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ABSTRACT 

Currently, it is evident that the use of wireless communication systems is growing at 

an unprecedented rate. Because of this fact, there is need for accelerated studies on 

these systems to improve the quality of service (QoS) provided to their users. This can 

be done through various methods including signal propagation modelling. 

Correspondingly, the current trend in signal prediction modelling is shifting from 

empirical and deterministic models to computational intelligence models due to their 

low computation cost and high accuracy. In this study we have developed a universal 

theoretical signal propagation model using modified Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) trained with Particle Swarm Optimization (PSO) algorithm. The aim 

is to develop a model that is more suitable for signal propagation prediction. This is an 

improvement to the original ANFIS structure for wireless communication propagation 

modelling. In the process of its development the original ANFIS was modified and 

together with its training algorithm PSO formulated. This was followed by the 

development of equivalent theoretical ANFIS based models for existing empirical and 

deterministic models using ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS. The 

theoretical models were subsequently combined into one universal model. The root 

mean square error (RMSE), mean error (ME) and standard deviation (SD) of the 

predicted signal were used in the process of training and testing the model. From the 

results, the LOG10D-PSO-ANFIS model has very low values in the range of 10-14 to 

10-16 for the three-performance metrics compared to 10-7 for LOG10D-ANFIS and 10-

1 to 100 for the original ANFIS. Besides the universal model being accurate, it 

eliminates the need for many input parameters associated with the individual models. 

This results in just one input, that is, distance being required. It can also be applied in 

all environments including indoor, outdoor, urban, suburban and rural setups. For the 

practical modelling of the behavior of the RSSI, a modified ANFIS based practical 

model (LOG10D-PSO-R-ANFIS) was also developed, and its results compared to 

those of other models where its performance was found to be superior. 



1 

CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study  

According to (Akyildiz et al., 2020), wireless communication systems have 

experienced substantial revolutionary progress over the past few years, and this will 

continue being experienced for some time into the future (Borralho et al., 2021). An 

important consideration in successful implementation of the personal communication 

services (PCS) is indoor and outdoor radio communication; transmission of voice, data 

and video to people on the move inside and outside buildings (Nguyen et al., 2018). 

Wireless communication covers a wide spectrum of situations that include 

communication with users walking in office or residential buildings, malls or 

supermarkets, etc. for indoor and urban, rural, suburban and metropolitan for outdoor, 

to fixed stations sending messages to robots in motion in assembly lines and current 

together with future factory environments (Kimoto et al., 2016; Allen et al., 2017; 

Ullah et al., 2020; Elmezughi et al., 2021; Zhang et al., 2017; Erunkulu et al., 2020; 

Reardon, 2010).  

The few researchers who have looked at wireless propagation prediction models 

(Nguyen et al., 2018; Kimoto et al., 2016; Allen et al., 2017; Ullah et al., 2020; 

Elmezughi et al., 2021; Zhang et al., 2017; Ahmad et al., 2020; Popoola et al., 2019; 

Ma et al., 2021; Popescu et al., 2006; Ahmadien et al., 2020) have not used Adaptive 

Neuro-Fuzzy Inference Systems (ANFIS) trained with Particle Swarm Optimization 

(PSO) to develop their models instead they have used the traditional empirical models.  

Using any kind of indoor or outdoor solutions, needs one to make a good and accurate 

prediction which will facilitate the process of determining which solution to apply in 

a particular situation. This can be seen from a variety of research which has been done 

by various researchers in (Valcarce et al., 2011; Dagefu & Sarabandi, 2010; Phillips 

et al., 2012; Al-Saman et al., 2021; Schafer et al., 2005; Gentile et al., 2006; Subrt & 

Pechac, 2010; Corre & Lostanlen, 2009; Austin et al., 2011; Andrade & Hoefel, 2010; 

El Khaled et al., 2020; Harinda et al., 2019; Rath et al., 2017; Wu et al., 2020; Wahl 
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et al., 2005; Adonias & Carvalho, 2017; Hosseinzadeh et al., 2011). Although there 

are many possible directions for future work in radiowave prediction modelling area, 

(Phillips et al., 2012) believe that measurement- based methods and rigorous 

(comparative) validation are most needed. Applications that make use of these models 

require an understanding of their real-world accuracy, and researchers need guidance 

in choosing amongst the many existing proposals. More work needs be done to resolve 

the disparity between the quantity of models proposed and the extent to which they 

have been validated in practice. 

As the prevalence and importance of wireless networks continues to grow, so too will 

the need for better methods of modelling and measuring wireless signal propagation. 

(Phillips et al., 2012) have given a broad overview of approaches to solving this 

problem proposed in the last 60 years. Most of this work has been dominated by 

models that extend on the basic electromagnetic (EM) principles of attenuation with 

theoretical and empirical corrections. More recently, work has focused on developing 

complex theoretical deterministic models (Al-Saman et al., 2021). 

Network architecture for in-building communications is evolving where lately wireless 

routers are installed within buildings and use of mobile devices outdoors. In modelling 

propagation, the following parameters must be considered: construction materials 

(reinforced concrete, brick, metal, glass and others), types of interiors (rooms with or 

without windows, hallways with or without door and others), locations within a 

building (ground floor, n-th floor, basement and others), the location of transmitter and 

receiver antennas (on the same floor, on different floors and others), furniture, people, 

appliances and other considerations for indoor environments. For outdoor 

environments, considerations such as, large installations, vehicles, buildings, 

mountains, hills, foliage and many more need to be taken into account (Elmezughi et 

al., 2021; Zhang et al., 2017).   

Path-loss prediction models have traditionally been based on deterministic and/or 

empirical methods. Empirical models, such as the one slope (OSM), dual-slope 

(DSM), multi-wall (MWM), average-wall (AWM), COST231, COST231-Hata (CH) 

and Hata-Okumura (HO) models are computationally efficient but may not be very 

accurate since they do not explicitly account for specific propagation phenomena and 
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some of them, like Hata-Okumura, have quite a number of parameters to be 

considered. On the other hand, deterministic models, such as those based on the 

geometrical theory of diffraction, integral and parabolic equation can, depending on 

the topographic database resolution and accuracy, be very accurate but lack in 

computational efficiency (Al-Saman et al., 2021).  

The increase in the popularity of wireless networks has led to increased capacity 

demand. More and more users prefer wireless technology as compared to wired 

services. The wireless access broadly consists of two main technologies, the wireless 

cellular networks, which mainly provide voice and data services to users with high 

mobility and the Wireless Local Area Networks (WLANs), which provide higher data 

rates to users with comparatively restricted mobility besides other wireless 

technologies. To replace the wired services, wireless networks need to provide high 

data rate services like the wired networks. Nowadays, wireless cellular networks have 

evolved towards providing high data rate services to their users and thus, striving to 

replace the WLANs as well or the use of these technologies together as hybrid 

(Reardon, 2010). 

With the passage of time, the demand for higher capacity and data rates is increasing. 

CISCO predicted a 39-fold increase in the data traffic from 2009 to 2014 (Reardon, 

2010). A number of technologies and standards have been developed to cope with this 

increasing demand. The standards like 3 GPPs High Speed Packet Access (HSPA), 

Long Term Evolution (LTE) and LTE advanced, 3 GPP2s Evolution-Data Optimized 

(EVDO) and Ultra-Wide Band (UWB) and Worldwide Interoperability for Microwave 

Access (WiMAX) have been developed to provide high speed communication to end 

users (Ahmad et al., 2020). To achieve high data rates, signals with high Signal to 

Interference plus Noise Ratio (SINR) should be received, keeping in mind that 

transmitter should not cause significant interference to other users by transmitting high 

power signals. High data rates also require higher order modulation and coding 

schemes, which are currently used in the above-mentioned standards. However, higher 

order modulation and coding schemes are more susceptible to noise in a given 

environment. On the other hand, capacity is generally increased by providing a larger 

number of channels per area (cell). This is possible by reducing the area of each cell 

and thus increasing channel reuse. Classical approaches like Cell Splitting and Cell 
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Sectoring are widely used in current wireless standards to increase system capacity 

(Popoola et al., 2019). Besides all these improvements, good radio prediction 

modelling is also required to increase the quality of service (QoS). (Phillips et al., 

2012) believe the next generation of models will be data-centric, deriving insight from 

directed measurements and possibly using hybridized prediction techniques.  

An alternative approach to the field strength prediction in these environments is given 

by prediction models based on Artificial Intelligence (AI) methods such as artificial 

neural networks. During the last few years, Artificial Neural Networks (ANN) have 

experienced a great development whose applications are already very numerous 

(Popescu et al., 2006). These ANNs based models have been shown to successfully 

perform path-loss predictions in rural, suburban, urban, and indoor environments 

(Popescu et al., 2006). A drawback with multilayered feed-forward networks that 

contain numerous neurons in each layer is the required training time (Popescu et al., 

2006). The neuro-fuzzy system, used in the research, is a neural network that learns to 

classify data using fuzzy rules and fuzzy classifications (fuzzy sets). A neuro-fuzzy 

system has advantages over fuzzy systems and traditional neural networks: A 

traditional neural network is often described as being like a “black box,” in the sense 

that once it is trained, it is very hard to see why it gives a particular response to a set 

of inputs.  

Fuzzy systems and neuro-fuzzy systems do not have this disadvantage. Once a fuzzy 

system has been set up, it is very easy to see which rules fired and, thus, why it gave a 

particular answer to a set of inputs. Similarly, it is possible with a neuro-fuzzy system 

to see which rules have been developed by the system, and these rules can be examined 

by experts to ensure that they correctly address the problem (Popoola et al., 2019). The 

ordinary ANFIS also has a weakness that it does not include a property on which the 

wireless communication propagation prediction can be used, a feature that has been 

incorporated in the proposed modified ANFIS to increase its accuracy. 

This work research led to the development of a universal theoretical signal propagation 

model using modified Adaptive Neuro-Fuzzy Inference Systems (ANFIS) trained with 

Particle Swarm Optimization (PSO) algorithm. This is an improvement to the original 

ANFIS structure since it can be used in wireless communication propagation 
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modelling. The modified ANFIS together with its training algorithm, that is, PSO have 

been formulated and used to develop equivalent empirical and deterministic theoretical 

models using ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS. From these 

models, a universal model was developed that eliminates the need for many input 

parameters associated with the individual models whose application is in all 

environments i.e., indoor, outdoor, urban, suburban and rural setups.  

1.2 Problem statement 

Currently, the new multimedia services and high data rate applications intensify the 

need of good quality indoor as well as outdoor radiowave coverage. Hence, providing 

good quality voice and data services is of great importance. This would also be 

beneficial for the cellular and data provision operators in the form of increased revenue 

and reduced churn. Using any kind of indoor or outdoor solutions, needs one to do a 

good and accurate prediction, which will facilitate the process of determining which 

solution to apply in which particular situation. Wireless signal propagation modelling 

is one of the concepts that is used to facilitate the process of placing the wireless 

communication systems at locations that result in optimum reception of signals. This 

is done by using computers that are installed with software that incorporates these 

models. The optimum locations are determined through simulations before the actual 

installation of these systems is done. This process has number of advantages that 

include reduction of cost and time. By using accurate modelling, optimum locations 

are obtained that lead to high quality service in both indoor and outdoor environments. 

In this study the development of a modified ANFIS and a universal wireless 

propagation model to address some of the problems currently facing radiowave 

propagation modelling outlined above. 

1.3 Justification  

As the prevalence and importance of wireless networks continues to grow, so is the 

need for better methods of modelling and measuring wireless signal propagation. Most 

of the work that has been done is dominated by models that extend on the basic 

electromagnetic principles of attenuation with theoretical and empirical corrections. 

More recent, work has also focused on developing complex theoretical deterministic 

models. Most researchers believe the next generation of models need to be data-
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centric, deriving insight from directed measurements and possibly using hybridized 

prediction techniques. Since most of the empirical models that have been used before 

have low accuracy levels, our research was based on ANFIS that is modified, by 

adding a layer that incorporates a wireless signal propagation behavior feature, to 

increase the signal prediction accuracy. Its accuracy was enhanced further by using the 

PSO learning algorithm to train the modified ANFIS.  

1.4 Objectives 

1.4.1 Main objective 

The main objective is to develop a novel universal signal propagation prediction model 

based on PSO trained modified ANFIS for wireless communication networks with 

high accuracy and flexibility.  

1.4.2 Specific objectives 

i. To modify the original ANFIS making it suitable for wireless signal 

propagation prediction modelling. 

ii. To formulate the modified ANFIS architecture and its PSO training in relation 

to wireless signal propagation prediction modelling. 

iii. To develop equivalent theoretical ANFIS based models (ANFIS, LOG10D-

ANFIS and LOG10-PSO-ANFIS) for existing empirical models. 

iv. To develop a universal theoretical model based on PSO trained LOG10D-

ANFIS for RSSI prediction. 

v. To evaluate and validate the performance of the developed LOG10D-PSO-R-

ANFIS practical model using both simulated and real field data. 

1.5 Research contributions 

The following is a list of the contributions made as a result of this research; 

i. Modification of the original ANFIS making it suitable for wireless signal 

propagation prediction modelling. 

ii. Formulation of the modified ANFIS architecture and its PSO training for 

wireless signal propagation modelling. 
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iii. Development of equivalent theoretical ANFIS, LOG10D-ANFIS and LOG10-

PSO-ANFIS based models for one slope, dual-slope, multi-wall, average-wall, 

COST231, COST231-Hata, Hata-Okumura and Two-ray ground reflection 

models.  

iv. Development of a universal theoretical model based on PSO trained modified 

ANFIS. 

v. Development of LOG10D-PSO-R-ANFIS model to predict the measured 

RSSI. 

1.6 Thesis structure 

The thesis is organized as follows. Chapter one deals with the introduction which is 

basically about the need for undertaking this research. It also gives a brief account of 

wireless communication systems, the objectives of the research as well as the list of 

the contributions in relation to this research. 

Chapter two handles the literature review which explains the fundamental concepts of 

wireless communication systems which include propagation, effects on propagation 

like path losses, received signal propagation modelling. It also discusses the different 

wireless communication systems that are to be modelled. 

Chapter three deals with the methodology applied in modelling propagation that 

includes ANN, ANFIS and PSO trained ANFIS. It outlines the methodologies 

involved in developing the novel modified ANFIS wireless communication models in 

this research.   

Chapter four discusses the results obtained for the different models developed in the 

research. These include LOG10DANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-

R-ANFIS. Their performance is compared with the original ANFIS performance, and 

the expected better performance is clearly outlined. This is done using tables with 

RMSE, MAE, STD and R squared and graphical representations of the variation of 

RSSI with distance as well as error level variation with distance.  

Chapter five is about conclusion and recommendations based on the research findings. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

Current signal propagation modelling is a quite new and still a rapidly developing 

discipline. It has become essential with the installation of Mobile, WLAN and pico-

cell mobile systems installation inside and outside buildings as is evident with 

(Akyildiz et al., 2020; Borralho et al., 2021; Nguyen et al., 2018; Kimoto et al., 2016; 

Allen et al., 2017; Ullah et al., 2020; Elmezughi et al., 2021; Zhang et al., 2017; 

Erunkulu et al., 2020; Reardon, 2010; Ahmad et al., 2020; Popoola et al., 2019; Ma et 

al., 2021; Popescu et al., 2006; Ahmadien et al., 2020; Valcarce et al., 2011; Dagefu 

& Sarabandi, 2010; Phillips et al., 2012; Al-Saman et al., 2021; Schafer et al., 2005; 

Gentile et al., 2006; Subrt & Pechac, 2010; Corre & Lostanlen, 2009; Austin et al., 

2011; Andrade & Hoefel, 2010; El Khaled et al., 2020; Harinda et al., 2019; Rath et 

al., 2017; Wu et al., 2020; Wahl et al., 2005; Adonias & Carvalho, 2017; Hosseinzadeh 

et al., 2011). Many companies spend a great deal of their resources on automating their 

wireless system design supported by propagation modelling and others. This has led 

to a variety of different models for application to different environments. These 

include One Slope Model (OSM), Dual Slope Model (DSM), Multi-Wall Model 

(MWM), Average-Wall Model (AWM), COST231, CH, HO, ray-optical models, 

dominant path model, parflow approach, ray-optical-method of moment hybrid model, 

ray-optical-multi-wall hybrid and Artificial Intelligence based models (Valcarce et al., 

2011; Phillips et al., 2012; Andrade & Hoefel, 2010). The following section deals with 

the concepts that necessitate extensive research on wireless propagation prediction 

modelling. 

2.2 Wireless communication concepts  

Communication is the process of transferring information from one location to another. 

Telecommunication is communicating over long distances [41]. In terms of media for 

transferring information, there are two types namely guided and unguided (wireless). 

Guided media is characterized by physical media applied in the transfer of information 

which include unshielded twisted pair (UTP), shielded twisted pair (STP), coaxial 
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cable and fiber optic cable. Unguided media involves the use of wireless media to 

transfer information from one point to another leading to the concept of wireless 

communication (Rappaport et al., 2015). Different media signals include light, 

infrared, microwaves, radio waves and sound waves which in this case use free space. 

Under this section a number of wireless communication theoretical concepts are 

briefly discussed starting with the fundamentals, propagation methods, effects on wave 

propagation, propagation losses and wireless communication systems (Saakian, 2020). 

These concepts are important in relation to this thesis research since the solution is 

based on them in terms of fundamentals and application.    

2.2.1 Wireless communication fundamentals 

According to [41] radio wave communication is the science that deals with production, 

processing, transmission, reception and measuring of radio waves. Radio waves are 

EM waves which are part of the EM spectrum. The EM spectrum includes the 

following waves gamma rays, x-rays, ultraviolet (UV), visible light, infrared, 

microwaves and radio waves as indicated in (Rappaport et al., 2015). In some cases, 

microwaves are also considered to be part of radio waves. The entire processes above 

are basically done using a communication system. This is a combination of different 

components put together to perform different components. In the radio communication 

system, the input will be unprocessed radio waves and output will be processed radio 

waves. The different processes include modulation, sampling, quantization, 

demodulation, encoding and decoding, multiplexing and de-multiplexing, 

compression and filtering. 

Radio wave formation and generation is where a radio wave is formed by passing a 

varying current through a conductive wire. The current passing through it will be 

because of varying voltage. This will generate an EM wave which has electric and 

magnetic energy alternating in nature. The electric and magnetic fields resulting are 

perpendicular in nature forming a plane wave. These waves are based and analyzed 

using Maxwell’s equations.  
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Isotropic radiation is considered as a dot which is a source of radio waves releasing in 

all directions in space. The radiation pattern is basically spherical in nature. The power 

at a given distance is determined using the following relation. 

𝑝𝑑 =
𝑃𝑡

𝐴
=

𝑃𝑡

4𝜋𝑟2
      2.1 

Where 𝑃𝑑is the power density, 𝑃𝑡 is the transmitted Power and r is the distance.  

Most of the analysis done for radiowave propagation is based on equation 2.1.  

2.2.2 Propagation methods 

These methods are used in the process of transmitting radiowaves through the space 

medium. According to (Garg, 2010; Rappaport et al., 2015; Saakian, 2020; Winder & 

Carr 2002; Crane, 2003), they include ground wave propagation, surface propagation, 

space propagation and sky wave propagation. The universal model developed in this 

thesis is to be applied in the environments that use these propagation methods. 

Ground wave propagation is where propagation is done on the surface of the earth 

more so in the stratosphere section. Very Low Frequency (VLF) to Medium Frequency 

(MF) are used in this propagation (transmission). It includes the two-wave propagation 

i.e., surface and space. The surface wave is close to the ground where some of it is 

reflected and received at the receiver. The signal propagated can sometimes go beyond 

the optical horizon. This horizon is called a radio horizon. This is possible because of 

the signal moving in a curved manner.  

Space wave propagation is considered in the cases where the antenna heights are large 

resulting to the space wave dominating over the surface and therefore this propagation 

mainly occurs in the troposphere. This is because there are few reflections which can 

affect the space wave. Also, this kind of propagation takes place at higher frequencies. 

Sky wave propagation is a kind of propagation that takes place in the ionosphere. Also 

referred to as ionospheric propagation. The ionosphere has several layers with different 

levels of ionization. This will result in different permittivity in these layers. The layers 

include D layer, E layer, F1 layer and the F2 layer. The D layer is close to the earth 

surface while the F2 layer is the last. Because of these varying properties, when a wave 

is sent into space it interacts with the different layers getting into space.  
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2.2.3 Effects on wave propagation 

There are several effects that affect a wave as it moves from the transmitter to the 

receiver. These effects will depend on the medium properties like smoothness, size of 

obstacles in space, density, climate and geographical location. The effects include 

reflection, refraction, absorption, scattering, fading, multiple path propagation, noise 

and depolarization as analyzed in (Saakian, 2020).  

Reflection is the process where a signal bounces back to the source due to the presence 

of obstacles or boundaries. Since this is an EM wave (signal) then it obeys the laws of 

reflection. Reflection can occur in the different sections of the atmosphere depending 

on the properties of the different sections. The effect of reflection to a signal includes 

destructive and constructive effects. 

Refraction is where the signal bends when it transits from one medium to another. 

Commonly occurs with media of difference densities. This occurs when the signal 

transverses two media with different densities. It is based on Snell’s law.  

Absorption is where a signal transfers some of its energy to an obstacle as it is being 

transmitted. It can affect space or ground waves. In space, depending on the size and 

type of these particles the wave can be absorbed. In the ground it will occur for 

horizontally polarized waves which get absorbed by the earth’s surface. This is 

because the earth conducts the signal, hence absorbing it. Can also occur or affect 

vertically polarized waves and in this case the signal moving through different media 

densities which change from vertical polarization to horizontal. At this point it will 

also start getting absorbed. 

Scattering is considered as where a signal encounters a rough obstacle forcing it to 

bounce or move in different directions. Scattering can have negative or positive effects. 

Negative effect can be destructive since the signal will not be able to reach the receiver 

hence causing destructive effect on the incident signal. Positive effects can be used for 

long distance communication where clouds of ionized air can be used to scatter the 

signal to the receivers.  

Diffraction occurs when a signal comes into contact with a sharp edge. It will tend to 

propagate on the shadow part of the object. This can affect the signal strength since it 
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will not be able to reach the destination. This can also be positive in that, for instance 

mobile communication, a receiver at the shadow part of the object can be able to 

receive the signal. 

Multiple path propagation is a kind of propagation that results from the different 

effects of the signals. Some of these effects include reflection, refraction, diffraction 

and scattering. All the above when they affect the signal it moves in different 

directions. As the signal moves in different direction the rays can meet at the receiving 

antenna. When signals are propagated this way then this is called multiple path 

propagation. Rays will take different directions but then meet at the receiving antenna. 

For instance, a surface wave reflected can meet the direct wave at the receiving 

antenna. 

Noise is any unwanted EM signal. This can occur in transmitting and receiving systems 

as well as free space. 

Polarization is the process of giving a signal an orientation as it moves from the 

transmitter to the receiver. There are different types of orientation i.e., linear 

(horizontal and vertical), circular and elliptical. In most cases it is the way the electric 

field changes with time. This is very important for a receiver to be able to receive its 

intended radiowaves. If the antenna polarization is not correctly done to match with 

that of the signal, then it might not be able to receive this signal.  

Depolarization is where the signal changes its orientation as it moves from the 

transmitter to receiver. This is due to the properties of the medium and presence of 

obstacles along the signal path. This will result to the antenna not being able to receive 

the signal correctly. 

All these effects are very important in wireless communication signal propagation 

modelling since they either cause interference or affect the signals in several ways, the 

main one being the variation of the attenuation constant.  

2.2.4 Propagation losses in communication links 

These are losses experienced by a signal propagating in space. As explained by (Garg, 

2010) there are several combinations to these losses where one of the main losses is 
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free space loss. They can be classified as path loss, diffraction losses, scattering losses 

and shadow losses. 

Path losses are losses due to the signal propagation along a given path in space. These 

include free spaces losses, atmospheric losses, precipitation and losses due to 

obstacles. 

Free space losses are obtained by using the propagation expression derived as given 

in the analysis and equation 2.8 below. 
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Figure 2.1: Transmitter and Receiver 

Where 𝑇𝑥is the transmitter, 𝑃𝑡is the transmitted power, 𝐺𝑡is the Transmitter gain, 𝐺𝑅is 

the Receiver gain, 𝑃𝑟is the Received, power, 𝐴𝑒𝑓𝑓is the Effective area or ’aperture’ of 

the antenna, and 𝑙𝑜𝑔is the Logarithm to base 10. 

The power density at any point from the transmitter is given by equation 2.1 

Introducing the transmitter gain. 

𝑃𝑑𝐺 =
𝑃𝑡𝐺𝑡

4𝜋𝑑2       2.2 

at the receiver the received power is given by; 

𝑃𝑅 =
𝑃𝑡𝐺𝑡𝐴𝑒𝑓𝑓

4𝜋𝑑2       2.3 

𝐴𝑒𝑓𝑓 =
𝐺𝑅𝜆2

4𝜋𝑑2×4𝜋
=

𝑃𝑡𝐺𝑡𝐺𝑅𝜆2

(4𝜋𝑑)2
,        2.4 

𝑃𝑅 =
𝑃𝑡𝐺𝑡𝐺𝑅

(
4𝜋𝑑

𝜆
)
2      2.5 

𝐿 = (
4𝜋𝑑

𝜆
)
2

      2.6 

𝐿 = (
4𝜋𝑓𝑑

3 × 108
)

2
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𝐿 = (
4𝜋𝑓𝑑×106×103

3×108 )
2

𝑖𝑛 𝑑𝐵, 

𝐿𝑑𝐵 = 10 log10 𝐿     2.7 

10 𝑙𝑜𝑔 (
4𝜋 × 106 × 103𝑓𝑑

3 × 108
)

2

= 20𝑙𝑜𝑔
4𝜋 × 106 × 103

3 × 108
+ 20 𝑙𝑜𝑔 + 20 log10 𝑑 

𝐿𝑑𝐵 = 32.44 + 20log10𝑓 + 20log10𝑑   2.8 

𝑃𝑅𝑑𝐵 = 𝑃𝑡𝑑𝐵 + 𝐺𝑡𝑑𝐵 + 𝐺𝑟𝑑𝐵 − 𝐿𝑑𝐵    2.9 

All the propagation models developed by different researchers (Ullah et al., 2020; 

Elmezughi et al., 2021; Zhang et al., 2017; Erunkulu et al., 2020; Reardon, 2010) and 

(Valcarce et al., 2011; Dagefu & Sarabandi, 2010; Phillips et al., 2012; Al-Saman et 

al., 2021; Schafer et al., 2005; Gentile et al., 2006; Subrt & Pechac, 2010; Corre & 

Lostanlen, 2009; Austin et al., 2011; Andrade & Hoefel, 2010; El Khaled et al., 2020; 

Harinda et al., 2019; Rath et al., 2017; Wu et al., 2020; Wahl et al., 2005; Adonias & 

Carvalho, 2017; Hosseinzadeh et al., 2011) take equation 2.9 as the foundation to their 

model equations. When the other losses are included, the path loss exponent increases 

from the default 2 to a higher value depending on the environment under consideration.  

Other losses include multipath fading, attenuation, diffraction, scattering, atmospheric 

and cosmic losses (Garg, 2010). Diffraction will occur due to the signal coming across 

sharp edges of objects. Scattering is due to the obstacles of different sizes. When the 

signal strikes these obstacles, it will be reflected in different directions resulting in 

losses. Atmospheric losses also include obstacles in space like dust, fog, precipitation, 

storms etc. Cosmic losses are as a result of galactic noise (radiation from stars and 

other galactic bodies). They emit radio frequency interference which can affect the 

signal and can also be used to study the emitting bodies. Other losses can result from 

antenna misalignment. Improper impedance matching and problems with polarization 

(polarization mismatch). The other kinds of losses which are very important to study 

are due to fading. 

Fading is where a signal loses strength or undergoes variations as it moves through 

the channel (medium). Mainly caused by multipath signal transmission and shadowing 

due to obstacles like mountains. There are two types of fading slow where the signal 

variations over time and is due to large obstacles like mountains. Fast fading is where 
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there is considerable variation of signal strength over a given period of time. This is 

due to small obstacles, of which some are not permanent. For instance, foliage, small 

buildings and particles in the path of propagation. 

Fading models are theoretical formula which can be used to predict the signal levels 

at a given point considering the fading characteristics as those of a given environment. 

There are three types as discussed in (Garg, 2010) i.e., Rician distribution, Rayleigh 

distribution and Lognormal distribution. These are responsible for the continuous 

variation of the received signal strength at a given location. 

2.2.5 Wireless communication systems 

This section lists some of the wireless communication systems that use the concept of 

wireless propagation modelling in their design and implementation. There are several 

types of these wireless communication networks and systems that include the Satellite 

systems (Roddy, 2006), the Radar, WLANs (Labiod 2007) like Bluetooth, Wi-Fi, 

WiMAX and Zig-bee, Radio, Television Vision (TV), Pagers and Cellular networks 

(Mfuko & Omido, 2020; Omae et al., 2022). All these systems have a direct link to 

wireless propagation modelling discussed in section 2.3. 

2.3 Wireless communication propagation modelling 

2.3.1 Introduction  

A model is a representation of a system which can either be physical or mathematical 

as indicated in (Ptolemaeus, 2014). Modelling is the process of coming up with a 

model. Simulation is the process of determining/predicting the behavior of a system 

by using a model which can be done by varying different input parameters to predict 

the output of a given system. 

2.3.2 Path loss modelling 

Modelling in wireless communication as indicated in (Garg, 2010) is the process of 

developing a given mathematical representation that can be used in predicting or 

obtaining given results. Path loss models are mathematical expressions used in the 

prediction of losses depending on a given environment. Models are important since 
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they make planning easier-facilitates the process of determining where to locate BTSs 

in cellular networks for optimal performance in terms of coverage and quality of 

signal. This reduces the cost of planning and implementation of communication 

systems. When engineers need to determine where to locate BTS without modelling 

they are required to do field measurements which can be very costly to the company. 

They also reduce the planning time/duration. The use of models makes the process of 

planning to be faster than without using models. This is done using computers which 

can be able to predict the propagation characteristics of a given environment. 

Modification is possible when using models instead of using manual methods. This is 

because in software environment one can place the BSs at different locations to 

determine the propagation characteristics. The use of software is easier to record and 

store information which can help in future if the environments under consideration are 

similar. Models also have a few limitations that include difficulty in modelling 

complex environments, for instance indoor environments which have a complex 

structure. Some environments require the use of more than one kind of model. Initial 

and maintenance cost of some models can be high. 

2.3.3 Types of path loss models 

Models can be classified into four main categories i.e., deterministic, empirical, hybrid 

and Artificial Intelligence based models as indicated in (Andrade & Hoefel, 2010). 

Deterministic are models which with a set of inputs parameters one can determine what 

is expected at the output. They are site specific where they take a particular set of 

environmental characteristics and structure of the obstacles. They are more accurate 

depending on the obstacles being considered. They consume a lot of time and 

resources, for instance memory. 

Empirical are obtained by performing experiments from which data is obtained then 

used in their development. They are not site specific in which case they can be used in 

several similar environments. They are not very accurate when compared with 

deterministic but are faster and require fewer resources. Hybrid of deterministic and 

Empirical make use of the advantages of the two models. They combine the accuracy 

of deterministic and the simplicity of the empirical. These include the ray optical and 

Method of Moment (MoM) which combines the features of Ray optical models of the 
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accuracy and the MoM analysis to increase the accuracy of the prediction. One can 

also combine the ray optical and Finite Difference Time Domain (FDTD) methods and 

the ray optical and multi-wall model (MWM) that combines the properties of accuracy 

of ray optical and simplicity of MWM.  

2.3.4 Deterministic models 

These include ray optical with ray tracing and ray launching, finite difference, method 

of moments and dominant path method. Ray optical use the basics of optics to perform 

the analysis of radio wave signals. The basics include reflection, diffraction, refraction 

and scattering among others. There are two methods, ray tracing and ray launching. 

Ray tracing is where a ray is propagated and followed from the transmitter to the 

receiver considering the obstacles along its path. Ray launching where a ray is 

launched at different angles and the effects on it by different obstacles analyzed. 

Depending on the obstacles the ray can be reflected or diffracted. For uniform 

boundary it will be reflected and for sharp edged objects the rays will be diffracted. It 

is a point to multipoint concept where a single transmitter and several receivers are 

considered. 

The Dominant path method is based on the ray tracing method where a ray is followed 

and then it keeps on passing through a given path several times than the other paths. If 

the ray keeps on passing through given rooms from the transmitter to a receiver, then 

this will be taken as the dominant path. This is used in analyzing the effect of the rays 

as they pass through this path depending on the obstacles it encounters. For instance, 

a corridor can result in this effect. 

The finite difference are methods that solve Maxwell’s equation in discretized space 

time grid. They include finite difference time domain which is the most commonly 

used method in analyzing radiowaves. It is a mature method since it has been used in 

the design and analysis of antennas such as patch antennas. It solves Maxwell’s 

equations using small levels of space combined with time to form a discretized space 

time grid.  

The methods of moments is another commonly used method together with FDTD in 

antenna design and analysis. It is also mature and is based on solving Maxwell’s 
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equations in a discretized wire grid. All these methods have a high level of accuracy 

but require time and memory resources. They are used in software form (simulations).  

According to (Alotaibi et al., 2009) two-ray ground reflection model uses the 4th power 

law together with mobile antenna and base station antenna heights. Its expression is 

given by; 

L = Lo(d0) + 10αlog10
d

d0
− 20log10hm − 20log10hb   2.14 

Where Lo(d0) is the loss at a distance of 1 meter, α is the 4-path loss exponent, d is 

the distance between Tx and Rx, hm is the mobile station antenna height and hb is the 

base station antenna height. 

 

    Loss                      RSSI 

Figure 2.2: Two-ray ground reflection Model loss and RSSI versus distance 

graph 

Figure 2.2 represent the plot for the variation of loss and RSSI with respect to distance 

for the two-ray ground reflection Model based on equation 2.14 assuming Wi-Fi 

(downloads.linksys.com) parameters that include transmitted power (Pt) of 100mW, 

transmitter and receiver antenna gains Gt as well as Gr of 4dB (https://fccid.io). 

2.3.5 Empirical models 

Empirical models describe the signal level loss by formulas with experimental 

parameters optimized by measurement campaigns in various buildings to make the 

parameters of the model as universal as possible. From the experiments done in field 

measurements a mathematical model is developed. These methods are characterized 

by a mathematical model in a formula form. They are based on the free space path loss 

https://fccid.io/
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model. The free space path loss model is modified to develop these models. These 

models include OSM, DSM, MWM, AWM, COST231, CH and HO models. 

One slope model referred to as COST231 OSM is the simplest approach to signal loss 

prediction, because it is based only on the distance between the transmitter and the 

receiver. This simplest prediction model does not take into account the position of 

obstacles, the influence of which is affected only by the power decay factor (α). Factor 

α and the signal loss at a distance d0 from the transmitter increase for an environment 

with more losses, but they are constant for the whole building (Ahmadien et al., 2020; 

Valcarce et al., 2011; Dagefu & Sarabandi, 2010). Figure 2.3 represents the plot for 

the variation of loss and RSSI with distance for the OSM based on equation 2.15 with 

2.4 GHz frequency and path loss exponent of 2 together with the other Wi-Fi 

parameters.  

L = Lo(d0) + 10αlog10
d

d0
     2.15 

Where L is the predicted signal loss (dB), L0(d0) is the signal loss at distance 1m from 

transmitter (dB), α is the path loss exponent (-), d is the distance between antennas (m) 

and d0 is the reference distance between the antennas (usually 1 m) (m). 

 

       Loss      RSSI 

Figure 2.3: One Slope Model loss and RSSI versus distance 

The dual slope model divides the path into two sections i.e., the LOS section and the 

obstructed LOS section. The loss is given by; 

For 1 < d < dbp 

𝐿 = 10𝑛1𝑙𝑜𝑔𝑑     2.16 
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For d > dbd 

𝐿 = 10𝑛1𝑙𝑜𝑔𝑑 + 10𝑛2𝑙𝑜𝑔
𝑑

𝑑𝑏𝑝
    2.17 

Where d is the distance between Tx and Rx and n1 and n2  is the path loss exponents. 

The breakpoint distance dbp considers indoor environments, the ellipsoidal Fresnel 

zone can be obstructed by the ceiling or the walls, anticipating the LOS region: 

dbp = Breaking point distance given by  

dbp =
4hbhm

λ
      2.18 

Where λ is wavelength hb and hm denote the shortest distance from the ground or wall 

of the access point (AP) and station (STA), respectively (Andrade & Hoefel, 2010). 

Can be used for both indoor and outdoor environments. Figure 2.4 represents the plot 

for the variation of loss and RSSI with distance for the DSM using a frequency of 2.4 

GHz and 40m breakpoint distance. 

 

 

Loss        RSSI 

Figure 2.4: Dual Slope Model loss and RSSI versus distance 

Multiwall model considers several walls. The OSM is insufficiently accurate for most 

applications, due to the usually inhomogeneous structure of buildings with long 

waveguiding corridors or large open spaces on one side and small complex rooms with 

many obstacles on the other side. For such cases, the more accurate, but still partly 

empirical, Multi Wall Model (MWM) employing a site-specific building structure 

description can be used (Andrade & Hoefel, 2010). The Multi-Wall model considers 
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wall and floor penetration loss factors in addition to the free space loss as represented 

in equation 2.19. The transmission loss factors of the walls or floors passed by the 

straight-line joining the two antennas are cumulated into the total penetration loss 

LWalls in equation 2.20 or Lfloors in equation 2.21, respectively. Depending on the model, 

either homogenous wall or floor transmission loss factors or individual transmission 

loss factors can be used. The more detailed the description of the walls and floors, the 

better the prediction accuracy. The penetration losses are optimized as other empirical 

parameters from measurements, so they are not equal to the real obstacle transmission 

losses, but only correspond to the appropriate empirical attenuation factors of the 

obstacles. 

LMWM = L1 + 20log10(d) + LWalls + LFloors    2.19 

LWalls = ∑ awi
kwi

l
i=1      2.20 

Lfloors = afkf     2.21 

Where LMWM is the predicted signal loss (dB), L1 is the free space loss at a distance of 

1m from transmitter (dB), LWalls is the contribution of walls to total signal loss (dB), 

LFloors is the contribution of floors to total signal loss (dB), awi is the transmission loss 

factor of one wall of i-th kind (dB), kwi is the number of walls of i-th kind (-), af is the 

transmission loss factor of one floor (dB) and kf is the number of floors (-). 

Since the MWM considers the positions and specific transmission loss factor of walls, 

its results are more accurate than those of OSM. However, the shadowing effect of 

more closely adjacent walls are often overestimated, because their cumulated 

transmission loss factors lead to very small values of predicted signal level behind 

these elements. In other words, the real signal may not follow a straight-line between 

antennas, but it can go round the walls. The computation time of the MWM is also 

quite short, and the sensitivity of the model to the accuracy of the description of the 

building is limited due to the simple consideration of only the number of obstacles 

passed by a straight line (Rath et al., 2017). Figure 2.5 represents the plot for the 

variation of loss and RSSI with distance for the MWM. 
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Loss        RSSI 

Figure 2.5: MW Model loss and RSSI versus distance 

Average Walls Model is based on the Cost-231 multi-wall except that the loss due to 

obstructing walls is aggregated in just one parameter L. Therefore, for a single floor 

environment, the path loss estimated by; 

LdB = 20log10d + kwallsLwalls     2.22 

Where kwalls denotes the number of penetrated walls. To determine the parameter Lwalls, 

each wall obstructing the direct path between the receiver and the transmitter antennas 

must have its loss measured as follows: 

The loss of the first wall in dB is given by: 

L1 = Lt1 − L0dB − 20log10d     2.23 

Where L0dB is the path loss obtained at 1 meter distant from the transmitter; L denotes 

the measured total loss from 1 meter distant after the obstructing wall.   For the second 

wall the loss of the first wall also must be taken into account. Therefore, the loss in dB 

of the second obstructing wall can be estimated as 

L2 = Lt2 − L0,dB − 20log10d − L1    2.24 

Keeping on the above methodology, the ith wall loss is given by 

Li = Lti − L0,dB − 20log10d − ∑ Lj
i
j=1     2.25 

where the sum spans the losses of walls obtained previously. After all wall losses of 

the environment had been obtained, then the wall losses average value is computed 

and assigned to the parameter Lwalls (Andrade & Hoefel, 2010). 
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Okumura-Hata model is based on Okumura’s analysis of path-loss characteristics 

based on a large amount of experimental data collected around Tokyo, Japan. He 

selected propagation path conditions and obtained the average path-loss curves under 

flat urban areas. Then he applied several correction factors for other propagation 

conditions, such as: 

• Antenna height and carrier frequency  

• Suburban, quasi-open space, open space, or hilly terrain areas 

• Diffraction loss due to mountains  

• Sea or lake areas  

• Road shape 

Hata derived empirical formulas for the median path loss to fit Okumura curves as 

represented in Figure 2.6. Hata’s equations are classified into three models as given in 

equations 2.26, 2.27 and 2.28 for urban, sub-urban and rural environments 

respectively. 

 

 

Urban Area 

L50 = 69.55 + 26.16log10fc + (44.9 − 6.55log10hb)log10d − 13.82log10hb −

a(hm) dB 2.26 

Where a(hm)  is the Correction factor (dB) for mobile antenna height, L50 is the 

medium path loss, hb  is the  base station antenna height, Fc  is the  carrier frequency, 

hm  is the  MS antenna height and d  is the  distance between antennas. 

Sub-urban areas 

L50 sub urban = L50 urban − 2 [log10 (
fc

28
)
2

− 5.4]   2.27 

Rural 

L50 rural = L50 urban − 4.78(log10 fc)
2 + 18.33log10fc − 40.94dB 

 2.28 
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Okumura’s model is suitable for 150MHZ to 1920 MHZ frequencies range and a 

transmitter receiver separation of 1 km to 100 km. It can also find applications for base 

station antenna height in range of 30 m to 1000 m and a mobile antenna height less 

than 10 m. Our universal model solves this problem by taking care of all environments 

as well as frequency and distance range.  

 

Loss        RSSI 

Figure 2.6: Hata-Okumura Model loss and RSSI versus distance 

COST-231 Model is a combination of empirical and deterministic models for 

estimating the path loss in an urban area over the frequency range of 800MHz to 

2000MHz. The model is used primarily in Europe for the GSM 1800 system (Martinez, 

2009). It has the following working parameters and mathematical representations and 

figure 2.7. 

L0  =  4 −  0.114(phi − 55)     2.29 

Lf = 32.4 + 20log10 (d) + 20log1010(fc)    2.30 

Lrts = -16.9 - 10log1010(W) + 10log1010(fc) + 20log10 (dhm) + L0  2.31 

Lbsh = -18log1010(11+dhb)    2.32 

kd = 18 - 15dhb/dhm     2.33 

ka = 54 - 0.8hb      2.34 

kf = 4 + 0.7((fc/925)-1)    2.35 

Lms = Lbsh + ka + kdlog1010(d) + kflog1010(fc) - 9log1010(b) 2.36 

dhm = hr - hm      2.37 
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dhb = hb -hr      2.38 

L50 = Lf + Lrts + LmsdB     2.39 

Where fc = carrier frequency, W = street width (m), b = distance between building 

along radio path (m), d= separation between transmitter and receiver (km), hr = average 

building height (m), hb = base station antenna height, hm = MS antenna height, phi = 

incident angle relative to the street, Lf = Free space path loss = 32.44 + 20log10fc +

20log10d, Lrts = roof top to street diffraction and scattering losses and Lms = 

Multiscreen losses. 

Equation 2.39 is the final equation for this model. 

Loss        RSSI 

Figure 2.7: COST231 Model loss and RSSI versus distance 

COST231-HATA Model is an improvement of the Hata model to extend operation to a 

frequency of 2000MHz according to (Alotaibi et al., 2009). The model is used 

primarily in Europe for the GSM 1800 system (Martinez, 2009). Its equations as well 

as graphical representations are given in equations 2.40 to 2.44 and figure 2.8. 

ahm1 = (hm((1.1(log1010(fc))) - 0.7)) - ((1.56(log1010(fc))) - 0.8)  2.40 

Metropolitan area 

Lcm = 46.3 + (33.9(log1010(fc))) - (hb13.82) - ahm1 + ((44.9-

6.55(log1010(hb))))( log1010(d)))+3      2.41 

rLcm = Pt + Gt + Gr - Lcm+30      2.42 

Sub-urban area 
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Lcsu = 46.3 + (33.9(log10(fc))) - (hb13.82) - ahm1 + ((44.9-

(6.55(log10(hb))))( log10(d)))       2.43 

rLcsu = Pt + Gt + Gr - Lcsu+30            2.44 

COST-Hata-Model is usually restricted to large and small macro-cells applications 

where the base station antenna heights are just above rooftop levels adjacent to the 

base station. According to (Alotaibi et al., 2009), this model’s formula and its 

modification must not be used for micro-cells. A limitation solved by our developed 

universal model. 

 

Loss        RSSI 

Figure 2.8: COST231-Hata Model loss and RSSI versus distance 

One slope with random input model was developed since the one slope model is not 

enough to describe the varying characteristics of a practical environment. To take care 

of this variation a random variable Xσ with a standard deviation σ depending on the 

environment and distance. Its choice is often determined from measurements. 

According to (Alotaibi et al., 2009) this value can range between 6 and 10dB. The 

resulting expression is represented using the equation 2.45 and plots in figure 2.9; 

L = Lo(d0) + 10αlog10
d

d0
+ Xσ    2.45 

Where Lo(d0) =Loss at a distance of 1 meter, α = path loss exponent which varies 

according to the environment, d = distance between Tx and Rx and Xσ=random 

variable. 



27 

 

Loss        RSSI 

Figure 2.9:  One Slope with random input Model loss and RSSI versus distance 

 

2.4 Artificial intelligence modelling 

2.4.1 Artificial neural networks 

According to (Sumathi & Paneerselvam 2010), these are techniques used to perform 

different tasks and make decisions. They are in the form of processing elements 

connected together in parallel and series combinations. For human beings, they are 

basically cells connected loosely as nodes. They facilitate the process of transmitting 

signals from one location to the other. They involve the use of mathematical techniques 

that perform different tasks and make different decisions. This is a branch of Artificial 

Intelligence. 

2.4.2 Biological inspiration 

Artificial neural networks are developed based on the concept of operation of the 

human brain which has several neurons connected in series and parallel. The human 

brain is the section of the body which does most of the processing and manipulation 

in the human being. The Brain has several cells of different categories and sizes due 

to the different functionalities. One of the most important cells is the neuron. The brain 

has up to 100 billion neurons connected together to perform different functions. The 

brain has two sections: the right side and the left side. The left side of the brain deals 

with calculation and rules which make use of the if then rules. Calculations are usually 

arithmetic and logic operations. It also deals with concepts. Neurons on the left side of 

the brain are connected in series i.e., sequential. It solves problems and performs 
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different functions using the rule-based concepts and therefore behaves like expert 

systems. Expert systems borrow their concept of operation from the left side of the 

brain. Expert systems have a database to store reference information. It also contains 

an inference section, which looks up for the information in the database. The right side 

of the brain also deals with images, pictures, functions and controls. Neurons on this 

side are usually connected in parallel. This is what inspired the invention of neural 

networks. The form of controls in this case includes feedback concepts which is 

applied in control systems (Gurney & Kevin, 2014). 

2.4.3 Natural neuron 

This is the basic building block of the brain. It is basically a cell that can receive signals 

and transmit them to other cells. It operates in a way that it uses threshold i.e., if several 

signals are received from other neurons they add up or build up hence causing the 

neuron to fire up if the signal reaches a given threshold. But if the signal build up is 

not enough to fire, then the neuron remains dormant. A neuron is a very simple element 

when considered on its own; but many when they are put together, they form very 

complex system. It consists of a cell body (soma), dendrites, axon, axon hillock, 

synapses as represented in figure 2.10. 

dentrites

soma

nucleus

Axon hillock

axon

Axon terminals

synapses  

Figure 2.10: Natural Neuron 

Soma is the cell body from which most parts of the neuron branch out. It consists of 

the nucleus which has most of the protein. The dendrites and axon extend out of the 

cell body. 
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Dendrites are hair like extensions from the cell body. Their main function is to receive 

input from other cells. The inputs are basically neuro-signals i.e., electrochemical 

signals resulting from (ions) which include, 𝑁𝑎+,𝐾+, 𝐶𝑎+ ions. They connect to the 

other neurons. 

Axon is a cable like structure extending from the cell body. Its main function is to pass 

signals from the cell body to the other neurons. They can also pass the signals back to 

the cell body from other cells. This can be considered as feedback. Towards the axon 

end, are several branches which enable the neuron to get into contact with several other 

neurons and are referred to as Axon Terminals. At the end of the Axon terminals are 

Synapses which will also facilitate the process of connecting to other neurons. 

Axon Hillock is where the axon meets the Soma. It contains very high levels of ions 

like Na and Potassium and thus considered as the most sensitive section of the neuron.  

The operation of the biological neuron is such that it receives inputs from other neurons 

through the dendrites. The inputs are processed by the neuron body and passed to the 

output through the axon. The axon passes the processed signals to the other neurons 

through synapses. When the input signals are accumulated, they are compared with a 

given threshold value. If the accumulated signals are beyond the threshold value, then 

the neuron fires i.e., passes the input to the output. But if the accumulated signal is less 

than the threshold value then the neuron remains dormant (does not fire) (Peretto, 

1992). 

2.4.4 Artificial neuron 

This is the mathematical representation (model) of the biological neuron. It borrows 

some percentage of its structure and operations from the biological neuron. The first 

model was proposed by Mclluoch and Pitt’s in the 1940’s (Gurney & Kevin, 2014). 

The structure was as given in figure 2.11; 
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Figure 2.11: Mclluoch’s Artificial Neuron model 

This was a very simple model which was operated on the principle of Excitatory and 

Inhibitory. Its inputs and outputs were in terms of  0 and 1 and represented by ∝. The 

inputs passed through the weights represented by w the weights are multiplied by the 

inputs before they are summed up. For instance, ∝ is multiplied by 𝑤1 and the same 

for the other weights and inputs which results to 

𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + ⋯     2.46 

The weights are such that they are either excitatory or inhibitory. In the excitatory 

mode 1 was used and in inhibitory mode -1 was used. After the inputs were multiplied 

by their respective weights and summed up the result was compared with a given 

threshold value T. If the result was greater than the threshold value, then output. But 

if the result was less than the threshold value then the output was 0 and 1. This model 

was related to the biological neuron in a way that the lines passing the inputs to the 

node imitate the operation of the dendrites. The nodes act as the body where the signals 

are accumulated by the lines connecting to the output acted as the axon. 

𝑦 = 𝑥1𝑤1 + 𝑥2𝑤2 + 𝑥3𝑤3 + ⋯……+𝑥𝑛𝑤𝑛    2.47 

A single input model has a single input p passed through a weight w as represented in 

figure 2.12. 
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Figure 2.12: Single input MATLAB based model 

The input p is multiplied with the weight w to obtain wp. The product will then be 

added to the bias b. Therefore, the results of the multiplication will be scalars. The bias 

b is usually considered as 1. After the summation the result will be; 

n=wp+b     2.48 

which is a scalar as aforementioned. 

The n result will be passed through a function f where the output a is obtained by 

multiplying the f with n which results to 

a=fn      2.49 

a=f(wp+b)     2.50 

In some functions the input p and the weight w are used to give the distance separating 

them. One such function is the Radial Basis function where also the summation is 

substituted with the multiplication. When compared with biological neurons, the 

weight is considered as the dendrite. The summation and the function f are considered 

as the body. The line connecting to the output is considered as the Axon. The function 

section uses different types of transfer functions. These functions are referred to as 

activation functions (Peretto, 1992). 

2.4.5 Activation functions 

These are functions that are used to transfer the input to a particular output according 

to the problem being solved. They include linear functions, sigmoid functions and hard 

limit functions among others. 

Linear Functions is a function that transfers inputs to the outputs. This is done by 

multiplying the input with a scalar. Most used in the Input Layers of neural networks. 
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Sigmoid Function is a function that has a curved shape and transforms inputs to outputs 

in a way that it changes any value from −∞ to +∞ to between 0 and 1 in curved from.  

Hard Limit Functions are functions that transform the inputs in a way that all the 

negative values are considered as 0 while all the positive values are considered as 1. 

This is equivalent to a Step Function in signal processing.  

The neuron above can be divided into 3 sections in terms of input functions, net 

function and transfer functions. 

Input functions consists of inputs section with input p and the weight w which are 

multiplied to form wp. 

Net function is the resulting function after adding the bias to the product of the input p 

and weight w as given in equation 2.48.       

Transfer Function has different functions as aforementioned. More functions can be 

obtained from the artificial neuron network MATLAB toolbox. The output is given in 

equation 2.50. 

The weights and the bias are adaptive parameters. These functions can be changed. 

The changes depend on the outputs. When the target output and the input are 

considered, the difference dictates the level of change of the weights and biases. This 

is done to reduce the difference (error) to its minimal and optimal value. The process 

of changing the weights and biases to minimize the error or improve the performance 

of a system is called tuning parameter/training the neural network/learning of the 

neural. 

2.4.6 Types of network architectures 

According to (Peretto, 1992), there are three main categories which include single 

layer feedforward, multilayer feedforward and recurrent (feedback network). 

Single Layer Feed Forward is a network with a single layer of neurons. It has several 

inputs, p which goes into a summation node together with the bias (b). At the node the 

inputs multiplied with the weights are added to give an immediate output as given in 

equation 2.48. The output n is passed through a function f which depending on the type 

and application will result to equation 2.49. The main feature of this network is that it 
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does not have feedback. There is no signal propagating from the output to the input 

but only from input to the output. 

Multilayer Feed Forward is characterized by several layers connected together in a 

series format. 

The outputs of the 1st layer are connected inputs to the 2nd layer where outputs become 

the inputs to the 3rd layer and so on. In most cases the 1st two layers are considered as 

hidden layers while the 3rd layer is considered as the output layer. Similarly, there is 

feedback where signals are propagated from the input to the output only. 

Recurrent Networks are networks with feedback where the output signal can also 

propagate backwards i.e., from the output to the input. It is referred to as self-feedback 

networks. The output is feedback to its input where it is summed up together with other 

inputs. Another type is where we have several neurons forming a layer where the 

outputs are feedback to the inputs of all the neurons.  

Multilayer Perceptron Neural Network (MLP-NN)  

Figure 2.13 shows the configuration of a multilayer perceptron with one hidden layer 

and one output layer as discussed in (Popescu et al., 2006) and (Wu et al., 2020). The 

network shown here is fully interconnected.  

Y

WojWji
X0

X1

Xn-1

Input Layer Hidden Layer Output Layer
 

Figure 2.13: Configuration of the MLP-NN 

This means that each neuron of a layer is connected to each neuron of the next layer 

so that only forward transmission through the network is possible, from the input layer 

to the output layer through the hidden layers. Two kinds of signals are identified in 

this network:  
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• The function signals (also called input signals) that come in at the input of 

the network, propagate forward (neuron by neuron) through the network 

and reach the output end of the network as output signals;    

• The error signals that originate at the output neuron of the network and 

propagate backward (layer by layer) through the network. The output of the 

neural network is described by the following equation:  

𝑦 = 𝐹𝑜 (∑ 𝑊𝑜𝑗
𝑀
𝑗=0 (𝐹ℎ(∑ 𝑊𝑗𝑖𝑋𝑖

𝑛
𝑖=0 )))    2.51 

Where 𝑊𝑜𝑗 represents the synaptic weights from neuron j in the hidden layer to the 

single output neuron, 𝑋𝑖 represents the 𝑖𝑡ℎ element of the input vector, 𝐹ℎ and 𝐹𝑜 are 

the activation function of the neurons from the hidden layer and output layer, 

respectively and 𝑊𝑗𝑖  are the connection weights between the neurons of the hidden 

layer and the inputs. 

The learning phase of the network proceeds by adaptively adjusting the free parameters 

of the system based on the mean squared error E, represented by equation 2.52, 

between predicted and measured path loss for a set of appropriately selected training 

examples:  

𝐸 =
1

2
∑ (𝑦𝑖 − 𝑑𝑖)

2𝑚
𝑖=1       2.52 

Where yi is the output value calculated by the network and di represents the expected 

output. 

When the error between network output and the desired output is minimized, the 

learning process is terminated and the network can be used in a testing phase with test 

vectors. At this stage, the neural network is described by the optimal weight 

configuration, which means that theoretically ensures the output error minimization.  

Generalized Radial Basis Function Neural Network (RBF-NN) 

According to (Popescu et al., 2006), the Generalized Radial Basis Function Neural 

Network (RBF-NN) is a neural network architecture that can solve any function 

approximation problem. 
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Figure 2.14: RBF-NN architecture 

The learning process is equivalent to finding a surface in a multidimensional space that 

provides a best fit to the training data, with the criterion for the “best fit” being 

measured in some statistical sense. The generalization is equivalent to the use of this 

multidimensional surface to interpolate the test data. As it can be seen from Figure 

2.14, the Generalized Radial Basis Function Neural Network (RBF–NN) consists of 

three layers of nodes with entirely different roles:  

• The input layer, where the inputs are applied,  

• The hidden layer, where a nonlinear transformation is applied on the data 

from the input space to the hidden space; in most applications the hidden 

space is of high dimensionality.  

• The linear output layer, where the outputs are produced. 

The most popular choice for the function φ is multivariate Gaussian function with an 

appropriate mean and auto covariance matrix. 

The outputs of the hidden layer units are of the form  

 𝜑𝑘[𝑋] = 𝑒𝑥𝑝[−(𝑋 − 𝑉𝑘
𝑥)𝑇(𝑋 − 𝑉𝑘

𝑥) (2𝜎2)⁄ ]   2.53 

Where 𝑉𝑘
𝑥  are the corresponding clusters for the inputs and 𝑉𝑘

𝑦
 are the corresponding 

clusters for the outputs obtained by applying a clustering technique of the input/output 

data that produces K cluster centres. The parameter σ controls the "width" of the radial 

basic function and is commonly referred to as the spread parameter. 
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Vy
k is defined as  

𝑉𝑘
𝑦

= ∑ 𝑦(𝑝)𝑦(𝑝)∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘      2.54 

The outputs of the hidden layer nodes are multiplied with appropriate interconnection 

weights to produce the output of the GRNN. The weight for the hidden node k (that is 

wk) is equal to  

𝑊𝑘 = 𝑉𝑘
𝑦 ∑ 𝑁𝑘𝑒𝑥𝑝 [−

𝑑(𝑥,𝑉𝑘
𝑥)2

2𝜎2 ]𝑘
𝑘=1⁄     2.55 

𝑁𝑘is the number of input data in the cluster centre k, and  

𝑑(𝑋, 𝑉𝑘
𝑥) = (𝑋 − 𝑉𝑘

𝑥)𝑇(𝑋 − 𝑉𝑘
𝑥)     2.56 

With 

𝑉𝑘
𝑥 = ∑ 𝑥(𝑝)𝑥(𝑝)∈ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑘      2.57 

When the ANN based models are compared to other popular large-scale prediction 

models, they demonstrate very good performance for all types of environments such 

as outdoor as well as indoor giving greater accuracy. The ANN models are not 

computationally extensive as compared to deterministic models. Some of the 

limitations that come with ANN modelling include data overfitting due to ANN 

architectures with complex layers, falling into local minima that results to low 

performance, as well as increased training time that keeps them from being used in 

real-time applications. Most of these limitations are solved using ANFIS that we have 

used in our research. 

2.4.7 Training an artificial neural network 

As discussed in (Peretto, 1992) training is the process of changing the weights and 

biases so that the network gives the desired output. This is done in a way obtained that 

the desired outputs and the actual output are compared by subtraction and an error 

obtained. These errors should be minimized/reduced as much as possible. This process 

of changing the weights and biases is iterative (goes through several steps before it can 

stop). It can also be called the learning process of the network. The accuracy of the 

output will depend on the training algorithm used. There are two main types of 

learning/training learning with a teacher and learning without a teacher. 



37 

Learning with a Teacher is where a system is given an input/output combination from 

which it can learn. This is in the form of an example from which the system can pick 

certain characteristics features. The actual output of the system and the desired or 

target output are compared and an error obtained this error is propagated back to the 

input layers where the weights are modified accordingly to reduce this error. This goes 

through several iterations called epochs. When the error reduces to minimum possible 

value the system stops the training process. 

Learning without a Teacher is where the system learns without using examples or 

without a target output. It usually uses the inputs where the system picks patterns in 

the input vector. There are 2 types given by reinforcement learning and unsupervised 

learning where in reinforcement learning, a target output is not provided for the system 

to use. In this case, the system will take the input as it passes through it and the gives 

an output which can be a desired output or not. This can be determined by the critic 

where if the output is as required then there is a reward but if not, there is a penalty. 

The search for the best output is done using heuristic methods. The heuristic method 

is where there is a search space for a solution in which case the system goes through a 

known route to the solution. Other forms of search methods are blind search i.e., also 

referred to as Self Organizing Maps (SOM) as discussed by (Kihato, 2013). In 

unsupervised Learning there is no teacher or target. The system also takes the input 

and through its own judgment can give a particular output. This process also goes 

through several iterations to give an output which can be considered correct.  

2.4.8 Learning rules 

As discussed in (Gurney & Kevin, 2014), there are several rules that can be used in 

the process of training a network. These are rules based on the earliest form of learning 

form of learning methods. They include Hebb’s rule, Hopfield rule, Delta rule, 

Kohenen rule, Outstar rule, Memory based rule, Genetic Algorithm (GA) and Particle 

Swam Optimization (PSO) among many others. 

Hebb’s Rule can be used in supervised/unsupervised learning. It is based on changing 

the weights according to the state of the neurons.  
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Hopfield Rule is like Hebb’s rule where the only addition is that the weight is modified 

by a given magnitude. The modification is based on the learning rate. If both neurons 

are active, then increase the weight by the learning rate. If one of the neurons is 

negative, then reduce the weight by the learning rate. 

Delta Rule also uses Hebb’s concept but is based on the error at output. The target 

output is compared with desired output where an error is obtained. The weights are 

then modified to reduce this error. The error is propagated back to the input layers to 

facilitate the process of reducing it. This method is also called the Least Mean Square 

(LMS) or Gradient Descent Method (GD). 

Kohonen Rule uses the concept of competition to enable the learning process. Neurons 

compete to learn. The neurons with the best weight output will be allowed to modify 

its weights. It can also allow a few of its neighbors to modify their weights. The 

number of neighbors will depend on the pattern to be solved. 

Perceptron Learning learns using supervised learning. It takes the target output t and 

the actual output a, compares the two to obtain an error. This error is then used to 

modify the weights and biases.  

Outstar Rule uses the relationship between the inputs and outputs to modify the 

weights. It uses the principle of repetitiveness to learn where an input output 

combination is passed through the network or neuron. The neuron/network can pick a 

characteristic trait from the combination. In the future the network is able to use the 

statistical parameters obtained in classifying other input output combinations. If the 

system is applied with an input, then it can be able to give a specific output according 

to the trait picked. 

Memory Based is where a system has a memory with which it keeps previously 

correctly classified example. By using the information stored in memory, it can be able 

to classify an input correctly.  
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2.5 Fuzzy inference systems and ANFIS 

2.5.1 Fuzzy inference systems 

This research used fuzzy inference systems more specifically the ANFIS discussed in 

the section that follows. As its name suggests, it is a system that uses fuzzy logic to 

perform different functions. Based on (www.mathworks.com), it deals with different 

fuzzy concepts which include set theory, if-then rules and reasoning. This system can 

efficiently perform function approximation, which we have used it for in this research, 

besides other functions like classification. Its basic structure, given in figure 2.15 

below, consists of three components given as: a rule base, a knowledge base and a 

reasoning mechanism. The rule base contains fuzzy rules, the knowledge base that sets 

the membership functions used in the fuzzy rules and the reasoning mechanism that 

executes the inference process on the rules to give a reasonable output (Jang, 1993).  

DeffuzzyficationInferencefuzzyfication

Knowledge base

outputinput

 

Figure 2.15: Fuzzy Inference System structure 

The different types of this system designed for function approximation that include 

Tsukamoto, Mamdani’s and Takagi Sugeno where in our study the Takagi Sugeno 

(Ghomsheh et al., 2007; Gharghan et al., 2018) system was used due to its advantages 

that include high computational efficiency, good compatibility with linear, 

optimization and adaptive techniques and its suitability with mathematical analysis.     

Taking an input vector X =(x1, x2,...,xp)
T the system output Y can be given by the 

Sugeno inference system as; 

RL: If (x1 is FL
1, and x2 is FL

2,..., and xp is FL
p), 

Then (Y = YL= cL
0x0+cL

1x1+...+cL
pxp). 

Where, FL
j represent the fuzzy set associated with the input xj in the Lth rule and YL is 

output as a result of rule RL (L=1,...,m.). The parameters that are used to define the 

membership functions for FL
j are called the premise parameters, and cL

i are called the 
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consequent parameters. In the case of a real-valued input vector X=(x1,x2,...,xp)
T, the 

overall output of the Sugeno fuzzy inference systems is given as a weighted average 

of the YL as indicated below. 

𝑌 =
∑ 𝑤𝐿𝑌𝐿𝑚

𝐿=1

∑ 𝑤𝐿𝑚
𝐿=1

      2.59 

where the weight wL is the truth value of the proposition Y = YL and is defined as 

𝑤𝐿 = ∏ 𝜇𝑝
𝑖=1 𝐹𝑖

𝐿(𝑥𝑗)     2.60 

and where µFL
i(xi) is a membership function defined on the fuzzy set FL

j. 

2.5.2 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) was first proposed by (Jang, 1993). 

It is a combination of Fuzzy Logic (FL) and Artificial Neural Network (ANN) which 

captures the strengths and reduces the limitations of both techniques for building 

Inference Systems (IS) with better results and intelligence. In this case, fuzzy logic 

deals with fuzzy set theory that relates to classes of objects with boundaries whose 

membership is a matter of degree. It can also be seen as a platform that computes with 

words instead of numbers which is closer to human intuition and makes use of 

tolerance for imprecision, thus lowering the solution cost (Sumathi & Paneerselvam 

2010). As indicated earlier in the previous chapter, Artificial Neural Networks consist 

of an interconnection of simple processing elements that operate simultaneously in 

parallel modelling the biological nervous system. Neural Networks are considered to 

be able to learn from input data by modifying the values of the connections referred to 

as weights between the elements. These two Artificial Intelligence concepts merged 

offer the neural networks learning capability and the fuzzy logic knowledge 

representation that makes inferences from observations resulting to a very powerful 

tool.   

2.5.3 Basic ANFIS architecture  

The ANFIS architecture described here is based on type 3 fuzzy inference system 

(other popular types are the type 1 and type 2). In the type 3 inference system, the 

Takagi and Sugeno's (TKS) if-then rules are used. The output of each rule is obtained 
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by adding a constant term to the linear combination of the input variables. Final output 

is then computed by taking the weighted average of each rule's output. This type of 

architecture, with two inputs (x and y) and one output, z, is shown in figure 2.16 

(Ghomsheh et al., 2007). Where A1 and B1 are linguistic variables, p, q and r are the 

ANFIS consequent parameters. 
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Figure 2.16: Type 3 ANFIS Architecture 

Basic ANFIS rules 

The basic ANFIS structure is based on the following rules. 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2 

The ANFIS structure is the functional equivalent of a supervised, feed-forward neural 

network with one input layer, three hidden layers and one output layer, whose 

functionality are as described below:  

Layer 1 (Fuzzy Layer): Every node in this layer is an adaptive layer that generates 

the membership grades of the input vectors. Usually, a bell-shaped (Gaussian) function 

with maximum equal to 1 and minimum equal to 0 is used for implementing the node 

function: 
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 𝑂𝑖
1 = 𝑓(𝑥, 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑥) =

1

1+|(𝑥−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
   

 2.61   𝜇 𝐴𝑖(𝑥) = exp {− [(
𝑥−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}    

 2.62 

Where 𝑂𝑖
1 is the output of the 𝑖𝑡ℎnode in the first layer,  𝜇𝐴𝑖(𝑥) is the membership 

function of the input in the linguistic variable 𝐴𝑖. The parameter set {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} are 

responsible for defining the shapes of the membership functions. These parameters are 

called premise parameters.   

Layer 2 (Product Layer): Each node in this layer determines the firing strength of a 

rule by multiplying the membership functions associated with the rules. The nodes in 

this layer are fixed in nature with the firing strength of a particular rule, the output of 

a node, given by: 

𝑤𝑖 = 𝑂𝑖
2 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2     2.63 

Any other T-norm operator that performs fuzzy AND operation can be used in this 

layer to combine the inputs.  

Layer 3 (Normalized Layer): This layer consists of fixed nodes that are used to 

compute the ratio of the ith rule's firing strength to the total of all firing strengths. Its 

output is given by: 

�̅� = 𝑂𝑖
3 =

𝑤𝑖

𝑤1+𝑤2
 , 𝑖 = 1, 2,     2.64 

The outputs of this layer are known as normalized firing strength for convenience 

purposes.  

Layer 4 (Defuzzify Layer): This is an adaptive layer with node function given by: 

𝑤𝑖̅̅ ̅𝑧𝑖 = 𝑂𝑖
4 = 𝑤𝑖̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)    2.65 

It essentially computes the contribution of each rule to the overall output. It is referred 

to as a defuzzification layer and provides output values resulting from the inference of 

rules. The parameters in this layer given as {𝑝𝑖, 𝑞𝑖 , 𝑟𝑖} are known as consequent 

parameters appearing at the output section of the network.  
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Layer 5 (Total Output Layer): There is only one fixed node in this layer that 

basically computes the overall output as the summation of contribution from each rule 

whose function is given as: 

∑ 𝑤𝑖̅̅ ̅𝑧𝑖𝑖 = 𝑂𝑖
5 = ∑

𝑤𝑖𝑧𝑖

∑ 𝑧𝑖𝑖
𝑖      2.66 

The ordinary ANFIS does not have a feature that makes it suitable for wireless signal 

prediction modelling a feature that has been added to our modified ANFIS whose 

performance increases due to the introduced logarithmic function.      

2.6 ANFIS learning algorithms 

The development of the ANFIS concept has seen the proposal of several learning 

methods to facilitate the process of obtaining optimal set of rules. They include a 

merger between Min-Max and ANFIS proposed by Mascioli et al and nonlinear least 

square by Lavenberg-Marquardt (Ghomsheh et al., 2007).  

Four methods used to update the ANFIS structure parameters introduced by (Jang, 

1993) are as given below according to their level of computation complexities:  

1. Gradient descent (GD) only- used to update all the parameters.  

2. Gradient descent only and one pass of least square estimator (LSE)- the 

gradient descent takes over to update all parameters after the LSE is first 

applied only once at the beginning to obtain the initial values of the consequent 

parameters.  

3. Gradient descent only and LSE- this is a hybrid learning.  

4. Sequential LSE-updates all the parameters using extended Kalman filter.  

5. Genetic algorithm (GA). 

6. Particle swarm optimization (PSO). 

2.6.1 ANFIS hybrid learning  

As indicated in (Gurney & Kevin, 2014), ANFIS networks, as any other neural 

network, might be trained by backpropagation of the resulting error and adjustment of 

the adaptive parameters according to this propagation in order to minimize it. 
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Nevertheless, ANFIS presents some form of linearity with respect to some of its 

parameters, due to its structure, allowing for the application of the much efficient Least 

Squares Method. The use of the combination of both LeastSquares and Steepest 

Descent methods is referred to as Hybrid Learning.  

As commented, the adaptive parameters of the ANFIS network divides into premise 

parameters in layer 1, and consequent parameters in layer 4. The contribution of these 

last set to the network output is linear: 

Y = ∑
 

ẇ𝑖(∑ 𝑞𝑖𝑘𝑥𝑘+𝑟𝑖
)𝑛

𝑘=1

𝑝

𝑖=1
           2.67 

therefore, their computation using Least-Square Method, or its recursive version is 

advised, for the exact theta (θ) is obtained with no need of several iterations and 

requires less computational effort and time on what a process named forward pass. On 

the contrary, premise parameters will be computed using the Steepest Descent Method, 

by backpropagating the error through the network, during the backward pass. Both 

training steps constitute the Hybrid Learning methodology and are presented below. 

Forward pass characterized by the Recursive Least-Square Method being used to 

evaluate the consequent parameters. The θ vector will be defined as follows: 

𝜃 = {𝑞11  𝑞12  𝑞13   𝑟1   𝑞21    𝑞22    𝑞23   𝑟2    𝑞31    𝑞32    𝑞33}
𝑇       2.68 

and y will be the desired output vector (not to be confused with the network results, 

after Layer 5). Considering that the required number of training pairs to have a definite 

system will be n(p+1), where n refers to the number of inputs and p to the number of 

rules, the y vector would be as follows: 

𝜃 = {𝑦1, 𝑦2, … 𝑦𝑛(𝑝+1)}
𝑇

     2.69 

Meanwhile, matrix A can be defined after Equations 3.7 and 3.8 
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𝐴 =

[
 
 
 
 
 
 
 𝑤1̅̅̅̅  𝑥1

(1)
     𝑤1̅̅̅̅  𝑥2

(1)
     𝑤1̅̅̅̅  𝑥3

(1)
     𝑤1̅̅̅̅     ……… . . 𝑤𝑝̅̅̅̅  𝑥1

(1)
     𝑤𝑝̅̅̅̅  𝑥2

(1)
     𝑤𝑝̅̅̅̅  𝑥3

(1)
     𝑤𝑝̅̅̅̅   

𝑤1̅̅̅̅  𝑥1
(2)

     𝑤1̅̅̅̅  𝑥2
(2)

     𝑤1̅̅̅̅  𝑥3
(2)

     𝑤1̅̅̅̅     ……… . . 𝑤𝑝̅̅̅̅  𝑥1
(2)

     𝑤𝑝̅̅̅̅  𝑥2
(2)

     𝑤𝑝̅̅̅̅  𝑥3
(2)

     𝑤𝑝̅̅̅̅   

                ⋮          ⋮                ⋮       ⋱                ⋮                      ⋮                ⋮     
   

 𝑤1̅̅̅̅  𝑥2
(𝑚)

     𝑤1̅̅̅̅  𝑥3
(𝑚)

     𝑤1̅̅̅̅  𝑥3
(𝑚)

     𝑤1̅̅̅̅     ……… . . 𝑤𝑝̅̅̅̅  𝑥1
(𝑚)

     𝑤𝑝̅̅̅̅  𝑥2
(𝑚)

     𝑤𝑝̅̅̅̅  𝑥3
(𝑚)

     𝑤𝑝̅̅̅̅   ]
 
 
 
 
 
 
 

    

          2.70 

where the superscript between parenthesis denotes the training pair number and m has 

been defined as m=n(p+1) to simplify the notation. Within the recursive part of the 

method, the vector AT corresponding to the training pair k+1 is defined as any row of 

the matrix A: 

𝑎𝑇=

{𝑤1̅̅̅̅  𝑥2
(𝑘+1)

 𝑤1̅̅̅̅  𝑥3
(𝑘+1)

    𝑤1̅̅̅̅  𝑥3
(𝑘+1)

    𝑤1̅̅̅̅       …𝑤𝑝̅̅̅̅  𝑥1
(𝑘+1)

     𝑤𝑝̅̅̅̅  𝑥2
(𝑘+1)

     𝑤𝑝̅̅̅̅  𝑥3
(𝑘+1)

    𝑤𝑝̅̅̅̅  }    

          

 2.71 

Backward pass involves the error signal propagating backwards through the network 

until the dependence of this error to each of the premise parameters is evaluated. Once 

known this gradient, the parameters may be updated by Steepest Descent: 

𝑎𝑖𝑗(𝑘 + 1) = 𝑎𝑖𝑗(𝑘) − 𝑘𝑗  
  ∇ 𝐸 

‖∇𝐸‖
              2.72 

𝜕𝐸

𝜕𝑎𝑖𝑗
= ∑

𝜕𝐸

𝜕𝑦

𝑝
𝑘=1  

𝜕𝑦

𝜕�̅�𝑘
 
𝜕�̅�𝑘

𝜕𝑤𝑖
 
𝜕𝑤𝑖

𝜕𝜇𝑖𝑗
 
𝜕𝜇𝑖𝑗

𝜕𝑎𝑖𝑗
= 

𝜕𝑤𝑖

𝜕𝜇𝑖𝑗
 
𝜕𝜇𝑖𝑗

𝜕𝑎𝑖𝑗
 ∑

𝜕𝐸

𝜕𝑦

𝑝
𝑘=1  

𝜕𝑦

𝜕�̅�𝑘
 
𝜕�̅�𝑘

𝜕𝑤𝑖
         2.73 

Chain rule is used to evaluate the partial derivatives: 

Where here ai,k stands for any premise parameter ai,k, bi,k or ci,k. The partial 

derivatives are derived as: 

  
𝜕 𝐸

𝜕𝑦
=

𝜕

𝜕𝑦
[(𝑦𝑑 − 𝑦)2] = 𝑦 − 𝑦𝑑 ≡ 𝑒                                      2.74       

𝜕 𝑦

𝜕�̅�𝑘
=

𝜕 

𝜕�̅�𝑘
[(�̅�𝑘 ∑ 𝑞𝑘𝑖𝑥𝑖 + 𝑟𝑘)

𝑛
𝑖=1 ] = 𝑓𝑘 ≡ 𝑒3.𝑘   2.75 
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𝜕 �̅�𝑘

𝜕�̅�𝑖
= 𝑓(𝑥) = {

𝜕 

𝜕�̅�𝑘
(

𝑤𝑘

∑ 𝑤𝑖
𝑝
𝑖=1

) =
�̅�𝑘

𝑤𝑘
(1 − �̅�𝑘) 𝑖 = 𝑘

𝜕 

𝜕�̅�𝑘
(

𝑤𝑘

∑ 𝑤𝑖
𝑝
𝑖=1

) = −
�̅�𝑘

2

𝑤𝑘
     𝑖 ≠ 𝑘

      2.76 

𝜕 �̅�𝑖

𝜕�̅�𝜇𝑖𝑗
 =

∏ 𝜇𝑖𝑗𝑛
𝑙=1

𝜇𝑖𝑗
=

𝑤𝑖

𝜇𝑖𝑗
     2.77 

The 
𝜕 𝜇𝑖𝑗

𝜕𝑎𝑖𝑗
 derivative depends on the membership function used, and will be different 

for each premise parameter ai,k  ,   bi,k   or  ci,k. To simplify the notation, the following 

function is introduced: 

𝜑𝑖𝑗(𝑥) =
𝑥𝑗−𝑐𝑖𝑗

𝑎𝑖𝑗
   i=1… p and j=1…n     2.78 

It is also noticeable, that the absolute value within expression 3.4 may be rewritten in 

order to ease differentiation: 

𝜇𝑖𝑗(𝑥) =
1

1+|
𝑥𝑗−𝑐𝑖𝑗

𝑎𝑖𝑗
|

2𝑏𝑖𝑗= =
1

1+[(
𝑥−𝑐𝑖𝑗

𝑎𝑖𝑗
)

2

]

2𝑏𝑖𝑗= =
1

1+(𝜑𝑖𝑗
2 )

𝑏𝑖𝑗
              2.79 

The following partial derivatives result, for premise parameters 𝑎𝑖𝑘: 

 
𝜕 𝜇𝑖𝑗

𝜕𝑎𝑖𝑗
=  

𝜕 

𝜕𝑎𝑖𝑗
   

1

1+𝜑
𝑖𝑗

2𝑏𝑖𝑗
=   

−1

(1+𝜑
𝑖𝑗

2𝑏𝑖𝑗
)
2 2𝑏𝑖𝑗𝜑𝑖𝑗

2𝑏𝑖𝑗−1   𝑐𝑖𝑗−𝑥𝑗

𝑎𝑖𝑗
2   =   

2𝑏𝑖𝑗

𝑎𝑖𝑗
𝜑

𝑖𝑗

2𝑏𝑖𝑗𝜇𝑖𝑗
2                      2.80 

For 𝑏𝑖𝑗: 

𝜕 𝜇𝑖

𝜕𝑏𝑖
=  

𝜕 

𝜕𝑏𝑖 
   

1

1+𝜑
𝑖

2𝑏𝑖
=   

−𝜑
𝑖

2𝑏𝑖  𝑙𝑛𝜑𝑖
2

(1+𝜑
𝑖

2𝑏𝑖)
2 = −𝜑𝑖

2𝑏𝑖 𝑙𝑛𝜑𝑖
2 𝜇𝑖

2      2.81 

And for 𝑐𝑖𝑗 

𝜕 𝜇𝑖

𝜕𝑐𝑖
=  

𝜕 

𝜕𝑐𝑖 
   

1

1+𝜑
𝑖

2𝑏𝑖
=   

1

(1+𝜑
𝑖

2𝑏𝑖)
2

2𝑏𝑖𝜑𝑖

2𝑏𝑖−1   

𝑎𝑖
=

2𝑏𝑖

𝑥−𝑐𝑖
𝜑𝑖

2𝑏𝑖𝜇𝑖
2        2.82 

2.6.2 Genetic Algorithm (GA) 

As indicated in (Hassan et al., 2005) and (Kihato, 2013), GA uses the concept of 

natural existence and survival. The strongest will be able to survive. It uses the concept 

to optimize solutions to given problems. The algorithm has the following steps. 
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1. Initialize the chromosome population, mutation or crossover rate. 

Done according to the problem being solved. 

2. Define the fitness function that will measure the performance also 

according to the problem being solved. 

3. Randomly pick a number of population chromosomes. 

4. Measure their fitness for each of the chromosomes picked. 

5. Pick a pair of chromosomes from the population where the probability of 

one being picked depends on the fitness of the chromosomes. The higher 

the fitness the higher the probability. 

6. Apply the mutation or crossover to obtain children chromosomes. 

7. Place the children back to the original population. 

8. Starting from step number 3, pick another population and repeat the process 

till the original population is replaced by a new population. 

This algorithm mainly concentrates on the global search 

2.6.3 Particle Swarm Optimization (PSO)  

Particle Swarm Optimization is a global optimization technique developed by Eberhart 

and Kennedy in 1995 (Eberhart & Kennedy, 1995), where the underlying motivation 

of its algorithm was the social behavior observable in nature, such as flocks of birds 

and schools of fish in order to model swarms of particles moving towards the most 

promising regions of the search space. It exhibits good performance in finding 

solutions to static optimization problems where it is better than other algorithms like 

Genetic Algorithm (Hassan et al., 2005). Apart from this it also exploits a population 

of individuals to synchronously probe promising regions of the search space. In this 

case, the population is referred to as a swarm and the individuals (i.e., the search 

points) to as particles. The consideration here is that each particle in the swarm 

represents a candidate solution to the optimization problem. For a PSO system, every 

particle moves with an adjustable velocity through the search space, where it adjusts 

its position in the search space according to its own experience and that of neighboring 

particles. After this it retains a memory of the best position it ever encountered. A 

particle therefore makes use of the best position encountered by itself and the best 

position of neighbors to position itself towards the global minimum. This therefore 
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results in particles “flying” towards the global minimum, while still searching a wide 

area around the best solution (Ghomsheh et al., 2007). Each particle’s performance 

(i.e., the “closeness” of a particle to the global minimum) is measured according to a 

predefined fitness function which is related to the problem being solved. For (Sumathi 

& Paneerselvam 2010) case, a particle represents the weight vector of NNs, including 

biases. The total number of weights and biases give the dimension of the search space 

(Sumathi & Paneerselvam 2010). 

The iterative process of PSO can be described as follows (www.yarpiz.com; Zhang, 

2022).  

• Step 1: Initialize a population size, their positions, velocities of agents and the 

number of weights and biases. 

• Step 2: Set the current best fitness achieved by particle p as pbest in which case 

the pbest with best value is set as gbest and this value is stored. 

• Step 3: The desired optimization fitness function 𝑓𝑝 for each particle is 

evaluated as the Mean Square Error (MSE) over a given data set. 

• Step 4: The evaluated fitness value 𝑓𝑝 of each particle is compared with its 

pbest value. For cases where 𝑓𝑝< pbest, pbest = 𝑓𝑝 and bestxp= 𝑥𝑝, where  𝑥𝑝 

are the current coordinates of particle p, and bestxp are the coordinates 

corresponding to particle p’s best fitness so far. 

• Step 5: For each particle the objective function value is calculated for new 

positions such that if a better position is achieved by an agent, pbest value is 

replaced by the current value. As is the case with Step 1, gbest value is selected 

among pbest values in which case if the new gbest value is better than previous 

gbest value, the gbest value is replaced by the current gbest value and this value 

is stored. If 𝑓𝑝< gbest then gbest = p, where gbest is the particle having the 

overall best fitness over all particles in the swarm. 

• Step 6: The velocity and location of the particle is changed according to 

Equations 2.83 and 2.84, respectively. 

• Step 7: Each particle p is flown according to Equation 2.83.  
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• Step 8: Stop if the maximum number of predetermined iterations (epochs) is 

exceeded stop; otherwise, Loop to step 3 until convergence.  

𝑉𝑖 = 𝑤𝑉𝑖−1 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑏𝑒𝑠𝑡𝑥𝑝 − 𝑥𝑝) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑() ∗ (𝑏𝑒𝑠𝑡𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑝)

 2.83 

Where c1 and c2 are personal and social acceleration constants respectively that control 

how the particles fly from one another, and rand returns a uniform random number 

between 0 and 1. 

𝑥𝑝 = 𝑥𝑝𝑝 + 𝑉𝑖     2.84 

𝑉𝑖 is the current velocity, 𝑉𝑖−1 is the previous velocity, 𝑥𝑝 is the present location 

of the particle, 𝑥𝑝𝑝 is the previous location of the particle, and i is the particle 

index.  

In step 5 the coordinates best𝑥𝑝 and bestxgbest are used to pull the particles towards 

the global minimum (Ghomsheh et al., 2007).  

When the PSO learning algorithm is applied in training the modified ANFIS, its 

performance tremendously increases as compared with other training algorithms. For 

instance, according to (Adeyiga et al., 2022) the performance of PSO is found to be 

better than the Genetic Algorithm, since the PSO algorithm carries out global search 

and local searches simultaneously, while the Genetic Algorithm concentrates on the 

global search. The PSO optimization algorithm is also easy to develop and apply.  

2.6.4 Evaluation criteria 

The performance evaluation of the proposed approach will be done by measuring the 

estimation accuracy which is defined as the difference between the actual and 

estimated values. The first typical fitting criterion, mean square error (MSE) is defined 

in equation 2.85: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1      2.85 

where N is the total number of data, y is actual target value, and �̂� is estimated 

target value. 
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The tests are implemented several times to ensure that MSE converges to a minimum 

value. The initial weights values will randomly be assigned within the range [-1; 1]. 

The training accuracy is expressed in terms of the mean absolute error (ME), standard 

deviation (SD) and root mean squared error (RMSE). The absolute mean error (ME) 

is expressed as 

𝑒𝑖 = |𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑|    2.86 

�̅� =
1

𝑁
∑ 𝑒𝑗

𝑁
𝑗=1       2.87 

where the terms measured and simulated denote received signal strength that are 

obtained by measurement and simulated by ANFIS, while N is total number of 

samples. The standard deviation is given by; 

𝜎 = √
1

𝑁−1
(𝑒𝑖 − �̅�)2     2.88 

The root mean squared error (RMSE) can also be determined according to the 

expression. 

𝑅𝑀𝑆𝐸 = √𝜎2 + �̅�2     2.89 

In this training the RMSE was used. 

2.7 Research gap  

In the process of wireless communication propagation modelling, most researchers 

have not used artificial intelligence-based models as noted in the models discussed by 

(Kimoto et al., 2016; Allen et al., 2017; Ullah et al., 2020; Elmezughi et al., 2021; 

Zhang et al., 2017; Erunkulu et al., 2020), (Ahmadien et al., 2020; Valcarce et al., 

2011; Dagefu & Sarabandi, 2010) and section 2.3, where the deterministic and 

empirical models are individually analyzed. Most of these models have a number of 

limitations compared to the models developed in our research. For instance, according 

to (Alotaibi et al., 2009), the Okumura’s model is suitable for particular range of 

frequencies given as 150 to 1920 MHZ, a particular range of transmitter receiver 

separation that is 1 to 100 km and base station antenna height ranging from 30 to 1000 

m and a mobile antenna height less than 10 m. so there is need to develop a universal 

model that solves this problem by taking care of all environments as well as frequency 
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and distance ranges. Other empirical models like COST-Hata-Model, as presented by 

(Alotaibi et al., 2009), are usually restricted to large and small macro-cells 

applications, where according to (Alotaibi et al., 2009) this model’s formula and its 

modification must not be applied in micro-cells. So, there is a need to develop a 

universal model based on the modified ANFIS. On the other hand, those who have 

used AI based modelling have worked with ANN and the ANFIS models that show 

better results than the traditional models. However, these models have also been used 

in individual form as discussed under section 2.4 and 2.5 supported by (Ahmad et al., 

2020; Popoola et al., 2019; Ma et al., 2021; Popescu et al., 2006; Ahmadien et al., 

2020; Valcarce et al., 2011; Vilovic & Burum, 2011; Alotaibi et al., 2009). Based on 

their analysis it is noted that the AI models are more efficient when dealing with 

prediction of practical RSSI, while the deterministic and empirical models are mostly 

theoretical. Comparing ANN to other popular large-scale prediction models, the ANN 

based models demonstrate very good performance for all types of environments such 

as outdoor as well as indoor giving greater accuracy as well as being less 

computationally extensive as compared to deterministic models. Besides this ANN 

modelling has a number of limitations that include data overfitting, low performance 

and increased training time. So, there is a need to develop a model that can handle 

these limitations, that is the modified ANFIS that combines the computation with 

numbers from neural networks and that of words that comes with fuzzy logic. The 

researchers who have dealt with the ANFIS based models have not shown on how they 

directly relate to wireless signal propagation modelling which our research has 

addressed by introducing the logarithm to base 10 operator to the conventional ANFIS 

as well as using PSO learning algorithm. This increased the accuracy level of the 

ordinary ANFIS when used for wireless signal prediction modelling as discussed under 

the results section. The model was named LOG10D-PSO-ANFIS because the modified 

ANFIS has a log10d operator and it is trained using the PSO optimization algorithm. 

Training the modified ANFIS, using the PSO learning algorithm, its performance in 

relation to wireless signal propagation modelling increases tremendously as compared 

to the results obtained from other training algorithms. Taking an example of PSO and 

GA, (Adeyiga et al., 2022) have indicated that the PSO performance is better than that 

of GA. This is because besides the PSO algorithm being easy to develop and apply, it 
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also incorporates both global and local searches simultaneously whereas the GA 

concentrates on the global search. Through this research, the formulation of the 

ordinary ANFIS, the modified ANFIS and the PSO learning algorithm were 

undertaken as opposed to the other works which didn’t have this analysis that is 

important in understanding the algorithms by researchers interested in these concepts. 

Besides these additions we were able to generate a universal theoretical model, based 

on a modified ANFIS, that combines all the models into one, work that has not been 

done by any researcher before.    
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This section deals with the process that has been used to obtain the universal theoretical 

wireless signal propagation model. The first step was to formulate the conventional 

ANFIS architecture with two inputs and three membership functions where the inputs 

considered were arbitrary. This is followed by the description of the proposed modified 

ANFIS. This ANFIS (LOG10D-ANFIS) has an additional layer referred to as log10d 

where the distance is first passed through a logarithm to base 10 function before it goes 

to the fuzzification layer that is the first layer of the ordinary ANFIS. This is mainly 

to facilitate its application in wireless signal propagation modelling and therefore 

increasing the model’s accuracy. The formulation of the proposed modified ANFIS 

where the mathematical representations of the different operations, in each layer, on 

the input data are explained through from the first to the sixth layer is done. After this, 

the formulation of the modified ANFIS training process based on the PSO learning 

algorithm is undertaken where the corresponding mathematical relations on this 

process are also explained. This training process is used to generate the premise and 

consequent parameters for the proposed modified ANFIS. Based on this modified 

ANFIS trained with the PSO algorithm, the premise and consequent parameters for 

different theoretical models are generated. The models considered include the one 

slope, dual-slope, multi-wall, average-wall, COST231, COST231-Hata, Hata-

Okumura and Two-ray ground reflection models considered as the sample models. For 

each of these models, an ANFIS equivalent model is developed through the premise 

and consequent parameters generated from the PSO training process. From these 

parameters a novel universal PSO trained modified ANFIS model (LOG10D-PSO-

ANFIS) is developed where for each of the theoretical models required the 

corresponding parameters are used in the modified ANFIS structure to get its 

equivalent model. Apart from this universal theoretical model, another model that is 

to deal with practical RSSI values referred to as LOG10D-PSO-R-ANFIS is also 

developed starting with undertaking continuous wave measurements in a corridor 

using a phone and a Wi-Fi router. These measurements are used to train and test the 
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model that is given a random input generated by the PSO algorithm together with the 

parameters used on the modified ANFIS model. Under this subsection, the process of 

performing the continuous wave measurements is discussed followed by the 

experimental setup to obtain the measured values. The next subsection shows how the 

formulation of the modified ANFIS model with a random input is undertaken and 

finally a brief description of the formulation of the PSO training process of this model 

is also described. The MATLAB ANFIS tool was used in the training and testing of 

the conventional and proposed models. The tool was used to generate the training and 

testing RMSE, MSE and SD as performance parameters for the models. These 

parameters were then compared to determine the best performing model as discussed 

under the results section.  

3.2 Formulation of the conventional ANFIS architecture 

Taking the original ANFIS with two inputs as represented in figure 2.16, its 

formulation starts from the generation of its rules that are given by;  

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2, 

x and y are arbitrary inputs while z is their corresponding output.  

With two inputs and 3 MFs the analysis is as represented below. 

Taking arbitrary values of x, y, ai, bi and ci as; 

For A; 

[a1 b1 c1] 

[a2 b2 c2]  

[a3 b3 c3] 

For B; 

[a1 b1 c1] 

[a2 b2 c2]  
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[a3 b3 c3] 

and pi, qi and ri as; 

[p1 q1 r1] 

[p2 q2 r2] 

[p3 q3 r3] 

[p4 q4 r4] 

[p5 q5 r5] 

[p6 q6 r6] 

[p7 q7 r7] 

[p8 q8 r8] 

[p9 q9 r9] 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑥 + 𝑞1𝑦 + 𝑟1, 

𝐼𝑓 𝑥 𝑖𝑠 exp {− [(
𝑥−𝑐1

𝑎1
)
2

]
𝑏1

} 𝑎𝑛𝑑 𝑦 𝑖𝑠 exp {− [(
𝑦−𝑐1

𝑎1
)
2

]
𝑏1

}, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑥 +

𝑞1𝑦 + 𝑟1, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑥 + 𝑞2𝑦 + 𝑟2, 

𝑅𝑢𝑙𝑒 3: 𝐼𝑓 𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝3𝑥 + 𝑞3𝑦 + 𝑟3, 

𝑅𝑢𝑙𝑒 4: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧4 = 𝑝4𝑥 + 𝑞4𝑦 + 𝑟4, 

𝑢𝑙𝑒 5: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧5 = 𝑝5𝑥 + 𝑞5𝑦 + 𝑟5, 

𝑅𝑢𝑙𝑒 6: 𝐼𝑓 𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧6 = 𝑝6𝑥 + 𝑞6𝑦 + 𝑟6, 

𝑅𝑢𝑙𝑒 7: 𝐼𝑓 𝑥 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧7 = 𝑝7𝑥 + 𝑞7𝑦 + 𝑟7, 

𝑅𝑢𝑙𝑒 8: 𝐼𝑓 𝑥 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧8 = 𝑝8𝑥 + 𝑞8𝑦 + 𝑟8, 

𝑅𝑢𝑙𝑒 9: 𝐼𝑓 𝑥 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧9 = 𝑝9𝑥 + 𝑞9𝑦 + 𝑟9, 
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The equations that follow for each layer are equivalent to equations 2.61 to 2.66 but 

expounded to show the formulation process. 

Layer 1 (Fuzzy Layer):  

In this layer the two inputs are transformed into their membership grades A1 to A3 and 

B1 to B3.  

𝑂𝑖
1 = 𝑓(𝑥, 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑥) =

1

1+|(𝑥−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
    

 𝜇 𝐴𝑖(𝑥) = exp {− [(
𝑥−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}   

𝜇 𝐵𝑖(𝑦) = exp {− [(
𝑦 − 𝑐𝑖

𝑎𝑖
)
2

]

𝑏𝑖

} 

  𝐴 1 = exp {− [(
𝑥−𝑐1

𝑎1
)
2

]
𝑏1

}         

    𝐴 2 = exp {− [(
𝑥−𝑐2

𝑎2
)
2

]
𝑏2

}    

𝐴 3 = exp {− [(
𝑥−𝑐3

𝑎3
)
2

]
𝑏3

}    

 𝐵 1 = exp {− [(
𝑦−𝑐1

𝑎1
)
2

]
𝑏1

}         

𝐵 2 = exp {− [(
𝑦−𝑐2

𝑎2
)
2

]
𝑏2

}    

𝐵 3 = exp {− [(
𝑦−𝑐3

𝑎3
)
2

]
𝑏3

}    

Layer 2 (Product Layer):  

Here a T-norm operator that performs fuzzy AND operation is used to combine the 

inputs membership grades A and B. 

𝑤𝑖 = 𝑂𝑖
2 = 𝜇𝐴𝑖(𝑥). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2     

𝑤1 = 𝜇𝐴1(𝑥). 𝜇𝐵1(𝑦), 

𝑤1 = 𝐴1. 𝐵1 
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𝑤2 = 𝐴1. 𝐵2 

𝑤3 = 𝐴1. 𝐵3 

𝑤4 = 𝐴2. 𝐵1 

𝑤5 = 𝐴2. 𝐵2 

𝑤6 = 𝐴2. 𝐵3 

𝑤7 = 𝐴3. 𝐵1 

𝑤8 = 𝐴3. 𝐵2 

𝑤9 = 𝐴3. 𝐵3 

Layer 3 (Normalized Layer):  

In this layer the ratio of the ith rule's firing strength to the total of all firing strengths is 

computed. 

�̅�𝑖 = 𝑂𝑖
3 =

𝑤𝑖

𝑤1+𝑤2+⋯+𝑤9
 , 𝑖 = 1, … . , 9,    

�̅�1=
𝑤1

𝑤1+⋯+𝑤9
 

�̅�2=
𝑤2

𝑤1+⋯+𝑤9
 

�̅�3=
𝑤3

𝑤1+⋯+𝑤9
 

�̅�4=
𝑤4

𝑤1+⋯+𝑤9
 

�̅�5=
𝑤5

𝑤1+⋯+𝑤9
 

�̅�6=
𝑤6

𝑤1+⋯+𝑤9
 

�̅�7=
𝑤7

𝑤1+⋯+𝑤9
 

�̅�8=
𝑤8

𝑤1+⋯+𝑤9
 

�̅�9=
𝑤9

𝑤1+⋯+𝑤9
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Layer 4 (Defuzzify Layer):  

This layer computes the contribution of each rule to the overall output. Since there are 

two inputs, all the consequent parameters pi, qi and ri are considered.  

�̅�𝑖𝑧𝑖 = 𝑂𝑖
4 = �̅�𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)        

�̅�1𝑧1 = �̅�1(𝑝1𝑥 + 𝑞1𝑦 + 𝑟1), 

�̅�2𝑧2 = �̅�2(𝑝2𝑥 + 𝑞2𝑦 + 𝑟2) 

�̅�3𝑧3 = �̅�3(𝑝3𝑥 + 𝑞3𝑦 + 𝑟3) 

�̅�4𝑧4 = �̅�4(𝑝4𝑥 + 𝑞4𝑦 + 𝑟4) 

�̅�5𝑧5 = �̅�5(𝑝5𝑥 + 𝑞5𝑦 + 𝑟5) 

�̅�6𝑧6 = �̅�6(𝑝6𝑥 + 𝑞6𝑦 + 𝑟6) 

�̅�7𝑧7 = �̅�7(𝑝7𝑥 + 𝑞7𝑦 + 𝑟7) 

�̅�8𝑧8 = �̅�8(𝑝8𝑥 + 𝑞8𝑦 + 𝑟8) 

�̅�9𝑧9 = �̅�9(𝑝9𝑥 + 𝑞9𝑦 + 𝑟9)    

Layer 5 (Total Output Layer):  

This layer determines the overall output as the summation of contribution from each 

rule. 

𝑧 = ∑ �̅�𝑖𝑧𝑖𝑖 = 𝑂𝑖
5 =

∑ 𝑤𝑖𝑖 𝑧𝑖

∑ 𝑤𝑖𝑖
 = 

𝑤1𝑧1+⋯+𝑤9𝑧9

𝑤1+⋯+𝑤9
= �̅�1𝑧1 + ⋯+ �̅�9𝑧9 

3.3 The proposed modified ANFIS architecture  

Our research came up with a modified ANFIS, as represented in figure 3.1, that has an 

additional layer outside the ordinary ANFIS of five layers. This layer is responsible 

for modifying the input data by applying the logarithm to base 10 operator which then 

feeds the ordinary ANFIS to process the modified data resulting to accurate output 

values. All the other five layers retain their functions as indicated in equations 2.61 to 

2.66 with the modifications as represented in equations 3.1 to 3.6. The rules 

incorporating the logarithm to base 10 operator are given as follows for a single input; 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴1 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10𝑥 + 𝑟1 
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𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10𝑥 + 𝑟2 

Where x is the distance and z is the RSSI. 

The introduction of the logarithm to base 10 operator enables the ANFIS structure to 

accept and process wireless signals with high levels of accuracy in relation to the root 

mean square error (RMSE). This is because the variation of these signals follows a 

trace represented by logarithm to base 10 output as discussed in section 2.3.   

A1

A2

TT

TT

N

N

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

x W1

W2

z

x

x

W1 Z1

W2 Z2

W1 

W2

LOG
10

LOG
10

LOG
10

Layer 6

A3
TT N

W3
W3 W3 Z3

 

Figure 3.1: Modified ANFIS Structure with a single input 

3.4 Formulation of the proposed modified ANFIS algorithm 

The following representation is a step-by-step analysis of the modified ANFIS 

algorithm starting from layer 1 to layer 6. The total number of parameters to be 

considered is fifteen resulting from 9 by 1 plus 2 by 3 generally represented as g by h 

and u by v where g is the total number of premise parameters per input, h is the number 

of inputs, u is the number of consequent parameters per rule while v is the number of 

rules. The formulation with substituted values is given in appendix I. 

Taking the ANFIS premise parameter values of ai, bi and ci as; 

[a1 b1 c1] 

[a2 b2 c2]  
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[a3 b3 c3] 

and the consequent parameters pi and ri as; 

[p1 r1] 

[p2 r2] 

[p3 r3] 

The ANFIS structure rules that were used are represented as; 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥) + 𝑟1, 

  𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐1

𝑎1
)
2

]
𝑏1

} 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥)  + 𝑟1, 

Performing the same for rule 2 and 3 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟2, 

  𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐2

𝑎2
)
2

]
𝑏2

} 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10(𝑥)  + 𝑟2, 

𝑅𝑢𝑙𝑒 3: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3, 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟3, 

  𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐3

𝑎3
)
2

]
𝑏3

} 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝3𝑙𝑜𝑔10(𝑥)  + 𝑟3, 

Where x is the distance and z represents the RSSI. 

Layer 1 (Logarithmic layer): 

This layer deals with the transformation of the distance values, as obtained from the 

one slope model, into their logarithmic representation. The resulting values are then 

fed into layer 2 which performs the fuzzification operation. Each of the distance values 
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represented as x are transformed into their logarithmic equivalent using the logarithm 

to base 10 operator as shown in equation 3.1. 

  𝑂1 = 𝑙𝑜𝑔10(𝑥)        3.1 

This operator acts as the link between the original ANFIS model, and the wireless 

signal propagation modelling concept based on the models discussed in section 2.3 of 

this thesis since it introduces the logarithmic operator available in all these models.   

Layer 2 (Fuzzy Layer):  

Every node in this layer is an adaptive layer that generates the membership grades of 

the input vectors. Usually, a bell-shaped (Gaussian) function with minimum equal to 

0 and maximum equal to 1 is used for implementing the node function as represented 

in equation 3.2 and 3.3. It receives its input that is distance from layer 1 which is 

operated on by the logarithm to base 10 operator.  

𝑂𝑖
2 = 𝑓(𝑙𝑜𝑔10(𝑥), 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)) =

1

1+|(𝑙𝑜𝑔10(𝑥)−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
  3.2 

   𝜇 𝐴𝑖(𝑙𝑜𝑔10(𝑥)) = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}     3.3

    𝐴 1 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐1

𝑎1
)
2

]
𝑏1

}      

     𝐴 2 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐2

𝑎2
)
2

]
𝑏2

}    

 𝐴 3 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐3

𝑎3
)
2

]
𝑏3

}     

   

Where 𝑂𝑖
1 is the output of the 𝑖𝑡ℎnode in the first layer,  𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)) is the 

membership function of input in the linguistic variable 𝐴𝑖. The parameter set 

{𝑎𝑖, 𝑏𝑖, 𝑐𝑖}, referred to as the premise parameters, are responsible for defining the 

shapes of the membership functions. A1 to A3 represent the values from the three rules. 
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These parameters are tuned in the process of training the modified ANFIS so that it 

can give a desired output. 

Layer 3 (Product Layer) 

Each node in this layer determines the firing strength of a rule by multiplying the 

membership functions associated with the rules. The nodes in this layer are fixed with 

the firing strength of a particular rule, the output of a node, given by equation 3.4: 

𝑤𝑖 = 𝑂𝑖
3 = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2, 3    3.4 

Any other T-norm operator that performs fuzzy AND operation can be used in this 

layer to combine the inputs in the case where the inputs are more than one. This is 

based on PN nodes denoting the number of rules in this layer with each node 

representing the antecedent part of rule (if part of an if-then rule) where N is the number 

of input variables and P is the number of membership functions. Since there is one 

input for this case, the resulting outputs are given by w1 to w3. Since there is one input, 

the following relations are obtained. 

𝑤1 = 𝜇𝐴1(𝑙𝑜𝑔10(𝑥)), 

𝑤2 = 𝜇𝐴2(𝑙𝑜𝑔10(𝑥)), 

𝑤3 = 𝜇𝐴3(𝑙𝑜𝑔10(𝑥)), 

Layer 4 (Normalized Layer) 

As discussed earlier under the ordinary ANFIS, this layer consists of fixed nodes that 

are used to compute the ratio of the ith rule's firing strength to the total of all firing 

strengths. Its output is given by equation 3.5 and is referred to as normalized firing 

strength.  

�̅�𝑖 = 𝑂𝑖
4 =

𝑤𝑖

𝑤1+𝑤2+𝑤3
 , 𝑖 = 1, 2, 3      3.5 

�̅�1=
𝑤1

𝑤1+𝑤2+𝑤3
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�̅�2=
𝑤2

𝑤1+𝑤2+𝑤3
 

�̅�3=
𝑤3

𝑤1+𝑤2+𝑤3
 

In the modified ANFIS, the logarithm to base 10 operator affects this layer’s output as 

computed in layer 3. This layer has PN nodes as well. 

Layer 5 (Defuzzify Layer) 

Just like the ordinary ANFIS, this layer is an adaptive node whose representation is as 

given in equation 3.6. It does the function of computing the contribution of each rule 

to the overall output also known as fuzzification that provide output values resulting 

from the inference of rules. The parameters in this layer given as {𝑝𝑖, 𝑞𝑖, 𝑟𝑖} and 

known as consequent parameters, appearing at the output section of the network, are 

adaptive just as like the premise parameters in layer 2. They are to be modified using 

an appropriate training algorithm. Since there is just one input that is distance, only 

the parameters p and r are considered in case as represented in equation 3.6 with the 

logarithm to base 10 operator on the distance included. The resulting outputs are given 

by �̅�1𝑧1 to �̅�3𝑧3 since this ANFIS is using three membership functions. These outputs 

when combined result to the RSSI output being predicted by the modified ANFIS.  

�̅�𝑖𝑧𝑖 = 𝑂𝑖
5 = �̅�𝑖(𝑝𝑖𝑙𝑜𝑔10(𝑥) + 𝑟𝑖)      3.6 

�̅�1𝑧1 = �̅�1(𝑝1𝑙𝑜𝑔10(𝑥) + 𝑟1), 

�̅�2𝑧2 = �̅�2(𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟2), 

�̅�3𝑧3 = �̅�3(𝑝3𝑙𝑜𝑔10(𝑥) + 𝑟3), 

Layer 6 (Total Output Layer) 

This layer consists of a fixed node that basically computes the overall output as the 

summation of contribution from each rule whose function is given as in equation 3.7. 

The computation in this layer results to the modified ANFIS predicted RSSI output 

represented by z in equation 3.7.  
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𝑧 = ∑ �̅�𝑖𝑧𝑖𝑖 = 𝑂𝑖
6 =

∑ 𝑤𝑖𝑖 𝑧𝑖

∑ 𝑤𝑖𝑖
 = 

𝑤1𝑧1+𝑤2𝑧2+𝑤2𝑧3

𝑤1+𝑤2+𝑤3
= �̅�1𝑧1 + �̅�2𝑧2 + �̅�3𝑧3     3.7     

3.5 Formulation of the PSO learning algorithm for the modified ANFIS 

architecture 

The training and validation processes are among the important steps used to develop 

an accurate process model using ANFIS where a set of input-output patterns is 

repeated to the ANFIS in the training process. The weights of all the interconnections 

between neurons are adjusted repeatedly until the specified input yields the desired 

output. From these iterations, the ANFIS learns the right input-output response 

behavior (Ghomsheh et al., 2007). In our research PSO is employed for updating the 

ANFIS parameters where ANFIS has two types of parameters which need training that 

is, the antecedent part parameters and the conclusion part parameters. It is assumed 

that the membership functions are Gaussian as given in equation 3.3, and their 

parameters are {𝑎𝑖, 𝑏𝑖, 𝑐𝑖}, where 𝑎𝑖 is the variance of membership functions, 𝑐𝑖 is the 

center of membership functions (MFs) and 𝑏𝑖  is a trainable parameter. The parameters 

{𝑝𝑖, 𝑞𝑖 , 𝑟𝑖} of conclusion part are also trained in our solution. As indicated above there 

are 3 sets of trainable parameters in antecedent part {𝑎𝑖, 𝑏𝑖, 𝑐𝑖} where each of these 

parameters has m particles which represent the number of MFs. The conclusion 

parameters ({𝑝𝑖, 𝑞𝑖, 𝑟𝑖}) are also trained during optimization process. They are also m 

particles, where the fitness is defined as root mean square error (RMSE). In the first 

step the parameters are initialized randomly after which they are updated using PSO 

algorithm depending on the number of iterations. During each iteration the parameters 

sets are being updated according to the fitness function RMSE. This algorithm is as 

represented in the figure 3.2 flowchart. 
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Initialization

START

Evaluate the initial particles to get pbest and gbest

Next iteration t=t+1

Get particle positions

Evaluate updated particles to get new pbest and gbest
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Stopping 
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satisfied?

Get the optimal Fuzzy set values

END

No

Yes

 

Figure 3.2: Modified ANFIS training with PSO flowchart 

The minimum of the fitness function 𝑓(𝑥) = 𝐴𝑁𝐹𝐼𝑆-𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1  for 

the ANFIS structure where N is the total number of data, y is actual target value, and 

�̂� is estimated target value. The membership function parameters are obtained using 

the PSO algorithm with m particles (sets of ANFIS membership function parameters). 

The ANFIS requires 15 parameters since it has 3 MFs with one input. This results to 



66 

15 as the number of parameters that are to be searched for by the PSO. The parameters 

are represented by a1, b1, c1, a2, b2, c2, a3, b3 and c3 as the premise parameters while 

the consequent parameters are given by p1, r1, p2, r2, p3 and r3. 

The m initial positions (membership function parameters) with 15 variables each given 

as; 

𝑥01
𝑡0  =[ 𝑥01

1   𝑥01
2 ………………𝑥01

15]; 

𝑥02
𝑡0  =[ 𝑥02

1   𝑥02
2 ………………𝑥02

15]; 

………… 

𝑥𝑚
𝑡0 =[ 𝑥𝑚

1   𝑥𝑚
2 ………………𝑥𝑚

15]; 

and are to be applied as indicated in the description that follows. 

Using the particles with initial positions above the detailed computations for iterations 

1, 2 and 1000 are analyzed starting with step 1. 

Step1: choose the number of particles: 𝑥01, 𝑥02, ….., 𝑥𝑚 

The initial population (i.e., the iteration number t=𝑡0) can be represented as 𝑥𝑖
𝑡0 . 𝑖 =

1,2, … . , 𝑚: 

𝑥01
𝑡0  =[ 𝑥01

1   𝑥01
2 ………………𝑥01

15]; 

𝑥02
𝑡0  =[ 𝑥02

1   𝑥02
2 ………………𝑥02

15]; 

………… 

𝑥𝑚
𝑡0 =[ 𝑥𝑚

1   𝑥𝑚
2 ………………𝑥𝑚

15]; 

Evaluate the objective function values as  𝑓(𝑥) = 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1  

For 𝑓01
𝑡0 substituting the 𝑥01

𝑡0  = [ 𝑥01
1   𝑥01

2 ………………𝑥01
15] membership function 

parameters into the FIS in APPENDIX I the RMSE value is obtained. 

𝑓(𝑥01
𝑡0 ) = 𝑅𝑀𝑆𝐸

𝑥01
𝑡0 = √

1

𝑁
∑(𝑦𝑗 − 𝑦�̂�)

2
𝑁

𝑗=1
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Use the same objective function for  𝑓02
𝑡0  substituting the 𝑥02

𝑡0   membership function 

parameters to obtain the RMSE output.      

𝑓(𝑥02
𝑡0 ) = 𝑅𝑀𝑆𝐸

𝑥02
𝑡0 = √

1

𝑁
∑(𝑦𝑗 − 𝑦�̂�)

2
𝑁

𝑗=1

,  

………. 

The process is repeated for all the m sets of parameters where for 𝑓𝑚
𝑡0 substituting the 

𝑥𝑚
𝑡0 membership function parameters the RMSE for 𝑥𝑚

𝑡0 parameters is obtained.      

𝑓(𝑥𝑚
𝑡0) = 𝑅𝑀𝑆𝐸

𝑥𝑚
𝑡0 = √

1

𝑁
∑(𝑦𝑗 − 𝑦�̂�)

2
𝑁

𝑗=1

,  

Let 𝑐1 = 2 and 𝑥2 = 2; 

Set the initial velocities of each particle to zero: 

𝑣𝑖
𝑡0 = 0, 𝑖. 𝑒. 𝑣1

𝑡0 = 𝑣2
𝑡0 = ⋯ = 𝑣𝑚

𝑡0 = 0  

𝑣01
𝑡0=[0 0 … 0]; 𝑣02

𝑡0=[0 0 … 0]; …. 𝑣𝑚
𝑡0=[0 0… 0]; 

Step 2: Set the iteration number as 𝑡1 and go to step 3 

Step 3: Find the personal best for each particle by 

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡1 = {

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡0 if 𝑓𝑖

𝑡1 > 𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡0

𝑥𝑖
𝑡1 if 𝑓𝑖

𝑡1 ≤ 𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡0

}, 

So, 

𝑃𝑏𝑒𝑠𝑡,01
𝑡1  =[𝑥01

𝑡1,1
  𝑥01

𝑡1,2
………………𝑥01

𝑡1,15
]; 

𝑃𝑏𝑒𝑠𝑡,02
𝑡1  =[𝑥02

𝑡1,1
  𝑥02

𝑡1,2
………………𝑥02

𝑡1,15
]; 

………… 

𝑃𝑏𝑒𝑠𝑡,𝑚
𝑡1  =[𝑥𝑚

𝑡1,1
  𝑥𝑚

𝑡1,2
………………𝑥𝑚

𝑡1,15
]; 

Step 4: Find the global best by using 
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𝐺𝑏𝑒𝑠𝑡
𝑡1 = min{𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡1 } where 𝑖 = 1,2, … ,𝑚.   

Step 5: Considering the random numbers in the range (0,1) as 

𝑟1
𝑡0 and 𝑟2

𝑡0 and find the velocities of the particles by 

𝑣𝑖
𝑡1 = 𝑤 ∗ (𝑣𝑖

𝑡0 + 𝑐1𝑟1
𝑡0[𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡0 − 𝑥𝑖
𝑡0] + 𝑐2𝑟2

𝑡0[𝐺𝑏𝑒𝑠𝑡,𝑖
𝑡0 − 𝑥𝑖

𝑡0]); 𝑖 = 1,… ,𝑚  

Where w is the inertia coefficient and taken as 1 while wdamp is the damping ratio of 

the inertia coefficient taken 0.99. 

So  

𝑣01
𝑡1 = 𝑤 ∗ (𝑣01

𝑡0 + 𝑐1𝑟1
𝑡0[𝑃𝑏𝑒𝑠𝑡,01

𝑡0 − 𝑥01
𝑡0 ] + 𝑐2𝑟2

𝑡0[𝐺𝑏𝑒𝑠𝑡,01
𝑡0 − 𝑥01

𝑡0 ]); 

𝑣02
𝑡1 = 𝑤 ∗ (𝑣02

𝑡0 + 𝑐1𝑟1
𝑡0[𝑃𝑏𝑒𝑠𝑡,02

𝑡0 − 𝑥02
𝑡0 ] + 𝑐2𝑟2

𝑡0[𝐺𝑏𝑒𝑠𝑡,02
𝑡0 − 𝑥02

𝑡0 ]); 

….. 

𝑣𝑚
𝑡1 = 𝑤 ∗ (𝑣𝑚

𝑡0 + 𝑐1𝑟1
𝑡0[𝑃𝑏𝑒𝑠𝑡,𝑚

𝑡0 − 𝑥𝑚
𝑡0] + 𝑐2𝑟2

𝑡0[𝐺𝑏𝑒𝑠𝑡,𝑚
𝑡0 − 𝑥𝑚

𝑡0]); 

Setting minimum velocity and maximum velocity  

 

Step 6: Find the new values of 𝑥𝑖
𝑡1 , 𝑖 = 1,… ,𝑚 by taking 

 𝑥𝑖
𝑡1 = 𝑥𝑖

𝑡0 + 𝑣𝑖
𝑡1 

So 

𝑥01
𝑡1 = 𝑥01

𝑡0 + 𝑣01
𝑡1  

𝑥02
𝑡1 = 𝑥02

𝑡0 + 𝑣02
𝑡1  

…. 

𝑥𝑚
𝑡1 = 𝑥𝑚

𝑡0 + 𝑣𝑚
𝑡1 

Set minimum position as the lowest value and maximum position as maximum value. 

Step 7: Evaluate the objective function values of  𝑓(𝑥01
𝑡1 ) to 𝑓(𝑥𝑚

𝑡1) that is obtain the 

RMSE for the other sets of membership function parameters by applying them into the 

FIS structure. 
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Step 8: Stopping criterion: 

If the terminal rule is not satisfied, go to step 2, 

Otherwise, stop the iteration and output the results. 

……. 

Step2: Set the iteration number as 𝑡999, then go to step 3. 

Step3: Find the personal best for each particle. 

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡999 = {

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡998 if 𝑓𝑖

𝑡999 > 𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡998

𝑥𝑖
𝑡999 if 𝑓𝑖

𝑡999 ≤ 𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡998

}, 

𝑃𝑏𝑒𝑠𝑡,01
𝑡999  =[𝑥01

𝑡999 ,1
  𝑥01

𝑡999 ,2
………………𝑥01

𝑡999 ,15
]; 

𝑃𝑏𝑒𝑠𝑡,02
𝑡999  =[𝑥02

𝑡999 ,1
  𝑥02

𝑡999 ,2
………………𝑥02

𝑡999 ,15
]; 

………… 

𝑃𝑏𝑒𝑠𝑡,𝑚
𝑡999  =[𝑥𝑚

𝑡999,1
  𝑥𝑚

𝑡999 ,2
………………𝑥𝑚

𝑡999 ,15
]; 

Step 4: find the global best 

𝐺𝑏𝑒𝑠𝑡
𝑡999 = min{𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡999 } where 𝑖 = 1,2, … ,𝑚. 

Step 5: By considering the random numbers in the range (0,1) as 𝑟1
𝑡999  and 𝑟2

𝑡999  and 

find the velocities of the particle by 

𝑣𝑖
𝑡1000 = 𝑤 ∗ (𝑣𝑖

𝑡999 + 𝑐1𝑟1
𝑡999[𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡999 − 𝑥𝑖
𝑡999] + 𝑐2𝑟2

𝑡999[𝐺𝑏𝑒𝑠𝑡,𝑖
𝑡999 − 𝑥𝑖

𝑡999]); 𝑖 = 1,… ,𝑚  

So  

𝑣01
𝑡1000 = 𝑤 ∗ (𝑣01

999 + 𝑐1𝑟1
999[𝑃𝑏𝑒𝑠𝑡,01

999 − 𝑥01
999] + 𝑐2𝑟2

𝑡999[𝐺𝑏𝑒𝑠𝑡,01
999 − 𝑥01

999]);  

𝑣02
𝑡1000 = 𝑤 ∗ (𝑣02

999 + 𝑐1𝑟1
𝑡999[𝑃𝑏𝑒𝑠𝑡,02

999 − 𝑥02
999] + 𝑐2𝑟2

999[𝐺𝑏𝑒𝑠𝑡,02
999 − 𝑥02

999]);  

…….. 

𝑣𝑚
𝑡1000 = 𝑤 ∗ (𝑣𝑚

999 + 𝑐1𝑟1
𝑡999[𝑃𝑏𝑒𝑠𝑡,𝑚

999 − 𝑥𝑚
999] + 𝑐2𝑟2

999[𝐺𝑏𝑒𝑠𝑡,𝑚
999 − 𝑥𝑚

999]);  

Set minimum velocity and maximum velocity  
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Step 6: Find the new values of 𝑥𝑖
𝑡1000  , 𝑖 = 1,… ,𝑚 by 

𝑥𝑖
𝑡1000 = 𝑥𝑖

𝑡999 + 𝑣𝑖
𝑡1000  

So 

𝑥01
𝑡1000 = 𝑥01

𝑡999 + 𝑣01
𝑡1000  

𝑥02
𝑡1000 = 𝑥02

𝑡999 + 𝑣02
𝑡1000  

…. 

𝑥𝑚
𝑡1000 = 𝑥𝑚

𝑡999 + 𝑣𝑚
𝑡1000  

Set the minimum position value and maximum position value. 

Step 7: Evaluate the objective function 𝑓(𝑥01
𝑡1000) up to 𝑓(𝑥𝑚

𝑡1000) for the 𝑡1000 iteration 

by substituting the 𝑥01
𝑡1000  to 𝑥𝑚

𝑡1000  values of the membership function parameters into 

the FIS structure. This will result to RMSE𝑡1000
 values from which the minimum RMSE 

value is picked to obtain the required best RMSE value.  

Step 8: Stopping criterion: 

If the terminal rule is not satisfied, go to step 2, otherwise stop the iteration, and output 

the results. 

Finally, the values 𝑥𝑖
𝑡1000  , 𝑖 = 1, … , 𝑚 did not converge, but the requirement to stop at 

iteration 𝑡1000 is reached. If the iterations continue, convergence is reached when the 

positions of all particles converge to similar values, then the method has converged 

and the corresponding values of 𝑥𝑖
𝑡𝑡  are the optimum solution. Therefore, the iterative 

process is stopped due to the requirement that it stops at iteration 𝑡1000. This gives an 

optimum solution of training and testing RMSE. The final best particle position, that 

is, the final global particle position gives the best membership function parameters for 

the best performing ANFIS in terms of training and testing input distance and output 

RSSI. The obtained optimum premise and consequent parameters are applied in figure 

3.1 to give the predicted wireless signal RSSI. 
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3.6 Development of equivalent theoretical ANFIS based models  

These models were developed using original ANFIS, modified ANFIS that is 

LOG10D-ANFIS and PSO trained modified ANFIS that is LOG10D-PSO-ANFIS for 

one slope, dual-slope, multi-wall, average-wall, COST231, COST231-Hata, Hata-

Okumura and Two-ray ground reflection models. Starting with the original ANFIS 

trained with hybrid algorithm of gradient descent and back propagation, the RMSE, 

ME, and SD are obtained. The same parameters are obtained using the modified 

ANFIS trained with the hybrid algorithm. Similarly, this was done for the modified 

ANFIS trained using the PSO algorithm. The parameters were then compared to obtain 

the most accurate model in relation wireless signal propagation modelling. 

3.7 The novel universal theoretical model based on PSO trained 

LOG10DANFIS with distance as input  

This is the modified ANFIS with the logarithm to base 10 operator with a single input. 

It requires only 15 parameters for an ANFIS with 3 membership functions. The 

required parameters are obtained by multiplying the 9 premise parameters by 1 input 

added to 2 consequent parameters multiplied by the 3 rules. This forms the developed 

novel universal model whose corresponding representation is given in figure 3.3 that 

is similar to figure 3.1 the difference being that PSO has been used to update the 

parameters.   

A1

A2

TT

TT

N

N

Layer 1

Layer 2

Layer 3 Layer 4

Layer 5

x W1

W2

z

x

x

W1 Z1

W2 Z2

W1 

W2

LOG
10

LOG
10

LOG
10

Layer 6

PSO generated p and r 
consequent parameters 

PSO generated a, b and c 
premise parameters 

Distance

A3
TT N

W3
W3 W3 Z3

Figure 3.3: PSO trained ANFIS structure with one input distance 
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Figure 3.3 represents the ANFIS based developed universal model. Using the modified 

ANFIS PSO trained model, the individual membership parameters for each model are 

obtained through the training process. Each of the obtained membership parameters 

can then be applied to a single ANFIS model depending on the application of its 

application. Figure 3.4 shows the block diagram representation of the universal model. 

The model can be used for all environments and all frequencies. The membership 

function parameters for each original model to be used are as given below. 

PSO Trained LOG10D 

ANFIS

OSM 

Parameters

COST231

Parameters

HATA-

OKOMURA

Parameters

Input distance

Output RSSI

 

Figure 3.4: PSO trained modified ANFIS universal model block diagram 

m= input ('membership functions = '); 

One slope model (osm) membership functions 

mosm=[osmm1 osmm2 osmm3 osmm4 osmm5 osmm6 osmm7 osmm8 osmm9 osmm10 osmm11 

osmm12 osmm13 osmm14 osmm15]; 

Dual slope model (dsm) membership functions 

mdsm=[dsmm1 dsmm2 dsmm3 dsmm4 dsmm5 dsmm6 dsmm7 dsmm8 dsmm9 dsmm10 dsmm11 

dsmm12 dsmm13 dsmm14 dsmm15]; 

Multi-wall model (mwm) membership functions 

mmwm=[mwmm1 mwmm2 mwmm3 mwmm4 mwmm5 mwmm6 mwmm7 mwmm8 mwmm9 

mwmm10 mwmm11 mwmm12 mwmm13 mwmm14 mwmm15]; 

Hata-Okomura-Rural model (horm) membership functions 

mhorm=[hormm1 hormm2 hormm3 hormm4 hormm5 hormm6 hormm7 hormm8 hormm9 

hormm10 hormm11 hormm12 hormm13 hormm14 hormm15]; 
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Hata-Okomura-suburban model membership functions 

mhosm=[hosmm1 hosmm2 hosmm3 hosmm4 hosmm5 hosmm6 hosmm7 hosmm8 hosmm9 

hosmm10 hosmm11 hosmm12 hosmm13 hosmm14 hosmm15]; 

Hata-Okomura-urban model membership functions 

mhoum=[houmm1 houmm2 houmm3 houmm4 houmm5 houmm6 houmm7 houmm8 houmm9 

houmm10 houmm11 houmm12 houmm13 houmm14 houmm15]; 

COST231-Hata-metropolitan model membership functions 

mchmm=[chmmm1 chmmm2 chmmm3 chmmm4 chmmm5 chmmm6 chmmm7 chmmm8 

chmmm9 chmmm10 chmmm11 chmmm12 chmmm13 chmmm14 chmmm15]; 

COST231-Hata-suburban model membership functions 

mchsm=[chsmm1 chsmm2 chsmm3 chsmm4 chsmm5 chsmm6 chsmm7 chsmm8 chsmm9 

chsmm10 chsmm11 chsmm12 chsmm13 chsmm14 chsmm15]; 

COST231 model membership functions 

mcm=[cmm1 cmm2 cmm3 cmm4 cmm5 cmm6 cmm7 cmm8 cmm9 cmm10 cmm11 cmm12 cmm13 

cmm14 cmm15]; 

Two-ray ground reflection model membership functions 

mtrgrm=[trgrmm1 trgrmm2 trgrmm3 trgrmm4 trgrmm5 trgrmm6 trgrmm7 trgrmm8 trgrmm9 

trgrmm10 trgrmm11 trgrmm12 trgrmm13 trgrmm14 trgrmm15]; 

3.8 Development of an ANFIS based model (LOG10D-PSO-R-ANFIS) to 

predict measured RSSI.  

For the prediction of real field data, the PSO trained modified ANFIS with random 

input was used. The process started with taking measurements along a corridor where 

a Wi-Fi router was taken as a transmitter while a phone was used as the receiver as 

indicated under experimental setup section. The measured RSSI values were recorded 

and used with the practical based model. These values were then used to give the range 

of the possible RSSI values to be generated by the model. Formulation of the practical 

based model was done in terms the modified ANFIS with two inputs and its 

corresponding PSO training process. The random RSSI values to be used with the 

modified ANFIS are generated using the PSO algorithm during the training process.  
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Continuous wave measurements for practical RSSI modelling 

For this experimental setup, a Wi-Fi router and a Wi-Fi enabled mobile device were 

used. The mobile device distance was varied from 1m to 42m along a corridor. The 

42m distance was used because it was the size of the corridor where the measurements 

took place. In this study, the measurement equipment consisted of a transmitter and a 

receiver. The narrow band continuous wave (CW) transmitter, which was transmitting 

at a specific frequency, was used together with the receiving mobile device. The 

obtained data is to be used to come up with a model that simulates the real RSSI in a 

given environment. In this case the setup was done in a corridor as represented in figure 

3.5 to figure 3.7. 

Experimental setup for practical measurement of RSSI 

Figure 3.5 is a graphic representation of the experimental setup to facilitate the 

collection of practical RSSI signal data whereas figures 3.6 and 3.7 are picture 

representations showing the devices and tools used in the setup.   

Distance in metres

Router 

Mobile phone

 

Figure 3.5: Diagram of the experimental Set-up 

 

Figure 3.6: Image for the experimental Set-up  
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Figure 3.7: Image for the experimental Set-up in a corridor 

The steps for carrying out the experiment are as follows; 

i. A tape measure was used to measure a distance of 42m that was subdivided 

into 42 points each 1m apart. 

ii. The Wi-Fi enabled mobile device was manually moved metre by metre away 

from the router and took the readings for every 1m to 42m. 

3.8.1 Formulation of the modified ANFIS and random input 

In this section the step-by-step formulation of the modified ANFIS with a random 

input is undertaken from layer 1 to layer 6. In this case the total number of parameters 

to be considered is forty-five as obtained from 9 by 2 plus 3 by 9 where the first 9 is 

the number of premise parameters per input, 2 is the number of inputs, 3 is the number 

of consequent parameters per rule while 9 is the number of rules. Figure 3.8 shows a 

hybrid trained modified ANFIS structure with two inputs where one of the inputs is 

the PSO generated random input. 
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Figure 3.8: Hybrid trained modified ANFIS structure with two inputs 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10𝑥 + 𝑞1𝑦 + 𝑟1, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10𝑥 + 𝑞2𝑦 + 𝑟2, 

x=distance, y=random input and z=RSSI 

R is a random input which also shows the adaptability of the system-output 

modelled to vary according to the R random input 

Two inputs with 3 MFs based on the analysis below. 

Taking arbitrary values of distance x, random RSSI y, ai, bi and ci as; 

For A; 

[a1 b1 c1] 

[a2 b2 c2]  

[a3 b3 c3] 

For B; 

[a1 b1 c1] 

[a2 b2 c2]  
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[a3 b3 c3] 

and pi, qi and ri as; 

[p1 q1 r1] 

[p2 q2 r2] 

[p3 q3 r3] 

[p4 q4 r4] 

[p5 q5 r5] 

[p6 q6 r6] 

[p7 q7 r7] 

[p8 q8 r8] 

[p9 q9 r9] 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥) + 𝑞1𝑦 + 𝑟1, 

𝐼𝑓 𝑙𝑜𝑔10(𝑥)𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐1

𝑎1
)
2

]
𝑏1

} 𝑎𝑛𝑑 𝑦 𝑖𝑠 exp {− [(
𝑦−𝑐1

𝑎1
)
2

]
𝑏1

},

 𝑡ℎ𝑒𝑛 𝑧1 =  𝑝1𝑙𝑜𝑔10(𝑥) + 𝑞1𝑦 + 𝑟1, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑞2𝑦 + 𝑟2, 

𝑅𝑢𝑙𝑒 3: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝3𝑙𝑜𝑔10(𝑥) + 𝑞3𝑦 + 𝑟3, 

𝑅𝑢𝑙𝑒 4: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧4 = 𝑝4𝑙𝑜𝑔10(𝑥) + 𝑞4𝑦 + 𝑟4, 

𝑅𝑢𝑙𝑒 5: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧5 = 𝑝5𝑙𝑜𝑔10(𝑥) + 𝑞5𝑦 + 𝑟5, 

𝑅𝑢𝑙𝑒 6: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧6 = 𝑝6𝑙𝑜𝑔10(𝑥) + 𝑞6𝑦 + 𝑟6, 

𝑅𝑢𝑙𝑒 7: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧7 = 𝑝7𝑙𝑜𝑔10(𝑥) + 𝑞7𝑦 + 𝑟7, 

𝑅𝑢𝑙𝑒 8: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧8 = 𝑝8𝑙𝑜𝑔10(𝑥) + 𝑞8𝑦 + 𝑟8, 

𝑅𝑢𝑙𝑒 9: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧9 = 𝑝9𝑙𝑜𝑔10(𝑥) + 𝑞9𝑦 + 𝑟9, 



78 

Layer 1 (Fuzzy Layer):  

𝑂𝑖
1 = 𝑓(𝑙𝑜𝑔10(𝑥), 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)) =

1

1+|(𝑙𝑜𝑔10(𝑥)−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
  

  𝜇 𝐴𝑖(𝑙𝑜𝑔10(𝑥)) = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}   

𝜇 𝐵𝑖(𝑦) = exp {− [(
𝑦 − 𝑐𝑖

𝑎𝑖
)
2

]

𝑏𝑖

} 

  𝐴 1 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐1

𝑎1
)
2

]
𝑏1

}        

    𝐴 2 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐2

𝑎2
)
2

]
𝑏2

}    

𝐴 3 = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐3

𝑎3
)
2

]
𝑏3

}    

𝐵 1 = exp {− [(
𝑦−𝑐1

𝑎1
)
2

]
𝑏1

}         

𝐵 2 = exp {− [(
𝑦−𝑐2

𝑎2
)
2

]
𝑏2

}    

𝐵 3 = exp {− [(
𝑦−𝑐3

𝑎3
)
2

]
𝑏3

}    

Layer 2 (Product Layer):  

𝑤𝑖 = 𝑂𝑖
2 = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2     

𝑤1 = 𝜇𝐴1(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵1(𝑦), 

𝑤1 = 𝐴1. 𝐵1 

𝑤2 = 𝐴1. 𝐵2 

𝑤3 = 𝐴1. 𝐵3 

𝑤4 = 𝐴2. 𝐵1 

𝑤5 = 𝐴2. 𝐵2 

𝑤6 = 𝐴2. 𝐵3 

𝑤7 = 𝐴3. 𝐵1 
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𝑤8 = 𝐴3. 𝐵2 

𝑤9 = 𝐴3. 𝐵3 

Layer 3 (Normalized Layer):  

�̅�𝑖 = 𝑂𝑖
3 =

𝑤𝑖

𝑤1+𝑤2+⋯+𝑤9
 , 𝑖 = 1, … . , 9,    

�̅�1=
𝑤1

𝑤1+⋯+𝑤9
 

�̅�2=
𝑤2

𝑤1+⋯+𝑤9
 

�̅�3=
𝑤3

𝑤1+⋯+𝑤9
 

�̅�4=
𝑤4

𝑤1+⋯+𝑤9
 

�̅�5=
𝑤5

𝑤1+⋯+𝑤9
 

�̅�6=
𝑤6

𝑤1+⋯+𝑤9
 

�̅�7=
𝑤7

𝑤1+⋯+𝑤9
 

�̅�8=
𝑤8

𝑤1+⋯+𝑤9
 

�̅�9=
𝑤9

𝑤1+⋯+𝑤9
 

Layer 4 (Defuzzify Layer):  

�̅�𝑖𝑧𝑖 = 𝑂𝑖
4 = �̅�𝑖(𝑝𝑖𝑙𝑜𝑔10(𝑥) + 𝑞𝑖𝑦 + 𝑟𝑖)     

 �̅�1𝑧1 = �̅�1(𝑝1𝑙𝑜𝑔10(𝑥) + 𝑞1𝑦 + 𝑟1), 

�̅�2𝑧2 = �̅�2(𝑝2𝑙𝑜𝑔10(𝑥) + 𝑞2𝑦 + 𝑟2) 

�̅�3𝑧3 = �̅�3(𝑝3𝑙𝑜𝑔10(𝑥) + 𝑞3𝑦 + 𝑟3) 

�̅�4𝑧4 = �̅�4(𝑝4𝑙𝑜𝑔10(𝑥) + 𝑞4𝑦 + 𝑟4) 

�̅�5𝑧5 = �̅�5(𝑝5𝑙𝑜𝑔10(𝑥) + 𝑞5𝑦 + 𝑟5) 

�̅�6𝑧6 = �̅�6(𝑝6𝑙𝑜𝑔10(𝑥) + 𝑞6𝑦 + 𝑟6) 

�̅�7𝑧7 = �̅�7(𝑝7𝑙𝑜𝑔10(𝑥) + 𝑞7𝑦 + 𝑟7) 
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�̅�8𝑧8 = �̅�8(𝑝8𝑙𝑜𝑔10(𝑥) + 𝑞8𝑦 + 𝑟8) 

�̅�9𝑧9 = �̅�9(𝑝9𝑙𝑜𝑔10(𝑥) + 𝑞9𝑦 + 𝑟9)    

Layer 5 (Total Output Layer):  

𝑧 = ∑ �̅�𝑖𝑧𝑖𝑖 = 𝑂𝑖
5 =

∑ 𝑤𝑖𝑖 𝑧𝑖

∑ 𝑤𝑖𝑖
 = 

𝑤1𝑧1+⋯+𝑤9𝑧9

𝑤1+⋯+𝑤9
= �̅�1𝑧1 + ⋯+ �̅�9𝑧9 

3.8.2 Formulation of PSO trained LOG10DANFIS with distance and PSO 

generated random RSSI as inputs 

Using PSO to obtain the random input together with ANFIS membership function 

parameters that best approximate the measured values. The minimum of the function 

𝑓(𝑥) = 𝐴𝑁𝐹𝐼𝑆-𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑗 − 𝑦�̂�)

2𝑁
𝑗=1  for the following ANFIS with 

membership function parameters x within the range of 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥 using the PSO 

algorithm with m particles (m sets of random inputs and m sets of ANFIS membership 

function parameters) are obtained. The given ANFIS requires 45 parameters since it 

has 3 MFs with two inputs. R random inputs are also required since there are R distance 

points. The two result to 45+R as the number of variables that are to be searched for 

by PSO.  where N is the total number of data, y is actual target value, and �̂� is estimated 

target value. The following represent the formulation for the same. The parameters are 

represented by a1, b1, c1, a2, b2, c2, a3, b3 and c3 as the premise parameters for both 

inputs distance and RSSI while the consequent parameters are given by p1 to p9, q1 to 

q9 and r1 to r9 together with the R random inputs representing the random RSSI inputs. 

The other steps are like those discussed in section 3.5 where the parameter 15 is 

replaced by 45+R as the number of parameters to be searched for by ANFIS. 
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CHAPTER FOUR 

RESULTS, ANALYSIS AND DISCUSSION 

4.1 Introduction  

This section gives tabular and graphical representations comparing the performance of 

ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS for the one slope, dual-slope, 

multi-wall, average-wall, COST231, COST231-Hata, Hata-Okumura, one slope with 

random input and Two-ray ground reflection models. Their performance regarding the 

measured RSSI is also done as well as the performance of LOG10D-PSO-R-ANFIS 

practical model where a random variable is introduced at the input. The comparison is 

done based on 100 and 1000 data-points where considerable error difference is noted 

for the cases. The RMSE, ME and SD are the main selected parameters used to show 

the differences where the RMSE values show clear differences. The parameters which 

define the ANFIS based models are also tabulated in different tables for each model. 

For 100 data points the LOG10D-ANFIS generally performs slightly better than 

LOG10D-PSO-ANFIS whereas for 1000 data points LOG10D-PSO-ANFIS performs 

so well than LOG10D-ANFIS in both training and testing errors which are both in the 

range of exponent -14 as compared to exponent -7 for 100 data points. This is because 

a higher number of data points results to a smoother curve effectively leading to lower 

errors based on Nyquist sampling theorem. ANFIS error generally increases with 

increase in number of data points since ANFIS is based on linear modelling where the 

output is represented using a straight-line equation y=mx+c that is z=px+r translating 

to RSSI=p*distance+r for a single input. The separation between any two points is 

linear for lower data points which results to lower errors. This applies to all the 

analyzed models except the dual slope model which has breakpoint that interferes with 

the smoothness of the curve. The ANFIS parameters generated for each model are used 

to obtain the universal model based on the modified ANFIS trained using the PSO 

algorithm (LOG10D-PSO-ANFIS). The performance of LOG10D-PSO-ANFIS 

universal theoretical model is compared with that of radial basis function (RBF) neural 

network model trained with particle swarm optimization (PSO) algorithm, MLP-NN 

and RBF-NN models where it is found to outperform these other models.  
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4.2 Performance comparison for one slope ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models  

This section gives the results generated for the theoretical one slope model in relation 

to the ordinary ANFIS, LOG10DANFIS being the modified ANFIS and LOG10D-

PSO-ANFIS also based on the modified ANFIS with 6 layers.  

Table 4.1: Training performance comparison between One Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.1952 0.1672 0.1014 

LOG10D-ANFIS 2.6987e-05 2.2827e-05 1.4503e-05 

LOG10D-PSO-ANFIS 2.7207e-05 2.6931e-05 1.9740e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.3180 0.2315 0.2183 

LOG10D-ANFIS 1.1652e-07 7.6010e-08 8.8374e-08 

LOG10D-PSO-ANFIS 4.7379e-15 2.9535e-15 3.7074e-15 

Table 4.2: Testing performance comparison between One Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.2933 0.1970 0.2207 

LOG10D-ANFIS 2.5055e-05 2.0111e-05 1.5175e-05 

LOG10D-PSO-ANFIS 2.2893e-05 2.7863e-05 1.7432e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.3146 0.2302 0.2148 

LOG10D-ANFIS 1.1637e-07 7.5947e-08 8.8309e-08 

LOG10D-PSO-ANFIS 4.7169e-15 2.9126e-15 3.7158e-15 

Table 4.3: One Slope LOG10D-PSO-ANFIS RSSI prediction model premise and 

consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS -30.4042 -44.4841 -17.1511   -39.8081 -19.3858 

 -21.2635 -16.4371 -23.2478 -20.0000 -12.0442 

 -26.6433 -33.4410 -12.9429 -38.4691 -22.6328 

For 100 data points the LOG10D-ANFIS performs slightly better for training and 

lower for testing than LOG10D-PSO-ANFIS with training RMSE of 2.6987e-05 and 
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2.7207e-05 and testing RMSE of 2.5055e-05 and 2.2893e-05 respectively whereas for 

1000 data points LOG10D-PSO-ANFIS performs so well than LOG10D-ANFIS in 

both training and testing errors with training RMSE given as 1.1652e-07 and 4.7379e-

15 and testing RMSE as 1.1637e-07 and 4.7169e-15 respectively. Both LOG10D-

ANFIS and LOG10D-PSO-ANFIS perform far better than ordinary ANFIS which has 

training RMSE of 0.1952 and testing RMSE of 0.2933 for 100 data points and 0.3180 

and 0.3146 for 1000 data points as shown in tables 4.1 and 4.2. Table 4.3 shows the 

One Slope D LOG10D-PSO-ANFIS RSSI prediction model premise (a, b and c) and 

consequent (p and r) parameters after training. The corresponding plots are as shown 

in figures 4.1 to 4.3. 

            

(a) 100 data points      (b) 1000 data points 

Figure 4.1: OSM and ANFIS training and testing 

 

(a) 100 data points      (b) 1000 data points 

Figure 4.2: OSM ANFIS, LOG10D-ANFIS & LOG10D-PSO-ANFIS training 

and testing errors 
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(a) 100 data points     (b) 1000 data points 

Figure 4.3: OSM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.1 shows the training and testing comparison between the one slope model and 

the ordinary ANFIS where it can be noted that the two have a difference in terms of 

their RSSI being an indication that the ordinary ANFIS does not perform well in 

approximating the one slope model. Figure 4.2 is about the graphical comparison 

between the training and testing errors of the one slope ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS both of which are based on the modified ANFIS. It is noted 

that the two models that are based on LOG10D outperform the ordinary ANFIS since 

the two appear to be at a constant value zero while the ones for ANFIS vary from -4 

to 2 dBm. Figure 4.3 shows the relation between the one slope LOG10D-ANFIS and 

LOG10D-PSO-ANFIS training and testing errors where the latter performs much 

better compared to the former since its errors are much lower for both 100 and 1000 

data points with the ones for 1000 data points tending to zero as indicated in figure 4.3 

(b).  
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4.3 Performance comparison for dual Slope ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models 

Table 4.4: Training performance comparison between Dual Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.1855 0.1577 0.0984 

LOG10D-ANFIS 3.1707e-05 2.6958e-05 1.6816e-05 

LOG10D-PSO-ANFIS 0.0397 0.0306 0.0256 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.1070 0.0809 0.0702 

LOG10D-ANFIS 9.0216e-06 6.1048e-06 6.6473e-06 

LOG10D-PSO-ANFIS 0.0578 0.0470 0.0337 

Table 4.5: Testing performance comparison between Dual Slope ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.2569 0.1794 0.1867 

LOG10D-ANFIS 3.0562e-05 2.6341e-05 1.5739e-05 

LOG10D-PSO-ANFIS 0.0407 0.0310 0.0267 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.1062 0.0804 0.0695 

LOG10D-ANFIS 9.1051e-06 6.1125e-06 6.7585e-06 

LOG10D-PSO-ANFIS 0.0577 0.0469 0.0336 

Table 4.6: Dual Slope LOG10D-ANFIS RSSI prediction models premise and 

consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-ANFIS 0.1319  3.029 0.652 -20  -12.04 

0.1214  3.242 1.391 -20  -12.04 

0.2256  4.11 3.572 -20  20 

In the case of DSM, 100 data points, the LOG10D-ANFIS performs quite well for both 

training and testing than LOG10D-PSO-ANFIS with training RMSE of 3.1707e-05 

and 0.0397 and testing RMSE of 3.0562e-05 and 0.0407 respectively whereas for 1000 
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data points LOG10D- ANFIS still performs better than LOG10D-PSO-ANFIS in both 

training and testing errors with training RMSE given as 9.0216e-06 and 0.0578 and 

testing RMSE as 9.1051e-06 and 0.0577 respectively. Both LOG10D-ANFIS and 

LOG10D-PSO-ANFIS perform far better than ordinary ANFIS which has training 

RMSE of 0.1855 and testing RMSE of 0.2569 for 100 data points and 0.1070 and 

0.1062 for 1000 data points as shown in tables 4.4 and 4.5. Table 4.6 shows the Dual 

Slope LOG10D-ANFIS RSSI prediction model premise (a, b and c) and consequent (p 

and r) parameters after training. The corresponding plots are also as shown in figures 

4.4 to 4.8. 

 

(a) 100 data points     (b) 1000 data points 

Figure 4.4: DSM and ANFIS training and testing 

 

(a) 100 data points     (b) 1000 data points 

Figure 4.5: DSM ANFIS and LOG10D-ANFIS training and testing errors 
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(a) 100 data points     (b) 1000 data points 

Figure 4.6: DSM ANFIS and LOG10D-PSO-ANFIS training and testing errors 

 

(a) 100 data points     (b) 1000 data points 

Figure 4.7: DSM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

 

(a) 100 data points     (b) 1000 data points 

Figure 4.8: DSM ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS training 

and testing errors 
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For the dual slope model, figure 4.4 shows the relation between the training and testing 

performance the dual slope and ordinary ANFIS where it can be noted that the two 

also have a difference in terms of their RSSI being an indication that the ordinary 

ANFIS does not perform well in approximating the dual slope model. Figure 4.5 shows 

the graphical relation between the training and testing errors of the dual slope ANFIS 

and LOG10D-ANFIS while figure 4.6 shows the relation between the one slope 

ANFIS and LOG10D-PSO-ANFIS training and testing errors. Figure 4.7 shows the 

relation between the one slope LOG10D-ANFIS and LOG10D-PSO-ANFIS training 

and testing errors whereas figure 4.8 shows the comparison performance of all the 

three models. From these figures it can be noted that both the LOG10D based models 

perform much better compared to the ordinary ANFIS since their errors are much 

lower for both 100 and 1000 data points as indicated in figure 4.8 where the three are 

compared though the LOG10D-ANFIS performs better than the others because of the 

breakpoint that separates the two slopes.  

4.4 Performance comparison for multi-wall ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models 

Table 4.7: Training performance comparison between Multi-Wall ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.1947 0.1669 0.1012 

LOG10D-ANFIS 2.7580e-05 2.3322e-05 1.4834e-05 

LOG10D-PSO-ANFIS 9.9441e-05 9.4695e-05 3.0583e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.3180 0.2315 0.2183 

LOG10D-ANFIS 7.2909e-08 4.8753e-08 5.4252e-08 

LOG10D-PSO-ANFIS 4.8225e-15 3.2757e-15 3.5419e-15 
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Table 4.8: Testing performance comparison between Multi-Wall ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS  0.2940 0.1969 0.2218 

LOG10D-ANFIS 2.6610e-05 2.3239e-05 1.3164e-05 

LOG10D-PSO-ANFIS 1.0427e-04 1.0087e-04 2.6804e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.3146 0.2302 0.2147 

LOG10D-ANFIS 7.2936e-08 4.8771e-08 5.4314e-08 

LOG10D-PSO-ANFIS 5.0731e-15 3.5954e-15 3.5844e-15 

Table 4.9: Multi-Wall LOG10D-PSO-ANFIS RSSI prediction model premise and 

consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS -40.3386   -38.6915   -22.2768   -50.2905   -32.6188   

-15.7458   -34.2936    -5.2165   -27.1827   -28.2698   

-42.9084   -53.0827   -44.0994   -20.0000   -23.0442 

Based on the MWM, for 100 data points, it is noted that the LOG10D-ANFIS performs 

slightly better for both training and testing than LOG10D-PSO-ANFIS with training 

RMSE of 2.7580e-05 and 9.9441e-05 and testing RMSE of 2.6610e-05 and 1.0427e-

04 respectively while for 1000 data points LOG10D-PSO-ANFIS performs so well 

than LOG10D-ANFIS in both training and testing errors with training RMSE given as 

7.2909e-08 and 4.8225e-15 and testing RMSE as 7.2936e-08 and 5.0731e-15 

respectively as shown in tables 4.7 and 4.8. Table 4.9 shows the Multi-Wall LOG10D-

PSO-ANFIS RSSI prediction model premise (a, b and c) and consequent (p and r) 

parameters after training. The corresponding plots are as shown in figure 4.9. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.9: MWM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.9 shows the relation between the multiwall LOG10D-ANFIS and LOG10D-

PSO-ANFIS training and testing errors where the former performs much better 

compared to the latter for the 100 data points since its errors are much lower. For 1000 

data points it is the opposite where the PSO based model does extremely well 

compared to LOG10D-ANFIS since the errors are tending to zero as indicated in figure 

4.9 (b). This is because there is a smooth relation between the RSSI and distance for 

this model. All the other relations are similar to the ones for the one slope-based 

models in figures 4.1-4.3. 
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4.5 Performance comparison for Okomura Hata ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models  

4.5.1 Rural 

Table 4.10: Training performance comparison between Hata-Okumura Rural 

ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6725 0.4532 0.5005 

LOG10D-ANFIS 2.5953e-05 2.1947e-05 1.3957e-05 

LOG10D-PSO-ANFIS 3.3272e-05 2.7576e-05 1.8757e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.8957 0.8877 1.6762 

LOG10D-ANFIS 7.7492e-07 5.6225e-07 5.3368e-07 

LOG10D-PSO-ANFIS 1.0939e-14 4.3357e-15 1.0051e-14 

Table 4.11: Testing performance comparison between Hata-Okumura Rural 

ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6998 0.4489 0.5452 

LOG10D-ANFIS 2.7269e-05 2.3418e-05 1.4187e-05 

LOG10D-PSO-ANFIS 3.4549e-05 2.7603e-05 2.1100e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.6473 0.8767 1.3967 

LOG10D-ANFIS 7.7502e-07 5.6237e-07 5.3409e-07 

LOG10D-PSO-ANFIS 1.0124e-14 3.7127e-15 9.4326e-15 

Table 4.12: Hata-Okumura Rural LOG10D-PSO-ANFIS RSSI prediction model 

premise and consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS -163.788   -60.7698   -35.9215 -201.0000 -100.424   

-136.453 -140.107 -140.251 -56.0283 -128.388   

-142.263   -69.0993 -55.5749   -46.0372 -200.771 

With the HORM, 100 data points, it is noted that the LOG10D-ANFIS performs better 

for both training and testing than LOG10D-PSO-ANFIS with training RMSE of 
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2.5953e-05 and 3.3272e-05 and testing RMSE of 2.7269e-05 and 3.4549e-05 

respectively than the plain ANFIS while for 1000 data points LOG10D-PSO-ANFIS 

performs so well than LOG10D-ANFIS in both training and testing errors with training 

RMSE given as 7.7492e-07 and 1.0939e-14 and testing RMSE as 7.7502e-07 and 

1.0124e-14 respectively as shown in tables 4.10 and 4.11. Table 4.12 shows the Hata-

Okumura rural LOG10D-PSO-ANFIS RSSI prediction model premise (a, b and c) and 

consequent (p and r) parameters after training. The corresponding plots are as shown 

in figures 4.10 and 4.11. 

 

(a) 100 data points     (b) 1000 data points 

Figure 1 Figure 4.10: HORM ANFIS, LOG10D-ANFIS and LOG10D-PSO-

ANFIS training and testing errors 

 
(a) 100 data points     (b) 1000 data points 

Figure 4.11: HORM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 
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Figure 4.10 shows the graphical contrast between the training and testing errors of the 

Hata-Okomura rural ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS with the 

last two based on the modified ANFIS. From the relations it is noted that the two 

models that are based on the LOG10D outperform the ordinary ANFIS since the two 

appear to be at a constant value zero while the one for ANFIS vary from -3 to 2 dBm. 

Figure 4.11 shows the comparison between the Hata-Okomura rural LOG10D-ANFIS 

and LOG10D-PSO-ANFIS training and testing errors where the PSO based one 

outperforms the former with 1000 data points since its errors are much lower tending 

to zero as indicated in figure 4.11 (b). This is not case with 100 data points since PSO 

seems to perform better for smoother relations with higher sampling frequency. 

4.5.2 Suburban 

Table 4.13: Training performance comparison between Hata-Okumura Sub-

Urban ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6725 0.4534 0.5005 

LOG10D-ANFIS 2.6685e-05 2.0875e-05 1.6747e-05 

LOG10D-PSO-ANFIS 2.9536e-05 2.3413e-05 1.8142e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.8957 0.8877 1.6762 

LOG10D-ANFIS 3.7399e-07 2.4694e-07 2.8109e-07 

LOG10D-PSO-ANFIS 1.3866e-14 6.6261e-15 1.2189e-14 
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Table 4.14: Testing performance comparison between Hata-Okumura Sub-

Urban ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models  

a) 100 data points 

  RMSE ME SD 

ANFIS 0.7000 0.4491 0.5453 

LOG10D-ANFIS 3.2954e-05 2.6878e-05 1.9361e-05 

LOG10D-PSO-ANFIS 3.3516e-05 2.7206e-05 1.9878e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.6473 0.8767 1.3967 

LOG10D-ANFIS 3.7339e-07 2.4707e-07 2.8037e-07 

LOG10D-PSO-ANFIS 1.4631e-14 7.2121e-15 1.2750e-14 

Table 4.15: Hata-Okumura Sub-Urban ANFIS, LOG10D-ANFIS and LOG10D-

PSO-ANFIS RSSI prediction models premise and consequent parameters after 

training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS -153.995  -142.231   -82.0268   -176.1464   -89.6252   

-93.7246   -69.1132 -169.692 -32.9347 -144.297   

-105.704 -122.405 -181.440 -79.1218 -174.266 

For the HOSUM, 100 data points, it is noted that the LOG10D-ANFIS performs better 

for both training and testing than LOG10D-PSO-ANFIS with training RMSE of 

2.6685e-05 and 2.9536e-05 and testing RMSE of 3.2954e-05 and 3.3516e-05 

respectively than the plain ANFIS while for 1000 data points LOG10D-PSO-ANFIS 

performs so well than LOG10D-ANFIS in both training and testing errors with training 

RMSE given as 3.7399e-07 and 1.3866e-14 and testing RMSE as 3.7339e-07 and 

1.4631e-14 respectively as shown in tables 4.13 and 4.14. Table 4.15 shows the Hata-

Okumura sub-urban LOG10D-PSO-ANFIS RSSI prediction model premise (a, b and 

c) and consequent (p and r) parameters after training. The corresponding plots are as 

shown in figure 4.12. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.12: HOSUM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.12 shows the comparison between the Hata-Okomura suburban LOG10D-

ANFIS and LOG10D-PSO-ANFIS training and testing errors where the LOG10D-

ANFIS outperforms the one that is based on PSO for 100 data points. This is quite 

different when it comes to 1000 data points since its errors are much lower where they 

tend to zero as indicated in figure 4.12 (b) where the LOG10D-PSO-ANFIS excels in 

performance due to the smooth relations. 

4.5.3 Urban 

Table 4.16: Training performance comparison between Hata-Okumura Urban 

ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6725 0.4534 0.5005 

LOG10D-ANFIS 2.6128e-05 2.1238e-05 1.5334e-05 

LOG10D-PSO-ANFIS 2.7672e-05 2.2531e-05 1.6186e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.8957 0.8877 1.6762 

LOG10D-ANFIS 3.8101e-07 2.5164e-07 2.8629e-07 

LOG10D-PSO-ANFIS 1.4359e-14 6.9243e-15 1.2589e-14 
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Table 4.17: Testing performance comparison between Hata-Okumura Urban 

ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.7000 0.4491 0.5453 

LOG10D-ANFIS 2.6990e-05 2.3077e-05 1.4214e-05 

LOG10D-PSO-ANFIS 2.6146e-05 2.2886e-05 1.2840e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.6473 0.8767 1.3967 

LOG10D-ANFIS 3.8039e-07 2.5177e-07 2.8558e-07 

LOG10D-PSO-ANFIS 1.4296e-14 6.7000e-15 1.2648e-14 

Table 4.18: Hata-Okumura Urban LOG10D-PSO-ANFIS RSSI prediction model 

premise and consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS -106.865 -233.777  -41.7293     -234.0000   -69.3173   

1.3000 -224.589 -234.000     -48.2855 -145.836  

1.3000 -234.000 -234.000 -63.7711 -177.09 

 

For the HOUM, 100 data points, it is noted that the LOG10D-ANFIS performs better 

for both training and testing than LOG10D-PSO-ANFIS with training RMSE of 

2.6128e-05 and 2.7672e-05 and testing RMSE of 2.6990e-05 and 2.6146e-05 

respectively than the plain ANFIS with training RMSE of 0.6725 and testing RMSE 

of 0.7000 while for 1000 data points LOG10D-PSO-ANFIS performs so well than 

LOG10D-ANFIS in both training and testing errors with training RMSE given as 

3.8101e-07 and 1.4359e-14 and testing RMSE as 3.8039e-07 and 1.4296e-14 

respectively as compared to the plain ANFIS with training RMSE of 1.8957 and testing 

RMSE of 1.6473 as shown in tables 4.16 and 4.17. Table 18 shows the Hata-Okumura 

urban LOG10D-PSO-ANFIS RSSI prediction model premise (a, b and c) and 

consequent (p and r) parameters after training. The corresponding plots are as shown 

in figures 4.13. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.13: HOUM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.13 shows the comparison between the Hata-Okomura urban LOG10D-

ANFIS and LOG10D-PSO-ANFIS training and testing errors where both have a 

similar performance for 100 data points. This changes when it comes to 1000 data 

points since its errors are much closer to zero as indicated in figure 4.13 (b) where the 

LOG10D-PSO-ANFIS performs very well with up to 10-14 RMSE values due to the 

smooth relations. 

4.6 Performance comparison for COST231-Hata ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models  

4.6.1 Metropolitan 

Table 4.19: Training performance comparison between COST231-HATA 

Metropolitan ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI 

prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6725 0.4536 0.5002 

LOG10D-ANFIS 3.0203e-05 2.6627e-05 1.4362e-05 

LOG10D-PSO-ANFIS 2.9445e-05 2.5468e-05 1.4890e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.8957 0.8877 1.6762 

LOG10D-ANFIS 8.2930e-07 6.5268e-07 5.1200e-07 

LOG10D-PSO-ANFIS 1.0726e-14 4.0907e-15 9.9231e-15 
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Table 4.20: Testing performance comparison between COST231-HATA 

Metropolitan ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI 

prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.7002 0.4491 0.5455 

LOG10D-ANFIS 2.9550e-05 2.6440e-05 1.3399e-05 

LOG10D-PSO-ANFIS 2.9513e-05 2.5601e-05 1.4910e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.6473 0.8768 1.3967 

LOG10D-ANFIS 8.2970e-07 6.5274e-07 5.1295e-07 

LOG10D-PSO-ANFIS 1.2270e-14 5.3984e-15 1.1035e-14 

Table 4.21: COST231-HATA Metropolitan ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS RSSI prediction models premise and consequent 

parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-

ANFIS 

-01.9583  -43.1031   -62.3113   -83.4139   -89.9228   

-91.8924   -95.8520 -40.8291   -64.1855 -23.7094   

-81.9529   -45.8042 -64.2723   -47.8710 -53.6633 

 

For the COST231-Hata Metropolitan model, 100 data points, it is noted that the 

LOG10D-ANFIS performs better for both training and testing than LOG10D-PSO-

ANFIS with training RMSE of 3.0203e-05 and 2.9445e-05 and testing RMSE of 

2.9550e-05 and 2.9513e-05 respectively than the plain ANFIS with training RMSE of 

0.6725 and testing RMSE of 0.7002 while for 1000 data points LOG10D-PSO-ANFIS 

performs so well than LOG10D-ANFIS in both training and testing errors with training 

RMSE given as 8.2930e-07 and 1.0726e-14 and testing RMSE as 8.2970e-07 and 

1.2270e-14 respectively as compared to the plain ANFIS with training RMSE of 

1.8957 and testing RMSE of 1.6473 as shown in tables 4.19 and 4.20. Table 4.21 

shows the COST231-Hata Metropolitan LOG10D-PSO-ANFIS RSSI prediction 

model premise (a, b and c) and consequent (p and r) parameters after training. The 

corresponding plots are as shown in figure 4.14. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.14: CHMM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.14 shows the comparison between the COST-231-Hata metropolitan 

LOG10D-ANFIS and LOG10D-PSO-ANFIS training and testing errors where both 

also have largely similar performance for 100 data points. With 1000 data points the 

LOG10D-PSO-ANFIS performs very well with up to 10-14 RMSE values due to the 

smooth relations since the errors are much closer to zero as indicated in figure 4.13 

(b). 

4.6.2 Sub-Urban 

Table 4.22: Training performance comparison between COST231-HATA Sub-

Urban ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6725 0.4532 0.5005 

LOG10D-ANFIS 3.0192e-05 2.6615e-05 1.4363e-05 

LOG10D-PSO-ANFIS 6.8745e-05 6.0724e-05 3.2469e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.8957 0.8877 1.6762 

LOG10D-ANFIS 8.1030e-07 6.2711e-07 5.1354e-07 

LOG10D-PSO-ANFIS 1.0684e-14 4.0694e-15 9.8859e-15 
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Table 4.23: Testing performance comparison between COST231-HATA Sub-

Urban ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.6997 0.4489 0.5451 

LOG10D-ANFIS 2.9560e-05 2.6454e-05 1.3394e-05 

LOG10D-PSO-ANFIS 7.2501e-05 6.5123e-05 3.2358e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.6473 0.8768 1.3967 

LOG10D-ANFIS 8.1165e-07 6.2781e-07 5.1520e-07 

LOG10D-PSO-ANFIS 1.2338e-14 5.4198e-15 1.1100e-14 

Table 4.24: COST231-HATA Sub-Urban LOG10D-PSO-ANFIS RSSI prediction 

model premise and consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-

ANFIS 

-64.1418    -82.3528   -83.4471   -10.0000 -52.3375 

-57.3453 -77.0805   -60.0873     -71.3520 -29.1993   

0.9054 -12.2142   -61.3340 -40.7046 -44.8518 

 

In the case of the COST231-Hata Urban model, 100 data points, it is noted that the 

LOG10D-ANFIS performs better for both training and testing than LOG10D-PSO-

ANFIS with training RMSE of 3.0192e-05 and 6.8745e-05 and testing RMSE of 

2.9560e-05 and 7.2501e-05 respectively than the plain ANFIS with training RMSE of 

0.6725 and testing RMSE of 0.6997 while for 1000 data points LOG10D-PSO-ANFIS 

performs so well than LOG10D-ANFIS in both training and testing errors with training 

RMSE given as 8.1030e-07 and 1.0684e-14 and testing RMSE as 8.1165e-07 and 

1.2338e-14 respectively as compared to the plain ANFIS with training RMSE of 

1.8957 and testing RMSE of 1.6473 as shown in tables 4.22 and 4.23. Table 4.24 

shows the COST231-Hata Urban LOG10D-PSO-ANFIS RSSI prediction model 

premise (a, b and c) and consequent (p and r) parameters after training. The 

corresponding plots are as shown in figure 4.15. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.15: CHSUM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.15 shows the comparison between the COST-231-Hata urban LOG10D-

ANFIS and LOG10D-PSO-ANFIS training and testing errors where both also have 

similar performance as those of COST-231-Hata metropolitan with slight difference 

in the graphical relation values which are more pronounced for the 100 data points as 

shown in the figure. 

4.7 Performance comparison for COST231 ANFIS, LOG10D-ANFIS and 

LOG10D-PSO-ANFIS models  

Table 4.25: Training performance comparison between COST231 ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.4562 0.3078 0.3392 

LOG10D-ANFIS 3.1176e-05 2.7649e-05 1.4512e-05 

LOG10D-PSO-ANFIS 3.1405e-05 2.8400e-05 1.3507e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.2857 0.6022 1.1368 

LOG10D-ANFIS 4.1078e-07 2.6253e-07 3.1617e-07 

LOG10D-PSO-ANFIS 2.1424e-14 1.4999e-14 1.5309e-14 
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Table 4.26: Testing performance comparison between COST231 ANFIS, 

LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.4751 0.3048 0.3700 

LOG10D-ANFIS 3.0955e-05 2.5939e-05 1.7155e-05 

LOG10D-PSO-ANFIS 2.9206e-05 2.4961e-05 1.5399e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 1.1173 0.5948 0.9472 

LOG10D-ANFIS 4.0997e-07 2.6258e-07 3.1533e-07 

LOG10D-PSO-ANFIS 2.1874e-14 1.5064e-14 1.5884e-14 

Table 4.27: COST231 LOG10D-PSO-ANFIS RSSI prediction model premise and 

consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-

ANFIS 

-40.9631 -44.9048   -20.3709 -11.9749     -68.9166 

74.5600    16.4457 -04.7000   -47.2513 -33.6719   

-11.8412   -43.7937 -38.2236 -38.0000 -55.2745 

For the COST231 model, 100 data points, it is noted that the LOG10D-ANFIS 

performs better for both training and testing than LOG10D-PSO-ANFIS with training 

RMSE of 3.1176e-05 and 3.1405e-05 and testing RMSE of 3.0955e-05 and 2.9206e-

05 respectively than the plain ANFIS with training RMSE of 0.4562 and testing RMSE 

of 0.4751 while for 1000 data points LOG10D-PSO-ANFIS performs so well than 

LOG10D-ANFIS in both training and testing errors with training RMSE given as 

4.1078e-07 and 2.1424e-14 and testing RMSE as 4.0997e-07 and 2.1874e-14 

respectively as compared to the plain ANFIS with training RMSE of 1.2857 and testing 

RMSE of 1.1173 as shown in tables 4.25 and 4.26. Table 4.27 shows the COST231 

LOG10D-PSO-ANFIS RSSI prediction model premise (a, b and c) and consequent (p 

and r) parameters after training. The corresponding plots are as shown in figure 4.16. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.16: CM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.16 is a graphical comparison between the COST-231 LOG10D-ANFIS and 

LOG10D-PSO-ANFIS training and testing errors where the LOG10D-ANFIS 

performs better than LOG10D-PSO-ANFIS for 100 data points while the opposite is 

true when considering 1000 data points with the LOG10D-PSO-ANFIS errors tending 

to zero as shown in figure 4.16 (b). 

4.9 Performance comparison for two-ray ground reflection ANFIS, LOG10D-

ANFIS and LOG10D-PSO-ANFIS models  

Table 4.28: Training performance comparison between Two-Ray Ground 

Reflection ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models 

a) 100 data points 

 RMSE ME SD 

ANFIS 0.3906 0.3347 0.2030 

LOG10D-ANFIS 3.1211e-05 2.6005e-05 1.7390e-05 

LOG10D-PSO-ANFIS 2.9790e-05 2.4808e-05 1.6616e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.6360 0.4629 0.4365 

LOG10D-ANFIS 4.7600e-06 2.7336e-06 3.8997e-06 

LOG10D-PSO-ANFIS 2.2234e-15 7.3238e-16 2.1009e-15 
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Table 4.29: Testing performance comparison between Two-Ray Ground 

Reflection ANFIS, LOG10D-ANFIS and LOG10D-PSO-ANFIS RSSI prediction 

models  

a) 100 data points 

 RMSE ME SD 

ANFIS 0.5864 0.3940 0.4409 

LOG10D-ANFIS 3.1912e-05 2.7003e-05 1.7271e-05 

LOG10D-PSO-ANFIS 3.0309e-05 2.6605e-05 1.4746e-05 

b) 1000 data points 

 RMSE ME SD 

ANFIS 0.6292 0.4604 0.4295 

LOG10D-ANFIS 4.6777e-06 2.7183e-06 3.8125e-06 

LOG10D-PSO-ANFIS 2.0471e-15 6.1079e-16 1.9568e-15 

Table 4.30: Two-Ray Ground Reflection LOG10D-PSO-ANFIS RSSI prediction 

model premise and consequent parameters after training 

 Premise Consequent 

 a b c p r 

LOG10D-PSO-ANFIS 6.278  -15.85 50.32 -40  -6.023  

2.22  26.36 -68.85 -6.172  -16.83 

47.52  55.66 68.56 -36.82  35.28 

 

For the Two-Ray Ground Reflection model, 100 data points, it is noted that the 

LOG10D-ANFIS performs better for both training and testing than LOG10D-PSO-

ANFIS with training RMSE of 3.1211e-05 and 2.9790e-05 and testing RMSE of 

3.1912e-05 and 3.0309e-05 respectively than the plain ANFIS with training RMSE of 

0.3906 and testing RMSE of 0.5864 while for 1000 data points LOG10D-PSO-ANFIS 

performs so well than LOG10D-ANFIS in both training and testing errors with training 

RMSE given as 4.7600e-06 and 2.2234e-15 and testing RMSE as 4.6777e-06 and 

2.0471e-15 respectively as compared to the plain ANFIS with training RMSE of 

0.6360 and testing RMSE of 0.6292 as shown in tables 4.28 and 4.29. Table 4.30 

shows the Two-Ray Ground Reflection LOG10D-PSO-ANFIS RSSI prediction model 

premise (a, b and c) and consequent (p and r) parameters after training. The 

corresponding plots are as shown in figure 4.17. 
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(a) 100 data points     (b) 1000 data points 

Figure 4.17: TRGRM LOG10D-ANFIS and LOG10D-PSO-ANFIS training and 

testing errors 

Figure 4.17 is a graphical comparison between the two-ray ground reflection 

LOG10D-ANFIS and LOG10D-PSO-ANFIS training and testing errors where the two 

have same performance for 100 data points while when considering 1000 data points 

the LOG10D-PSO-ANFIS errors are very low as shown in figure 4.17 (b). 

4.8 Performance comparison for one slope with random input ANFIS, 

LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS 

models  

Table 4.31: Training performance comparison between one slope with random 

input ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-

ANFIS RSSI prediction models 

 RMSE ME SD 

ANFIS 3.3022 2.8065 1.7533 

LOG10D-ANFIS 3.2607 2.7060 1.8329 

LOG10D-PSO-ANFIS 3.3694 2.9212 1.6918 

LOG10D-PSO-R-ANFIS 0.3868 0.1827 0.3435 
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Table 4.32: Testing performance comparison between one slope with random 

input ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-

ANFIS RSSI prediction models 

 RMSE ME SD 

ANFIS 3.5366 2.9467 1.9860 

PSO-ANFIS 3.5257 2.9733 1.9240 

LOG10D-PSO-ANFIS 3.4694 2.8880 1.9525 

LOG10D-PSO-R-ANFIS 3.9057 3.1629 2.3268 

Table 4.33: One slope with random input LOG10D-PSO-R-ANFIS RSSI 

prediction models premise and consequent parameters after training 

 Premise Consequent 

 a b c p q r 

LOG10D-PSO-R-

ANFIS 

-8.8713    61.4673   -4.2742    -7.8577     6.9061  -1.247  

41.0087     0.9617    45.8134    48.8460   -2.4151    24.040   

-8.3527    32.5640    56.8797    67.2852    70.7261     0.4422    

47.3384    38.7837    -1.7818     16.5779   -7.3111 54.099    

3.5615    76.3629   -0.0189    5.9613    64.6412     9.5661   

71.9284    28.0197    88.4115   -3.6880    12.9965   -2.875    

   38.2997          37.2093    41.260 

   -6.0000 50.6034 41.699    

   -5.6349    28.1616   -1.943 

For the One Slope with Random Input model, LOG10D-PSO-R-ANFIS performs 

better for training than the other representations with training RMSE of 0.3868 and 

testing RMSE of 3.9057 as shown in tables 4.31 and 4.32. Table 4.33 shows the One 

Slope with Random Input ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and 

LOG10D-PSO-R-ANFIS RSSI prediction models premise (a, b and c) and consequent 

(p, q and r) parameters after training. The corresponding plots are as shown in figures 

4.18 to 4.22. 
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Figure 4.18: OSRM and ANFIS training and testing 

 

Figure 4.19: OSRM and LOG10D-ANFIS training and testing 

 
Figure 4.20: OSRM and LOG10D-PSO-ANFIS training and testing 
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Figure 4.21: OSRM and LOG10D-PSO-R-ANFIS training and testing 

 

Figure 4.22: OSRM ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and 

LOG10D-PSO-R-ANFIS training and testing errors 

Figures 4.18 to 4.21 show the graphical comparison between the one slope with 

random input model with the other models i.e., the ANFIS, LOG10D-ANFIS, 

LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS while figure 4.22 is shows the 

performance relation among the one slope with random input model, ANFIS, 

LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS training and 

testing errors. It is noted that the LOG10D-PSO-R-ANFIS performs better for training 

than the other representations with training RMSE closer to zero though its testing 

RMSE is higher with similar levels as represented figure 4.22. 
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4.9 Performance of the different ANFIS based models in predicting the 

measured RSSI  

Table 4.34: Training performance comparison between measured ANFIS, 

LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS RSSI 

prediction models 

 RMSE ME SD 

ANFIS 2.2825 1.7659 1.4621 

LOG10D-ANFIS 2.3027 1.7910 1.4632 

LOG10D-PSO-ANFIS 2.4071 1.9286 1.4563 

LOG10D-PSO-R-ANFIS 0.0026 0.0016 0.0021 

Table 4.35: Testing performance comparison between MEASURED ANFIS, 

LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS RSSI 

prediction models  

 RMSE ME SD 

ANFIS 2.9123 2.1874 1.9660 

LOG10D-ANFIS 3.0325 2.3645 1.9414 

LOG10D-PSO-ANFIS 3.0788 2.3341 2.0528 

LOG10D-PSO-R-ANFIS 2.9310 2.4028 1.7162 

Table 4.36: Measured LOG10D-PSO-R-ANFIS RSSI prediction models premise 

and consequent parameters after training 

 Premise Consequent 

 a b c p q r 

LOG10D-PSO-R-

ANFIS 

-9.514   -11.21 -45.77 -16.49   -20.6 -2.508 

4.786  -13.86 8.736 -56.94   -51.96 -34.38 

1.402   -53.72 -22.14 -10.59   -6.394 -46.22 

41.2   -10.89 -13.94 17.64   -14.71 -12.99 

-67.04   -40.82 17.28 41.2   -8.213 -27.5 

-14.02   29.88 -10.69 -42.1   -2.818 -41.41 

   -34.98   -34.96 -33 

   -56.42   17.44 -35.06 

   15.44  6.44 -39.8 

For the Measured RSSI, LOG10D-PSO-R-ANFIS performs better for both training 

and testing than the other representations with training RMSE of 0.0026 and testing 

RMSE of 2.931 as shown in tables 4.34 and 4.35. Table 4.36 shows the Measured 

ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and LOG10D-PSO-R-ANFIS RSSI 

prediction models premise (a, b and c) and consequent (p, q and r) parameters after 

training. The corresponding plots are as shown in figures 4.23 to 4.27. Figure 4.28 
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represents the variation of RSSI with distance based on the PSO obtained random input 

RSSI limits while figure 4.29 represents the same but predicted to 150 metres. The 

representation shows the upper and lower limits to the predicted RSSI at any distance 

from 0.4 to 150m.   

 

Figure 4.23: Measured and ANFIS training and testing 

 

Figure 4.24: Measured and LOG10D-ANFIS training and testing 
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 Figure 4.25: Measured and LOG10D-PSO-ANFIS training and testing 

 

Figure 4.26: Measured and LOG10D-PSO-R-ANFIS training and testing 
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Figure 4.27: Measured ANFIS, LOG10D-ANFIS, LOG10D-PSO-ANFIS and 

LOG10D-PSO-R-ANFIS training and testing errors 

 

Figure 4.28: RSSI versus distance with PSO obtained random input RSSI limits 

 

Figure 4.29: RSSI versus distance with PSO obtained random input RSSI limits 

to 150 metres 
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4.10 Performance comparison for the universal model LOG10D-PSO-ANFIS 

with other AI models 

The performance of LOG10D-PSO-ANFIS is compared with that of radial basis 

function (RBF) neural network model trained with particle swarm optimization (PSO) 

algorithm, MLP-NN and RBF-NN models whose results are given in (Vilovic & 

Burum, 2011; Alotaibi et al., 2009) and (downloads.linksys.com). It is noted that the 

developed novel model outperforms all the other models with training and testing 

RMSE of 0.0026 and 2.931 against 2.245 of RBF-PSO, 2.27 and 4.23 of RBF-NN and 

3.61 and 4.38 of MLP-NN as shown in tables 4.37 and 4.38 respectively.  

Table 4.37: Training results for LOG10D-PSO-ANFIS, RBF-PSO trained, MLP-

NN and RBF-NN models 

 RMSE ME SD 

LOG10D-PSO-ANFIS 0.0026 0.0021 0.0016 

RBF-PSO 2.245 1.847 1.270 

RBF-NN 2.27 1.49 1.71 

MLP-NN 3.61 2.77 2.31 

Table 4.38: Testing results for LOG10D-PSO-ANFIS, RBF-PSO trained, MLP-

NN and RBF-NN models 

 RMSE ME SD 

LOG10D-PSO-ANFIS 2.9310 2.4028 1.7162 

RBF-PSO - - - 

RBF-NN 4.23 3.09 2.88 

MLP-NN 4.38 3.05 3.15 

LOG10D-PSO-ANFIS 2.9310 2.4028 1.7162 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusions  

The objectives of this research were achieved where the main objective to develop a 

novel universal wireless communication propagation model using PSO trained 

modified ANFIS, with high accuracy and flexibility, was realized through the 

following.  

• The original ANFIS was modified by introducing a logarithm to base 10 

operator making it suitable for wireless signal propagation prediction 

modelling. This increased its accuracy levels up to 1014 times compared with 

the ordinary ANFIS in relation to radiowave signal prediction. 

• The formulation of the modified ANFIS and its PSO training concepts, as used 

in wireless communication, was undertaken. This helped in understanding the 

two main concepts used in this research, that is, ANFIS and PSO. This is also 

important to the other researchers to enable them to concentrate on the 

application of these methods in relation to wireless communication systems 

modelling as the formulation has been well covered.  

• After formulation of the ANFIS and PSO, the development of equivalent 

theoretical ANFIS based models for existing empirical models based on 

ANFIS, LOG10D-ANFIS and LOG10-PSO-ANFIS. The results were that for 

100 data points the LOG10D-ANFIS generally performs slightly better than 

LOG10D-PSO-ANFIS whereas for 1000 data points LOG10D-PSO-ANFIS 

performs far much better than LOG10D-ANFIS in both training and testing 

errors which are to the tune of 10-14 as compared to 10-7 for 100 data points. 

Both these models were found to perform quite well when compared to the 

ordinary ANFIS model being improved on which had errors to the tune of 10-

1.  

• From the above theoretical equivalent models, a novel universal theoretical 

model (LOG10D-PSO-ANFIS model) was developed for all the single slope 

models. This model, with a single structure, can receive membership functions 
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based on the single slope models and predict their RSSI accurately when 

compared with the ordinary ANFIS.  

• A practical modelling of the behavior of the RSSI, a LOG10D-PSO-R-ANFIS 

practical model was developed. Its results were found to be superior. 

5.2 Recommendations  

• To develop a single AI based model for all the models including higher slopes 

using same structure and same membership functions with high accuracy since 

the current work didn’t manage to cover the higher slopes accurately. This 

model should be able to use the varying characteristics captured by the different 

other models in a single representation.  

• A Graphical User Interface implementation of this model be done by either 

using MATLAB or any other programming language. This can make it directly 

usable by different wireless service providers in the field of wireless 

communication.  
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APPENDICES 

Appendix I: Program codes 

Code for PSO obtained random input and ANFIS membership functions  

CostFunction =@(x) Sphere18rnanfisp1trnts15(x);  % Cost Function 

    nVar = 114;        % Number of Unknown (Decision) Variables 

     VarSize = [1 nVar];         % Matrix Size of Decision Variables 

     VarMin = -69;   % Lower Bound of Decision Variables 

    VarMax = 41.2;    % Upper Bound of Decision Variables 

     %% Parameters of PSO 

     MaxIt = 1000;   % Maximum Number of Iterations 

     nPop = 50;     % Population Size (Swarm Size) 

     w = 1;           % Intertia Coefficient 

    wdamp = 0.99;   % Damping Ratio of Inertia Coefficient 

    c1 = 2;         % Personal Acceleration Coefficient 

    c2 = 2;         % Social Acceleration Coefficient 

     % The Flag for Showing Iteration Information 

    %ShowIterInfo = params.ShowIterInfo;     

     MaxVelocity = 0.08*(VarMax-VarMin); 

    MinVelocity = -MaxVelocity; 

        %% Initialization 

     % The Particle Template 

    empty_particle.Position = []; 

    empty_particle.Velocity = []; 

    empty_particle.Cost = []; 

    empty_particle.Best.Position = []; 
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    empty_particle.Best.Cost = []; 

     % Create Population Array 

    particle = repmat(empty_particle, nPop, 1); 

     % Initialize Global Best 

    GlobalBest.Cost = inf; 

     % Initialize Population Members 

    for i=1:nPop 

         % Generate Random Solution 

        particle(i).Position = VarMin+rand(1,nVar)*(VarMax-VarMin); 

         % Initialize Velocity 

        particle(i).Velocity = zeros(VarSize); 

         % Evaluation 

        particle(i).Cost = CostFunction(particle(i).Position); 

         % Update the Personal Best 

        particle(i).Best.Position = particle(i).Position; 

        particle(i).Best.Cost = particle(i).Cost; 

         % Update Global Best 

        if particle(i).Best.Cost < GlobalBest.Cost 

        GlobalBest = particle(i).Best; 

        end 

     end 

     % Array to Hold Best Cost Value on Each Iteration 

    BestCosts = zeros(MaxIt, 1); 

     %% Main Loop of PSO 

     for it=1:MaxIt 
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         for i=1:nPop 

             % Update Velocity 

            particle(i).Velocity = w*particle(i).Velocity ... 

                + c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position) ... 

                + c2*rand(VarSize).*(GlobalBest.Position - particle(i).Position); 

             % Apply Velocity Limits 

            particle(i).Velocity = max(particle(i).Velocity, MinVelocity); 

            particle(i).Velocity = min(particle(i).Velocity, MaxVelocity); 

          % Update Position 

            particle(i).Position = particle(i).Position + particle(i).Velocity; 

             

            % Apply Lower and Upper Bound Limits 

            particle(i).Position = max(particle(i).Position, VarMin); 

            particle(i).Position = min(particle(i).Position, VarMax); 

             % Evaluation 

            particle(i).Cost = CostFunction(particle(i).Position); 

             % Update Personal Best 

            if particle(i).Cost < particle(i).Best.Cost 

                 particle(i).Best.Position = particle(i).Position; 

                particle(i).Best.Cost = particle(i).Cost; 

                 % Update Global Best 

                if particle(i).Best.Cost < GlobalBest.Cost 

                    GlobalBest.Position = particle(i).Best.Position; %added Update on 

Global Best position 

                    GlobalBest = particle(i).Best; 
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                end             

             end 

         end 

         % Store the Best Cost Value 

        BestCosts(it)=GlobalBest.Cost; 

         % Display Iteration Information 

        %if ShowIterInfo 

            disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]); 

       % end 

         % Damping Inertia Coefficient 

        w = w * wdamp; 

     end 

    out.pop = particle; 

    out.BestSol = GlobalBest; 

    out.BestCosts = BestCosts; 

Code structure courtesy of (www.yarpiz.com) 

function [ztrn, ztst] = Sphere18rnanfisp1trnts15(x) 

distance=[0.4:0.6:41.2]; 

averageDL =[-36   -39   -40   -45   -49   -50   -44   -49   -55   -57   -54   -53   -54   -51   

-52   -56   -53   -53   -59   -58   -58   -54   -53   -55   -55   -55   -57  -55   -54   -51   -53   

-51   -52   -53   -55   -54   -56   -54   -57   -56   -57   -57   -58   -57   -59   -57   -61   -

63   -63   -59   -58   -56   -67   -65  -63   -61   -62   -59   -61   -61   -65   -61   -62   -69   

-57   -65   -63   -59   -67]; 

data=[log10(distance)', 0.15*(x(1:69))', averageDL']; 

tstdata=data((2:3:69), :); 

data((2:3:69), :)=[]; 
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trndata=data; 

numMFs=3; 

mfType='gbellmf'; 

outfis=genfis1(trndata,numMFs,mfType); 

outfis.input(1).mf(1).params= x(70:72); 

outfis.input(1).mf(2).params= x(73:75); 

outfis.input(1).mf(3).params= x(76:78); 

outfis.input(2).mf(1).params= x(79:81); 

outfis.input(2).mf(2).params= x(82:84); 

outfis.input(2).mf(3).params= x(85:87); 

outfis.output(1).mf(1).params= x(88:90); 

outfis.output(1).mf(2).params= x(91:93); 

outfis.output(1).mf(3).params= x(94:96); 

outfis.output(1).mf(4).params= x(97:99); 

outfis.output(1).mf(5).params= x(100:102); 

outfis.output(1).mf(6).params= x(103:105); 

outfis.output(1).mf(7).params= x(106:108); 

outfis.output(1).mf(8).params= x(109:111); 

outfis.output(1).mf(9).params= x(112:114); 

%trainingdata 

intdl=[trndata(:,1), trndata(:,2)]; 

outtdl=evalfis(intdl,outfis); 

ME=mean(abs(trndata(:,3)'-outtdl')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtrn=sqrt(mean((trndata(:,3)'-outtdl').^2)); 
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Sdeviation=std(abs(trndata(:,3)'-outtdl'));  

%testing data 

intdlt=[tstdata(:,1), tstdata(:,2)]; 

outtdlt=evalfis(intdlt,outfis); 

ME=mean(abs(tstdata(:,3)'-outtdlt')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtst=sqrt(mean((tstdata(:,3)'-outtdlt').^2)); 

Sdeviation=std(abs(tstdata(:,3)'-outtdlt'));    

    ztrn=RMSEtrn; 

    ztst=RMSEtst;    

   %z=abs(ztrn-ztst); 

    %z=[ztrn ztst];   

    warning('off','all') 

end (www.yarpiz.com) 

LOG10D-PSO-ANFIS code 

%% Problem Definiton 

CostFunction =@(x) Sphere8tnt(x);  % Cost Function 

    nVar = 15;        % Number of Unknown (Decision) Variables 

     VarSize = [1 nVar];         % Matrix Size of Decision Variables 

     VarMin = -52;   % Lower Bound of Decision Variables 

    VarMax = 100;    % Upper Bound of Decision Variables 

     %% Parameters of PSO 

     MaxIt = 1000;   % Maximum Number of Iterations 

     nPop = 50;     % Population Size (Swarm Size) 

     w = 1;           % Intertia Coefficient 
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    wdamp = 0.99;   % Damping Ratio of Inertia Coefficient 

    c1 = 2;         % Personal Acceleration Coefficient 

    c2 = 2;         % Social Acceleration Coefficient 

     % The Flag for Showing Iteration Information 

    %ShowIterInfo = params.ShowIterInfo;     

     MaxVelocity = 0.01*(VarMax-VarMin); 

    MinVelocity = -MaxVelocity; 

       %% Initialization 

     % The Particle Template 

    empty_particle.Position = []; 

    empty_particle.Velocity = []; 

    empty_particle.Cost = []; 

    empty_particle.Best.Position = []; 

    empty_particle.Best.Cost = []; 

     % Create Population Array 

    particle = repmat(empty_particle, nPop, 1); 

     % Initialize Global Best 

    GlobalBest.Cost = inf; 

     % Initialize Population Members 

    for i=1:nPop 

         % Generate Random Solution 

        particle(i).Position = VarMin+rand(1,nVar)*(VarMax-VarMin); 

         % Initialize Velocity 

        particle(i).Velocity = zeros(VarSize); 

         % Evaluation 
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        particle(i).Cost = CostFunction(particle(i).Position); 

         % Update the Personal Best 

        particle(i).Best.Position = particle(i).Position; 

        particle(i).Best.Cost = particle(i).Cost; 

         % Update Global Best 

        if particle(i).Best.Cost < GlobalBest.Cost 

            GlobalBest = particle(i).Best; 

        end 

     end 

     % Array to Hold Best Cost Value on Each Iteration 

    BestCosts = zeros(MaxIt, 1); 

     %% Main Loop of PSO 

     for it=1:MaxIt 

         for i=1:nPop 

             % Update Velocity 

            particle(i).Velocity = w*particle(i).Velocity ... 

                + c1*rand(VarSize).*(particle(i).Best.Position - particle(i).Position) ... 

                + c2*rand(VarSize).*(GlobalBest.Position - particle(i).Position); 

             % Apply Velocity Limits 

            particle(i).Velocity = max(particle(i).Velocity, MinVelocity); 

            particle(i).Velocity = min(particle(i).Velocity, MaxVelocity);   

            % Update Position 

            particle(i).Position = particle(i).Position + particle(i).Velocity; 

             

            % Apply Lower and Upper Bound Limits 
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            particle(i).Position = max(particle(i).Position, VarMin); 

            particle(i).Position = min(particle(i).Position, VarMax); 

             % Evaluation 

            particle(i).Cost = CostFunction(particle(i).Position); 

             % Update Personal Best 

            if particle(i).Cost < particle(i).Best.Cost 

                 particle(i).Best.Position = particle(i).Position; 

                particle(i).Best.Cost = particle(i).Cost; 

                 % Update Global Best 

                if particle(i).Best.Cost < GlobalBest.Cost 

                   GlobalBest.Position = particle(i).Best.Position; %added Update on Global 

Best position 

                    GlobalBest = particle(i).Best; 

                end             

             end 

         end 

         % Store the Best Cost Value 

        BestCosts(it)=GlobalBest.Cost; 

         % Display Iteration Information 

        %if ShowIterInfo 

            disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCosts(it))]); 

       % end 

         % Damping Inertia Coefficient 

        w = w * wdamp; 

     end 
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    out.pop = particle; 

    out.BestSol = GlobalBest; 

    out.BestCosts = BestCosts; 

function [ztrn, ztst] = Sphere8tnt(x) 

distance = linspace(1,100,1000); 

Pt = -10; Gt = 4;Gr = 4;                          

L= 32.44+20*log10(2400)+20*log10(distance/1000); 

averageDL=Pt + Gt + Gr-L+30; 

%data division* 

data=[log10(distance)', averageDL']; 

tstdata=data((2:3:1000), :); 

data((2:3:1000), :)=[]; 

trndata=data; 

numMFs=3; 

mfType='gbellmf'; 

outfis=genfis1(trndata,numMFs,mfType); 

outfis.input(1).mf(1).params= x(1:3); 

outfis.input(1).mf(2).params= x(4:6); 

outfis.input(1).mf(3).params= x(7:9); 

outfis.output(1).mf(1).params= x(10:11); 

outfis.output(1).mf(2).params= x(12:13); 

outfis.output(1).mf(3).params= x(14:15); 

   %trainingdata 

intdl=trndata(:,1); 

outtdl=evalfis(intdl,outfis); 
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ME= mean(abs(trndata(:,2)'-outtdl')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtrn=sqrt(mean((trndata(:,2)'-outtdl').^2)); 

Sdeviation=std(abs(trndata(:,2)'-outtdl')); 

%testing data 

intdlt=tstdata(:,1); 

outtdlt=evalfis(intdlt,outfis); 

ME= mean(abs(tstdata(:,2)'-outtdlt')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtst=sqrt(mean((tstdata(:,2)'-outtdlt').^2)); 

Sdeviation=std(abs(tstdata(:,2)'-outtdlt')); 

    ztrn=RMSEtrn 

   ztst=RMSEtst 

     warning('off','all') 

end 

x=[-30.4042  -44.4841  -17.1511  -21.2635  -16.4371  -23.2478  -26.6433  -33.4410  -

12.9429  -39.8081  -19.3858  -20.0000 -12.0442  -38.4691  -22.6328]; 

distance = linspace(1,100,1000); 

Pt = -10; Gt = 4;Gr = 4;                          

L= 32.44+20*log10(2400)+20*log10(distance/1000); 

averageDL=Pt + Gt + Gr-L+30; 

 %data division* 

data=[log10(distance)', averageDL']; 

tstdata=data((2:3:1000), :); 

data((2:3:1000), :)=[]; 
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trndata=data; 

numMFs=3; 

mfType='gbellmf'; 

outfis=genfis1(trndata,numMFs,mfType); 

    outfis.input(1).mf(1).params= x(1:3); 

outfis.input(1).mf(2).params= x(4:6); 

outfis.input(1).mf(3).params= x(7:9); 

outfis.output(1).mf(1).params= x(10:11); 

outfis.output(1).mf(2).params= x(12:13); 

outfis.output(1).mf(3).params= x(14:15); 

 %trainingdata 

intdl=trndata(:,1); 

outtdl=evalfis(intdl,outfis); 

ME= mean(abs(trndata(:,2)'-outtdl')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtrn=sqrt(mean((trndata(:,2)'-outtdl').^2)); 

Sdeviation=std(abs(trndata(:,2)'-outtdl')); 

%testing data 

intdlt=tstdata(:,1); 

outtdlt=evalfis(intdlt,outfis); 

ME= mean(abs(tstdata(:,2)'-outtdlt')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtst=sqrt(mean((tstdata(:,2)'-outtdlt').^2)); 

Sdeviation=std(abs(tstdata(:,2)'-outtdlt')); 

    ztrn=RMSEtrn 
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   ztst=RMSEtst 

Dtrndata= trndata(:,1); 

Dtstdata= tstdata(:,1); 

%errors 

trneLA=[outtdl-trndata(:,2)];  

tsteLA=[outtdlt-tstdata(:,2)]; 

%Plots 

figure(1) 

subplot(2,1,1); 

plot(Dtrndata, trndata(:,2),  Dtrndata, outtdl) 

title('One Slope Model & LOG10D-PSO-ANFIS – Training') 

xlabel('Distance (m)') 

ylabel('RSSI (dBm)') 

legend('One Slope RSSI','LOG10D-PSO-ANFIS predicted 

RSSI','Location','Northeast') 

grid 

subplot(2,1,2); 

plot(Dtstdata, tstdata(:,2),  Dtstdata, outtdlt) 

title('One Slope Model & LOG10D-PSO-ANFIS – Testing') 

xlabel('Distance (m)') 

ylabel('RSSI (dBm)') 

legend('One Slope RSSI','LOG10D-PSO-ANFIS predicted 

RSSI','Location','Northeast') 

grid 

figure(2) 
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subplot(2,1,1); 

plot(Dtrndata, trneA, Dtrndata, trneLA, Dtrndata, trneLPA) 

title('One Slope ANFIS, LOG10D-ANFIS & LOG10D-PSO-ANFIS – Training 

errors') 

xlabel('Distance (m)') 

ylabel('RSSI error (dBm)') 

legend('ANFIS RSSI Training error', 'LOG10D-ANFIS RSSI Training error', 

'LOG10D-PSO-ANFIS RSSI Training error','Location','Northeast') 

grid 

subplot(2,1,2); 

plot(Dtstdata, tsteA, Dtstdata, tsteLA, Dtstdata, tsteLPA) 

title('One Slope ANFIS, LOG10D-ANFIS & LOG10D-PSO-ANFIS – Testing errors') 

xlabel('Distance (m)') 

ylabel('RSSI (dBm)') 

legend('ANFIS RSSI Testing error', 'LOG10D-ANFIS RSSI Testing error','LOG10D-

PSO-ANFIS RSSI Testing error','Location','Southeast') 

grid 

figure(3) 

subplot(2,1,1); 

plot(Dtrndata, trneLA, Dtrndata, trneLPA) 

title('Training errors') 

xlabel('Distance (m)') 

ylabel('RSSI error (dBm)') 

legend('LOG10D-ANFIS RSSI Training error', 'LOG10D-PSO-ANFIS RSSI Training 

error','Location','Northeast') 

grid 
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subplot(2,1,2); 

plot(Dtstdata, tsteLA, Dtstdata, tsteLPA) 

title('Testing errors') 

xlabel('Distance (m)') 

ylabel('RSSI (dBm)') 

legend('LOG10D-ANFIS RSSI Testing error','LOG10D-PSO-ANFIS RSSI Testing 

error','Location','Southeast') 

grid 

sse=sum(trneLPA.^2); % 

tss=sum((mean(trndata(:,2)) - trndata(:,2)).^ 2); 

r2trn=1-sse/tss 

sse=sum(tsteLPA.^2); 

tss=sum((mean(tstdata(:,2)) - tstdata(:,2)).^ 2); 

r2tst=1-sse/tss 

ANFIS for PSO formulation  

x =[-11.1315  -15.9759  -36.1553  -12.4641  -17.0160    6.6645  -42.9664  -34.5415   

26.2031   36.1733  -28.1564    0.2303   4.2159   24.1794  -15.9234   10.3787  -14.5437  

-15.9473   25.2186  -15.1005   14.0191  -16.6717  -22.7503  -12.8930  -14.4956  -

36.5014   -3.1021  -18.9643    0.8962  -50.5380  -37.4063  -25.1245  -47.0880  -41.0215  

-17.7794  -36.1201  -22.7065  -35.7279  -17.5655  -25.7620   -9.8859  -20.4709  -

14.1760  -31.8734   -8.7446  -24.0368   -6.3774   17.5440   16.7831  -15.9582  -20.8494  

-36.0586   12.3764   27.3785   12.2454   20.0235    3.6471  -18.6739    8.8446   -5.5870   

22.5857  -29.5050   -0.2746   41.2000  -29.8534   19.5592    4.5425  -30.6846   32.2932   

-9.5142  -11.2116  -45.7657    4.7857  -13.8573    8.7356    1.4020  -53.7227  -22.1354   

41.1981  -10.8878  -13.9449  -67.0429  -40.8190   17.2752  -14.0202   29.8814  -

10.6895  -16.4866  -20.6013   -2.5082  -56.9382  -51.9578  -34.3824  -10.5858   -

6.3941  -46.2224   17.6400  -14.7111  -12.9891   41.2000   -8.2135  -27.5009  -42.1031   
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-2.8180  -41.4139  -34.9833  -34.9610  -33.0009  -56.4224   17.4381  -35.0589   

15.4361    6.4404  -39.7980]; 

distance=[0.4:0.6:41.2]; 

averageDL =[-36   -39   -40   -45   -49   -50   -44   -49   -55   -57   -54   -53   -54   -51   

-52   -56   -53   -53   -59   -58   -58   -54   -53   -55   -55   -55   -57  -55   -54   -51   -53   

-51   -52   -53   -55   -54   -56   -54   -57   -56   -57   -57   -58   -57   -59   -57   -61   -

63   -63   -59   -58   -56   -67   -65  -63   -61   -62   -59   -61   -61   -65   -61   -62   -69   

-57   -65   -63   -59   -67]; 

%data=[Inputs', 0.15*(x(1:69))', Targets']; 

data=[log10(distance)', 0.15*(x(1:69))', averageDL']; 

tstdata=data((2:3:69), :); 

data((2:3:69), :)=[]; 

trndata=data; 

numMFs=3; 

mfType='gbellmf'; 

outfis=genfis1(trndata,numMFs,mfType); 

outfis.input(1).mf(1).params= x(70:72); 

outfis.input(1).mf(2).params= x(73:75); 

outfis.input(1).mf(3).params= x(76:78); 

outfis.input(2).mf(1).params= x(79:81); 

outfis.input(2).mf(2).params= x(82:84); 

outfis.input(2).mf(3).params= x(85:87); 

outfis.output(1).mf(1).params= x(88:90); 

outfis.output(1).mf(2).params= x(91:93); 

outfis.output(1).mf(3).params= x(94:96); 

outfis.output(1).mf(4).params= x(97:99); 
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outfis.output(1).mf(5).params= x(100:102); 

outfis.output(1).mf(6).params= x(103:105); 

outfis.output(1).mf(7).params= x(106:108); 

outfis.output(1).mf(8).params= x(109:111); 

outfis.output(1).mf(9).params= x(112:114); 

%trainingdata 

intdl=[trndata(:,1), trndata(:,2)]; 

outtdl=evalfis(intdl,outfis); 

ME=mean(abs(trndata(:,3)'-outtdl')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtrn=sqrt(mean((trndata(:,3)'-outtdl').^2)); 

Sdeviation=std(abs(trndata(:,3)'-outtdl')); 

%testing data 

intdlt=[tstdata(:,1), tstdata(:,2)]; 

outtdlt=evalfis(intdlt,outfis); 

ME=mean(abs(tstdata(:,3)'-outtdlt')); 

%plot(distance, averageDL, trndata(:,1),outtdl) 

RMSEtst=sqrt(mean((tstdata(:,3)'-outtdlt').^2)); 

Sdeviation=std(abs(tstdata(:,3)'-outtdlt')); 

Novel universal model ANFIS code  

distance = linspace(1,100,1000); 

%Pt = -10; Gt = 4;Gr = 4;                          

%L= 32.44+20*log10(2400)+20*log10(distance/1000); 

%averageDL=Pt + Gt + Gr-L+30; 

averageDL=[zeros(1,1000)]; 
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%data division* 

data=[log10(distance)', averageDL']; 

tstdata=data((2:3:1000), :); 

data((2:3:1000), :)=[]; 

trndata=data; 

numMFs=3; 

mfType='gbellmf'; 

outfis=genfis1(trndata,numMFs,mfType); 

outfis.input(1).mf(1).params= m(1:3); 

outfis.input(1).mf(2).params= m(4:6); 

outfis.input(1).mf(3).params= m(7:9); 

outfis.output(1).mf(1).params= m(10:11); 

outfis.output(1).mf(2).params= m(12:13); 

outfis.output(1).mf(3).params= m(14:15); 

%trainingdata 

intdl=trndata(:,1); 

outtdl=evalfis(intdl,outfis); 

%ME= mean(abs(trndata(:,2)'-outtdl')); 

plot(10.^trndata(:,1),outtdl) 

%RMSEtrn=sqrt(mean((trndata(:,2)'-outtdl').^2)); 

%Sdeviation=std(abs(trndata(:,2)'-outtdl')); 

%testing data 

intdlt=tstdata(:,1); 

outtdlt=evalfis(intdlt,outfis); 

%ME= mean(abs(tstdata(:,2)'-outtdlt')); 
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plot(10.^ trndata(:,1),outtdl) 

%RMSEtst=sqrt(mean((tstdata(:,2)'-outtdlt').^2)); 

%Sdeviation=std(abs(tstdata(:,2)'-outtdlt')); 

   %ztrn=RMSEtrn 

   %ztst=RMSEtst 
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Appendix II: ANFIS and PSO problem formulations and the universal model 

parameters  

Problem formulation of ANFIS with LOG10D algorithm 

The following representation is a step-by-step analysis of the modified ANFIS 

algorithm starting from layer one to layer 6. 

Taking values of ai, bi and ci as; 

[0.4133 2 0]      

[0.4133 2 0.8266] 

[0.4133 2 1.653]  

and pi and ri as; 

[-20 -17.04] 

[-20 -17.04] 

[-20 -17.04] 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥) + 𝑟1, 

  𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐1

𝑎1
)
2

]
𝑏1

} 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥)  + 𝑟1, 

  𝐼𝑓 𝑙𝑜𝑔10(10)𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(10)−0

0.4133
)
2

]
2

} 𝑡ℎ𝑒𝑛 𝑧1 = −20 × 𝑙𝑜𝑔10(10) −

17.04, 

𝐼𝑓 1 𝑖𝑠 1.3059e − 15, 𝑡ℎ𝑒𝑛 𝑧1 = −37.0400, 

Performing the same for rule 2 and 3 
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𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟2, 

𝐼𝑓 1 𝑖𝑠 0.9695, 𝑡ℎ𝑒𝑛 𝑧2 = −37.0400, 

𝑅𝑢𝑙𝑒 3: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3, 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟3, 

𝐼𝑓 1 𝑖𝑠 0.0020, 𝑡ℎ𝑒𝑛 𝑧3 = −37.0400, 

x=distance and z=rssi 

Layer 1 (Logarithmic layer): 

This layer deals with the transformation of the distance values, as obtained from the 

one slope model, into their logarithmic representation. The resulting values are then 

fed into layer 2 which performs the fuzzification operation. 

 Layer 2 (Fuzzy Layer):  

𝑂𝑖
2 = 𝑓(𝑙𝑜𝑔10(𝑥), 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)) =

1

1+|(𝑙𝑜𝑔10(𝑥)−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
   

   𝜇 𝐴𝑖(𝑙𝑜𝑔10(𝑥)) = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}     

   A1=exp(-(((𝑙𝑜𝑔10(𝑥)-c1)*a1^-1)^2)^b1) 

A1=1.3059e-15 

     A2=exp(-(((𝑙𝑜𝑔10(𝑥)-c2)*a2^-1)^2)^b2) 

A2= 0.9695 

A3=exp(-(((𝑙𝑜𝑔10(𝑥)-c3)*a3^-1)^2)^b3) 

A3= 0.0020 
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Layer 3 (Product Layer) 

𝑤𝑖 = 𝑂𝑖
3 = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2     

𝑤1 = 𝑂𝑖
3 = 𝜇𝐴1(𝑙𝑜𝑔10(𝑥)), 

w1=1.3059e-15 

w2=0.9695 

w3=0.0020 

Layer 4 (Normalized Layer) 

�̅�𝑖 = 𝑂𝑖
4 =

𝑤𝑖

𝑤1+𝑤2+𝑤3
 , 𝑖 = 1, 2, 3     

�̅�1=
𝑤1

𝑤1+𝑤2+𝑤3
=

1.3059e−15

1.3059e−15+0.9695+0.0020
=1.3442e-15 

�̅�2=
𝑤2

𝑤1+𝑤2+𝑤3
=

0.9695

1.3059e−15+0.9695+0.0020
=0.9979 

�̅�3=
𝑤3

𝑤1+𝑤2+𝑤3
=

0.0020

1.3059e−15+0.9695+0.0020
=0.0021 

Layer 5 (Defuzzify Layer) 

�̅�𝑖𝑧𝑖 = 𝑂𝑖
5 = �̅�𝑖(𝑝𝑖𝑙𝑜𝑔10(𝑥) + 𝑞𝑖𝑦 + 𝑟𝑖)  �̅�1𝑧1 =

�̅�1(𝑝1𝑙𝑜𝑔10(𝑥) + 𝑟1), 

�̅�1𝑧1 = 1.3442e − 15 ∗ (−20 ∗ log10(10) − 17.04) = −4.9789e − 14, 

�̅�2𝑧2 = �̅�2(𝑝2𝑙𝑜𝑔10(𝑥) + 𝑟2), 

�̅�2𝑧2 = 0.9979 ∗ (−20 ∗ log10(10) − 17.04) = −36.9622, 

�̅�3𝑧3 = �̅�3(𝑝3𝑙𝑜𝑔10(𝑥) + 𝑟3), 
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�̅�3𝑧3 =0.0021*(-20*log10(10)-17.04)= -0.0778, 

Layer 6 (Total Output Layer) 

𝑧 = ∑ �̅�𝑖𝑧𝑖𝑖 = 𝑂𝑖
6 =

∑ 𝑤𝑖𝑖 𝑧𝑖

∑ 𝑤𝑖𝑖
=

𝑤1𝑧1+𝑤2𝑧2+𝑤2𝑧3

𝑤1+𝑤2+𝑤3
= �̅�1𝑧1 + �̅�2𝑧2 + �̅�3𝑧3          

𝑧 = −4.9789e − 14 − 36.9622 − 0.0778 = −37.0400    

Problem formulation of ANFIS with LOG10D and random input 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10𝑥 + 𝑞1𝑦 + 𝑟1, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10𝑥 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10𝑥 + 𝑞2𝑦 + 𝑟2, 

x=distance, y=random input and z=RSSI 

r is a random input which also shows the adaptability of the system-output 

modelled to vary according to the r random input 

Two inputs with 3 MFs based on the analysis below 

Taking arbitrary values of distance (x)=10, random RSSI (y)=1, ai, bi and ci as; 

For A; 

a1=-9.514, b1=-11.21 and c1=-45.77      

a2=4.786, b2=-13.86 and c2=8.736 

a3=1.402, b3=-53.72 and c3=-22.14  

 

For B; 

a1=41.2, b1=-10.89 and c1=-13.94      

a2=-67.04, b2=-40.82 and c2=17.28 

a3=-14.02, b3=29.88 and c3=-10.69 

and pi, qi and ri as; 

p1=-16.49, q1=-20.6 and r1=-2.508 
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p2=-56.94, q2=-51.96 and r2=-34.38 

p3=-10.59, q3=-6.394 and r3=-46.22 

p4=17.64, q4=-14.71 and r4=-12.99 

p5=41.2, q5=-8.213 and r5=-27.5 

p6=-42.1, q6=-2.818 and r6=-41.41 

p7=-34.98, q7=-34.96 and r7=-33 

p8=-56.42, q8=17.44 and r8=-35.06 

p9=15.44, q9=6.44 and r9=-39.8 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧1 = 𝑝1𝑙𝑜𝑔10(𝑥) + 𝑞1𝑦 + 𝑟1, 

𝐼𝑓 𝑙𝑜𝑔10(10) 𝑖𝑠 exp {− [(
𝑙𝑜𝑔10(10) − −45.77

−9.514
)
2

]

−11.21

} 𝑎𝑛𝑑 2 𝑖𝑠, 

exp {− [(
1 − −13.94

41.2
)
2

]

−10.89 

} 

 𝑡ℎ𝑒𝑛 𝑧1 = −16.49 × 𝑙𝑜𝑔10(10) + (−20.6 × 1) + (−2.508), 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧1 = −39.5980, 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧2 = 𝑝2𝑙𝑜𝑔10(𝑥) + 𝑞2𝑦 + 𝑟2, 

𝐼𝑓 𝑙𝑜𝑔10(10) 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧2 = −56.94 × 𝑙𝑜𝑔10(10) +

(−51.96 × 1) + (−34.38), 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧2 = −143.2800, 

𝑅𝑢𝑙𝑒 3: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴1 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧3 = 𝑝3𝑙𝑜𝑔10(𝑥) + 𝑞3𝑦 + 𝑟3, 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠 1, 𝑡ℎ𝑒𝑛 𝑧3 = −63.2040, 

𝑅𝑢𝑙𝑒 4: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧4 = 𝑝4𝑙𝑜𝑔10(𝑥) + 𝑞4𝑦 + 𝑟4, 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠  0, 𝑡ℎ𝑒𝑛 𝑧4 = −10.0600, 

𝑅𝑢𝑙𝑒 5: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧5 = 𝑝5𝑙𝑜𝑔10(𝑥) + 𝑞5𝑦 + 𝑟5, 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧5 =  5.4870, 
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𝑅𝑢𝑙𝑒 6: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴2 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧6 = 𝑝6𝑙𝑜𝑔10(𝑥) + 𝑞6𝑦 + 𝑟6, 

𝐼𝑓 1 𝑖𝑠 1 𝑎𝑛𝑑 1 𝑖𝑠  1, 𝑡ℎ𝑒𝑛 𝑧6 = −86.3280, 

𝑅𝑢𝑙𝑒 7: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵1, 𝑡ℎ𝑒𝑛 𝑧7 = 𝑝7𝑙𝑜𝑔10(𝑥) + 𝑞7𝑦 + 𝑟7, 

𝐼𝑓 1 𝑖𝑠  1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧7 = −102.9400, 

𝑅𝑢𝑙𝑒 8: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵2, 𝑡ℎ𝑒𝑛 𝑧8 = 𝑝8𝑙𝑜𝑔10(𝑥) + 𝑞8𝑦 + 𝑟8, 

𝐼𝑓 1 𝑖𝑠  1 𝑎𝑛𝑑 1 𝑖𝑠 0, 𝑡ℎ𝑒𝑛 𝑧8 = −74.0400, 

𝑅𝑢𝑙𝑒 9: 𝐼𝑓 𝑙𝑜𝑔10(𝑥) 𝑖𝑠 𝐴3 𝑎𝑛𝑑 𝑦 𝑖𝑠 𝐵3, 𝑡ℎ𝑒𝑛 𝑧9 = 𝑝9𝑙𝑜𝑔10(𝑥) + 𝑞9𝑦 + 𝑟9, 

𝐼𝑓 1 𝑖𝑠  1 𝑎𝑛𝑑 1 𝑖𝑠  1, 𝑡ℎ𝑒𝑛 𝑧9 = −17.9200, 

Layer 1 (Fuzzy Layer):  

𝑂𝑖
1 = 𝑓(𝑙𝑜𝑔10(𝑥), 𝑎, 𝑏, 𝑐) = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)) =

1

1+|(𝑙𝑜𝑔10(𝑥)−𝑐𝑖) 𝑎𝑖|⁄ 2𝑏𝑖
  

  𝜇 𝐴𝑖(𝑙𝑜𝑔10(𝑥)) = exp {− [(
𝑙𝑜𝑔10(𝑥)−𝑐𝑖

𝑎𝑖
)
2

]
𝑏𝑖

}   

𝜇 𝐵𝑖(𝑦) = exp {− [(
𝑦 − 𝑐𝑖

𝑎𝑖
)
2

]

𝑏𝑖

} 

  A1=exp(-(((𝑙𝑜𝑔10(𝑥)-c1)a1^-1)^2)^b1) 

A1=1 

A2=exp(-(((𝑙𝑜𝑔10(𝑥)-c2)a2^-1)^2)^b2) 

A2= 1 

A3=exp(-(((𝑙𝑜𝑔10(𝑥)-c3)a3^-1)^2)^b3) 

A3= 1 

 B1=exp(-(((y-c1)a1^-1)^2)^b1) 

B1=0 

B2=exp(-(((y-c2)a2^-1)^2)^b2) 

B2= 0 

B3=exp(-(((y-c3)a3^-1)^2)^b3) 
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B3= 1 

Layer 2 (Product Layer):  

𝑤𝑖 = 𝑂𝑖
2 = 𝜇𝐴𝑖(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵𝑖(𝑦), 𝑖 = 1, 2     

𝑤1 = 𝜇𝐴1(𝑙𝑜𝑔10(𝑥)). 𝜇𝐵1(𝑦), 

w1=A1*B1 

w1=1*0= 0 

w2=A1*B2 

w2=1*0= 0 

w3=A1*B3 

w3=1*1= 1 

w4=A2*B1 

w4=1*0= 0 

w5=A2*B2 

w5=1*0= 0 

w6=A2*B3 

w6=1*1= 1 

w7=A3*B1 

w7=1*0= 0 

w8=A3*B2 

w8=1*0= 0 

w9=A3*B3 

w9=1*1= 1 
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Layer 3 (Normalized Layer):  

�̅�𝑖 = 𝑂𝑖
3 =

𝑤𝑖

𝑤1+𝑤2+⋯+𝑤9
 , 𝑖 = 1, … . , 9,    

�̅�1=
𝑤1

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�2=
𝑤2

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�3=
𝑤3

𝑤1+⋯+𝑤9
=

1

0+0+1+⋯+1
=

1

3
=0.333 

�̅�4=
𝑤4

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�5=
𝑤5

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�6=
𝑤6

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

1

3
=0.333 

�̅�7=
𝑤7

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�8=
𝑤8

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

0

3
=0 

�̅�9=
𝑤9

𝑤1+⋯+𝑤9
=

0

0+0+1+⋯+1
=

1

3
=0.333 

Layer 4 (Defuzzify Layer):  

�̅�𝑖𝑧𝑖 = 𝑂𝑖
4 = �̅�𝑖(𝑝𝑖𝑙𝑜𝑔10(𝑥) + 𝑞𝑖𝑦 + 𝑟𝑖)      

�̅�1𝑧1 = �̅�1(𝑝1𝑙𝑜𝑔10(𝑥) + 𝑞1𝑦 + 𝑟1), 

�̅�1𝑧1 = 0(−16.49 × 𝑙𝑜𝑔10(10) + (−20.6 × 1) + (−2.508)) = 0, 

�̅�2𝑧2 = �̅�2(𝑝2𝑙𝑜𝑔10(𝑥) + 𝑞2𝑦 + 𝑟2)=0 

�̅�3𝑧3 = �̅�3(𝑝3𝑙𝑜𝑔10(𝑥) + 𝑞3𝑦 + 𝑟3)=0.333 ∗ (−10.59 ∗ log 10(10) +

(−6.394) ∗ 1 +       (−46.22))=-21.0469 

�̅�4𝑧4 = �̅�4(𝑝4𝑙𝑜𝑔10(𝑥) + 𝑞4𝑦 + 𝑟4)=0 

�̅�5𝑧5 = �̅�5(𝑝5𝑙𝑜𝑔10(𝑥) + 𝑞5𝑦 + 𝑟5)=0 

�̅�6𝑧6 = �̅�6(𝑝6𝑙𝑜𝑔10(𝑥) + 𝑞6𝑦 + 𝑟6)=0.333 ∗ 

(−42.1 ∗ log 10(10) + −2.818 ∗ 1 + −41.41)=-28.7472 
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�̅�7𝑧7 = �̅�7(𝑝7𝑙𝑜𝑔10(𝑥) + 𝑞7𝑦 + 𝑟7)=0 

�̅�8𝑧8 = �̅�8(𝑝8𝑙𝑜𝑔10(𝑥) + 𝑞8𝑦 + 𝑟8)=0 

�̅�9𝑧9 = �̅�9(𝑝9𝑙𝑜𝑔10(𝑥) + 𝑞9𝑦 + 𝑟9)=0.333 ∗ 

(15.44 ∗ log 10(10) + 6.44 ∗ 1 + −39.8) =-5.9674    

Layer 5 (Total Output Layer):  

𝑧 = ∑ �̅�𝑖𝑧𝑖𝑖 = 𝑂𝑖
5 =

∑ 𝑤𝑖𝑖 𝑧𝑖

∑ 𝑤𝑖𝑖
=

𝑤1𝑧1+⋯+𝑤9𝑧9

𝑤1+⋯+𝑤9
= �̅�1𝑧1 + ⋯+ �̅�9𝑧9 

𝑧 = 0 + 0 + (−21.0469) + 0 + 0 + (−28.7472) + 0 + 0 + (−5.9674)

= −55.7615 

Problem formulation of PSO trained LOG10DANFIS with distance and PSO 

generated random RSSI as inputs 

Using PSO to obtain the random input together with ANFIS membership function 

parameters that best approximate the measured values. The minimum of the function 

𝑓(𝑥) = 𝐴𝑁𝐹𝐼𝑆-𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖=1  for the following ANFIS with 

membership function parameters x within the range of −69 ≤ 𝑥 ≤ 41.2 using the PSO 

algorithm with 50 particles (50 sets of random inputs and 50 sets of ANFIS 

membership function parameters) are obtained. The given ANFIS requires 45 

parameters since it has 3 MFs with two inputs. 69 random inputs are also required 

since there are 69 distance points. The two result to 114 as the number of variables that 

are to be searched for by PSO.  Where t is the actual value and y is the ANFIS predicted 

value. The following represent the formulation for the same. 

The 50 initial positions (random inputs and membership function parameters) with 114 

variables each given as; 

x01 =[ 11.9666  22.0022………………22.8338]; 

x02 =[ -45.0223  13.4031……………... -47.9387]; 

………… 

x50 =[ -49.9161 -8.6438………………. -29.0260]; 

and are to be applied as below.  
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Using the particles with initial positions above the detailed computations for iterations 

1, 2 and 1000 are shown below. 

Step1: choose the number of particles: x01, x02, ….., x50 

The initial Population (i.e. the iteration number t=0) can be represented as 𝑥𝑖
0. 𝑖 =

1,2, … . ,50: 

x01 =[ 11.9666  22.0022………………22.8338]; 

x02 =[ -45.0223  13.4031……………... -47.9387]; 

………… 

x50 =[ -49.9161 -8.6438………………. -29.0260]; 

Evaluate the objective function values as  𝑓(𝑥) = 𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖=1 , 𝑖 =

1,2, … ,50: 

For f01 substituting the x01 

x01 =[ 11.9666  22.0022………………22.8338]; 

random RSSI input and membership function parameters into the FIS in the 

APPENDIX II to obtain its RMSE value. 

f01= 86.0455 

For f02 

% substituting the x02 random RSSI input and membership function parameters        

f02=RMSEtrn=sqrt(mean((trndata(:,3)'-outtdl').^2)); 

f02= 86.0050 

………. 

For f50 

% substituting the x50 random RSSI input and membership function parameters        

f50= 57.9675 

Let c1=2 and c2=2; 
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Set the initial velocities of each particle to zero: 

𝑣𝑖
0 = 0, 𝑖. 𝑒. 𝑣1

0 = 𝑣2
0 = ⋯ = 𝑣0

5 = 0  

v01=[0 0 … 0]; v02=[0 0 … 0]; …. v50=[0 0… 0]; 

Step 2: set the iteration number as 𝑡 = 0 + 1 = 1 and go to step 3 

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡+1 = {

𝑃𝑏𝑒𝑠𝑡,𝑖
𝑡 if 𝑓𝑖

𝑡+1 > 𝑓𝑖
𝑡

𝑥𝑖
𝑡+1 if 𝑓𝑖

𝑡+1 ≤ 𝑓𝑖
𝑡
}, 

So, 

pbp01 =[ 11.9666  22.0022………………22.8338]; 

pbp02 =[ -45.0223  13.4031……………... -47.9387]; 

………… 

pbp50 =[ -49.9161 -8.6438………………. -29.0260]; 

Step 4: Find the global best by 

𝐺𝑏𝑒𝑠𝑡,1
𝑡 = min{𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 } where 𝑖 = 1,2, … ,50.   

Since, the minimum personal best is 𝑃𝑏𝑒𝑠𝑡,35
1 =[ 22.0309  -51.6608  …..   -64.5351] 

gbp01= pbp035 =[ 22.0309  -51.6608  …..   -64.5351]; 

Step 5: considering the random numbers in the range (0,1) as 

r11=rand(1,114) 

𝑟1
1 =and  

r21 = rand(1,114) 

𝑟1
2 =and find the velocities of the particle by 

𝑣𝑖
𝑡+1 = 𝑤 ∗ (𝑣𝑖

𝑡 + 𝑐1𝑟𝑖
𝑡[𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖
𝑡] + 𝑐2𝑟2

𝑡[𝐺𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑥𝑖

𝑡]); 𝑖 = 1,… ,50  

Where w=1 is the inertia coefficient and wdamp=0.99 damping ratio of the inertia 

coefficient 

So  

v11 =w* (v01 + c1* r11.*(pbp01-x01)+c2* r21.*(gbp01-x01)); 
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𝑣1
1 =[-8.8160 -8.8160 … -8.8160]; 

𝑣2
1 = [7.1858 − 8.6019 …  8.8160], 

….. 

 𝑣50
1 = [8.8160 − 8.8160…− 8.8160], 

Setting minimum velocity as -8.8160 and maximum velocity as -8.8160 the above 

velocities are obtained 

Step 6: Find the new values of 𝑥𝑖
1, 𝑖 = 1,… ,50 by 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 

So 

x11=x01+v11=[8.0341 13.1863… 14.0178] 

x12=x02+v12=[-36.2062  4.5871…-56.7547] 

…. 

x150=x05+v150=[-41.1001  -3.7505… -37.8420] 

Set minimum position as -69 and maximum position as 41.2 

Step 7: Evaluate the objective function values as  𝑓(𝑥) = 𝑅𝑀𝑆𝐸 =

√
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖=1 , 𝑖 = 1,2, … ,50: 

Obtain f11 to f150 by substituting the x11 to x150 random RSSI input and membership 

function parameters into the FIS to obtain its RMSE value 

f11= 66.9717, f12= 91.2839 … f150= 27.6944 

Step 8: Stopping criterion: 

If the terminal rule is not satisfied, go to step 2, 

Otherwise, stop the iteration and output the results. 

……. 

Step2: Set the iteration number as 𝑡 = 998 + 1 = 999, them go to step 3. 

Step3: Find the personal best for each particle. 
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𝑃𝑏𝑒𝑠𝑡,1
999 = {

𝑃𝑏𝑒𝑠𝑡,1
998 if 𝑓1

999 > 𝑓1
998

𝑥1
999 if 𝑓1

999 ≤ 𝑓1
998

}, 

 𝑃𝑏𝑒𝑠𝑡,1
999 = [−11.1310 − 15.9107,…− 39.7965]; 

𝑃𝑏𝑒𝑠𝑡,2
999 = [−11.1316 − 15.9416… − 39.7963]; 

…… 

𝑃𝑏𝑒𝑠𝑡,50
999 = [−11.132 − 16.3522 … − 39.8007]; 

Step 4: find the global best 

𝐺𝑏𝑒𝑠𝑡,1
𝑡 = min{𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 } where 𝑖 = 1,2, … ,50. 

𝐺𝑏𝑒𝑠𝑡,1
999 =[-11.1315 -15.9759 … -39.7980]; 

gbp999,1 =[-11.1315 -15.9759 … -39.7980]; 

Step 5: By considering the random numbers in the range (0.1) as  

r11=rand[1,114] 

𝑟1
1 =and  

r21=rand[1,114]  

𝑟1
2 =and find the velocities of the particle by 

𝑣𝑖
𝑡+1 = 𝑤 ∗ (𝑣𝑖

𝑡 + 𝑐1𝑟𝑖
𝑡[𝑃𝑏𝑒𝑠𝑡,𝑖

𝑡 − 𝑥𝑖
𝑡] + 𝑐2𝑟2

𝑡[𝐺𝑏𝑒𝑠𝑡,𝑖
𝑡 − 𝑥𝑖

𝑡]); 𝑖 = 1,… ,50  

So  

v1000,1 = 𝑤*(v999,1 + c1* r11.*(pbp999,1-x999,1)+c2* r21.*(gbp999,1-x999,1)); 

𝑣1
3 = [-0.0009 0.5682 … -0.0021]; 

𝑣2
3=[-1.461e-05  3.2212 … 0.0514]; 

…….. 

𝑣50
1000=[0.0002  0.3594 … 0.0078]; 

Set minimum velocity as -8.816 and maximum velocity as 8.816  

Step 6: Find the new values of 𝑥𝑖
1000 , 𝑖 = 1,… , 50 by 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1  
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So 𝑥1
1000 = 𝑥1

999 + 𝑣1
1000  

x1000,1=x999,1+v1000,1 

 𝑥1
1000=[-11.1315  -15.6305 … -39.7985]; 

x1000,2=x999,2+v1000,2 

𝑥2
1000= [-11.1316  -14.3149 … -39.7620]; 

….. 

x1000,50=x999,50+v1000,50 

𝑥50
1000=[-11.1320  -15.9550 … -39.7958]; 

Set the minimum position as -69 and maximum position as 41.2 

Step 7: Evaluate the objective function values as  𝑓(𝑥) = 𝑅𝑀𝑆𝐸 =

√
1

𝑁
∑ (𝑡𝑖 − 𝑦𝑖)2𝑁

𝑖=1 , 𝑖 = 1,2, … ,50: 

For f1000,1 substituting the x1000,1 random RSSI input and membership function 

parameters into the FIS below to obtain its RMSE value 

For x1000,1 

f1000,1 = 0.0377, f1000,2= 0.1124, …, f1000,37=0.0026 … f1000,50 = 0.0764 

Step 8: Stopping criterion: 

If the terminal rule is not satisfied, go to step 2, otherwise stop the iteration and output 

the results. 

Finally, the values 𝑥𝑖
1000 , 𝑖 = 1, … , 50 did not converge, but the requirement to stop 

at iteration 1000 is reached. If the iterations continue, convergence is reached if the 

positions of all particles converge to similar values, then the method has converged 

and the corresponding value of 𝑥𝑖
𝑡 is the optimum solution. Therefore, the iterative 

process is stopped due to the requirement that it stops at iteration 1000. This gives an 

optimum solution of training RMSE as 0.0026 with testing RMSE of 2.931. The final 

best particle position i.e. the final global particle position gives the best random input 

RSSI values and the best membership function parameters for the best performing 

ANFIS. 



155 

Appendix III: The universal model parameters  

m= input ('membership functions = '); 

One slope model membership functions 

m=[-30.4042 -44.4841 -17.1511 -39.8081 -19.3858 -21.2635 -16.4371 -23.2478 -

20.0000 -12.0442 -26.6433 -33.4410 -12.9429 -38.4691 -22.6328]; 

Dual slope model membership functions 

m=[0.1319 3.029 0.652 -20 -12.04 0.1214 3.242 1.391 -20 -12.04 0.2256 4.11 3.572 -

20 20]; 

Multi-wall model membership functions 

m=[-40.3386  -38.6915  -22.2768  -15.7458  -34.2936   -5.2165  -42.9084  -53.0827  -

44.0994  -50.2905  -32.6188  -27.1827  -28.2698  -20.0000  -23.0442]; 

Hata-Okomura-Rural model membership functions 

m=[-163.7880  -60.7698  -35.9215 -136.4529 -140.1066 -140.2505 -142.2632  -

55.5749  -69.0993 -201.0000 -100.4240  -56.0283 -128.3882  -46.0372 -200.7711]; 

Hata-Okomura-suburban model membership functions 

m=[-153.9954 -142.2307  -82.0268  -93.7246  -69.1132 -169.6921 -105.7039 -

122.4051 -181.4401 -176.1464  -89.6252  -32.9347 -144.2973  -79.1218 -174.2660]; 

Hata-Okomura-urban model membership functions 

m=[-106.8653 -233.7770  -41.7293    1.3000 -224.5889 -234.0000    1.3000 -234.0000 

-234.0000 -234.0000  -69.3173  -48.2855 -145.8358  -63.7711 -177.0896]; 

COST231-Hata-metropolitan model membership functions 

m=[-140.9631 -144.9048  -20.3709   74.5600   16.4457 -204.7000  -11.8412  -43.7937 

-138.2236 -111.9749  -68.9166  -47.2513 -133.6719  -38.0000 -155.2745]; 

COST231-Hata-suburban model membership functions 

m=[-164.1418 -182.3528  -83.4471  -57.3453 -177.0805  -60.0873    0.9054  -12.2142  

-61.3340 -210.0000 -152.3375  -71.3520 -129.1993  -40.7046 -144.8518]; 

COST231 model membership functions 
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m=[-140.9631 -144.9048  -20.3709   74.5600   16.4457 -204.7000  -11.8412  -43.7937 

-138.2236 -111.9749  -68.9166  -47.2513 -133.6719  -38.0000 -155.2745]; 

Two-ray ground reflection model membership functions 

m=[6.2783  -15.8521   50.3174    2.2200   26.3593  -68.8450   47.5228   55.6608   

68.5609  -40.0000   -6.0234   -6.1718  -16.8286  -36.8161   35.2805]; 
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