2 0.2968 0.4313 0.2633 0.5144 0.2486 0.553 0.2055 0.6761 0.2186 0.6369

3 0.3648 0.2773 0.3478 0.3144 0.3709 0.2642 0.3304 0.3532 0.3298 0.3545

4 0.4408 0.1190 0.4055 0.1913 0.398 0.2069 0.3996 0.2036 0.4073 0.1876

5 0.4530 0.0943 0.4808 0.0384 0.4675 0.0651 0.4568 0.0866 0.4755 0.049

6 0.4697 0.0607 0.4852 0.0296 0.4711 0.0579 0.4476 0.1052 0.446 0.1084

7 0.4959 0.0082 0.5033 -0.0066 0.4996 0.0008 0.4954 0.0092 0.4819 0.0362

8 0.4919 0.0162 0.4944 0.0112 0.5006 -0.0012 0.5079 -0.0158 0.4592 0.0818

9 0.5263 -0.0526 0.4947 0.0106 0.5034 -0.0068 0.4949 0.0102 0.4651 0.0699

Figure 4.9: Comparison between and Weights using Vowels Dataset

4.2.8 Experiment 9: Establishing Weak Learners Error Rates (Thyroid Dataset)

Table 4.11 shows training error rates per iteration using the THYROID dataset.

The red font bold values indicate the misclassification rates where . Out

of 10 Lg_KNNs, 10 Ag_KNNs, 9 of each were set aside for future use as one

learner from each group was dropped because of their misclassification rates

101

being greater than 0.5 (red font, bold) i.e. 0.5171 and 0.5079 respectively. The

other three, i.e. Md_KNNs, LOFs and the combined heterogeneous learners had

their misclassification rates less than 0.5 and none was dropped. A total of 2

learners were dropped, while training using the THYROID dataset representing

4% of the total learners. Fig. 4.10 depicts the weights at every iteration.

Table 4.11: Weak Learners’ Error Rates per Iteration using THYROID Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.0588 1.3865 0.0603 1.3731 0.0573 1.4002 0.0543 1.4287 0.0711 1.285

1 0.1395 0.9097 0.147 0.8792 0.1374 0.9185 0.1397 0.9089 0.1233 0.9808

2 0.2582 0.5277 0.2767 0.4804 0.2859 0.4577 0.2923 0.4421 0.2698 0.4978

3 0.3571 0.294 0.3932 0.2169 0.3648 0.2773 0.3548 0.299 0.3844 0.2355

4 0.447 0.1064 0.4325 0.1358 0.3973 0.2084 0.4527 0.0949 0.4346 0.1316

5 0.4603 0.0796 0.4643 0.0715 0.4711 0.0579 0.4541 0.0921 0.4644 0.0713

6 0.4623 0.0755 0.497 0.006 0.4978 0.0044 0.4901 0.0198 0.2966 0.4318

7 0.475 0.05 0.4791 0.0418 0.4699 0.0603 0.4914 0.0172 0.4233 0.1546

8 0.5171 -0.0342 0.4985 0.003 0.488 0.024 0.4927 0.0146 0.4105 0.1809

9 0.4948 0.0104 0.5079 -0.0158 0.4962 0.0076 0.4963 0.0074 0.4963 0.0074

Figure 4.10: Comparison between and Weights using THYROID Dataset

102

4.2.9 Experiment 10: Establishing Weak Learners’ Error (Pendigits Dataset)

Table 4.12 represents training error rates per iteration using the PENDIGITS

dataset. The red font bold values indicate the error rates . Out of 10

Lg_KNNs, 10 Md_KNNs, and 10 LOFs, 9 of each were put aside for future use

as one learner from each category was dropped due to misclassification rates

greater than 0.5 (red font, bold) i.e. 0.5018, 0.5009 and 0.5092 respectively. For

Ag_KNN, 2 weak learners were dropped as their error rates were higher at

0.5011 and 0.5212. All ten of the combined heterogeneous weak learners had

their misclassification rates < 0.5 and all were set aside for future use. A total of

5 learners were dropped while training using the PENDIGITS dataset, which

represents 10% of total learners. Negative learner coefficients were eliminated.

Table 4.12: Weak Learners Error Rates per Iteration over PENDIGITS Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.0776 1.2377 0.0738 1.2649 0.0744 1.2605 0.0886 1.1654 0.0824 1.2051

1 0.1277 0.9607 0.1249 0.9734 0.128 0.9594 0.1512 0.8626 0.1177 1.0072

2 0.248 0.5547 0.2675 0.5037 0.2571 0.5305 0.2713 0.494 0.2254 0.6172

3 0.3663 0.2741 0.3619 0.2836 0.3633 0.2805 0.3729 0.2599 0.3287 0.357

4 0.4258 0.1495 0.4404 0.1198 0.4308 0.1393 0.4163 0.169 0.4236 0.154

5 0.4635 0.0731 0.4606 0.079 0.4618 0.0765 0.4578 0.0846 0.4567 0.0868

6 0.47 0.0601 0.4739 0.0522 0.4757 0.0486 0.4939 0.0122 0.3409 0.3296

7 0.5018 -0.0036 0.4801 0.0398 0.4932 0.0136 0.4964 0.0072 0.433 0.1348

8 0.4919 0.0162 0.5011 -0.0022 0.4735 0.053 0.4899 0.0202 0.428 0.145

9 0.4852 0.0296 0.5212 -0.0424 0.5009 -0.0018 0.5092 -0.0184 0.4715 0.0571

103

Figure 4.11: Comparison between and Weights using Pendigits Dataset

4.2.10 Experiment 11: Establishing Learners’ Error Rates (Breastw Dataset)

Table 4.13 shows training error rates per iteration using the BREASTW dataset.

The red font bold values indicate the misclassification rates where . Out

of 10, 2-Lg_KNN learners were dropped with 0.5004 and 0.5097, respectively.

1 Ag_KNN was dropped having 0.5095. Both Md_KNN and the combined

heterogeneous learners dropped 3 weak learners each. All 10 LOF weak learners

were retained as their misclassification rates were less than 0.5. Overall, a total

of 9 learners were dropped while training using the BREASTW dataset, which

represents 18% of the total learners. The high error rate learners were assigned

lesser weights in every iteration as depicted in figure 4.12. The negative learner

coefficients that were assigned were also dropped.

104

Table 4.13: Weak Learners’ Error Rates per Iteration over BREASTW Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.2574 0.5298 0.2898 0.4482 0.2484 0.5536 0.2862 0.457 0.2628 0.5157

1 0.3882 0.2274 0.3632 0.2808 0.3803 0.2441 0.393 0.2174 0.3786 0.2477

2 0.4358 0.1291 0.47 0.0601 0.4418 0.1169 0.4514 0.0975 0.4513 0.0977

3 0.4456 0.1092 0.4864 0.0272 0.4764 0.0472 0.482 0.036 0.4734 0.0533

4 0.4643 0.0715 0.4574 0.0854 0.4787 0.0426 0.4955 0.009 0.4772 0.0456

5 0.4927 0.0146 0.485 0.03 0.4936 0.0128 0.4859 0.0282 0.4967 0.0066

6 0.5004 -0.0008 0.493 0.014 0.4678 0.0645 0.4849 0.0302 0.4935 0.013

7 0.5097 -0.0194 0.4979 0.0042 0.5038 -0.0076 0.4876 0.0248 0.5013 -0.0026

8 0.4849 0.0302 0.5095 -0.019 0.5233 -0.0466 0.4943 0.0114 0.5101 -0.0202

9 0.4989 0.0022 0.496 0.008 0.5055 -0.011 0.495 0.01 0.5024 -0.0048

Figure 4.12: Comparison between and Weights using Breastw Dataset

4.2.11 Experiment 12: Establishing Weak Learners’ using Optdigits Dataset

Table 4.14 represent the training error rates of 10 iterations using the

OPTDIGITS dataset. The red font bold values indicate the learners’

105

misclassification rates where and that were dropped. Out of 10 Lg_KNNs,

10 Ag_KNNs, 10 Md_KNNs and 10 LOFs, one weak learner was dropped in

each group with error rates of 0.5111, 0.5021, 0.5095, and 0.5021 respectively.

All the 10 heterogeneous weak learners were retained as their misclassification

rates were less than 0.5. Overall, a total of 4 learners were dropped while training

using the OPTDIGITS dataset, which represents 8% of the total learners. Figure

4.13 depicts the assignment of decreasing weights to the different learners over

the iterations depending on the error rates.

Table 4.14: Weak Learners’ Error per Iteration using OPTDIGITS Dataset

 Lg_KNN

(Learners = 10)

Ag_KNN

(Learners = 10)

Md_KNN

(Learners = 10)

LOF

(Learners = 10)

COMBINED

(Learners = 10)

0 0.0976 1.1121 0.0978 1.111 0.0974 1.1132 0.1032 1.0811 0.101 1.0931

1 0.2169 0.6419 0.2131 0.6532 0.208 0.6685 0.2106 0.6607 0.2166 0.6428

2 0.3155 0.3873 0.3248 0.3659 0.3199 0.3771 0.3231 0.3698 0.2958 0.4337

3 0.4090 0.1841 0.4329 0.135 0.4055 0.1913 0.3999 0.2029 0.4033 0.1959

4 0.4311 0.1387 0.4448 0.1109 0.45 0.1003 0.4288 0.1434 0.4329 0.1350

5 0.4772 0.0456 0.4529 0.0945 0.4517 0.0969 0.4753 0.0494 0.4782 0.0436

6 0.4719 0.0563 0.4957 0.0086 0.4914 0.0172 0.4819 0.0362 0.4027 0.1971

7 0.4971 0.0058 0.4846 0.0308 0.4942 0.0116 0.4971 0.0058 0.4465 0.1074

8 0.5111 -0.0222 0.4862 0.0276 0.4918 0.0164 0.4986 0.0028 0.4623 0.0755

9 0.4879 0.0242 0.5021 -0.0042 0.5095 -0.019 0.5021 -0.0042 0.4836 0.0328

106

Figure 4.13: Comparison between Error Rates and Weights (Optdigits Dataset)

4.2.12 Summary of Selection of Weak Learners Based on Error Rates

From 50 weak learners, an average of 45.1, representing 90.2%, was selected

based on their error rates being less than 0.5. These weak learners satisfied the

third requirement of having better predictions than random guessing, as

described in section 3.5.1. The highest number of weak learners at 48

(representing 96%) was selected when training using the Thyroid dataset. This

could be attributed to the fact that this dataset was the smallest as it had the least

number of dimensions (6) with only 2.74% outliers. It was also evident that this

dataset’s outliers were clustered as densities as Md_KNN, LOF, and COMB had

all 10 weak learners predicting at least more than half the outliers correctly, and

no weak learner was dropped. The lowest number of weak learners at 41

(representing 82%) was selected when training using the Breastw dataset. This is

possible because this dataset had the highest number of outliers, as shown in

table 3.1 (34.99%); hence, as the number of training iterations increased, harder

examples increased, and more weak learners made more errors at every round.

Only all 10 (100%) LOF weak learners could predict with error rates less than

0.5, and all were selected for future use. Md_KNNs were the least selected

learners, as only 7 out of 10 were selected for this dataset. On average, 8.7 weak

learners from three groups, Lg_KNN, Ag_KNN and Md_KNN, were selected in

every dataset, as shown in Table 4.15. This represented 87% selection from each

of the three groups.

107

Furthermore, on average, another 9.3 weak learners from the LOF category were

selected for all datasets training. This represented 93% of LOF learners selected.

Lastly, the highest selected learners by all datasets training rounds were the

combination of all the heterogeneous weak learners (COMB) with 9.7 learners

on average selection when using any dataset. This represented 97% selection

when heterogeneous learners were used.

Table 4.15: Summary of Selected Weak Learners Based on their Error Rates

Dataset Lg_KNN Ag_KNN Md_KNN LOF COMB Total Rep. %

Mnist 9 9 8 9 10 45 0.90

Letter 9 9 10 9 10 47 0.94

Cardio 8 8 8 10 10 44 0.88

Annthyroid 9 8 9 10 10 46 0.92

Pima 8 9 9 8 10 44 0.88

Vowels 9 9 8 9 10 45 0.90

Thyroid 9 9 10 10 10 48 0.96

Pendigits 9 8 9 9 10 45 0.90

Breastw 8 9 7 10 7 41 0.82

Optdigits 9 9 9 9 10 46 0.92

AVERAGE 8.7 (87%) 8.7 (87%) 8.7 (87%) 9.3 (93%) 9.7 (97%) 45.1 0.90

4.3 Comparison of the Proposed Fusion Methods with Generic Methods

Optimal learners were carefully selected for fusion based on their performances in

their local domains, as described in sections 3.5.2 and 3.5.3. This process was

followed by evaluating different fusion strategies for the qualified base learners for

the ensemble formation. To this far, two more experiment groups were performed.

One group compared existing generic (global) methods (as mentioned in Section

3.5.2) to the proposed variants, and the other group compared outlier score outcomes,

which helped determine whether there were improvements.

108

4.3.1 Experiment 13: Comparing ADAHO_Avg and ADAHO_maxA vs. G_Avg

Table 4.16 shows the mean AUCROC scores for G_Avg compared with

ADAHO_Avg and ADAHO_MaxA. ADAHO_MaxA had better results in at least

5 datasets, representing 50% of the overall performance. This was followed by

G_Avg, which had better results in 3 datasets representing 30% in performance.

ADAHO_Avg was best in only 2 datasets representing 20%. It was clear that

averaging the group scores of the selected base learners and then taking the

maximum from every group yielded better results. In terms of bias, this method

reduced individual biases through averaging in the second level, unlike G_Avg

or ADAHO_Avg, which only had one combination level.

Table 4.16: ROC Performances (Mean of 20 Trials, Highest Scores Bolded)

4.3.2 Experiment 14: Comparing ADAHO_Avg and ADAHO_maxA vs. G_mov

Table 4.17 shows the mean AUCROC scores for ADAHO_Avg and

ADAHO_MaxA compared with G_Mov. It was evident that both

ADAHO_MaxA and G_MoV had similar performances, with each predicting

better in at least 4 datasets representing 40% overall performance. ADAHO_Avg

Dataset G_Avg ADAHO_Avg ADAHO_MaxA

Mnist 0.8456 0.8475 0.8522

Letter 0.7824 0.7717 0.7853

Cardio 0.8669 0.8590 0.8807

Annthyroid 0.7583 0.7444 0.7866

Pima 0.6929 0.6958 0.6890

Vowels 0.9164 0.9175 0.9084

Thyroid 0.9555 0.9478 0.9523

Pendigits 0.8277 0.8137 0.8555

Breastw 0.7261 0.6452 0.6943

Optdigits 0.8845 0.8787 0.8618

109

was better in only 2 datasets representing 20%. In both ADAHO_MaxA and

G_MoV, it was clear that by having two levels of fusion, these two models

yielded better results in Mnist, Cardio, Annthyroid, Pendigits, and in Letter,

Thyroid, Breastw and Optdigits, respectively.

Table 4.17: ROC Performances (Mean of 20 Trials, Highest Scores Bolded)

4.3.3 Experiment 15: Comparing ADAHO_Max and ADAHO_maxA vs. G_Max

Table 4.18 shows the mean AUCROC scores for G_Max compared with

ADAHO_Max and ADAHO_MaxA. ADAHO_MaxA had better results overall

in at least 7 datasets, representing 70% of the datasets. This was followed by

G_Max, which had better results in 2 datasets, i.e., Letter and Vowels.

ADAHO_Max was last as it was best in only 1 dataset (Breastw). The

performance of ADAHO_MaxA was attributed to the fact that it had two fusion

levels. First, by averaging the group scores of the selected base learners, then

taking the maximum score of every group. In terms of bias, this method greatly

reduced individual learner biases through averaging in the first level, unlike

G_Max and ADAHO_Max, which only had one level of fusion.

Dataset G_MoV ADAHO_Avg ADAHO_MaxA

Mnist 0.8487 0.8475 0.8522

Letter 0.7930 0.7717 0.7853

Cardio 0.8764 0.8590 0.8807

Annthyroid 0.7768 0.7444 0.7866

Pima 0.6902 0.6958 0.6890

Vowels 0.9174 0.9175 0.9084

Thyroid 0.9546 0.9478 0.9523

Pendigits 0.8408 0.8137 0.8555

Breastw 0.7039 0.6452 0.6943

Optdigits 0.8926 0.8787 0.8618

110

Table 4.18: ROC Performances (Mean of 20 Trials, Highest Scores Bolded)

4.3.4 Experiment 16: Comparing ADAHO_Max, ADAHO_maxA vs. G_AoM

Table 4.19 shows the mean AUCROC scores for G_AoM compared with

ADAHO_Max and ADAHO_MaxA. ADAHO_MaxA had better results overall

in at least 60% of the datasets in this experiment. G_AoM and ADAHO_Max

performed better in 2 datasets, i.e., Vowels and Optidigits with AUC values

0.9170 and 0.8662, respectively; and in Letter and Breastw with AUC 0.8260

0.7135, respectively. Once again, the best performance of ADAHO_MaxA could

be attributed to the fact that it had two levels of fusion, i.e., by averaging group

scores of the selected base learners and taking the maximum of the group

averages after. This reduced ensemble bias and variance overall.

Dataset G_Max ADAHO_Max ADAHO_MaxA

Mnist 0.8248 0.7711 0.8522

Letter 0.8333 0.8260 0.7853

Cardio 0.8697 0.8390 0.8807

Annthyroid 0.7556 0.7460 0.7866

Pima 0.6629 0.6539 0.6890

Vowels 0.9212 0.9137 0.9084

Thyroid 0.9284 0.9312 0.9523

Pendigits 0.8387 0.7137 0.8555

Breastw 0.6489 0.7135 0.6943

Optdigits 0.8458 0.8424 0.8618

111

Table 4.19: ROC Performances (Mean of 20 Trials, Highest Scores Bolded)

4.3.5 Experiment 17: Comparing ADAHO_Max, ADAHO_MaxA versus G_mov

Table 4.20 shows the mean AUCROC scores for G_MoV compared with

ADAHO_Max and ADAHO_MaxA. From the results, both ADAHO_MaxA and

G_MoV had similar performances, with each predicting better in at least 4

datasets. ADAHO_Max was better in only 2 datasets, i.e., Letter and Breastw

datasets with AUC ROC of 0.8260 and 0.7135, respectively. ADAHO_MaxA and

G_MoV fused their outcomes in two levels, yielding better outcomes in most

datasets. Overall, the AUC ROC scores for ADAHO_MaxA were consistently

superior in most datasets. This was possible because its base learners were

evaluated based on local domain competency (section 3.5.2) whereas G_MoV

did not. The AUC values in Table 4.20 represent an average of 20 trials.

Dataset G_AoM ADAHO_Max ADAHO_MaxA

Mnist 0.8452 0.7711 0.8522

Letter 0.8209 0.8260 0.7853

Cardio 0.8802 0.8390 0.8807

Annthyroid 0.7538 0.7460 0.7866

Pima 0.6755 0.6539 0.6890

Vowels 0.9170 0.9137 0.9084

Thyroid 0.9409 0.9312 0.9523

Pendigits 0.8521 0.7137 0.8555

Breastw 0.6737 0.7135 0.6943

Optdigits 0.8662 0.8424 0.8618

112

Table 4.20: ROC Performances (Mean of 20 Trials, Highest Scores Bolded)

4.3.6: Summary of Performances using Different Generic (Global) Fusion

Methods Compared to the Proposed Method in Terms of AUCROC

A total of ten datasets from different domains were considered (section 3.3). The

various baseline outcomes of the generic or global fusion methods like average-

of-maximum, maximum-of-average, weighted averaging, and global threshold

summation versus our proposed variants (ADAHO_Avg, ADAHO_Max,

ADAHO_MaxA, and ADAHO_AvgM) were compared. Our variants yielded

better results, particularly ADAHO_AvgM (table 4.21). This strongly indicated

that the proposed method was better considering a data point’s local domains. It

achieved better results in at least 6 out of 10 datasets, as in table 4.21.

Overall, the performances of the selected baselines (Table 4.21), G_Max

exhibited improvement in two datasets (letter and vowels) with high ROC of

0.8333 and 0.9212, respectively, in the first experiment. In contrast, G_AoM

exhibited improvement in only one dataset (annthyroid) with 0.2415 in the

second experiment of average precision (Table 4.22). The proposed (ADAHO

variants) exhibited superior results for the other tests in both experiments.

Dataset G_MoV ADAHO_Max ADAHO_MaxA

Mnist 0.8487 0.7711 0.8522

Letter 0.7930 0.8260 0.7853

Cardio 0.8764 0.8390 0.8807

Annthyroid 0.7768 0.7460 0.7866

Pima 0.6902 0.6539 0.6890

Vowels 0.9174 0.9137 0.9084

Thyroid 0.9546 0.9312 0.9523

Pendigits 0.8408 0.7137 0.8555

Breastw 0.7039 0.7135 0.6943

Optdigits 0.8926 0.8424 0.8618

113

Furthermore, regarding global methods, G_AoM and G_Max were superior to

simple maximization or averaging. This is attributed to the fact that fusion

considers a second dimension and yields stable outcomes, which is why ADAHO

yielded higher scores. For G_Avg and G_Max, local competency assessment

gave weaker results but lesser variance and bias based on global averaging. All

outcomes should be used in the final fusion process to reduce bias. However, this

could deteriorate ensemble performance because low-performance learners could

be included. In contrast, selecting one optimal learner yields a smaller variance

drop than averaging, which also deteriorates ensemble performance overall

because of strong bias from a single selected learner. Using the maximum value

to generate ground truth, global and ADAHO_Max became less stable. E.g.,

ADAHO_Max was better than G_AoM on letter and breast (0.8260 and 0.7135),

respectively, in our first experiment (Table 4.21) and in letter dataset in our

second experiment (Table 4.22) with an average precision of 0.3245.

114

Table 4.21: Summary of ROC Values (Highest Values Bolded) Between ADAHO Fusion Methods and Generic Fusion Methods

Table 4.22: Summary of Mean Average Precision Values (Highest Values Bolded) for ADAHO vs Generic Fusion Methods

Dataset G_Avg G_MoV G_Max G_AoM G_Wa G_Ts ADAHO_Avg ADAHO_MaxA ADAHO_Max ADAHO_AvgM

Mnist 0.8456 0.8487 0.8248 0.8452 0.8462 0.8171 0.8475 0.8522 0.7711 0.8532

Letter 0.7824 0.7930 0.8333 0.8209 0.7807 0.7900 0.7717 0.7853 0.8260 0.7766

Cardio 0.8669 0.8764 0.8697 0.8802 0.8681 0.8729 0.8590 0.8807 0.8390 0.8912

Annthyroid 0.7583 0.7768 0.7556 0.7538 0.7664 0.7651 0.7444 0.7866 0.7460 0.7886

Pima 0.6929 0.6902 0.6629 0.6755 0.6936 0.6248 0.6958 0.6890 0.6539 0.6960

Vowels 0.9164 0.9174 0.9212 0.9170 0.9160 0.9198 0.9175 0.9084 0.9137 0.9098

Thyroid 0.9555 0.9546 0.9284 0.9409 0.9564 0.9543 0.9478 0.9523 0.9312 0.9699

Pendigits 0.8277 0.8408 0.8387 0.8521 0.8324 0.8447 0.8137 0.8555 0.7137 0.8643

Breastw 0.7261 0.7039 0.6489 0.6737 0.7352 0.6184 0.6452 0.6943 0.7135 0.7743

Optdigits 0.8845 0.8926 0.8458 0.8662 0.8852 0.8803 0.8787 0.8618 0.8424 0.8884

Dataset G_Avg G_MoV G_Max G_AoM G_Wa G_Ts ADAHO_Avg ADAHO_MaxA ADAHO_Max ADAHO_AvgM

Mnist 0.3810 0.3840 0.3800 0.3795 0.3817 0.3735 0.3832 0.3873 0.3252 0.3878

Letter 0.2287 0.2372 0.3059 0.2766 0.2271 0.2317 0.2201 0.2295 0.3245 0.2306

Cardio 0.3415 0.3607 0.3565 0.3763 0.3434 0.3528 0.3274 0.3859 0.3096 0.4016

Annthyroid 0.2200 0.2294 0.2312 0.2415 0.2205 0.2176 0.2182 0.2274 0.2248 0.2352

Pima 0.4988 0.4953 0.4712 0.4819 0.4994 0.4498 0.4991 0.4944 0.4615 0.5041

Vowels 0.3682 0.3689 0.3659 0.3631 0.3683 0.3682 0.3812 0.3577 0.3381 0.3438

Thyroid 0.3944 0.4022 0.2749 0.3387 0.4029 0.3070 0.3443 0.3854 0.2537 0.4550

Pendigits 0.0676 0.0722 0.0732 0.0794 0.0679 0.0731 0.0608 0.0792 0.0524 0.0843

Breastw 0.4894 0.4748 0.4148 0.4476 0.4984 0.4265 0.4233 0.4665 0.4627 0.5554

Optdigits 0.3593 0.3559 0.3043 0.3286 0.3605 0.3537 0.3497 0.3209 0.3092 0.3678

115

It was evident that if only a single learner’s maximum score was used, the overall

ensemble had a high variance. However, applying a second fusion, such as

averaging, mitigated this effect. This finding was also reported in (Zimek et al.,

2013). Furthermore, to reduce the variance of an ensemble, ADAHO took

advantage of the G_AoM effect by calculating the mean of outlier scores from

subsets of optimal learners, implying ADAHO_AvgM further reduced the

variance of the final ensemble compared to ADAHO_Max. To reduce ensemble

bias, ADAHO_AvgM calculated an average in the second-level fusion,

improving accuracy. This is evident in the experimental results as

ADAHO_AvgM yielded higher scores in 6 datasets in terms of the ROC, namely

mnist, cardio, pima, thyroid, breast, and optdigits (Table 4.21), and for seven

datasets in terms of average precision, namely mnist, cardio, pima, thyroid,

pendigits, breastw, and optdigits (Table 4.22). Based on these experiments, it was

clear that calculating the maximum after the mean did not significantly improve

classification results. This was evident for ADAHO_MaxA, which was not

improved significantly by either global averaging or maximum-of-averaging. In

summary, ADAHO_AvgM was a superior fusion strategy based on its ability to

minimize both variance and bias, which answered the question regarding the best

fusion strategy for outlier detection ensembles.

4.4 Comparing Performance of the Proposed Ensemble with Other Outlier

Detection Ensembles using 10 Datasets

Additional experiments were conducted using other outlier detection ensembles

to verify if the hypothesis enhanced anomaly detection and further examine the

proposed method’s performance. Therefore, its performance was compared

against four other existing outlier detection ensemble formations (ALOI

(Schubert et al., 2014), BASE (Micenkova et al., 2014), SELECT (Rayana &

Akoglu, 2016)), which do not use distinct local data domains in their approach

but use similar base models. The first two formations were symbolically referred

to here as ALOI and BASE because of their relative design with respect to our

proposed method. Both formations, similar to our proposed method

ADAHO_OAAE, utilize LOF and KNN algorithms, with the only difference

116

being that they used a heuristic method instead of optimizing model parameters.

It is important to note that while our proposed method weights its samples and its

base models by adaptive boosting, these two apply feature bagging with only

model weights being fused by summation or mean. In principle, ALOI and

BASE follow our Algorithm 1, but their values are empty. In addition, the

two do not follow steps 1–4 of boosting but use equal weights for

all . ALOI and BASE set parameters for their base models in the same

way as ours. Since the base models are similar, they utilize similar distance

metrics as well as some of the fusion approaches like sum, median, average and

maximum. Specifically, both approaches utilize summation and Euclidean

distances. Our fusion, however, utilizes median for optimization and takes the

final scores in two levels: by maximum of average and average of maximum.

The third formation, named SELECT (Rayana & Akoglu, 2016), presents two

sub-formations: vertical-SELECT and horizontal-SELECT. We compared our

method to horizontal-SELECT because, according to (Rayana & Akoglu, 2016),

this formation achieves better overall performance. It works by converting

anomaly scores into probabilities, representing the scores as samples from a

combination of Gaussian and exponential distributions for anomalous and

normal data, respectively. It bases its hypothesis on this assumption and creates

base models based on how well each base model fit the pseudo-target. This

ensemble’s final scores emanate from a fusion of selected base models via robust

rank aggregation.

The fourth and final baseline is the modified ADAHO (Bii et al., 2020), which

partly learns the same base models as our proposed method ADAHO_OAAE and

weights its samples and base models by adaptive boosting. The main difference

is that it does not consider margin maximization between anomalous and normal

data. Hence it does not loop through step 5 of algorithm 1 in the same way as

ours.

117

We tested our proposed approach against these four baselines using the least

known anomaly percentage. We considered that using the least percentage is the

hardest test since very little prior information about the dataset was provided. If

our proposed method outperformed these baselines, a significant improvement

would have been achieved overall. Ensemble performance was measured using

AUROC values. Results of the experiments were provided in the form of tables

and figures.

4.4.1 Experiment 18: Comparing the Performance of Proposed Method with

ALOI Ensemble using 10 Outlier Detection Datasets

Figure 4.14 and Table 4.23 depict results of the experiment. It indicates that

while using Mnist, Letter, Annthyroid, Pima, Vowels, Pendigits, Breastw, and

Optdigits, the proposed method had significant ROC (shaded green) than ALOI.

The results revealed that our method edged marginally with ALOI using Cardio

and underperformed in Thyroid. This was attributed to the fact that this dataset

(Thyroid) had the least number of dim

118

Proposed Method verses ALOI

Figure 4.14: Proposed Method verses ALOI Ensemble using 10 Datasets

Table 4.23: Proposed Method vs. ALOI Ensemble using 10 Datasets

Section 4.4 reveals that ALOI uses feature bagging to diversify its base models,

unlike the proposed method that uses decision weights. The proposed method

yield better results in 8 of 10 datasets (shaded green in Table 4.23) as harder

samples were revised in every training round, unlike ALOI.

4.4.2 Experiment 19: Comparing the Performance of Proposed Method with

BASE Ensemble using 10 Outlier Detection Datasets

Figure 4.15 and Table 4.24 show the results of the experiment, which indicate

that while using Mnist, Letter, Annthyroid, Cardio, Pima, Thyroid, Pendigits, and

Breastw datasets, the proposed method had better ROC than BASE. It further

revealed that BASE slightly outperformed our method while using Vowels and

Optdigits datasets (shaded yellow). Like ALOI, BASE utilized feature bagging,

and a constant k-metric of 20; with base learner combination by summation and

that explains the difference in performance. In 8 datasets out of 10 (shaded

119

green), our method demonstrated better improvement because of boosting and

optimization.

Proposed Method verses BASE

Figure 4.15: Proposed Method verses BASE Ensemble using 10 Datasets

Table 4.24: Proposed Method vs. BASE Ensemble using 10 Datasets

4.4.3 Experiment 20: Comparing the Performance of Proposed Method with

Horizontal-SELECT Ensemble Using 10 Outlier Detection Datasets

Figure 4.16 and Table 4.25 show the results of the experiment, which indicate

that our method performed well while using Mnist, Cardio and Vowels, and even

performed better while using Letter, Annthyroid, Pima, Pendigits, and Breastw

datasets (shaded green) compared to horizontal-SELECT. It also revealed that

SELECT outperformed our method while using Thyroid and Optdigits datasets

with ROC of 0.5149 and 0.9757, respectively (shaded yellow). SELECT did not

boost its samples like our method but selected good learners in two levels like

our method. That could explain the difference in performance. In 8 datasets out

of 10, our method demonstrated significant improvement in scores because of the

120

adaptive boosting that revises harder examples and the optimization by margin

maximization that gave a clear contrast between the inliers and outliers.

Proposed Method verses SELECT

Figure 4.16: Proposed Method vs. Horizontal-SELECT Ensemble using 10

Datasets

Table 4.25: Proposed Method vs. Horizontal-SELECT Ensemble using 10

Datasets

4.4.4 Experiment 21: Comparing the Performance of Proposed Method with

ADAHO Ensemble Using 10 Outlier Detection Datasets

Figure 4.17 and Table 4.26 show the results of the experiment, which indicate

that our proposed method performed considerably well in at least 7 datasets

(shaded green), i.e., Letter, Annthyroid, Cardio, Pima, Vowels, Thyroid, and

Pendigits with ROC values 0.8642, 0.8280, 0.8449, 0.7538, 0.6238, 0.4283, and

0.8451, respectively. It also revealed that ADAHO outperformed our method

using Mnist, Breastw, and Optdigits datasets with 0.9297, 0.7303, and 0.9396,

respectively (shaded yellow). This could be credited to the fact that ADAHO

121

boosted its samples just like our method and selected good learners in two levels

like our method but did not optimize models in iteration rounds by margin

maximization as our method. In 7 out of 10 datasets, our method demonstrated

improvement in scores (shaded green).

Proposed Method verses ADAHO

Figure 4.17: Proposed Method with Margin Maximization vs. ADAHO

Ensemble

Table 4.26: Proposed Method with Margin Maximization vs. ADAHO

Table 4.27 summarizes the analysis of the performance in terms of AUC scores

of the various baseline outcomes of ALOI, BASE, SELECT and ADAHO

(without margin maximization) techniques versus our method ADAHO_OAAE

(with margin maximization optimization) over all the datasets in Table 3.1. When

compared to the baselines, ADAHO_OAAE showed improvement in 4 datasets,

122

with substantial improvements noted in bold. This proposed method generated

better results due to the optimization and the diverse set of its base models. As

for the performance of the selected baselines, BASE showed improvement in one

dataset (vowels) with an AUC score of 0.6298, while ALOI showed

improvement in dataset cardio with 0.8304. SELECT, on the other hand,

improved performance in two datasets, Thyroid and Optdigits, with AUC values

of 0.5149 and 0.9757, respectively. ADAHO (without optimization) showed

improvement in two datasets (Mnist and breastw) as well, with high AUC scores

of 0.9297 and 0.7303, respectively. For the rest of the tests, ADAHO_OAAE

(with optimization) exhibited superior results in four datasets (Letter,

Annthyroid, Pima and Pendigits) with AUC scores of 0.8642, 0.8449, 0.7538,

and 0.8451, respectively. In addition, with regards to the four baselines that

either took the overall average score or the maximum score, our proposed

method used that which produced better results between the average-of-

maximum and the maximum-of-average and hence produced much better results.

This was so because the score combination took place twice in two levels, one

after the averaging and the other after the maximization and vice versa, aiming at

a more stable result. It is worth noting that ADAHO_OAAE (with optimization)

and ADAHO (without optimization) baseline performed almost similarly in

terms of AUC scores, with a very close absolute average AUC difference of

0.0332, i.e., (0.7693-0.7361). The other baselines, ALOI, BASE, and SELECT

differed significantly with absolute average score differences of 0.0437, 0.0395,

and 0.0701, respectively. This was attributed to the fact that both ADAHO

(without optimization) and ADAHO_OAAE (with optimization) similarly

followed steps 1 to 4 of Algorithm 6, and only differed in score margin

maximization. While ADAHO (without optimization) focused on only the local

neighbourhood strengths of a weak learner like ADAHO_OAAE further focused

on score margin maximization between the anomalous and normal data to build a

contrast, which improved detection accuracy. The two methods dynamically

weighted their samples as well as their weak learners before fusion, hence the

close similarity in their AUC scores.

123

In terms of bias and variance reduction, the tests revealed that combining only a

few well-performing base models led to more biased results. To reduce bias, it

was preferable if all base models participated in the final decision; however, this

was risky because poor models could have degraded overall ensemble

performance. Since ADAHO_OAAE combined scores of optimized yet diverse

base models at two levels, this effect was considerably reduced, as evidenced by

higher AUROC scores in the test results of four datasets, namely Letter,

Annthyroid, Pima, and Pendigits, at 0.8642, 0.8449, 0.7538, and 0.8451,

respectively. It was also clear that combining only a base model's maximum

score yields a high-variance ensemble, but using a second level combination,

such as averaging, mitigated this effect (similarly to (Zhao et al., 2019). As for

ADAHO_OAAE, rather than take the highest anomaly score, it computes the

average from the selected subsets of optimized models, thereby reducing the

overall ensemble’s variance.

Table 4.27: Summary of AUC scores of OAAE, ALOI, BASE and SELECT

(Highest Values Bolded)

Dataset ALOI BASE SELECT ADAHO OAAE

Mnist 0.8849 0.8703 0.8572 0.9297 0.8916

Letter 0.7529 0.7385 0.7285 0.8059 0.8642

Cardio 0.8304 0.7907 0.7979 0.8248 0.8280

Annthyroid 0.7435 0.7592 0.7405 0.7036 0.8449

Pima 0.6876 0.7213 0.6093 0.7279 0.7538

Vowels 0.5622 0.6298 0.5622 0.5134 0.6238

Thyroid 0.4827 0.4177 0.5149 0.4278 0.4283

Pendigits 0.7450 0.7303 0.6184 0.7981 0.8451

Breastw 0.6734 0.6671 0.5877 0.7303 0.7019

Optdigits 0.8933 0.9735 0.9757 0.9396 0.9114

AVERAGE 0.7256 0.7298 0.6992 0.7401 0.7693

124

Table 4.28 shows the mean of test results of ALOI, BASE, SELECT, ADAHO,

and OAAE with the highest values bolded. The diagonal values show each

technique's average AUC values. The other values off diagonal (shaded) reflect

the average differences in the AUC values between these techniques over all the

selected datasets. Since the paired t test produced p values less than 0.05, the

average difference in AUC values of our proposed algorithm OAAE versus the

baselines ALOI, BASE, SELECT and ADAHO are statistically significant, i.e.,

0.0095, 0.0204, 0.0166, and 0.0476, respectively as depicted and bolded in Table

4.29 with confidence level at 95 percent.

Table 4.28: OAAE, ALOI, BASE, SELECT, and ADAHO Mean AUC Values

and Average Differences over the Datasets in Table 3.1.

Versus ALOI BASE SELECT ADAHO OAAE

ALOI 0.7256 0.0042 -0.0264 0.0105 0.0437*

BASE 0.7298 -0.0306* 0.0063 0.0395*

SELECT 0.6992 0.0369 0.0701*

ADAHO 0.7361 0.0332*

OAAE 0.7693

In figure 4.18, the Area Under Receiver Operating Characterstic Curve (AUC-

ROC) values represent the densities for each method against the selected

datasets. The short vertical lines below the line curves show AUC values,

representing each method’s Kernel Density Estimates (KDE). Figure 4.18

demonstrates that outliers in at least half the datasets were easier to detect while

others were not. It’s also important to note that the AUCROC values of ALOI

and BASE had near-similar kernel density estimates, which affirms the fact that

there was not much significance in terms of the AUC difference even in the

paired t-test between the two (p-value of 0.3859, which is higher than 0.05) and

therefore not statistically significant.

125

Figure 4.18: Kernel Density Estimates of ALOI, BASE, SELECT, ADAHO and

ADAHO_OAAE

Lastly, in figure 4.18, it is also worth mentioning that the mass of the KDE of the

AUC values of OAAE is drifting more towards the right as compared to ALOI,

BASE, SELECT, and ADAHO, which implies that OAAE achieved higher

AUCROC values overall. Table 4.29 of p-values validates this observation.

Table 4.29: The p-values for Average Differences of the Methods from Table

4.27

Paired_Test p values

OAAE vs. ALOI 0.0095

OAAE vs. BASE 0.0204

OAAE vs. SELECT 0.0166

OAAE vs. ADAHO 0.0476

ADAHO vs. ALOI 0.1690

ADAHO vs. BASE 0.3036

ADAHO vs. SELECT 0.0864

SELECT vs. ALOI 0.0922

SELECT vs. BASE 0.0736

BASE vs. ALOI 0.3859

126

Table 4.29 shows the associated p values for the paired t-test. The statistically

significant values, i.e., p < 0.05, are emphasized in bold. With p values of

0.0095, 0.0204, 0.0166, and 0.0476, these tests revealed that OAAE (with

optimization) outperformed ALOI, BASE, SELECT, and ADAHO on a

statistically significant level. This was not the case with ADAHO versus ALOI,

BASE, and SELECT, or SELECT versus ALOI, and BASE, or BASE versus

ALOI, as their tests produced p-values above 0.05, i.e., 0.169, 0.3036, 0.0922,

0.0736, and 0.3859, respectively. Compared to others, ALOI had the least

significant result at 0.0095.

Figure 4.19 shows the AUC difference between OAAE and ADAHO while using

only one known outlier example in both ensembles. The average confidence

interval at the center is 0.95, indicating that most datasets were classifiable.

Furthermore, at the very extreme ends are the AUC difference points where each

method is superior in terms of the kernel density estimates, specifically in

MNIST and letter datasets (marked red), respectively. The short vertical pointers

along the x-axis and at density zero define AUC scores of each dataset, with

scores beyond zero indicating datasets where OAAE outperformed ADAHO.

Figure 4.19: Differences in AUC between OAAE and ADAHO

127

4.5 Model Improvement by Reduction of Ensemble Bias and Variance

To improve the performance of the base detectors, we used the ensemble technique

with adaptive boosting, as discussed in section 3.5. In order to lower the overall

ensemble variance, the selected weak learners must be uncorrelated, as indicated in

sections 2.8 and equations in 3.5.4.2. This was achieved by our model diversity

(using heterogeneous base detectors) to reduce average error of bias and variance. In

the case of KNN, the three variants used the median, the average, and the largest k

values. Furthermore, different k distances and distance metrics were chosen. The re-

weighting of samples at each training round introduced sample diversity. The choice

of different training algorithms introduced model diversity, and the use of

uncorrelated learner scores for model combination introduced score diversity, which

guaranteed overall variance reduction. We calculated the bias and variance for every

benchmark ensemble model with varying number of base detectors and the outcomes

are presented in Table 4.30.

Table 4.30: Comparison Between the Benchmark Ensembles vs the Proposed

Ensemble in Terms of Overall Bias -Variance. Expected error = (Bias2 +

Variance)

Dataset Ensemble Complexity

(No. of

learners)

Bias2

Variance

Expected

Error

Mnist

Benchmark(SELECT) 1 0.0326 0.0540 0.0866

ADAHO_OAAE1 50 0.0322 0.0503 0.0825

ADAHO_OAAE2 100 0.0321 0.0483 0.0804

ADAHO_OAAE3 150 0.0322 0.0489 0.0810

ADAHO_OAAE4 200 0.0323 0.0489 0.0811

ADAHO_OAAE5 250 0.0325 0.0488 0.0814

Letter

Benchmark(SELECT) 1 0.1281 0.0948 0.2229

ADAHO_OAAE1 50 0.1275 0.0900 0.2175

ADAHO_OAAE2 100 0.1266 0.0895 0.2161

ADAHO_OAAE3 150 0.1271 0.0849 0.2120

ADAHO_OAAE4 200 0.1278 0.0871 0.2149

ADAHO_OAAE5 250 0.1280 0.0898 0.2178

128

From Table 4.30, we note that the ensemble with 100 weak learners performed better

using the MINST dataset, with the least bias-variance at 0.0804 (bold), while for the

LETTER dataset, the ensemble with 150 weak learners was better, having the least

bias-variance at 0.2120 (bold). The main reason is that these datasets with high

dimensionality are a little harder to classify; secondly, compared to the benchmark

ensembles (i.e., using single homogeneous models as weak learners), the proposed

ensemble model reduces bias and variance better. Still, the bias drop is less than the

variance drop, suggesting that the ensemble may successfully reduce the overall

variance. Thirdly, of all the ensembles, the most complex one does not necessarily

yield the best performance, as revealed by the experiment, implying that an ensemble

model should have a suitable or appropriate complexity, that is, neither too complex

nor too basic. Lastly, all the ensemble models performed better by reducing the

expected error, which implies that the ensemble technique is an effective modeling

technique for improving detection accuracy and performance in outlier detection.

4.6 Test of Generalizability of the Proposed Method OAAE

Since outliers (anomalies) are not always the same, it is highly improbable that

the known anomalies cover every type of possible anomaly (Ruff et al., 2019). In

light of this, we tested ADAHO_OAAE’s applicability to detecting a broader

range of previously unknown anomalies. To complete this test, we utilize four

datasets containing different classes, namely MNIST, LETTER, THYROID, and

OPTDIGITS. In each dataset, we first sample the normal data from the most

recurring data points to form the normal class and, secondly, we used the

remainder of the data points in two ways: (i) by randomly sampling to create the

anomalous class, (ii) by letting the rest of the data to be used as previously

unknown anomalous cases. In addition, we further split the normal data into a

training set consisting of sixty percent of normal data and ten percent of the

known anomalies. Lastly, using the remaining normal data, we formed two

testing sets: one containing a portion of these normal data along with the

anomalies and the other containing a portion of these normal data along with the

previously unknown anomalies, each at a ratio of 60-40, respectively.

129

We then fitted the models on the training set and tested them using the two sets

containing known and previously unknown anomalies. The model that

consistently attained near-similar scores over both tests passed the

generalizability test. This test was repeated five times and computed the mean so

that each model generated two scores from the two independent testing sets.

Table 4.31 summarizes the outcomes of these tests, with each outcome having

two values: the first is from the test that contained known anomalies, and the

second, placed inside the brackets, is from the test that contained the previously

unknown anomalies. The highest values are bolded and italic, respectively. It was

evident from the outcomes that OAAE (optimized), ADAHO (without

optimization), and SELECT attained near-similar scores and that they could

often discern previously unseen or even novel data anomalies. It was not the case

for the BASE as unknown or novel cases of anomalies appeared to deteriorate

their ability to detect overall, especially with dataset thyroid that yielded 0.590

(0.732) with a single known anomaly and 0.402 (0.646) with 10% known

anomalies.

It was also apparent from these findings that the more known anomalies are in a

training set, the better the detection accuracy overall. This was the case when

having 10% of known anomalies in OAAE (MNIST improved from 0.958(0.978)

to 0.962(0.986)), in ADAHO (OPTDIGITS improved from 0.937 (0.966) to

0.939 (0.974)), in SELECT (THYROID improved from 0.631 (0.644) to 0.634

(0.664)), and in ALOI (THYROID improved from 0.600(0.751) to 0.606(0.757))

as shown in Table 4.31. The AUC averages generally moved up from as low as

0.001 to 0.1; for example, OAAE’s AUC average moved up from 0.868 to 0.871,

a difference of 0.003, and ADAHO’s average moved up from 0.851(0.878) to

0.854(0.880), a difference of 0.003(0.002). The known anomalies positively

contributed to the margin maximization contrast of outliers vs. inliers because

they effectively increased the detection accuracy of weak learners.

130

Table 4.31: Summary of AUC Outcomes from the Generalizability Test

a) Summary of AUC in generalizability test with a single known anomaly example

Dataset ALOI BASE SELECT ADAHO OAAE

Mnist 0.748 (0.988) 0.750(0.910) 0.949 (0.882) 0.925 (0.934) 0.958 (0.978)

Letter 0.913 (0.976) 0.921 (0.978) 0.952 (0.918) 0.926 (0.943) 0.925 (0.966)

Thyroid 0.600(0.751) 0.590 (0.732) 0.631 (0.644) 0.614 (0.670) 0.639 (0.770)

Optdigits 0.922 (0.971) 0.914 (0.967) 0.978 (0.954) 0.937 (0.966) 0.950 (0.973)

Average 0.796(0.922) 0.794(0.897) 0.878(0.850) 0.851(0.878) 0.868(0.922)

b) Summary of AUC outcomes in the generalizability test with 10% known anomalies

Mnist 0.767 (0.989) 0.730(0.927) 0.955 (0.878) 0.934 (0.930) 0.962 (0.986)

Letter 0.913 (0.944) 0.929 (0.979) 0.951 (0.912) 0.928 (0.944) 0.925 (0.942)

Thyroid 0.606(0.757) 0.402 (0.646) 0.634 (0.664) 0.616 (0.670) 0.639 (0.774)

Optdigits 0.928 (0.970) 0.922 (0.950) 0.979 (0.961) 0.939 (0.974) 0.959 (0.973)

Average 0.804(0.915) 0.746(0.876) 0.880(0.854) 0.854(0.880) 0.871(0.919)

4.7 Chapter summary

In this chapter, a novel optimized adaptive outlier detection ensemble was presented

together with the experiments conducted. The ensemble adaptively boosts the

performance of its weak predecessor learners by using decision weights and

optimizing model parameters. It uses a set of heterogeneous weak learners to induce

diversity at the model level, and then it re-weights training samples to induce

diversity at the sample level. Express optimization of parameters in adaptive

anomaly detection ensembles is novel. It is an attempt to tune the parameters of the

base models to ensure diverse but accurate results. The proposed ensemble was

tested on ten benchmark datasets and found superior to the baselines selected.

Experiments depicted an improvement in results, even when the least of known

anomalies, single cases up to 10%, were used. This means that the proposed

ensemble was effective even with a limited number of anomalies.

131

CHAPTER FIVE

SUMMARY AND DISCUSSION

5.1 Introduction

This study’s primary goal was to create a model for outlier detection utilizing a

heterogeneous hybrid ensemble of weak learners to improve performance while

prioritizing minimization of bias, variance, and order of base learners. The specific

objectives were:

(i) To find out what classifiers constitute weak learners for constructing

the base (detectors) for the outlier detection ensemble.

(ii) To identify different combination sequences or fusion strategies

(order) from the selected base learners for the outlier detection

ensemble.

(iii) To create a model for outlier detection that utilizes multiple weak

learners in a hybrid ensemble structure to provide improved

performance and accuracy while prioritizing minimization of bias,

variance, and classifier fusion order.

(iv) To evaluate the developed ensemble model for outlier detection

accuracy.

5.2 Objectives re-examination

The overall objective of this study was to create a model for outlier detection

utilizing a heterogeneous hybrid ensemble of weak learners to provide improved

performance. This research’s particular objectives are listed in section 1.2.2. The first

objective was to provide a literature review on existing and state-of-the-art detection

models used in outlier detection ensembles. The study reviewed the ensemble

concept in section 2.1, ensemble construction methods in section 2.2, selecting

ensemble learners in 2.3, combining ensemble learners in 2.4, outlier detection

overview in section 2.5, aspects of outlier detection in section 2.6, ingredients of

outlier detection in section 2.7, bias-variance trade-off in outlier detection including

132

reduction methods in sections 2.8 and 2.9, respectively. Section 2.10 provided a

critique, and section 2.11 provided the research gap from closely related work in

outlier detection using different ensembles.

Using the review findings of objective 1, the research gap in section 2.11 was

identified. The literature review showed that no standard or best method for outlier

detection problems reduced bias and variance or focused on the order of weak

learners. The advantages and disadvantages of each technique varied hence the need

to develop an ensemble for outlier detection with a focus on minimizing bias,

variance, and order of base learners. Although there were several techniques for

detecting outliers for a given dataset, not one technique was deemed to be the

universal choice. An outlier detection ensemble was proposed. The method used

heterogeneous weak learners to reduce ensemble bias and variance. Existing

literature did not show much work on outlier detection using heterogeneous weak

learners, whose performances were assessed based on their regions of competency,

nor improved by margin optimization, hence the opportunity to develop an outlier

detection ensemble that took advantage of the base learners’ areas of expertise in

different datasets to improve detection accuracy.

The second objective intended to identify different combination sequences or fusion

strategies (order) from the selected base learners for outlier detection. The objective

aimed at harnessing the strength of selection as well as alleviating single learner

weaknesses. The literature in sections 2.2, 2.3, 2.4, 2.8, 2.9, and 2.10 informed the

development of the proposed hybrid outlier detection ensemble method in section 3.5

The third objective was to create a model for outlier detection that utilized multiple

weak learners in a hybrid ensemble to provide better overall performance and

accuracy while prioritizing the minimization of bias, variance, and order of base

learners. This objective was intended to address the issues identified in section 2.11

using the proposed method in section 3.5. Experiments for creating the models,

selecting the models, and improving the models' performance were conducted in

sections 4.1 to section 4.3.6.

133

The fourth objective was to evaluate the developed ensemble model for outlier

detection accuracy. The objective intended to evaluate the performance of the

developed model. Performance evaluation metrics for data mining tasks were

reviewed in section 2.7.6. Experimental tests for assessing and comparing the

performance of the proposed ensemble with existing ensembles were conducted in

sections 4.4, 4.5 to 4.6.

5.3 Selection of Base Learners by Error Rates and Local Domain Competence

This study proposed a heterogeneous adaptive boosting ensemble for outlier

detection. Different base learners were selected since it was deemed effective when

base learners of dissimilar types were used. This finding was also true and in line

with the conclusions drawn by (Rayana et al., 2017). Through their differences,

unique properties in data are discovered or learned. It was clear that when base

learners of the same type (homogeneous) were used, the advantage of learner fusion

was lost unless different data subsamples for training, different data features, or tuned

learner parameters were used. This work focused on unsupervised outlier detection,

techniques that assigned a score to individual data points and allowed ranking those

points based on their outlierness score. Distance and density-based methods were the

chosen unsupervised methods for the task of outlier detection. This choice was

influenced by the idea that outliers were by themselves observations that deviate so

much from other observations (Hawkins, 1980). The distance-based algorithm,

i.e., k-NN, was selected to detect global outliers, and the density-based algorithm,

i.e., LOF, was selected to detect local outliers. For k-NN, the distance of individual

instances was used to generate outlierness score, while for LOF, the local deviation

of a given instance with respect to its neighbours was used to generate outlierness

score.

Furthermore, this work was motivated by the importance of data locality and

dynamic learner fusion from DCSO (Zhao & Hryniewicki, 2018; Wang & Mao,

2019) and the concept of heterogeneous detector formation by SELECT (Rayana &

Akoglu, 2016). Our method used same but weighted training versions of the data as

opposed to random subsampling or boot-strapping. The same training set was

134

repeatedly used, so it did not need to be as large as other methods required.

Successive weak learners were trained using re-weighted versions of the training

data, re-weighted according to the misclassification (error) by the previous weak

learners. This allowed weak learners to focus on outliers that the previous ones did

not detect well. The ensemble first selected optimal base learners by their error rates

in every iteration, hence eliminating the weak learners that did not predict at least

half the datasets correctly. The testing instances focused on local domains or regions

within the training datasets. Our method assessed the capability or competency of

each base detector before fusion, and since most outlier data had no actual labels or

ground truth, a simulated ground truth called 'target' was created using maximization

or averaging of scores of the selected weak learners. Both maximization and

averaging methods generated scores for training data, unlike those of generic/global

methods that generated scores for the test data. AvgkNN was used for setting the

local domain, such that, for every test instance, its local domain was derived as a set

of its k nearest training objects by Euclidean distance.

In addition to the first selection, that was based on the error rate of each weak

learner, a second selection was performed by obtaining the local simulated label

 for every test instance, where the values of with respect to the local

domain were used. The local training outlier scores were obtained from the

previously generated training score matrix. To determine the competence of each

base detector in the local domain, a Pearson Correlation similarity measure between

the base detector score and the simulated label was taken. This

method was considered more reliable in outlier detection as it took a similarity

measure in evaluating detectors instead of absolute accuracy, as most outlier datasets

had no ground truth and were unpredictable and imbalanced in most cases. This

method was also earlier used by (Isadora et. al., 2016). The base detector with the

135

highest similarity measure was chosen as the optimal base detector, with its outlier

score retained as an intermediate result for later use.

5.4 Model Diversity and Optimization by Margin Maximization

Each detector scores separated the potential outliers from the rest of the data, with

high scores assigned to the outliers and low scores to the inliers. A contrast between

the two scores distinguished the outliers from the other data in a dataset. However,

these scores did not represent a clear contrast between the outliers and the rest of the

data, so score optimization was required. This method created a clear contrast by

maximizing outlier scores and minimizing inlier scores, which improved outlier

detection. (Clark, Liu, & Japkowicz, 2018) utilized adaptive score threshold to

separate outliers from other data, and their method would have been ideal but not

applicable in our case since outlier scores did not always match. Our method

conforms to other methods like (Cervantes et al., 2020) about margin maximization

hyperplane, which are effective and generalize data better.

The score margin was defined as the difference between the known and unknown or

unseen outliers present in the already analysed dataset. For the unknown or unseen

outliers not to affect this difference, the median value of the score distributions was

introduced, which took the 50th percentile of the distribution. Outliers were few

(rare), so using the median method provided a robust measurement of the outlier

scores as it was not greatly affected by the unknown or unseen outliers in the dataset.

For every selected base model, the optimization maximization was based on the

values of the parameters that maximized the distance between the medians of the

scores. In most outlier detection ensembles, only well-performing base models were

selected for fusion (Xu et al., 2019); however, in our work, instead of only selecting

the well-performing base models, we further optimized their parameters and then

adaptively trained them to detect anomalies before fusion.

The base model optimization by score margin maximization only improved the

detection accuracy of the model but did not guarantee that the scores of base models

136

were diverse. Their errors needed to differ so that when fused into one model, it

addresses the shortcomings of the individual base models. This technique in this

study conforms with the study by (Zimek et al., 2014), who utilized varying errors to

improve their model performance. In our case, this was intended to reduce the overall

model's biases further. For the diversity between base models’ scores, we adjusted

the optimization to reduce the correlation between two score vectors similar to

(Reunanen et al., 2020). In a nutshell, the known outliers from the analyzed dataset

were utilized in two ways: first, to create a contrast between the outliers and other

data, and second, to obtain diverse outcomes from the base models before final

fusion.

5.5 Fusion of Scores of the Heterogeneous Base Learners

Our final result was a fusion of carefully selected results from the individual learners.

As base detectors were heterogeneous, their scores varied in range and interpretation,

and fusing them directly would have been erroneous. An agreement was needed

within the ensemble. From chapter 2, section 2.7.5, agreement methods were

grouped into rank-based and score-based. In rank-based, detector scores are ordered

into ranked lists then aggregation is performed where they are merged into a single

ranked list.

On the other hand, score-based methods convert outlier scores into probabilities

either by exponential or Gaussian scaling, by posterior probabilities, regularization,

or normalization, to make outlier scores across detectors comparable, then take a

final score by either averaging or maximization. Other score-based methods like

mixture modeling convert outliers using a model where scores are samples from a

combination of exponential (representing inliers) and Gaussian (representing

outliers) distributions, and one can convert scores into probabilities and then provide

binary classes for the instances with probabilities greater than half getting value 1,

i.e., outliers and 0 otherwise, i.e., inliers. Our work adopted score-based probabilities

and took the maximum-of-average of top h performing detectors in relation to their

target, or average-of-maximum of h chosen detector subgroups in relation to their

target as the subgroup’s score; then obtained the final score by picking the maximum

137

among all subgroups’ scores. These two methods were utilized to reduce bias, which

reduced the risk of only picking one best-performing base detector. Biasness of the

ensemble was greatly reduced by the fact that only top h performing base detectors in

relation to target were selected and for with which h detectors did not increase

variance overall.

In general, four fusion variants were created at different levels: maximization and

averaging in the first level, and maximum-of-average and the average-of-maximum

of base learners’ scores in the second level. The selected optimal base learners’

outcomes were carefully fused to reduce variance and bias while improving overall

ensemble accuracy. Our method was tested on ten benchmark datasets and showed

improved results compared to existing baselines using global scores (section 5.6).

The fusion by the average-of-maximum method showed promising results compared

to the other three variants and was deemed a better fusion strategy.

5.6 Performance Assessment of the Proposed Method

This research sought to determine the performance of the proposed heterogeneous

ensemble method in relation to other existing algorithms. The first comparative study

was done using various baselines’ outcomes of generic or global fusion by averaging

(G_Avg), maximization (G_Max), average-of-maximum (G_AvgM), maximum-of-

average (G_MaxA), weighted averaging (G_Wa), and global threshold summation

(G_Ts) versus the proposed methods’ variants for fusion by local domain averaging

(ADAHO_Avg), maximization (ADAHO_Max), maximum-of-average

(ADAHO_MaxA) and average-of-maximum (ADAHO_AvgM). The second

comparative study was done using various outlier detection ensembles appreviated as

ALOI, BASE, ADAHO and SELECT, because of their relative design with respect to

our method. ALOI and BASE, similar to our proposed method, used LOF and KNN

algorithms, with the only difference being that they used a heuristic method instead

of optimizing model parameters. In principle, ALOI and BASE followed our

Algorithm 6 but their values as described in section 3.5.4.1 were empty. In

addition, the two did not follow steps 2–5 of Algorithm 6 but used equal weights

138

 for all . The two baselines set parameters for their base models in

the same way as our proposed method and since the base models were similar, they

utilized similar distance metrics as well as some of the fusion approaches like

summation, median, averaging and maximization. Specifically, both approaches

utilized summation and Euclidean distances. Our method however, utilized the

median during optimization and took the final score in two levels, that is, by

maximum of average and by average of maximum. SELECT presented two sub-

formations referred to as vertical-SELECT and horizontal-SELECT. We compared

our method to horizontal-SELECT because, according to (Rayana & Akoglu, 2016),

it achieved better performance. ADAHO (Bii et al., 2020), which partly learned

similar base models as our proposed method and weighted its samples as well as its

base models by adaptive boosting, was also compared. The main difference was that

it did not consider margin maximization between outlier data and normal data. Hence

it did not loop through the last part of step 7 of algorithm 6. The proposed method

was tested against these baselines using the least known outlier percentage. It was

assumed that using the least percentage of outliers was the hardest test since very

little prior information about the dataset was provided, which meant, if the proposed

method outperformed baselines, a major improvement was achieved overall.

The proposed method was tested on ten benchmark datasets and was superior to the

baselines. Experiments showed an improvement in results, even when the least of

known outliers, single cases up to 10%, were used, which meant that our method was

effective even where there was a limited number of outliers. The strength of our

method was in three pillars: adaptive boosting, sample and detector weighting, and

parameter optimization. We ignored base models whose error rates were more than

half. In every round of training, samples gained new weights based on previous

model errors, and base model parameters were adjusted to optimize the margin

maximization between outliers and the inliers. Classification performance metrics of

recall (REC), false positive rate (FPR), receiver operating characteristics curve

(ROC), and the area under ROC (AUROC) were used. These metrics are widely used

in anomaly detection (Zhao & Hryniewicki, 2018). According to (Campos et al.,

2016), a recall metric performance measure is strongly recommended for binary and

139

multiclass datasets. Thus this study used Recall (TPR) as one of the evaluation

performance metrics for testing the performance of the proposed method, as

discussed in chapter 2. Scores above a threshold (T = 0.5) were considered outliers

and vice versa. Furthermore, a value of T inversely affected both REC and FPR

values as a higher T value caused low REC and FPR values, and the reverse was

true; that is, T was a tradeoff. ROC graph was used with different T values to

evaluate the proposed model’s efficiency with FPR plotted on the horizontal axis,

and REC plotted on the vertical axis. AUROC values were computed ranging (0, 1)

from the ROC graph so that an optimal AUC value was close to 1.

The AUC values were compared to determine the overall performance of the model.

Other related works, such as (Isadora et al., 2016), utilized 1-10% of the anomalies

without adaptive learner boosting, while (Micenkova et al., 2014) utilized half of the

anomalies. The strength of the proposed method was in three pillars: adaptive

boosting, point weighting based on the local domain, and score optimization. The

method ignored weak learners whose error rates were more than half, which could

deteriorate the final ensemble. In every iteration, samples gained new weights based

on previous errors and parameters that were adjusted. To decide if two outcomes

contained significant differences, the paired t-test was utilized to statistically analyse

results of experiments (Rietveld & Van Hout, 2017), which measured the average

difference between paired samples. In this test, the null hypothesis H0 is zero, given

that the difference (z) in AUC scores of two diverse base models is zero. If the p-

value was less than 0.05 the test was declared statistically significant.

The study findings of this work showed that the proposed method had statistically

significant performance compared with the baseline ensembles in outlier detection.

Further observation revealed that there was no uniform performance with the

datasets. Thus the choice of datasets may affect the performance of base detectors.

Literature in chapter 2 echoed that heterogeneous learners had the advantage of

generating different errors in different domains, which improves the ensemble’s

stability and outlier detection. This study supports the claim by (Zhao et al., 2019),

who empirically showed that ensembles often produce better results when there is a

substantial disparity among the base learners.

140

The similarity measure between the base learner outcomes and the simulated ground

truth determined the evaluation of weak learner competency. It was, however, clear

that not much difference was observed when a Friedman test was performed on both

Euclidean distance and Person correlation about the Receiver Operating

Characteristic and the average Precision as the performance variance was so

minimal, that is, less than one percent. Furthermore, the weight assignment to base

learners did affect the proposed model positively in terms of performance, as it

helped detect harder examples in every iteration. The setting of the local domain for

every test instance proved to be computationally expensive. To lessen computational

cost, other measures, like the determination of the value of k for the size of the local

domain, could be normalized as long as it does not affect performance, even when

outliers are within dense domains. In this study, the Euclidean distance between the

two became the most effective when the size of k was set to a large value so that the

local target and the detector outcomes were normalized.

5.7 Chapter summary

A discussion of the research study findings has been provided. The discussion

compared the study findings with the literature provided in chapter 2. The discussion

has shown that the proposed method outperformed most of the existing ensembles in

terms of accuracy in outlier detection because of optimization and reduced bias and

variance. The next chapter provides conclusions and recommendations for future

work.

141

CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter provides knowledge contributions that were realized in the course of the

study. A conclusion for the study is provided. The chapter ends by providing a list of

the various journals and publications produced and conferences presented based on

this research study.

6.2 Knowledge contributions

The major contribution of the research was the development of an optimized

adaptive boosting model of heterogeneous ensembles for outlier detection. The

model utilized well-known distance-based and density-based algorithms as its weak

base learners. Thus the technique applied many strategies and ensemble techniques

in developing the model.

This study provides a set of contributions. In this research study, well-performing or

optimal heterogeneous base learners were first selected based on their ability to

detect at least half the data instances correctly, that is, by their error rates being less

than half, and secondly by assessing their capability in reference to their local

domains or areas of expertise before optimization; this was because every outlier

detection technique performed best within a specific domain in the entire space. This

selection positively impacted the performance of base models and made the method

empirically testable, justifiable, reliable, and stable. We have no knowledge of any

previous similar work.

In this study, distance-based and density-based outlier detection algorithms formed

the weak base learners that enabled the discovery of both local and global outliers.

This was in line with Hawkins’s classical definition of outliers. The study

demonstrated that outliers could be found by assessing the distances of the

neighborhood of every data point from other data points; and that heterogeneous base

models could be combined into a single function for evaluating overall outlierness,

142

where each base model performed differently in certain spaces and produced outlier

scores of different types and scales. Furthermore, outliers can be found in dense or

less dense (distant) neighborhoods, and finding all outliers is critical.

The study showed that decision weights could be used adaptively to boost the

outcomes of predecessor base models. In this study, the proposed method utilized

decision weights to adaptively boost the outcomes of its predecessor base models in

the first phase, and then optimized the parameters that maximized the score margins

of its base models in the second phase. Finally, it fused selected heterogeneous well-

performing base models in the last phase to achieve better predictions. The margin

maximization created a clear contrast between outliers and normal data samples by

maximizing the outliers' scores and minimizing the rest of the data. This score

contrast was critical in optimizing outlier detection and improving overall detection

accuracy by reducing bias and variance. We have no knowledge of any previous

similar work.

The study also demonstrated how bias and variance could be reduced by combining

models in a bi-level structure that guaranteed diversity at different levels. The

method in this study used different kinds of base models and re-weighted training

samples in every training round, thereby not only inducing diversity at the model

level (through model heterogeneity) but also at the sample level (through re-

weighting samples) and at the score level, which made it effective even where there

was a limited number of outliers. The order of base learners showed that the first

detector in the ensemble had priority to decide about the outlierness of a given

instance. The higher the accuracy of the first detector, the fewer the number of

training iterations. The study produced a model that depicted better performance in

outlier detection. We have no knowledge of any previous similar work.

Finally, the study findings reaffirmed that ensemble learning of several weak learners

over similar tasks results in better performance than any individual learner.

143

6.3 Conclusion

The primary research’s goal was to create a model for outlier detection that utilizes

multiple weak learners in a hybrid ensemble structure to improve performance and

accuracy while prioritizing the minimization of bias and variance. An adaptive

boosting heterogeneous ensemble model for outlier detection was developed using

distance-based and density-based algorithms as the base classifiers. It selects optimal

base learners in relation to their local domains and fuses their outputs with the aim of

reducing variance and bias. The model effectively assessed learners’ prediction

capability through error rates. The score margin maximization technique was applied

to increase the contrast between classes, so as to increase the predictability of outlier

classes. Since poor-performing learners degrade the performance of the ensemble,

they are eliminated. The proposed model was tested on ten benchmark datasets and

found to be superior in performance to the baselines using Recall, Precision, and

ROC performance measures. The research study demonstrated that the more diverse

the base learners’ errors are, the better the combination power. The results of

experiments were presented as cross-tabulations, with detailed explanations and

interpretations.

6.4 Future work

This study determined a test instance’s local domain using nearest neighbors. Some

areas that can be investigated include setting local domains to reduce the time taken

establishing nearest neighbors. Also, a way of defining the value of k should be

considered as features keep changing, and k must be dynamic. This method is

extensively applicable to other kinds of ensembles that not only lean toward outlier

detection. It unlocks endless possibilities for research, including furthering

investigations into the choice of base models, dynamic parameter adjustments, bias-

variance supervision frameworks, and adaptive evolutionary methods that could

accelerate margin optimization, among others, that could reduce the cost of

computation overall. Finally, as regards the proposed method’s scalability, deep

learning techniques could further extend its application to ultrahigh-dimensional

spaces.

144

6.5 Publications and Conferences

1st Publication (SCI-Indexed):

Paper: Adaptive Boosting in Ensembles for Outlier Detection: Base Learner

Selection and Fusion by Local Domain Competence

Important dates: Submitted: 12 Apr 2019 | Revised: 29 Oct 2019 | Accepted:

12 Dec 2019. First published: March 30, 2020

 Journal: ETRI Journal, Volume 42, Issue 6 December 2020 Pages 886-898

 DOI: 10.4218/etrij.2019-0205

 Link: https://onlinelibrary.wiley.com/doi/full/10.4218/etrij.2019-0205

2nd Publication (EI-Indexed):

Paper: OAAE: Optimized Adaptive Anomaly Detection Ensemble: Base

Model Boosting By Parameter Optimization

Important dates: Submitted: 19 Mar 2021 | Revised: 13 Jul 2021 | Accepted:

27 Jul 2021. First published: August 22, 2021

 Peer Review link: https://publons.com/publon/49146156/

 Journal: Engineering Reports, Volume 4, Issue 2 February 2022

 DOI: 10.1002/eng2.12449

 Link: https://onlinelibrary.wiley.com/doi/10.1002/eng2.12449

Conference: Bii, J., Rimiru, R., & Waweru, M. (2018, September). Improved

adaptive boosting in heterogeneous hybrid ensembles for outlier detection:

prioritizing minimization of bias, variance and order of base learners. In Proceedings

of the 2018 4th Annual International Maasai Mara University Conference (pp. 40 -

41). Narok, Kenya — September 11- 13, 2018

https://onlinelibrary.wiley.com/doi/full/10.4218/etrij.2019-0205
https://publons.com/publon/49146156/
https://publons.com/publon/49146156/
https://onlinelibrary.wiley.com/doi/10.1002/eng2.12449
https://onlinelibrary.wiley.com/doi/10.1002/eng2.12449

145

REFERENCES

Aggarwal, C. C. (2021). Outlier Analysis (2nd ed.). London: Springer International

Publishing.

Aggarwal, C. C., & Sathe, S. (2015). Theoretical foundations and algorithms for

outlier ensembles. ACM SIGKDD Explorations Newsletter, 17(1), 24-47.

Aggarwal, C. C., & Sathe, S. (2017). Outlier Ensembles: An Introduction. London:

Springer.

Aggarwal, P., Gonzalez, C., & Dutt, V. (2020). HackIt: A real-time simulation tool

for studying real-world cyberattacks in the laboratory. In B. Gupta, G. Perez,

D. Agrawal, & D. Gupta (Eds.), Handbook of Computer Networks and Cyber

Security (pp. 667-680). London: Springer.

Akaike, H. (1970). Statistical predictor information. Annals of the Institute of

Statistical Mathematics, 22, 203–217.

Alpaydin, E. (2020). Introduction to Machine Learning (3rd ed.). Massachusetts: MIT

Press.

Allam, V. (2019). Detecting fraudulent credit card transactions using outlier

detection. International Journal of Scientific & Technology Research, 8, 630-

637.

Amil, P., Almeira, N., & Masoller, C. (2019). Outlier mining methods based on

graph structure analysis. Frontiers in Physics, 7, 194.

Angelin, B., & Geetha, A. (2020). Outlier detection using clustering techniques – K-

means and K-median. In 2020 4th International Conference on Intelligent

Computing and Control Systems (ICICCS) (pp. 373-378). IEEE.

Angiulli, F., Basta, S., Lodi, S., & Sartori, C. (2010). A distributed approach to

detect outliers in very large data sets. In M. L. Gavrilova, C. J. Kenneth Tan,

146

& M. I. Lourdes (Eds.), Transactions on Computational Science XI (pp. 439-

461). Springer. https://doi.org/10.1007/978-3-642-15277-1_32

Barai (Deb), A., & Dey, L. (2017). Outlier detection and removal algorithm in K-

Means and hierarchical clustering. World Journal of Computer Application

and Technology, 5(2), 24-29.

Barnett, V., & Lewis, T. (2021). Outliers in statistical data (4th ed.). New York:

Wiley.

Beckman, R. J., & Cook, D. (1983). Outliers with discussion. Technometrics, 25,

119-149.

Bhattacharyya, S., & Kalita, J. K. (2019). Malware classification: A survey.

Computers & Security, 83, 81-105.

Bii, J. K., Rimiru, R., & Mwangi, R. W. (2020). Adaptive boosting in ensembles for

outlier detection: Base learner selection and fusion via local domain

competence. ETRI Journal, 42(1), 1-13.

Bouguessa, M. (2012). A probabilistic combination approach to improve outlier

detection. In Proceedings of the IEEE 24th International Conference on Tools

with Artificial Intelligence (ICTAI) (pp. 666–673).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

Breiman, L. (1999). Using adaptive bagging to debias regressions (Statistics

Department Technical Report), Berkeley: University of California.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

Breuning, M., Kriegel, H., Ng, R. T., & Sander, J. (2000). LOF: Identifying density

based local outliers. In Proceedings of the ACM SIGMOD International

Conference on the Management of Data (pp. 1-12).

https://doi.org/10.1007/978-3-642-15277-1_32

147

Breve, F. A., Ponti-Jr., M. P., & Mascarenhas, N. D. A. (2007). Multilayer

perceptron classifier combination for identification of materials on noisy soil

science multispectral images. In Proceedings of the 20th Brazilian

Symposium on Comp Graphics and Image Processing (pp. 239-244). MG:

IEEE.

Brownlee, J. (2019). How to Develop a Skillful Ensemble of Machine Learning

Models. Machine Learning Mastery. Retrieved from

https://machinelearningmastery.com /ensemble-machine-learning-algorithms-

python-scikit-learn/

Buda, M., Maki, A., & Mazurowski, M. A. (2018). A systematic study of the class

imbalance problem in CNNs. Neural Networks, 106, 249-259.

Burnaev, E., Erofeev, P., & Smolyakov, D. (2015). Model selection for anomaly

detection. In International Conference on Machine Vision. 

Campos, G. O., Zimek, A., Sander, J., Campello, R. J. G. B., Micenkova, B.,

Schubert, E., Assent, I., & Houle, M. E. (2016). On the evaluation of

unsupervised outlier detection: Measures, datasets, and an empirical study.

Data Mining and Knowledge Discovery, 30(4), 891-927.

Carter, P. (2019). Database consistency. Retrieved from https://doi.org/10.1007/978-

1-4842-5089-1_9.

Cervantes, J., Garcia-Lamont, F., Rodriguez-Mazahua, L., & Lopez, A. (2020). A

comprehensive survey on support vector machine classification:

Applications, challenges and trends. Neurocomputing, 405, 43-67.

Chander, B., & Kumaravelan, G. (2022). Outlier detection strategies for WSNs: A

survey. Journal of King Saud University - Computer and Information

Sciences, 34(8), 5684-5707.

https://doi.org/10.1007/978-1-4842-5089-1_9
https://doi.org/10.1007/978-1-4842-5089-1_9

148

Chen, G., Du, L., & B. (2020). An ordinal outlier algorithm for anomaly detection of

high-dimensional data sets. In 2020 Chinese Control and Decision

Conference (CCDC) (pp. 5356-5361). IEEE.

Chen, T., Zhang, J., & Xue, J. H. (2019). Heterogeneous ensembles for outlier

detection: Leveraging strengths of multiple models. Knowledge-Based

Systems, 166, 115-128.

Christy, A., Meeragandhi, G., & Vaithyasubramanian, S. (2015). Cluster based

outlier detection algorithm for healthcare data. Procedia Computer Science,

48, 368-375.

Clark, J., Liu, Z., & Japkowicz, N. (2018). Adaptive threshold for outlier detection

on data streams. In IEEE 5th International Conference on Data Science and

Advanced Analytics (DSAA) (pp. 76-85). IEEE.

Cousineau, D., & Chartier, S. (2010). Outliers detection and treatment: A review.

International Journal of Psychological Research, 3(1), 58–67.

Das, S., Wong, K., Dietterich, T., Fern, A., & Emmott, A. (2016). Incorporating

Expert Feedback into Active Anomaly Discovery. In Proceedings of the

IEEE International Conference on Data Mining (pp. 853-858).

Feldbauer, R., & Flexer, A. (2019). A comprehensive empirical comparison of

hubness reduction in high-dimensional spaces. Knowledge and Information

Systems, 59(1), 137-166.

Foorthuis, R. (2021). On the nature and types of anomalies: a review of deviations in

data. International Journal of Data Science and Analytics, 12, 1-35.

Fowke, K. R., Nagelkerke, N. J., & Kimani, J. (1996). Genital ulcer disease in female

sex workers in Nairobi: Results of a cohort study. The Lancet, 348(9033),

1347-1352.

149

Freund, Y., & Schapire, R. E. (1997). A decision–theoretic generalization of online

learning and an application to boosting. Journal of Computer and System

Sciences, 55(1), 119–139.

Freund, Y., & Schapire, R. E. (1996). Game theory, online prediction and boosting.

In Proceedings of the 9th Annual Conference on Computational Learning

Theory (pp. 325–332). ACM press.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. In

Proceedings of the Thirteenth International Conference on Machine Learning

(pp. 148–156). Bari, Italy.

Fumera, G., & Roli, F. (2005). A theoretical and experimental analysis of linear

combiners for multiple classifier systems. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27, 924–956.

Gao, J., & Tan, P.N. (2006). Converting Output Scores from Outlier Detection

Algorithms to Probability Estimates. In Proceedings of the Sixth

International Conference on Data Mining (ICDM).

Ghorbani, H. (2019). Mahalanobis distance and its application for detecting

multivariate outliers. Facta Universitatis Series Mathematics and

Informatics, 34(4), 583-593.

Grubbs, F. E. (1969). Procedures for detecting outlying observations in samples.

Technometrics, 11(1), 1-21.

Gupta, P., Krishnamurthy, V., & Nasraoui, O. (2019). Deep learning for anomaly

detection: A survey. ACM Computing Surveys (CSUR), 51(3), 1-36.

Guo, F., Shi, C., Li, X., He, J., & Xi, W. (2018). Outlier Detection Based on the Data

Structure. In 2018 International Joint Conference on Neural Networks

(IJCNN) (pp. 1-6).

150

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques (3rd

ed.). New York: Morgan Kaufmann.

Hansen, L. K., & Salamon, P. (1990). Neural Network Ensembles. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993-

1001.

Haque, M., Berretta, R., & Moscato, P. (2016). Heterogeneous Ensemble

Combination Search Using Genetic Algorithm for Class Imbalanced Data

Classification. PLoS One, 11(1), e0146116.

Hawkins, D. (1980). Identification of Outliers. London, UK: Chapman and Hall.

Huang, B., Dong, J., Mao, Y., Ji, X., & Liu, Z. (2019). A survey of ensemble

learning in deep neural networks. Information Fusion, 52, 1-16.

IEEE International Conference on Data Engineering. (2012). In Proceedings of the

Conference on Data Engineering (ICDE) (pp. 1037-1048). Washington, DC,

USA.

Isadora, N., Pavlos, P., Brandon, S., & Wesley, C. (2016). Ensemble Learning

Method for Outlier Detection and Its Application to Astronomical Light

Curves. The Astronomical Journal, 152, 71.

Janssens, J. H. M., Huszár, F., Postma, E. O., & van den Herik, H. J. (2012).

Stochastic outlier selection. Tilburg centre for Creative Computing, tech.

report, 1, 2012.

Lopez-de-Lacalle, J. (2017). Detection of Outliers in Time Series. Package outliers,

Ver. 0.6-6. Retrieved from https://jalobe.com

Jaw, E., & Wang, X. (2021). Feature Selection and Ensemble-Based Intrusion

Detection System: An Efficient and Comprehensive Approach. Symmetry,

13(10), 1764.

https://jalobe.com/

151

Jiang, H., Zhang, K., Wang, J., Wang, X., & Huang, P. (2020). Anomaly Detection

and Identification in Satellite Telemetry Data Based on Pseudo-Period.

Applied Sciences, 10(1), 103.

Jiang, S., & An, Q. (2008). Clustering-based outlier detection method. In:

Proceedings of the Fifth International Conference on Fuzzy Systems and

Knowledge Discovery, FSKD ’08, 2008, 2, 429–433.

Jiang, Z., Zhang, F., Xu, H., Tao, L., & Zhang, Z. (2022). MEOD: A Robust Multi-

stage Ensemble Model Based on Rank Aggregation and Stacking for Outlier

Detection. In Knowledge Science, Engineering and Management. KSEM

2022 238-251. Springer, Cham.

Johnson, A. (2022). Evaluating outlier detection performance using mean squared

error. Journal of Machine Learning Research, 23(1), 45-62.

Kaur, K., & Garg, A. (2016). Comparative Study of Outlier Detection Algorithms.

International Journal of Computer Applications, 147(9), 1-5.

Kalinichenko, L., Shanin, I., & Taraban, I. (2014). Methods for anomaly detection: A survey.

In CEUR workshop proceedings (Vol. 1297, p. 2025).

Kamalov, Firuz & Leung, Ho-Hon. (2020). Outlier Detection in High-Dimensional

Data. Journal of Information and Knowledge Management, 19, 2040013.

Kandhari, A., Aggarwal, C. C., & Das, K. (2018). Outlier ensemble detection. ACM

Transactions on Knowledge Discovery from Data (TKDD), 12(4), 1-35.

Keller, F., Muller, E., & Bohm, K. (2012). Hics: High contrast subspaces for density-

based outlier ranking. In Proceedings of the 2012 IEEE 28th International

Conference.

Khullar, D., Jha, A. K., & Jena, A. B. (2015). Reducing diagnostic errors- why now.

New England Journal of Medicine, 373, 2491-2493.

152

Kieu, L. M., & Nguyen, T. T. (2020). A Comparative Study of Machine Learning

Techniques for Fraud Detection in Banking Sector. Journal of Business

Research, 122, 298-308.

Klementiev, A., Roth, D., & Small, K. (2007). An unsupervised learning algorithm

for rank aggregation. In Proceedings of the 18th European Conference on

Machine Learning (ECML'07) (pp. 616-623). Springer.

Knorr, E. M., & Ng, R. T. (1998). Algorithms for mining distance-based outliers in

large datasets. In Proceedings of the 24th International Conference on Very

Large Data Bases (VLDB'98) (pp. 392-403). ACM Press.

Knorr, E. M., Ng, R. T., & Tucakov, V. (2000). Distance-based outliers: Algorithms

and applications. VLDB Journal, 8(3-4), 237-253.

Kriegel, H., Kröger, P., Schubert, E., & Zimek, A. (2009). Outlier detection in axis-

parallel subspaces of high dimensional data. In Proceedings of the 13th

Pacific-Asia Conference on Knowledge Discovery and Data Mining

(PAKDD) (pp. 831-838). Springer.

Kumar, S., Kaur, P., & Gosain, A. (2022). A comprehensive survey on ensemble

methods. In 2022 International Conference on Inventive Communication and

Computational Technologies (ICICCT) (pp. 1357-1362). IEEE.

Larson, E. R., & Moore, J. A. (2022). Spatial data analysis of ecological data using

machine learning techniques. Ecological Modelling, 488, 109460.

Lazarevic, A., & Kumar, V. (2005). Feature bagging for outlier detection. In

Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (pp. 157-166).

Lei Cao, Di Yang, Qingyang Wang, Yanwei Yu, Jiayuan Wang, & Elke A

Rundensteiner. (2014). Scalable distance-based outlier detection over high-

volume data streams. In Data Engineering (ICDE), IEEE 30th International

Conference on (pp. 76–87).

153

Li, X., Guo, L., Zhang, X., & Jin, X. (2021). Deep learning for anomaly detection: A

review. Pattern Recognition, 110, 107638.

Lichman, M. (2013). UCI machine learning repository. Retrieved from

http://archive.ics.uci.edu/ml.

Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3), 30-57.

Liu, F. T., Ting, K. M., & Zhou, Z. H. (2018). Isolation-based anomaly detection.

ACM Transactions on Knowledge Discovery from Data (TKDD), 12(1), 1-39.

Liu, Sophia, Ngan, Henry Y.T., Ng, M., & Simske, Steven. (2018). Accumulated

relative density outlier detection for large scale traffic data. Electronic

Imaging, 2018(9), 1-10.

Ma, Y., Zhao, X., Zhang, C., Zhang, J., & Qin, X. (2021). Outlier detection from

multiple data sources. Information Sciences, 580, 819-837.

Merza, E., & Mohammed, N. (2021). Fast Ways to Detect Outliers. Journal of

Techniques, 3, 66-73.

Micenkova, B., McWilliams, B., & Assent, I. (2014). Learning outlier ensembles: the

best of both worlds-supervised and unsupervised. In Proceedings of the ACM

SIGKDD Workshop on Outlier Detection and Description, ODD '14.

Muller, E., Assent, I., Steinhausen, U., & Seidl, T. (2008). Outrank: ranking outliers

in high dimensional data. In ICDE Workshops (pp. 600-603).

Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.

Murty, M. N., Jain, A., & Mukhopadhyay, S. (2021). Machine learning: a review.

Artificial Intelligence Review, 54(2), 1035-1078.

Nguyen, H., Ang, H., & Gopalkrishnan, V. (2010). Mining outliers with ensemble of

heterogeneous detectors on random subspaces. In Proceedings of the 15th

http://archive.ics.uci.edu/ml

154

International Conference on Database Systems for Advanced Applications,

DASFAA’10 (pp. 368–383). Springer, Berlin, Heidelberg.

Niemann, F.; Ludtke, S.; Bartelt, C.; ten Hompel, M. (2022). Context-Aware Human

Activity Recognition in Industrial Processes. Sensors, 22(1), 134.

ODDS Library. (2016). Retrieved from http://odds.cs.stonybrook.edu/.

Otero Gomez, D., Agudelo, S. C., Patiño, A. O., & Lopez-Rojas, E. (2021). Anomaly

Detection applied to Money Laundering Detecion using Ensemble

Learning (No. f84ht). Center for Open Science.

Papadimitriou, S., Kitagawa, H., Gibbons, P., & Faloutsos, C. (2003). LOCI: Fast

outlier detection using the local correlation integral. In Proceedings of the

International Conference on Data Engineering (ICDE) (pp. 315–326). IEEE

Computer Society.

Pawar, A. M., & Mahindrakar, M. S. (2015). A comprehensive survey on online

anomaly detection. International Journal of Computer Applications, 119, 17.

Pintelas, P. E., & Livieris, I. E. (Eds.). (2020). Ensemble algorithms and their

applications. Basel: MDPI-Multidisciplinary Digital Publishing Institute.

Prasada, A., Mahapatra, A., Nanda, A., Mohapatra, B., Padhy, A., & Padhy, I.

(2020). Concept of outlier study: The management of outlier handling with

significance in inclusive education setting. Asian Research Journal of

Mathematics, 16, 7-25.

Rayana, S., & Akoglu, L. (2014). An Ensemble Approach for Event Detection in

Dynamic Graphs. In Proceedings of the KDD ODD2 Workshop.

Rayana, S., & Akoglu, L. (2016). Less is More: Building Selective Anomaly

Ensembles. ACM Transactions on Knowledge Discovery from Data (TKDD),

10(4), 1-33.

http://odds.cs.stonybrook.edu/

155

Rayana, S., Zhong, W., & Akoglu, L. (2017). Sequential ensemble learning for

outlier detection: A bias-variance perspective. In 2017 IEEE International

Conference on Data Mining (ICDM) (pp. 1167-1172). IEEE.

Reunanen, N., Raty, T., & Lintonen, T. (2020). Automatic optimization of outlier

detection ensembles using a limited number of outlier examples.

International Journal of Data Science and Analytics, 10(2), 203-218.

Rietveld, T., & van Hout, R. (2017). The paired t test and beyond: Recommendations

for testing the central tendencies of two paired samples in research on speech,

language and hearing pathology. Journal of Communication Disorders, 69,

44-57.

Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review, 33(1-

2), 1-39.

Roy, A., & Garg, A. (2022). A Comprehensive Study of Various Outlier Detection

Approaches. ECS Transactions, 107, 8561.

Ruff, L., Vandermeulen, R. A., Görnitz, N., Binder, A., Müller, E., Müller, K. R., &

Kloft, M. (2019). Deep semi-supervised anomaly detection. arXiv preprint

arXiv:1906.02694.

Sabzevari, M., Martinez-Munoz, G., & Suarez, A. (2022). Building heterogeneous

ensembles by pooling homogeneous ensembles. International Journal of

Machine Learning and Cybernetics, 13(2), 551-558.

Schapire, R. (1990). The strength of weak learnability. Machine Learning, 5, 197-

227.

Schapire, R. E. (2004). The boosting approach to machine learning: An overview. In

Nonlinear Estimation and Classification (pp. 149-171). Berkeley: Springer.

Schubert, E., Wojdanowski, R., Zimek, A., & Kriegel, H.-P. (2013). On Evaluation

of Outlier Rankings and Outlier Scores. SDM, 1047-1058.

156

Shaikh, S. A., & Kitagawa, H. (2012). Distance-based outlier detection on uncertain

data of Gaussian distribution. In Web Technologies and Applications: 14th

Asia-Pacific Web Conference, APWeb 2012, Kunming, China, April 11-13,

2012. Proceedings 14 (pp. 109-121). Springer Berlin Heidelberg.

Shwartz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6,

461–464.

Skelsey, P. (2021). Forecasting Risk of Crop Disease with Anomaly Detection

Algorithms. Phytopathology, 111(2), 321-332.

Sun, J., Xiong, Y., Zhu, M., & Zhang, W. (2019). Anomaly detection using One-

Class SVM and MAE-Based Resampling. IEEE Access, 7, 138074-138085.

Tang, A., Sethumadhavan, S., & Stolfo, S. J. (2014). Research in Attacks Intrusions

and Defenses. New York: Springer.

Tang, G. (2015). New methods in outlier detection. Simon Fraser University.

Retrieved from http://summit.sfu.ca/system/files/iritems1/15321/

etd8992GTang.pdf

Tasaki, S., Gaiteri, C., Mostafavi, S., & Wang, Y. (2020). Decoding differential gene

expression. bioRxiv, 2020.01.10.894238.

Thudumu, S., Branch, P., Jin, J., Guo, J., & Kulkarni, P. (2020). A comprehensive

survey of anomaly detection techniques for high dimensional big data.

Journal of Big Data, 7(1), 42.

Tsoumakas, G., Angelis, L., & Vlahava, I. (2014). Selective fusion of heterogeneous

classifiers. Greece: Aristotle University of Thessaloniki,.

Tumer, K., & Ghosh, J. (1996). Error correlation and error reduction in ensemble

classifiers. Connection Science, 8(3-4), 385-204.

http://summit.sfu.ca/system/files/iritems1/15321/%20etd8992GTang.pdf
http://summit.sfu.ca/system/files/iritems1/15321/%20etd8992GTang.pdf

157

Ur Rehman, M., & Khan, D. (2020). Local neighborhood-based outlier detection of

high dimensional data using different proximity functions. International

Journal of Advanced Computer Science and Applications, 11, 255-260.

Varun, A., & Bhatia, S. (2020). An overview of outlier detection techniques: State-

of-the-art, challenges, and future directions. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 10(1), e1349.

Wang, B., & Mao, Z. (2019). Outlier detection based on a dynamic ensemble model:

Applied to process monitoring. Information Fusion, 51, 244–258.

Wang, J., & Sun, H. (2018). A novel ensemble outlier detection algorithm based on

neighborhood density and distance. Expert Systems with Applications, 95, 43-

54.

Wu, E., Liu, W., & Chawla, S. (2010). Spatio-temporal outlier detection in

precipitation data. In Knowledge Discovery from Sensor Data: Second

International Workshop, Sensor-KDD 2008, Las Vegas, NV, USA, August 24-

27, 2008, Revised Selected Papers (pp. 115-133). Springer Berlin Heidelberg.

Xu, H., Zhang, L., Li, P., & Zhu, F. (2022). Outlier detection algorithm based on

Knn-LOF. Journal of Algorithms & Com Technology, 16,

17483026221078111.

Xu, M., Li, X., Zhang, Z., Luo, J., & Zeng, W. (2020). Hybrid ensemble of

autoencoders and k-nearest neighbors for credit card fraud detection. IEEE

Transactions on Information Forensics and Security, 15, 1076-1090.

Xu, X., Liu, H., & Yao, M. (2019). Recent progress of anomaly detection.

Complexity, 2019, 1-11.

Yan, K., You, X., Ji, X., Yin, G., & Yang, F. (2016). A hybrid outlier detection

method for health care big data. In 2016 IEEE International Conference on

Big Data and Cloud Computing, Social Computing and Networking,

158

Sustainable Computing and Communications (BDCloud-SocialCom-

SustainCom) (pp. 157-162).

Zhang, J. (2008). Towards outlier detection for high-dimensional data streams using

projected outlier analysis strategy, Unpublished PhD dissertation, Dalhousie:

Dalhousie University.

Zhang, J., Li, Z., & Chen, S. (2020). Diversity aware-based sequential ensemble

learning for robust anomaly detection. IEEE Access, 8, 42349-42363.

Zhang, K., Hutter, M., & Jin, H. (2009). A new local distance-based outlier detection

approach for scattered real-world data. Computing Research Repository.

Retrieved from http://arxiv.org/abs/0909.4928

Zhao, Y., & Hryniewicki, M. K. (2018). DCSO: Dynamic combination of detector

scores for outlier ensembles. Retrieved from https://doi.org/10.13140/RG.2.2.

11165.77288

Zhao, Y., & Hryniewicki, M. K. (2018). XGBOD: Improving supervised outlier

detection with unsupervised representation learning. In International Joint

Conference on Neural Networks (IJCNN) (pp. 1-8).

Zhao, Y., Nasrullah, Z., Hryniewicki, M. K., & Li, Z. (2019). LSCP: Locally

Selective Combination in Parallel Outlier Ensembles. In Proceedings of the

2019 SIAM International Conference on Data Mining (pp. 585-593). Society

for Industrial and Applied Mathematics.

Zhu, C., Kitagawa, H., Papadimitriou, S., & Faloutsos, C. (2004). OBE: Outlier by

Example. Lecture Notes in Computer Science, 3056, 222-234.

Zimek, A., Campello, R. J. G. B., & Sander, J. (2014). Data perturbation for outlier

detection ensembles. In Proceedings of the 26th International Conference on

Scientific and Statistical Database Management (SSDBM '14) (pp. 13:1-

13:12). ACM.

http://arxiv.org/abs/0909.4928
https://doi.org/10.13140/RG.2.2.%2011165.77288
https://doi.org/10.13140/RG.2.2.%2011165.77288

159

Zimek, A., Campello, R. J. G. B., & Sander, J. (2014). Ensembles for unsupervised

outlier detection: Challenges and research questions. ACM SIGKDD

Explorations, 15(1), 11-22.

Zimek, A., Gaudet, M., Campello, R. J., & Sander, J. (2013). Subsampling for

efficient and effective unsupervised OD ensembles. In Proceedings of the

19th ACM SIGKDD international conference on Knowledge discovery and

data mining (pp. 428-436). ACM.

160

APPENDICES

Appendix I: Details of Datasets and Scatter Plots

Table APX1 1.0: Description for MNIST Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 100(numeric) 7603 700 (9.21) 2 None

Additional information

This modified MNIST dataset has digits (0s) from the original MNIST dataset, with

(6s) added as outliers. A random sample of 100 features out of the initial 784 pixels

was taken. It comprises 100 columns and 7603 rows, which means that there are

many features for a limited number of observations. It also has a high outlier

fraction of 9.2 %.

Table APX1 1.1: Sample MNIST Dataset

x91 x93 x94 x96 x97 x98 x99 Class

188.0556 -4.46997 158.3814 27.13142 -2.27463 -0.00065 -12.3513 0

186.0556 -4.46997 123.3814 157.1314 -2.27463 -0.00065 -12.3513 0

149.0556 -4.46997 -93.6186 -75.8686 -2.27463 -0.00065 -12.3513 0

-64.9444 -4.46997 94.89937 -93.8686 -2.27463 -0.00065 -12.3513 1

-64.9444 -4.46997 -137.101 -53.8686 -2.27463 -0.00065 -12.3513 1

-64.9444 -4.46997 23.89937 -93.8686 -2.27463 -0.00065 125.6487 1

-64.9444 -4.46997 -9.10063 -93.8686 -2.27463 -0.00065 -12.3513 1

161

Figure APX1 1.0: Scatter Plot for the MNIST Dataset

Table APX1 2.0: Description for Letter Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 32 (numeric) 1600 100 (0.0625) 2 None

Additional information

The original letter dataset included 26 capital letters in the English alphabet

represented in 16 dimensions. To convert it for outlier detection, 3 letters of data are

sampled to create the inliers, and then their pairs are randomly joined to double their

dimensionality. A few letters that are not inliers are selected at random to make up

the outlier class. A total of 1600 data points were sampled with a positive class

fraction of 6.250%

162

Table APX1 2.1: Sample Letter Dataset

Figure APX1 2.0: Scatter Plot for the Letter Dataset

Table APX1 3.0: Description for Cardio Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 21(numeric) 1831 176 (0.0961) 2 None

Additional information

Expert obstetricians divided fetal heart rate and uterine contraction scans into 3

groups in the Cardio dataset: pathogenic, normal, and suspect. The pathologic class

of 176 (9.61%) was converted into outliers for the purpose of outlier detection, the

163

normal class was transformed into inliers, and the suspect class was discarded. The

dataset has 21 attributes, 2 classes, and 1831 instances.

Table APX1 3.1: Sample Cardio Dataset

Figure APX1 3.0: Scatter Plot for the Cardio Dataset

Table APX1 4.0: Description for Annthyroid Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 6 (numeric) 7200 534 (0.0742) 2 None

164

Additional information

The original thyroid disease (ann-thyroid) dataset has 3772 training and 3428 testing

instances. The issue is determining whether or not a patient who has been referred to

the clinic is hypothyroid. Hence, three classes were created: normal, hyperfunction,

and subnormal functioning. For outlier detection, both training and testing instances

are used. The normal class is used as inliers, while the hyperfunction and subnormal

classes are considered outliers. The dataset has 6 real attributes, 2 classes, and 7200

instances.

Table APX1 4.1: Sample Annthyroid Dataset

Figure APX1 4.0: Scatter Plot for the Annthyroid Dataset

165

Table APX1 5.0: Description for Pima Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 8(numeric) 768 268 (0.3490) 3 None

Additional information

The original Pima dataset for diabetes is a dataset for binary classification. The

selection of examples from the wider database was subject to a number of restrictions

including; all patients being female, at least 21 years of age, and of Pima heritage. It

has 8 attributes, 3 classes, and 768 instances, of which 268 (34.9%) are considered

outliers. The objective is to foresee if a patient has diabetes.

Table APX1 5.1: Sample Pima Dataset

Figure APX1 5.0: Scatter Plot for the Pima Dataset

166

Table APX1 6.0: Description for Vowels Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 12(numeric) 1456 50 (0.0343) 2 None

Additional information

The original Vowels dataset is a multivariate time series data with 9 male speakers’

utterances of two Japanese vowels, ‘a’ and ‘e.’ A single utterance gives a time series

range of lengths 7-29, with every point consisting of 12 features. For the purpose of

outlier detection, each frame in the training set is treated as a separate data point. 50

(3.43%) outliers (Class 1-Speaker) are included in the sample. Classes 6, 7, and 8 are

regarded as inliers, while other classes are disregarded.

Table APX1 6.1: Sample Vowels Dataset

Figure APX1 6.0: Scatter Plot for the Vowels Dataset

167

Table APX1 7.0: Description for Thyroid Dataset

Type Features Instances Outliers (%) Classes Missing Values?

Outlier detection 6(numeric) 3772 93 (0.0247) 3 None

Additional information

The original thyroid (ann-thyroid) dataset has 3772 training and 3428 testing

instances. The issue is determining whether or not a patient is hypothyroid. Hence,

three classes are created: normal, hyperfunction, and subnormal functioning. For

outlier detection, only the training instances are used. The normal and subnormal

classes are used as inliers, while the hyperfunction class with 93 instances (2.466%)

was considered outliers. The dataset has 6 real attributes, 3 classes, and 3772

instances.

Table APX1 7.1: Sample Thyroid Dataset

Figure APX1 7.0: Scatter Plot for the Thyroid Dataset

168

Table APX1 8.0: Description for Pendigits Dataset

Type (Int.) Features Instances Outliers (%) Classes Missing Values?

Outlier detection 16(Integers) 6870 156 (0.0227) 2 None

Additional information

The original Pen-Based Recognition of Handwritten Digits (pendigits) dataset has 16

features and classes 0 to 9. A collection of 250 samples from 44 writers, of which

samples from 30 writers are taken as training and cross-validation data while the rest

are for testing. For outlier detection, the original collection of handwritten samples is

reduced to 6,870 points, of which 156 are outliers. The quantity of objects in one

class, digit-0, is decreased by 10% because all classes have similar frequencies.

Table APX1 8.1: Sample Pendigits Dataset

Figure APX1 8.0: Scatter Plot for Pendigits Dataset

169

Table APX1 9.0: Description for Breastw Dataset

Type (Int.) Features Instances Outliers (%) Classes Missing Values?

Outlier detection 9(Integers) 683 239 (0.3499) 2 None

Additional information

Breast Cancer Wisconsin (breastw) contains records of measurements for breast

cancer cases. It has two classes: benign and malignant. It is a 9-dimensional dataset

containing 683 instances, of which 239 represent malignant tumors here taken as

outliers.

Table APX1 9.1: Sample Breastw Dataset

Figure APX1 9.0: Scatter Plot for the Breastw Dataset

170

Table APX1 10.0: Description for Optdigits Dataset

Type (Int.) Features Instances Outliers (%) Classes Missing Values?

Outlier detection 64(numeric) 5216 150 (0.0286) 2 None

Additional information

The original Optical Recognition of Handwritten Digits (Optdigits) is a multi-class

classification dataset that includes inliers made up of the instances of digits 1 through

9, and outliers made up of the instances of digit 0, which are down-sampled to

2.86%.

Table APX1 10.1: Sample Optdigits Dataset

Figure APX1 10.0: Scatter Plot for Optdigits Dataset

171

Appendix II: Experiment screenshots

172

173

174

