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ABSTRACT

In this research, an overall MiniMax lower bound (MLB) was derived for the devel-
opment of the MiniMax Risk for estimating an arbitrary non-smooth functional,
1
n

n∑
i=1

|λi| from an observation Y ∼ N(λ, In) based on testing a pair of composite

hypotheses. The Minimax lower bounds and upper bounds are used to quantify
the fundamental limits and provide benchmarks for evaluating the performance
of any estimator in statistical inference. In nonparametric estimation of statisti-
cal functionals, both the lower and upper bounds are constructed. In particular
when working in the context of MiniMax estimation, the lower bounds are the
most important. The problem of estimating non-smooth functionals shows some
properties that are different from those that arise in estimating standard smooth
functionals. For these reasons the standard methods fail to give sharp results when
used to estimate non-smooth functionals. A pair of priors with a large difference
in the expected values of the functional were constructed while making the Chi-
square distance between two normal mixtures small. The estimator was developed
using the best polynomial approximation, Hermite polynomials and Saddlepoint
approximation, and it’s asymptotic properties: bias, variance were derived. The
developed estimator was compared with the Nadaraya-Watson and the Modified
Nadaraya-Watson estimators. The MSE, biases and confidence interval lengths
of the estimators were computed using simulated data. Smaller values of MSE
and biases were obtained for the developed estimator. Short confidence interval
lengths were also obtained for the developed estimator. The results developed in
this research can also be used to solve excess mass.

xii



CHAPTER ONE

INTRODUCTION

1.1 Background of the study

In statistical inference, one of the fundamental problems is estimating statistical

functionals. A functional denoted by F (f, g, h, ...) is a mathematical relation that

maps one (or more) function to a constant. Functionals just like functions, reach

extremum values when their derivative is zero. The functionals are estimated by

either parametric or nonparametric procedure. The parametric procedure involves

making assumptions about the underlying distribution. The method of moments

and method of maximum likelihood are some of the known examples of parametric

methods of estimation (DiNardo and Tobias, 2001) and (Casella and Berger, 2002).

In this research, an overall MiniMax lower bound (MLB) was derived for the

development of the MiniMax Risk for estimating an arbitrary non-smooth func-

tional. The MiniMax lower bounds and MiniMax upper bounds play a key role in

applied statistical inference (Goldenshluger and Lepski, 2020). They are used in

fields of science, engineering and geosciences. For instance, they quantify the lower

and upper bounds of estimation and testing, data compression and L1 distance.

They are also used to measure difficulties involved in the corresponding task and

provide benchmarks for constructive algorithms (Cai and Low, 2011). Knowing

their functional form allows further statistical quantities, such as estimation and

construction of stochastic models for various applications to be handled.
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Statistical researchers have put in a lot of effort to derive MiniMax lower bounds,

upper bounds and optimal rate of convergence in the development of statistical

inefficiencies. Although the estimation of smooth functionals is the most developed

in literature, the non-smooth functionals estimation remain elusive despite their

usefulness in real life application (Cai and Low, 2011) and (Goldenshluger and

Lepski, 2020).

Smooth functionals are understood to be differentiable on the corresponding

norm; the analytic distance induced by an inner product. For instance, estimating

linear functionals is well developed and their optimal rate of convergence is derived

based on testing a simple null hypothesis against a simple alternative hypothesis.

See for example, (Le Cam, 1973), (Donoho and Liu, 1991) and (Juditsky and

Nemirovski, 2020).

The situation is different for nonlinear functionals: the rate-optimal estimators

are available only for particular functional classes in the problem of estimating

quadratic functionals (Bickel and Ritov, 1988) and (Birǵe and Massart 1995).

Bickel and Ritov, (1988) developed the theory of estimating quadratic function-

als. They derived the optimal rate of convergence based on testing a simple null

hypothesis against a composite alternative hypothesis in a large parameter space.

In the recent past, estimation of non-smooth functionals in the nonparametric

set-up has gained popularity (Rockafella, 1994), (Lepski et al., 1999) and (Com-

minges and Dalalyan, 2013). For instance, progressive clustering, data ranking,

irregularity detection, mapping environmental pollution, examining contour levels,

excess mass and micro array analysis of genes. These functionals have different

rates of convergence from the usual parametric rates that occur in the standard
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smooth functionals. Thus, their estimation involve techniques which are different

from the ones used to estimate smooth functionals.

The nonparametric statistical procedure has several attractive properties. First,

it does not require specific assumptions to be made about the data. Second, the

information used generally relates to some functions of the actual magnitudes of the

random variables in the sample. The field of nonparametric has widened its appeal

with a number of new tools for statistical analysis. Some of the tools include:

Nonparametric density estimation, Nonparametric regression and Gaussian white

noise model. See for example (Tsybakov, 2009).

In nonparametric density estimation, random variables Y1, . . . , Yn are identically

distributed from a continuous probability density function f , with respect to the

Lebesgue measure on R where

f(y) ≥ 0,

∞∫
−∞

f(y)dy = 1 (1.1)

The Lebesgue measure is central on the interval [0, 1] and on the real line in

probability and also in statistical analysis (Billingsley, 1995). The density function

f , is assumed to belong to a large family of densities so that it can be represented

through an infinite number of parameters. To develop an optimal estimator, the

”smoothness” conditions are imposed on f and its derivatives (Tsybakov, 2009).

Nonparametric regression involves n independent random variables

(X1, Y1), . . . , (Xn, Yn) such that

Yj = f(Xj) + ϵj, Xj ∈ [0, 1], j = 1, . . . , n (1.2)

where f is an unknown response function, Yi is the variable of interest, Xj is the

independent variable and ϵi is the error term satifying E(ϵj) = 0 for all i. The
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function f ∈ P . The class P can be the set of all continuous nonparametric

functions on [0, 1] or a set of all the convex functions and many others.

Statistical researchers have an interest in knowing the relationship between in-

dependent variable X and a dependent variable Y . For instance, a regression curve

can be used to show the relationship and use equation (1.2) to obtain the value of

Y after X is observed (Wolfgang, 1996). Special features of this function are, for

instance, monotonicity or unimodality, location of zeros or the size of extrema.

The assumptions that are made on equation (1.2) are appropriate for a Gaussian

white noise model. The Gaussian white noise model is a statistical model used

to simulate the effect of random processes that occur in nature. Literature on a

majority of the smoothing techniques that are highly adaptive have been developed

for a Gaussian white noise model (Wang et al., 2008). Conversely, when the error,

ϵj in equation (1.2) has a heavy-tailed distribution, these smoothing techniques

are not readily applicable.

The Gaussian white noise is a model that is idealized to provide an estimate to

equation (1.2). Lepski et al., (1999) and (Tsybakov, 2009), considered the idealized

”signal and white noise” model of observations as follows: the observed data Y (t),

t ∈ [0, 1] was a trajectory of the stochastic differential equation

dY (t) = f(t)dt+ n−1/2dW (t) (1.3)

where f was the unknown function, W was the standard Weiner process on [0, 1],

and n was an integer that gave the ”volume of observations”. Equation (1.3)

represented a realistic model with noisy observations of the unknown function at

equidistant or random points. The a priori information on the unknown function,
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f was that it possessed some smoothness; belonged to a Hölder class Σ(β, L)

where β, L > 0 were known parameters. The function f is smooth when it is r

times differentiable on R1, where r is a large integer but less than β, and the rth

derivative f (r) of f is Hölder continuous with the exponential β − r and constant

L.

|f (r)(t0)− f (r)(t1)| ≤ |t0 − t1|β−r, t0, t1 ∈ R1 (1.4)

In either of the three cases, the asymptotic behavior of the estimators as n → ∞

is quite important. Asymptotic statistical literature deals most with the rates of

convergence, particularly for problems involving infinite dimensional parameters.

The rates seem to be caused by analytic properties of particular ”smoothness”

assumptions and other regularity conditions. However, these properties and con-

ditions cannot explain fully the rates as consequences of geometric properties of

models. See for example, (Le Cam, 1973).

The best rate of convergence depends on a requirement that an estimator per-

forms well at a sequence of models that lie nearby. According to (Polland, 2005)

the rate of convergence refers to uniform convergence of models in small neighbor-

hoods of some specific model of interest. Deriving the best rate of convergence and

the MiniMax lower bounds is important when developing the MiniMax theories in

nonparametric functional estimation literature.

1.2 Statement of the problem

Several estimators of smooth functionals have been discussed in literature. The

estimators are in simpler cases and their optimal rates of convergence are often

parametric or algebraic rates (Lepski et al., 1999). However, the smoothness prop-

erties and other regularity conditions used to estimate smooth functionals cannot
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explain the rates as consequences of geometric properties of models. See for ex-

ample, (Rockafella, 1994) and (Cai and Low, 2011).

The estimation of non-smooth functionals exhibit some properties that are dif-

ferent from those that occur in smooth functionals. Thus, the standard techniques

used in estimating smooth functionals cannot give sharp results when applied on

the non-smooth functionals. For instance, when a polynomial is used to smoothen

the risk at the origin to obtain an optimal estimator, the polynomial factor can

be worse in the tail regions, where the density might be negative and unable to be

integrated to 1 (Lepski et al., 1999).

1.3 Objectives

1.3.1 General objective

To estimate an arbitrary non-smooth functional based on testing a pair of com-

posite hypotheses in the nonparametric set-up.

1.3.2 Specific objectives

The specific objectives are:

1. To derive a general MiniMax lower bound of estimating an arbitrary func-

tional based on testing a pair of composite hypotheses.

2. To develop the MiniMax Risk of estimating the non-smooth functional.

3. To develop an estimator for a non-smooth functional in nonparametric pro-

cedure.

4. To derive the asymptotic properties of the developed estimator: vis, bias and

variance.
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1.4 Justification

The MiniMax lower bounds and MiniMax upper bounds are constructed in sta-

tistical inference for assessing the quality of decision rules and the performance

of any estimation method (Cai and low, 2011). These statistical efficiencies of

estimators play a key role in advanced statistical analysis. Although estimators

and their convergence rates for smooth functionals are well covered in statistical

literature, those for non-smooth functionals are elusive even though they are im-

portant in application to real life. In this research, an overall MLB was derived for

developing the MiniMax Risk to estimate an arbitrary non-smooth functional. The

non-smooth functional is estimated in the nonparametric set-up since the standard

techniques used to estimate smooth functionals cannot give sharp results (Cai and

Low, 2011). Non-smooth functionals also exhibit rates of convergence that were

different from those that occur while estimating smooth functionals.

The nonparametric approach is appropriate to a wide range of data which cuts a

cross all the measurement scales. The method can be used even on a small sample

size, which would require the distributions to be known precisely all together for

parametric methods to be used. In addition, the approach can be used in many real

life applications such as progressive clustering, data ranking, irregularity detection,

mapping environmental pollution, excess mass and micro array analysis of genes.

1.5 Scope of the study

In estimating a statistical functional in the nonparametric set-up, both the lower

and upper bounds are required. The lower bounds are the most important when

working in the context of MiniMax estimation. In this research, the parameter

space Λ will be split into two disjoint subsets Λ0 and Λ1 and an overall MLB
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derived for developing the MiniMax risk. The MiniMax Risk will be based on

testing a pair of composite hypotheses, H0 : λ ∈ Λ0 and H1 : λ ∈ Λ1 where

H0 and H1 are the null and alternative hypotheses respectively. Two priors will

be constructed such that they have a large difference in the expected values of

the functional T (λ) and a small difference while making the Chi-square distance

between the two mixture models.

The best polynomial approximation, Hermite polynomials and Saddlepoint ap-

proximation will be used to develop the estimatior. The developed estimator will

be compared with the Nadaraya-Watson and the Modified Nadaraya-Watson esti-

mators. The MSE, biases and confidence interval lengths of the estimators will be

computed using simulated data.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, literature review was done in areas related to nonparametric esti-

mation of an arbitrary non-smooth functional based on testing a pair of composite

hypotheses. The estimator developed rely on the best polynomial approximation,

Hermite polynomials and Saddlepoint approximation of the function f , by using

the an unbiased estimator. The entire chapter is organized as follows: Nonpara-

metric estimation of non-smooth functionals is stated in section 2.2. The MiniMax

lower bound techniques are presented in section 2.3, the saddlepoint approximation

is in section 2.4.

2.2 Nonparametric Estimation of Non-smooth Functionals

In nonparametric statistical approach, no assumption on the underlying distri-

bution is made. Predictions that are more robust in the sense that they do not rely

on whether or not the underlying distribution is known are made. The minimax

nonparametric problems of estimating density functionals have been extensively

studied in the statistical literature. The case of linear functionals is particularly

well understood.

Korostelev (1990) considered the problem of estimating the L1 norm ||f ||1 =∫
|f(t)|dt with the optimal rate of convergence given as O(n−β/2β+1), where β is

the order of smoothness of f , such that a plug-in estimator
∫
|f̂(t)|dt associated

9



with an optimal estimate f̂ of f , is optimal in order. Korostelev and Tsybakov

(1994) also considered problems of estimating non-smooth functionals in the image

model.

Lepski et al., (1999) observed a Hölder continuous function. The problem was

considered in a nonparametric estimation of Lr norms of the continuous function.

The study of the function was done in the standard asymptotic set-up, when

the parameter n → ∞. Their results largely depended on two circumstances:

estimating a smooth functional and estimating a singular functional. The rate of

convergence in the former case is n− 1
2 , where n is the sample size while the rate of

convergence in the latter case corresponded to estimating the function f itself in

the corresponding norm. They noted that the rates of convergence differed from

each other. The function and the choice of the norm determined the value of a

norm.

They also found that estimating the Lr norm was a case in-between the above

extreme cases. The optimal rate of convergence of ||fr|| was worse than n−1/2 but

better than the rate of convergence of the NP estimates of f . The results obtained

were based on r; when the value of r was even, the rate was n−β/(2β+1−1/r) and,

when r was odd, a logarithmic in n factor could be used to improve the NP rate

n−β/(2β+1).

The ideas of (Lepski et al., 1999) were advanced by (Cai and Low, 2011). They

developed a general MiniMax lower bound procedure. They constructed a pair of

priors to obtain the lower bound which was based on the difference between E(T )

on each of the priors µ0, µ1 and V ar(T ) under the µ0. The lower bound was based

on the Chi-square distance between a pair of marginal distributions.
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The studies by (Lepski et al., 1999) and (Cai and Low, 2011) are closely related

to the work in this thesis by the methodology used and the problem of interest.

These authors studied the problem of NP estimation of norms of a signal observed

in Gaussian white noise. Both the rate and sharp asymptotics for the estimators

in the MiniMax set-up were obtained. They frequently used the assumptions of

continuity and normality to obtain estimators.

A part from (Cai and Low, 2011), (Keisuke and Jack, 2012) examined the chal-

lenges to statistical inference when the problem of interest is a nondifferentiable

functional of the underlying distribution. The situation found in applications of

lower and upper bounds analysis, models with moment inequality, and optimal dy-

namic treatment regimes estimation. They related the existence of unbiased and

regular estimators to differentiability of the functional. Their results indicated

that if the object of interest was not differentiable, then there exist no estimator

sequences that were locally asymptotically unbiased. Strong limits were placed on

estimators, bias correction methods, and statistical inference procedures, and pro-

vided motivation to consider other criteria for evaluating estimators and inference

procedures.

Following the recommendation by (Keisuke and Jack, 2012), (Yu-Xiang Wang et

al., 2016) proposed a MiniMax framework for adaptive data analysis. In adaptive

data analysis, a sequence of queries were made on data and at each step the choice

of the query may depend on the results of previous steps. By assuming that the

queries were normally distributed, they obtained a sharp MiniMax lower bound

on the squared error in the order O(
√
kσ2

n
), where k is the number of queries asked

and, σ2

n
is the ratio of the signal-to-noise for a single query. The lower bound was

based on the construction of a least favorable adversary who picks a sequence of

11



queries that are most probably to be affected by over fitting.

In the cases fore mentioned cases, the disparity between the actual value and its

estimator was specified by a real valued loss function L(θ, θ̂) which quantifies the

amount by which prediction deviates from the actual values. The two commonly

used loss functions are the quadratic error loss, L(θ, θ̂) = (θ− θ̂)2 and the absolute

error loss function, L(θ, θ̂) = |θ − θ̂|. The former has a tendency to be dominated

by outliers whereas the latter is not differentiable at a = 0 (Ramachanran and

Chris, 2009). The statistical researchers prefer using a loss function that is globally

continuous and differentiable in optimization algorithms.

2.3 MiniMax Lower Bound Techniques

The development of MiniMax theories in the nonparametric functional estima-

tion literature hinges on statistical researchers’ efforts to extract the MiniMax

lower bounds and optimal rate of convergence. In the literature of statistical in-

ference a variety of lower bound techniques were discussed. Le cam (1973) and,

(Donoho and Liu, 1991) for example, derived the optimal rate of convergence by

testing a simple null hypothesis against a simple alternative.

Quadratic functionals were estimated by (Bickel and Ritov, 1988). They tested

a simple null hypothesis against a composite hypothesis to find the optimal lower

bounds for a broad parameter space. Under the white noise model (Lepski et

al., 1999) estimated the Lr norm of the drift function. Cai and Low (2011),

improved on the ideas of (Lepski et al., 1999) where they considered testing a pair

of composite hypotheses and inter wining the set of functional values on the pair

of hypotheses.
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According to (Donoho & Liu, 1991) and, (Ibragimov & Khasminski, 1991),

the estimator that minimizes the maximum risk is the MiniMax estimator and

expressed in equation form as

sup
θ

R(θ, θ̂) = inf
θ̂
sup
θ

R(θ, θ̂) (2.1)

where the infimum is over all estimators θ̂. The right hand side of equation (2.1)

is the MiniMax Risk

R ≡ R(θ) = inf
θ̂
sup
θ

R(θ, θ̂), (2.2)

Cai and Low (2011), noted that computing an estimator that minimizes the

maximum risk is not an easy task and even if the estimator is computed, it depends

on an unknown distribution. They proposed the MiniMax rate-optimal and an

asymptotically MiniMax estimator for the MiniMax estimator. When the MiniMax

rate-optimal estimator with maximum risk (equal to MiniMax risk) is used, the

MiniMax estimator is

sup
θ∈Θ

R(θ, θ̂) ≍ inf
θ̂
sup
θ∈Θ

R(θ, θ̂), n → ∞ (2.3)

where (.) ≍ (..) means that both (.)/(..) and (..)/(.) are both bounded as n → ∞.

When an asymptotically MiniMax estimator is used, the MiniMax estimator is

sup
θ∈Θ

R(θ, θ̂) ∼ inf
θ̂
sup
θ∈Θ

R(θ, θ̂), n → ∞ (2.4)

where (.) ∼ (..) means (.)/(..) → 1.

The MiniMax rate-optimal estimator in equation (2.3) are closely related to best

(MiniMax) polynomial approximation problem where the best polynomial approx-

imation problem is a convex optimization problem. The connection between the

two is important in the sense that the difficult-to solve MiniMax and convex prob-

lem of Minimax risk in supf∈P Ef [F (f) − F̂ ]2 can be transformed into another
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efficiently solvable MiniMax and convex problem of minimizing the maximum de-

viation of the polynomial from a given function.

Cai & Low (2011) developed an estimator based on approximation theory and

the Hermite polynomials. They considered the problem when the means were

bounded by a given value, the estimator developed was shown to be asymptotically

sharp MiniMax. The lower bound was calculated using the difference between the

functionals expectation over each of the priors µ0 and µ1 and on the variance of

the functional under the prior µ0. The chi-square distance between two marginal

distributions of the observations was also used to set the bound.

They applied the technique of transforming the difficult-to solve MiniMax and

convex problem into efficiently solvable MiniMax and convex problem where the

MiniMax polynomial was used to smoothen the risk at the origin to obtain an

optimal estimator. However, the existence of the polynomial factor in the estimate

of the density can be worse in the tail regions, where the density might be negative

and unable to be integrated to 1.

Nicolas and Jean-Muller (2003) implemented ”regular enough” functions on a

computing system using the polynomial approximations. They noted that a poly-

nomial that best estimates a function has coefficients that are not exactly repre-

sentable with a finite number of bits. Nonetheless, polynomial estimations that

were actually implemented had coefficients that were expressed by a finite-and

often small - number of bits. Then they considered polynomial estimations with

at most mi fractional bits in the degree i coefficient. This enabled them to obtain

the best polynomial estimation under this constraint.
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The problem of oscillation at the edges of an interval that occurs while using

polynomial interpolation with polynomial points was studied by (Nicolas & Jean-

Muller, 2003) and (Cai & Low (2011). The best polynomial approximations were

used for interpolation. The polynomials were useful for interpolation and at the in-

terpolating points the error between the function and the interpolating polynomial

was zero. However, the error was more between the interpolating points.

Lepski et al., (1999) estimated the function |t| on [−1, 1] by its truncated Fourier

series where the estimate was based on unbiased estimates of each term in the

approximation

|t| ≈
N∑
k=1

ck cos(πkt) (2.5)

of smooth functionals. As a result, they were able to approximate the functional∫
|f(t)|dt by the finite sum

N∑
k=1

ck

1∫
0

cos(πkf(t))dt (2.6)

They choose N in a way that combines the approximation error of equation (2.5)

and the ”stochastic error”- the one of estimating the smooth functional equation

(2.6) through noisy observations. They did note, however that the estimator based

on Fourier series has higher accuracy than estimator based on polynomials.

Polynomial approximation was used to approximate the function f(t) = |t| with

the best polynomial approximation P ∗(x) to a continuous function f(t) having at

least (2k + 2) alternating points. In the derivation of the MiniMax lower bounds,

the set of these points was used to construct the least favorable priors. The priors

were constructed using the Hann-Banach theorem and the Riesz representation

theorem.
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The Hann-Banach theorem allows any continuous linear functional defined on a

subspace of a normed space say X with a continuous extension to the entire sub-

space. This theorem allows the bounded linear functionals on a subspace of some

vector space to be extended to the entire space. When considering vector spaces,

the elements are multiplied and added by scalars. The theorem makes it possible

to estimate length and angle using vector spaces with inner product structure. In

this way, the inner product in infinite-dimensional abstract space leads to Hilbert

space. Data in infinite-dimensions are defined as continuous functions, and when

the form of the functions in the true model are unknown, the most efficient use of

data is to allow the estimated functions to depend on sample size (Chichilnisky,

2009).

The Hilbert space abbreviated by L2, is a complete vector space with an inner

product space (L ⟨., .⟩). The L2 is the set of square integrable functions in which

the square integrable functions form a complete metric space under the metric

brought by the inner product (Larry, 2006). The inner product space is defined by

the set and the specific inner product ⟨., .⟩. The significance of forming a complete

metric space is to allow the sequences to converge and find a point to which they

converge within space.

Bergstrom (1985), demonstrated that there is a limitation on the real line for

the use of the Hilbert space. He pointed out that the standard Hilbert space like

L2(R) requires that the unknown function tends to zero at infinity. This makes it

unreasonable to be used on certain models like the financial model.
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2.4 Saddle-point Approximation

The uniform asymptotic expansion of the distribution of random variables that

depends on the sample size is known as saddle-point approximation (Daniels,

1987). The cumulant generating function is used to apply saddle-point approxima-

tion to a distribution of some random variables. The cumulant generating function

(CGF) of the random variables is used in derivation of the saddle-point expansion.

Cumulants such as k1 = µ and k2 = σ2 are related to moments.

This approximation can be derived using two techniques: The saddle-point

method and the Edgeworth expansion. These methods can be used to improve

estimators that do not perform well in the tail areas. The saddle-point method is

the method of selecting an integration path that passes through a saddle-point in

such a way that the integral is centered in the small area a round the saddle-point.

An asymptotic estimate of a complex integral is obtained using this approach.

I =
1

2πi

∫
s

g(z)dz (2.7)

where the function g is analytic on the open set Ω ⊂ C and s is a piece-wise

smooth path from a to b in Ω. The saddle-point density and distribution functions

are obtained when the method is applied to the Fourier inversion formula of a

probability density and distribution functions.

The saddle-point approximations are constructed by performing operations on

the MGF or, equivalently, the CGF of a random variable. For instance, let

X1, . . . , Xn be independent, identically distributed random vectors from a den-

sity f(x) with respect to the Lebesgue measure. The MGF, M(t) = E exp(tX)

and CGF, K(t) = logM(t). The MGF is assumed to exist in the an open neigh-

borhood around the origin.
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In statistics, the saddle-point method has been used by a number of researchers.

For instance, Daniels (1954) used the saddle-point method to obtain a uniform

asymptotic expansion of the sample mean using the Fourier inversion formula of

a density function of a sample mean. The expansion was achieved by improving

the Edgeworth expansion density function of a sample mean. To obtain a uni-

form asymptotic expansion (Lugannani and Rice, 1980) applied the method to the

Fourier inversion formula of a distribution function to a sample mean.

The saddle-point method was used by (Petrova and Solov’ev, 1997) to derive

asymptotic estimates of an integral which was related to the hypergeometric func-

tion. Flajolet and Sedgewick (2009) used the saddle-point method to estimate

Cauchy coefficient integrals of a generating function, G(z). When the function

G(z) was analytic a round the origin on the disc D(0, r), they discovered that

G(z) had the Taylor series.

Gatto (2007, 2010) used the method to estimate the likelihood of ”ruin” and

the ”discounted claim quantities” in the sense of a compound Poisson process.

Spady (1991) used the method to estimate the distribution of regression estimators

defined by a system of estimating equations with observations presumed to be

independent. Estimating the distribution of the L1 regression estimators β̂1 and

β̂2 demonstrated the method’s accuracy.

Saddle-point methods provide approximations to densities and probabilities in a

variety of settings. In particular their relative errors are bounded in the tail areas,

a desired property which is not attained by most other types of approximations

used in statistics. The problem of approximating the MGF of a truncated random

variable in terms of the MGF of the original random variable was considered by
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(Butler and Wood, 2004). They approximated the MGF to ensure the application

of saddle-point approximation to certain distributions determined by truncated

random variables.

The edgeworth expansion technique is not widely used as the saddle-point

method. The technique gives significantly better estimators at the mean of a distri-

bution. The expansions are easy to express in terms of moments. The saddle-point

method use these attributes to get an improved estimator at the mean of the dis-

tribution by changing the original distribution. At the value of interest, a specific

conjugate distribution is chosen such that its mean can be modified back to the

original distribution.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter examined the methods that were used to develop composite hypotheses-

based estimator of an arbitrary non-smooth functional. An overall MLB for esti-

mating an arbitrary non-smooth functional based on testing a pair of composite

hypotheses was derived. The parameter space Λ was split into two disjoint subsets

Λ0 and Λ1. Such that H0 : λ ∈ Λ0 and H1 : λ ∈ Λ1 are the null and alternative

hypotheses respectively. Two priors were constructed such that they had a large

difference in the expected values of the functional T (λ) and a small difference while

making the Chi-square distance between the two mixture models.

The MiniMax lower bound of estimating the non-smooth functional T (λ) was

developed based on the general MiniMax lower bound derived. The MiniMax Risk

developed evaluated the performance of the estimator obtained. The difficult-

to solve MiniMax problem was transformed into a solvable MiniMax polynomial

where the risk was smoothened at the origin using the best polynomial approxi-

mation. Hermite polynomials were used to construct an unbiased estimators for

each term in the expansion and the saddle-point approximation techniques were

used to modify it. The asymptotic properties of the developed estimator were also

considered.
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The general MiniMax lower bound was derived by dividing the parameter space

Λ into two disjoint subsets Λ0 and Λ1 where H0 : λ ∈ Λ0 against H1 : λ ∈ Λ1 are

the null and alternative hypotheses respectively. A pair of priors was constructed

and the chi-square distance between two priors bounded. The priors were con-

structed with a large difference in the expected values of the functional T (λ) and a

small difference when calculating the Chi-square distance between the two mixture

models. Nonparametric Estimation of Density Functions, Polynomial approxima-

tion, Hermite polynomials and the Hilbert space are among the mathematical ideas

discussed.

3.2 Nonparametric Estimation of Density Functions

There are several estimators in literature that statistical researchers have used to

estimate density functions in the nonparametric set-up. The estimators include the

local average estimator, kernel density estimator, nearest neighborhood estimator,

the series estimator, the penalized likelihood estimator. These estimators were

discussed by (Pagan and Ullah, 1999), among which the kernel density estimator

is the best known estimator, well developed and widely used than others.

A kernel is a mathematical function that returns a probability of a random

variable for a given value. It is any smooth function k such that k(y) ≥ 0 and∫
k(y)dy = 1,

∫
yk(y)dy = 0 and σ2

k =
∫
y2k(y)dy > 0. A kernel function weights

the contribution of observations from a data sample based on their distance to

a given sample. A parameter called the ”bandwidth” or ”smoothing” parame-

ter controls the scope of observations from the data sample that contributes to

estimating the probability of a given sample.
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In practice, there are a number of kernel functions to choose from, but three are

most common choices:

1. the Gaussian kernel

k(y) =
1√
2π

exp(−y2

2
),−∞ < y < ∞ (3.1)

2. the Epanechnikov kernel

k(y) =
3

4
(1− y2)I(|y| ≤ 1) (3.2)

3. the Biweight or Quartic kernel

k(y) =
15

16
(1− y2)2I(|y| ≤ 1) (3.3)

Three other kernels that aren’t as common are:

4. the Uniform kernel

k(y) =
1

2
I(|y| ≤ 1) (3.4)

5. the Triangular kernel

k(y) = (1− |y|)I(|y| ≤ 1) (3.5)

6. the Triweight kernel

k(y) =
35

32
(1− y2)3I(|y| ≤ 1) (3.6)

The choice of the kernel function determines the weight given to each observa-

tion. For instance, a uniform kernel function assigns equal weights to all points

closest to the target and diminishes the weights to those points that are ”farthest”

from the centre of the kernel.
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3.2.1 Existing Nonparametric Estimators

Some of the existing nonparametric estimators were discussed in this section.

They are the Nadaraya-Watson estimator, Local polynomial estimator, the reflec-

tion of data technique, the transformation of data technique and the pseudo data

methods.

The Nadaraya-Watson estimator was used to estimate finite population totals

based on a sample drawn from the population (Dorfman, 1992). A population

consisting of N units was considered and an estimate of the finite population total

was defined as

T =
∑
N

yi, i = 1, . . . , N (3.7)

The estimation of the finite population totals was carried out by first expressing

T as the sum of sample component and non-sample component.

T =
∑
i∈s

yi +
∑
j∈p−s

yj (3.8)

where s is the sample size and p is the population size. The non-sampled values of

the second part in the equation above were estimated. This was done by assuming

availability of auxiliary variables as in equation (1.2).

Using a symmetric density function, (Dorfman, 1992) defined the Nadaraya-

Watson weights by

wi(x) =
kb(xi − x)
n∑

i=1

kb(xi − x)
, (3.9)

where b is the bandwidth to estimate f(Xi) in equation (1.2) thus, giving the

Nadaraya-Watson estimator as

f̂(Xi) =
∑
i

wi(x)yi (3.10)
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The finite population total estimate obtained using the Nadaraya-Watson es-

timator was biased. The bias was induced at the boundary by the weighting

function. This was illustrated by simulating a cubic function Y = 10 − X3 + e,

where X ∼ U(1, 2) and e ∼ N(0, 0.5) and a sample of size n = 100. The model

used showed the boundary problem clearly. Figure 3.1 was obtained from the data

of the simulation done using R statistics.

Figure 3.1: The Boundary bias of Nadaraya-Watson estimator

In Figure 3.1, most points are below the fitted line on the right boundary and

above the line on the left. The fitted line illustrates how the Nadaraya-Watson

estimator failed to capture the trend on the boundaries. In literature, many meth-

ods of minimizing the boundary effects have been proposed. For instance, the

reflection of data technique, the transformation of data technique and the pseudo

data methods.
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The reflection of data technique was proposed by (Cline and Hart, 1991) and,

(Silverman, 1986). In this method, −X1, . . . ,−Xn are added to the data set. The

values are added since the kernel estimator is penalizing for lack of data on the

negative axis. The estimator for this technique was defined by

m̂(x) =
1

nh

n∑
i=1

{
K

(
x−Xi

h

)
+K

(
x+Xi

h

)}
, x ≥ 0, (3.11)

m̂(x) = 0 for x < 0

Wand et al.(1991), and (Marron and Ruppert, 1994) studied the data transfor-

mation technique where a regular kernel estimator was used with the transformed

data set {g(X1), . . . , g(Xn)}. The estimator was given as

m̂(x) =
1

nh

n∑
i=1

{
K

(
x− g(Xi)

h

)}
(3.12)

The estimator was used to estimate the p.d.f. of g(X) and not the p.d.f. of X.

The pseudo data methods, were studied by (Cowling and Hall, 1996). The

technique involves generating data beyond the left end point of the support of the

density. The technique transforms data into a new set and then puts it on the

negative axis. The estimator obtained was defined as

m̂(x) =
1

nh

n∑
i=1

{
K

(
x−Xi

h

)
+K

(
x+X−i

h

)}
(3.13)

where m ≤ n and X(−i) = −5X 1
3
− 4X( 2

3
i) +

10
3
Xi

3.3 Polynomial Approximation

A function written in the form pk(x) = a0x
k + a1x

k−1+, . . . ,+ak with some

coefficients a0, ..., ak is called a polynomial (Smyth, 1998). A linear function and
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a quadratic function are first and second degree polynomials respectively. Poly-

nomial approximations are among the frequently used methods of evaluating a

possibly different function in a small domain. For instance, if f(x) and pk(x) are

two continuous functions in the interval (a, b) and pk(x) = p0x
k+p1x

k−1+, . . . ,+pk.

The values of p0, p1, . . . , pk can be obtained such that the absolute value, Dk =

maxa≤x≤b |f(x)−pk(x)| between the polynomial pk(x) and f(x) is small as possible

for all x in (a, b).

The polynomial approximations are of two kinds: the least squares approxima-

tions and MiniMax approximations. MiniMax approximations are approximations

that minimize the the worst-case error, while least squares approximations are

those that minimize the ”average risk”. The distance ||f(x)− p(x)|| is minimized

in both cases, where p(x) is the polynomial of a given degree.

The distance

||f(x)− p(x)||2[0,a] =

 a∫
0

w(x) [f(x)− p(x)]2 dx

1/2

(3.14)

is for least squares approximations, where w is a continuous weight function. For

MiniMax approximations, the distance is

||f(x)− p(x)||∞[0,a] = max
0≤x≤a

|f(x)− p(x)| (3.15)

MiniMax approximation seeks for a polynomial of degree k that best estimates

the given function in the interval while minimizing the absolute maximum error.

Up to k = 1, the MiniMax polynomial can be computed analytically , but for

k > 1 Remez’s algorithm can be used. Remez is algorithm is an iterative algo-

rithm based on known optimal approximation for certain f(x). However, there is
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no general characterization-based algorithm to compute the minimax polynomial

approximation.

3.3.1 Orthogonal Polynomials

Orthogonal polynomials are easy to use for finding the coefficients for approxi-

mating a function. A family of orthogonal polynomials have a recursive represen-

tation which make computations even faster. The Chebyshev polynomials and the

Hermite polynomials are some of the orthogonal polynomials. If Pi(x) and Pj(x)

are uncorrelated as x varies over Rn, the polynomials Pi and Pj are said to be

orthogonal. A recursively defined sequence of orthogonal polynomials can be used

to improve control of the interpolation error on the interpolation interval (Sauer,

2006). They have the property of bounded variance, which means that their local

maxima and minima on the interval [−1, 1] are equal to 1 and −1 respectively,

regardless of the polynomial’s order.

The Chebyshev polynomials are of two kinds; the first and second kind denoted

by Tk(x) and Uk(x) respectively. The subscript k is the degree of these polynomials

(Levy, 2008). The Chebyshev polynomials of the first kind are defined as

Tk(x) =

[k/2]∑
j=0

(−1)j
k

k − j

(
k − j

j

)
2k−2j−1xk−2j (3.16)

The first kind Chebyshev polynomials are solutions to the Chebyshev differential

equations;

(1− x2)
d2y

dx2
− x

dy

dx
+ k2y = 0, (3.17)

for |x| < 1. (Rivlin, 1974), gave the expansion

|x| = 2

π
T0(x) +

4

π

∞∑
k=1

(−1)k+1 T2k(x)

4k2 − 1
(3.18)

where T2k(x) is the Chebyshev polynomial of degree 2k.
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The second kind Chebyshev polynomials are solutions to the Chebyshev differ-

ential equations;

(1− x2)
d2y

dx2
− 3x

dy

dx
+ k(k + 2)y = 0 (3.19)

for |x| < 1.

Chebyshev approximation uses Chebyshev polynomials as the basis for polyno-

mials. Let Tk(x) = cos[k arccosx], k ≥ 0 on [−1, 1]. Substituting α = arccosx;

Tk(x) = cos(kα), 0 < θ < π (3.20)

Tk+1(x) = cos(k + 1)α = cos kα cosα− sin kα sinα (3.21)

Tk−1(x) = cos(k − 1)α = cos kα cosα + sin kα sinα (3.22)

Adding equation (3.21) and equation (3.22), we have;

Tk+1(x) + Tk−1(x) = 2 cos kα cosα (3.23)

Making right-hand side appear like a polynomial in x, cosα = x is substituted in

the above equation. Then,

Tk+1(x) = 2 cos kα cosα− Tk−1(x)

= 2xTk(x)− Tk−1(x) (3.24)

Equation (3.24) is a three-term recurrence relation to generate Chebyshev poly-

nomials (Fox and Parker, 1968). For instance, the recursive relation satisfy:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x
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T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

...

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1 (3.25)

From equation (3.25), Tk(x) is a polynomial of order k.

The first five Chebyshev polynomials Tk(x), k = 1, 2, ..., 5 are shown in the figure

below.

Figure 3.2: Chebyshev polynomials of first kind

Each graph in Figure 3.2 is symmetric to the y-axis or the origin, with a max-

imum value of 1 and a minimum value of −1 on the interval [−1, 1]. The zeros

appear to be simple and real. The power of x is even for an even k for every

non-zero term of Tk(x). Similarly, the power of x is odd in every non-zero term.
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As a result, Tk(x) is an odd function for odd k. Tk(x) is either an even or odd

function for any k, which is an important fact about the zeros.

Tk(x) is a Chebyshev polynomial with n roots termed the Chebyshev nodes.

The nodes are determined by the formula xi = cos
(

i− 1
2

n

)
π, for i = 1, 2, ..., n given

by an kth degree polynomial Pk(x) written in terms of T0, ..., Tk

Pk(x) = C0T0(x) + C1T1(x) + ...+ CkTk(x)−
1

2
C0 (3.26)

where

Cj =
2

k

n+1∑
k=1

f(xk)Tj(xk), j = 0, 1, ..., n (3.27)

and xk, k = 1, ..., n+ 1 are zeros of Tn+1 since Tj(x) = cos(j arccos x) and

Tj(xk) = cos(j arccos xk)

= cos

(
j(k − 1

2
)

n+ 1

)
π (3.28)

The Chebyshev polynomials are a family of orthogonal polynomials on the in-

terval [−1, 1] with respect to a weight function 1√
1−x2 (Fox and Parker, 1968).

∫ 1

−1

Ti(x)Tj(x)
1√

(1− x2)
dx =

{
0, i ̸= j
π, i=j=0
π
2
, i=j ̸=0

}
(3.29)

The weight function assigns varying degrees of importance to certain portions

of the interval [−1, 1]. As seen in Figure 3.3, the weight function provides less

emphasis in the interval’s center and more emphasis around 1 and −1. On the

interval, the weight function is positive almost everywhere and has a finite integral.

According to (Cai and Low, 2011), computing the Chebyshev polynomials is

not easy. Instead, MiniMax polynomials or the Best polynomials are used. When

the function f(x) is continuous on an interval [a, b] as stated by the Weierstrass
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Figure 3.3: The weight function of orthogonal Chebyshev polynomial,

w(x) = 1√
1−x2

Approximation Theorem, the MiniMax polynomials exist and are unique. Any

continuous function can be approximated as close as possible with polynomials,

according to the Weierstrass Approximation Theorem, assuming that the polyno-

mials can be of any degree. The theorem was formulated in L∞ form, although it

also holds in the L2 form.

3.3.2 Weierstrass Approximation Theorem

The space of polynomials of degree ≤ n is denoted as Pn. Let f(x) be a continu-

ous function on [a, b]. Then there are polynomials Pn(x) that converges uniformly

to f(x) on [a, b] that is, ∀ϵ > 0, there exists an N ∈ N and polynomials Pn(x) ∈ Pn,

such that ∀x ∈ [a, b]

||f(x)− Pn(x)||∞ ≤ ϵ ∀n ≥ N
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where ||.||∞ is the sup norm or L∞ norm:

||f(x)− Pn(x)||∞ = max
x∈[−1,1]

|f(x)− Pn(x)| (3.30)

When n → ∞, Pn(x) → f(x). In other words,

lim
n→∞

Pn(x) = f(x) ∀x ∈ [a, b] (3.31)

The theorem was based on the Bernstein polynomials defined on the interval

[0, 1]. It shows the existence of a set of polynomial functions, but it does not

provide a general method of finding one, and the polynomial functions are not

guaranteed to converge uniformly.

A simulation experiment was performed to demonstrate the Weierstrass Approx-

imation Theorem and Figure 3.4 below were obtained. Let f(x) = x2 sin 10x be a

continuous function on the interval [−1, 1] and Tk be the Chebyshev polynomial

where k = 1, 4, 9, 16. The following figures represent plots of f(x) and Tk obtained

by varying the degree k of the polynomial on the interval [−1, 1].

There are polynomials Tk ∈ Pk that converge uniformly to f(x) on the interval

[−1, 1] as shown in Figure 3.4. The uniform norm, ||f−Tk|| = max
−1≤x≤1

|f(x)−Tk(x)|

can be used to quantify how best the Chebyshev polynomials Tk ∈ Pk converges to

f(x). The norm gives the error of approximation as the largest distance between

f(x) and Tn(x) (Rivlin, 1990).

In approximation theory, the Best polynomial approximation has been exten-

sively researched (Rivlin, 1990). P (x) ∈ Pk is the closest polynomial to f for any

k ≥ 0, and Pk is the class of all real polynomials of degree at most k for every
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Figure 3.4: (a),(b),(c),(d) plots of f(x) and T k, k = 1, 4, 9, 16

continuous function f on [−1, 1],

δk(f) = max
x∈[−1,1]

|f(x)− P (x)| (3.32)

where δk is the distance in the uniform norm on [−1, 1] from the absolute value

function f(x) = |x| to the space Pk, the class of all real polynomials of degree at

most k.

The polynomials Pk(x) ∈ Pk exist and converges uniformly to the function

f(x) on [−1, 1] that is, ∀ϵ > 0, there exists polynomials Pk(x) ∈ Pk, such that

∀x ∈ [−1, 1]

||f(x)− Pk(x)||∞ ≤ ϵ ∀k ≥ K

where ||.||∞ is the sup norm or L∞ norm:

|f(x)− Pk(x)||∞ = max
x∈[−1,1]

|f(x)− Pk(x)| (3.33)
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A polynomial P ∗
k (x) is said to be a best polynomial approximation of the function

f if

δk(f) = max
x∈[−1,1]

|f(x)− P ∗
k (x)| (3.34)

According to the classical Chebyshev alternation theorem, a polynomial P ∗
k (x) ∈

Pk is the (unique) best polynomial that converges uniformly to a continuous func-

tion f if and only if the difference f(x) − P ∗
k (x) takes its maximal value with

alternating signs at least (k + 2) times. This means that there exist k + 2 points

−1 ≤ x0 < ... < xk+1 ≤ 1 such that

[f(xi)− P ∗
k (xi)] = ±(−1)i max

x∈[−1,1]
|f(x)− P ∗

k (x)|; (3.35)

i = 0, ..., k + 1

The polynomial Pk(x) of degree at most k represents the error in polynomial

interpolation of the function f(x) with the nodes, x0, . . . , xk. The error is given as

E = f(x)− Pk(x) =
fk+1(x)

k + 1!
θi (3.36)

Using the MiniMax property of the monic polynomial of degree (k+1), the (k+1)

nodes are chosen nodes to minimize |θi| in [−1, 1] .

Using an estimator that satisfies equation (2.1) is difficult, an estimator that

achieves equation (2.3) the MiniMax rate is used. The best rate of convergence is

based on the requirement that an estimator works admirably on a fixed model and

even at a sequence of models that are adjacent. The rate alludes to a model of

interest achieving point-wise convergence uniformly over models in a small neigh-

borhood.
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The error in polynomial interpolation of a function f(x) with the nodes, x0, x1, ..., xk,

by the polynomial Pk(x) of degree at most k is given by

E = f(x)− Pk(x) =
fk+1(ξ)

k + 1!
θi (3.37)

where θi = (x − x0)(x − x1)...(x − xk). The choice of these (k + 1) nodes so

that to minimize |θi| in [−1, 1] is done using the MiniMax property of the monic

polynomial of degree (k + 1)

max
x∈[−1,1]

̂|Tn+1(x)| ≤ max
x∈[−1,1]

|θi| (3.38)

3.4 The Variance and the Bias

The variance and the bias are asymptotic properties of an estimator. These are

estimators that hold as the sample size increases. They are important properties

that a statistical researcher would be interested to check given an estimator.

The bias and the variance are used to measure accuracy and precision of an es-

timator respectively. These two components are incorporated in the mean squared

error (Tsybakov, 2009). The variance and bias are controlled to find an estimator

with good properties; small variance and bias (Douglas and George, 2008).

MSE(T ) = E(T − θ)2

= E[{T − Eθ}+ {E(T )− θ}]2

= V ar(T ) + {E(T )− θ}2

= V ar(T ) + (bias)2 (3.39)

where (bias)2 = {E(T )− θ}2 denotes the bias of T and V ar(T ) denotes the vari-

ance of T .

35



The density function f(x) of a distribution is the derivative of the cumulative

distribution function F (x) ≡ Pr {xi ≤ x}, and the empirical c.d.f.

F̂ (x) ≡ 1

N

n∑
i=1

1 {xi ≤ x} (3.40)

is the natural NP estimator of the c.d.f., it seems reasonable to use the estimation

of f on the empirical c.d.f. The empirical distribution is used to calculate a

relative error of order n− 1
2 which decreases as the density in the distribution’s tails

increases. Although F̂ is
√
n - consistent and asymptotically normal, estimating

f by differentiating F̂ is difficult because its derivative is either zero or undefined.

By defining of the density f as the (right-) derivative of the c.d.f.

f(x) = lim
h→0

F (x+ h)− F (x)

h
(3.41)

the estimator of the density f can be obtained by a corresponding difference ratio

of F̂

f̂(x) =
F̂ (x+ h)− F̂ (x)

h

=
1

n

n∑
i=1

I {x < xi ≤ x+ h} (3.42)

where h is a smoothing parameter with a small positive value depending on the

sample size.

Choosing the sequence hn such that the mean bias and variance of f̂ both tend

to zero as the sample size increases is needed to show MSE consistency of f̂ . Since

the empirical c.d.f., F̂ is unbiased estimator of F the bias of f̂ is clearly

E[f̂(x)]− f(x) =
F (x+ h)− F (x)

h
− f(x) → 0 (3.43)
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if h = hn → 0 as n → ∞. The variance of f̂(x) is

V ar(f̂(x)) = V ar

(
1

nh

n∑
i=1

I {x < xi ≤ x+ h}

)
=

1

nh2
V ar (1 {x < xi ≤ x+ h})

=
1

nh

[
F (x+ h)− F (x)

h
(1− F (x+ h) + F (x))

]
=

f(x)

nh
+O

(
1

n

)
(3.44)

which will approach to zero if nh = nhn → ∞ as n → ∞

The disparity between the density function f(x) and its estimator f̂(x) can be

measured using the loss function which is expressed as below

MSE = R(f(x), f̂(x)) = E(L(f(x)− f̂(x))) (3.45)

The expectation is calculated in terms of the distribution that produces the ob-

servation used by f̂(x).

Similarly, the integrated risk or integrated mean squared error defined by

R(f(x), f̂n(x)) =

∫
R(f(x)− f̂n(x))dx (3.46)

can be used to summarize the risk over various values of x. The integrated MSE

or the average squared error

R(r, r̂n) =
1

n

n∑
i=1

R(r(xi)− r̂n(xi)) (3.47)

is used to solve a regression problem. From equation (3.46), equation (3.47) can

be written as;

L2 =

∫
(f̂n(x)− f(x))2dx (3.48)

where L2 is the integrated squared error loss function.
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The MSE is a function of both the bias and the variance. Controlling either the

bias or the variance does not guarantee that MSE is controlled. For example, when

the bias term is large and the variance is small, the data are oversmoothened; when

the bias term is small and the variance is large, the data are undersmoothened.

Minimizing the risk therefore, corresponds to balancing both the bias and variance.

From equation (3.42), h is a smoothing parameter and it is choosen to minimize

an estimate of the risk. Writing equation (3.48) as a function of h,

L2(h) =

∫
(f̂n(x)− f(x))2dx

=

∫
f̂ 2
n(x)dx− 2

∫
f̂n(x)f(x)dx+

∫
f 2(x)dx (3.49)

The last term in equation (3.49) does not depend on n, so minimizing the loss

function is equivalent to minimizing the expected value of

L2(h) =

∫
f̂ 2
n(x)dx− 2

∫
f̂n(x)f(x)dx (3.50)

The error of estimations is minimized using the squared error risk. The risk relies

on an unknown parameter thus, making it difficult to find the ”best guess”. For

example, if T̂ (X) = T (ξ) where T̂ (X) denotes the estimator of T (ξ), then T̂ (X)

denotes the minimum variance unbiased estimator and MLE. But if T̂ (X) ̸= T (ξ),

then

R(T̂ (X), T (ξ)) =

n∫
i=1

Eξ(T̂ (X)− T (ξ))2 = nσ2
n (3.51)

The problem of normal means, yi ∼ N(ξi, 1), i = 1, . . . , n can be used to obtain

estimators with relatively small risks than the risk in equation (3.51) which depends

on n (Cai and Low, 2011).
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3.5 Test statistics of the Estimator in Hilbert Space

An inner product generates an analytic distance (norm). A norm characterized

by the inner product ⟨., .⟩ will define the accompanying measure;

d(x, y) = ||x− y|| =
√

⟨x− y, x− y⟩,∀x, y ∈ X (3.52)

The inner product norms fulfill properties that are not fulfilled by all norms. For

instance, a complex vector space V is an inner product space (or a pre-Hilbert

space) if there is a mapping (., .) : V × V → C, called an inner product, that

fulfills ∀x, y, z ∈ V , ∀α ∈ C :

1. (x, x) ≥ 0

2. (x, x) = 0 ⇔ x = 0

3. (x, y + z) = (x, y) + (x, z)

4. (x, αy) = α(x, y)

5. (x, y) = (y, x)∗

WhenX is a standard normal on (−∞,+∞), the Hermite polynomials which are

uncorrelated and the orthogonal basis of the Hilbert space of functions satisfying∫ ∞

−∞
|f(x)|2w(x)dx < ∞ (3.53)

are formed. The integral and the Gaussian weight function w(x) in equation (3.53)

gives an inner product.

Let ϕ be the density function of the standard normal variable, then the Hermite

polynomials Hk(x) with respect to ϕ for positive integers k are defined by the
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equation

dk

dxk
ϕ(x) = (−1)kHk(x)ϕ(x) (3.54)

or

Hk(x) = (−1)kex
2/2 dk

dxk
e−x2/2 (3.55)

Thus we can obtain H0(x) = 1, H1(x) = x,H2(x) = x2 − 1, . . . , Hn+1(x) =

xHn−1(x). By differentiating (3.54), we obtain

d

dx
[Hk(x)ϕ(x)] = Hk+1(x)ϕ(x) (3.56)

For this version of the polynomial,∫
H2

k(x)ϕ(x)dx = k! (3.57)

and ∫
Hk(x)Hj(x)ϕ(x)dx = 0 (3.58)

when k ̸= j.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

The findings of our research are presented in this chapter. The results on the

general MiniMax lower bound derived and the MiniMax lower bound for estimating

the non-smooth functional are shown in section 4.2 and 4.3 respectively. The

developed estimator’s asymptotic properties are highlighted in section 4.5.

4.2 The General MiniMax Lower Bound

One of the key components for the development of MiniMax lower bound is

the general MiniMax lower bound for estimating an arbitrary functional T (λ) =

1
n

∑n
i=1 |λi|. Let the estimator of T (λ) based on X be T̂ (X) = T̂ , where X is a

random sample with the probability distribution Pλ and λ ∈ Λ. The bias of T̂ (X)

is denoted EλT̂ (X) − T (X), and the prior distributions based on Λ0 and Λ1 are

w0 and w1 respectively. The means and variances of T (λ under the pair of priors

are:

E(T (λ)) = mi =

∫
T (λ)wi(dλ) (4.1)

var(T (λ)) = υ2
i =

∫
(T (λ)−mi)

2wi(dλ) (4.2)

When the prior is wi, the marginal distribution of X is Fi, and the density of

X is fi. The chi-square distance, S between f0 and f1 is defined as

S =

{
Ef0

(
f1(X)− f0(X)

f0(X)

)2
}1/2

(4.3)

41



The average risk for the estimator T̂ (X) under any mixture prior pw0+(1−p)w1,

where 0 ≤ p ≤ 1 can be obtained as follows:

Ef0

{(
T̂ (X)−m0

)(f1(X)− f0(X)

f0(X)

)}
=

(
m1 +

∫
B(λ)w1(dξ)

)
−
(
m0 +

∫
B(λ)w0(dλ)

)

Ef0

(
T̂ (X)−m0

)2
=

∫
Eλ

(
T̂ (X)−m0

)2
w0(dλ)

=

∫
Eλ

(
T̂ (X)− T (λ) + T (λ)−m0

)2
w0(dλ)

=

∫
Eλ

(
T̂ (X)− T (λ)

)2
w0(dλ) +

∫
(T (λ)−m0)

2w0(dλ)

+ 2

∫ (
T̂ (X)− T (λ)

)
(T (λ)−m0)w0(dλ)

= ϵ2 + υ2
0 + 2υ0ϵ = (ϵ+ υ)2 (4.4)

Using the Cauchy-Schwarz inequality to prove that the triangle inequality holds

for equation (4.4), we obtain,

Ef0

{(
T̂ (X)−m0

)(f1(X)− f0(X)

f0(X)

)}
≤
(
Ef0(T̂ (X)−m0)

2
)1/2

.S ≤ (ϵ+ υ)S

(4.5)

Hence, (
m1 +

∫
B(ξ)w1(dλ)

)
−
(
m0 +

∫
B(λ)w0(dλ)

)
≤ (ϵ+ υ)S (4.6)

and it follows∫
B(λ)w1(dλ)−

∫
B(λ)w0(dλ) ≤ m0 −m1 + (ϵ+ υ)S (4.7)

The quadratic equation of the mixture prior can be given

Q(x) = px2 + (1− p)(a− bx)2 (4.8)

where 0 < p < 1, a > 0 and b > 0. Differentiating and equating equation (4.8) to

zero,

Q′(x) = 2px− 2b(1− p)(a− bx)

= 2px− 2b(1− p)(a− bx) (4.9)
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to minimize Q’(x) then Q’(x)=0

2px = 2b(1− p)(a− bx)

px = (1− p)(ab− b2x)

px = ab− b2x− abp+ b2xp

px+ b2x− b2xp = ab− abp

x(p+ b2 − b2p) = ab(1− p)

x =
ab(1− p)

p+ b2 − b2p
(4.10)

The quadratic equation Q(x) of the mixture prior is minimized when

x = xmin =
ab(1− p)

p+ b2(1− p)
(4.11)

and that at this value, a− bx > 0 and Q(xmin) =
a2p(1−p)
p+b2(1−p)

. At the same value, the

quadratic px2 − (1− p) (max(a− bx, 0))2 is also minimized. From equation (4.7),∫
B2(λ)w1(dλ) ≥ (max [m1 −m0 − υ0S − (S + 1)ϵ, 0])2 (4.12)

Let a = m1 −m0 − υ0S and b = S + 1 for 0 ≤ p ≤ 1, then using equation (4.11)

and equation (4.12) we have

pϵ2 + (1− p)

∫
B2(λ)w1(dλ) ≥ pϵ2 + (1− p)[max(m1 −m0 − υ0S − (S + 1)ϵ, 0)]2

≥ p(1− p)(|m1 −m0| − υ0S)
2

p+ (1− p)(S + 1)2
(4.13)

The average risk under the mixture prior is ”large” according to equation (4.13).

Analyzing the MiniMax risk measures the statistical complexity of the estimation

problem where a real valued loss function L(T (λ), T̂ (X)) quantifies the amount

by which the prediction of T (λ) deviates from its estimator, T̂ (X). Given an

estimator T̂ (X), the squared error loss

L
(
T (λ), T̂ (X)

)
=

n∫
i=1

(T (λ)− T̂ (X))2 = ||T (λ)− T̂ (X)||2 (4.14)
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is utilized with risk function;

R
(
T (λ), T̂ (X)

)
= Eλ

(
L(T (λ)− T̂ (X)

)
=

n∫
i=1

Eλ

(
T (λ)− T̂ (X)

)2
(dλ) (4.15)

According to (Brown and Low, 1996), the maximum risk is often at least as high

as the average risk. As a result of equation (4.15), we have∫
Eλ

(
T̂ (X)− T (λ)

)2
wi(dλ) ≥

|(m1 −m0| − υ0S)
2

(S + 2)2
(4.16)

which yields the MiniMax risk’s general lower bound.

This MiniMax Risk formalizes the possibility of the presence of the best rate

of convergence and utilized as a benchmark for assessing the performance the

estimation method.

4.3 The MiniMax Lower Bound for estimating the non-smooth func-

tional

The MiniMax lower bound for estimating the non-smooth functional T (λ) =

1
n

∑n
i=1 |λi| was developed using the general lower bound from the previous section

as a starting point. It was also necessary to find the least favourable prior distri-

butions ω0 and ω1, as well as an effective upper bound for the Chi-square distance

between the marginal distributions.

Let ω0 and ω1 be the two priors with special properties. A linear functional T

can be extended to C[−1, 1] using the Hahn-Banach Theorem without increasing

the norm of the functional, the Riesz representation Theorem states that for each

g ∈ C[−1, 1]

T (g) =

1∫
−1

g(t)τ(dt) (4.17)

44



where τ is a Borel signed measure with variance equal to 1. Taking z = 2τ , then
1∫

−1

|t|z(dt) = 2δk and
1∫

−1

tlz(dt) = 0, for l = 0, . . . , k. Let z1 and z0 be the positive

and the negative components of z. Then both z1 and z0 are symmetric. Since

the variation of z is 2 and
1∫

−1

z(dt) = 0 it also follows that both z1 and z0 are

probability measures which satisfy

1∫
−1

tlz1(dt) =

1∫
−1

tlz0(dt) (4.18)

for l = 0, . . . , k and
1∫

−1

|t|z1(dt)−
1∫

−1

|t|z0(dt) = 2Wδk (4.19)

where δk is the distance between the absolute value function f(t) = |t| and the

space Pk of polynomials of order k in the uniform norm on [−1, 1].

For an even integer kn, let z0 and z1 be two probability measures. Let g(x) = Wx

and let wi be probability measures on [−W,W ] defined by wi(A) = zi(g
−1(A)) for

i = 0, 1. As a consequence,

1. w0 and w1 are symmetric a round 0

2.
W∫

−W

tlw1(dt) =
W∫

−W

tlw0(dt) for l = 0, . . . , k

3.
W∫

−W

|t|w1(dt)−
W∫

−W

|t|w0(dt) = 2δk

Let wn
0 and wn

1 be product priors with wn
i =

n∏
j=1

wi. On the coordinates, these are

n independent priors. We have

Ewn
1
T (λ)− Ewn

0
T (λ) = Ew1|λ| − Ew0 |λ| = 2Wδkn (4.20)

and

Ewn
1

(
T (λ)− Ewn

0
T (λ)

)2
=

1

n
Ew1(|λ| − Ew0|λ|)2 ≤

W 2

n
(4.21)
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Put f0,W (y) =
∫
ϕ(y−t)w0(dt) and f1,W (y) =

∫
ϕ(y−t)w1(dt). Because g(x) = e−x

is a convex function of x and w0 is symmetric and yi ∼ N(λi, 1), i = 1, . . . , n

f0,W (y) ≥ 1√
2π

e(−
∫ (y−t)2

2
w0(dt))

= ϕ(y)e(−
1
2
W 2

∫
t2z0(dt))

≤ ϕ(y)e(−
1
2
W 2) (4.22)

The Hermite polynomial Hk(y) is defined in (3.56). Then

ϕ(y − αt) =
∞∑
k=0

Hk(y)ϕ(y)
αktk

k!
(4.23)

and it follows that∫
(f1,W (y)− f0,W (y))2

f0,W (y)
dy ≤ e

W2

2

∞∑
k=kn+1

1

k!
W 2k (4.24)

Then the Chi-square distance, S2
n between f0,W and f1,W is given as

S2
n =

∫ (
n∏

i=1

f1,W (yi)−
n∏

i=1

f0,W (yi))
2

n∏
i=1

f0,W (yi)
dy1, . . . , dyn (4.25)

Hence,

S2
n =

∫ (
n∏

i=1

f1,W (yi))
2

n∏
i=1

f0,W (yi)
dy1, . . . , dyn − 1

= (
n∏

i=1

∫
(f1,W (yi))

2

f0,W (yi)
dyi)− 1

≤ (1 + e
W2

2

∞∑
k=kn+1

1

k!
W 2k)n − 1

≤ (1 + e
3
2
W 2 1

kn!
W 2k−n)n − 1 (4.26)

Since k! > (k
e
)k, then

≤

(
1 + e

3
2
W 2

(
eW 2

kn

)kn
)n

− 1 (4.27)
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Let kn be the smallest positive integer that satisfies the condition kn ≥ logn
log logn

+

logn
(log logn)3/2

then Sn → 0. Let z0 ≤ W√
n
and by equation (2.1) we obtain the MiniMax

risk for estimating T (λ) = 1
n

n∑
i=1

|λi| over Λn(W ) = {λi ∈ Rn : |λi| ≤ W} and W >

0 bounded from below as

inf
T̂

sup
λ∈Λn(W )

E
(
T̂ − T (λ)

)2
≥

(2Wδkn − W√
n
Sn)

2

(Sn + 2)2

= β2
∗W

2

(
log log n

log n

)2

(1 + o(1)) (4.28)

where β∗ is a Bernstein constant.

4.4 The Developed Estimator

To develop an estimator of T (λ) = 1
n

n∑
i=1

|λi| over the bounded parameter λ ∈

Λn(W ) where Λn(W ) = {ξ ∈ Rn : |λi| ≤ W}, two cases were considered; W = 1

and the general case W > 0. When W = 1, truncating the expansion (3.18) and

let

PK(x) =
2

π
T0(x) +

4

π

K∑
k=1

(−1)k+1 T2k(x)

4k2 − 1
(4.29)

Let PK(x) be written as

PK(x) =
K∑
k=0

p2kx
2k (4.30)

From equation (3.18) each |xi| can be estimated by the polynomial P ∗
K(xi) =

K∑
k=0

p∗2kx
2k
i on the interval [−1, 1] and hence the functional T (λ) = 1

n

n∑
i=1

|λi| can be

estimated by the polynomial

T̃ (λ) =
1

n

n∑
i=1

P ∗
K(λi)

=
1

n

n∑
i=1

(
K∑
k=0

p∗2kλ
2k
i

)

=
K∑
k=0

p∗2ka2k(λ)

(4.31)
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where a2k(λ) ≡ 1
n

n∑
i=1

λ2k
i and p∗2k are the coefficients of the best polynomial esti-

mation of |λ| over [−1, 1] up to degree K and each |λi| can be estimated by the

polynomial P ∗
K(λi) =

K∑
k=0

p∗2kλ
2k
i on the interval [−1, 1]

Using the Hermite polynomials, the coefficients, a2k(λ) are estimated separately

for each k. For each positive integer k, X ∼ N(µ, 1), EHk(X) = µk. Since

EHk(xi) = λk
i for each i when xi ∼ N(λ, 1), 1

n

n∑
i=1

λk
i ≡ ak(λ) which can be esti-

mated by

1

n

n∑
i=1

Hk(xi) = Āk (4.32)

and the estimator of T (λ) defined by

T̂K(λ) =
K∑
k=0

p∗2k
1

n

n∑
i=1

H2k(xi)

=
K∑
k=0

p∗2kĀ2k (4.33)

where Hk(x) is a Hermite polynomial with respect to ϕ; where ϕ is the density

function of a standard normal variable as shown in equation (3.56).

For the general case W > 0, each λi is rescaled over the bounded parameters

Λn(W ) before each absolute value |λi| is estimated term by term when estimating

the functional T (λ) over the bounded parameter λ ∈ Λn(W ). Let |λ′
i| = 1

W
λi then

|λ′
i| ≤ 1 for i = 1, . . . , n and

||λ′

i| − P ∗
K(λ

′

i)| ≤
β∗

2K
(1 + o(1)), ∀|λ′

i| ≤ 1 (4.34)

Hence,

||λ′

i| − P̃ ∗
K(λ

′

i)| ≤
β∗W

2K
(1 + o(1)), ∀|λ′

i| ≤ W (4.35)
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where P̃ ∗
K(x) =

K∑
k=0

p̃∗2kx
2k with p̃∗2k = p̃∗2kx

2kW−2k+1 and β∗ is a Bernstein constant

defined as

β∗ = lim
k→∞

2kδ2kf (4.36)

Varga and Carpender (1987), computed β∗ = 0.2801694990....

Taking EHk(xi) = λk
i ,

1
n

n∑
i=1

λ2k
i ≡ a2k(λ) can be estimated by

1

n

n∑
i=1

H2k(xi) = Ā2k (4.37)

and define the estimator, ̂TK(λ;W ) of T (λ) by

̂TK(λ;W ) =
K∑
k=0

p̃∗2kĀ2k

=
K∑
k=0

p∗2kW
−2k+1Ā2k (4.38)

The choice of K, the cutoff value determines the performance of the estimator.

Cai and Low, (2011) chose

K =
log n

2 log log n
(4.39)

where n is the sample size. If the cutoff value is K∗, then

K = K∗ =
log n

2 log log n
(4.40)

and the final estimator of T (λ) defined by

T̂∗(λ) = ̂TK∗(λ;W ) =
K∗∑
k=0

p̃∗2kĀ2k (4.41)

The cutoff is really affected when the sample size is small. Properties of the

Developed Estimator
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4.5 Asymptotic Properties of the Developed Estimator

The properties of the developed estimator were considered in this section. The

distribution of the estimator and its related statistics assuming that the sample

size is adequately large were determined using the asymptotic theory. The as-

sumptions were made based on the sample generated by the stochastic procedure.

The asymptotic properties considered were: variance and bias.

4.5.1 The Variance and Bias

The variance and bias are important functions associated with the performance

of any estimator. These functions are incorporated in the MSE. The MSE of the

developed estimator is

MSE(T̂∗(λ)) = MSE( ̂TK∗(λ;W ))

= E[ ̂TK∗(λ;W )− T (λ)]

= E[( ̂TK∗(λ;W )− ET (λ)) + E( ̂TK∗(λ;W )− T (λ))]2

= V ar
(

̂TK∗(λ;W )
)
+
(
E
(

̂TK∗(λ;W )− T (λ)
))2

= V ar( ̂TK∗(λ;W )) + [bias( ̂TK∗(λ;W ))]2 (4.42)

The developed estimator achieves the MiniMax lower bound in equation (2.3) using

the MSE of the estimator defined in equation (3.39). Thus,

̂TK∗(λ;W ) =
K∗∑
k=0

p̃∗2kĀ2k (4.43)

Finding the expectation of both sides we obtain:

E[ ̂TK∗(λ;W )] = E[
K∗∑
k=0

p̃∗2kĀ2k] =
K∗∑
k=0

p̃∗2kEĀ2k (4.44)

But EĀ2k = a2k(λ) for k ≥ 0 and hence
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E[ ̂TK(λ;W )] =
K∑
k=0

p̃∗2ka2k(λ) =
1

n

n∑
i=1

P̃ ∗
K(λi) (4.45)

The bias of the estimator, ̂TK(λ;W ), for any λ ∈ Λn(W ) was bounded as follows,

|E( ̂TK(λ;W )−T (λ))| = | 1
n

n∑
i=1

P̃ ∗
K(λi)−

1

n

n∑
i=1

|λi|| ≤
1

n
|P̃ ∗

K(λi)−|λi|| ≤
β∗W

2K
(1+o(1))

(4.46)

To find the variance of the estimator ̂TK(λ;W ), let the variance of a random

variable X be defined as

V ar(X) =
1

n2

n∑
i=1

V ar(x), (4.47)

and for any random variables Xi, i = 1, . . . , n

E(
n∑

i=1

Xi)
2 ≤ (

n∑
i=1

(E(X2
i )

1/2)2 (4.48)

Let X ∼ N(µ, 1), then (HK(X)) = µk and let X = µ+ z with z ∼ N(0, 1). Then

the expectation, E(H2
k(z)) = k!, E(Hi(z), Hj(z)) = 0, for all i ̸= j and

Hk(µ+ z) =
k∑

j=0

(
k

j

)
µjHk−j(z) (4.49)

and

E(Hk(µ+ z)) =
k∑

j=0

(
k

j

)
µjE(Hk−j(z)) (4.50)

Hence,

E(H2
k(X)) = E(H2

k(µ+ z))

=
k∑

i=0

k∑
j=0

(
k

i

)(
k

j

)
µi+jE(Hk−iHk−j(z))

=
k∑

j=0

(
k

j

)2

µ2j(k − j)!

= k!
k∑

j=0

(
k

j

)2

µ2j 1

j!
(4.51)
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Note that k!/j! ≤ kk−j and hence by the Binomial theorem,

E(H2
k(X)) = k!

k∑
j=0

(
k

j

)
µ2j 1

j!
≤ kk

k∑
j=0

(
k

j

)(
µ2

k

)j

= kk

(
1 +

µ2

k

)k

≤ eµ
2

kk

(4.52)

If |µ| ≤ W and W 2 ≥ k, for all 0 ≤ j ≤ k, µ2j 1
j!
≤ W 2j 1

j!
≤ W 2k 1

k!
. Hence,

E(H2
k(X)) = k!

k∑
j=0

(
k

j

)
µ2j 1

j!
≤ kk

k∑
j=0

(
k

j

)
W 2k 1

k!
= (2W 2)k (4.53)

Therefore,

V ar(Ā2k) =
1

n2

n∑
i=1

V ar(H2k(xi))

=
1

n
V ar(H2k(xi))

≤ n−1eW
2

(2k)2k (4.54)

Thus

V ar( ̂TK(λ;W )) ≤

{
K∑
k=0

|p̃∗2k|V ar
1
2 Ā2k

}2

≤

{
K∑
k=0

|p̃∗2k|W−2k+1e
W2

2 (2k)kn−2

}2

≤

{
K∑
k=0

|p̃∗2k|W−2k+1

}2

eM
2

(2k)2kn−1 (4.55)

Hence, the MSE of ̂TK(λ;W ) is bounded by

E
(

̂TK(λ;W )− T (λ)
)2

≤ (β∗)
2W 2

(2K)2
(1 + o(1)) +

{
K∑
k=0

|p̃∗2k|W−2k+1

}2

eW
2

(2k)2kn−1

(4.56)

Set the cutoff as in equation (4.40). In equation (4.56), the second term is negligible

in relation to the first term. The MSE for all λ ∈ Θn(W ) is defined as

E
(

̂TK(λ;W )− T (λ)
)2

≤ β2
∗W

2

(
log log n

log n

)2

(1 + o(1)) (4.57)
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CHAPTER FIVE

EMPIRICAL STUDY

5.1 Introduction

In this section, the mean functions in Opsomer et al. (2001) were used for the

empirical study. Table 5.1 presents the six mean functions that were used for

simulations in this section. The comparison between the developed estimator

and the non-parametric techniques that exist in literature i.e. the Nadaraya-

Watson estimator, T̂NW and the Modified Nadaraya-Watson estimator, T̂MNW

was also done in this section. The data were simulated using R codes to compare

the developed estimator, standard Nadaraya-Watson estimator and the modified

Nadaraya-Watson estimator.

5.2 The Mean functions simulated

Table 5.1: Mean functions simulated

Mean function Equation

Linear Y1 = 1 + 2(x− 0.5)
Quadratic Y2 = 1 + 2(x− 0.5)2

Jump Y3 = 1 + 2(x− 0.5)Ix≤0.65 + 0.65Ix>0.65

Bump Y4 = 1 + 2(x− 0.5) + exp(−200(x− 0.5)2)
Sine Y5 = 2 + sin(2πx)

Exponential Y6 = exp(−8x)

The mean functions in Table 5.1 were chosen because they are often applicable

to real life situations. For instance, time between two successive breakdowns of

a machine after repair constitute an exponential distribution. The Bumps and

the jumps are used in events with a high rate of occurrence such as disease out-
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breaks, floods or rainfall at a given region within a certain period, while the sine

distributions are used in situations whose occurrences are periodic.

The first data set was obtained through simulation by use of a linear model with

the relation

Y1 = 1 + 2(x− 0.5) + ei (5.1)

The random variable X was simulated using a rectangular distribution that takes

the values that are equally likely from 0 to 1 inclusive. It is assumed that

(xi, yi), i = 1, . . . , N , are independent and identically distributed random vari-

ables. The error term ei is a standard normal variable defined as ei ∼ N(0, 1).

The second data set was obtained through simulation by use of a quadratic

model which has the relation

Y2 = 1 + 2(x− 0.5)2 + ei, i = 1, . . . , N (5.2)

The random variable X was simulated using a rectangular distribution that takes

the values that are equally likely from 0 to 1 inclusive. It was also assumed

that (xi, yi), i = 1, . . . , N , were independent and identically distributed random

variables. The error term was a standard normal variable defined as ei ∼ N(0, 1).

This was done for all the mean functions in Table 5.1.

In all the mean functions, Y1, . . . , Y6, a population of size N = 1000 was sim-

ulated using the R code. Five hundred samples of size n = 250 were generated

using simple random sampling without replacement. In each selected sample, the

estimate of the population total, the estimate of the mean squared error, the bias

and confidence interval lengths were computed. The biases of the population totals
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were obtained using the relation([
2000∑
i=1

T̂i

2000

]
− T

)
/T (5.3)

where T is the actual population total and Ti is one of the estimators of the

population total from the ith sample.

Table 5.2: Summary results for the bias

Mean function ̂TK(λ;W ) T̂NW T̂MNW

Linear -0.1680 -0.4075 -0.2045
Quadratic 0.0300 0.0700 -0.1773
Jump -0.2537 -0.3034 -0.1583
Bump -0.1876 -0.5189 -0.2599
Sine -0.2910 -1.1709 -0.5999

Exponential -0.0123 0.5838 0.2901

In Table 5.2, a summary of the results of the bias simulated from the mean func-

tions in Table 5.1 are presented. The negative and positive value imply under-

estimation and overestimation respectively. The developed estimator had smaller

values compared to T̂NW and T̂MNW . For the exponential mean function, the

T̂NW and T̂MNW overestimates the population mean. The developed estimator

only overestimates the population mean for the quadratic mean function. The

modified Nadaraya-Watson underestimates the population mean in all the mean

functions considered except in the exponential mean function.

Table 5.3: Summary results for the Mean squared errors

Mean function ̂TK(λ;W ) T̂NW T̂MNW

Linear 0.0490 0.1902 0.0478
Quadratic 0.0440 0.5621 0.1402
Jump 0.0879 0.9458 0.2384
Bump 0.0623 0.3209 0.0805
Sine 0.1370 1.4103 0.3698

Exponential 0.0031 1.1674 0.2908

Table 5.3 presents a summary of the mean squared error values. The T̂NW esti-

mator had the largest MSE values while the developed estimator had the smallest
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MSE values. Thus, the developed estimator, ̂TK(λ;W ) was better than T̂NW and

T̂MNW estimators.

The confidence intervals were normally constructed around the point estimators

and obtained at 95% confidence level. The 95% confidence intervals for each of

the estimators were computed using the formula

T = T̂ ± zα/2

√
var(T̂ ) (5.4)

and the confidence interval length obtained by subtracting the lower limit from

the upper limit.

In Table 5.4, the developed estimator had shorter confidence interval lengths

than the T̂NW and T̂MNW estimators. Shorter confidence interval lengths imply

that the developed estimator was equal to the true parameter.

Table 5.4: Summary results for the confidence interval lengths

Mean function ̂TK(λ;W ) T̂NW T̂MNW

Linear 0.9270 1.7090 0.8573
Quadratic 0.7770 1.7090 1.4676
Jump 1.0944 3.8124 1.9138
Bump 0.9748 2.2051 1.9138
Sine 1.5270 4.890 2.5452

Exponential 0.2195 4.235 2.114
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Introduction

In this chapter, the summary of main results that lead to the conclusions and rec-

ommendations was covered. The problem specifically considered the estimation of

an arbitrary non-smooth in the nonparametric set-up. The study set out to derive

a general MiniMax lower bound, develop the MiniMax lower bound of estimating

the non-smooth functional T (λ) from the general MiniMax lower bound, develop

an estimator and derive the asymptotic properties of the developed estimator: vis,

bias, variance and normality.

6.2 Summary of Main Results

Statistical researchers have made considerable effort to derive MiniMax lower

bounds, upper bounds and the optimal rate of convergence in the development

of MiniMax theories in the nonparametric function estimation. Specifically, when

working in the context of MiniMax estimation, the lower bounds are the most im-

portant. In the preceding applications the bounds used have been given in simpler

cases and the optimal rates of convergence for estimating smooth functionals are

often parametric rates.

The basis for developing of the MiniMax lower bound was formed by deriving

the general MiniMax lower bound which is shown by equation (4.16). The general

MiniMax lower bound was derived by dividing the parametric space Λ into two
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disjoint subsets Λ0 and Λ1 where H0 : λ ∈ Λ0 against H1 : λ ∈ Λ1 are the null

and alternative hypotheses respectively. The two priors ω0 and ω1 with a large

difference in the expected values of the functional were constructed while making

the Chi-square distance between two normal mixtures small. The MiniMax risk

for the developed estimator was given in equation (4.28), and the asymptotic

properties: bias and variance were derived.

The developed estimator, attained the MiniMax lower bound in equation (2.3).

It was also shown that the estimator had smaller bias and MSE values than the

standard Nadaraya-Watson estimator and the modified Nadaraya-Watson estima-

tor. Additionally, the confidence interval lengths of the developed estimator were

shorter than confidence interval lengths of the standard Nadaraya-Watson estima-

tor and the modified Nadaraya-Watson estimator which shows that the developed

estimator is better.

6.3 Conclusions

Our perception drove us to the end that estimating non-smooth functionals

display a few highlights that are altogether not the same as those in estimating

smooth functionals. The absence of these properties features the motivation behind

why standard methods fail to give sharp outcomes. Hence, the best polynomial

approximation and the Hermite polynomial were utilized in the determination of

lower bounds and development of an estimator. These orthogonal polynomials

were used to develop the estimator in the NP set-up.

The problem of estimating the non-smooth functional T (λ) was special, and the

standard procedures for deriving the lower bounds in the problems of estimating

the value of a functional seemingly do not work. The functional T̃ (λ) is ”nearly
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smooth”- it looses smoothness at the origin. The parametric convergence rate

was used to estimate the value of an ”actually smooth” functional, while the

nonparametric method was used to estimate the value of a non-smooth functional.

The nonparametric statistical approach offered an alternative set of statistical

techniques that did not require any or only limited assumptions about the data.

The hard-to solve problem was changed into an efficiently solvable MiniMax prob-

lem. This method of transfomation achieved a flexible distribution and gave a

better estimator. A pair of probability distributions, each concentrated at its

own small ”r-sphere”, were constructed in such a way that the chi-square distance

between them was small.

When the sample size is finite, the properties of the estimator are similar to

those when the sample size is arbitrarily large. Asymptotics are used to describe

properties of the estimator when the sample sizes are arbitrarily large. Approxi-

mation to the distribution of the estimator and its associated statistics when the

sample is assumed to be sufficiently large is derived by the asymptotic theory

whose main tools are consistency and asymptotic normality.

The asymptotic MiniMax Risk was obtained by optimally tuning the polynomial

approximation. The idea of the existence of the best rate of convergence was

formalized by calculating the MiniMax Risk of the estimator. The rate was based

on the requirement that the estimator performs well at a fixed model as well as

at a sequence of models that lie nearby. The risk is additionally utilized as a

benchmark for assessing the performance the estimation method.
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6.4 Recommendations

The methodology and results developed in this thesis can be used to solve other

related problems. For instance, the methodology can be used to estimate other

non-smooth functionals such as excess mass. When estimating excess mass, the

local scales are used rather than the global scales. This is possible since concen-

tration of measure at a certain point allows estimation to be done locally. See for

example (Wolfgang, 1994) and (Das Gupta, 2008).

Estimating excess mass is a general approach to statistical analysis that can be

used in many practical applications. When determining the support of a function;

a point where a function exceeds a certain level, exhibits discontinuity, or changes

point is involved, the region of interest in the problem can be estimated on a finite

number of observations.

The differences of excess-masses at different levels λ, where λ is a real number,

are used in order to test the multimodality of a probability distribution in most

applications. The dip-excess mass was introduced by (Hartigan and Hartigan,

1985) who proposed an estimator that could be used to test multimodality. In

the literature, the dip-excess mass estimator was widely used. See for example,

(Mullar and Sawitzki, 1991) and, (Fisher and Marron, 2001). They maintain on

the fact that a procedure like this separates mode estimation from its location.

The estimation density level sets (or density contour clustering), which is the

set of points C(λ) on which the excess mass at level λ is calculated is another

major use of the excess mass functional. This necessitates a good excess mass

estimator as well as an optimization process. Polonik, (1995) proved consistency
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of such estimators of the density level set and found some rates of convergence.

The author expected that the underlying distribution has density contour clusters

lying in the class C under consideration.

Tsybakov (1997) proposed minimax rates for estimating smooth star-shaped

level sets of a density. The level set estimation problem deals with reconstruct-

ing an unknown set G(λ) = {f ≥ λ} from a random sample of points Xn =

{X1, X2, . . . , Xn} of a random variable X, where f denotes the density of X and

λ is a positive threshold. Tsybakov’s (1997) approaches were either difficult to

implement or required assumptions which were difficult to check. They used a

margin assumption quantifying the smoothness of the density p around the level λ

as introduced by (Mammen and Tsybakov, 1999). Later, (Gayraud and Rousseau,

2005) used a Bayesian approach and (Rigollet and Vert, 2006) revisited the plug-in

estimator. They may claim for computational feasibility as well as for strong the-

oretical properties. Klemela (2004), on the other hand studied and implemented

a complexity penalized excess-mass criterion-based estimator of density support.

Excess mass estimation has also been used to estimate regression contour clus-

ters by (Polonik and Wang, 2005), discrimination of locally stationary time series

by (Chandler and Polonik, 2006) and anomaly detection and classification as de-

scribed by (Rigollet and Vert, 2006) using level set estimation. The use of a

nonparametric estimator of f was generally avoided in these methods. In practise,

such an estimator may not be very attractive in higher dimensions d. In reality

such an estimator is not appealing in higher dimensions d. Estimating the excess

mass as an integrated functional of f at a fixed level say λ > 0
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At any level λ, the excess mass is the total of contributions coming from the con-

nectivity components Ci(λ) ≤ RK of {f ≥ λ}. The connectivity components Ci(λ)

of {f ≥ λ} are called λ clusters. These clusters are described as sets maximizing

the distribution function.
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Birǵe, L. and Massart, P. (1995). Estimation of the integral functionals of a density.

Ann. Statist.,23, 11–29.

Bickel, P. J. & Ritov, Y. (1988). Estimating integrated squared density derivatives:

sharp best order convergence estimates. Sankya Ser., A 50, 381-393.

Billingsley, P. (1995). Probability and Measure. (3rd ed.) New York: John Wiley

and Sons.

Breidt, F. J. & Opsomer, J. D. (2000). Local Polynomial Regression Estimators

in Survey Sampling. The Annals of Statistics, 28 (4), 1026-1053.

Brown, L. D. & Low, M. G. (1996). A constrained Risk Inequality with Applica-

tions to Nonparametric Functional Estimation. Ann. Statist., 24, 2524-2535.

Cai, T.T. & Low, M.G. (2011). Testing Composite, Hermite Polynomials, and

Optimal Estimation of a non-smooth Functional. Ann. statist., 39 (2), 1012-

1041.

Casella, G. & Berger, R. L. (2002). Statistical Inference. (2nd ed.) New York:

Wadworth Group.

Chandler, G. & Polonik, W. (2006). Discrimination of locally stationary time series

based on the excess mass functional. J. Amer. Statist. Assoc., 101, 240–253.

63



Chichilnisky, G. (2009). The limits of Econometrics: Nonparametric functions in

Hilbert spaces. Economic Theory, 25, 1-17.

Cline, D. B. & Hart, J. D. (1991). Kernel Estimation of Densities of Discontinuous

Derivatives. Statistics, 22 (1), 1-17.

Comminges, L. & Dalalyan, A. S. (2013). Minimax Testing of a Composite Null

Hypothesis Defined via a Quadratic Functional in the Model of Regression.

Electronic Journal of Statistics. 7, 146-190.

Cowling, A. & Hall, P. (1996). On Pseudodata Methods for Removing Boundary

Effects in Kernel Density Estimation. Journal of the Royal Statistical Society

ser.B, 551-563.

Daniels, H. E. (1954). Saddlepoint Approximations in Statistics. Ann. Math

Statist., 25 (4), 631-650.

Daniels, H. E. (1987). Tail probability Approximations. International Statistical

Review., 55, 37-48.

Das Gupta, A. (2008). Asymptotic Theory of Statistics and Probability. New York:

Springer.

Dekking, F. M., Kraaikamp, C., Lopuhaa, H. P., & Meester, L. E. (2005) A Modern

Introduction to Probability and Statistics. New York: Springer-Verlag.

DiNardo, J. & Tobias, J. L. (2001). Nonparametric Density and Regression Esti-

mation. Journal of Economic Perspectives, 15 (4), 11-28.

Dorfman, A. H. (1992). Nonparametric Regression for Estimating Totals in Finite

Populations. In proceedings of the section on Survey Research Methods.

American Statistics Association, 25, 1-17.

64



Donoho, D. L. & Liu, R. C. (1991). Geometrizing Rates of Convergence II. Ann.

Statist, 622-625.

Douglas, C. M. & George, C. R. (2008). Applied Statistics and Probability for

Engineers. (3rd ed.) Delhi: Pashupati printers P. ltd.

Fisher, N. I. & Marron, J. S. (2001). Mode Testing via Excess Mass Estimate.

Biometrika. 88 (2), 499-517.

Flajolet, P. & Sedgewick, R. (2009). Analytic Combinatorics. Cam-

bridge:Cambridge University Press.

Fox, L. & Parker, I. B. (1968). Chebyshev Polynomials in Numerical Analysis.

Oxford: Oxford University Press.

Gatto, R. (2010). A Saddlepoint Approximation to the Distribution of Inhomoge-

neous Discounted Compound Poisson Processes. Methodology and Comput-

ing in Applied Probability, 12 (3), 533-551.

Gayraud, G. & Rousseau, J. (2005). Rates of convergence for a Bayesian level set

estimation. Scand. J. Statist., 32, 639–660.

Hartigan, J. A. & Hartigan, P. M. (1985). The Dip Test of Unimodality. Ann.

Statist., 13 (1), 70-84.

Ibragimov, I. A. & Khasminski, R. (1991). Asymptotic Normal Families of Distri-

butions and Effective Estimation Ann. Statist., 19, 1681-1724.

Keisuke, H. & Jack, R. P. (2012). Impossibility Results for Nondifferentiable Func-

tionals. Econometrica, Economic Society., 80 (4), 1769-1790.

65



Juditsky, A. & Nemirovski, A. (2020).Statistical Inference via Convex Optimiza-

tion. Princeton Series in Applied Mathematics, Princeton University Press.

Klemela, J. (2004). Complexity penalized support estimation. J. Multivariate Anal.

88 (2), 274–297.

Korostelev, A. P. (1990). On the accuracy of estimation of non-smooth functionals

of regression. Theory Probab. Appl., 35,768-770.

Korostelev, A. P. & Tsybakov, A. B. (1994). Minimax Theory of Image Recon-

struction. New York:Springer-Verlag.

Lepski, O., Nemirovski, A. & Spokoiny, V. (1999). On estimation of the Lr norm

of a regression function. Probab. Theory Relat. Fields, 113, 221-253.

Le Cam, L. (1973). Convergence of Estimates under Dimensionality Restrictions.

Ann.Statist., 1, 38-53.

Le Cam, L. (1986). Asymptotic Methods in Statistical Decision Theory, New

York:Springer-Verlag.

Lugannani, R. & Rice, S. (1980). Saddle point approximation for the distribution

of the sum of independent random variables. Advances in Applied Probability,

12, 475-490.

Mammen, E., J. S. Marron, & N. I. Fisher (1992). Some Asymptotics for Multi-

modality Tests Based on Kernel Density Estimates. Probability Theory and

Related Field, 91, 115-132.

Mammen, E. & Tsybakov, A. B. (1999). Smooth discrimination analysis. Ann.

Statist., 27, 1808–1829.

66



Marron, J. S. & Ruppert, D. (1994). Transformations to Reduce Boundary Bias

in Kernel Density Estimation. Journal of the Royal statistical Society. Ser.

B, 56, 653-671.

Mullar, D. W. & Sawitzki, G. (1991). Excess mass estimates and tests of multi-

modality. J, Amer.Statist.Assoc., 86, 738-746.

Pagan, A. & Ullah, A. (1999). Nonparametric Economics, Cambridge:Cambridge

University Press.

Petrova, S. S. & Solov’ev, A. D. (1997). The Origin of the Method of Steepest

Descent. Historia Mathematica, 24, 361-375.

Polonik, W. (1995). Measuring Mass Concentrations and estimating Density Con-

tour Clusters-an excess mass approach. Ann.Statist., 23 (3), 855-881.

Polonik, W. & Wang, Z. (2005). Estimation of Regression Contour Clusters-an

application of the excess mass approach to regression. Multivariate Anal., 94

(2), 227-249.

Ramachanran, K. M. & Chris, P. T. (2009). Mathematical Statistics with Appli-

cations. California: Elsevier Academic Press.

Rigollet, P. and Vert, R. (2006). Estimation of Regression Contour Clusters-an

Application of Excess Mass Approach to Regression. Multivariate Anal., 94

(2), 227-245.

Rivlin, T. J. (1974). The Chebyshev Polynomials. Second edition. New York:

Wiley-Interscience.

67



Rivlin, T. J. (1990). Chebyshev Polynomials: From Approximation Theory to Al-

gebra and Number Theory. (2nd ed.) New York: John Wiley and Sons.

Rockafellar, T. (1994). Mathematical Programming: State of the Art. (J. R. Birge

and K.G. Murty, editors), University of Michigan Press, Ann Arbor, 248-248.

Silverman, B. W. (1986). Density Estimation for Statistics and Data Analysis.

London: Chapman and Hall.

Spady, R. H. (1991). Saddlepoint Approximations for Regression Models.

Biometrika, 78(4), 879- 889.

Sauer, T. (2006). Numerical Analysis. New Yolk:Pearson Education Inc.(C).

Tsybakov, A. B. (1997). On parametric estimation of density level sets.

Ann.Statist., 25(3), 948-969.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. New

York:Springer-Verlag.

Varga, R. S. & Carpender, A. J.(1987). On a Conjecture of S. Bernstein in Ap-

proximation Theory. Math. USSR Sbornik, 57, 547-560.

Wand, M. P., Marron, J.S. & Ruppert, D. (1991). Transformations in Density Es-

timation (with discussion). Journal of the American Statistical Association,

86(414), 343-361.

Wang, L., Brown, L. D., Cai, T. & Levine, M. (2008). Effect of Mean and Variance

Function Estimation in Nonparametric Regression. Ann. Statist. 36, 646-664.

Wasserman, L. (2006). All Nonparametric Statistics. New Yolk:Springer Science.

68



Wolfgang, H. & Schimile, M. G. (1996). Statistical Theory and Computational

Aspects of Smoothing, New Yolk:Springer-Verlag.

Yu-Xiang, W., Jing, L. & Stephen, E. (2016). A Minimax Theory for Adaptive

Data Analysis. Journal of Machine Learning Research., 17, 1-40.

69



Appendix I: Polynomial Approximation The Chebyshev polynomial

T2m can be written altenatively as

T2m(x) =
m∑
l=0

[(−1)m−1

m∑
j=m−l

(
2m

2j

)(
j

m− 1

)
]x2l

Write T2m(x) =
∑m

l=0 t2lx
2l. Then

|t2l| =
m∑

j=m−l

(
2m

2j

)(
j

m− 1

)
≤

m∑
j=m−1

(
2m

2j

)(
m

m− 1

)
≤ 22m22m = 23m

The coefficient for x2k in the polynomial Yk(x) is bounded from above

by

|y2k| ≤
4

π

K∑
j=k

23j

4j2 − 1
≤ 23k

.
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Appendix II: MATLAB-codes and R-codes for various Graphs

MATLAB code for Fig.3.1

x = linspace(−1, 1, 201);

T1 = cos(a cos(x));

T2 = cos(2a cos(x));

T3 = cos(3a cos(x));

T4 = cos(4a cos(x));

T5 = cos(5a cos(x));

subplot(1,1,1)

plot(x,T1,‘b’)

hold on

plot(x,T2,‘r’)

plot(x,T3,‘g’)

plot(x,T4,‘c’)

plot(x,T5,‘y’)

MATLAB code for Fig.3.2

x = [−1 : 0.2 : 1];

y = [1./(
√

(1− x2))];

plot(x,y)

R code for Fig.2.1

par (mfrow = c(3, 2))

n = 5

p = .05

x = 0 : 5

plot (x, dbinom(x, n, p), ylab = ”p(x)”,main = ”n = 5, p = .05”)
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...

MATLAB code for Fig.3.3 (a)

x = chebyfun(′x′);

f = x.2.sin(10 ∗ x);

subplot(1,1,1)

plot(f)

hold on

p=chebfun(f,1):hold on, plot(p,’r’)

plot(f)

clear

MATLAB code for Fig.3.3 (b)

x = chebyfun(′x′);

f = x.2.sin(10 ∗ x);

subplot(1,1,1)

plot(f)

hold on

p=chebfun(f,4):hold on, plot(p,’r’)

plot(f)

clear

MATLAB code for Fig.3.3 (c)

x = chebyfun(′x′);

f = x.2.sin(10 ∗ x);

subplot(1,1,1)

plot(f)

hold on

p=chebfun(f,9):hold on, plot(p,’r’)
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plot(f)

clear

MATLAB code for Fig.3.3 (d)

x = chebyfun(′x′);

f = x.2.sin(10 ∗ x);

subplot(1,1,1)

plot(f)

hold on

p=chebfun(f,16):hold on, plot(p,’r’)

plot(f)

clear

R-codes for tabulated results

library(MASS)

require(sm)

e=rnorm(1000,mean=0,sd=1) #random error

X=runif(1000,min=0,max=1) #explanatory variable

Y1 = 1 + 2 ∗ (X − .5)

Y2 = 1 + 2 ∗ (X − .5)2

Ix = function(x, h)1 ∗ (x ≥ h)

Y3 = 1 + 2 ∗ (X − .5) ∗ Ix(X, .65) ∗ (1− Ix(X, .65))

Y4 = 1 + 2 ∗ (X − .5) + exp(−200 ∗ (X − .5)2)

Y5 = 2 + sin(2 ∗ π ∗X)

Y6 = exp(−8 ∗X)

Y = Yi + e #regression function

mf = mf2 = TT = 0

j = 0
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BIASK = BIASNW = BIASMNW = TOTALS = 0

MSEK = 0

MSENW = MSEMNW = 0

TTK = TTNW = TTMNW = 0

means = 0

varK = varNW = varMNW = numeric()

while j ≤ 10000

sindex = sample(1 : 1000, 500) # selecting the sample

x.sample = X[sindex]

xreflect = c(x.sample,−x.sample)

xreflect

xnosample = setdiff(X, x.sample)

y.sampe = Y [sindex]

yreflect = c(y.sample, y.sample)

yreflect

ynosample = setdiff(Y, y.sample)

data1 = data.frame(xnosample) #H = hcv(xnosample, ynosample)

H3 = (ucv(xreflect, nb = 1000,min(x.sample),max(xnosample)))

H1 = (ucv(x.sample, nb = 1000,min(x.sample),max(xnosample)))

#H = (ucv(x.sample, nb = 1000,min(x.sample),max(xnosample))) ∗ 100

#H2 = (ucv(xnosample, nb = 1000,min(xnosample),max(xnosample)))

#H2 = (ucv(xreflect, nb = 1000,min(xreflect),max(xrefrect), tot = 0.01))∗

100
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#H2 = (ucv(xreflect, nb = 1000)) ∗ 100

nad1 = ksmooth(x.sample, y.sample, kernel = ”normal”, bandwidth = 0.232, x.points =

xnosample)

nad2 = ksmooth(xreflect, yreflect, kernel = ”normal”, bandwidth = 0.03421, x.points =

xnosample)

nad3 = loess(y.sample lnx.sample, span = .5)

#nad4 = locpoly(x.sample, y.sample, bandwidth = .25)

#nad4 = locpoly(x.sample, y.sample, bandwidth = H)

model1 = npreg(xdat = x.sample, ydat = y.sample, bws = H, regtype = ”ll”)

pred = predict(model1, newdata = data.frame(x.sample), exdat = xnosample)

#Finding the variance ratio

var = 0

for(i in 1:length(y.sample))

uncond=c(mean(BIASK),mean(MSEK),mean(BIASNW),mean(MSENW),

mean(BIASMNW),mean(MSEMNW))

RESULTS=matrix(uncond,1,8)

colnames(RESULTS)=c("BIASK","MSEK","BIASNW","MSENW","BIASMNW","MSEMNW")

RESULTS

M=sum(Y)

V=mean(X)
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