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ABSTRACT

In this research we study W6 curvature tensor on Lorentzian para Sasakian
Manifold and other related Manifold where curvature tensor have been defined
on the lines of Weyls projective curvature tensor.It has been shown that distri-
bution (order in which the vectors in question are arranged before being acted
upon by the tensor in question) of vector field over the metric potential and
matter tensor plays an important role in shaping various physical and geometri-
cal properties of a tensor and the formulation of gravitational waves,reduction
of electromagnetic field to a purely electric field,vanishing of the contracted
tensor in an Einstein space and cyclic property. The study deals with curva-
ture tensor of Semi-Riemannian and generalized Sasakian space forms admitting
Semi-symmetric metric connection. More specifically, we study the geometry
of Semi-Rienmannian and generalized Sasakian space forms when they are W6-
flat,W6-Symmetric,W6-Semi Symmetric and W6-Recurrent and compared to re-
sult of projectively Semi-Symmetric, Weyl’s Semi-Symmetric and concircularly
Semi-Symmetric on these spaces. Our main methodology will be use of defini-
tions,manifold transformation and covariant differentiation. This study will add
applicable knowledge in mathematics,physics and chemistry in the analysis of cur-
vature tensor to generate equations which describe the nature of forces existing
in black holes,spinning planets,Electrons and Protons in atoms.
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CHAPTER ONE 

INTRODUCTION

Riemannian geometry was first put forward in generality by Bernhard Rie-

mann in the nineteenth century. It deals with a broad range of geometries whose

metric properties vary from point to point, including the standard types of Non-

Euclidean geometry.

Any smooth manifold admits a Riemannian metric, which often helps to solve

problems of differential topology. It also serves as an entry level for the more com-

plicated structure of pseudo-Riemannian manifolds, which (in four dimensions)

are the main objects of the theory of general relativity. Other generalizations

of Riemannian geometry include Finsler geometry. There exists a close analogy

of differential geometry with the mathematical structure of defects in regular

crystals.

1.1 Background Information

A topological space is said to be Hausdorff if for each pair of its distinct points,there

exists neighborhoods with empty interaction. A locally Euclidean space is a topo-

logical space such that each point has a neighborhood homeomorphic to an open

subset of Euclidean space. A manifold of dimension n is defined as Hausdorff,

locally Euclidean space of dimension n. A topological manifold is said to be dif-

ferentiable [or smooth], if differentiable structure is defined on it. The manifolds

are classified on basis of their structures .Given a curve ‘r’, on smooth manifold ,

its tangent vector [or simply a vector] is defined as the derivative of differentiable

function ‘f’,in direction of ‘r’ at origin. A vector field on smooth manifold ‘m’ is

an assignment at tangent vector at each point of M. A geodesic is a curve , such

that its vector field is parallel along the given curve A. A Riemannian metric

is a positive definite bilinear, which is symmetrical by nature. The Riemannian

metric tensor is useful in definition of metric property on differentiable manifolds
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, such as angles between vectors ,curvature tensor ,Riemannian curvature tensor,

Ricci tensor and geodesic.

A manifold M is said to be Riemannian manifold if a Riemannian metric tensor

is defined on its tangent vector space. A pseudo-Riemannian manifold is a pair

[M,g] when M is a smooth manifold and g a metric tensor that is not positive def-

inite. A real manifold is differential manifold whose tangent vector space is real

vector space. By introducing the complex structure in the manifold we obtain

complex manifolds. Due to different structure we can introduce various manifolds.

Manifolds are classified as even or odd dimensional according to the dimension of

their respective tangent vector space. An odd dimensional manifolds is said to be

sasakian if the sasakian structure is defined on it. An odd dimensional manifold

is said to be para-sasakian If para-sasakian structure is given on it.

A lorentzian para sasakian manifolds is an atmost –contact structure is given.

If vector space and its dual have same geodesic[are in geodesic correspondence]

then the expression of Weyl’s curvature is obtained.

New curvature tensor have been obtained by Porkhariyal and Mishra [1970] and

pokhariyal [1982a]on basis of Weyl’s curvature tensor having different combina-

tion of vector field associated to Ricci tensor and metric tensor of Riemannian

manifold. Ricci flows are partial differential equation whose variable is a metric

tensor of Riemannian manifold. Einstein manifolds are fixed points of Ricci solu-

tions are also used in quasi-einstein manifolds. Ricci solutions on antisymmetric

and semisymetric para kenmonsu with respect to W6 and on semisymmetric and

antisymmetric lorentzian para sasakian with respect to W6 have been studied.

Pokhariyal[2] defined some curvature tensors and obtained their physical and ge-

ometrical properties of which Matsumoto and Mihai 1998[3] defined Lorentizian

Para Sasakian Manifold.

In this thesis properties of W6-curvature tensor will be studied in LP-Sasaskian

manifold and some theorem proved.Since Pokhariyan[1982] defined W6-curvature

tensor,we will break this tensor into symmetric and skew symmetric parts in two

ways and various relationship and obtained in part one. Part two we will look

at W6-curvature tensor in LP sasakian maniford and obtain various equation and

prove them then part three n-dimentional LP- Sasakian maniford symmetric and
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skew symmetric tensor field will be studied, obtain equations and proof them.

We shall investigate LP-sasakian maniford in which [1] C=O Where C is weyl

conformal curvature tensor. Then study LP-SM in which C = O WhereC is weyl

conformal curvature tensor.Then study LP-sasakian manifold in which
−
C = 0

where
−
C is a quasi conformal curvature tensor. In both cases its shown that an

LP-Sasakian maniford is isometric with unit sphere Sn(1).Conformally flat L-P

Sasakian maniford will be studieed and finally consider Weyl- semi symmetric LP

Sasakian maniford.

1.2 Definitions and explanations

1.2.1 Differentiable manifold

The basic idea that leads to differentiable manifold is to try to select a family or

sub collection of neighbourhood so that the change of cordinates is always given

by differentiable functions. As to definitions of differentiable manifold we first

look at n-dimensional real space Rn as product space of R. where R is set of real

numbers. Rn is obtained taking n-copies of R

Example

Rn = R× R×R×R.........×R;

R n-times where n is any integer greater than zero in Rn each element can be

represented by n− tuples so that for every XϵRn

x = (x1, x2, ...., xn), where xiϵR

and i=1,2,3.....n

let us take two arbitrary points in Rn then for every such pair we can define

metric on Rn by

d(x,y)=(
∑
i=1

n

(xi − yi)
2)

1
2
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then Rn becomes metric space with metric topology as defined above for future

discussion Rn is been considered as topological space with M being open subset.

The definition of topological manifold M of dimensional n is a Hausdorff space

with countable basis of open sets and with further property that each point has

a neighborhood homomorphic to open subset of Rn.

Definition

Let vn be non empty para compact Hausdorff space.Then vn is said to be n-

dimensional topological manifold if every point xϵ vn has open neighborhood U

in vn which is homomorphic to an open subspace of the n-dimensional euclidean

space Rn

1.2.2 Differentiable structure

Concept of differentiable structure is studied in this section which form basis

of differentiable manifold. First we look at element of differentiable structure

namely chart and atlases.

1. Charts

For chart X we mean imbeddingΦ: U → Rn of open subspace U of X into

Rn such that Φ(U) in open subspace of Rn. where U domain of chart.

Let Pi: Rn → Rn such that i = 1, 2, .....n denote natural projection defined

as

Pi(t1, t2, ....tn) = ti for all t1, t2, t3.....tnϵRn. Then for every chart Φ:U →

Rn on X. The Φ=pi Φ: U → Rn is known as ith coordinate function in U

with respect to the chart Φ and for every xϵU the real number t1 = Φi(x)

is the ith cordinate of point x with respect to chart Φ.

The chart Φ: U → Rn is called local coordinate system u eor every xϵ

U then real numbers (t1, t2......tn)=(Φ1.......,Φn) = Φ(x)ϵRn are said to be

coordinates of point x with respect to Φ.
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Let f: W → Rn denotes function of non-empty space W of Rn .Then f

is said to be

(a) of class ck,k=1,2,3.......... if and only if f has partial continous derivative

of all order r≤k

(b) of all class c0 if and only if its continous

(c) of class c∞or smooth if its of class ck for every for every positive in-

terger.

(d) of class cw if it is analytic function.

A function f:w→ Rn for an open subspace w of Rn into Rn is said to be

of class ck if and only if for every i=1,2,3..........n, the composed function

fi = pi : W → Rn of class Ck

2. Atlas

It is a collection of charts (Uα, φα), αϵI of X satisfying following condition

(a) The domain of the chart in α cover the n-manifold

(b) For any two chart Φ:U → Rn and φ:V → Rn in α with U
⋂
V ̸= ∅ the

function

f(Φ, φ):U ∩ V → Rn

defined by f(Φ, φ)(t)=φ[Φ−1(t)], for every point tϵΦ(U ∩V ) is of class

ck.

Function f(Φ, φ)is know as connecting function of 2 charts Φ and φ.for every

xϵU ∩ V we have

f(Φ, φ)[Φ(x)] = φ(x), hence f(Φ, φ) is ussually called the transformation for

change of local cordinate system from Φ to φ.Thus, we have enough concept

to define differentiable structure.

Definition 1.2.2.1

Let ck be set of all atlases on X of class ck .if K ̸=0, this set maybe empty.The
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relation of X defined by α β if and only if αUβ is an atlas in ck(x) for any two

atlases α, βϵck(x). This is an equivalence relation in ck(x)into disjoint equivalence

classes. Each of equivalence classes is called is called differentiable structure of

class ck in the given n-manifold X. Two atlases α and β are known to be com-

patible if their union is an atlas.

Definition 1.2.2.2

A differentiable or c∞ (or smooth) structure on topological manifold M is a family

U = (Uα, φα) of coordinates neighborhood such that the following are satisfied

1. The uα cover U

2. for any α, β the neighborhood ((Uα, φα) and (Uβ, φβ) are c∞ compatible

3. Any coordinate neighborhood (Uα, φα) compatible with every conditions

(Uβ, φβ)ϵU is itself U.

1.2.3 Differentiable n-manifold

An n-manifold M together with given differentiable structure A of class ck on M

is called differentiable n manifold .

1.2.4 Diffeomorphism

Let M and N be differentiable n-manifold of class ck. Let also h≤k. If the function

f: M→ N is homeomorphism and both f and f−1(its inverse) are function of class

ch then f is called diffeomorphism.

1.2.5 Tangent vector and tangent spaces

Definition 1.2.5.1

Let p be an element of vn and let c∞(p) be set of real valued function that are

c∞ on some neighborhood U of p. A vectorX at p is said to be a tangent vector

at p if it satisfy the following properties

1. Xϵvn fϵC(p) then XfϵC∞(p)

6



2. X(f + g) = Xf +Xg:f,g ϵC∞(p)

3. X(fg) = fXg + gXf

4. X(af) = aXf aϵR

The system consist of

1. The set Tp containing all tangent vectors at P

2. The binary operation + satisfying (X + Y )f = Xf + Y f

3. An operation scalar multiplication fXϵ Tp and (aX)f=aXf where aϵ R is a

vector space called Tangent space to Vn at P. tp approximates to Vn at P

and is n dimensional.

Definition 1.2.5.2

Let mn be n- dimensional c∞ manifold. if pϵ Mn and X be c∞ real valued function

of some neighborhood of P and satisfies

X(a1f1 + a2f2) = a1(Xf1) + a2(Xf2)

and

X(f1f2) = (Xf1)f2 + f1(Xf2)

where a1a2 ϵR and f1f2 ϵc∞ are real valued function at P. Then X is called

tangent vector at point P.

The set of all tangent vector at point P with operation of addition (+) and mul-

tiplication (.) given

(X+Y)f1=Xf1 + Y f1

and

(f1X)f2 = f1(Xf2)

is a vector space and is called tangent space to Mn at P and is denoted by

T(p)M or t(p).

7



1.2.6 Vector field

A vector field X on set B is a mapping that assigns A to each p in B a vector Xp

in the tangent space Tp. A vector field X on B is c∞ if

1. B is open

2. function Xf at P is c∞ on A
⋂
B , f is being a c∞ real valued function on

A in vn

1.3 Tensors

1.3.1 Tensor Algebra

In this section tensors are defined as elements of a vector space. The classical

notation in definition is used but on most of the work index free notation is

used. Let v′ be an n-dimensional space and let ei and
−
ei be two basis of v′

then each vector of set [
−
ei] is a linear combination of elements of the set [ei]

i = 1, 2, 3, 4........, n and vice versa.

Let us take

1.
−
ei = pjiej: where pji , q

j
i ϵ F

2. ei = qji
−
ej: where f is scalar field

Putting 2 in 1 above we shall get
−
ei = pki q

j
k

−
ej,

Since [
−
ej] is linear independent we have

pjiq
k
j

−
ej = δki .

Consequently

(p)(q)= In

i.e (p) and (q) are inverse to each other for any vector X ϵ Vn. We have

X=
−
Xk −

ek = Xiej,where
−
Xk and Xi are component of X with respect to

−
e1

8



and ei.

From 1 and 2 we have

1.
−
Xk = qki

−
X i

2.
−
Xk = pki

−
X i

which are equations of laws of transformations of vector X.The vector X or any

vector in vn is called contravariant vector of order 1 or tensor type (1,0).

1. Dual spaces

Consider V ′ consisting of

(a) a set of all linear scalar function on V ′ where V is a vector space.

(b) a binary operation ′′ + ” satisfying (A+B)(x) = A(x) +B(x)

A,BϵV ;XϵV ′ then V ′ is a vector space called dual of V ′.

A bi-linear scalar function T over V×W is a mapping T:V×W→F. i.e

T(X,A) are Xϵ V and AϵW is scalar such that

T (aX + bY, cA+ dB) = acT (X,A) + adT (X,B) + bcT (X,A) + bdT (Y,B)

where A,BϵW ; X, Y ϵV and a, b, c, dϵF .

Consider a system denoted by V ′ × V ′ or v2 consisting of

(a) a set v∗2 of all bilinear scalar function of V ′ × V ′.

(b) A binary operation say ” + ” satisfying

(T + S)(A,B) = T (A,B) + S(A,B) ; T, SϵV ∗2 ; A,Bϵv1

(c) an operation of scalar multiplication satisfying

(rT )(A,B) = rT (A,B) ; rϵF ; A,Bϵv1 then v2 is vector space called

the tensor product of V’ with itself.

2. Tensors A linear scalar function or form of V ′ is a linear mapping such

that A(X) , XϵV ′ is a scalar and A(fX + gY ) = fA(X) + gA(Y ) ;f, gϵF

and X, Y ϵV ′.
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3. Higher order tensors

We can define mixed tensor as At1t2....ts
q1q2........qp

This tensor is then called mixed tensor of contravariant order s and covari-

ant order p. If by interchanging two indices the sign of tensors remain same

then we say tensor is symmetric in those indices.

If sign changes then it is skew-symmetric with respect to two indices. The

properties on symmetry and skew-symmetric are independent of the cor-

dinate system. A significant result from transformation laws of tensors is

that ”if components of a tensor are zero in one coordinate system , then

they are zero in any coordinate system”.It is this property of tensor that is

useful in physical application and when a tensor is defined at all points of

a curve in space vn then we say it consists of a tensor field.

1.3.2 Fundamental operation of tensors

1. Outer product The outer product of two tensors is equal to a tensor whose

rank is sum of rank of given tensor and it also involves multiplication of

components of the tensor.

2. Contraction If we set one covariant index of tensor equal to one contravari-

ant index then the resulting tensor will be of rank two less than original

tensor. This process is contraction.

3. Inner multiplication The outer multiplication of two tensors followed by

contraction will result to a tensor known as inner product of given tensor.

4. Addition and subtraction of tensors of same rank and type result in tensor

of same rank and type.

NB: Two operations are defined only for tensor of same rank and type.

For us to verify whether functions would form components of tensor, we

can use transformation laws of which they can be cumbersome so instead

we can use the quotient law which is more convenient.
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5. Quotient law If an inner product of any quantity X with arbitrary tensor

is also a tensor then X is also a tensor.

A tensor Q of type (r, 0) is said to be symmetric in hth and kth places if

Sh,k(Q) = Q

and skew symmetric if

Sh,k(Q) = −Q

where 1 ≤ h < k ≤ r and Sh,k is a linear mapping which interchanges vector at

hth and kth places

Note that it is also applies to a tensor of type (0,1).

1.3.3 Connexion

A connexion ∇ is type preserving mapping assigned to each pair of c∞ field

(X,Y), a c∞ vector fields ∇xP such that if X,Y,Z are c∞ vector field and f is a

c∞ function then

1. ∇Xf = Xf

2. ∇X(fY ) = (Xf)Y + f∇XY

3. ∇X+YZ = ∇XZ +∇YZ

4. ∇fXZ = f∇XZ

and also

∇X(Y + Z) = ∇XY +∇XZ.

1.3.4 Affine connexion

An Affine Connexion∇ on manifold m is map T(M)×T(M)........ > T(M),(X,Y).........>

∆xY such that for all Xi, YiϵT(M),i=1,2 we have
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1. ∇X1+X2(Y ) = ∇X1Y +∇X2Y

2. ∇X(Y1 + Y2) = ∇XY1 +∇XY2

3. ∇X(fY ) = (xf)Y + f∇XY

4. ∇fX(Y ) = f∇XY

where f is a c∞ real valued function on M.

Definition 1

A c∞ vector field X is said to be parallel along a smooth curve γ : t....... > γ(t)

on M (with respect to ∆) iff

∆TX = 0

along γ where T=d(γ(t))/dt. So if

∆TY = 0

everywhere along γ then X is parallel along γ.

Definition 2

A Riemannian structure on M is covariant tensor field of order 2(degree) called

Riemannian metric with the following properties

1. g(X,Y)=g(Y,X) for X,Y ϵT(m)

2. gX : Tp(m) × Tp(m)............. > Rn: pϵM

where gX is a non-degenerate bilinear form on Tp(m) × Tp(m) i.e an in-

ner product on Tp(M)gX(Y )

3. gX(Y,X) = 0; for all pϵTp(m) if and only if y = 0.

4. g(X, Y ) ≥ 0 for all T (m) : g(X,X) = 0 which implies Y = 0.

12



Definition 3

A connection ∆ is compatible with Riemannian metric g if a parallel transforma-

tion along any smooth curve γ in m preserves the inner product. i.e whenever

x(t) and y(t) are parallel along γ then <x(t),y(t)> is independent to t.

1.3.5 Lie algebra

Let M be the set of all infinity vector field. The brackets [ ] is defined by mapping

[ ]:M × M → M

Such that for X,Y in M and

[X, Y ]f = XY f − Y Xf

where f is smooth function for X,Y,Z in M we have

1. [X, Y ] = −[Y,X]

skew commutative(symmetric)

2. [X + Y, Z] = [X,Z] + [Y, Z]

3. [fX, gY ] = fg[X, Y ] + f(XgY )− g(Y f)X

4. [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0

The last equation is known as Jacobi identity

Example

Let Mn(R) denote the algebra of n×n matrices over R with X,Y denoting the

usual matrix product of X and Y. Then

[X, Y ] = XY − Y X

the ”commuter” of X and Y defines a lie algebra structure on Mn(R) as easily

verified. If f is c∞ on any open set UcM then so is (XY − Y Z)f and therefore Z

is a c∞ vector field on M as said.
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We may define a product on T(m) using the fact ; namely ,define the prod-

uct of X and Y by [X, Y ] = XY − Y X

Let us consider the following theorem;

Theorem 1.2.4.1

T(M) with the product [X, Y ] is a lie algebra.

Proof

If α, βϵR and X1, X2, Y are c∞ vector field then it is straight forward to verify

that

[αX1 + βX2, Y ]f = α[X1, Y ]f + β[X2, Y ]f .

Thus [X, Y ] is linear in the first variable. Since the skew commutative [X, Y ] =

−[Y,X] is clear from definition. We see linearity in the first variable implies lin-

earity in the second variable. Therefore [X, Y ] is bilinear and skew commutative.

There remains Jacobi identity which follows if we evaluate

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]]

and apply to c∞ function f. We obtain

[X, [Y, Z]]f = X(([Y, Z])f)− [Y, Z](Xf)

= X(Y (Zf))−X(Z(Y f))− Y (Z(Xf)) + Z(Y (Xf))

Permutting cyclically and adding establishes the identity.

1.3.6 Lie bracket and covariant Derivatives

Let X,Y,Z be c∞ vector field on mn. Then lie brackets is the mapping

[ ] : Mn ×Mn........ > Mn

Such that

[XY ]f = X(Y f)− Y (Xf)

f being c∞ function.

This satisfies the following properties;

1. [X, Y ](f1 + f2) = [X, Y ]f1 + [X, Y ]f2
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2. [X, Y ](f1.f2) = f1[X, Y ]f2 + f2[X, Y ]f1

3. [X, Y ] + [Y,X] = 0

4. [X + Y, Z] = [X,Z] + [Y, Z]

5. [f1X, f2Y ] = f1f2[X, Y ] + f1(Xf2)Y − f2(Y f1)X

and further it satisfies Jacobi identity i.e

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

The covariant derivative ∆ is a mapping ∆ : T r
s .......... > T r

s+1 such that

∆p(a1, ..........ar, X1..........Xs+1)=(∆s+1p)(a1, ......, ar, X1, ....., Xs)

where p ϵT r
s : a,a2, ..............arϵT(p) and X1, X2.........XsϵT

∗
(p)

1.3.7 Lie bracket and Exterior Derivatives

let X be c∞ vector field on an open set A. Lie derivative via X is a type preserving

mapping

LX : T r
s −→ T r

s

such that

1. LXf = Xf , where f is c∞

2. LXa = 0, aϵ R

LXY = [X, Y ], Y ϵT(p)

(LXA)(Y ) = X(A(Y ))− A(X, Y )

where AϵT ∗
p

and

(LXp)(A1.......Ar, X1............Xs) = X(p(A1, A2......, Xs), .......p(A1, ....., [X,Xs])

where pϵT r
s . Let vp be c∞. p forms an open set A. Then the mapping

d : Vp ←→ Vp+1
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given by

(df)(X) = Xf ,

where XϵT(p) and f is c∞ function on A thus from above it is clear now we can

define the following as

(dA)(X1, ............Xp+1) = X1(A(X2, ..........., Xp+1))+X2(A(X1, X3, ...........Xp+1))+

........................

+Xp+1(A(X1, X2......Xp))− A([X1, X2]X3........Xp+1)

−A([X1, X3], X2, X4.............Xp+1)− A([X2, X3], X1, X4..........Xp+ 1)............

for all arbitrary c∞ fields XϵV and AϵVp is called exterior derivative

1.3.8 Torsion tensor of a connexion

The torsion tensor of a connexion ∇ is defined as a vector valued bilinear function

T which assigns to each pair of c∞ vector X and Y with domain A, a c∞ vector

field T (X, Y ) with domain A and is given by

T (X, Y ) = ∇XY −∇YX − [X, Y ].

A connexion is said to be symmetric if torsion tensor vanishes(Torsion=0) and a

connexion ∇ is said to be Riemannian if

1. T (X, Y ) = 0

and

2. ∇Xg = 0

1.3.9 Curvature Tensor

Consider a connexion D. Then the operator KXY defined by

KXY = [DX , DY ]−D[X,Y ]

is called the curvature operator.

Then curvature K of the connexion D
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K(X, Y, Z) = KXYZ

which can be written as

K(X, Y, Z) = [DX , DY ]Z −DX,YZ

= DXDYZ −DYDXZ −DX,YZ

where k is vector valued function. The curvature tensor K satisfies two identities

1. K(X, Y, Z) +K(Y, Z,X) +K(Z,X, Y ) = 0

and

2. (DXK)(Y, Z,W ) + (DYK)(Z,X,W ) + (DzK)(X, Y,W ) = 0

which are called Bianch first and second identities respectively.

Proof

Let D be a symmetric connexion then

K(X, Y, Z) +K(Y, Z,X) +K(Z,X, Y )

=DXDYZ − DYDXZ − D[X, Y ]Z + DYDZX − DZDYX − D[Z, Y ]X +

DZDXY −DXDZY

−D[X,Z]Y

=DX [Y, Z]−D[Y,Z]X +DY [X,Z]−D[Z,X]Y +DZ [X, Y ]−D[X,Y ]Z

=[[X, Y ], Z]+[[Y,X], Z]+[−[Z,X], Y ]=0 by Jacobi identities.Thus we have

K(X, Y, Z) +K(Y, Z,X) +K(Z,X, Y ) = 0.

Similarly we also get

(DXK)(Y, Z,W ) + (DYK)(Z,X,W ) + (DZK)(X, Y,W ) = 0

Let us put K ′(X, Y, Z,W ) = g(K(X, Y, Z),W ).

It can be noted that K’ satisfy the following conditions

(a) is skew symmetric in the first two slot as well as in the last two slot,
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(b) satisfy first and the second banachi identity,

(c) symetric in two pair of slot,

i.e (XY) and (Z,W).

1.3.10 Difference tensor of two connexion

Consider a smooth manifold M and let D and
−
D be two connexion on M for two

field X and Y on M . We define difference tensor as

B(X,Y)=
−
DXY-DXY

Linearlity of B slot is trivial result from properties of connexion. Let us con-

sider slot 2 and Let f be c∞ on domain X and Y. Then

B(X, fY ) = (Xf)Y + fDXY − (Xf)Y − f
−
DXY = fB(X, Y ).

If we decompose B(X, Y ) into symmetric and skew symmetric pieces we have

B(X, Y ) = S(X, Y ) + A(X, Y )

where

S(X, Y ) = 1
2
[B(X, Y ) +B(Y,X)]

is symmetric part

and

A(X, Y ) = 1
2
[B(X, Y )−B(Y,X)]

is skew symmetric part.

Then we can express A in terms of torsion tensors T and
−
T of connexion D and

−
D respectively as for

2A(X, Y ) = B(X, Y )−B(Y,X)
−
DXY −DXY −

−
DYX −DYX

=
−
T (X, Y )− T (X, Y ) + [X, Y ]− [X, Y ]

=
−
T (X, Y )− T (X, Y ).

Let the two connexion D and
−
D be related in Vn by

18



−
DXY = DXY + A(X)Y + A(Y )X.

Where A is a 1-form and X and Y are vector fields in Vn. Then D and
−
D are

said to be projectively related.

1.3.11 Ricci Tensor

The tensor defined by Ric(Y, Z) = (C ′, K)(Y, Z) is called tensor of type (0,2),

where C’ denote contraction. Its symmetric tensor

Ric(X, Y ) = Ric(Y,X),

the Ricci tensor of type (1,1) is defined by

g(R(X), Y ) = Ric(X, Y ),

the scalar curvature r is defined by

C ′
1R = def r

1.3.12 The weyl projective curvature tensor

This is defined by

W (X, Y, Z) = K(X, Y, Z) + 1
n+1

[L(X, Y )− L(Y,X)]Z + n
n2−1

[L(X, Y )Y −

L(Y, Z)Y ] + 1
n2−1

[L(Z,X)Y − L(Z, Y )X]

Where

L(X, Y, Z, T ) = R(X, Y, Z, T )− 1
n−2

[g(Y, Z)Ric(X,T )− g(X,Z)Ric(Y, T ) +

g(X,T )Ric(Y, Z)− g(Y, T )Ric(X,Z)]

is conharmonic curvature tensor.

It can be shown that symmetric connexion which are projectively related have

the same curvature tensor.

The weyl’s projective curvature tensor w satisfies the following properties:-

1. W (X, Y, Z) = −W (Y,X,Z)

2. (trW )(X, Y ) = (C ′
3W )(X, Y ) = 0

3. W (X, Y, Z) +W (Y, Z,X) +W (Z,X, Y ) = 0
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1.4 Statement of the Problem

The aim of this study is to study Geometric and Physical properties ofW6–curvature

tensors on lorentzian para sasakian manifold on semi-Riemannian generalized

sasakian space forms endowed with semi symmetric metric connection in general

theory of Relativity.

1.5 Objectives

1.5.1 General Objective

Study geometric and physical properties of W6 curvature tensor on Lorentzian

Para-Sasakian manifold and other related manifolds with emphasis on producing

new geometric results having physical meaning.

1.5.2 Specific Objectives

The specific objectives of the study are:-

(a) To determine the geometric properties of W6 curvature tensor on Sasakian

space i.e flatness, cyclic,symmetric and semi-symmetric properties.

(b) To analyze the geometric properties of W6 curvature tensor on Lorentzian-

Para sasakian manifold i.e flatness, cyclic,symmetric and semi-symmetric prop-

erties and relation with other tensors.

(c) To determine physical properties of W6 curvature tensor on Lorentzian-Para

sasakian manifold i.e flatness,irrotational and conservative and also obtain results

on Einstein Lorentzian para-Sasakian Manifold.

(d) To determine the relativistic significance of W6-curvature tensor on LP-

Sasakian Space.

1.6 Justifications

This study will add to the existing applicable knowledge in mathematics, physics

and chemistry in the analysis of curvature tensors to generate equations which
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describe the nature of forces existing in: Black holes, that is regions of space time

from which gravity prevents anything ,including light,from escaping. Spinning

planets and their shapes as they transverse their orbits in space. Electrons and

protons in an atom and the shapes of atomic orbitals.Bermuda triangle i.e region

in the western part of the north Atlantic ocean where a number of air crafts and

ships are said to have disappeared under mysterious circumstances.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

A set of new curvature tensors was defined on the line of Weyl tensor by Pokhariyal

and Mishra (1970), and Pokhariyal (1982); to study Relativistic significance of

curvature tensors. The Weyl’s projective curvature tensor was defined on the

basis of geodesic correspondence due to a particular type of distribution of vector

fields and metric potential contained in it.

These new tensors were not necessary due to its in variance in two spaces Vn and
−
vn , but showed that the ”distribution” (order in which the vectors in question

are arranged before being acted upon by the tensor in question), of vector field

over the metric potentials and matter tensors plays an important role in shaping

the various physical and geometrical properties of a tensor, viz the formulation of

gravitational waves, reduction of electromagnetic field to a purely electric field,

vanishing of the contracted tensor in an Einstein space and the cyclic property.

The relativistic significance of Weyl’s projective curvature tensor has also been

explored by Singh et al., (1965).

The concept of curvature is very common in Differential Geometry. In this work

we try to show its evolution along history, as well as some of its applications. This

survey is limited both in number of topics dealt with and the extent with which

they are treated. Some of them, like minimal submanifolds,Kahler manifolds or

Morse Theory are completely omitted. Though in an implicit way, the curvature

is already present in the Fifth Euclid’s Postulate.

However it does not emerge explicitly in Mathematics until the appearance of

the theory of curves and surfaces in the euclidean space. Taking basically the

work of Gauss’s as a starting point, Riemann defines the curvature tensor in an
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abstract and rigorous way.

The introduction of multilinear algebra in the second half of the 19th century

allowed a better analytic formulation and its further development. It is worth

stressing its fundamental role in the development of the Theory of Relativity.

Besides, the curvature is present, not only in Riemannian manifolds, but also in

many other geometric structures, like homogeneous and symmetric spaces, the

theory of connections, characteristic classes, etc. Having in mind that the phys-

ical world cannot be explained in a linear way, the curvature also arises in the

theories of Mathematical Physics. Likewise, it seems interesting to note its pres-

ence in applied sciences, like Estereology.

The world we live in, and the mathematical models describing the geometrical

and physical objects, cannot be properly explained with only linear constructions.

In order to obtain an adequate description of Nature, it is necessary to introduce

models in which the relations between parameters go beyond the linear ones.

That is why the concept of curvature appears in a natural way.

According to Osserman, the notion of curvature is one of the main concepts

of differential geometry; it could be argued that it is indeed the central one, by

distinguishing the geometrical core of the subject from those aspects that are

analytic, algebraic or topological. According to Berger, the curvature is the most

important invariant of Riemann’s Geometry, and the most natural one. In Gro-

mov writes: “the curvature tensor of a Riemann manifold is a little monster of

multilinear algebra whose complete geometrical meaning remains obscure”.

Thus, for Riemannian manifolds without additional structures, the curvature is a

complicated magnitude. Its properties in the simplest manifolds were the first to

be studied. Later, the situation in a more general manifold could be compared to

that in the simplest ones. The latter are often called “model spaces”. The cur-

vature also plays a fundamental role in Physics and other experimental sciences.
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For example, the force required to move an object at a constant speed is, ac-

cording to Newton’s laws, a constant multiple of the curvature of its trajectory;

and the movement of a body in a gravitational field is determined, according to

Einstein, by the curvature of the space-time.

2.2 On Manifolds

The relativistic significance of weyl’s projective curvature tensor has been ex-

plored by Singh,Radhakrishoa and Sharan and many other authors.Differential

geometry builds on the following disciplines as its prerequisites: the analytic ge-

ometry of Descartes and Calculus (Leibniz 1646-1716, Newton (1645-1727)

The first isolated results on curves and surfaces date from the eighteenth century.

Gauss (1777-1785) transformed the theory of surfaces into its modern systematic

mound. A foundation of intrinsic geometry independent of embedding was given

by Riemann (1826- 1866). Riemann also dropped the restriction to 3 dimensions.

Around the 20th century the tensor calculus was developed as a powerful tool

for differential geometry by Ricci and Levi Civita together with the general rela-

tivity of Einstein (1879-1955) .This signaled the development of other geometric

structures in differentiable manifolds.

Calculus of variatons is closely linked to differential geometry. In 1918, Finsler

wrote his dissertation in which this connection was used to construct a new met-

ric differential geometry that has since developed considerably.

The chief aim of tensor calculus has been the investigation of relations which re-

main valid when we change from one coordinate system to another. This makes

tensor calculus desirable as a mathematical tool for developing physical laws.

Tensors also allow complex expressions to be represented in a compact way and

thus simplify the mechanics of development of theory.

Mishra and Pokhariyal (1970) studied various geometric and physical properties

of the curvature tensors. They defined a new tensor W2 based on the Weyl pro-

jective curvature tensor and investigated its relativistic significance. Based on

the same Weyl Projective curvature tensor, Pokhariyal (1971-1982) has defined

other tensors W3, W4, W5, W6, W7, W8 and W9. Some of the physical and
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geometric properties of these and other tensors in different manifolds have been

studied by Pokhariyal,Muindi,Njori and Others. The results obtained in these

manifolds are reviewed in the following sections.

2.2.1 On Sasakian Manifolds

Mishra (1970) studied some properties of the Riemann curvature tensors as well

as the Weyl projective curvature tensor and the conharmonic curvature tensors

in Sasakian manifolds. He showed that a concircular symmetric Sasakian man-

ifold is a manifold of constant curvature and that the concircular and Riemann

curvature tensors do not vanish in a Sasakian manifold.

Pokhariyal (1971) studied the properties of the Bochner curvature tensor in the

Kahler Manifold, in particular the relationship between conharmonic recurrence,

Bochner recurrence and Ricci recurrence in the Kahler manifold.

B. Sinha and J. P. Sinha (1975) studied the properties of a Sasakian manifold

with constant F-holomorphic sectional curvature in connection with Ricci tensor

and a parallel field of null planes.

Sinha and Sharma (1979) have studied the structure induced on the hypersur-

face of a Sasakian manifold and subsequently its infinites variations in various

modes and remarked that the discussions could be used to study infinitesimal

deformations of the universe (with unified field structure) as hypersurface of five

dimensional Sasakian manifold.

Matsumoto (1980) investigated curvature preserving transformations of P-Sasakian

manifolds. He showed that each curvature preserving infinitesimal transforma-

tion is necessarily an infinitesimal automorphism.

Khan (2006) studied Einstein Projective Sasakian Manifold. He showed that a

projectively flat Sasakian manifold is an Einstein Manifold and is a manifold of

constant curvature. He also showed that if an Einstein Sasakian Manifold is pro-

jectively flat, then it is locally Isometric with the unit sphere Sn(l).

Tripathi and Dwivedi (2008) studied the structure of some classes of K-contact

Manifolds. They showed that a (2m + 1) dimensional Sasakian Manifold is quasi

projectively flat if and only if it is locally isometric to the unit sphere S’2n+1(l).
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De, Jun and Gazi (2008) studied Sasakian Manifolds with quasi-conformal cur-

vature tensor. It is proved that a Quasi-conformally flat Sasakian manifold is an

n-Einstein Manifold and is necessarily locally isomorhpic to the unit sphere. They

also showed that a compact orientable quasi-conformally flat Sasakian manifold

cannot admit a non-isometric conformal transformation. They also proved that

an n—dimensional Sasakian Manifold (n ¿ 3) is quasi conformally flat if and only

if it is Quasi conformally semi-symmetric.

2.2.2 On LP— Sasakian Manifolds

Matsumoto and Mihai (1988) studied some properties of a transformation in a

LP-Sasakian manifold and came up with some new results.

Ki and Kim (1990) Studied Sasakian manifolds whose C-Bodmer curvature tensor

vanishes. They showed that such a manifold has constant scalar curvature and

at most three constant Ricci curvatures provided that the square of the length of

the Ricci tensor is constant.

Gebarowski (1991) has studied conformal collineations in a LP-Sasakian mani-

fold and showed that any conformal collineation of an LP- Sasakian manifold is

necessarily a conformal motion.

Pokhariyal (1996) studied the symmetric and skew symmetric properties of the

W1 tensor in LP-Sasakian manifolds and showedW1 symmetric LP-Sasakian man-

ifold is not W1 flat. These tensors have been used to explain some Physical and

geometric behaviors of the four dimensional space time, Kahler, Sasakian and

other complex manifolds.

Tarafdar and Bhatacharya (2000) studied LP-Sasakian manifolds with confor-

mally flat and quasi conformally flat curvature tensor and showed in both cases

that manifold is isometric to the unit sphere Sn(l).

Ozgur (2003) considered u-conformally flat, u-conharmonically flat and u-projectively

flat LP—Sasakian manifolds. He showed that a u-conformally flat LP—Sasakian

manifold is an n-Einstein manifold and further, that a u-conharmonically flat

LP—Sasakian manifold is an n-Einstein manifold with zero scalar curvature and

that a u-projectively flat LP—Sasakian manifold is an Einstein manifold with
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constant scalar curvature.

Murathan et al (2006) studied certain classifications of the LP Sasakian Manifold

which satisfy the conditions P.C = 0,P.Z — Z.P = 0, and P.Z + Z.P = 0, where

P is the v-Weyl projective curvature tensor,Z is the concircular curvature tensor

and C is the Weyl conformal curvature tensor.

Venkatesh and Bagewadi (2008) studied concircular u-recurrent LP—Sasakian

manifold and showed that such a manifold is an Einstein manifold. They also

showed that a u-recurrent LP—Sasakian manifold having nonzero constant sec-

tional curvature is locally concircular u-symmetric.

2.2.3 On W6-Curvature Tensor

Weyl introduced the notion of weyls tensor which he defined as a measure of the

curvature of space time or more generally a pseudo-Riemannian manifold.

Kimetto (2015) studied W6 –curvature tensor in K-contact Riemannian man-

ifold and proved W6-flat,semi symmetric, symmetric and W6 semi symmetric

K-contact Riemannian Manifold is a W6 –flat manifold.

Since W6 has been defined by various author i.e Pokhariyal and Kimetto studied

W6 on K-contact manifold,there is still a gap on studying W6 curvature tensor

on the other manifold including lorentzian para sasakian manifold and Kenmutso

manifold which will now led to our study.
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CHAPTER THREE

RIEMANNIAN AND COMPLEX MANIFOLD

The methodology used is by use of covariant differentiation, manifold trans-

formation and making use of the definition of W6-curvature tensor,the physical

and geometric properties shall be studied. The symmetry as well as cyclic prop-

erties of the tensor shall studied and the result obtained shall be combined with

the result of the other tensors.

3.1 Riemannian manifold

3.1.1 Riemannian manifold

Let T be a tangent space at point P of differentiable manifold Vn. Let us single

out in Vn a real valued bilinear symmetric and positive definite function g on

the ordered pair of tangent vectors at each point P on Vn. Then Vn is called

Riemannian manifold and g is called the metric tensor of Vn.

We thus have two vector X,Y of T at P. Such that

1. g(X, Y )ϵR,

2. g(X, Y ) = g(Y,X); g is symmetric,

3. g(aX + bY, Z) = ag(X,Z) + bg(Y, Z),

4. g(X, Y ) >0,
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5. if X,Y are c∞ fields with domain A then g(X,Y) at P is a c∞ function on A.

Let (G(X)(Y))=g(X,Y)then G is non singular and Let G−1 be the inverse

map. Then G−1OG = GOG−1 = In.

The angle θ between two vectors is defined by

||X||||Y ||cosθ = g(X, Y )

where

||X|| = g(X,X).

Thus two vectors X and Y are perpendicular if g(X,Y)=0

A connexion D is said to be Riemannian if it satisfies

1. D is symmetric

DXY −DYX = [X,X]

2. g is covariant constant with respect to D which gives

DXg = 0

and

g(DXY, Z) + g(Y,DXZ) = X(g(Y, Z))

An affine connexion D is said to be metric if DXg = 0.

The Riemannian manifold is said to be Einsteinian manifold if
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Ric(X, Y ) = r
n
g(X, Y ).

A Riemannian manifold is said to be flat if

K(X, Y, Z) = 0.

The torsion tensor Tor is vector valued linear dunction and is defined by

Tor(X, Y ) = DXY −DYX − [X, Y ]

If torsion vanishes then connexion is said to be torsion free or symmetric.

3.1.2 Riemannian curvature tensor

The curvature tensor with respect to the Riemannian connexion is called the Rie-

mannian curvature tensor.

Let K be Riemannian curvature tensor given by

K(X, Y, Z) = (DXDY −DYDX −DX,Y )Z

3.1.3 Riemannian connexion

Let X and W be vectors as P in Rn and
−
D be connexion. Let Y and Z be c∞

field about P and let f be a c∞real valued function about P. Then we have

1.
−
DX(Y + Z) =

−
DXY +

−
DYZ

2.
−
DX+W (Y ) =

−
DXY +

−
DWY

3.
−
Df(p)XY = f

−
DXY

4.
−
DX(fY ) = (Xf)Yp + f(p)

−
DXY (3.1.3.1)
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Using
−
D we can define parallel vector field along a curve and geodesics. Let r be

a c∞ curve on Rn with tangent T and let Y be an Rn vector field that is parallel

along r if
−
DrY=0 along r.

The curve γ is geodesic if
−
DrT=0 i.e if its tangent T is parallel along γ. Thus

generalization of a definition of covariant differentiation or connexion on c∞ man-

ifold is clear i.e we merely need the existence of operator D which satisfies all four

condition of above properties (3.1.3.1) listed for
−
D and assigns to c∞ vectors field

X and Y with domain A,a c∞ field DXY on A.

NB: Connexion can be more than one on a given manifold.

Let us denote dot or inner product of X and Y tangent to Rn by

< X, Y >=
n∑
i=1XiYi.

If X,Y and Z are c∞ field then < X, Y > is also c∞ field and if A is the domain

of X,Y and X Y are c∞ fields then one easily checks that

−
DYZ −

−
DZY = [Y, Z] on A

(3.1.3.2)

and

Xp < Y,Z >=<
−
DXY, Z > P+ < Y,

−
DXZ > P

(3.1.3.3)

for every X at p in A. From above we can generalize and fix some terms.

A Riemannian manifold is a c∞ manifold M on which one has singled out a c∞

real valued , bilinear , symmetric and positive define function<,> on ordered

pair of tangent vector at each point. Thus if X,Y and Z are in MP then X,Y are

real numbers and <,> satisfies the following properties

1. < X, Y >=< Y,X > symmetric

2. < X + Y, Z >=< X,Z > + < Y,Z > bilinear

< aX, Y >= a < X, Y > for all aϵr

3. < X,X > >0 for all X̸= 0
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4. If X and Y are c∞ fields with domain A then < X, Y > p =< Xp, Yp > is

ac∞ function on A when (3) is placed by (3*) (non singular). < X, Y >= 0

for all X implies Y=0 then M is semi-Riemannian (or pseudo Riemannian)

manifold. In either case the function is inner product, metric tensor, the

Riemannian metric or infinite semi metric on M not the topological metric

function.

If D is c∞ connexion in semi-Riemannian manifold M then D is Riemannian

connexion if it satisfies (3.1.3.2) and (3.1.3.3)

3.1.4 Properties of Riemannian curvature tensor

The Riemannian curvature tensors is linear over the ring of smooth function are

coefficient on the right hand side and satisfy the following properties

1. K(X, Y, Z) = −K(Y,X,Z)

2. if f is smooth function then K(fX, Y, Z) = −fK(Y,X,Z) where D is Rie-

mannian connexion.

Let us define

′K(X, Y, Z,W ) = g(K(X, Y, Z),W )

Then ’K is skew symmetric in the first two slots and the last two slots.

The Riemannian curvature tensor K satisfies Binanchi’s first identity and

Bianchi’s second identity.

Curvature Tensors

In a Riemannian manifold the weyl projective tensor reduces to

W (X, Y, Z) = K(X, Y, Z) + 1
n−1

[Ric(X,Z)Y −Ric(Y, Z)X]

Conformal curvature tensor

The tensor V defined by

V (X, Y, Z) = K(X, Y, Z) + 1
n−2

[Ric(Y, Z)X −Ric(X,Z)Y − g(X,Z)RY +

g(Y, Z)RX] + r
(n−1)(n−2)

[g(Y, Z)X − g(X,Z)Y ]
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is same for manifolds in conformal correspondence.

This tensor is called the conformal curvature tensor.

A manifold whose conformal curvature tensor vanishes at every point is said to

be conformaly flat.A conformal curvature V satisfies Bianchi’s first identity

V (X, Y, Z) + V (Y, Z,X) + V (Z,X, Y ) = 0

Concircular curvature tensor

The concircular curvature tensor is defined by

C(X, Y, Z) = K(X, Y, Z)− r
n(n−1)

[g(Y, Z)X − g(X,Z)Y ]

Conharmonic curvature tensor

The conharmonic curvature tensor is defined by

L(X, Y, Z) =

K(X, Y, Z)− 1
n−2

[Ric(Y, Z)X −Ric(X,Z)Y + g(Y, Z)RX − g(X,Z)RY ]

Riemannian curvature

Let X and Y be unit tangent vector at a point P of Riemannian manifold Vn.

These vectors determine a pensil of direction at P if the unit vectors along that

direction are U. Then

U = fX + gY

and

f 2 + g2 = 1 ,where f, gϵF

The geodesic of Vn whose unit tangent vector are U, generate a two dimensional

sub manifold of the tangent manifold T at P.

The gaussian curvature K(X, Y ) at P of this two dimensional sub manifold was

defined by Riemannian as sectional curvature at P of Vn in direction of X and Y.

Thus

K = −K(X, Y,X, Y )/||X||2||Y ||2[1− cos2θ];

where θ is the angle between X and Y.

A necessary and sufficient condition on Vn to be locally flat in the neighbour-

hood U of a point P is that Riemannian curvature of Vn at P vanishes.
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If the Riemannian curvature K of Vn at P of the direction X and Y then

K(X, Y, Z) = K[g(Y, Z)X − g(X,Z)Y ]. (3.1.4.1)

Contracting we get

1. Ric = K(n− 1)g

2. R = [K(n− 1)]n

contracting (2) we get

R = Kn(n− 1) (3.1.4.2)

Hence a Riemannian manifold of constant curvature is an Einstein manifold.

Schur’s theorem

If a Riemannian curvature K of Vn at every point of neighborhood U of Vn is

independent of the direction choosen then K is constant throughout the neigh-

borhood U provided n > 2.

Proof

Putting (3.1.4.1) and (3.1.4.2) together we get W = 0

Conversely, if W = 0

K(X, Y, Z) = 1
n−1

[g(Y, Z)RX − g(X,Z)RY ]

Contracting equation we get

Ric(Y, Z) = r
n
g(Y, Z)

which is sometimes expressed as RX = r
n
X and putting the two equation into

the first one we get

K(X, Y, Z) = r
n(n−1)

[g(Y, Z)X − g(X,Z)Y ]

which shows that a manifold is constant Riemaniian curvature. Hence a necessary

and sufficient condition for the manifold Vn to be of constant Riemannian curva-

ture is not the weyl projective curvature tensor to vanish identically throughout

Vn.

Similarly the conformal curvature tensor vanishes from manifold with constant

Riemannian curvature.
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3.1.5 Difference tensor of two connexions

Consider a smooth manifold M and let D and
−
D be two connexion on M for two

fields X and Y on M. We define difference tensor by

B(X, Y ) =
−
DXY-DXY

Linearlity of B slot is a trivial result from properties of connexion and let us

consider slot 2.

Let f be c∞ on domains X and Y. Then

B(X, fY ) = (Xf)Y + fDXY − (Xf)Y − f
−
DXY = fB(X, Y ).

If we decomposed B(X, Y ) into symmetric and skew symmetric pieces we have;

B(X, Y ) = S(X, Y ) + A(X, Y )

where

S(X, Y ) = 1
2
[B(X, Y ) +B(Y,X)] (symmetric part).

and

A(X, Y ) = 1
2
[B(X, Y )−B(Y,X)](skew symmetric part)

Then we can express A in terms of torsion tensors T and
−
T of connexion D and

−
D respectively as for

2A(X, Y ) = B(X, Y )−B(Y,X) =
−
DXY −DXY −

−
DYX −DYX =

−
T (X, Y )− T (X, Y ) + [X, Y ]− [X, Y ] =

−
T (X, Y )− T (X, Y )

Theorem 3.1.5.1

The following statements are equivalent;

1. The connexion D and
−
D have the same geodesic,

2. B(X,X) = 0 for all vector X,

3. S = 0,
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4. B = A.

Proof omitted

Theorem 3.1.5.2

The connexion D and
−
D are equal if they have the same geodesic and the

same torsion tensors.

Proof

That the first part implies the second is trival. Conversely ,if the geodesic

are the same then S = 0 and if the torsion tensors are equal then A = 0;

hence B = 0 and D =
−
D

3.1.6 Riemannian curvature tensor

The curvature tensor of connexion D is a linear transformation valued tensor R

that assigns to each pair of vector X and Y at linear transformation R(X,Y) of

Mn into itself. We define R(X, Y )Z by imbedding X,Y and Z in c∞ field about

M and setting

R(X, Y )Z = (DXDYZ −DYDXZ −D[X,Y ]Z)m

(3.1.6.1)

Hence we notice that R(X, Y ) = −R(Y,X) and if f is c∞ then

R(fX, Y )Z = fDXDYZ − (Y f)DXZ − fDYDXZ + (Y f)DXZ − fDX,YZ =

fR(X, Y )Z

(3.1.6.2)

Also

R(X, Y )(fZ) =

DX(Y f)X + fDYZ −DY ((Xf)Z − fDXZ)− ([X, Y ]f)Z − fD[X,Y ]Z

= (XY )(fZ) + (Y f)DXZ + (Xf)DYZ + fDXDYZ − (Y X)(fZ)− (Xf)DYZ −

(Y f)DXZ − fDYDXZ − ([X, Y ]f)Z − fD[X,Y ]Z

=fR(X, Y )Z
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(3.1.6.3)

The linearlity of R(X,Y)Z with respect to addition (in each slot) is trivial to check.

The curvature of symmetric linear connexion on M satisfies Bianchi identities

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

(3.1.6.4)

for all vector X,Y,Z in M for which the left hand side is defined to prove this,we

recall that for symmetric connexion

DAB −DBA = [a, b]

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = DX [Y, Z] +DY [Z,X] +DZ [X, Y ]−

D[Y,Z]X −D[Z,X]Y −D[X,Y ]Z = [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

by Jacobi identity.

if we define

Z < X, Y >=< DZX, Y > + < X,DZY >

(3.1.6.5)

for all vector X,Y,Z with common domain, then using above definition we can

define a 4 rank covariant tensor called Riemann-Christoffel curvature tensor as

K(X, Y, Z,W ) =< X,R(Z,W )Y >

(3.1.6.6)

for all X,Y,Z and W is same domain.

Thus from the above definition the following result arises

1. K(X, Y, Z,W ) = −K(Y,X,Z,W ),

2. K(X, Y, Z,W ) = −K(X, Y,W,Z),

3. K(X, Y, Z,W ) = K(Z,W,X, Y ) (3.1.6.7)

Theorem 3.1.6.1

Let M be differential i.e Riemannian n-maniford. Then there is unique torsion

free connexion D such that D on M satisfies

37



1. D is symmetric

2. DXg = 0 for all X ϵT(M).

3. Parallel translation preserves inner products. This connexion is called the

Riemannian or Levi-civita connexion.

Proof

Uniqueness from proposition (3.1.6.4) gives

Xg(Y, Z)− g(DXY, Z)− g(Y,DXZ) = 0

and since D is torsion free yields

1. Xg(Y, Z) = g(DXY, Z) = g([X, Y ], Z) + g(Y,DXZ)

2. Cyclically permuting X,Y and Z we get

Y g(Z,X) = g(DXY,X) + g([Y, Z], X) + g(Z,DYX),

3. Zg(X, Y ) = g(DXZ, Y ) + g([Z,X], Y ) + g(X,DZY ).

Substituting (1) from (2)+(3) we get

2g(DZY,X) = −X < Y,Z > +Y < Z,X > +Z < X, Y > − < [Z,X], Y > − <

[Y, Z], X > + < [X, Y ], Z >.

The right hand of this last expression does not involve D, so we have a formula

for g(DZY ) on X. As <,> is non singular i.e

the map T (M)........T ∗(m) induced by g being an isomorphism and X is arbitrary,

DZY is uniquely determined so D is unique.

If we define DZY by using the expression 2g above then D is a connexion and we

find condition (i) and (ii) of the theorem satisfied.
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3.2 Complex Manifold

3.2.1 Complex Manifold

An even dimensional differentiable manifold Vn; n = 2m which can be endowed

by a system of complex coordinate neighborhood (U, α) in such a way that in

the intersection U
⋂

U ′ of two complex coordinate patches (U, α), (U ′, α′), α′ are

complex analytic function of α is called a complex manifold.

3.2.2 Almost complex manifold

If on an even dimensional differentiable manifold Vn;n=2m of differentiability

class Cr+1 there exist a vector valued real linear function f of differentiability

class Cr satisfying

1. f 2 + In = 0

which implies

2.
−
X +X = 0 where

−
X = fX

Then Vn is said to be an almost complex manifold and f is said to be an almost

complex structure Vn. We shall apply the following notation

1. The operation of pre-multiplying a vector by f will be known as barring the

vector.

2. We shall denote T(Vn) the set of c∞ vector field of Vn.

3. In this and what follows the equation containing X, Y, Z... hold for arbitrary

vectors fields X, Y, Z...ϵT (Vn) unless explicitly stated otherwise.
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CHAPTER FOUR

THE WELYS CURVATURE TENSOR

In differential geometry,HermannWeyl introducedWeyl curvature tensor which

is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian

manifold. Just like the Riemann curvature tensor, Weyl expresses the tidal force

that a body feels when moving along a geodesic.

The Weyl tensor differs from the Riemann curvature tensor in that it does not

convey information on how the volume of the body changes, but rather only how

the shape of the body is distorted by the tidal force.

The Ricci curvature, or trace component of the Riemann tensor contains precisely

the information about how volumes change in the presence of tidal forces, so the

Weyl tensor is the traceless component of the Riemann tensor. This tensor has

the same symmetries as the Riemann tensor, but satisfies the extra condition that

it is trace-free: metric contraction on any pair of indices yields zero. It is obtained

from the Riemann tensor by subtracting a tensor that is a linear expression in

the Ricci tensor.

In general relativity, the Weyl curvature is the only part of the curvature that

exists in free space—a solution of the vacuum Einstein equation—and it governs

the propagation of gravitational waves through regions of space devoid of mat-

ter. More generally, the Weyl curvature is the only component of curvature for

Ricci-flat manifolds and always governs the characteristics of the field equations

of an Einstein manifold.

In dimensions 2 and 3 the Weyl curvature tensor vanishes identically. In dimen-

sions ≥ 4, the Weyl curvature is generally nonzero. If the Weyl tensor vanishes

in dimension ≥ 4, then the metric is locally conformally flat: there exists a local

coordinate system in which the metric tensor is proportional to a constant tensor.

This fact was a key component of Nordström’s theory of gravitation, which was

a precursor of general relativity.

Weyl’s projective curvature tensoris given by
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W6(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X,Z)Ric(Y, U)− g(X,U)Ric(Y, Z).

The other tensors have been defined by (Pokhariyal and mishra)(1970,1982) are

given by

W1(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X,U)Ric(Y, Z)− g(Y, U)Ric(X,Z)],

W2(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X,Z)Ric(Y, U)− g(Y, Z)Ric(X,U)],

W3(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(Y, Z)Ric(X,U)− g(Y, U)Ric(X,Z)],

W4(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X,Z)Ric(Y, U)− g(X, Y )Ric(Z,U)],

W5(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X,Z)Ric(Y, U)− g(Y, U)Ric(X,Z)],

The W6 which is studied in this thesis is given by

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y −XRic(Y, Z)]

W6(X, Y, Z, U) = R(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]

which is from the following definition

Definition

In a (2n+1) dimensional Riemannian manifold M the τ -curvature tensor is given

by Tripathi and Gupta(2011)

T (X, Y )Z = a0R(X, Y )Z+a1S(Y, Z)X+a2S(X,Z)Y+a3S(X, Y )Z+a4g(Y, Z)QX+

a5g(X,Z)QY + a6g(X, Y )QZ + a7r(g(Y, Z)X − g(X,Z)Y ) (4.1)

where R is curvature tensor, S is ricci tensor, Q is Ricci operator and r is scalar

curvature.
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The Weyls curvature tensor is W6 curvature tensor if in the equation (4.1)

a0 = 1,a1 = −a6 = −1
2n
,a2 = a3 = a5 = a5 = a7 = 0

Thus

W6(X, Y )Z = R(X, Y )Z − 1
2n
Ric(Y, Z)X + 1

2n
g(X, Y )QZ,

W6(X, Y )Z = R(X, Y )Z + 1
2n
[g(X, Y )QZ −XRic(Y, Z)],

g(W6(X, Y, Z), U) = g(R(X, Y, Z), U)+ 1
2n
[g(X, Y )g(QZ,U)−g(X,U)Ric(Y, Z)],

′W6(X, Y, Z, U) =′ R(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)],

′W6(X, Y, Z, U) =′ R(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)].
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CHAPTER FIVE

SASAKIAN AND LP-SASAKIAN MANIFOLD

5.1 Sasakian Manifold

5.1.1 Introduction

Let (M,F, T,A, g) be (2n + 1)-dimensional almost contact metric manifold con-

sisting of a (1,1) tensor field F, a covariant (C∞) vector field T, a C∞ 1 form A

and a Riemannian metric g which satisfies

A(T ) = −1, (5.1.1.1)
−
X = X + A(X)T where

−
X = f(X). Then A(

−
X) = 0 and

−
T = 0, (5.1.1.2)

g(
−
X,

−
Y ) = g(X, Y ) + A(X)A(Y ), (5.1.1.3)

g(X,T ) = A(X) and g(x,
−
Y ) = −g(

−
X,Y ),

where X and Y are arbitrary vector fields on M, (5.1.1.4)

dA(X, Y ) = g(X,
−
Y ) and almost contact metric manifold is K-contact metric

manifold if (5.1.1.5)

∆xT = −
−
X where ∆ is levi-civita connection. (5.1.1.6)

An almost contact metric manifold is K-contact metric manifold in a sasakian

manifold if

(∆xF )Y = g(X, Y )T − A(Y )X. (5.1.1.7)

∆ denote operator covariant differentiation with respect to the Riemannian met-

ric g.

A sasakian manifold is a K-Contact but the converse is only true if dimension is

3.

A contact metric manifold is sasakian if and only if

R(X, Y )T = A(Y )X − A(X)Y . (5.1.1.8)

In sasakian Manifold (M,F, T,A, g) we easily get

R(T,X)Y = g(X, Y )T − A(Y )X. (5.1.1.9)
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Generally in (2n + 1)-dimensional sasakian manifold with structure (F,T,A,g)

we have

rank(F ) = n− 1. (5.1.1.10)

R′(X, Y, Z, T ) = g(R(X, Y ), Z, U) = g(g(Y, Z)X − g(X,Z)Y , U)

= g(Y, Z)g(X,U)− g(X,Z)g(Y, U) = g(Y, Z)A(X)− g(X,Z)A(Y ),

(5.1.1.11)

where R is Riemannian Curvature tensor.

Ric(X,T ) = (n− 1)A(X). (5.1.1.12)

S(X, Y ) = g(QX, Y ) = (n− 1)g(X, Y ) = Ric(X, Y ),

where Q is Ricci operator and Ric(X,Y) denote Ricci tensor. (5.1.1.13)

5.1.2 W6-Curvature Tensor in Sasakian Manifold

Pokhariyah(1982) have defined a tensor

W ′
6(X, Y, Z, U) = R′(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]

OR

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X]. (5.1.2.1)

Definition 5.1.2.1

A Sasakian manifold M is said to be flat if the Riemannian curvature tensor van-

ishes identically i.e R(X, Y )Z = 0.

Definition 5.1.2.2

A Sasakian manifold M is said to be W6-flat if W6 curvature tensor vanishes iden-

tically i.e W6(X, Y )Z = 0

Theorem 5.1.2.3

A W6-flat Sasakian manifold is a flat manifold.

Proof

If the sasakian space is flat then W6 = 0 in

W ′
6(X, Y, Z, U) = R′(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]
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OR

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X]

Therefore, if LP-Sasakian manifold M is W6-flat then

0 = R′(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]

and

R′(X, Y, Z, U) = 1
n−1

[g(X,U)Ric(Y, Z)− g(X, Y )Ric(Z,U)]

From (5.1.1.13) where Ric(X, Y ) = (n− 1)g(X, Y )

we replace in our equation and we get

R′(X, Y, Z, U) = 1
n−1

[g(X,U)(n− 1)g(Y, Z)− g(X, Y )(n− 1)g(Z,U)]

R′(X, Y, Z, U) = n−1
n−1

[g(X,U)g(Y, Z)− g(X, Y )g(Z,U)]

R′(X, Y, Z, U) = [g(X,U)g(Y, Z)− g(X, Y )g(Z,U)] =

[g(Y, Z)A(X)− g(X, Y )A(Z)]

But in Sasakian manifold we have

R′(X, Y, Z, U) = [g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

Thus, for this to hold, we must have

R′(X, Y, Z, U) = 0

since

[g(X,U)g(Y, Z)− g(X, Y )g(Z,U)] ̸= [g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

Hence the theorem proved.

5.1.3 A W6-Semi-Symmetric Sasakian Manifold

De and Guha (1998) gave definition of Semi-Symmetric as R(X, Y )R(Z,U)V = 0.

Definition 5.1.3.1

A Sasakian manifold M is said to be W6 flat if R(X, Y )W6(Z,U)V = 0.

Theorem 5.1.3.2

A W6-Semi-Symmetric Sasakian Manifold is a W6-flat manifold.

Proof

If the sasakian space is W6-Semi-Symmetric then R(X, Y )W6(Z,U)V = 0 in

45



R(X, Y )W6(Z,U)V = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

0 = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

0 = W ′
6(Y, Z, U, V )X −W ′

6(X,Z, U, V )Y

0 = g(W6(Y, Z, U, V )X,T )− g(W6(X,Z, U, V )Y, T )

0 = W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )

But since A(X) ̸= 0 and A(Y ) ̸= 0 then it follows that W ′
6(Y, Z, U, V ) = 0 and

W ′
6(X,Z, U, V ) = 0 hence the theorem is proved.

5.1.4 A W6-Symmetric Sasakian Manifold

Definition 5.1.4.1

A Sasakian manifold M is said to be W6-Symmetric if

∆uW6(X, Y )Z = W ′
6(U,X, Y )Z = 0

Theorem 5.1.4.2

A W6-Symmetric Sasakian Manifold is a W6-flat manifold.

Proof

If the LP-Sasakian space is a W6- symmetric then it follows that

∆uW6(X, Y )Z = R(X, Y )W6(Z,U)V−W6(R(X, Y )Z,U)V−W6(Z,R(X, Y )U)V−

W6(Z,U)R(X, Y )V = 0. (5.1.4.1)

Computing each of the above four term and subject them to same conditions

we have ;

R(X, Y )W6(Z,U)V = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

= W ′
6(Y, Z, U, V )X −W ′

6(X,Z, U, V )Y

g(R(X, Y ),W6(Z,U)V, T ) = g(W ′
6(Y, Z, U, V )X,T )–g(W ′

6(X,Z, U, V )Y, T )

= W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )

(5.1.4.2)

Recall

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X]

Now
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W6(R(X, Y )Z,U)V =

R(R(X, Y )Z,U)V + 1
n−1

[g(R(X, Y )Z, V )U − S(U, V )R(X, Y )Z]

But

S(U, V ) = (n− 1)g(U, V ) and R′(X, Y, Z, U) = g(R(X, Y )Z,U)

SO

W6(R(X, Y )Z,U)V =

R(R(X, Y )Z,U)V + 1
n−1

[R′(X, Y, Z, V )U − (n− 1)g(U, V )R(X, Y )Z]

= g(U, V )R(X, Y )Z–g(R(X, Y )Z, V )U + 1
n−1

R′(X, Y, Z, V )U−g(U, V )R(X, Y )Z

= 1
n−1

R′(X, Y, Z, V )U–g(R(X, Y )Z, V )U

= 1
n−1

R′(X, Y, Z, V )U −R′(X, Y, Z, V )U

(5.1.4.3)

Again

W6(Z,R(X, Y )U)V =

R(Z,R(X, Y )U)V + 1
n−1

[g(Z, V )R(X, Y )U − S(R(X, Y )U, V )Z]

= g(R(X, Y )U, V )Z–g(Z, V )R(X, Y )U + 1
n−1

[g(Z, V )R(X, Y )U − (n−

1)g(R(X, Y )U, V )Z]

= 1
n−1

[g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U ]

(5.1.4.4)

Also

W6(Z,U)R(X, Y )V =

R(Z,U)R(X, Y )V + 1
n−1

[g(Z,R(X, Y )V )U − S(U,R(X, Y )V )Z]

=

g(U,R(X, Y )V )Z–g(Z,R(X, Y )V )U + 1
n−1

g(Z,R(X, Y )V )U −g(U,R(X, Y )V )Z]

= 1
n−1

g(Z,R(X, Y )V )U − g(Z,R(X, Y )V )U

(5.1.4.5)

Next in (5.1.4.1) we substitute (5.1.4.2), (5.1.4.3), (5.1.4.4) and (5.1.4.5) and we

have
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∆uW6(X, Y )Z =

W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )– 1
n−1

R′(X, Y, Z, V )U −

R′(X, Y, Z, V )U + 1
n−1

g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U +

1
n−1

g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U

= W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )− 2−n
n−1

[R′(X, Y, Z, V )U +

g(Z, V )R(X, Y )U + g(Z,U)R(X, Y )V ] = 0

But since

∆xW
′
6(Y, Z, U, V ) = 0 and g(Z,U) ̸= g(Z, V ) ̸= 0

it implies that R′(X, Y, Z, V ) = 0.

Thus follows the theorem.

5.2 Lp-sasakian manifold

5.2.1 Introduction

Matsumoto and Mihai (1988) have introduced the notion of Lorentzian para

sasakian and studied certain transformation. Later Sasaki [16] introduced certain

structures which are closely related to almost contact and later studied almost

contact manifold.

An n-dimensional differentiable manifold M is said to be lorentzian para sasakian

manifold if it admits a (1,1) tensor field F,covariant (C∞) vector field T, C∞ 1

form A and lorentzian metric g which satisfies

A(T ) = −1, (5.2.1.1)
=

X = X + A(X)T , where
−
X = F (X). (5.2.1.2)

g(
−
X,

−
Y ) = g(X, Y ) + A(X)A(Y ). (5.2.1.3)

g(X,T ) = A(X). (5.2.1.4)

(∆xF )(Y ) = [g(X, Y ) + A(X)A(Y )]T + [X + A(X)T ]A(Y ) where ∆xT =
−
X.

(5.2.1.5)

∆ denote operator covariant differentiation with respect to the lorentzian metric g

In LP-Sasakian manifold M with structure (F,T,A,g) then
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−
T = Φ , A(

−
X) = Φ (5.2.1.6)

rank(F ) = n− 1 (5.2.1.7)

Further more if we put

′F (X, Y ) = g(
−
X,Y ) (5.2.1.8)

then sensor field ′F (X, Y ) is symmetric in X and Y.

In an n-dimensional LP-Sasakian manifold with structure (F, T,A, g) we have

′R(X, Y, Z, T ) = g(Y, Z)A(X)− g(X,Z)A(Y ). (5.2.1.9)

Ric(X,T ) = (n− 1)A(X). (5.2.1.10)

′R(X, Y,
−
Z,

−
U) =′ R(X, Y, Z, U)+2A(Z)[g(X, u)A(Y )−g(Y, U)A(X)]+2A(U)[A(Y )g(X,Z)−

A(X)g(Y, Z)]+′F (Y, U)′F (X,Z)−′F (X,U)′F (Y, Z)+g(Y, Z)g(X,U)−g(X,Z)g(Y, U),

whereR(X, Y, Z) denote curvature andRic(X, Y ) denote Ricci tensor. (5.2.1.11)

5.2.2 W6-Curvature Tensor in LP-Sasakian Manifold

Pokhariyah (1982) have defined a tensor

W ′
6(X, Y, Z, U) = R′(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]

OR

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X]

(5.2.2)

Definition 5.2.2.1

A LP-Sasakian manifold M is said to be flat if the Riemannian curvature tensor

vanishes identically i.e R(X, Y )Z = 0.

Definition 5.2.2.2

A LP-Sasakian manifold M is said to be W6-flat if W6 curvature tensor vanishes

identically i.e W6(X, Y )Z = 0

Theorem 5.2.2.3

A W6-flat LP-Sasakian manifold is a flat manifold.

Proof

If our hypothesis is true then W6 = 0 in

W ′
6(X, Y, Z, U) = R′(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]
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OR

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X]

Therefore, if LP-Sasakian manifold M is W6-flat then

0 = R′(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]

R′(X, Y, Z, U) = 1
n−1

[g(X,U)Ric(Y, Z)− g(X, Y )Ric(Z,U)]

From (5.2.1.10) Ric(X, Y ) = (n− 1)g(X, Y )

R′(X, Y, Z, U) = 1
n−1

[g(X,U)(n− 1)g(Y, Z)− g(X, Y )(n− 1)g(Z,U)]

R′(X, Y, Z, U) = n−1
n−1

[g(X,U)g(Y, Z)− g(X, Y )g(Z,U)]

R′(X, Y, Z, U) = [g(X,U)g(Y, Z)− g(X, Y )g(Z,U)] =

[g(Y, Z)A(X)− g(X, Y )A(Z)]

But in LP-Sasakian manifold we haveR′(X, Y, Z, U) = [g(Y, Z)g(X,U)−g(X,Z)g(Y, U)]

Thus, for this to hold, we must have R′(X, Y, Z, U) = 0

since [g(X,U)g(Y, Z)− g(X, Y )g(Z,U)] ̸= [g(Y, Z)g(X,U)− g(X,Z)g(Y, U)]

hence the theorem proved.

5.2.3 W6-Semi-Symmetric LP-Sasakian Manifold

De and Guha (1992) gave definition of Semi-Symmetric as R(X, Y )R(Z,U)V = 0.

Definition 5.2.3.1

A LP-Sasakian manifold M is said to be W6flat if R(X, Y )W6(Z,U)V = 0.

Theorem 5.2.3.2

W6-Semi-Symmetric LP-Sasakian Manifold is a W6-flat manifold.

Proof

If our hypothesis is true then R(X, Y )W6(Z,U)V = 0 in

R(X, Y )W6(Z,U)V = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

0 = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

0 = W ′
6(Y, Z, U, V )X −W ′

6(X,Z, U, V )Y

0 = g(W6(Y, Z, U, V )X,T )− g(W6(X,Z, U, V )Y, T )

0 = W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )
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But since A(X) ̸= 0 and A(Y ) ̸= 0 then it follows that W ′
6(Y, Z, U, V ) = 0 and

W ′
6(X,Z, U, V ) = 0 hence the theorem proved.

5.2.4 W6-Symmetric LP-Sasakian Manifold

Definition 5.2.4.1

A LP-Sasakian manifold M is said to be W6-Symmetric if

∆uW6(X, Y )Z = W ′
6(U,X, Y )Z = 0.

Theorem 5.2.4.2

A W6-Symmetric LP-Sasakian Manifold is a W6-flat manifold.

Proof

If the LP-Sasakian space is a W6- symmetric then it follows

∆uW6(X, Y )Z = R(X, Y )W6(Z,U)V−W6(R(X, Y )Z,U)V−W6(Z,R(X, Y )U)V−

W6(Z,U)R(X, Y )V = 0. (5.2.4.1)

Computing each of above four term and subject them to same conditions we have

;

R(X, Y )W6(Z,U)V = g(Y,W6(Z,U)V )X − g(X,W6(Z,U)V )Y

= W ′
6(Y, Z, U, V )X −W ′

6(X,Z, U, V )Y

g(R(X, Y ),W6(Z,U)V, T ) = g(W ′
6(Y, Z, U, V )X,T )–g(W ′

6(X,Z, U, V )Y, T )

= W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )

(5.2.4.2)

Again if

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y −Ric(Y, Z)X] W6(R(X, Y )Z,U)V =

R(R(X, Y )Z,U)V + 1
n−1

[g(R(X, Y )Z, V )U −Ric(U, V )R(X, Y )Z]

But

S(U, V ) = (n− 1)g(U, V ) and R′(X, Y, Z, U) = g(R(X, Y )Z,U)

So
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W6(R(X, Y )Z,U)V =

R(R(X, Y )Z,U)V + 1
n−1

[R′(X, Y, Z, V )U − (n− 1)g(U, V )R(X, Y )Z]

= g(U, V )R(X, Y )Z–g(R(X, Y )Z, V )U + 1
n−1

R′(X, Y, Z, V )U−g(U, V )R(X, Y )Z

= 1
n−1

R′(X, Y, Z, V )U–g(R(X, Y )Z, V )U

= 1
n−1

R′(X, Y, Z, V )U −R′(X, Y, Z, V )U

(5.2.4.3)

Also

W6(Z,R(X, Y )U)V =

R(Z,R(X, Y )U)V + 1
n−1

[g(Z, V )R(X, Y )U − S(R(X, Y )U, V )Z]

= g(R(X, Y )U, V )Z–g(Z, V )R(X, Y )U + 1
n−1

[g(Z, V )R(X, Y )U − (n−

1)g(R(X, Y )U, V )Z]

= 1
n−1

[g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U ]

(5.2.4.4)

Also

W6(Z,U)R(X, Y )V =

R(Z,U)R(X, Y )V + 1
n−1

[g(Z,R(X, Y )V )U − S(U,R(X, Y )V )Z]

=

g(U,R(X, Y )V )Z–g(Z,R(X, Y )V )U + 1
n−1

g(Z,R(X, Y )V )U −g(U,R(X, Y )V )Z]

= 1
n−1

g(Z,R(X, Y )V )U − g(Z,R(X, Y )V )U

(5.2.4.5)

Next in (5.2.4.1) we put (5.2.4.2), (5.2.4.3), (5.2.4.4) and (5.2.4.4) and we have

∆uW6(X, Y )Z =

W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )– 1
n−1

R′(X, Y, Z, V )U −

R′(X, Y, Z, V )U + 1
n−1

g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U +

1
n−1

g(Z, V )R(X, Y )U − g(Z, V )R(X, Y )U

= W ′
6(Y, Z, U, V )A(X)−W ′

6(X,Z, U, V )A(Y )− 2−n
n−1

[R′(X, Y, Z, V )U +

g(Z, V )R(X, Y )U + g(Z,U)R(X, Y )V ] = 0

But since ∆xW
′
6(Y, Z, U, V ) = 0 and g(Z,U) ̸= g(Z, V ) ̸= 0.
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It implies that R′(X, Y, Z, V ) = 0.

Thus follows the theorem.

5.2.5 FlatW6-Curvature Tensor in a Lorentzian Para-Sasakian

Manifolds

If the Lorentzian para-Sasakian manifold has flat W6-curvature tensor, then

g(W6(X, Y )Z,U)) = 0. (5.2.5.1)

Substituting (5.2.5.1) in our W6 equation (5.2.2) we have

R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X] = 0

g(R(X, Y )Z, F (W )) + 1
n−1

[g(X,Z)QY − S(Y, Z)QX] = 0

g(R(X, Y )Z, F (W ))+ 1
n−1

[g(X,Z)S(Y, F (W ))−S(Y, Z)S(X,F (W )] = 0 (5.2.5.2)

Putting Y = Z = T in (5.2.5.2), we have

(5.2.5.3) g(R(X,T )T, F (W ))+ 1
n−1

[g(X,T )S(T, F (W ))−S(T, T )S(X,F (W )] = 0

Using (5.2.1.10) and (5.2.1.9) in (5.2.4.3), we get

−g(X,F (W )) + 1
n−1

[S(X,F (W )] = 0 (5.2.5.4)

On simplification, we have

(n− 1)g(X,F (W )) = S(X,F (W )) (5.2.5.5)

Replacing by W with F(W) we have

(n− 1)g(X,W ) = S(X,W ) (5.2.5.6)

On contracting the above relation, we obtain

r = n(n− 1) (5.2.5.7)

Thus we can state the following theorem:

Theorem 5.2.5.1 If a Lorentzian para-Sasakian manifold the W6-curvature ten-

sor is flat then it is an Einstein manifold and also a space of constant scalar

curvature.
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5.2.6 Irrotational W6-Curvature Tensor in an LP-Sasakian

Manifold

Definition 5.2.6.1

Let ∇ be a Riemannian connection. Then the rotation (curl) of W6-curvature

tensor in a Lorentzian para-Sasakian manifold M is defined as

RotW6 = (∇UW6)(X, Y )Z+(∇XW6)(U, Y )Z+(∇YW6)(X,U)Z−(∇ZW6)(X, Y )U .

. (5.2.6.1)

Using Bianchi’s second identity for Riemannian connection ∇, (5.2.6.1) becomes

RotW6 = −(∇ZW6)(X, Y )U . (5.2.6.2)

If W6 is Irrotational then RotW6 = 0 and then

(∇ZW6)(X, Y )U = 0, (5.2.6.3)

which will give

∇Z(W6(X, Y )U) = W6(∇ZX, Y )U +W6(X,∇ZY )U +W6(X, Y )∇ZU . (5.2.6.4)

Replacing U with T in (5.2.6.4) we will have

∇Z(W6(X, Y )T ) = W6(∇ZX, Y )T +W6(X,∇ZY )T +W6(X, Y )∇ZT . (5.2.6.5)

If we substitute T=Z in (5.2.1)

W6(X, Y )T = R(X, Y )T + 1
n−1

[g(X,T )Y − S(Y, T )X]. (5.2.6.6)

Using (5.2.1.2), (5.2.1.10) and (5.2.1.4) we have

W6(X, Y )T = k[A(X)Y ]. (5.2.6.7)

Where k = 2−n
n−1

. (5.2.6.8)

Using (5.2.6.7) in (5.2.6.5),we obtain

W6(X, Y ) = k[S(Y, Z)X − g(X,Z)Y ]. (5.2.6.9)

Also equation (5.2.1) and (5.2.6.9) gives

S(Y, Z) = Ric(Y, Z) = (n− 1)g(Y, Z). (5.2.6.10)

which gives

r = n(n− 1) (5.2.6.11)

In consequence of (5.2.1.1),(5.2.6.8),(5.2.6.9),(5.2.6.10) and (5.2.6.11)

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y . (5.2.6.12)

hence we can state:

Theorem 5.2.6.1 If theW6-curvature tensor In a Lorentzian para-Sasakian man-
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ifold is irrotational then the manifold is a space of constant curvature.

5.2.7 Conservative W6-Curvature Tensor in an LP-Sasakian

Manifold

Differentiating (5.2.1) with respect to U , we have

(∇UW6)(X, Y )Z = (∇UR)(X, Y )Z + 1
n−1

[g(X,Z)(∇UQ)Y − S(Y, Z)(∇UQ)X].

, (5.2.7.1)

On contracting (5.2.7.1), we get

(divW6)(X, Y )Z = [(∇XS)(Y, Z)−(∇Y S)(X,Z)]+ 1
2(n−1)

[g(X,Z)drY−S(Y, Z)drX].

. (5.2.7.2)

If W6-curvature tensor is conservative (divW6 = 0), then (5.2.6.2) can be written

as

[(∇XS)(Y, Z)− (∇Y S)(X,Z)] = 1
2(n−1)

[S(Y, Z)drX − g(X,Z)drY ] (5.2.7.3)

Putting X=T in (5.2.7.3), we have

[(∇TS)(Y, Z)− (∇Y S)(T, Z)] =
1

2(n−1)
[S(Y, Z)drT − g(T, Z)drY ] (5.2.7.4)

Since T is a killing vector, r remains invariant under it, that is,LT r = 0 , where

L denotes the Lie derivative. But then the relation,

(∇TS)(Y, Z) = TS(Y, Z)−S(∇TY, Z)−S(Y,∇TZ) = LTS(Y, Z)−S(∇TY, Z)−

S(Y,∇ZT ) (5.2.7.5)

yields

[(∇TS)(Y, Z) = 0. (5.2.7.6)

Now by substituting (5.2.7.6) in (5.2.7.4), we have

−[(∇Y S)(T, Z)− S(∇Y T, Z)− S(T,∇YZ)] =
1

2(n−1)
[S(Y, Z)drT − g(T, Z)drY ]

. (5.2.7.7)

By using (5.2.1.4),(5.2.1.5), (5.2.1.10) and dr(T ) = 0 in (5.2.7.7), we get

−[(∇Y [(n−1)A(Z)]−S(F (Y ), Z)−(n−1)A(∇YZ)] =
1

2(n−1)
[−A(Z)drY ]. (5.2.7.8)

By Simplifying (5.2.7.8), we get

[−(n− 1)g(F (Y ), Z) + S(F (Y ), Z)] = − 1
2(n−1)

[A(Z)drY ]. (5.2.7.9)

Putting F (Z) = Zin (5.2.6.9), we obtain
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[−(n− 1)g(F (Y ), F (Z)) + S(F (Y ), F (Z))] = − 1
2(n−1)

[AF (Z)drY ]. (5.2.7.10)

But A(F (Z)) = 0 and S(F (Y ), F (Z)) = (n− 1)g(F (Y ), F (Z))

it implies that

S(Y, Z) = (n− 1)g(Y, Z), (5.2.7.11)

r = n(n− 1). (5.2.7.12)

Thus we state:

Theorem 5.2.7.1 If W6-curvature tensor in a Lorentzian para-Sasakian mani-

fold is conservative then it is an Einstein manifold and also of constant scalar

curvature.

5.2.8 Einstein Lorentzian Para-Sasakian Manifold satisfy-

ing R(X, Y ).W6 = 0

In consequence of Qx = hx (5.2.1) becomes

W6(X, Y )Z = R(X, Y )Z + h
n−1

[g(X,Z)Y − S(Y, Z)X]. (5.2.8.1)

Using (5.2.1.10) and (5.2.8.1), we obtain

A(W6(X, Y )Z) = g(Y, Z)A(X)−g(X,Z)A(Y )+ h
n−1

[g(X,Z)Y−S(Y, Z)X] (5.2.8.2)

Replacing Z with T in (5.2.8.2), we have

A(W6(X, Y )T ) = g(Y, T )A(X)− g(X,T )A(Y ) + h
n−1

[g(X,T )Y − S(Y, T )X]

A(W6(X, Y )T ) = h
n−1

[A(X)Y − (n− 1)A(Y )X].

A(W6(X, Y )T ) = h(2−n)
n−1

[A(X)A(Y )] (5.2.8.3)

A(W6(X, Y )T ) = 0.

Now

(R(X, Y ).W6)(Z,U)V = R(X, Y )W6(Z,U)V−W6(R(X, Y )Z,U)V−W6(Z,R(X, Y )U)V−

W6(Z,U)R(X, Y )V (5.2.8.4)

Using R(X, Y ).W6 = 0 in the above equation, we obtain

R(X, Y )W6(Z,U)V−W6(R(X, Y )Z,U)V−W6(Z,R(X, Y )U)V−W6(Z,U)R(X, Y )V =

0. (5.2.8.5)

By taking the inner product of the above relation with T, we get

g(R(X, Y )W6(Z,U)V, T ) − g(W6(R(X, Y )Z,U)V, T ) − g(W6(Z,R(X, Y )U)V −
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W6(Z,U)R(X, Y )V, T ) = 0. (5.2.8.6)

Putting in X=T (5.2.8.6) and then using (5.1.1.11), we obtain

−W6(Z,U, V, Y )−A(Y )A(W6(Z,U)V )+A(Z)A(W6(Y, U)V )+A(U)A(W6(Z, Y )V )+

A(V )A(W6(Z,U)Y )−g(Y, Z)A(W6(T, U)V )−g(Y, U)A(W6(Z, T )V )−g(Y, V )A(W6(Z,U)T ) =

0 (5.2.8.7)

In consequence of (5.2.8.2)and simplification the above equation gives

W6(Z,U, V, Y ) = g(Y, Z)g(U, V )−g(Y, U)g(Z, V )+ h
n−1

[g(Z,U)S(V, Y )−g(Z, Y )S(U, V )]

. (5.2.8.8)

and so

W6(Z,U)V = g(U, V )Z − g(Z, V )U + h
n−1

[g(Z, V )U − S(U, V )Z]. (5.2.8.9)

Thus in view of (5.2.8.1) and (5.2.8.9), we obtain

R(Z,U)V = g(U, V )Z − g(Z, V )U . (5.2.8.10)

Thus we have the following:

Theorem 5.2.8.1A Lorentzian para-Sasakian manifold satisfyingR(X, Y ).W6 =

0 is a space of constant curvature.

5.2.9 Deriving Equations of W6-Curvature tensor on Lp-

sasakian manifold

In our equation

′W6(X, Y, Z, U) =′ R(X, Y, Z, U) + 1
n−1

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)],

We break the equation into symmetric P and skew symmetric Q parts in X

and Y to have new model equation and determine their geometric and physical

properties on it .

We start with symmetric part P

′P (X, Y, Z, U) = 1
2
[′W6(X, Y, Z, U) +′ W6(Y,X,Z, U)]

= 1
2
[′R(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)] +′

R(Y,X,Z, U) + 1
n−1

[g(Y,X)Ric(Z,U)− g(Y, U)Ric(X,Z)]]

= 1
2

′
R(X, Y, Z, U) + 1

2

′
R(Y,X,Z, U) + 1

2(n−1)
[g(X, Y )Ric(Z,U)−

g(X,U)Ric(Y, Z) + g(Y,X)Ric(Z,U)− g(Y, U)Ric(X,Z)]

= 1
2(n−1)

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z) + g(Y,X)Ric(Z,U)−

g(Y, U)Ric(X,Z)].
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′P (X, Y, Z, U) = 1
2(n−1)

[2g(X, Y )Ric(Z,U)−g(X,U)Ric(Y, Z)−g(Y, U)Ric(X,Z)]

. (5.2.9.1)

Now we take a look at skew-symmetric part Q

′Q(X, Y, Z, U) = 1
2
[′W6(X, Y, Z, U)−′ W6(Y,X,Z, U)]

= 1
2
[′R(X, Y, Z, U) + 1

n−1
[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]−′

R(Y,X,Z, U)− 1
n−1

[g(Y,X)Ric(Z,U)− g(Y, U)Ric(X,Z)]]

= 1
2

′
R(X, Y, Z, U)− 1

2

′
R(Y,X,Z, U) + 1

2(n−1)
[g(X, Y )Ric(Z,U)−

g(X,U)Ric(Y, Z)− g(Y,X)Ric(Z,U) + g(Y, U)Ric(X,Z)]

=′ R(X, Y, Z, U) + 1
2(n−1)

[g(X, Y )Ric(Z,U)− g(X,U)Ric(Y, Z)]−

g(Y,X)Ric(Z,U) + g(Y, U)Ric(X,Z)]

OR

′Q(X, Y, Z, U) =′ R(X, Y, Z, U)− 1
2(n−1)

[+g(X,U)Ric(Y, Z)]− g(Y, U)Ric(X,Z)]

. (5.2.9.2)

1.LP-Sasakian manifold

In this section we study properties of W6,P,q curvature tensors in LP-sasakian

manifold.

Theorem 5.2.9.1

In an n-dimensional LP-Sasakian manifold we have

1. ′W6(T, Y, Z, T ) = −g(Y, Z) + 1
n−1

Ric(Y, Z)

2. W6(X, Y, T ) = Y A(X)2−n
n−1

3. W6(T, Y, T ) = Y n−2
n−1

Proof (5.2.9.1)i

Substituting U=T in (5.2.1.1) we get

′W6(X, Y, Z, T ) =′ R(X, Y, Z, T ) + 1
n−1

[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)]

Equation (5.2.1.4) gives

′W6(X, Y, Z, T ) =′ R(X, Y, Z, T ) + 1
n−1

[g(X, Y )Ric(Z, T )− A(X))Ric(Y, Z)]

From (5.2.1.9) we get
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′W6(X, Y, Z, T ) =

g(Y, Z)A(X)− g(X,Z)A(Y )) + 1
n−1

[g(X, Y )Ric(Z, T )− A(X))Ric(Y, Z)]

Using (5.2.1.10) we get

′W6(X, Y, Z, T ) =

g(Y, Z)A(X)− g(X,Z)A(Y )) + 1
n−1

[g(X, Y )(n− 1)A(Z)− A(X))Ric(Y, Z)]

= g(Y, Z)A(X)− g(X,Z)A(Y )) + g(X, Y )A(Z)− A(X) 1
n−1

Ric(Y, Z) (5.2.9.1)

Replacing X=T in(5.2.9.1) we have

′W6(T, Y, Z, T ) = g(Y, Z)A(T )−g(T, Z)A(Y ))+g(T, Y )A(Z)−A(T ) 1
n−1

Ric(Y, Z)

Using equation (5.2.1.1),we get

′W6(T, Y, Z, T ) = −g(Y, Z)− g(T, Z)A(Y )) + g(T, Y )A(Z) + 1
n−1

Ric(Y, Z)

Again using (5.2.1.4),we shall have

′W6(T, Y, Z, T ) = −g(Y, Z)− A(Z)A(Y )) + A(Y )A(Z) + 1
n−1

Ric(Y, Z)

′W6(T, Y, Z, T ) = −g(Y, Z) + 1
n−1

Ric(Y, Z)

Hence proved

Proof (5.2.9.1)ii

Using ′W6(X, Y, Z, U) = g(W6(X, Y, Z), U) and equation (5.2.1.1) we get

W6(X, Y, Z) = R(X, Y, Z) + 1
n−1

[g(X,Z)Y −XRic(Y, Z)]

Putting T=Z

W6(X, Y, T ) = R(X, Y, T ) + 1
n−1

[g(X,T )Y −XRic(Y, T )]

Using XA(Y )− Y A(X) and (4.2.1.4)(5.2.1.10) we get

W6(X, Y, T ) = XA(Y )− Y A(X) + 1
n−1

[A(X)Y −X(n− 1)A(Y )]

W6(X, Y, T ) = XA(Y )− Y A(X) + 1
n−1

A(X)Y −XA(Y )

W6(X, Y, T ) = −Y A(X) + 1
n−1

A(X)Y )

W6(X, Y, T ) = Y A(X)2−n
n−1

Hence proved

Proof (5.2.9.1)iii

Putting X=T in (5.2.9.1)ii we get
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W6(T, Y, T ) = Y A(T )2−n
n−1

Using (5.2.1.1) we get

W6(T, Y, T ) = −Y 2−n
n−1

W6(T, Y, T ) = Y n−2
n−1

Hence proved

Theorem 5.2.9.2

In a n-dimensional LP-Sasakian manifold P tensor field satisfies

1. ′P (X, Y, Z, T ) = g(X, Y )A(Z)− 1
2(n−1)

[A(X)Ric(Y, Z) + A(Y )Ric(X,Z)]

2. ′P (T, Y, Z, U) = −1
2
g(Y, U)A(Z)+ 1

2(n−1)
[2A(Y )Ric(Z,U)−A(U)Ric(Y, Z)]

3. ′P (T, Y, Z, T ) = 1
2
[A(Y )A(Z) + 1

n−1
Ric(Y, Z)]

Proof (5.2.9.2)i

Using (5.2.9.1) and putting T=U we have

′P (X, Y, Z, T ) = 1
2(n−1)

[g(X, Y )Ric(Z, T )−g(X,T )Ric(Y, Z)]+g(Y,X)Ric(Z, T )−

g(Y, T )Ric(X,Z)]

Using (5.2.1.4) and (5.2.1.10) we get

′P (X, Y, Z, T = 1
2(n−1)

[g(X, Y )(n− 1)A(Z)− A(X)Ric(Y, Z)] + g(Y,X)(n−

1)A(Z)− A(Y )Ric(X,Z)]

′P (X, Y, Z, T =

1
2
[g(Y,X)A(Z) + g(X, Y )A(Z)]− 1

2(n−1)
[A(X)Ric(Y, Z)]− A(Y )Ric(X,Z)]

′P (X, Y, Z, T = g(X, Y )A(Z)− 1
2(n−1)

[A(X)Ric(Y, Z) + A(Y )Ric(X,Z)]

Hence proved

Proof (5.2.9.2)ii

Using (5.2.9.1) and putting T=X we have

′P (T, Y, Z, U) = 1
2(n−1)

[2g(T, Y )Ric(Z,U)−g(T, U)Ric(Y, Z)−g(Y, U)Ric(T, Z)]

Using (5.2.1.4) and (5.2.1.10) we have
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′P (T, Y, Z, U) = 1
2(n−1)

[2A(Y )Ric(Z,U)− A(U)Ric(Y, Z)− g(Y, U)(n− 1)A(Z)]

′P (T, Y, Z, U) = −1
2
g(Y, U)A(Z) + 1

2(n−1)
[2A(Y )Ric(Z,U)− A(U)Ric(Y, Z)]

Hence proved

Proof (5.2.9.2)iii

Putting X=T in (5.2.9.2)i we get

′P (T, Y, Z, T ) = g(T, Y )A(Z)− 1
2(n−1)

[A(T )Ric(Y, Z) + A(Y )Ric(T, Z)]

Using (5.2.1.1),(5.2.1.4) and (5.2.1.10) we have

′P (T, Y, Z, T ) = A(Y )A(Z)− 1
2(n−1)

[−Ric(Y, Z)− A(Y )(n− 1)A(Z)]

′P (T, Y, Z, T ) = A(Y )A(Z)− 1
2
A(Y )A(Z) + 1

2(n−1)
Ric(Y, Z)

′P (T, Y, Z, T ) = 1
2
[A(Y )A(Z) + 1

n−1
Ric(Y, Z)].

Hence proved

Theorem 5.2.9.3

In an n-dimensional LP-Sasakian manifold Q tensor field satisfies

1. ′Q(X, Y, Z, T ) = A(X)[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]−A(Y )[g(X,Z)− 1
2(n−1)

Ric(X,Z)]

2. ′Q(T, Y, Z, U) = A(U)[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]− 1
2
g(Y, U)A(Z)

3. ′Q(T, Y, Z, T ) = −g(Y, Z) + 1
2
[ 1
n−1

Ric(Y, Z)− A(Y )A(Z)]

Proof (5.2.9.3)i

Using (5.2.9.2) and putting T=U we have

′Q(X, Y, Z, T ) =′ R(X, Y, Z, T )− 1
2(n−1)

[+g(X,T )Ric(Y, Z)]− g(Y, T )Ric(X,Z)]

Using (5.2.1.4),(5.2.1.9) we have

′Q(X, Y, Z, T ) =

g(Y, Z)A(X)− g(X,Z)A(Y )− 1
2(n−1)

[+A(X)Ric(Y, Z)]− A(Y )Ric(X,Z)]
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′Q(X, Y, Z, T ) =

A(X)[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]− A(Y )[g(X,Z)− 1
2(n−1)

Ric(X,Z)]

Hence proved

Proof (5.2.9.3)ii

Using (5.2.9.2) and putting T=X we have

′Q(T, Y, Z, U) =′ R(T, Y, Z, U)− 1
2(n−1)

[g(T, U)Ric(Y, Z)]− g(Y, U)Ric(T, Z)]

From equation (5.2.1.4),(5.2.1.9),(5.2.1.10) we have

′Q(T, Y, Z, U) =

g(Y, Z)A(U)− g(Y, U)A(Z)− 1
2(n−1)

[A(U)Ric(Y, Z)]− g(Y, U)(n− 1)A(Z)]

′Q(T, Y, Z, U) = A(U)[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]− 1
2
g(Y, U)A(Z)

Hence proved

Proof (5.2.9.3)iii

Let X=T in (5.2.9.3)i

′Q(T, Y, Z, T ) = A(T )[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]−A(Y )[g(T, Z)− 1
2(n−1)

Ric(T, Z)]

Using (5.2.1.1),(5.2.1.9),(5.2.1.10) we have

′Q(T, Y, Z, T ) = −[g(Y, Z)− 1
2(n−1)

Ric(Y, Z)]−A(Y )[A(Z)− 1
2(n−1)

(n− 1)A(Z)]

′Q(T, Y, Z, T ) = −g(Y, Z) + 1
2(n−1)

Ric(Y, Z)− A(Y )[A(Z) + 1
2
A(Y )A(Z)

′Q(T, Y, Z, T ) = −g(Y, Z) + 1
2
[ 1
n−1

Ric(Y, Z)− A(Y )A(Z)]

Hence proved

5.2.10 The Relativistic Significance of W6-Curvature Ten-

sor in LP-Sasakian Space

In the n-dimensional space Vn the tensors

1.INTRODUCTION
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C(X, Y, Z) = R(X, Y, Z, T )− R
n(n−1)

[g(X,T )g(Y, Z)−g(Y, T )g(X,Z)] (5.2.10.1.1)

L(X, Y, Z, T ) = R(X, Y, Z, T )− 1
n−2

[g(Y, Z)Ric(X,T )−g(X,Z)Ric(Y, T )+g(X,T )Ric(Y, Z)−

g(Y, T )Ric(X,Z)] (5.2.10.1.2)

and

V (X, Y, Z, T ) = R(X, Y, Z, T )− 1
n−2

[g(X,T )Ric(Y, Z)−g(Y, T )Ric(X,Z)+g(Y, Z)Ric(X,T )−

g(X,Z)Ric(Y, T )] + R
(n−1)(n−2)

[g(X,T )g(Y, Z)− g(Y, T )g(X,T )] (5.2.10.1.3)

are called concircular curvature tensor, conharmonic curvature tensor and con-

formal curvature tensor respectively. These satisfy the symmetric and skew sym-

metric as well as the cyclic property possessed by curvature tensor R(X, Y, Z, T ).

Pokhariyah(1982) have define the projective curvature tensor as

W ′
6(X, Y, Z, T ) = R′(X, Y, Z, T ) + 1

n−1
[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)]

OR

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − S(Y, Z)X] (5.2.10.1.4)

We shall now define a tensor and obtain its properties

Definition(5.2.10.2)

We define the tensors

(5.2.10.2.1)W ′
6(X, Y, Z, T ) = R′(X, Y, Z, T )+ 1

n−1
[g(X, Y )Ric(Z, T )−g(X,T )Ric(Y, Z)]

(5.2.10.2.1)

From equation (5.2.10.1.1) to (5.2.10.2.1), its clear that for an empty gravita-

tional field characterised by Ric(X, Y ) = 0, these five fourth rank tensors are

identical.

In the space Vn,from (5.2.10.1.1),(5.2.10.1.2) and (5.2.10.1.3),we have

V (X, Y, Z, T ) = L(X, Y, Z, T )+ n
n−2

[R(X, Y, Z, T )−C(X, Y, Z, T )]. (5.2.10.2.2)

which in V4 reduces to

V (X, Y, Z, T ) = L(X, Y, Z, T ) + 2R(X, Y, Z, T )− 2C(X, Y, Z, T ). (5.2.10.2.3)

We notice that (5.2.10.2.1) is skew symmetric in Z,T and also satisfies

W ′
6(X, Y, Z, T ) +W ′

6(Y, Z,X, T ) +W ′
6(Z,X, Y, T ) = 0 (5.2.10.2.4)

Breaking W ′
6(X, Y, Z, T ) into two parts, gives
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′G(X, Y, Z, T ) = 1
2
[W ′

6(X, Y, Z, T )−W ′
6(Y,X,Z, T )]

and

′H(X, Y, Z, T ) = 1
2
[W ′

6(X, Y, Z, T ) +W ′
6(Y,X,Z, T )]

which are respectively skew symmetric and symmetric in X,Y. From (5.2.10.2.1)

it follows that

G(X, Y, Z, T ) = 1
2
[W ′

6(X, Y, Z, T )−W ′
6(Y,X,Z, T )]

G(X, Y, Z, T ) = 1
2
[R(X, Y, Z, T ) + 1

n−1
[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)]−

R(Y,X,Z, T )− 1
n−1

[g(Y,X)Ric(Z, T )− g(Y, T )Ric(X,Z)]]

G(X, Y, Z, T ) = 1
2
R(X, Y, Z, T )− 1

2

′
R(Y,X,Z, T ) + 1

2(n−1)
[g(X, Y )Ric(Z, T )−

g(X,T )Ric(Y, Z)− g(Y,X)Ric(Z, T ) + g(Y, T )Ric(X,Z)]

G(X, Y, Z, T ) = R(X, Y, Z, T ) + 1
2(n−1)

[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)]−

g(Y,X)Ric(Z, T ) + g(Y, T )Ric(X,Z)]

OR

G(X, Y, Z, T ) = R(X, Y, Z, T )− 1
2(n−1)

[g(X,T )Ric(Y, Z)]− g(Y, T )Ric(X,Z)]

. (5.2.10.2.5)

H(X, Y, Z, T ) = 1
2
[W ′

6(X, Y, Z, T ) +W ′
6(Y,X,Z, T )]

H(X, Y, Z, T = 1
2
[R(X, Y, Z, T ) + 1

n−1
[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)] +

R(Y,X,Z, T ) + 1
n−1

[g(Y,X)Ric(Z, T )− g(Y, T )Ric(X,Z)]]

H(X, Y, Z, T = 1
2
R(X, Y, Z, T ) + 1

2
R(Y,X,Z, T ) + 1

2(n−1)
[g(X, Y )Ric(Z, T )−

g(X,T )Ric(Y, Z) + g(Y,X)Ric(Z, T )− g(Y, T )Ric(X,Z)]

H(X, Y, Z, T = 1
2(n−1)

[g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z) +

g(Y,X)Ric(Z, T )− g(Y, T )Ric(X,Z)].

or

H(X, Y, Z, T ) = 1
2(n−1)

[2g(X, Y )Ric(Z, T )−g(X,T )Ric(Y, Z)−g(Y, T )Ric(X,Z)]

. (5.2.10.2.6)

From (5.2.10.2.5) we see that G(X, Y, Z, T ) also possesses all the symmetric and

skew symmetric properties of R(X, Y, Z, T )as well as the cyclic property.

G(X, Y, Z, T ) +G(Y, Z,X, T ) +G(Z,X, Y, T ) = 0 (5.2.10.2.7)
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combining equations (5.2.10.1.3) and (5.2.10.2.5), simplifying we get

G(X, Y, Z, T ) = 1
2(n−1)

[nR(X, Y, Z, T )+(n−2)V (X, Y, Z, )− R
n−1

g(X,T )g(X,Z)− g(Y, T )g(X,Z)]

. (5.2.10.2.8)

which for electromagnetic field(or more generally in the space which vanishing

scalar curvature) in v4 becomes

3G(X, Y, Z, T ) = 2R(X, Y, Z, T ) + V (X, Y, Z, T ) (5.2.10.2.9)

Also from equation (5.2.10.1.2) and (5.2.10.2.5), for V4,we have

3G(X, Y, Z, T ) = 2R(X, Y, Z, T ) + L(X, Y, Z, T ) (5.2.10.2.10)

Thus equation (5.2.10.2.9) is the consequence of (5.2.10.2.10) for a space of van-

ishing scalar curvature

We notice that G(X, Y, Z, T ) is identically equal to the skew symmetric part

P (X, Y, Z, T )[5] of the projective curvature tensor unlike its symmetric part

Q(X, Y, Z, T ) is different for H(X, Y, Z, T ).

On contracting W6hijk, we obtain

W6ij = ( n
n−1

)(Rij − R
n
gij) (5.2.10.2.11)

which vanishes in an Einstein space.

The scalar invariant

W6 = gijW6ij = 0 (5.2.10.2.12)

identically. Now considering the scalar invariant of second degree in W6ij V iz

(W6)IIW6ijW
ij
6 = ( n

n−1
)2(R6 − R2

n
) (5.2.10.2.13)

where R6 = RijR
ij.

From (5.2.10.2.11), we have

W6ijR
ij = n

n−1
(R6 − R2

n
) (5.2.10.2.14)
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hence

W6ijW
ij
2 = ( n

n−1
)W6ijR

ij (5.2.10.2.15)

From (5.2.10.2.5), we notice that contracted Gij vanishes identically for Einstein

space.This enables us to extend the Pirani formalism of gravitational waves to

the Einstein space with the help of Ghijk.

For an Einstein space Ghijk,W6hijk,Whijk and Vhijk are identically equal.

We can show that the vanishing of the symmetric part Hhijk is necessary and

sufficient condition for a space to be an Einstein space.

The vector

Qi =
gijE

jklmRp
kRpl;m√

−gRabRab (5.2.10.2.16)

is called the comlexion field with no matter by Misner and Wheeler (1957) and

its vanishing implies that the field is purely electrical.

A semi-colon stands for covariant differentiation.

It seems that we cannot get purely electrical field with the help of W6hijk.

Rainich (1952) has shown that the necessary and sufficient conditions for the ex-

istence of the non-null electrovariance are

R = 0 (5.2.10.2.17)

Ri
jR

j
k = (1

4
)δikRabR

ab (5.2.10.2.18)

Qi;j = Qj;i. (5.2.10.2.19)

In an electromagnetic field

W6ij = (4
3
)Rij (5.2.10.2.20)

We can substitute W6ij in place of Rij in (5.2.10.2.16) and (5.2.10.2.18) such that

the Rainich conditions so obtained are similar to those obtained with the help of

Whijk.

From the above discussion we conclude that except the vanishing of complexion

vector and property of being identical in two spaces which are in geodesic corre-
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spondence, the tensor W6hijk possess the properties almost similar to Whijk.

Thus we can very well use W6hijk in various physical and geometrical spheres

in place of the Projective curvature tensor.
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CHAPTER SIX

CONCLUSION AND RECOMMENDATION

6.1 Conclusion

Having determined the geometric properties on Sasakian space such as flatness,

Semi-Symmetric and Symmetric it was clear that a W6-flat Sasakian manifold is

a flat manifold, W6-Semi-Symmetric Sasakian manifold is a W6-flat manifold and

also W6-Symmetric Sasaskian manifold is W6-flat manifold.

On geometric properties on LP-Sasakian space it was also clear that aW6-flat LP-

Sasakian manifold is a flat manifold, W6-Semi-Symmetric LP-Sasakian manifold

is a W6-flat manifold and also W6-Symmetric LP-Sasaskian manifold is W6-flat

manifold and conclude that if LP-Sasakian manifold W6-curvature tensor is flat

then its an Einstein manifold and also a space of constant scalar curvature.

Having also determined the physical properties on LP-Sasakian manifold such

as irrotational and conservative I found that if the W6-curvature tensor in an

LP-Sasakian manifold is irrotational then the manifold is a space of constant

curvature and if it is conservative then is an Einstein manifold also of constant

scalar curvature. On Einstein LP-Sasakian manifold satisfying R(X, Y ).W6 = 0

is a space of constant curvature.

On finding out the relativistic significance of W6-curvature tensor on LP-Sasakian

Space, we notice that G(X, Y, Z, T ) is identically equal to the skew symmetric

part P (X, Y, Z, T ) of the projective curvature tensor unlike its symmetric part

Q(X, Y, Z, T ) is different for H(X, Y, Z, T ) and on contracting W6hijk, we obtain

W6ij = ( n
n−1

)(Rij − R
n
gij) which vanishes in an Einstein space and contracted

Gij vanishes identically for Einstein space. This enables us to extend the Pirani

formalism of gravitational waves to the Einstein space with the help of Ghijk.

For an Einstein space Ghijk, W6hijk, Whijk and Vhijk are identically equal, this

show that the vanishing of the symmetric part Hhijk is necessary and sufficient
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condition for a space to be an Einstein space. The vector Qi =
gijE

jklmRp
kRpl;m√

−gRabRab

is called the comlexion field with no matter by Misner and Wheeler (1957) and

its vanishing implies that the field is purely electrical. A semi-colon stands for

covariant differentiation. It seems that we cannot get purely electrical field with

the help of W6hijk. In an electromagnetic field W6ij = (4
3
)Rij We can substitute

W6ij in place of Rij in (5.2.10.2.16) and (5.2.10.2.18) such that the Rainich con-

ditions so obtained are similar to those obtained with the help of Whijk. From

the above discussion we were able to conclude that except the vanishing of com-

plexion vector and property of being identical in two spaces which are in geodesic

correspondence, the tensor W6hijk possess the properties almost similar to Whijk.

Thus we can very well use W6hijk in various physical and geometrical spheres in

place of the Projective curvature tensor.

6.2 Recommendation

This study can be extended on other manifolds such as K-contact, A-Einstein,

Komatsu and many more to investigate on geometric and physical properties and

combine with theory of relativity to study space.
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