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ABSTRACT

Data driven condition based monitoring of bearings has gained a lot popularity in
recent times especially due to the fact that physics based models of equipment are
difficult to formulate fully and accurately because of the complexity of machines. The
low cost of sensors that has availed a large amount of data from operating machinery
has further propelled the use of data-driven condition monitoring. Data driven models
are heavily reliant on the domain of data they are trained on (source data). This
means that they suffer in performance when applied to test data (target data) from a
different domain. The most widely used techniques to counter this drop in performance
are domain adaptation methods which seek to reduce the discrepancy between the two
datasets. A key challenge with domain adaptation methods is the requirement for
target data during training as a reference for the amount of discrepancy that exists.
The other associated challenge is that the adaptation method has to be reconfigured
or completely overhauled for each new test data because adaptation methods have
varying capacity depending on the magnitude of the domain shift. This in turn means
that models have to be retrained each time new test data are acquired. The goal
of this work was to find and apply domain invariant features to the development of
models so as to remove their dependence on target data but still be able to perform
condition monitoring of REBs across domains. Publicly available datasets were used
in the study: the Case Western Reserve and Ottawa Universities bearing datasets were
used for diagnosis while the FEMTO-ST bearing dataset was used for prognosis. The
Refined Composite Multi-scale Fuzzy Entropy Feature (RCMFE) was found to be a
domain invariant feature for diagnosis. RCMFE had excellent fault detection ability,
correctly detecting fault 100% of the time in different operating conditions. With the
training data prepared such that each class of fault had a mixture of fault diameter
sizes, RCMFE could easily differentiate inner race fault from ball and outer race faults
with an average accuracy above 95%. However, the average accuracy for differentiating
between ball and outer race fault fell to about 80%. With the training data arranged
such that each fault type and size constituted a single class, RCMFE could isolate the
three types of fault with an average accuracy of about 97%. Thus, this feature was able
to achieve cross-domain diagnosis without domain adaptation. The hazard functions
of kurtosis and shape factor were found to be trendable domain-invariant features
for use in prognosis. Because the training data are full lifetime data, the challenge
of low performance on test bearings with longer remaining useful life was overcome
by supplementing the training data with its truncated versions. The combination of
hazard functions and augmented training data enabled successful prognosis in changing
operating conditions.

xii



CHAPTER ONE

INTRODUCTION

1.1 Background

Rolling element bearings (REBs) are integral components in machinery where their

primary task is transmitting axial and/or radial loads from the rotating parts to the

structure as well as minimizing frictional losses. Ball bearings consist of inner and

outer rings, the balls/rolling elements and a separator/cage as shown in Figure 1.1.

(a) Parts of an REB (1) Outer Ring (2) Rolling
element (3) Separator (4) Inner raceway (5) Inner
ring

(b) Assembled REB

Figure 1.1: Rolling Element Bearings

Bearings have been identified as being responsible for 30-50% of the failures experienced

by machinery (Leturiondo, 2016; Zhou et al., 2020; Cao et al., 2020). Bearing defects

can be categorized according to the damaged part i.e. inner race, outer race, rolling

elements or cage fault. The defects may also be categorized by their causes e.g. faults

due to assembly errors, due to lubrication issues or due to excessive operating conditions

such as overloading (Cubillo et al., 2016). Defects can also be categorized according

to their type i.e. distributed versus localized faults (Tandon & Choudhury, 1999).

Distributed defects include surface roughness, waviness misaligned races and off-size

rolling elements. These faults are caused by improper installation, abrasive wear and
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manufacturing error. Analyzing the response of a monitoring signal due to distributed

defects is important not only for condition monitoring of the bearing but also for quality

inspection. Localized faults include spalls, cracks and pits in the rolling elements

and/or in the races. Spalling is the most dominant localized failure and usually occurs

when a fatigue crack begins below the surface and propagates upwards until a piece

of metal breaks away to leave a small pit or spall. Figure 1.2 illustrates some of the

common defects encountered in REBs (Barden Precision Engineering, N.D.).

(a) Spalling 1

NORMAL 
FrnGUE 
FAILURE 

Spalled Area 

Moderately spalled 
area indicates 

Fatigue failure-usually 
referred to as spalling-is the 
fracture of the running surfaces 
and subsequent removal of small. 
discrete particles of material. 

Spalling can occur on the 
inner ring, outer ring, or balls. This 
type of failure is progressive and 
once initiated will spread as a result 
of further operation. It will always 
be accompanied by a marked 
increase in vibration, indicating 
an abnormality. 

The remedy is to replace the 
bearing or consider redesigning 
to use a bearing having a greater 
calculated fatigue life. 

reached the limits 
of its useful Me. 

(b) Spalling 2
Discolored (bluelbrown) ball LUBRICANT t r a h  and balls are swptoms 

FAILURE of lubricant failure. Eiceisive wear I 
of balls, ring. and cages will follow, 
resultina in overheatinn and 

Balls wfll also be 
bluehkk 

subseqGent catastrophLc failure. 
Ball bearings depend on the 

continuous presence-of a very 
thin-millionths of an inch-film of 
lubricant between balls and races, 
and between the cage, bearing rings, I ! 
and balls. Failures are typically i 
caused by restricted lubricant flow 
or excessive temperatures that 
degrade the lubricant's properties. 

Barden engineers can advise 

i 
users on the most suitable lubricant 

9 e and quantity to use. Refer to 
lu ricant section of Barden C-10 
d o g  for more information. Also, 

i 
any steps taken to correct improper 

1 
fit control preload better, and cool 

I 
the shafts and housings will reduce 
bearing temperatures and improve 
lubricant life. 

(c) Lubricant failure (d) Brinelling

Figure 1.2: Faults that can affect REBs (Barden Precision Engineering,
N.D.)

The spalling in Figure 1.2a is as a result of overloading which causes premature fatigue

while that in Figure 1.2b is caused by normal fatigue due to gradual wear. Brinelling

occurs when loads exceed the elastic limit of the material of inner ring and is identifiable

as indentations on the inner race as shown in Figure 1.2d. Static overloading and/or

impacts can cause brinelling as is the case when a hammer is used to remove or install

bearings, when bearings are dropped or the outer ring is forcefully pressed to mount

the bearing onto a shaft. Lubricant failure can be surmised when the balls and/or the

races have a blue/brown discolouration as seen in Figure 1.2c. The result of this failure

is excessive wear of the balls, races and cage which in turn causes overheating and at

worst, eventual catastrophic failure. The Lubricant typically fails because of restricted

flow and excessive temperatures that degrade its properties.

The maintenance task associated with detecting, isolating and identifying fault is

known as diagnosis. On the other hand, prognosis may be defined as the ability to
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perform early detection of the precursor of fault or incipient fault and furthermore

have the capability of tracking the fault upto failure. The most commonly encountered

prognostic measure is the Remaining Useful Life (RUL) and has to do with predicting

how much time remains before failure occurs given the current machine condition or

age and the historical operation profile. An alternative measure predicts the probabil-

ity that a component functions without fault until a certain future time (e.g. the next

inspection point) given its current condition and past profile (Jardin et al., 2006).

Prognosis is more useful from a maintenance perspective but it is usually a challenging

process to get right as it depends on events yet to happen. Coupled with the fact that

not all faults are predictable makes diagnosis the more studied process.

Just as with other components and equipment, REB maintenance has evolved from

corrective to preventative to reliability-based and currently to Condition Based Main-

tenance (CBM) (Kimotho, 2016). Condition based maintenance relies on evaluation

of continuously collected data to determine the state of components and make deci-

sions on if/when replacements should be done through its diagnostic and prognostic

procedures.

Both diagnostic and prognostic methods can be broadly classified into data-driven

and physics-based (Ding, 2009). The former approach relies on training models where

data is collected for healthy and faulty states to learn distinguishing characteristics.

The mathematical models learned are abstract and devoid of any physical meaning in

relation to the actual system. When applied to new data (testing data), the model is

able to determine the component’s health.

Physics-based methods utilize mathematical models derived from first principles of the

actual physical system. If the mathematical model well estimates the physical system,

the response features from the system and model agree. When faults occur in the actual

system, the measurements of select response features from the model and system will

differ i.e. result in a residual. When the residuals rise above a set threshold, fault is
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detected (Ding, 2009). Physics-based models require knowledge of the different failure

mechanisms that can occur to accurately construct the mathematical model. Provided

the model and actual system agree, these methods are very accurate. The biggest

challenge is the development of an adequate model especially if the system is complex.

The model must also be validated because of the assumptions and linearizations made

to make it tractable (Dawn et al., 2015).

Because state of the art machinery are quite complex and components can undergo

multiple failure mechanisms simultaneously, sufficient physical models have become

much more difficult to develop thus raising the popularity of data-driven models. The

availability of credible and publicly available bearing data-sets have also propelled

research in data based CBM (NASA, 2022b; Case Western Reserve University Western

Bearing Data Center, 2018).

Although, the research of data-driven CBM of bearings is mature, many of the pub-

lished works are based on the assumption that data on which the learned model will

be applied (testing data) is drawn from the same domain as the data used to develop

the model (training data) (Wei et al., 2014; J. Liu et al., 2017; Al-Raheem & Abdul-

Karem, 2010; M. He & He, 2017; Qi et al., 2019; Kimotho & Sextro, 2014; Duoung et

al., 2018). The domain is composed of data and its distribution.

In practice, the distribution and/or label space rarely remain the same between train-

ing and implementation phases. The discrepancy arises due factors such as changing

operating conditions between the training and testing phases, testing on bearings from

similar (but not the same) equipment, testing on data with different fault severity from

training data and class imbalance where the labels in the test data are not equal to

those in the training data. Class imbalance can occur when the test data is drawn from

a newly installed machine which can only provide healthy data. Operating conditions

change with the task at hand even for the same equipment: for instance, in a machine

shop, operating conditions will vary depending on the properties of the material be-
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ing worked. Another key cause of domain and/or task shift is the use of artificially

generated data for successful training due to lack of sufficient data collected in actual

operation. The shortage is usually due to the long lifetime of components nowadays but

can also be caused by factors such as safety regulations. In sensitive applications such

as in the operation of high speed trains or in aircraft, components are replaced after a

set number of operating cycles and not due to aging or breakdown. It then becomes

difficult to collect enough healthy and faulty data in actual deployment of equipment.

Consequently, when training machine learning models, researchers are forced to fall

back on the use of artificial data which can be generated in the required quantities.

Unfortunately, bearing damage is a complex phenomenon with development of fatigue

damage or damage caused by solid particles being randomly influenced (Lessmeier et

al., 2016). Thus, true fault evolution remains largely unknown and production of arti-

ficial faults even at varying levels of severity may not wholly reflect real fault damage.

It is then conceivable that the domain of artificial data used for training and that of

testing data drawn from actual operation and on which the trained model is to be

applied are going to be different.

Data driven models are inextricably linked to the underlying distribution of the training

data and hence a model trained in one distribution and applied to data from another

distribution will experience a drop of performance shaped by the amount of discrepancy.

This is because the learning process optimizes performance of the model for the training

data and data of similar characteristics i.e. data drawn from the same distribution.

When the distribution changes, the accuracy of the trained model will fall unless steps

are taken to in some way incorporate the characteristics of the new data space in the

model. The domain of data encapsulates data and its distribution such that the source

domain is the data space of the training data and the target domain is that of the data

the model is to be applied to in the field.

Clearly, in order to promote the adoption of data-driven CBM models in the field,
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there is need to consider the issue of domain and/or label space shift during their

development. Currently, the most pursued method of dealing with this shift is that of

transforming the source domain before training in order to maximize performance in

the target domain in a process known as Domain Adaptation (DA) (Weiss et al., 2016;

Zhuang et al., 2020). The goal of DA is to reduce the discrepancy between the two

domains as much as possible such that the learned model will perform acceptably in the

target domain. Unfortunately, the biggest drawback of DA methods is the requirement

of at least some data from the target domain to train the model or update an already

learned model. Several complications arise from this requirement: 1) A model can

only be trained when target domain data is obtained. The training data cannot be

used alone to create a stand-by model. 2) A new model must be learned for each

target data e.g. for each new operating condition. This is because the amount and/or

type of discrepancy is most likely going to be different for various target domains.

3) If the amount and/or type of discrepancy between distribution changes e.g. the

divergence widens, a previously successful method may no longer be effective. 4) The

initial amount of data from the target domain used for training may be too little to

capture the actual distribution of the target domain accurately. For instance, in the

early stages after installation, only healthy data may be available from a new machine.

The limited data will not represent the target distribution fully and the learned model

will still perform poorly in the target domain.

In this research work, an alternative avenue of tackling domain shift will be explored-

using domain invariant features. Recent works have shown that models trained with

either conventional handcrafted features or features autonomously learned from deep

networks do not perform well in domains other than the training domain. A question

still remains as to whether there are features that have been previously used for various

diagnosis and/or prognosis tasks (not necessarily bearings related) that have hinted at

the capability of being domain invariant - even though they are yet to be explored for

the same. The domain invariance may be suggested by their definition or inadvertent

6



exposition in literature. If they exist, such features would be greatly advantageous in

the dealing with domain shift in CBM because training models will once again be a

process independent of target data. As such, once a model is trained and fine- tuned

using training data, it is ready for application to any relevant target domain without

alteration. The possibility that of the existence of such features forms the thesis on

which this research work is based.

1.2 Problem Statement

Data driven CBM algorithms suffer in performance when the domain of target data is

different from that of training data. Practically, these domains are likely to vary due

to factors such as changing operating conditions, different fault severity between the

two datasets or testing on data from a different (even if similar) machine. Currently,

the most popular trend in tackling this shift is to employ Domain Adaptation (DA)

methods which seek to narrow down the discrepancy between the source and target

data before training the model. In this way, the model is guaranteed to perform well

in the target domain. Although there has been tremendous success with DA methods,

they are not off the shelf i.e. the models have to be retrained each time a new target

is encountered. Furthermore, even for the same target data, enough of it has to be

available during training to accurately represent the domain gap between itself and the

source data. Otherwise, re-training will still have to be redone.

This work seeks the development of off-the-shelf models that can perform diagnosis

and prognosis of REBs across different domains. Such models need only be trained

once and are thereafter applicable to any target data. This goal is only achievable if

suitable domain-invariant features for both diagnosis and prognosis can be found.

1.3 Objectives

The main objective of this work was to find and apply domain invariant features for

data-driven condition monitoring of rolling element bearings under changing operat-
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ing conditions. In order to achieve this goal, the work was split into three specific

objectives.

1. To investigate a variety of diagnostic features from literature for their ability to

remain domain invariant in bearing diagnosis.

2. To examine a variety of prognostic features from literature for trendability as

well as their ability to remain domain invariant in bearing prognosis.

3. To develop a framework for the implementation of diagnosis and prognosis using

the domain invariant features.

1.4 Outline of Thesis

The rest of thesis is organized as follows. Chapter 2 presents a theoretical background

of the concepts that are the basis of this work including how machine learning models

learn as well as the definition and construction of entropy and hazard based features.

Chapter 3 goes through all the procedures used for training both diagnosis and prog-

nosis models including a description of the experimental data. In chapter 4, the results

are presented and discussed. Finally, the concluding chapter summarizes the work as

well as suggesting recommendations for future work.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter is divided into three sections where first a review of the current practices

in the CBM of REBs is given. Later, two domain invariant features for diagnosis and

prognosis are described in detail. Finally, the algorithms to map these features to the

relevant outputs are briefly discussed.

2.2 Review of Related Works

In this section, a quick recap of features that are common in CBM of REBs will be

presented. A discussion on the learning process of data-based models will follow from

which the impact of changing distributions (domain shift) on the performance of the

model will be made clear.

2.2.1 Commonly used features

The two most common signals used to study the condition of REBs are vibration and

acoustic emissions (El-Thalji & Jntunen, 2015) with vibration being more frequently

used. Vibration and noise generation in bearings occurs due to varying compliance

or defects. Varying compliance is a phenomenon caused by the periodic variation of

the stiffness of the system. The position of radial rolling elements in the load zone

changes with rotation of the bearing hence changing the stiffness of system period-

ically. The variation of stiffness produces vibrations known as varying compliance

vibrations (Tandon & Choudhury, 1999). Presence of a defect significantly raises the

baseline vibration level because interacting with a defect causes abrupt changes in the

contact stresses at the interface resulting in a pulse of short duration which gives rise

to vibration and noise in the structure.
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Practically, it is difficult to find sufficient defective data in order to study the fault

signature of bearings. The shortage is usually due to the long lifetime of components

but can also be caused by factors such as safety regulations. In sensitive applications

such as the operation of high speed trains or in aircraft, components are replaced

after a set number of operating cycles and not due to aging or breakdown. It then

becomes difficult to collect enough healthy and faulty data in actual deployment of

equipment. Consequently, researchers are forced to fall back on the use of artificial

data which can be generated in the required quantities. There are two main ways of

generating artificial data. One option is to run the bearings till failure and study the

vibration response throughout the lifetime. Alternatively, defects can be intentionally

introduced by either acid etching, spark erosion, scratching, mechanical indentation

etc. Afterwards, the vibration response of the faulty bearings is compared to that

flawless bearings.

A feature vector carrying the health signature of the bearing is extracted from raw data

and should be of the lowest dimension possible; however, raw vibration data is a time

series of very high dimension. It cannot be easily used to directly determine health

status because high-dimensional input spaces require much more data for training

(Worden et al., 2011). Thus, some selected characteristics of the data are extracted

as the low dimensional features to be analyzed in place of the raw data. Also, raw

vibration data is noisy and this contributes to masking the fault signature.

The features used to study vibration response can be divided into time domain, fre-

quency, time-frequency features and time-scale features. In the time domain, either

summary statistics (e.g. Root Mean Square (RMS) and crest factor) (Detecting faulty

rolling–element bearings , N.D.) or moments of data are used (Tandon & Choudhury,

1999). The optimal measurement of kurtosis (4th moment) has been investigated in

both the time and frequency domains (Dyer & Stewart, 1978; Antoni, 2006; Sikora,

2016, 2016; Gustafsson & Tallian, 1962).
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The vibrations generated as a result of impulsive loading due to defects excite some

structural resonances- the shock pulse method of diagnosis is based on this phenomenon

and is widely used in the industry (Yang et al., 2014).

More sophisticated time domain features can be obtained from time series modeling.

The idea is to propose a model structure for the unknown underlying dynamics of a

system and estimate the model parameters from the available time data. In the con-

text of damage detection, if the model parameters are determined when the bearing is

healthy, change of model parameters at some future time may be indicative of dam-

age. The determined model can be used to predict the system’s response and these

predictions should compare well with the actual system outputs i.e the difference be-

tween the predictions and the actual output (residuals) should have low variance. If

the residuals suddenly have large variance, it is an indication that the dynamics of the

system are changing as a result of some fault (Worden et al., 2011). System identifica-

tion and parameter estimation can also be approached from a non-linear perspective

justified by the fact that instantaneous variation in loading conditions, damping and

friction make electric machines exhibit non-linearity (El-Thalji & Jantunen, 2015).

Some non-linear parameter identification techniques include correlation dimension and

complexity which is defined as the degree of regularity in a signal (Yan & R.X., 2007;

Yan & Gao, 2004). Analysis of the complexity measure shows that initiation and the

growth of faults is connected with the changes in the complexity value (Yan & Gao,

2004).

Frequency domain features have also been successfully exploited for CBM. The short

pulses that occur as a result of striking defects may excite the natural frequencies of

the bearing elements and housing structures. A diagnosis method that monitors an

increase in the energy level of the high frequency range of the spectrum where the

natural frequencies reside has been proposed (Yang et al., 1989). Measures such as the

arithmetic mean, geometric mean and correlation can be used to quantify the difference
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in spectra of good and faulty bearings.

Each component in an REB has a characteristic frequency that can be determined by

its dimensions and the speed of rotation. In theory, whenever there is fault in one of

the components, there should be an increase in energy at the particular characteristic

frequency. This increase in energy can be monitored as a diagnosis tool (Taylor, 1980).

Unfortunately, because the characteristic frequencies are in the low frequency range

which is contaminated by vibrations from other sources, signal processing tools such

as envelop detection and the High Frequency Resonance Technique (HFRT) have been

used to extract the characteristic defect frequency (Prasad et al., 1985; Voronkin et

al., 1988; Segla et al., 2012; Mishra et al., 2021; Antoni & Randall, 2006; Chatterton

et al., 2014; Barszcz & Jablonski, 2011).

Another common implementation of frequency features is to transform the time signal

into the frequency domain and analyse the full spectrum using Fourier analysis. The

idea behind the analysis is that any function including the function describing the

vibration time series data can be expressed as a sum of sines and cosines i.e. a change

of basis to trigonometric coordinates composed of orthogonal sines and cosines. Once

the conversion is done, only the frequencies that have significant coefficients are picked

and these fewer frequencies form a low dimensional representation of the original signal.

If at a future time the Fourier analysis of the signal yields different dominant spectral

components, it would be an indication that the system has changed e.g. acquired a

fault. The frequency components are found by taking the Discrete Fourier Transform

(DFT) of a sampled signal; the equivalent for a continuous signal is the Fast Fourier

Transform (FFT) (Worden et al., 2011).

Time-frequency methods such as the Short-Time-Fourier-Transform, Gabor transform

and wavelet analysis aim to address the weaknesses of extracting features purely from

the time or frequency domains (Kutz, 2013): the time domain ignores all frequency

information while the frequency domain loses time localization.
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Generally, data gathered from condition monitoring sensors is usually noisy and it is

beneficial to try and remove as much of the noise as possible and retain the part of the

signal carrying the desired information. A common method of denoising are averaging

i.e. passing the data through smoothing filters such as the Weiner and Savitzky-

Golay filters. Another popular method is that of decomposing the data into wavelet

coefficients and truncating off the high level coefficients which are associated with noise

or reducing the wavelet components that are above a threshold by a certain amount

(Worden et al., 2011). Another important signal processing step is normalization of

data which removes the effect of different scales between sensor measurements. The

removal of outliers should also be considered as they can bias the model learned from

data. However, their removal should be approached carefully because an outlier could

be the a sign that the system is entering another state.

In machine learning, the commonly used tools for mapping the input feature vector

x into the output y include artificial neural networks, convolutional neural networks,

support vector machines and fuzzy logic networks (Jiang & Wang, 2018; Sadhu et al.,

2017; Zhiqiang et al., 2017; Al-Raheem & Abdul-Karem, 2010; M. He & He, 2017;

Hoang & Kang, 2018). There are extensions to these tools such as the Long Short

Term Memory (LSTM) neural network and Recurrent Neural Network (RNN) that are

especially suited to prognosis as they consider the historical dependence of the current

data point to the previous one (Malhi et al., 2011; Yuan et al., 2016; Zhao et al., 2016).

2.2.2 Machine Learning

Machine learning (ML) aims to solve prediction problems where the mapping of inputs

to outputs cannot be easily or completely formulated as a concise mathematical func-

tion. If the outputs are discrete, the prediction task is known as classification; if the

outputs are continuous, then it is a regression task while if the output is a probability,

the task is that of probability estimation. Machine learning models makes use of data
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collected in pairs of inputs and outputs to learn the underlying structure that relates

the inputs to outputs. Usually, the models are not directly trained with raw data as

it is often very noisy and may result in an ML model with numerous parameters to

train. It is therefore commonplace for experts in a particular field to extract relevant

descriptive features from the raw data and use these as inputs to train the ML model.

During training, the probability of a class πj = Pr(y = j) and the marginal distribution

of data in the class pj(x) are available for each class j, and this information comprises

the learned model. The probability of any pair of input and output (x, y) i.e. Pr(x, y) is

their overall joint distribution computed as the probability of the label Pr(y) multiplied

by the marginal probability of seeing the data point x under that label i.e. Pr(x|y).

But Pr(y) = πy and Pr(x|y) = py(x). Concisely,

Pr(x, y) = Pr(y)Pr(x|y) = πypy(x). (2.1)

The categorization of a new test point xte amounts to finding the label that results in

the largest conditional probability P (y|xte). In the generative approach, the conditional

probability is obtained from the joint probability using Bayes’ rule which makes use of

class priors Pr(y) = πy and the individual class marginals Pr(x|y) = Py(x). The new

test point (xte), is assigned the label that maximizes the joint distribution Pr(xte, y)

i.e. the label with the largest value out of π1P1(xte), π2P2(xte) and π3P3(xte) is picked.

Therefore, the prediction ability of the model directly depends on how it learns the

individual marginal distributions of the classes and class priors from the training data.

The combination of data and its distribution is known as the domain of data.

In reality, the domain from which test data is drawn from is often different from the

training domain. In condition monitoring of bearings, the equipment in which they are

installed for instance in a mechanical workshop, are usually run in varying conditions

(e.g. in terms load-torque and motor speed) depending on the material being machined.
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This change of operating condition has already been shown to adversely affect the clas-

sification performance. Further, training data may be drawn from an existing machine

but the test data comes from a newly installed machine. The domain of data from

the two similar machines will be different. In image recognition, marginal distribution

shift would be experienced when training images are hand-drawn but testing images

are photos. In sentiment analysis, there will be a difference in the marginal distribution

if a model is trained to classify sentiments from one topic/product but applied to a

different topic/product. Apart from a change in the marginal distribution, the space of

features itself can change. For instance, where an image classification model is trained

with grayscale images but tested on images of color. Another case of dissimilar feature

spaces is in natural language processing (NLP) where training is done in one language

but the model applied to another language.

Domain change is not the only factor that can mismatch the distributions of training

and test data. Label spaces can change between the two sets of data. For instance,

in the condition monitoring of equipment, both healthy and faulty data may be avail-

able for training especially if the monitoring signals are being collected from existing

equipment, but the test data will realistically only consist of healthy data especially in

the case of new equipment. Thus the training data may have more labels than the test

data. Conditional distribution of data (P (y|x)) can also change between the training

and test sets. Such an occurrence can cause the same image to be classified differently

in the training and testing spaces depending on some prior knowledge about the data

e.g in the case where there is class imbalance in one of the domains.

Thus, a change in the domain or task between the training and testing domains will

deteriorate the performance of machine learning models. Formally, the domain of

data, D, comprises the data/features and its distribution i.e. D = {x, P (x)} while

the task T consists of the labels and the prediction function learned from the data i.e.

T = {y, P (y|x)}. In conformity with existing literature, the data space from which
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training data is obtained will be known as the source domain while that of the test

data will be known as the target domain (Pan & Yang, 2009).

Although the research of data-driven CBM of bearings has been successful, much of

the published works are based on the assumption that the domain and task remain

the same between the training and testing sets (Wei et al., 2014; J. Liu et al., 2017;

Al-Raheem & Abdul-Karem, 2010; M. He & He, 2017). In reality, this is seldom the

case due to factors such as changing operating conditions, testing on bearings from

similar equipment and class imbalance especially where the test data comes from a

new machine currently producing only healthy data. Thus in order to make prediction

models adaptable in the field, there is need to consider the issue of domain and/or task

shift. The process of transforming the source domain to enable transfer of knowledge

such that prediction performance in the target domain is maximized is known as domain

adaptation (DA) (Weiss et al., 2016; Zhuang et al., 2020). The goal of DA is to bring

the distributions of the source and target domains as close together as possible.

In domain adaptation literature, this transfer learning is categorized in several ways

depending on the availability or lack of labels for the target data (Zhuang et al., 2020).

Herein, source data is always labeled and supervised learning describes full availability

of target labels while semi-supervised learning applies to the presence of a limited

number of target labels. In unsupervised learning, no target labels are available. It is

useful to bear in mind that in a practical industrial setup, the target labels are usually

not available with the possible exception of new equipment where generated data are

initially known to be healthy (semi-supervised learning).

In the CBM of REBs, the most common DA techniques can be categorized as either

divergence or adversarial based with automatic generation of features in place of hand-

crafted features. This is because the definition of handcrafted features is fixed and

the applied DA technique may fail to bring the distributions closer. In automatic gen-

eration, the feature extractor can update its weights during training to generate new
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features with each run until the domain and/or conditional distribution of the source

and target are similar.

In divergence based methods, the difference between the source and target domains

is measured by some distance or metric. The definition of the distance is captured

in an objective function that is then minimized by finding a transformed data space

where divergence between the two distributions is minimal. In other words, during

training, the weights of the feature extractor are updated to produce domain invariant

features. One popular distance is the Maximum Mean Discrepancy (MMD) (Gretton

et al., 2012) which defines the distance between two distributions as the average of the

distances between all the moments of the two distributions in some embedded space

(Maheshwari, 2021). In order to compute all the moments of a distribution, the MMD

maps the feature space X to an infinite dimensional space known as a Reproducing

Kernel Hilbert Space (RHKS). The RHKS is a vector space that is endowed with an

inner vector product and allows use of the kernel trick such that the distance between

distributions can be computed without computing their densities in some latent high

dimensional space (Ng, 2018). In its original form, MMD assumes that only a marginal

distribution shift exists between the source and target domains while the conditional

distribution remains the same. However, it is notable, that both the source and a

target dataset must be available to counter domain invariance by minimizing MMD.

Li et al. (W. Li et al., 2020) used a modified multi-kernel MMD loss to improve classifi-

cation accuracy in changing load conditions with the Case Western Reserve University

(CWRU) data. A convolutional neural network (CNN) was used as the feature ex-

tractor. Kang et al. (Kang et al., 2019) utilized a convolutional Gaussian-Bernouli

deep belief network (DBN) to extract features from frequency-domain amplitudes the

CWRU data in changing load conditions. This feature extraction method was found

to be moderately beneficial in countering the effect changing loads instead of only

using a DBN. Domain adaptation was achieved by incorporating two MMD losses -
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the first one to reduce marginal distribution and the second one to reduce the condi-

tional distribution in the individual classes of data in what was called joint distribution

adaptation. Often, in deep networks, the feature extractor is a CNN and the classifier

consists of a few fully connected layers and it is in the last of these latter layers that

MMD is applied. Smith and Shibatani (G. Smith & Shibatani, 2020) applied MMD to

all layers from the CNN feature extractor to the fully connected layers of the classifier

when classifying gearbox faults in changing operating speeds. Che et al. (Che et al.,

2019) also use make use of multi-kernel MMD in addition to a model based technique

to fine tune a classifier initially trained on source data to perform well on target data

for changing loads in the CWRU data. In the study, the CWRU data was perturbed

with white Gaussian noise to simulate the noisy nature of real world data. A denoising

autoencoder (DAE) was used for dimension reduction and denoising while a CNN was

used for automatic feature generation.

Some of shortcomings using MMD are that the computational cost increases expo-

nentially with the number of training samples (J. He et al., 2021) and that as many

target samples as there are source domain samples are required to accurately define

discrepancy in the domains (Z.-H. Liu et al., 2019). Otherwise, the classifier will still

not generalize well in the target space.

In place of MMD that measures discrepancy by checking infinite-order moments, the

CORrelation ALignment (CORAL) distance measures discrepancy by only considering

second order statistics i.e. covariances. He et al. (J. He et al., 2021) found that using

the CORAL loss outperformed using MMD for the CWRU data.

The other popular method of dealing with domain and conditional distribution shifts

in the CBM of REBs is deep domain adaptation using adversarial learning e.g. by

using Domain Adversarial Neural Networks, (DANN). The architecture of a DANN is

shown in Figure 2.1.

The feature extractor, composed of CNNs is used to generate descriptive features from
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Figure 2.1: The architecture of a DANN (Ganin et al., 2016)

data instead of using handcrafted features. Both the source and target data pass

through the feature extractor but only the source data is passed along to the label

predictor keeping in mind that only the source data is labeled. The extracted features

from both domains are also passed to a domain classifier whose job is to identify

from which domain a set of features is drawn. The essence of a DANN is adversarial

learning; minimize the classifier loss while maximizing the domain loss. The domain

loss is maximized by reversing the gradients from the domain classification section

during back-propagation by adding a gradient reversal layer as shown in Figure 2.1.

The gradients from the classification layer are back-propagated with their original signs

in the usual manner. The desired effect is that the feature extractor produces features

that are good for label classification but indistinguishable in terms of domain of origin.

Liu et al. (Z.-H. Liu et al., 2019) successfully utilized a DANN for CWRU data in

changing operating conditions. Wang, Liu and Zhao (X. Wang et al., 2020) used a

DANN to tackle the harder distribution shift problem where the source and target

data are drawn from different machines. In the study, the source and target data were

obtained from several different datasets i.e. the CWRU data, the IMS data (NASA,

2022a) and JiangNan University. By incorporating batch nuclear-norm maximization

regularization, the authors were able to handle class imbalance and the issue of few
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available target samples which causes violation of low density assumption of semi-

supervised learning (Chapelle & Zien, 2005). Mao et al. (Mao et al., 2021) utilized

a Time Convolutional Network (TCN) and a DANN to mine representative features

and identify incipient fault in bearings for online application using lifetime data. da

Costa et al. (da Costa et al., 2019) used a Long-Short Term Neural Network (LSTM)

to extract features and a DANN to predict the remaining useful life of bearings using

the FEMTO lifetime data (NASA, 2012) resulting in lower RMSE scores than when

not using any DA method. Zao and Liu (Zao & Liu, 2022) applied a CNN for feature

extraction and a DANN for RUL prediction with the FEMTO data and similarly

recorded lower RMSE than without using any DA technique. Ragab et al. (Ragab

et al., 2021) used a contrastive loss in addition to the usual adversarial loss term to

ensure that target specific information was preserved thus improving performance over

the normal adversarial training in estimating RUL for the C-MAPPS engine dataset

(NASA, 2020).

A particular challenge with DANNs is that they can be harder to train than standard

neural networks because of the two sets of gradients with reverse signs. Several tech-

niques such as replacing the maximized part in the objective function with its dual

formulation may be used to stabilize the training process (Kouw & Loog, 2021). It is

to be noted that DANN still requires the presence of target data during training.

Use of MMD and adversarial learning are by no means the only DA approaches in the

CBM of REBs. If the source and target domains share a common subspace but contain

domain specific noise, a method known as subspace alignment may be implemented for

DA. A specific number of principal components from each domain are computed and

then a linear map that aligns the source to target components is found. A classifier

is then trained on the transformed source data. Zhang et al. (B. Zhang et al., 2017)

used subspace alignment for the CWRU data.

Zhang et al (R. Zhang et al., 2017) successfully applied parameter transfer to CWRU
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data by utilizing a few labeled target data during training when label spaces in the

source and target are not the same i.e. different number of classes in the two do-

mains. Other documented DA methods are extensively employed in the fields of image

recognition and NLP (Pan & Yang, 2009; Weiss et al., 2016; Zhuang et al., 2020).

From the foregoing literature on DA in data-based CBM of REBs, one of the most

noticeable differences with initial machine learning methods is that automatic feature

generation using either CNNs or autoencoders for diagnosis and LSTMs for regression

is preferred over handcrafted features. The reasoning here is obvious - in autonomous

generation, new features are re-created at to promote domain invariance by updating

the weights of the feature extractor during training. On the hand, the possibility of re-

defining hand-crafted features is not available and the only remaining degree of freedom

looking for mapping of the features where the difference in distribution is reduced; such

a space may not exist especially if the discrepancy is large.

Traditional handcrafted features in the time, frequency and time-frequency domains

have been shown not perform well in domain and/or conditional distribution shift

(Zhou et al., 2020). However, the use of automated feature extraction implies that the

features used are specific to a particular configuration of source and target data i.e.

depending on the amount of discrepancy which can differ even if the same machine

is being monitored. For instance, in the foregoing literature using CWRU data, the

data is arranged such that the data from one loading condition e.g. condition 1 forms

the training/source data while any of the other three remaining conditions form the

target data (Z.-H. Liu et al., 2019; X. Wang et al., 2020). In some cases, only fault size

is considered (Z.-H. Liu et al., 2019; X. Wang et al., 2020) and in other cases all the

different fault sizes as well as the normal samples each form a label for each operating

condition (Kang et al., 2019).

In regard to prognostics, the FEMTO-ST dataset (NASA, 2012), most of the research is

done on only one operating condition. Qi et al.(Qi et al., 2019) propose a novel spectral
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based entropy condition indicator and use a particle filter to estimate the parameters of

an exponential model used to fit the indicator. The RUL is estimated at each time step

by systematically progressing the condition indicator to a threshold marking end of life

using the exponential model. The authors were able to get predictions within ±20%

error of the actual RUL for the bearings studied. However, the study only considered

data from a single operating condition of the FEMTO data (condition 1).

Kimotho and Sextro(Kimotho & Sextro, 2014) used auto-correlation to improve the

trendability of commonly employed time, frequency time-frequency features for use in

prognostics. An Extreme Learning Machine (ELM) network was then used to select

the best features to use RUL prediction which gave very good performance on the

FEMTO data with less than 9% absolute error. However, only data from operating

condition 1 was used for both training and testing.

Duong et al. (Duoung et al., 2018) derive a novel RMS based indicator with high

monotonicity, robustness and trendability. Although the feature outperforms statistical

model based prediction tools in RUL prediction accuracy, it was only deployed for the

first operating condition in the FEMTO dataset.

Soualhi et al. (Soualhi et al., 2014) used the Hilbert Huang Transform to create features

which were used not only for prognostics but also for detecting the faulty component.

The features were highly accurate in diagnosing the fault as well as prognosis using

one-time step ahead prediction. However, the features were only applied to data from

operation condition 1 in the FEMTO dataset.

There are a few authors who have tackled domain shift using FEMTO-ST data. Hinchi

and Tkiouat (Hinchi & Tkiouat, 2018) developed used a convolutional neural network

to extract features and a long-short-term-memory network to predict RUL. All the six

datasets for training (Table 3.3) were used for learning and the rest of the data used for

testing. The performance of the model was moderate with an average absolute error

of 46%.
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From the foregoing literature,where cross-domain condition monitoring has been done,

it was mostly accomplished using deep learned features and domain adaptation methods

which require target data to be present during the training process. This is turn

means that the data driven models have to be re-trained each time new target data is

encountered - a process which is usually complex to set up and may additionally be

computationally expensive.

2.3 Domain Invariant Features

In this section, two features selected from literature for their domain-invariability po-

tential are discussed in detail. These features behave similarly across domains enabling

mapping from inputs to outputs of CBM models without requiring domain adaptation.

2.3.1 Entropy for diagnosis

Monitoring signals collected from rotating machinery have non-linear characteristics

due to instantaneous variations in loading conditions, friction and damping (El-Thalji

& Jantunen, 2015). As such, non linear models can be fitted to the time series data and

the parameters such as entropy used as features for CBM. As a bearing deteriorates,

the vibration signal will increase in amplitude most of which will constitute an elevated

noise floor. As such, the signal’s regularity (complexity) will decrease thus increasing

its entropy value (Yan & R.X., 2007).

In this section, entropy is justified as a good candidate for domain invariance. A short

example of the computation of entropy will be presented later and will illustrate the

feature’s independence of the distribution of data. It has been used for the analysis of

biomedical signals (Pincus et al., 1991; Azami et al., 2017).

The randomness/regularity of a series can be quantified by the amount of repeated

patterns present in the data or in other words how well the data can be compressed; if

it is composed of repeating patterns it is more compressible. Entropy of a time series
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is the probability of the amount of surprise that is revealed by the data. The more

random a series is, the higher its entropy.

Approximate entropy (ApEn) as proposed by Pincus (Pincus, 1995; Pincus et al., 1991;

Pincus & Goldberger, 1994) is able to quantify the regularity of practical data which

is characterized by noise and finiteness by checking for presence of vectors of repeating

patterns. ApEn breaks down a time series into m−dimensional template vectors where

the elements are composed of m consecutive points in the series. Each template is

compared with all the other vectors (including itself) to check if the distance between all

corresponding elements is within some tolerance r; all vectors that satisfy the distance

criteria are labeled as “possible” vectors for the particular template (Delgado-Bonal &

Marshak, 2019).

Next, the same series is divided into vectors of dimension m+ 1 and for each template

vector, the proximity of each of its “possible” vectors is confirmed by computing the

distance between the (m+1)th elements of the template vector and each of its “possible”

vectors. If the distance between the (m + 1)th elements is still less than r, then, the

particular possible vector is now labeled a “match”.

The steps of ApEn for a fixed m and r are enumerated as follows (Pincus, 1995).

a. From a time series U with N data points (u(1), u(2), u(3), ..., u(N)),

create m-dimensional vectors x(1),x(2), ...,x(N −m+ 1) where

each x(i) is defined as x(i) = [u(i), u(i+ 1), u(i+ 2), ..., u(i+m− 1)].

b. Compute the Chebyshev distance between vectors x(i) and x(j) i.e.

d[x(i),x(j)] = maxk=1,2,...,m(|u(i+ k − 1)− u(j + k − 1)|). (2.2)
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c. Compute the sum Cm
i (r) using the “possibles” for x(i)

Cm
i (r) =

1

N −m+ 1

N−m+1∑
j=1

number of times that d[x(i),x(j)] ≤ r. (2.3)

d. Compute the normalized sum φmi (r) using the logarithm of Cm
i (r) as

φm(r) =
1

N −m+ 1

N−m+1∑
j=1

logCm
i (r) (2.4)

e. Repeat steps a to d for template vectors of dimension m + 1 to compute φm+1(r).

For each template, only its “possible” vectors are compared. Therefore the quantity

Cm+1
i (r) is the sum of all the “matches” for the template vector.

f. Finally, compute ApEN as

ApEN(m, r,N) = φm(r)− φm+1(r) (2.5)

=
1

N −m+ 1

N−m+1∑
j=1

logCm
i (r)− 1

N −m

N−m∑
j=1

logCm+1
i (r) (2.6)

Since φmi (r) and φm+1
i (r) are logarithmic quantities, the negative value of ApEn can

also be interpreted as a normalized sum of the ratios of “matches” to “possibles” for all

vectors x(i). The ratio is the conditional probability that vectors x(i) and x(j) which

are close in the vector space <m, remain close in the <m+1 vector space by satisfying

the distance criterion.

The concept of ApEN is intuitively understood by observing that steps a to e are very

similar to the steps of reconstructing the phase space of a deterministic, stationary dy-

namical system using Takens’ embedding theory (Takens, 1981). Consider a dynamical

system fully represented by k state variables such that at any point in time the state

of the system is represented by the vector x = [x1, x2, · · · , xk, ] in the k−dimensional

state space. The states x are also known as phase points such that the state space is
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also called the phase-space. The variation of the states in time is depicted by motion

along some path in the state space known as the phase trajectory. This path indicates

the long-term behaviour/tendency of the system.

Often it is not possible to observe x in its entirety for practical systems, and hence

an observation function g only measures a single state variable i.e. g : Rk → R1 is

assumed. Let the scalar value measured be denoted by g(x) where g(·) is considered a

projection of the phase space trajectory onto a single coordinate of the k−dimensional

space (Navarrete, 2018). Takens (Takens, 1981) proved that it is possible to use the

delay vector given in equation 2.7

v(x, τ, de) = [g(x)t, g(x)t−τ , g(x)t−2τ , ..., g(x)t−(de−1)τ , g(x)t−deτ ] (2.7)

as a surrogate for the phase point x and hence reconstruct a topologically similar

phase-space for a suitably chosen time delay τ and embedding dimension de .

Indeed, one criteria used in selecting a good embedding dimension de is that of embed-

ding the scalar time series g(xt) in increasing higher dimensions and checking at each

stage if vectors that are nearest neighbors in <de are still close in <de+1. Assuming there

is a large amount of data available (i.e. a sufficiently long time series), the Euclidean

norm between two nearest vectors in the reconstructed space should be small (Small,

2005). Points that are close due to system dynamics and not due to an inaccurate

embedding dimension should separate slowly and hence remain close in <de+1.

Thus, ApEN represents the dynamics of a system in a low dimensional space (m is

usually equal to 2 or 3) and computes the long-term trajectory by plotting the delay

vectors xi. Then, ApEN measures how much the shape of the trajectory is distorted

in m versus m+ 1-dimensional space due to template vectors losing neighbours in the

latter space.

A depiction of the “possibles” and “matches” for two well known as systems (the simple
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pendulum and Lorenz attractor) are now presented.

The linearized dynamics of a simple pendulum are given in equation 2.8 (Zill & Cullen,

2009)

θ̈ +
g

l
θ = 0 (2.8)

Figure 2.2 shows the angular position of a pendulum with time and its phase space (θ

vs θ̇/ω).

(a) Angular position (b) Phase space

Figure 2.2: Dynamics of the Simple Pendulum

Figure 2.3 shown the vectors of ApEN in m = 2 and m = 3 dimensions for the simple

pendulum.

(a) m=2 (b) m=3

Figure 2.3: Dynamics of the Simple Pendulum

27



It is clear that the reconstructions in Figure 2.3 closely mirror the phase space of Figure

2.2.

The Lorenz attractor is a more complicated non-linear system defined by the dynamics

(Sparrow, 2012),

ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

(2.9)

The 2-D phase space with any pair of the coordinates x, y or z show that the system

is characterized by switching between two lobes as seen in Figure 2.4 .

Figure 2.4: Phase Space - Lorenz Attractor (σ = 10, ρ = 28, β = 8
3
)

Figure 2.5 shows a the ApEN vectors for m = 2 and m = 3 using the coordinate x.

Once again, the two lobe structure of the 2-D phase space in Figure 2.4 is evident in

Figure 2.5.

The fact that ApEN seems to be reconstructing the phase space may explain why this

feature is suitable in domain shift. It is well known that the phase space captures the

underlying dynamics of a system (Zill & Cullen, 2009). All possible starting points
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(a) m=2 (b) m=3

Figure 2.5: ApEN vectors for the Lorenz attractor

chart similar trajectories/solution vectors in the phase plane as guided by the eigen

vectors of the system. Healthy bearings have the same general underlying dynamics

while bearings with a particular fault ought to have the same dynamics; if it is supposed

that data from different domains (e.g. different operating conditions) is analogous to

various initial conditions, then the shape of the solution vectors in the phase space will

always be similar for a particular set of system dynamics. Therefore, it is expected

that the entropy feature is invariable in different operating conditions.

Pincus recommends that m takes on a low value usually m ∈ {2, 3} (Pincus et al., 1991;

Pincus, 1995; Pincus & Goldberger, 1994). The choice of r must be large enough than

the noise in the data; initial experiments showed that an r value three times the mean

noise amplitude performs well. r must also be large enough for there to be a sufficient

number of conditioning vectors for any xi i.e. a sufficient number of “possible” vectors

such that the conditional probability estimates are reasonable. r values between 0.1

to 0.25 of the standard deviation of a series were found to give results for a series

assumed to have slow dynamics such as heart-rate (Pincus et al., 1991). However, the

exact choice of r in the recommended range is an issue if the series is not consistent.

Two series A and B series are consistent if

when ApEN (m1, r1)(A) ≤ ApEN(m1, r1)(B)

then ApEN (m2, r2)(A) ≤ ApEN(m2, r2)(B) for any r2 ≥ r1.
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Further discussion on other choices of r for different types of time series data is pre-

sented by Delgado-Bonal (Delgado-Bonal & Marshak, 2019).

Due to the particular formulation of ApEN, for the quantity Cm
i (r) (see (2.3)) to be

finite i.e. avoid computing log(0), then the template vector must also self count such

that there is always at least one “possible” and one “match” for any template. This

self counting introduces a bias which becomes more severe when the number of points

in a series N are few. The bias implies more regularity than there is in reality.

Richman and Moorman defined a related regularity statistic called Sample Entropy

(SampEN) (Richman & Norman, 2000) to eliminate the bias of ApEN by reformulat-

ing the quantities used to compute the conditional probabilities. Similar to ApEN,

the “possibles” for each template are those vectors that are with a distance r with-

out counting itself in m−dimensional space.. However, in contrast with ApEN, the

“matches” are all the vectors within the same distance r of the template in (m + 1)-

dimensional space. Hence, SampEN uses all the vectors to find both the “possibles”

and the “matches”.

The “possibles” for any template are known as Ami (r) while the sum of all “possibles”

for all the templates is known as Am(r). The two quantities are computed as

Ami (r) =
1

N −m− 1
×

N−m∑
j=1,j 6=i

pi

where pi =


1 if d[|xm(j)− xm(i)|] < r]

0 if xd[|xm(j)− xm(i)|] ≥ r]

(2.10)

Am(r) =
1

N −m

N−m∑
i=1

Ami (r) (2.11)
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Similarly, the “matches” for any template are known as Bm
i (r) while the sum of all

“matches” for all the templates is known as Bm(r).

Bm
i (r) =

1

N −m− 1
×

N−m∑
j=1,j 6=i

pi (2.12)

Bm+1(r) =
1

N −m

N−m∑
i=1

Bm
i (r) (2.13)

SampEn is computed as

SampEn(m, r,N) = −log
(
Bm+1(r)

Am(r)

)
(2.14)

Comparing equations (2.6) and (2.14), it is seen that for ApEN to be defined, it requires

that all templates find a “match” while SampEN only requires any template to find

a match for it to be defined. This is because of the re-positioning of the logarithm

function in SampEN. Compared to its counterpart, ApEN is dependent on the size of

series, N as indicated by the normalization factors 1
N−m−1

and 1
N−m that appear in the

computation of φmi (r) and φm+1
i (r) respectively.

It is seen that SampEn, compares how much the shape of the long-term trajectory of

the system represented by the scalar time series changes as the dimension migrates

from m to m+ 1.

SampEn also quantifies the distortion of the long-term trajectory of the system by

summing up changes in the neighborhood of each template vector/phase point between

m and m+ 1 dimensional space.

For both ApEN and SampEN, whether a vector qualifies as “possible” or a “match”

is based on a binary decision rule; if the distance criterion is satisfied, the quantities
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Cm
i (r), Cm+1

i (r), Ami (r), Bm+1
i (r) are incremented by 1 otherwise they are incremented

by 0 (see equations (2.3), (2.10) and (2.10)). This is akin to using the Heaviside function

to decide when to add 1 or 0. Chen et al (Chen et al., 2007) modified SampEN to

use a fuzzy function µc instead of the Heaviside function. The Fuzzy function, first

introduced by Zadeh (Zadeh, 1965) brings in the concept of a membership degree where

each point is associated with a real number in the range [0,1]. In the case of SampEN

this real number quantifies how far apart a vector is from the template vector based

on the limit r; a real number closer to 1 indicates that the distance between the two

vectors is quite small. This modified statistic is known as Fuzzy Entropy (FuzzyEN)

and the exponential function was adopted as the fuzzy function. The exponential

family of functions is continuous as well as being convex such that self-similarity yields

the maximum.

The algorithm of FuzzyEn closely resembles that of SampEN with a few modifications

as follows.

i) The m dimensional vectors xi are created while subtracting a baseline x0
i from

each of the elements.

xmi = {ui, ui+1, ui+2, · · · , ui+m−1} − u0
i ;

for i = 1, 2, 3, · · · , N
(2.15)

x0
i is the average of the m elements in vector xmi .

ii) The distance between any two vectors xmi and xmj is computed using Chebyshev’s

distance.

dmij = max
k=1,2,...,m

(|x(i+ k − 1)− x(j + k − 1)|) . (2.16)

iii) A new quantity, the degree of similarity Dm
ij of xmi and xmj is now computed using

the fuzzy function µ(dmij , n, r).
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Dm
ij = µ(dmij , n, r) (2.17)

where µ(dmij , n, r) is the exponential function with parameters n and r determining

its shape/boundary.

µ(dmij , n, r) = e(−(dmij )n/r) (2.18)

iv) φm is then defined as

φm =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−m∑
j=1,j 6=i

Dm
ij

)
. (2.19)

v) Steps i-iv are repeated for template vectors of length (m + 1) such that φm+1 is

similarly given by

φm+1 =
1

N −m

N−m∑
i=1

(
1

N −m− 1

N−s∑
j=1,j 6=i

Dm+1
ij

)
. (2.20)

vi) For a finite series, FuzzyEN is obtained as a function of the natural logarithm

FuzzyEn(m,n, r,N) = ln(φm(n, r))− ln(φm+1(n, r)) (2.21)

The parameters r and n determine the shape of the exponential function with the

former affecting the rate of decay and the latter determining how much penalty is

associated with the distance dmij . For instance, a value of n = 2 results in a lower value

of Dm
ij than if n = 3 for the same value of dmij ; thus, a lower n imposes a higher penalty

(Chen et al., 2007). For FuzzyEN, m and r are chosen just as for SampEN while n is

chosen to be a low number e.g n ∈ {1, 2, 3}.

For the application of FuzzyEN in machine fault detection, it is important to recognize

that machines are composed of many interacting components such as bearings, shafts
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and gears; therefore condition monitoring data is bound to contain several oscillatory

modes due to the interaction and coupling between the components. Thus, analysis at

a single scale is insufficient for exploring the data and multi-scale entropy features are

usually utilized for fault detection (L. Zhang et al., 2010; S.-D. Wu et al., 2013; Zheng

et al., 2017; L. Zhang et al., 2010; K. Zhu & Li, 2015, 2014; Y. Li et al., 2019, 2018).

Costa et al (Costa et al., 2002), first introduced a technique known as coarse graining

for obtaining multi-scale series from a single time series. A coarse grained time series

yτ is obtained from the original time series for any scale τ by calculating the arithmetic

mean of τ neighboring values without overlapping.

yτ (j) =
1

τ

jτ∑
i=(j−1)τ+1

x(i); 1 ≤ j ≤ N

τ
(2.22)

This process is depicted in Figure 2.6.

The fuzzy entropy at a scale τ is FuzzyEn(yτ ,m, n, r).

Figure 2.6: Coarse graining a time series at various scales(Y. Li et al., 2019)

There are two main drawbacks of the aforementioned method of obtaining multi-scale
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data (Azami et al., 2017; S. Wu et al., 2014). The first is that entropy thus computed

lacks symmetry in its dependence on the original series. For instance, looking at Figure

2.6, it can be seen that at scale 2, y2
1 is composed of x1 and x2 while y2

2 is composed of

x3 and x4. However, at scale 3, y3
1 is composed of x1, x2 and x3 while y3

2 is composed

of x4, x5 and x6. Thus, FuzzyEN is bound to be inconsistent across the different

scales. This inconsistency may be interpreted as unintended smoothing action which

may change the entropy value eventually changing the category of a particular dataset.

Secondly, consider that for an N point time series, the length of the coarse grained

series at scale factor τ is equal to N/τ ; this new length may not be sufficient for

accurate calculation of fuzzy entropy when τ is large. In addition, for a large τ there

may be no matching templates meaning Equation (2.21) is undefined. Inaccurate and

undefined fuzzy entropy compromises reliability of the method.

Improved methods such as the composite and refined composite coarse graining have

subsequently been put forward. Refined composite coarse graining for calculation of

multiscale sample entropy was introduced in (S. Wu et al., 2014) and extended for

fuzzy entropy in (Azami et al., 2017). The composite coarse graining procedure is

depicted in Figure 2.7 where it can be seen that coarse graining at any scale results in

more than one new time series. For instance at scale 2, two coarse grained series are

obtained while at scale 3, three coarse grained series are created.

To compute the fuzzy entropy at a scale τ , the functions φm and φm+1 are computed

for all the coarse grained time series in that scale i.e. at scale τ = 2; φmτ,1, φmτ,2, φm+1
τ,1

and φm+1
τ,2 are computed and their averages φ

m

τ and φ
m+1

τ are also calculated. The fuzzy

entropy computed at scale τ is now referred to as the Refined Composite Multiscale

Fuzzy Entropy (RCMFE)

RCMFE(x, τ,m, n, r) = −ln

(
φ
m+1

τ

φ
m

τ

)
(2.23)
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Figure 2.7: Composite coarse graining of a time series (S. Wu et al., 2014)

Equation (2.23) is always defined unless all φmτ,j and all φm+1
τ,j are zeros. The length of

the original data series N is chosen as 4000 which is sufficient for RCMFE calculation

(Zheng et al., 2017).

2.3.2 Hazard function features for prognosis

Bearing lifetime data can be viewed from a survival analysis point of view in which

case survival time is defined as the length of time taken from the start of bearing

operation up to failure (Tableman & Kim, 2004; Nadler & Zurbenko, 2013). If T is a

non-negative random variable representing time until failure, then the survival function

S (t) which estimates the probability of surviving past time t is defined as

S(t) = 1− F (t) = Pr(T > t) for t > 0, (2.24)

where F (t) is the cumulative density function of T . At the beginning of accelerated

aging experiments, the bearings are generally fault free and hence the survival function
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decreases monotonically. The hazard function characterizes the rate of change of the

survival function with time. Thus, as survival is steadily decreasing in bearing lifetime

data, the hazard increases with time. The hazard function h(t) thus indicates the

instantaneous risk of failure at time t given that failure has not yet occurred.

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t | T ≥ t)

∆t
(2.25)

Although there are several families of survival distributions in use, the Weibull distri-

bution is popularly employed as a purely empirical model even where there is insignifi-

cant theoretical justification (Paterno, 2004). This is because it makes no assumptions

about the distribution of the base hazard function and can also model both increasing

and decreasing hazards. It is thus suitable for modeling the time to failure of machine

components or the RUL.

The 2-parameter Weibull distribution is commonly characterized by a shape (β) and

scale (α) parameter which are learned from data. The Weibull hazard function is given

by (Lee & Wang, 2003)

h(t) = β α βt β−1. (2.26)

The process of modeling degradation of components and predicting RUL greatly relies

on the proper choice of health indicators (HIs). Some of the metrics used to rate the

HIs in this regard include monotonicity, robustness and trendability (Lei et al., 2018;

Duoung et al., 2018). Unfortunately, commonly used time domain features such as the

Root Mean Square (RMS) and kurtosis perform poorly with regard to the mentioned

metrics and are thus not able to properly track fault and hence reliable predict the

RUL. In contrast, the hazard functions of these features manifest the desired metrics

in an excellent fashion and most importantly for this work, they behave in the same

manner across different operating conditions i.e. are domain invariant.
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By recalling their definition, it is clear that hazard functions are monotonically increas-

ing and thus always trending. The definition also guarantees that hazard functions are

similar regardless of the domain of data used to characterize the Weibull distribution.

Thus, hazard functions satisfy both trendability and invariability across operating con-

ditions.

The hazard functions will be computed for two commonly used time-domain health

indicators in bearing prognostics i.e. Root Mean Square (RMS), and kurtosis (Lei et

al., 2018; N. Li et al., 2018; Duoung et al., 2018; Mahamad et al., 2010). Kurtosis

is known to be highly sensitive to incipient fault (N. Li et al., 2018) and hence it is

used to detect the change-point of bearing state i.e. where fault is first detected and

from which the bearing progressively deteriorates to failure. RMS is an indicator of the

energy level of the system which should increase as the fault worsens due to increased

vibration. It is thus commonly used to track fault (J. Zhu et al., 2014).

For a vector x = x1, x2, . . . , xi, xi+1, . . . xN with a total of N elements, the RMS is

computed as

RMS =

√√√√ 1

N

N∑
i=1

(xi)2. (2.27)

The shape factor (SF) which is a scaled version of the RMS, can also be used.

SF =
RMS(

1
N

N∑
i=1

|xi|
) . (2.28)

On the other hand, kurtosis can be thought of as describing the shape of the amplitude

distribution of a signal. It is a measure of the size of the tails of a distribution compared

to the tails of a normal/Gaussian distribution of the same variance (J. Zhu et al., 2014)
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kurtosis =

N ∗
N∑
i=1

(xi − x̄)4(
N∑
i=1

(xi − x̄)2

)2 . (2.29)

2.4 Mapping Algorithms

In this section, the machine learning algorithms used for mapping features to outputs

are outlined.

2.4.1 Self Organizing Fuzzy Classification for Diagnosis

In this section, the self organizing fuzzy (SOF) classifier that was used for classification

in the diagnosis is described. This classifier was adopted because it groups by a process

analogous to clustering rather than using decision boundaries which could be helpful in

promoting successful cross domain categorization. Fuzzy set theory, first introduced by

Lofti A. Zadeh (Zadeh, 1965), generalizes the classical crisp sets where a member either

belongs or does not belong to a set. Instead, in fuzzy set theory, a member is allowed

to partially belong to a set and hence a fuzzy set A, is characterized by a membership

function µA(x) that can take on any value in the closed interval [0,1]. Membership

functions are selected by experts with domain knowledge and can be Gaussian, trape-

zoidal, triangular, etc. The parameters of the membership functions are determined

by offline optimization or are handcrafted based on practical experience (Angelov &

Gu, 2019). Fuzzy sets have been extended to Fuzzy rule-based (FRB) systems which

enable an intuitive and powerful method of making decisions using rules encapsulated

in IF...THEN statements. It has been theoretically proven that fuzzy systems have the

universal approximator property and hence are able to reasonably approximate any

continuous non-linear function (L. Wang & Mendel, 1992) even though a large number

of fuzzy sets and rules may be required. There have been three broad categories of

FRB systems in fuzzy systems all of which have an antecedent (IF) section followed by
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a consequents (THEN) section (Angelov & Gu, 2019).

1. Zadeh-Mamdani (Mamdani & Assilian, 1975): This was the original system and

consists of several linguistic If...Then rules e.g.

IF (x1 is LTi,1) AND (x2 is LTi,2) · · · AND (xN is LTi,N)

THEN(yi is LTi,out)

where x = [x1, x2, x3, · · · , xN ]T is the feature vector; LTi,j(i = 1, 2, 2, · · · ,M, j =

1, 2, 3, · · · , N) is the linguistic term of the jth fuzzy set of the ith fuzzy rule; M

is the number of fuzzy rules; LTi,out is the linguistic term of the output of the

ith fuzzy rule; yi is the output of the ith fuzzy rule. Linguistic terms are defined

by membership functions and may be terms such as low, high, medium etc as

applied to features such as speed, temperature, income etc.

2. Tagaki-Sugeno (Takagi & Sugeno, 1985): This FRB is similar to the previous one

with the exception that the consequent is a regression model.

IF (x1 is LTi,1) AND (x2 is LTi,2) · · · AND (xN is LTi,N)

THEN(yi is xTai)

where x = [1,xT ]T ; ai = [ai,0, ai,1, ai,2, · · · , ai,N , ]T is a vector consequent param-

eters for the ith fuzzy rule.

3. AnYa systems invented by Angelov and Yager (Angelov & Yager, 2012) have an

antecedent that is based on a prototype instead of a fuzzy set and a consequent

that is a function.

IF (xi is ∼ pi) THEN(yi is xTai)

40



where pi is the prototype of the ith fuzzy rule and ∼ denotes similarity or typi-

cality.

The design of the Zadeh-Mmadani and Tagaki-Sugeno FRB systems consists of three

main steps

a. Selection of the membership function i.e. triangular, Gaussian etc.

b. Definition of the linguistic terms (terminology, quantity)

c. Determination of the parameters of the membership functions

On the other hand, AnYa systems are simpler to design and require only that the peak

of the membership function be specified i.e. that prototypes are chosen. Prototypes

are focal points in data clouds which attract neighbourhood samples. This AnYa fuzzy

classifier will henceforth be referred to as the self organizing fuzzy (SOF) classifier.

The empirical approach to data characterization is formulated as “Given observations

of outcomes of real processes/experiments alone, estimate the ensemble properties of

the data and, furthermore, estimate these for any feasible outcome” (Angelov & Gu,

2019). These ensemble properties include data clouds/clusters and their prototypes

(peaks). This approach does not require any prior knowledge about the problem and

neither does it make any assumptions about the data generation model which is a

key consideration in this work where the generating distributions in either the domain

and/or task are changing. Data characterization is done by evaluating several non-

parametric ensemble functions such as cumulative proximity, eccentricity, data density

and typicality.

1. Cumulative proximity: This is the sum of square distances of a sample from all

other samples. This metric provides information about the centrality of a sample.

q(xi) =
K∑
j=1

d2(xi,xj); j = 1, 2, 3, · · · , K (2.30)
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where xi,xj ∈ {x}K and d(xi,xj) is a function computing the distance between

xi and xj. The shorter this distance metric is, the more similar two samples are.

x can be of any dimension i.e. a sample can have any number of features. K is

the number of samples in the dataset.

2. Eccentricity: This is the normalized cumulative proximity which is useful in

capturing the properties of samples at the tail ends of a distribution i.e. samples

far away from the peak.

ξ(xi) =
2q(xi)

1
K

∑K
j=1 q(xj)

; j = 1, 2, 3, · · · , K (2.31)

The 1
K

in the denominator is used to standardize eccentricity to prevent tendency

to zero as K grows large.

3. Unimodal data density is a measure describing mutual proximity of samples and

is thus the inverse of eccentricity.

D(xi) =
1

ξ(xi)
=

∑K
j=1 q(xj)

2Kq(xi)
=

∑K
l=1

∑K
j=1 d

2(xl,xj)

2K
∑K

j=1 d
2(xi,xj)

;

j = 1, 2, 3, · · · , K

(2.32)

From the denominator of Equation (2.32) , it is seen that this measure is inversely

proportional to the sum of distances between a sample and all others. Obviously,

the closer a sample is to the global mean, the higher its data density i.e. more

samples surround it.

4. Multimodal density. In the data, a sample may be observed repeatedly and

hence the set of unique samples is defined as {U}T = u1,u2,u3, · · · ,uT where

each distinct value is only recorded once and T is the number of unique samples.

The corresponding frequencies of the unique samples in the data are denoted by
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fi. Multimodal density is then defined for each unique sample ui in {U}T and is

the product of the unimodal density of the unique sample and its frequency fi.

DMM(ui) = fi ×
∑K

j=1 q(xj)

2K × q(ui)
; i = 1, 2, 3, · · · , T. (2.33)

The described data-centric measures are then used to find the local modes in a given

dataset. In the case of classification, the modes are learned individually for each class

c.

2.4.2 Neural Networks for Prognosis

In this section, a brief description of the very commonly used Neural Network (NN)

that will be used as the prediction model for the hazard function based HIs is given.

Neural networks are non-linear models that establish functional relationships between

inputs and outputs and where the parameters defining the relationship have to be

adjusted for optimal performance. The parameters are determined by exposing the

network to a set of examples (composed of inputs and corresponding outputs) and

observing the response from the network. The parameters are continuously adjusted

to minimize the error from the networks “answers”.

In this work, a basic single-hidden layer neural network (NN) will be used to map the

condition indicators to the output i.e. the RUL ( see Figure 2.8) (Function fitting a

neural network , 2010).

In expanded form, the NN’s outputs can be expressed mathematically as

43



 

ui + + 
wih 

bih 

who 

bho 

yi 

Hidden Layer Output Layer 

Fh Fout 

Input Output yh 

Figure 2.8: A single hidden layer neural network

yh = Fh (wih × ui + bih)

yi = Fout (who × yh + bho)

(2.34)

where yh is an intermediate output and yi is the final output corresponding to input ui.

wih is the matrix of weights connecting each dimension of of input ui to all the nodes in

the hidden layer while weights who connect all dimensions of the intermediate output

yh to the nodes of the output layer. bih and bho are the biasing terms in the hidden

and output layers receptively. Functions Fh(·) and Fout(·) are the activation/transfer

functions that map respective inputs to outputs in the desired range of values. The

dimension of input ui is usually greater than one which indicates the use of more than

one health indicator. Because RUL prediction is a regression task, the output is a

single number in the chosen units e.g. RUL in terms of the percentage of life remaining

or time in hours.

2.5 Summary

From the foregoing literature, key areas addressed by this research are derived from

the fact that domain adaptation requires

1. target data during training,
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2. re-training of the models each time new target data is acquired.

This requirements cannot always be met: for instance

a. target data may completely unavailable as in the case of a newly installed machine

b. the available target data may not be sufficient such that the discrepancy in distri-

butions is not accurately captured

Underlying the concept of DA is that model must always be re-trained; the training

process usually requires expertise to set up and may be computationally expensive. As

such, it is very desirable to develop strategies that only require training once. This goal

is achievable if domain invariant features for both diagnosis and prognosis exist since

then the model only need be trained with once. The two domain invariant features

proposed are the Refined Composite Multiscale Fuzzy Entropy (RCMFE) for diagnosis

and hazard features for prognosis.
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CHAPTER THREE

DESIGN METHODOLOGY

In this section, the methodology designed to carry out domain invariant diagnosis and

prognosis is outlined in detail.

3.1 Diagnostics

There were two datasets used for diagnostics. The first dataset used is courtesy of the

Case Western Reserve University (CWRU) bearing data center(Case Western Reserve

University Western Bearing Data Center, 2018). It consists of vibration data from

normal/healthy bearings and as well as from faulty bearings with artificially seeded

single point faults. Although faulty bearing data is sampled at both 12 kHz and 48 kHz,

only the former set from the drive end was used as the baseline healthy data was only

available at the 12 kHz sampling rate (Y. Li et al., 2019). Of particular interest in this

work is that the CWRU dataset was recorded for four operating conditions related to

motor load and speed thus constituting four different data domains. Further, the faults

are seeded at four different diameters which also introduce a shift in data distribution.

There are three types of fault in the data for all the operating conditions i.e. Outer

Race (OR), Inner Race (IR) and ball faults, all of which have data corresponding to

the four fault sizes. The exception is the OR data which lacks the 0.711 m diameter.

The organization of data into operating conditions and fault sizes is listed in Table 3.1.

In addition, although OR data is collected in three different positions relative to the

bearings’ load zone, only measurements at the 6 o’clock position were used since there

was no mechanism to convert the dynamometer torque into radial load borne by the

bearings, and thus the only effective radial load was gravity (W. A. Smith & Randall,

2015).

The second dataset consists of vibration data collected under different time varying

speed conditions courtesy of the University of Ottawa (Huang & Baddour, 2018). The
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Table 3.1: CWRU data description

Tags Specifications Fault diameters (dia)
CWRU 1 0 hp/1797 rpm

IR = 0.177 m, 0.355 m, 0.5334 m and 0.711 m.
Ball = 0.177 m, 0.355 m, 0.5334 m and 0.711 m.
OR = 0.177 m, 0.355 m and 0.5334 m.

CWRU 2 1 hp/1772 rpm
CWRU 3 2 hp/1750 rpm
CWRU 4 3 hp/1730 rpm

operating conditions in this dataset are time-varying throughout the recording of the

vibration signal. The variations are as follows: increasing speed (Cond 1), decreasing

speed (Cond 2), increasing then decreasing speed (Cond 3) and decreasing then increas-

ing speed (Cond 4). The speed ranges spanned are given the dataset’s documentation.

The data is categorized into healthy, OR and IR classes. For each operating setting

and class, three trials are conducted to increase authenticity resulting in a total of 36

files.

3.1.1 Fault diagnosis using Refined Composite Multiscale Fuzzy Entropy

Machine learning models require that data is divided into training and testing datasets.

The subdivision process and preparation of the data is outlined.

1. Each data file was divided into 20 examples containing 4000 consecutive non-

overlapping points.

2. Each example was denoised using a bior 3.7 wavelet of level 3 (Lessmeier et al.,

2016) and then normalized. RCMFE was then computed for 20 scales with an

embedding factor of 2. The 20 RCMFE values made up the feature vector.

3. Training data was organized according to the four operating conditions i.e. for

source domain 1, the training data was obtained from CWRU 1/Cond 1 for the

CWRU and Ottawa datasets respectively. Similarly, training data for source

domain 2 was drawn from CWRU 2/Cond 2, source domain 3 data was drawn
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from CWRU 3/Cond 3, and finally source domain 4’s data was drawn from

CWRU 4/Cond 4.

4. The files used from the CWRU dataset were as follows: for the fault detection

stage, healthy data vs 0.177 m dia IR, OR and ball data was used. For the initial

stage of fault isolation where a classifier is trained on the three fault classes, the

training data consisted of 0.177 m dia, 0.355 m dia and 0.711 m dia IR, 0.177 m

dia, 0.355 m dia and 0.533 m dia OR and 0.177 m dia, 0.355 m dia and 0.711 m

dia ball fault data. The data was mixed in the described manner to ensure the

largest fault data available for each class was used for training. Thus, because

the 0.711 m dia is unavailable for OR from the daaset repository, one fault class

(0.533 m dia) was skipped from the IR and ball classes to ensure class imbalance

did not occur. For IR vs Ball classifier, 0.177 m dia, 0.355 m dia, 0.533 m dia

and 0.711 m dia were used for both the IR and ball classes. In the ball vs OR

classifier, 0.177 m dia, 0.355 m dia and 0.711 m dia was used for the ball class

while 0.177 m dia, 0.355 m dia and 0.533 m dia was used for the OR class.

5. The files used from the Ottawa dataset were as follows: for the first stage i.e

fault detection, the classifiers were trained with H-A-1 vs I-A-1/O-A-1 for source

domain 1, H-B-2 vs I-B-2/O-B-2 for source domain 2, H-C-3 vs I-C-3/O-C-3

for source domain 3 and H-D-1 vs I-D-1/O-D-1 for source domain 4. In the

second stage of fault isolation the classifiers were trained with I-A-1 vs O-A-1 for

source domain 1, I-B-2 vs O-B-2 for source domain 2, I-C-3 vs O-C-3 for source

domain 3 and I-D-1 vs O-D-1 for source domain 4. The suffixes 1,2 and 3 in this

dataset indicate the trial number. The middle letter is indicative of the operating

condition i.e A for Cond 1, B for Cond 2, C for Cond 3 and D for Cond 4.

6. During the training phase, all classes consisted of an equal number of samples to

avoid class imbalance.

7. The testing/target data for each of the source domains consisted of every other
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sample not in the training data i.e. all remaining examples from the rest of the

conditions were combined into the test set.

8. For each of the four source domains, SOF classifiers were trained and used to

categorize the test samples.

A summarized flowchart of the steps followed in the diagnostic procedure is given in

Figure 3.1.

Divide each dataset into 20 examples each with 4000 points

Compute RCMFE for 20 scales for each dataset

Train the Fault detection classifier (Healthy vs Faulty)

Train the Fault Isolator 1 classifier (IR vs OR vs Ball)

Train the Fault Isolator 2 classifier (IR vs Ball)

Train the Fault Isolator 3 classifier (OR vs Ball)

Apply the trained models to the test data

Figure 3.1: General steps followed for diagnostics

3.1.2 Assignment of classes by the Self Organizing Fuzzy Classifier

The self organizing fuzzy (SOF) classifier uses the data characteristics described in

section 2.4.1, to group samples into classes.

Let the Kc training samples of the cth class (c = 1, 2, 3, · · · , C) be denoted by {x}c =

{xc1,xc2,xc3, · · · ,xcKc}; {U}cT = {uc1,uc2,uc3, · · · ,ucT} be the set of all unique samples of
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the cth class and {f}cT = {f c1 , f c2 , f c3 , · · · , f cT} the corresponding frequency of occurrence

set. The local modes and their centers for any class are found based on multimodal

densities as follows.

1. Calculate the multimodal densities DMM(ui) of all unique samples uci using Equa-

tion (2.33).

2. Find the unique sample with the highest multimodal density, remove it from

{U}cT and place it as the first element r1 in a ranking list {r}.

3. From the remaining samples in {U}cT , remove the sample with the shortest dis-

tance to r1 and let it be the second element r2 in the ranking matrix r. Similarly,

r3 is the element with the shortest distance to r2. This process is repeated until

{U}cT is empty.

4. Initial prototypes {p}c0 are found from the local maxima of multimodal densities

ranked in r according to Condition 1.

Condition 1:

IF

(
DMM(ri) > DMM(ri+1)

)
AND

(
DMM(ri) > DMM(ri−1)

)
THEN

(
ri ∈ {p}c0

) (3.1)

5. Once the initial prototypes are found, they are used to attract the data samples

surrounding them forming data clouds which represent the local modes present

in the data. The clouds are analogous to clusters except for the fact that they are

non-parametric and do not conform to any particular shape. A point is assigned

to the closest prototype by

closest prototype = argmin
p∈{p}c0

(
d(xi,p)

)
; xi ∈ {x}c (3.2)
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6. The initial data clouds must then be filtered to retain only the larger and more

representative clouds in order to improve the generalization ability of the model.

This corresponds to increasing the level of granularity. The higher the granularity,

the more information about the local modes the model is able to capture. The

very first prototypes computed are at the zeroth level of granularity hence the

subscript 0 in {p}c0. The filtering process proceeds as follows.

a. Calculate the centers of all the data clouds zi ∈ {z}c0.

b. Calculate the multimodal density at the centers zi as the product of the uni-

modal density weighted by the support (number of elements) of the particular

cloud, Si.

DMM(zi) = Si ×D(zi); zi ∈ {z}c0 (3.3)

c. Calculate the average radius of local influence of each protoype at granularity

level L as

Gc,L =
∑

x,y∈{x}c, x 6=y, d2(x,y)≤Gc,L−1

d2(x,y)/Qc,L; Gc,0 = dc (3.4)

where dc is the average distance between any two data samples in {x}c

dc =
1

K2

K∑
i=1

q(xi) (3.5)

and Qc,l are the number of pairs of data samples in {x}c between which the

distance is smaller than Gc,l−1

d. For each data cloud center e.g. the ith one, find elements of the set composed

of the centers of its neighboring clouds {z}N+
i through Condition 2.

Condition 2: IF
(
d2(zi, zj) ≤ Gc,L

)
THEN

(
zj ∈ {z}N+

i

)
(3.6)

e. The prototypes at the Lth granular level for class c are finally chosen as per
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Condition 3.

Condition 3: IF

(
DMM(zi) > max

z∈{z}N+
i

(
DMM(z)

))
THEN

(
zi ∈ {p}cL

)
(3.7)

For a total of Nc prototypes, Nc fuzzy rules corresponding to each are formulated as

IF

(
x ∼ pc1

)
OR

(
x ∼ pc2

)
OR · · · OR

(
x ∼ pc

Nc

)
THEN

(
class c

)
(3.8)

∼ is the similarity operator and is analogous to the degree of membership in alternative

antecedents.

To classify a sample x as belonging to one of C classes, the firing strength of the cth

class (c = 1, 2, 3, · · · , C) is computed as

λc(x) = max
p∈{p}c

(
e−d

2(x,p)
)

(3.9)

where d(x,p) is the distance or similarity between x and p and may be any one of the

common distance functions such as Euclidean, Cosine, Mahalanobis etc.

The final label is assigned using a “winner takes all” strategy according to

label x = argmax
c=1,2,3,··· ,C

(
λc(x)

)
(3.10)

The RCMFE features were used as input to the SOF classifier.

3.2 Prognostics

The data used for prognostics is described in section 3.2.1 followed by the step by step

procedure of estimating RUL from the hazard function health indicators.
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3.2.1 Experiments

In this work, data for the 2012 IEEE-PHM prognostics challenge was used. The data is

available online from the National Aeronautics Space Administration’s (NASA) prog-

nostics center of excellence page (NASA, 2012). The dataset was produced by the

prognostics health management research team of the FEMTO-ST Institute in France

and will henceforth be referred to as the FEMTO dataset (Nectoux et al., 2012).

The data was generated on the experimental platform PRONOSTIA which enabled

characterization of the lifetime degradation of ball bearings in just a few hours. Details

of the platform setup can be found in the related publication (Nectoux et al., 2012).

Because the bearings were not seeded with fault, the data obtained corresponds very

closely to that of normally degraded bearings.

Operating conditions were determined by instantaneous measurements of the radial

force applied on the bearing, the speed rotation of the shaft handling the bearing and

the torque inflicted on the bearing. The conditions were then grouped into three based

on rotation speed and the radial force as listed in Table 3.2.

Table 3.2: Grouping operating conditions

Speed (rpm) Radial Force (N)
Condition 1 1800 4000
Condition 2 1650 4200
Condition 3 1500 5000

Degradation was characterized by readings from vibration and temperature sensors i.e.

two miniature accelerometers and a Resistance Temperature Detector (RTD) probe.

The acceleration measurements were sampled at 25.6 kHz. Out of the two orthogonally

placed accelerometers, only data from the horizontal axis accelerometer (Horz) was

used. The temperature data was also not used.

There are 17 datasets in the FEMTO data, 6 of which are complete run to failure

data for training while the other 11 are truncated for testing efficacy of developed
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algorithms.

Table 3.3 enumerates the bearings from which the learning and test data are obtained.

Table 3.3: Training and Test bearings

Operating Conditions
Datasets Condition 1 Condition 2 Condition 3

Training Sets
Bearing1 1 Bearing2 1 Bearing3 1
Bearing1 2 Bearing2 2 Bearing3 2

Test Sets

Bearing1 3 Bearing2 3 Bearing3 3
Bearing1 4 Bearing2 4
Bearing1 5 Bearing2 5
Bearing1 6 Bearing2 6
Bearing1 7 Bearing2 7

3.2.2 Remaining Useful Life Estimation

The objective of this stage was to create a remaining useful life (RUL) prediction model

that is accurate over different operating conditions. As a preliminary step, training was

performed using data from a single operating condition (B1 1) and the model applied

to test sets from all the operating conditions. This model performed well on the test

sets from condition 1 but poorly on test sets from the other operating conditions. Thus,

a simple scheme was devised to incorporate data from all the training conditions as

explained as follows.

1. For training, three sets of data were passed to MATLAB’s function fitnet

a. B1 1 as the training dataset.

b. B2 1 as the validation dataset.

c. B3 1 as the in-training testing dataset.

A training dataset is used to estimate the weights of the network while the valida-

tion dataset prevents the model from overfitting during learning. The in-training

testing dataset is used to obtain an un-biased estimate of the model performance
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because it is never used in the actual learning process i.e. in the estimation of

model weights. The three datasets were specifically chosen from different op-

erating conditions in an attempt to make model accurate across all the three

operating conditions.

2. In preparing the model inputs for prognostic modeling, time is an important

component in addition to the other health indicators (Mahamad et al., 2010;

“Monotonicity”, 2018; “Trendability”, 2018; “Prognosability”, 2018). Expanding

the input by incorporating past feature values has also been shown to be helpful

(Mahamad et al., 2010). The ANN input ui in Equation (2.34) was therefore a

6-dimensional feature matrix comprising of past (subscript i-1 ) and current (sub-

script i) values of time and the condition indicators i.e. timei-1 , timei , kurtosis-

hazard-functioni-1 , kurtosis-hazard-functioni , shape-factor-hazard-functioni-1 and

shape-factor-hazard-functioni .

3. Since the goal of the trained model is to predict RUL, the target/output of the

ANN was linearly modeled as normalized life percentage with 100% indicating

the start of bearing operation and 0% indicating end of life.

4. In section 2.4.2 the ANN was described as having one hidden layer which could

have upto 10 nodes. The ideal number of nodes was selected as follows.

a. For the first candidate number of nodes i.e node = 1, the model weights were

randomly initialized and the model trained. The model and its accuracy on

the training, validation and in-training test data set were stored.

b. The model weights were then re-initialized nine more times for node = 1 and

after each training, the model and its accuracy on the training, validation and

in-training test data sets was stored.

c. Steps 4a and 4b were then repeated for each of the remaining candidate number

of nodes i.e. from 2 to 10 nodes. MATLAB’s fitnet function for was used for
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training with weights being determined by the default Levenberg-Marquardt

algorithm. Notably, even though the weights of the model were re-initialized

10 times in evaluating a particular number of nodes, a random seed was first

set before training commenced to ensure repeatability.

d. On completion of steps 4a, 4b and 4c, the model with the least number of

hidden nodes and the greatest accuracy on the training, validation and in-

training test dataset from the 100 trained models was selected.

5. The best model in step 4d was then used to predict the RUL of all the test

bearings labeled Test Sets in Table 3.3 in the testing phase.

In both training and testing, the R2 metric was used for evaluating performance

and is computed as (Grus, 2015)

R2 = 1− MSE

Variance(target)
(3.11)

where MSE is the mean squared error. The MSE is normalized by dividing it

with the naive prediction error i.e the error obtained by predicting that the RUL

is equal to the mean of the target vector which is the definition of variance.

The R2 metric indicates how much of the variance the data in question is ex-

plained by the model and hence a value as close to 1 as possible is desirable.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter first discusses results from diagnosis followed by those from the prognosis

process. In the section on diagnostics, data from the Case Western Reserve University

(CWRU) and that from Ottawa University were used. For prognosis, the FEMTO-ST

dataset was utilized. Preliminary investigations of the datasets are also given before

presenting results from each of the condition monitoring tasks.

4.2 Diagnosis

4.2.1 Preliminary Analysis

Figure 4.1 shows a selection of the raw vibration signals of normal and faulty bearings

from the CWRU dataset. The different classes of data are not distinguishable from the

raw waveforms. The raw data could not be used to extract any credible information

on the condition of the bearing due to the high amount of noise.

A preliminary exploration of the CWRU data was done to confirm the performance of

commonly used features for diagnosis in changing operating conditions. Two features

commonly used for bearing diagnosis (Kimotho & Sextro, 2014) - root mean square

(RMS) and kurtosis were extracted from the data and used as inputs to a basic classifi-

cation model. Three classes of data (healthy, IR and OR) were arbitrarily chosen from

two operating conditions (CWRU 1 and CWRU 3) and a Naive Bayes model used to

fit distributions in the 2D feature space.

It was observed that the marginal distributions of the classes in different operating

conditions are distinct as shown in Figure 4.2. It was also easy to see that depending on

the operating condition a test point was drawn from and the model used for prediction,

the assigned label could vary. For instance, looking at the decision boundaries learned
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Figure 4.1: Raw waveforms of CWRU data

in Figure 4.3, it was noted that if a test point was drawn from the bottom left half

portion of CWRU 3 space, then the model trained with CWRU 3 data will assign the

label as OR but the model trained on CWRU 1 data would assign the same test point

an IR label.

Decision boundaries conceptualize the discriminative approach to prediction where the

joint probability of a pair (x, y) is given by Pr(x, y) = P (y|x)P (x). The marginal

distribution P (x) is computed by marginalizing out probabilities as

P (x) =
∑
y

p(x, y) =

y∑
i=1

p(x|y = i)p(y = i).

The conditional probability P (y|x) is in essence what a discriminative model learns
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(a) CWRU 1

(b) CWRU 3

Figure 4.2: Marginal distributions of bearing data in a 2-D feature space in
two operating conditions

directly from data and it is aimed at finding thresholds that separate the various classes.

Generally, two features are too few for accurate classification of real-world data and in

Figure 4.4, the t-distributed Stochastic Neighbor Embedding (t-SNE) method (van der

Maaten & Hinton, 2008) was used to visualize the marginal class distributions of the
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(a) CWRU 1

(b) CWRU 3

Figure 4.3: Decision boundaries of bearing data in a 2-D feature space in
two operating conditions

CWRU data in a high dimensional feature space (<108) for the same two operating

conditions. The features consist of time, frequency and time-frequency characteristics

of the first six intrinsic mode functions of the original denoised raw data (Kimotho &

Sextro, 2014).
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(a) CWRU 1

(b) CWRU 3

Figure 4.4: Marginal distributions of a high dimensional feature space vi-
sualized with t-SNE for two operating conditions of the CWRU data

From Figure 4.4, it was clear that the marginal distributions of the three classes were

very different in the two operating conditions which meant that the decision boundaries

learned by a model trained with CWRU 1 data would be different from those of a model

trained with CWRU 3 data. The combination of data and its distribution is the domain
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of data. Again, just like with the reduced feature set of Figure 4.3, the implication

is that if the test data is drawn from a domain other than the one used to train the

prediction model, there is a higher than random chance that the test point will be

mis-classified.

Figure 4.5 shows the RCMFE values of normal and faulty bearings of CWRU data.

At the higher scales (see section 2.3.1), the RCMFE of faulty bearings is lower than

that of healthy ones which fluctuate around a constant value of 1. This observation

is expected as a fault produces periodic impact in the vibration signal every time

it is encountered thus increasing the regularity of the data or inversely, reducing its

structural complexity and hence the diminishing RCMFE. Clear differences between

the four categories of data are visible.

Figure 4.5: RCMFE values for healthy and faulty bearings for CWRU data

On the other hand, a healthy bearing’s RCMFE fluctuates around a constant value

across the higher scales indicating both a randomness of the data but also a richness in

terms of the information contained about the machine. RCMFE behaves consistently

across operating conditions indicating its robustness as a feature where conditions are

changing.
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There is more volatility of the RCMFE values of CWRU data when compared at

different fault sizes but the behavior is still consistent scale-wise as seen in Figure

4.6. Because in practice a test sample may have any diameter of fault size within a

reasonable range, the classifier’s performance will be boosted by having data from all

the fault sizes available in the training set.

Figure 4.6: RCMFE values for different fault sizes for CWRU data

Figure 4.6 also seems to indicate that although IR fault is readily distinguished from the

other two faults, OR and ball fault data are less obviously differentiable. The diagnostic

procedure thus organically divided into two stages. The first stage was concerned with

fault detection and a binary classifier was trained on healthy and faulty data; Figure 4.5

indicates that the two groups are readily differentiable. The training data was extracted

from a single operating condition and tested against RCMFE features from all the other

operating conditions. In the second stage where fault isolation was performed, several

classifiers were built: the first was a multi-class classifier trained on data from the three

faults. From Figure 4.6, it was expected that this classifier would have high recall for

IR fault i.e. this fault will be rarely confused for the other two classes and vice versa.

The implication is that if a fault was identified as IR fault from this classifier, there
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was a high probability that the assignment of an IR fault label was accurate. However,

since OR and ball faults were more likely to be confused, once a sample was classified

as either of the two, it would be passed through a subsequent binary classifier trained

exclusively on ball and OR data in an attempt to raise accuracy.

Figure 4.7 shows the first few milliseconds of some of the raw waveforms of the three

classes of data for the Ottawa dataset. Again, there is no obvious distinguishing pattern

in the groups.

Figure 4.7: Vibration signals from the Ottawa dataset

Figure 4.8 shows distinct patterns of RCMFE values at higher scales with healthy

bearing values fluctuating around a generally constant value of 1 while those of faulty

data are monotonically decreasing.

Although Figure 4.8 implies good separability of the classes, the two stage approach

was still chosen where fault detection was first performed followed by fault isolation.
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Figure 4.8: RCMFE for the Ottawa dataset

4.2.2 Classification - CWRU data

Table 4.1 shows that in the CWRU dataset, the healthy and faulty data are perfectly

separable using RCMFE with a 100% accuracy on all the test data regardless of which

source domain was used in training. The column headers indicate the source domain

of the training data while test data includes data from all other conditions that were

not used for training. Note that accuracy is computed by dividing the sum of correctly

labeled samples (samples on the main diagonal) with the total number test samples as

indicated in equation 4.1 (Grus, 2015).

Accuracy =

n∑
i=1

aii

n∑
i=1

n∑
j=1

aij

(4.1)

For fault isolation, a preliminary classifier was trained on all the three fault classes i.e.

IR, OR and ball. As a fourth fault size was missing for the ball fault in the online

repository, each class consisted of a mixture of three fault sizes only (Case Western
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Table 4.1: Confusion matrices for the fault detection stage in the CWRU
dataset

CWRU 1 CWRU 2 CWRU 3 CWRU 4
Predicted Label

A
ct

u
al

L
ab

el

H F

H 60 0

F 0 380

H F

H 60 0

F 0 380

H F

H 60 0

F 0 380

H F

H 60 0

F 0 380

Accuracy 100% 100% 100% 100%

H = Healthy, F=Faulty

Reserve University Western Bearing Data Center, 2018). The operating condition

used for training is given as the title of each confusion matrix in Table 4.2. The test

data consisted of data from all the other operating conditions not used for training.

Once again, the samples of the test data contained a mixture of the fault sizes. Just as

indicated by Figure 4.6, the IR fault is perfectly separable from the other two faults.

Further more, IR is never confused for OR and vice versa. However, since some ball

faults are categorized as IR faults as seen in the last rows of the confusion matrices in

Table 4.2, it would be worthwhile to train a binary classifier on IR and ball fault data.

The accuracy of the IR/ball classifier is shown in (Table 4.3) where it is seen that the

two faults exhibit good separability.

The entries of the matrices of Table 4.2 concerning OR and ball faults show that the

two are frequently confused for each other as intimated by Figure 4.6. Thus, samples

categorized as either fault should be passed through a binary classifier trained on ball

and OR data only. Table 4.4 shows the accuracy of such classifiers. In the end, the

accuracy of label assignment to a sample is then an average of accuracies of all the

classifiers the samples pass through.

It is probable that the segmentation of fault sizes in the ball and OR fault may be a

peculiarity of the CWRU setup and is thus possible that the phenomenon may lessen

in another machine.
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Table 4.2: Confusion matrices for the preliminary round in fault isolation
for CWRU data

CWRU 1 CWRU 2 CWRU 3 CWRU 4
Predicted Label

A
ct

u
al

L
ab

el IR OR Ball

IR 130 0 0

O
R 0 63 27

B
al

l

10 51 69

IR OR Ball

IR 130 0 0

O
R 0 81 9

B
al

l

9 47 74

IR OR Ball

IR 130 0 0

O
R 0 77 13

B
al

l

12 29 89

IR OR Ball

IR 130 0 0

O
R 0 71 19

B
al

l

6 26 98

Accuracy 74.8% 81.4% 84.5% 85.4%

Table 4.3: Confusion matrices for binary classifiers trained with IR and Ball
data for CWRU data

CWRU 1 CWRU 2 CWRU 3 CWRU 4
Predicted Label

A
ct

u
al

L
ab

el

IR Ball

IR 120 0

B
al

l

7 113

IR Ball

IR 120 0

B
al

l

6 114

IR Ball

IR 120 0
B

al
l

11 109

IR Ball

IR 112 8

B
al

l

3 117

Accuracy 97% 97.5% 95.4% 95.4%

Table 4.4: Confusion matrices for binary classifiers trained with OR and
Ball data for CWRU data

CWRU 1 CWRU 2 CWRU 3 CWRU 4
Predicted Label

A
ct

u
al

L
ab

el

Ball OR

B
al

l

116 4

O
R 34 56

Ball OR

B
al

l

128 2

O
R 32 58

Ball OR

B
al

l

130 0

O
R 33 57

Ball OR

B
al

l

130 0

O
R 43 47

Accuracy 81.90% 84.54% 85.0% 80.45%

4.2.3 Classification - Ottawa dataset

The RCMFE features resulted in high accuracy in the two stages for the Ottawa dataset

as seen in the confusion matrices of Tables 4.5 and 4.6. As observed in the CWRU

dataset, healthy and fault data are easily distinguishable as well as IR and OR data.

Thus, RCMFE features were consistent in detecting fault and in at least differentiating

IR and OR faults as verified with the CWRU and Ottawa datasets. The features

also performed well in distinguishing IR and ball faults. However, a slight drop in
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Table 4.5: Confusion matrices for fault detection with the classifiers trained
with normal vs faulty data for the Ottawa dataset

Cond 1 Cond 2 Cond 3 Cond 4
Predicted Label

A
ct

u
al

L
ab

el

H F

H 108 2

F 2 218

H F

H 110 0

F 10 210

H F

H 109 1

F 5 215

H F

H 107 3

F 5 215

Accuracy 95.8% 94.1% 95.2% 94.7%

H = Healthy, F=Faulty

Table 4.6: Confusion matrices for fault isolation with the classifiers trained
with IR vs OR data for the Ottawa dataset

Cond 1 Cond 2 Cond 3 Cond 4
Predicted Label

A
ct

u
al

L
ab

el

IR OR

IR 102 8

O
R 7 103

IR OR

IR 107 3

O
R 14 96

IR OR
IR 103 7

O
R 11 99

IR OR

IR 100 10

O
R 4 106

Accuracy 93.1% 92.2% 91.8% 93.6%

performance when differentiating ball and OR faults was observed.

4.2.4 Comparison with related works

As a result of preliminary investigations on the CWRU dataset as shown in Figures

4.5 and 4.6, it is seen that the RCMFE features are robust (similar behaviour) against

operating conditions but are less so when the change in domain is obtained from chang-

ing fault sizes. A change in fault sizes therefore represents a more severe domain shift

than changing operating conditions. For the results presented in section 4.2, each class

was constituted of a single fault type but the samples were mixtures of the fault sizes

available for use.

In published works that have tackled cross-domain diagnosis with the CWRU dataset,

the domains are based on operating conditions. However, each fault size and type is
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considered in a separate class with the exception of the 0.711 m diameter fault which

is usually omitted as it is missing from the online repository. Thus, there are usually

a total of 10 classes; the three fault types each with three fault sizes contributing nine

classes and the healthy class bringing the number of categories to 10.

In order to compare the method proposed in this present research work with contem-

porary works, data was similarly prepared such that a class consisted of a single fault

type and single fault size instead of a mixture od fault sizes. Table 4.7 shows some of

the results for various fault sizes for this latter arrangement. Once again, the condition

shown in the column header is the training domain while the test data was drawn from

the other three domains/operating conditions but of the same fault size that used in

training.

Table 4.7: Confusion matrices fault isolation considering a single fault size
for the CWRU dataset

CWRU 1 (0.177 m dia) CWRU 2 (0.355 m dia) CWRU 3 (0.533 m dia) CWRU 4 (0.355 m dia)
Predicted Label

A
ct

u
al

L
ab

el IR OR Ball

IR 30 0 0

O
R 0 30 0

B
al

l

0 0 30

IR OR Ball

IR 30 0 0

O
R 0 30 0

B
al

l

1 0 29

IR OR Ball

IR 30 0 0

O
R 0 30 0

B
al

l

0 0 30

IR OR Ball
IR 30 0 0

O
R 0 30 0

B
al

l

2 0 28

Accuracy 100% 98.8% 100% 97.7%

In this alternative arrangement, RCMFE achieves even higher accuracy for fault isola-

tion without utilizing domain adaptation.

In Table 4.8, a comparison with other works that have used CWRU data is given.

The comparison is made in terms of the method of feature generation, the domain

adaptation technique, the total number of classes considered, the fault size per class,

average accuracy and whether the target domain data is required during training. The

subscript * in the proposed approach indicates the arrangement of one fault size per

class. Total direct comparability is not possible due to some minor differences. For

instance, Li et al. (X. Li et al., 2018) only presented results considering CWRU 1

and CWRU 4 as the source and target domains while in the rest of the entries, each
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condition was considered as the source in its own turn. In the approach reported here,

diagnosis was divided into two stages i.e. fault detection followed by isolation while in

the rest of the entries in Table 4.8, the diagnosis process was performed in one stage.

Therefore the accuracy of the proposed method is an average of accuracy from the two

stages.

Table 4.8: Comparison with other works using the CWRU dataset

Resource Feature
Generation

DA
Method

No.
of
Classes

Fault
sizes per
class

Avg.
Accuracy

Target
Re-
quired

(X. Li et al.,
2018)

CNN Multi-layer
& Multi-
kernel
MMD

10 1 >90% Yes

(W. Zhang et
al., 2017)

CNN Adaptive
batch nor-
malization

10 1 >90% No

(X. Li et al.,
2019)

CNN
GNN

Multi-
kernel
MMD

10 1 >90 Yes

(Tong et al.,
2018)

PCA MMD 10 1 100% Yes

(Q. Wang et al.,
2019)

CNN Adversarial
learning

10 1 >96% Yes

*Proposed
approach

RCMFE None 10 1 >97% No

As is seen in Table 4.8, most researchers have adopted deep learning for feature ex-

traction (CNN) in order to perform cross-domain diagnosis. Also, MMD which is an

optimization problem solved by iteration is commonly used to reduce distribution dis-

crepancy. It is notable that generally, DA methods require target domain data during

training which means the learning process must be repeated for each new domain of

test data. In contrast, the RCMFE features approach proposed in this research work

do not require deep learning for feature extraction and neither is any domain adap-
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tation technique required. Consequently, the training process which can be expensive

computationally need not be repeated each time new target data is acquired. For the

generally equivalent performance, RCMFE features allow for cross-domain analysis

while avoiding the iterative solving of complex objective functions.

In practical implementation, categorizing each fault size in an individual class does

not benefit generalization. This is because, rather than an unseen test sample having

a fault size exactly equal to one of those used for training, it is more probable that

the fault will be in the range of the fault sizes used for training. Thus, in this work,

classes were created based on the type of fault only and in the training data several

fault sizes were included for each class. The more challenging nature of this latter

arrangement is clear by comparing Figures 4.5 and 4.6 . The results of using RCMFE

for domain-invariant diagnosis were compiled for publication under the title “Cross-

domain bearing fault diagnosis with refined composite multiscale fuzzy entropy and

the self organizing fuzzy classifier”(Gituku et al., 2021)

4.3 Prognosis

4.3.1 Preliminary Analysis

Figure 4.9 shows the raw waveforms of the last samples of a few of the bearings in

the FEMTO-ST dataset and as expected, no useful distinct prognostic information is

obvious mostly because of how noisy the data is.

The FEMTO dataset is considered a challenging dataset because of several reasons.

First, the learning set consists of only two files per condition while the life duration

of bearings has a big variance (from 1 to 7 hours). Secondly, the lifetimes and fault

characteristics are different even for units operated under the same condition. Looking

at Figure 4.10, the RMS patterns from beginning to end of life are very different for the

learning sets of the three different conditions(different domains);raw RMS would not

make an ideal feature for cross-domain prognosis. The same argument can be made
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Figure 4.9: Raw Waveforms of select bearings

for raw kurtosis and shape factor as seen in Figures 4.11 and 4.12 complicating the

task of obtaining useful information about the degradation of the test bearings from

the training bearings (Lei et al., 2018).

Figure 4.10: RMS of all the bearings in each operating condition

As seen in Figures 4.13,4.14 and 4.15, plots of the select time-domain features i.e RMS,

kurtosis and shape factor, do not manifest clear monotonic trends and were thus not
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Figure 4.11: Kurtosis of all the bearings in each operating condition

Figure 4.12: Shape factor of all the bearings in each operating condition

ideal for use as condition indicators.

Therefore, instead of using RMS, kurtosis and shape factor directly, their respective
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Figure 4.13: RMS of training set bearings

Figure 4.14: Kurtosis of training set bearings

hazard functions were adopted as the new health indicators (see Figure 4.16).

Equation (2.25) was used in computing the proposed health indicators with parameters
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Figure 4.15: Shape Factor of training set bearings

Figure 4.16: Hazard Functions of RMS, kurtosis and the shape factor

α and β being estimated separately for each raw feature using the wblfit function in

the scientific computation software MATLAB by MathWorks R©.
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From Figure 4.16, it is obvious that the monotonic trend of the hazard function health

indicators is much better compared to that of the raw features. In addition, the

sub-plots show a similar pattern for all operating conditions which is advantageous

for creation of an RUL prediction model that is applicable across different operating

conditions. Conversion of the raw feature to its hazard function also significantly

reduces noise. For this data, the RMS hazard function indicates high probability

of early mortality instead of risk that increases with operating time as expected of

bearings. For this reason, the RMS hazard function was dropped as a health indicator

leaving the kurtosis and shape factor hazard functions.

There are several metrics used for quantifying the suitability of health indicators given

that their performance has great influence over the success of modeling degradation and

RUL prediction accuracy (Lei et al., 2018; Duoung et al., 2018). Three commonly used

metrics were contrasted for the direct time-domain features and the features’ hazard

functions.

In reality, components undergoing degradation are unable to recover or heal themselves

and thus an appropriate health indicator should have an increasing or decreasing mono-

tonic trend. This characteristic is known as monotonicity and is an inherent property of

the indicator itself. In MATLAB, the metric can computed by calling the monotonicity

function with appropriately formatted input (“Monotonicity”, 2018). A value of 1 indi-

cates perfect monotonicity while 0 indicates non-monotonicity. Figure 4.17a compares

the monotonicity of the direct time-domain features versus their hazard function and

as can be seen, the hazard function improves monotonicity appreciably.

Robustness is yet another commonly used metric and it measures variability of the

value of the health indicator at failure based on the paths followed by the feature in

multiple run-to-failure experiments (“Prognosability”, 2018). There are several reasons

why such variability occurs including randomness of the degradation process, sensor

noise and more pertinently, changing operating conditions (Lei et al., 2018; Duoung et
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(a) Monotonicity

(b) Robustness

(c) Trendability

Figure 4.17: Comparing characteristics of the health indicators for the raw
features versus their hazard functions

al., 2018). Data from different operating conditions constituted the multiple run-to-

failure experiments in this case. In MATLAB, robustness may be computed by calling

the prognosability function. A robust feature has less variation at failure measured

against the range between its initial and final value(“Prognosability”, 2018). Figure
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4.17b shows the superiority of the robustness of hazard functions compared to the

direct time-domain features.

The trendability metric correlates the health indicator with time. Since degradation

worsens over time, the evolution of the health indicator is also expected to relate ac-

cordingly to the operating time (Lei et al., 2018). A slightly modified definition is used

when the trendability function in MATLAB is called. In this function, the similarity

of the paths a health indicator takes in several run-to-failure experiments is measured

(“Trendability”, 2018). Figure 4.17c compares the trendability of health indicators

from the direct time-domain features against those from the hazard functions. The

high trendability of hazard function health indicators means that a single underlying

function can be used to accurately explain a particular indicator e.g. the kurtosis

hazard function regardless of the operating condition it was drawn from. It is to be

recalled that the multiple run-to-failure experiments are derived from lifetime data

from the different operating conditions. The high trendability of the hazard function

is also inferred by comparing Figures 4.13, 4.14 and 4.15 against Figure 4.16 where it

is clearly observed that hazard function health indicators have similar shapes across

the three operating conditions. The formulas for the three metrics are given in the

appendix.

4.3.2 Remaining Useful Life Prediction

The best model from training (using the training, validation and in-training test sets)

was used to predict the RUL of the actual test sets as described in section 3.2.2. The

best model had 2 nodes in the hidden layer, an R2 score of 1 for the training set (B1 1),

0.997 for the validation set (B2 1) and 0.999 for the in-training test set (B3 1). Table

4.9 shows the R2 scores obtained for each of the test bearings. In the last column the

true RUL of each of the test bearings is also given (Linde, 2012).

The model performs well on some of the bearings e.g. B1 4, B1 5, and B1 6 and poorly
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Table 4.9: Results from initial training

Bearing Name R2 Score True RUL
B2 3 -0.7 39%
B1 7 -0.09 34%
B2 7 0.51 26%
B1 3 0.59 24%
B2 4 0.77 19%
B3 3 0.77 19%
B2 5 0.89 14%
B1 5 0.97 7%
B1 6 0.98 6%
B1 4 0.99 3%

on others e.g. B2 3 and B1 7 as noted by the respective high and low R2 scores. The

poor performance does not seem to be connected to any particular operating condition

indicating the decision to use training data from all the three operating conditions was

sound. However, looking at the true RUL column, the selected model performed best

on the bearings close to end of life i.e. with a small RUL and worst for the bearings

furthest from end of life i.e. with the largest RUL. The bearings are listed in order of

decreasing RUL.

The model seems to be overfitting even though validation was performed during train-

ing; the issue was most likely connected to the nature of the testing data versus

the training data. From this viewpoint, the result is sensible considering the mod-

els were trained with full run-to-failure data i.e the RUL progressively decreased from

100% to 0%. The training data was full lifetime data while the testing data was cen-

sored/truncated. Thus, the models perform best on bearings nearing end of life as such

data was closest to the training data. A second round of training was then performed

with all the training datasets expanded. The supplemental data was created by trun-

cating the inputs and corresponding targets at 10% intervals i.e there were additional

datasets with inputs and targets from 100% to 90% RUL, 100% to 80% RUL, 100% to

70% RUL, all the way upto 100% to 10% RUL. The original length of the training and

target data from 100% to 0% RUL was also included. The supplementation was done
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in order to have data sequences in training similar to those that would be encountered

in testing. The same learning process described in the methodology was applied to the

expanded training dataset and the best model selected. Table 4.10 shows the result of

re-training.

Table 4.10: Results from training with the data expanded at 10% intervals

Bearing Name R2 True RUL
B2 3 0.73 39%
B1 7 0.90 34%
B2 7 0.99 26%
B1 3 1.00 24%
B2 4 0.98 19%
B2 6 0.98 19%
B3 3 0.98 19%
B2 5 0.95 14%
B1 5 0.87 7%
B1 6 0.86 6%
B1 4 0.81 3%

Now, the general performance is significantly improved over that recorded in Table 4.9

as indicated by the R2 value. The prediction accuracy of the RUL for bearings furthest

from end of life increased while performance on the bearings close to end of life (B1 4,

B1 5, and B1 6) noticeably dropped. It is likely that supplementation changed the

underlying distribution of the training data and introduced some bias which affected

the test bearings with the shortest RULs. The best performance was recorded for

bearings with true RUL between 21-30% RUL (B2 7, B1 3), followed by those with

true RUL between 11-20% (B2 4, B2 6, B3 3 and B2 5). Overall, the variance of the

R2 was reduced.

In attempting to improve performance further, the model was analysed when the trun-

cated supplemental training data was included at even finer intervals and thus 1%

interval data was generated. Because the largest true RUL is 39%, the finer data was

added from 50% RUL. In addition to the full lifetime data, the training data now also

contained data and targets from 100% to 90% RUL, 100% to 80% RUL, 100% to 70%

RUL, 100% to 60% RUL, 100% to 50% RUL, 100% to 49% RUL, 100% to 48%, 100%
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to 47% RUL and all the way up to 100 to 1% RUL. Table 4.11 shows the result of the

third round of training.

Table 4.11: Performance after the third round of training

Bearing Name R2 True RUL
B2 3 0.57 39%
B1 7 0.80 34%
B2 7 0.97 26%
B1 3 0.98 24%
B2 4 1.00 19%
B2 6 1.00 19%
B3 3 1.00 19%
B2 5 0.99 14%
B1 5 0.93 7%
B1 6 0.92 6%
B1 4 0.89 3%

It is clear that the general performance is significantly improved over that recorded in

Table 4.9. However, expanding the data using finer truncation intervals seems have

an opposite effect to what was recorded in Table 4.10. The performance on bearings

nearing end of life rose from what was recorded in Table 4.10 while that of bearings

with the largest RUL dropped. The best performance was recorded for bearings with

between 11-20% true RUL followed by those with true RUL between 21% to 30% .

Through this initial prognosis steps, three key insights were gained. First, adding sup-

plemental data truncated at 10% resolution improved performance significantly. The

best performance was recorded for the bearings with RULs in the mid-range between

the largest existing RUL and the smallest RUL i.e between 11% to 20% and between

21% to 30%. Secondly, adding the 1% interval truncated data tipped the prediction

accuracy to the opposite of what was obtained with the 10% interval truncated data

only (see Tables 4.10 and 4.11). Thirdly, when training with full lifetime data only

(Table 4.9), the performance was best for the bearing with the lowest RUL and dropped

as the RUL increased.

In view of these three findings, a different approach was taken when adding the data
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truncated at 1% intervals. Instead of using a single model, several models were now

adopted where each was trained with the 1% interval-truncated data added for specific

RUL ranges. The data for training all the models would include the original full lifetime

data i.e. with 100% to 0% RUL as well as the 10% interval-truncated data i.e. training

inputs and target from 100% to 90% RUL, 100% to 80% RUL, 100% to 70% RUL,

100% to 60% RUL, all the way upto 100% to 10% RUL. This is the same data used to

train the model for the results recorded in Table 4.10. Next, the training data for each

of the models would be expanded using a specific range of the 1% interval-truncated

data. For instance, the training data for the model named Model 6 in Table 4.12 also

included 1% interval-truncated data between 50 to 41% RUL i.e the training data for

Model 6 had data with 100% to 90 % RUL, 100% to 80 % RUL, 100% to 70 % RUL,

100% to 60 % RUL, 100% to 50 % RUL, from 100 to 49% RUL, 100 to 48% RUL,

..., 100% to 40% RUL, 100% to 30 % RUL, 100% to 20 % RUL, 100% to 10 % RUL

and 100% to 0 % RUL. This model is named Model 6 because the 50-41 range is the

sixth grouping if the length 100% to 0% was divided into groups at descending 10%

intervals. Similarly, Model 7’s training data also included 1% interval-truncated data

between 40% to 31%, Model 8’s data between 30 to 21%, Model 9’s data between 20%

to 11% and Model 10’s data between 10% to 1%. Obviously, Model 1’s data should

include 1% interval-truncated data between 100% to 91%. Since the longest RUL in

the test data is 39%, Table 4.12 only shows the performance of Models 6 to 10 on the

test set bearings. In the last column the performance of the original model trained

without supplemental data is appended.

The more darkly shaded cells indicate where the interval in which the true RUL of a

bearing lies matches the interval of the additional 1% truncated data. For instance,

Model 7 was trained with the 1% interval-truncated data between 100 to 40-31% RUL.

That is why in Model 7’s column the cells for test bearings whose true RUL are within

the 40-31% range (i.e. B2 3 and B1 7) are darker than the neighbouring .
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Table 4.12: Training successive models with expanded data

Bearing Details R2 Scores

Name True RUL
Model 6 Model 7 Model 8 Model 9 Model 10 Original
(50-41%) (40-31%) (30-21%) (20-11%) (10-1%) Model

B2 3 39% 0.97 0.92 0.82 0.61 0.29 -0.70
B1 7 34% 0.99 0.99 0.94 0.83 0.61 -0.09
B2 7 26% 0.92 0.97 1.00 0.97 0.88 0.51
B1 3 24% 0.91 0.96 1.00 0.99 0.92 0.59
B2 4 19% 0.83 0.90 0.96 1.00 0.98 0.77
B2 6 19% 0.83 0.90 0.96 1.00 0.98 0.77
B3 3 19% 0.83 0.90 0.96 1.00 0.98 0.77
B2 5 14% 0.76 0.85 0.92 0.98 1.00 0.89
B1 5 7% 0.64 0.74 0.84 0.92 0.98 0.97
B1 6 6% 0.62 0.72 0.82 0.91 0.97 0.98
B1 4 3% 0.55 0.66 0.76 0.87 0.95 0.99

As seen from Table 4.12, a model performs best on a bearing if the RUL of the bearing

falls within the range of the additional 1% interval-truncated data used to train that

particular model. Fortunately, designing the framework in this manner also makes the

models trained with supplemental 1% interval-truncated data in the ranges surrounding

the bearing’s true RUL range have high accuracy in predicting that bearing’s RUL.

This is notable when looking at the lighter shade cells on either side of a darker shade

cell. Because Models 6 to 10 show this consistent pattern of behaviour for the available

RUL ranges, it is not an unreasonable assumption to conclude that the frame work

would work just as well if extended upwards for bearings with RULs bigger than 40%.

Once the predicted RUL output falls below 10%, the features data may also be passed

to the original model which was predisposed to small RUL due to its exclusive use of

full lifetime data in training (last column in Table 4.12).

From the results in Table 4.12, a possible scheme for the successive deployment of the

models can be derived as follows. It is assumed that collection of condition monitoring

data begins at the start of bearing operation where RUL is 100 %. Thus, the condition

monitoring features should be fed to Model 1 whose training data enables it to perform

best when RUL is between 90% and 100%. As soon as Model 1 gives an output that

is around its lower limit of optimality e.g. 90 % - 89% RUL, incoming condition
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monitoring data for the bearing should now be passed to Model 2 which is optimized

for the next RUL range i.e. 90 to 81 % RUL. Fortunately, as Models 1 and 3 still

perform very well on the data when the RUL is between 90 to 81 % (as shown from the

results of Table 4.12), the maintenance engineer may even choose to compute the RUL

as a weighted average of Models 1, 2 and 3 with more weight being given to Model 2.

Again, when Model 2’s output is around its lower limit of optimality i.e. 80 % - 79%

RUL, incoming data should be fed to Model 3. Thus, the process would continue until

the output of Model 9 is around 10 - 9% RUL where incoming data is fed to Model

10 or the initial model trained with full lifetime data only. At this stage the RUL can

also be computed as an average of Model 10 and the initial model. Generally bearings

do not self heal and thus RUL decreases monotonically, the deployment scheme just

described will work well. This concept of successive deployment of Models 1 through

10 is illustrated in Table 4.13.

Table 4.13: Proposed deployment of the successive models for RUL predic-
tion

Predicted RUL Output
100-91% 90-81% 80-71% 70-61% 60-51% 50-41% 40-31% 30-21% 20-11% 10-1%
Model 1

Model 2
Model 3

Model 4
Model 5

Model 6
Model 7

Model 8
Model 9

Model 10

The percentage RUL ranges in the second row of Table 4.13 indicate the optimal

performance range of a model which coincides with the interval where the 1% interval-

truncated training data was added. As was indicated in Table 4.12 the output of each of

the models in its optimal range of performance is highly accurate and for the mid-range

models (Model 2-9), an averaging scheme may be adopted as already described.

RUL estimation is a process that is changing in both accuracy and uncertainty as time

progresses. This successive deployment of models is an attempt to update both these
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things by using models trained with apriori information of the current RUL of the

bearing.

4.4 Summary

In this section that discussed the results of using features resistant to domain shift,

it was found that RCMFE features and hazard function health indicators performed

remarkably well though with a few surmountable challenges. Using RCMFE, one is

able to detect fault almost all the time (94% accuracy for the Ottawa dataset and

100% accuracy for the CWRU data). Also, OR and IR fault are very distinct using

RCMFE such that neither is confused for the other. With regard to isolating among

the three types of fault, i.e. IR, OR and ball fault, a hierarchy of classifiers is a good

proposition beginning with one trained on all three faults; because IR fault is well

distinguishable from ball and OR fault (see Tables 4.2 and 4.6). In a second stage,

the test sample may be run through two binary classifiers: one trained on IR versus

ball and the other trained on IR versus OR. The purpose of this stage would be to

confirm whether test data has IR fault as these first two stages of fault isolation are

finely tuned to IR fault. Finally, the third stage classifier should be trained on OR

versus ball fault. This hierarchy applies if each class of the training data contains a

mixture of fault sizes. As seen from Table 4.7, if the training data is arranged such

that each class consists of a single fault type and a single fault size, no hierarchical

system is needed and classification can be performed once.

In the FEMTO data, there is a change in distribution because of the different operating

conditions. However, even with in the same operating condition, data have different

characteristics as can be seen in Figures 4.10, 4.11 and 4.12. Fitting the shape factor

and kurtosis to a Weibull distribution and using the hazard function as features elim-

inates the differences and introduces trendability. The fact that training data is full

lifetime data while testing data is truncated/censored also introduces a change is dis-

tribution that affects performance. This was mitigated by supplementing the training
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data with truncated versions of itself which significantly improved performance of the

models when applied to target data.

86



CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusion

This work set out to find and utilize domain invariant features such that target data

is not required when training data driven models for condition monitoring of rolling

element bearings. To this end, the following contributions were made.

1. Introduction of the Refined Composite Multiscale Fuzzy Entropy feature for do-

main invariant diagnosis of rolling element bearings.

a. The concept of RCMFE was demonstrated using two well known systems - the

simple pendulum and Lorenz attractor. It was shown that RCMFE attempts

to reconstruct the dynamics of the system in a technique similar to time-delay

embedding. By this definition, RCMFE remained consistent even in different

domains as depicted by changing operating conditions.

b. RCMFE achieved results as good as those of contemporary works without any

domain adaptation technique. Hence, RCMFE avoids re-training of models

each time a new target is encountered.

2. Introduction of hazard-based health indicators for domain invariant prognosis.

a. Hazard-based health indicators were shown to be trendable domain invariant

features for use in cross-domain diagnosis.

b. A training scheme using data from the three different operating conditions

of the FEMTO-ST dataset in order to promote domain invariance was also

successfully applied.

c. An approach for supplementation of training data to more closely resemble

testing data was proposed and successfully applied.
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5.2 Recommendations For Future Work

The work done in this research is by no means exhaustive and there several possible

directions that can be pursued.

1. Determination of the best model of for mapping the RUL vector. In this work, a

linear model was used but other possible choices such exponential or piece-wise

models should be explored.

2. Using multichannel data: Sometimes the setup may be such that is possible to

collect more than one stream of data e.g. the CWRU setup incorporated two

accelerometers. It may be worthwhile to explore if incorporation of data from

multiple channels is beneficial using the developed features.

3. The use of probabilistic algorithms for mapping prognostic data should be ex-

plored. Such algorithms automatically generate a prediction interval which is a

useful metric in decision making.

4. The success of these features for use with data from similar but not same machines

needs to be investigated. For instance, training with data from one publicly

available source and testing on another.
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APPENDIX I

Measuring Suitability of Health Indicators

Here, the formulas used to compute how suitable health indicators are for estimating

RUL are given.

I.1 Monotonicity

Monotonic trends are matching i.e. all features increasing or decreasing in value to-

gether as time progresses. The quantity monotonicity quantifies the monotonic trend

in condition indicators as the system evolves toward failure(“Monotonicity”, 2018). An

output of 1 means the condition indicator is perfectly monotonic while 0 indicates a

non-monotonic feature.

Monotonicity =
1

M

M∑
j=1

∣∣∣∣∣∣
Nj−1∑
k=1

sgn(xj(k + 1)− xj(k))

Nj − 1

∣∣∣∣∣∣
I.2 Prognosability

This is a measure of the variability of a feature at failure based on the trajectories

of the feature measured in several run-to-failure experiments(“Prognosability”, 2018).

Prognosable feature has less variation at failure relative to the range between its initial

and final values. A highly prognosable feature feature has an output of 1 while 0 means

the feature is not prognosable.

Prognosability = exp

(
− stdj(xj(Nj))

meanj|xj(1)− xj(Nj)|

)
j = 1, 2, 3, · · · ,M
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I.3 Trendability

This is a measure of similarity between the trajectories of a feature measured in several

run-to-failure experiments. A more trendable feature has trajectories with the same

underlying shape(“Trendability”, 2018). The output is 1 if the input to the trendability

function is perfectly trendable and 0 if it is non-trendable.

Trendability = min
j,k
|corr(xk, xj)| j, k = 1, 2, 3, · · · ,M

For all the three metrics, xj represents the vector of measurements of a feature on the jth

system, M is the number of systems monitored, and Nj is the number of measurements

on the jth system. corr(·) is the correlation function.

For this work the number of systems M were three i.e. B1 1, B2 1, and B3 1. The

number of measurements per system Nj were the number of examples for each system.
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