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ABSTRACT 

Type 2 Diabetes Mellitus (T2DM) has been progressing rapidly globally affects 347 

Million people and one of the 10 leading cause of death. In Kenya prevalence of 

diabetes is projected to be 5.3% by 2025. There has been a myriad of factors responsible 

for unabated progression and organs damage and end result reflects the altered normal 

gut microbes. If altered microbiota is identified at earliest stage and treated then organs 

damage such as kidney, nerves and eyes can be avoided. This study aims at abundance 

of microbes and their metagenomics markers in diabetes in patients visiting South C 

Medical Centre Nairobi, Kenya. No metagenomics study on the role of the gut microbes 

in diabetes has been conducted in Kenyan population and there are no existing 

metagenomics markers of diabetes in Kenya. As such there is an existing knowledge gap 

on the type and abundance of gut microbiota and their metagenomics markers in 

diabetes, pre-diabetes and normal individual. This study fills the gap. This study adopted 

two basic objectives namely; type and abundance of bacteria colonizing the gut of 

diabetes, pre-diabetes and normal individual and their metagenomics markers based on 

the identified genera and abundance of bacteria. South C Medical Centre was chosen for 

study because of accessibility during pandemic period, no other hospital in Nairobi 

allowed for data collection. Total target population was 79 participants using Fisher’s 

Statistical formula and stratified random sampling in cross-sectional study. Random 

sampling from each strata 33 diabetes, 13 pre-diabetic and 33 normal individual were 

selected by random blood sugar measurement then fecal samples were collected from all 

3 strata of persons and subjected to 16SRNA and V5-V6 Gene Sequencing. Reads were 

analyzed using MOTHUR Microbial Pipeline Analysis, alignments were done using 

SILVA Reference Microbial dataset. Alpha and Beta diversity were annotated by using 

rarefaction curve which show marked microbial dysbiosis in diabetic group of 

individual. High abundance of proteobacteria, low level of bacteriods and high 

firmicutes and bacteriod ratio were obtained by analysis. Significant abundance of 

Escherichia_shigella (P value = 0.000588, FDR=0.004706) was reported in diabetes. It 

was observed that high level of Escherichia_shigella in diabetes patients contributes to 

progression of diabetes disease by upregulating the inflammatory pathway and 

downregulating the insulin receptor gene and causing diabetic complication. This study 

recommends that if in diabetic patient implantation of gut microbiota from normal gut 

microbes individual is done then life-threatening complications can be mitigated and 

alleviated.
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Type 2 diabetes mellitus (T2DM) is a chronic debilitating condition whose main features 

include hyperglycemia, insulin resistance, abnormal lipid, carbohydrate, and protein 

metabolism, and progressive decline leading to microvascular complications such as 

retinopathy, neuropathy, and nephropathy (Kahn, et al., 2013). Type 2 diabetes mellitus 

is a major cause of morbidity and is the number one cause of adult blindness, lower limb 

amputations, and kidney failure (AHA, 2010). Type 2 diabetes mellitus is also a major 

cause of mortality with annual deaths of 1.6 million people directly attributed to the 

disease globally. Worldwide, T2DM affects 347 million people and is projected by the 

World Health Organization (WHO) to be one of the ten leading causes of death by 2030 

(WHO, 2020) and to have a global prevalence burden of 615 million people by 2040 

(Zheng, Ley, & FB., 2018). In Kenya, the prevalence of T2DM is estimated to be 5.3% 

(Ayah, et al., 2013) 

Known risk factors for T2DM include sedentary lifestyle, poor diet, obesity, old age, 

family history, race, genetics, acanthosis nigricans, low HDL levels, and a history of 

heart disease and stroke (Martinez et al., 2019). Lifestyle changes such as physical 

activity, healthy body weight, diet, and avoidance of smoking can help prevent T2DM. 

Screening for early signs of prediabetes disease, control of blood cholesterol levels, and 

screening and treatment of retinopathy can also help prevent the condition and its 

complications (WHO, Diabetes., 2020). First line treatment with metformin is preferred 

where adequate glycaemia is not achieved with diet and exercise. Management with 

other drugs such as oral sulfonylureas and dipeptidyl peptidase-4 (DPP-4) inhibitors can 

be initiated later. Other drugs such as pioglitazone, alpha-glucosidase inhibitors, 

glucagon-like peptide-1 (GLP-I) receptor agonists, and insulin are also available (Kahn, 

Cooper, & Prato., 2013). 
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Several studies have linked gut microbiome dysbiosis to the onset and progression of 

health conditions such as colorectal cancer, irritable bowel disease (IBD), food allergies, 

Crohn’s disease, and non-alcohol steatohepatitis (NASH). Emerging evidence also 

suggests that gut microbiome dysbiosis may play an important role in T2DM (FH 

Karlsson, 2013) (Larsen, et al., 2010) (Qin, et al., 2012); (Zhang, et al., 2013). Some 

studies suggest that the therapeutic activity of metformin in T2DM is largely based on 

its effect on the gut microbiome. According to Vallianou et al. (2019), metformin alters 

the composition of the gut bacteria by increasing the types and amounts of mucin-

degrading Akkermansia muciniphila, as well as several short-chain fatty acid - 

producing microbiota (SCFA). Increase in these bacterial species leads to the increased 

production of butyrate and propionate which take part in glucose homeostasis 

(Vallianou,et al.., 2019).  

Gut bacteria are also thought to contribute to T2DM by reshaping the intestinal barrier, 

changing host signaling pathways associated with insulin production, uptake, and 

resistance, and changing the host metabolism. Studies show that T2DM is characterize 

by a significant decrease in butyrate-producing bacteria (Vallianou, et al., 2019). 

Metagenomic markers of T2DM in the gut include specific populations of bacteria in the 

gastrointestinal tract that are differentially elevated in a number or type compared to 

bacterial populations in the gut of people without T2DM. Significantly reduced levels of 

bacteria such as Bifidobacterium, Bacteroides, Faecalibacterium, Akkermansia and 

Roseburia have been reported in diabetic patients and contribute to disease by increasing 

insulin resistance, reshaping the intestinal barrier, and altering host metabolism and 

signaling pathways.  

Conversely, Ruminococcus, Fusobacterium, and Blautia species are positively 

associated with diabetes type 2 and abundance of these bacteria related to severity of 

diabetes type 2 and vice versa. The bacteroides/firmicutes ratio is also a known marker 

of gut dysbiosis and consequent disease process (Vallianou, et al.., 2019). Both the type 

and abundance of the gut bacteria is influenced by a variety of factors including diet, 

lifestyle, ethnicity, and genetics and varies across different geographical regions. This 
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means that prior findings of studies conducted in other geographical areas may not 

necessarily apply to the Kenyan context (Duffy & Wen., 2017). This study aims at 

determining the types and abundances of gut bacteria in diabetic, pre-diabetic, and 

normal individual also it aims at determining the metagenomic markers among them 

based on significant differences in types and abundances of microbes. 

1.2 Problem Statement 

Mounting evidence shows that gut bacteria play an important role in the onset and 

progression of T2DM (Karlsson, 2013; Larsen, et al., 2010; Qin, et al. 2012; Vallianou, 

et al., 2019; Zhang, et al., 2013). Gut bacteria can either precipitate or enhance T2DM 

disease or ameliorate it. Despite the important role of these bacteria and the widespread 

prevalence and effects of T2DM, no metagenomic study on the role of the gut 

microbiome in T2DM has been conducted in the Kenyan population and there are no 

existing metagenomic markers for T2DM in Kenya. As such, there’s an existing 

knowledge gap on the types and abundances of gut bacteria in diabetic and pre-diabetic 

patients compared to normal healthy individuals.  

Type 2 diabetes mellitus (T2DM) accounts for 90-95% of all diabetic cases globally 

representing 347 million people and is projected by the World Health Organization 

(WHO) to become one of the ten leading causes of death by 2030. According to the 

International Diabetes Federation (IDF), 80% of global T2DM cases manifesting highly 

elevated increases in T2DM occur in middle- and lower-income countries (IDF, 2013). 

In Kenya, for example, the prevalence of T2DM is estimated to be 5.3% (Ayah, 2013). 

50% of all diabetic patients remain asymptomatic unless their blood sugar level crosses 

10mmol/L by the time they realize there is something wrong in the body irreversible 

damages already occurred in the organ that is the reason prevalence of diabetes globally 

has been progressing unabatedly. Morbidity due to diabetes is so high as it causes 

lifelong renal replacement therapy like dialysis permanently or renal transplant that 

cripples the socio-economic fibres. 
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1.3 Justification 

Type 2 Diabetes Mellitus (T2DM) once develops it progresses unabatedly and damages 

the vital organ permanently. Medicine and insulin replacement therapy have to be 

continued lifelong. However, organ damage at molecular level is inevitable due to 

cascading inflammatory pathway which upregulate genes of inflammatory pathway NF-

Kb and downregulate genes of insulin receptors due to imbalance in proportion of gut 

microbes in diversity and density. This study identified microbial metagenomics markers 

in Type 2 Diabetes Mellitus (T2DM) which not only fills the gap as no gut microbial 

metagenomics markers of diabetes has not been conducted in Kenya patients before but 

also gives direction of management so that patients do not have to be dependent on 

lifelong medication and insulin injection. Secondly, a person with pre-diabetic whose 

blood sugar range between 7-8mmol/L remains asymptomatic and quite oblivious of 

their problem and sooner rather than later develops fully fledged diabetic and permanent 

organ damage. Through this study one can know the metagenomics markers of pre-

diabetic and targeting in the management so that it can be nipped in the body before it 

blossoms into fully fledged diabetic and its complication like nephropathy, retinopathy 

and neuropathy. 

1.4 Research Questions 

1. What are the types and abundance of bacteria colonizing the gut of diabetic, 

pre-diabetic, and normal individuals? 

2. What is the profile of diabetic metagenomics markers that is associated with 

the identified genera and abundance of bacteria? 

3. What is the correlation between metagenomics markers of T2DM, 

prediabetic and normal (non-diabetic) subjects? 
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1.5 Aims and Objectives  

1.5.1 General Objective 

To determine the metagenomic markers of diabetic, prediabetic and normal patients 

obtained from types and abundance of microbiota colonizing the gut of the patients 

visiting South C Medical Centre Nairobi, Kenya. 

1.5.2 Specific Objectives  

1. To determine the types and abundance of bacteria colonizing the gut of diabetic, 

pre-diabetic, and normal, patients visiting South C Medical Centre.  

2. To profile diabetic metagenomics markers based on the identified genera and 

abundances of bacteria. 

3. To assess the correlation between metagenomics markers of T2DM, prediabetic 

and normal (non-diabetic) subject 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Diabetes Classification  

Diabetes mellitus is a chronic debilitating and heterogeneous metabolic disorder that is 

characterized by chronic hyperglycemia associated with insulin insufficiency and or 

sensitivity (Darwish., 2015). The key presenting features of diabetes mellitus include 

defects in insulin secretion, resistance, and or action; hyperglycemia, relative insulin 

insufficiency, and disturbances in the metabolism of proteins and fat (WHO, 2019) 

Diabetes is commonly classified into four groups: type 1 diabetes mellitus (T1DM), type 

2 diabetes mellitus (T2DM), other types, and gestational diabetes mellitus (GDM) 

(ADA, 2014). Type 1 diabetes mellitus can be classified into 3 groups, namely 

autoimmune type 1, idiopathic type 1, and fulminant type 1 diabetes (Darwish., 2015).  

Autoimmune TIDM results from the destruction of the pancreatic β cells and accounts 

for 5-10% of all diabetic cases with 80% to 90% of all diabetic cases in adolescents and 

children (Daneman, 2006) (Maahs, et al., 2010). Other types of diabetes include 

monogenic diabetes, exocrine pancreas disease, and genetic syndromes (Darwish., 

2015).  Gestational diabetes is characterized by hyperglycemia before or during 

pregnancy (Metzger, et al., 2008). 

2.2 Economic Burden of Type 2 Diabetes 

Type 2 diabetes mellitus (T2DM) accounts for 90-95% of all diabetic cases globally. 

Worldwide, T2DM affects 347 million people and is projected by the World Health 

Organization (WHO) to be one of the ten leading causes of death by 2030 (WHO, 2020) 

and to have a global prevalence burden of 615 million people by 2040 (Zheng, et al., 

2018). Whereas the highest prevalence of T2DM is in the Middle East and North Africa 

region (MENA) with a prevalence rate of 10.9%, the Western Pacific region has the 

largest number of adults diagnosed with T2DM (IDF, 2013). According to the 
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International Diabetes Federation (IDF), 80% of global T2DM cases manifesting highly 

elevated increases in T2DM occur in middle- and lower-income countries (IDF, 2013). 

In Kenya, the prevalence of TDM is estimated to be 5.3% (Ayah, 2013).  

Type 2 diabetes mellitus is associated with significant mortality and morbidity. 

According to the American Heart Association (AHA), T2DM is the number one cause of 

adult blindness, lower limb amputations, and kidney failure (AHA, 2010). People with 

T2DM are at an increased risk of nonalcoholic fatty liver disease (NAFLD), cataracts, 

obesity, and erectile dysfunction (ED). They also are at a higher risk of heart disease and 

peripheral arterial and cerebrovascular disease (WHO, Diabetes., 2020).  Compared to 

non-diabetics, people with T2DM are at higher risk of infectious diseases such as 

tuberculosis, eye infections, bacterial pneumonia, urinary tract infections, skin and soft-

tissue infections, and mucocutaneous and invasive fungal infections. Infectious diseases 

such as Klebsiella pneumoniae liver abscess, Fournier's gangrene, and rhinocerebral 

mucormycosis are almost always found only in diabetic patients (Crevel, et al., 2017).  

Type 2 diabetes mellitus is also linked to more hospital visits, increased hospitalization 

rates, increased admissions to intensive care units, and increased amputations and death 

for necrotizing limb infections (Uehara, et al., 2014). According to Grijalva et al (2015), 

people with T2DM are also at heightened risk of increased mortality due to influenza, 

bloodstream infections, and pneumonia (Grijalva, et al., 2015). Data by Wu et al (2014) 

indicates that there is an elevated resistance to antimicrobials in T2DM patients (Wu, et 

al., 2014). Type 2 diabetes mellitus also highly elevates the risk of endogenous 

endophthalmitis in patients with bacteraemia or fungaemia (Vaziri, et al., 2015) and 

reduces the effectiveness of preventive vaccination (Castilla, Godoy, Domínguez, & 

etal., 2013). Annual global deaths directly attributable to T2DM total 1.6 million people. 

T2DM affects 347 million people and is projected by the World Health Organization 

(WHO) to be one of the ten leading causes of death by 2030 (WHO, Diabetes., 2020) 

and to have a global prevalence burden of 615 million people by 2040 (Zheng, et al., 

2018).  
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2.3 Diagnosis of Type 2 Diabetes  

Diagnostic criteria for diabetes are well established and diagnosis is based on the plasma 

glucose levels or hemoglobin A1C levels. Fasting plasma glucose (FPG) of ≥ 126 mg/dL 

(7.0 mmol/L), random plasma glucose ≥ 200 mg/dL (11.1 mmol/L), and HbA1c ≥ 6.5% 

(48 mmol/mol) is diagnostic of diabetes mellitus. The HbA1C levels are also used to 

monitor response to diabetes mellitus treatment (ADA, 2014). 

2.4 T2DM Risk Factors and Associated Complications 

Complications associated with T2DM include cardiovascular disease, diabetic 

nephropathy, diabetic neuropathy, diabetic retinopathy, and cancers. Cardiovascular 

disease is a leading cause of disease and death in both pre-diabetic and diabetic subjects. 

According to Chaturvedi (2007), cardiovascular disease in T2DM results from oxidative 

stress which contributes to atherogenesis and oxidation of low-density lipoproteins 

(LDL) (Chaturvedi., 2007).  

Diabetic neuropathy is another common complication in T2DM and it leads to the 

formation of calluses, skin infections, ulcerations, foot and bone infections, and 

gangrene due to the loss of the protective sensation in feet. Diabetic neuropathy also 

contributes to erectile dysfunction, non-healing skin wounds, amputations, and foot 

ulcers (Sanghera & Blackett., 2012; Zatalia & Sanusi., 2013). Diabetic nephropathy is a 

leading cause of kidney disease. Diabetic retinopathy results from microvascular damage 

to retinal tissues caused by chronic hyperglycemia, leading to increased vascular 

permeability and fluid extravasation into the vitreous humor (Wu et al., 2014). Several 

studies demonstrate that the risk of colorectal, breast, liver, and kidney cancers is 

elevated in patients with T2DM (Donadon, et al., 2008) Diabetes mellitus, body size, 

and bladder cancer risk in a prospective study of Swedish men (Larsson, et al., 2008) 

Diabetes mellitus and risk of breast cancer: a meta-analysis., (Larsson, et al., 2007). 

Diabetes mellitus and incidence of kidney cancer: a meta-analysis of cohort studies. , 

(Larsson & Wolk, 2011) 
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Risk factors for T2DM include lifestyle, obesity, age, race, family history, acanthosis 

nigrans, low HDL level and or high triglyceride levels, hypertension, polycystic ovary 

syndrome (PCOS), and a history of stroke or heart disease. Lifestyle plays a major role 

in the onset and progression of T2DM. Lifestyle factors implicated in the development 

of T2DM include physical inactivity, consumption of alcohol, smoking, and a sedentary 

lifestyle. Diet is another important modifiable risk factor for T2DM. A higher risk of 

T2DM development is associated with a low fiber, high glycemic diet. Additionally, 

intake of large amounts of fatty acids is associated with insulin resistance and a higher 

T2DM risk. A negative correlation exists between consumption of total and saturated fat 

and T2DM independent of body mass index (BMI). Frequent consumption of processed 

red meat and soft drinks is also associated with a higher risk of T2DM development 

(Liu, et al., 2000; Willett, & Rimm, 2002; Schulze, et al., 2004; Dhingra, et al., 2007; 

Dam, et al., 2002). 

Obesity is the most important risk factor for T2DM development. According to the 

World Health Organization (WHO), 90% of all diabetic patients develop T2DM due to 

excessive body weight (WHO, Classification Of Diabetes Mellitus, 2019). Age is also a 

risk factor for T2DM: people aged 45 years and above are at a higher risk. On race, the 

risk of T2DM is higher in African Americans, Asian Americans, Pacific Islanders, 

Alaska Natives, Hispanics and Latinos, American Indians, and Native Hawaiians 

(WHO, Classification Of Diabetes Mellitus, 2019).  

Family history is yet another important risk factor for T2DM. Monozygotic twins have 

higher concordance rates than dizygotic twins. Kobberling (1982) demonstrated that 

40% of first-degree relatives of T2DM may develop the disease and this rate is 

significantly higher than the 6% observed in the general population (Kobberling, 1982). 

Candidate genes uncovered by genome wide association studies (GWAS) and which are 

associated with T2DM development are listed include TCF7L2 (transcription factor 7-

like 2), FTO (fat mass and obesity associated) gene, KCNJ11 (potassium inwardly 

rectifying channel, subfamily J, member 11), CDKN2A (cyclin-dependent kinase 

inhibitor 2A), RS1 (insulin receptor substrate 1), MTNR1B (melatonin-receptor gene), 
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IGF2BP2 (insulin-like growth factor two binding protein 2), HHEX (haematopoietically 

expressed homeobox) and PPARG2 (peroxisome proliferator-activated receptor gamma 

2) (Wu, et al., 2014). 

Acanthosis nigrans refers to the thick, dark, velvety skin behind the neck or under the 

armpits and has been strongly linked to T2DM, obesity, and insulin resistance. Due to 

this strong linkage, it has been severally proposed as a marker for T2DM (Bahadursingh, 

et al., 2014). More than 50% of all women with PCOS develop T2DM by age 40. 

Gambineri et al (2012) conducted a long-term prospective study of a large cohort of 

women with PCOS who were followed from youth to middle age to determine the 

association between PCOS and T2DM. Their results demonstrated that the risk of T2DM 

is significantly increased in women with PCOS (Gambineri, et al., 2012). Obstructive 

sleep apnea (OSA) may also influence the development of prediabetes and diabetes and 

is more common in diabetics than in non-diabetics ( (Pamidi & Tasali., 2012). The role 

of gut bacteria in the onset and development of T2DM is increasingly being studied. 

Musso et al (2011) demonstrated that gut microbiome is a risk factor for T2DM 

development (Musso, Gambino, & Cassader, 2011) 

2.5 Role of Gut Bacteria in T2DM 

The role of gut bacteria in human health is fivefold. First, gut bacteria influence the host 

immune system. Structurally, the human gut consists of a mucosa made up of a single 

layer of epithelial cells (intestinal epithelial cells or IECs) and intraepithelial 

lymphocytes (IELS). The IECs have paneth and goblet cells. Paneth cells produce 

antimicrobial peptides while goblet cells produce mucus that provides coating for the 

epithelial layer. Below the mucosal layer is a gut-associated lymphoid tissue 

(GALT) known as lamina propria which contains Peyer’s patches, T cells, B cells, 

CD8+ and CD4+ cells, innate lymphoid cells (ILCs), and antigen presenting cells 

(APCs). GALT is the largest immune system organ in the human body and exerts both 

local and systemic effects (Gopalakrishnan, et al., 2018) (figure 2.1).  
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Figure 2.1: Structure of the human gut and the role of the gut microbiome in 

immunity. Source: Golapakrishnan et al. (2018) 

Pattern recognition receptors (PRRs) such as toll like receptors (TLRs) detect the 

pathogen-associated molecular patterns (PAMPs) present on the invading organism 

surface and initiate an immune response. The toll like receptors are thirteen in number 

(TLR 1-13) and recognize PAMPs including flagellin, lipopolysaccharide (LPS) for 

TLR4, lipopeptides for TLR2/1 and TLR2/6 heterodimers, flagellin for TLR5, 

unmethylated CpG motifs in DNA for TLR9, profilin and Salmonella flagellin for 

TLR11 and various forms of RNA for TLRs 3, 7, 8 and 13. There is no known ligand 

currently identified for TLR 12 (Barbalat, Lau, Locksley, & Barton, 2009); (Mathur & 

Barlow, 2015). 

2.5.1 Boosting host immunity 

PAMPS induce the maturation of antigen presenting cells (APCs) such as Dendritic 

Cells (DCs) which travel to mesentery lymph nodes (MLNs) where they stimulate T 

cells to form CD4+ T regulatory cells (Tregs), and Th17 cells and CD8+ cells. 

Activation of the Nf-kB pathway by PAMPs leads to elevated levels of IgG, IgM, and 
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CD8 T cells thereby boosting host immunity (Dunkelberger & Song, 2010). The 

increased risk of T2DM patients to infections is due to their lower immunity (Hodgson 

et al., 2015) resulting from reduced levels of neutrophils, macrophages, T cells, and 

antibody-producing B cells; obesity, vitamin D deficiency, oxidative stress, and skin 

lesions and poor wound healing due to diabetic neuropathy, macroangiopathy, and 

microangiopathy (Crevel, Vijver, & Moore, 2017). Others are elevated levels of 

Staphylococcus aureus carriage in diabetics, overgrowth of urinary pathogens due to 

glycosuria, and nosocomial infections due to frequent attendance of hospitals (Crevel, 

Vijver, & Moore, 2017). Gut dysbiosis in T2DM patients has been established by 

several studies and is linked to the reduced immunity in T2DM patients.  

2.5.2 Improvement in glucose metabolism 

Gut bacteria such as Roseburia intestinalis, Bacteroides fragilis, Akkermansia 

muciniphila, Lactobacillus plantarum, and L. casei induce IL-10, leading to 

improvement of glucose metabolism. The improvement in glucose metabolism resulting 

from the over-expression of IL10 is based on the fact that IL10 is protective against 

ageing-related insulin resistance (Dagdeviren et al., 2017). Another mechanism through 

which bacteria protect the host from T2DM disease involves increase in IL-22 

production. Bacteria such as R. intestinalis increase the production of IL-22 and IL-22 

alleviates T2DM since it is an anti-inflammatory cytokine that restores insulin 

sensitivity, promotes the differentiation of T regulatory cells, induces TGF-b and 

suppresses intestinal inflammation (Dagdeviren, et al., 2017); (Hoffmann, 2016); (Zhu, 

2018). According to Hoffman (2016), the bacteria Bacteroides thetaiotaomicron is 

protective against T2DM since it induces expression of T regulatory cell gene 

expression (Hoffmann, 2016). Bacteria negatively associated with T2DM increase the 

levels of several inflammatory cytokines that lead to disease (Gurung, et al., 2020). 

Gut bacteria also ferment non-digestible dietary fibers such as resistant starch (RS), 

inulin, oat bran, wheat bran, cellulose, Guar gum, and pectin to produce short fatty chain 

acids (SFCAs) (Parada, et al., 2019) which may protect against T2DM. Structurally, 
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SCFAs consist of carboxylic acid and a small hydrocarbon chain and include butyrate, 

propionate, iso-butyrate, valerate, iso-valerate, hexanoate and acetate. Butyrate is 

produced by firmicutes bacteria while acetate, which is the most abundant SCFA in the 

gut, is produced by bacteroidetes. Bacteroidetes also produce propionate. In the human 

gastrointestinal tract, the highest SCFA concentration is found in colon at a molar ratio 

of approximately 60:20:20 for acetate:propionate:butyrate (Parada, et al., 2019). SCFAs 

receptors include GPR41 (free fatty acid receptor 3; FFAR3), GPR43 (free fatty acid 

receptor 2; FFAR2), and GPR109A (hydroxycarboxylic acid receptor 2; HCAR2).   

Most abundant SCFAs are butyrate, acetate, and propionate as they form about 95% of 

total SCFAs (Cook & Sellin, 1998). In the colon, most of the SCFAs (~95%) are 

absorbed rapidly by large intestinal mucosal cells. The remaining amount is excreted in 

the feces (Topping & Clifton, 2001). Most of the absorbed SCFAs are used as energy 

sources by the body and acetate remains as the most abundant SCFA in the circulation 

with small amounts of butyrate and propionic acid in the periphery. SCFAs are 

transported by monocarboxylate transporter 1 (MCT1; encoded by SLC16A1) and the 

sodium-coupled monocarboxylate transporter 1 (SMCT1; encoded by SLC5A8). SCFAs 

are ligands for G-protein coupled receptors (GPCRs), including GPR109A, GPR43, and 

GPR41, thereby activating anti-inflammatory signaling cascades (Topping & Clifton, 

2001). 

Butyrate inhibits histone deacetylase (HDAC). Inhibition of HDAC leads to glycogen 

production, stimulation of insulin signaling, and glucose uptake all of which result in 

reduced hyperglycemia and reduction of inflammatory damage on β cells. Butyrate is 

known to reduce the levels of IFN-induced IFITM1, IFITM3, RIG-1, and IFIT2 in a 

dose-dependent manner. Acetate attaches to Gpr43, Gpr41, and Gpr109A receptors on 

the pulmonary epithelial cells, switching on IFN-beta and IFNAR leading to NF-kB 

activation. SCFAs boost the host immune system by modulating an increase in the 

production and expression of IgA (Davie, 2003).  
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The third mechanism through which gut bacteria protect against T2DM is through 

reducing insulin resistance and improving glucose homeostasis in organs like the 

muscles and liver. Gut bacteria also modulate sugar digestion and gut hormones 

involved in sugar digestion (Gurung, et al., 2020). According to Kim et al (2014), 

Bifidobacterium lactis reduces the expression of genes involved in hepatic 

gluconeogenesis, improves translocation of glucose transporter-4 (GLUT4), increases 

the synthesis of glycogen, and improves the uptake of insulin-stimulated glucose (Kim, 

et al., 2014). More evidence of the role of gut bacteria in the reduction of insulin is 

provided by Dang et al (2008) who reported that Akkermansia muciniphila reduces 

postprandial glucose by inhibiting alpha-glucosidase activity thereby preventing 

complex carbohydrates from being broken down (Dang, et al., 2018). 

According to Plovier, reduction of the expression of hepatic flavin monooxygenase 3 

(fmo3) by bacteria such as Akkermansia muciniphila and Lactobacillus plantarum 

results in the prevention of hyperlipidemia and hyperglycemia in mice (Plovier, 2017). 

Lactobacillus casei lowers insulin resistance through reduction of hepatic glycogenesis 

and reduction of gene expression of Akt, phosphatidylinositol-3-kinase (PI3K), AMPK, 

and insulin receptor substrate 2 (IRS2). In addition, it lowers hyperglycemia by 

upregulating genes such as CFTR, SLC26A3, SLC26A6, Bestrophin-3, ClC1-7, 

GABAAa1, and GlyRa1 (Zhang, et al., 2014); (Le, 2015). According to Singh (2017), 

insulin sensitization is further improved by L. rhamnosus which does this by enhancing 

the levels of adiponectin (Singh, 2017).  

The fourth mechanism through which gut bacteria prevent T2DM is through the 

reduction of fatty acid synthesis and increase in fatty acid oxidation and energy 

expenditure. Bacteria which act in this manner include Akkermansia muciniphila, 

Bacteroides acidifaciens, and Lactobacillus gasseri (Houmard, 2008). Everard (2013) 

reports that Akkermansia muciniphila elevates oxidation of fatty acids and 

differentiation of adipocytes by increasing 2-acylglycerol (2-AG), 2-palmitoylglycerol 

(2-PG), and 2-oleoyl glycerol (2-OG) in the adipose tissue (Everard, 2013). Other 

bacteria that increase the oxidation of fatty acids are Bacteroides acidifaciens and 
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Lactobacillus gasseri (Kang, 2013); (Yang, 2017). Butyrate, propionate, and acetate also 

induce the oxidation of fatty acids. Butyrate does this by inhibiting HDAC in muscles 

leading to increased energy expenditure. The three SCFAs mentioned reduce PPAR-γ 

expression in adipose and hepatic tissues thereby leading to fatty acid oxidation (Gao, 

2009); (den Besten, 2015). 

The fifth mechanism through which the gut bacteria prevent T2DM is through 

potentiation of anti-diabetic therapy. Gurung et al (2020) have reviewed the role of anti-

diabetic drugs on the gut microbiota and their findings are summarized in table 2.1 

below. Anti-diabetic drugs promote the growth of “good bacteria” which in turn prevent 

T2DM disease (Gurung, et al., 2020). 
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Table 2.1: The effect of antidiabetic drugs on the gut microbiota (Gurung, et al., 2020) 

Anti-diabetic Drug Effectson of Microbiota Promotes Reference 

PMID 

Reduces Reference 

PMID 

Biguanides (Metformin) Akkermansia muciniphila escherichia 

Bifidobacterium adolescentis, Lactobacilius 

Butyrivibrio, Bifidobacterium bifidum, 

Megasphaera, Prevetolia,  Escherichi-

Shigetta, Erysipelorichaceae incatatesedis, 

Fusobacterium, Flavanifactor, 

Lachnospiraceae incertaesedis and 

Clostridium XVIII  and IV 

23804561, 

28530702, 

25038099, 

27999002, 

29056513, 

30261008, 

30815546, 

29789365 

Intesnibacter, Romboutsia, 

Peptostreptococcaceae, unclassified 

Clostridiaceae-1, unclassified 

Asacharospora, Allistpes, Oscilibacter, 

Bacteroides, Parabacteroides, 

unRuminococaceae 

28530702, 

30261008, 

29789365,  

Alpha Glucosidese 

inhibitor (eg Acarbose, 

voglibose, miglitol 

Lactobacillus, Faecalbacterium, Dailister, 

Subdoligranulum, Allisoella, Megasphaera, 

Bifidobacterium, Entercoccus faecalis 

28130771, 

29176714, 

25327485 

Btyriclococcus, Phasclarctobacterium, 

Ruminococcus, Eggerthela, 

Bacteroides, Oribacterium, 

Etysipelotichaceae, Coriobatctericeae, 

Bacteroides 

28130771, 

28349245, 

29176714, 

25327485 

GLP-1Receptor agonist( 

eg.  Liraglutide) 

Akkrmansia muciniphila, Bateroides 

acidifacieus, Lachnoclostridium 

flavonifracter, Rumninococcus gnavius, 

Allbaculum, Turicibacter, Anaerostipes, 

Lactobacillus, Butirimonas, Desulfovibrio, 

30815546, 

30292107, 

29171288, 

27633081, 

Helicobacterer, Prevotella, 

Ruminococcaceae, Chistensllacea, 

Roseburia, Canddatus Arthromitus, 

Marvinbryantia, Incertaesedis 

30292, 107, 

29171288, 

27633081 

Thiazolidinediones  (eg. 

Pioglitazone) DPP-4  

Inhibitor ( eg. 

Vildagliptin, 

Silagliptinm, 

Saxogliptin 

Lactobacillus streptococcus, Bacterides 

acidifaciens, Streptococcus hyoitestinalis, 

Eryspitotrichaceae, Allbaculu, Turibacter, 

Roseburia,  

29797022, 

29036231, 

27633081, 

276310113 

Proteobacteria 27751827 

SGLT2 inhibitors (eg. 

Dapagliflozin 

Akkermansia Entrococcus 29703207 Oscillobacter, Ruminoclostridium_6, 

Anaerotrumcus, Kurthai, 

Christensenellaceae, Prevotellaceae, 

Bacteroides, Prevotella, Blautia, 

Oscillospira  

29797022, 

29036231, 

27633081, 

27631013 
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Specific metabolites or bacterial byproducts can alter the dendritic cell in a fashion that 

allows them to skew towards a Treg versus Th17 phenotype. Tregs function in secreting 

IL10, creating a local anti-inflammatory cytokine milieu. Th17 cells, meanwhile, 

produce IL17 which can increase Paneth cell production of antimicrobial peptides and 

can function in recruiting PMNs from the bloodstream. Some bacterial metabolites can 

enter the bloodstream directly further altering the systemic immune system 

(Gopalakrishnan, et al, 2018).  

2.6 Metagenomic markers 

Previous metagenomic studies have identified several bacteria that are significantly 

elevated in T2DM. Faecalibacterium, Akkermansia and Roseburia have been reported to 

be negatively co-associated with diabetic patients and contribute to disease by increasing 

insulin resistance, reshaping the intestinal barrier, and altering host metabolism and 

signaling pathways. Conversely, high abundances of Ruminococcus, Fusobacterium, and 

Blautia species are positively associated with T2DM (Vallianou et al., 2019). High 

firmicutes and bacteroidetes (F/B) ratio in T2DM is reported in previous studies by 

(Larsen et al., 2010). However, low firmicutes and bacteroidetes (F/B) ratio in T2DM 

has also been reported by (Schwiertz et al., 2009). Escherichia_Shigella metagenomic 

marker of T2DM has been reported by (Maskarinec et al., 2021). Proteobacterial species 

are known to be archetypal signatures of microbial dysbiosis (Shin et al., 2015). The 

normal gut microbiome of healthy people comprises of the following 4 phyla: 

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria in that order. 

Verrucomicrobia and Fusobacteria are also present but in smaller quantities (Turnbaugh 

et al., 2007; Blaut, 2013). Polymorphism in the gene encoding Heat stock factor 1 (HSF) 

inreases the propensity of T2DM (Elen Klyosova et al., 2022) and NF-KB protein 

encoding gene in relation of T2DM and its microvascular complication (Romzova et al., 

2006). In Africa a study conducted in Nigeria identified metagenomics markers known 

as Ruminococcus, Bifidobacterium and Collinsellen for the diabetes and 

Peptostreptocossuss for the normal (Afolayan et al., 2020). 
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Metagenomics microbial analysis is being done by using QIIME, MOTHUR and 

DADA2 software. MOTHUR gives high number of Operational taxonomic unit (OTU) 

than QIIME and DADA2. This study used MOTHUR and SILVA pipeline 

metagenomics microbial analysis. Although DADA2 has the advantage of giving single 

nucleotide polymorphism (SNP) and Amplicon sequence variant (ASV), this study did 

not use it due to its complexity and unavailability. 

2.7 16S rRNA 

The study of bacterial taxonomy and phylogeny is largely based on the 16S rRNA. The 

16S ribosomal RNA (16S rRNA) is part of the 30s small subunit of the prokaryotic 

ribosome encoded by the 16S rRNA gene. Functionally, the 16S rRNA is involved in the 

binding of the 50S and 30S ribosomal units through its interaction with the 23S unit. It 

has the anti-Shine-Dalgarno sequence at its 3’ end which attaches to the mRNA AUG 

start codon and to the S1 and S21 proteins thereby facilitating the synthesis of proteins. 

The 16S rRNA also facilitates the codon-anticodon pairing in the A site (Jay & Inskeep, 

2015). The 16s rRNA has 9 hypervariable regions (V1-V9) that can be used to 

accurately fingerprint or identify bacteria. Fingerprinting of bacteria using 16S rRNA is 

useful because 16S rRNA is present in nearly all bacteria and exists as an operon or 

multigene family, it has a slow rate of evolution and is therefore largely conserved, and 

its genome size of 1.5 kbp is big enough for use in bioinformatics analysis (Coenye & 

Vandamme, 2003) (Patel, 2001). 

Fingerprinting of bacteria is commonly based on specific hypervariable regions and not 

the entire 16S gene since these regions can provide high resolution at phylum level as 

accurately as the full gene. Studies demonstrate that the V3 region is best at identifying 

bacteria at genus level while the V6 is best at differentiating bacteria at species level 

(Patel, 2001). One of the weaknesses of the 16S fingerprinting is that it may not resolve 

species that are related very closely. For instance, species in the Clostridiaceae, 

Peptostreptococcaceae, and Enterobacteriaceae families share 99% homology and 

cannot be resolved accurately at species level. This is because the V4 sequences differ 
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by just a few nucleotide sequences and reference databases may not be able to classify 

such bacteria at species level. Limiting 16S studies to just a few hypervariable regions 

may fail to capture differences in taxa that are closely related and therefore 

underestimate the diversity (Jovel, et al., 2016). Long-read sequencing with Nanopore 

may overcome this weakness however because it can sequence the entire hypervariable 

region (Cuscó, et al., 2019). 

To fingerprint bacterial communities using 16S rRNA typing, samples are first subjected 

to DNA extraction followed by PCR amplification on the desired hypervariable region 

using a set of universal primers. Several universal primers have been described in 

literature (Table 2.2). 
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Table 2.2: 16S rRNA Universal Primers (Greg, 2018) 

Primer name Sequence (5′–3′) 

8F AGA GTT TGA TCC TGG CTC AG 

27F AGA GTT TGA TCM TGG CTC AG 

U1492R GGT TAC CTT GTT ACG ACT T 

928F TAA AAC TYA AAK GAA TTG ACG GG 

336R ACT GCT GCS YCC CGT AGG AGT CT 

1100F YAA CGA GCG CAA CCC 

1100R GGG TTG CGC TCG TTG 

337F GAC TCC TAC GGG AGG CWG CAG 

907R CCG TCA ATT CCT TTR AGT TT 

785F GGA TTA GAT ACC CTG GTA 

805R GAC TAC CAG GGT ATC TAA TC 

533F GTG CCA GCM GCC GCG GTA A 

518R GTA TTA CCG CGG CTG CTG G 

1492R CGG TTA CCT TGT TAC GAC TT 

Sequencing of the amplified products is then conducted followed by bioinformatics 

analysis. Bioinformatics analysis involves pre-processing of reads to remove low-quality 

features, alignment of processed reads to a reference dataset, and OUT-based or ASV-

based analysis. Alignment of the sequences is done based on nucleotide sequence 

databases such as SILVA, Ribosomal Database Project (RDP), Green genes, Open Tree 

of Life (OTT), EzBio Cloud, and NCBI. Common software used in bioinformatics 

analysis of 16S rRNA data include QIIME, MOTHUR and DADA2.  
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Study Type  

This was a cross sectional study. A cross sectional study is an observational study that 

analyzes data from a population, or a representative subset, at a specific point in time. A 

total of three groups were investigated with groups consisting of: (1) people with 

diabetes, (2) people without diabetes, and (3) people with pre-diabetes. This involved the 

use of blood sample for random blood sugar test and stool for microbiome study. Blood 

drawn by syringe injection is important for quick RBS test while stool is the most 

convenient way to study human microbiome where gastrointestinal tract (GIT) contents 

cannot be obtained in living participants.  

3.2 Study Sites  

The study was conducted at two (2) sites namely Diabetes Clinic in south C and the 

Bioinformatics Institute of Kenya (KIBs), located along Mombasa Road in Nairobi, 

Kenya. South C Health Centre was chosen because of convenience and accessibility 

management of this hospital was generously kind to a allow me to access their facility 

during Covid period in contrast to other hospitals like KNH, Agha Khan Hospital 

Nairobi and Nairobi Hospital just a few who declined to use their facility during Covid 

period. Random blood and stool samples were collected at a Diabetic clinic in South C 

while long read sequencing and bioinformatics analysis were conducted at the 

Bioinformatics Institute of Kenya. The Diabetic clinic in South C was chosen for 

sampling of participants because of convenience and flow of varied ethnic and gender of 

patients visiting the facility. This ensured a diverse participation from different 

backgrounds. In addition, KIBs has been chosen for this study for the diverse facilities 

and expertise needed to integrate genetic and clinical data for the improvement of human 

health, a potential learning platform. 



22 

3.3 Sampling Frame 

The sampling frame was the list of patients at the South C Diabetic clinic between 

January 2020 and June 2020. 

3.4 Sample Size 

The sample size for this study was determined using the Fisher‘s statistical formula 

(Fisher, et al) .The formula is given as: 

 

Where:  

n= required sample size. 

 z= Standard normal deviation from the required confidence interval. 

p= the proportion of the target population estimated to have some particular 

characteristics. 

e= the degree of accuracy desired. 

To obtain an optimal sample for the study at 95% confidence interval, proportion set at 

0.5and degree of precision set at 0.5 we obtain: 

 

                            = 384 

Thus, a sample size of approximately 384 individuals was required for the study. 
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 The individuals were selected by simple random sampling from the clinical records of 

South C Medical Centre Nairobi Diabetic clinic called and requested to partake in the 

study. They were tested and diagnosed for the study thoroughly. The results placed the 

study subjects into 3 sub-groups as required by the study objective. From the testing 

results,160 individuals were found to be diabetic while 64 were found to be pre-diabetic. 

The remaining 160 individuals were normal. The proportion of individuals with required 

characteristics was 75%.  

The study was narrowed down to a smaller sample size for efficient analysis and due to 

feasibility and available cost resources. The sample was calculated at 95% confidence 

interval and degree of precision was set at 9.5%. The new sample size was calculated as: 

 

     =79 

Now, 79 individuals were required for the final study. 

Proportional allocation scheme 

Proportional allocation is a procedure for dividing a sample among the strata in a 

stratified sample survey. The stratified sampling scheme sets the sample size in each 

stratum equal to be proportional to the number of sampling units in that stratum. That is, 

nh/n = Wh. Proportional allocation therefore yielded a self-weighted sample (no 

additional weighting was required to estimate unbiased population parameters). 

The study therefore utilized the simplistic Nyman’s optimal allocation as; 
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Where; 

nh =final required sample size for every stratum or group 

N =total required secondary sample size 

Nh =primary class sample size for every group 

N =the total original sample size of 384 

The sample was allocated to each of the groups in terms of proportional allocation 

optimally considering the sizes of the population in each of the three groups with respect 

to the total population under study. The sample was allocated as follows: 

Normal= *79=33 

Diabetic= =33 

Pre-diabetic= *79=13 

Thus, 33 diabetic individuals, 33 normal individuals and 13 pre-diabetic individuals 

were selected for the study as proved by the scientific sampling scheme using 

proportional optimal allocation. 

3.5 Sample Selection 

Random blood sugar (RBS) test was used to group participants into either normal, pre 

diabetic or diabetic depending on their sugar levels. The measurements were taken from 

a convenience sample 2 hours after eating from each participant. This was obtained from 

the blood collected from the participants who signed the consent form. Blood sample is 

necessary for quick analysis of random blood sugar. A small sample of blood (drop) was 

taken using a needle, often from the finger by skin puncture. This sample was then be 

measured by a glucometer machine The syringes were disposed of in a sharps container 
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and decontaminated before they were taken for sterilization and incineration.   

Participants with readings below 5-6 mm/l 2 hours post-prandial were classified as 

normal as per the American Diabetes Association (ADA) and were therefore assigned to 

the non-diabetic group (ADA,2014). Those with readings between 7-8 mm/l were 

classified as pre-diabetic and assigned to the pre-diabetic group while those having 

readings above 10 mm/l or higher were classified as diabetic and assigned to the diabetic 

group. Assignment to each group was based on their RBS readings. Each group was 

further stratified proportionately based on gender, age, and for the diabetic group, 

treatment and disease severity and presence of microvascular complications. The 

following criteria applied.  

3.6 Inclusion Criteria 

Aged 18 years and above, Kenyan citizen, male or female, consents to be in the study. 

For the non-diabetic group, participants with 2 hours post-prandial readings of 140 

mg/dl or less. For the pre-diabetic group, participants with 2 hours post-prandial 

readings of 140-199 mg/dl. For the diabetic group, participants with 2 hours post-

prandial readings of 200 mg/dl and above or HbA1c ≥7.0% and ≤10.5% either on diet 

and exercise alone or on a stable dose of metformin (≥1000 mg/day) for 3 months prior 

to screening and with a body mass index (BMI) ≥23 and ≤45 kilograms per meter 

squared at screening 

3.7 Exclusion Criteria  

Pregnant or lactating females. History of active uncontrolled gastrointestinal disorders or 

diseases including: inflammatory bowel disease (IBD) including ulcerative colitis (mild-

moderate-severe), Crohn's disease (mild-moderate-severe), or indeterminate colitis, 

irritable bowel syndrome (IBS) (moderate-severe), persistent, infectious gastroenteritis, 

colitis or gastritis, persistent or chronic diarrhea of unknown etiology, Clostridium 

difficile infection (recurrent) or Helicobacter pylori infection (untreated) and Chronic 

constipation. People on antibiotic medication. People using any of the following within 
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the previous 6 months will be precluded from the study: systemic antibiotics, 

antifungals, antivirals or antiparasitic (intravenous, intramuscular, or oral), oral, 

intravenous, intramuscular, nasal or inhaled corticosteroids, cytokines, methotrexate or 

immunosuppressive cytotoxic agents, Large doses of commercial probiotics consumed 

(greater than or equal to 108 cfu or organisms per day) - includes tablets, capsules, 

lozenges, chewing gum or powders in which probiotic is a primary component. Ordinary 

dietary components such as fermented beverages/milks, yogurts, foods do not apply. For 

female subjects, combination hormone vaginal ring for contraception (due to unknown 

duration of local hormone effects). People with actively bleeding hemorrhoids. People 

with gastrointestinal disease. Vital signs outside of acceptable range at Screening Visit, 

i.e., blood pressure >160/100, oral temperature >100°F, pulse >100. Any condition that 

in the opinion of the Investigator precluded participation in the study. 

3.8 Recruitment 

Diabetic Clinic at South C requested patients meeting the defined inclusion and 

exclusion criteria to give their stool samples after getting informed consent from them. 

Those who agreed were shown how to collect the stool sample given a stool collection 

kit which included a toilet hat, gloves, collection tube, collection instructions, alcohol 

wipes, a biohazard mailing bag, and a postage-paid return mailing envelope, a form on 

collection date and time for filling, and a biohazard mailing bag. 

3.9 Stool Collection Protocol 

For those patients who agreed to participate in the study and who signed the consent 

form, the collection procedure was demonstrated to them with the collection materials in 

hand. This was done with the help of the staff recruiter who explained how the kit 

reagents and equipment’s work and the best way to collect the samples.  Participants 

were then allowed to carry home a collection kit that included a toilet hat, instructions 

for collecting the specimen, a collection tube, exam gloves, alcohol wipes. The tube 

included a non-toxic stabilizing reagent and mixing apparatus and was safe for home 
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use. After the sample was collected and the tube was capped, the user vigorously shook 

the tube for 30 seconds to homogenize and liquefy the sample. At that point the stool 

DNA was preserved for at least 60 days at ambient temperature. The remaining stool 

samples were stored in Ethanol at -200C fridge or cold room. The stool samples were 

then disposed by means of incineration once the study was complete and the retaining 

time for all the confirmations done.  

3.10 Participant Data (Extraction Form) 

This data was obtained from the participant records and some was generated before the 

initial collection of data. Table 3.1 below guides the data collection 

Table 3.1: Data Collection Sheet 

Participant 

code 

Age  Height  Weight  BMI Residence Blood 

pressure 

Glucose 

level  

Any other 

symptoms  

Date of 

first 

diagnosis  

          

          

3.12 Ethical Considerations  

Ethical approval was sought and obtained from the Jomo Kenyatta University of 

Agriculture and Technology (JKUAT) Ethical Review Committee and a research permit 

obtained from the National Council of Science and Technology (NACOSTI) thereafter. 

The participants were required to sign informed consent forms and participation was 

voluntary and well distributed for diversity and justice. The study ensured that the 

procedure for obtaining the sample was non-intrusive and did not cause harm to the 

participants.  The skin prick for RBS measurement doesn’t cause any harm to the 

participant and the stool sample collection is also harmless. The names of the 

participants were scrubbed and instead codes were used for privacy and confidentiality 

of the participants and the data obtained. The study aims and objectives, methods, and 

any other pertinent information was explained to the participants prior to their signing of 

the informed consent. The right of the participants to exit the study at any time was 



28 

upheld. To protect participant identity, anonymization by use of codes was used. The 

information obtained was confidential and the data kept under lock and key. The overall 

benefit generated from this study saw the participants given first priority. 

3.11 Sample Collection 

Faecal swabs were collected using sterile swab sticks. Participants were given sterile 

polypots and asked to deposit pea-sized amounts of stool inside the containers and to 

avoid contaminating the samples with urine or stool water. Hands were washed before 

and after collection. The peel pouch containing the swab was opened and patient details 

written on the tube containing the transport medium. Without touching the swab tip, the 

tip of the swab was inserted into the stool sample and rotated, taking note to collect 

bloody, slimy or watery areas of the stool. The swab was removed and examined to 

ensure enough fecal material was collected and the swab inserted again into the stool 

and rotated in case insufficient material had been swabbed and taking care not to 

overload the swab or scoop larger pieces of stool. The swab with the fecal material was 

then transferred into the tube with the transport medium, ensuring that the maximum 

filling line on the label was not exceeded.  

Holding the swab shaft between thumb and finger, the swab was mashed and mixed 

gently against the side of the tube to ensure that the swab specimen was evenly dispersed 

and suspended in the transport medium.  With the tube facing away from the collector’s 

face, the end of the swab shaft was bent at an angle of 180 degrees to break it at the 

marked breakpoint and the broken upper part of the swab shaft discarded and the cap 

tightened. Vials were shaken gently until the sample appeared well mixed. Samples were 

kept in resealable plastic bags and transported within 6 hours to the lab in a cool box.  

The samples were stored at -20oC until DNA extraction.  
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3.12 DNA Extraction 

One can isolate a few bacteria from culture but not all bacteria in fecal sample. Fecal 

sample contains thousands of bacteria so it was not tenable to isolate all fecal bacteria by 

culture using different media. Only possible for metagenomic analysis to extract DNA 

from all bacteria present in fecal sample. 

DNA extraction from all sample diabetic (33 samples), pre-diabetic (13 samples),  and 

normal (33 samples) bringing the  total to 79 samples selected by a stratified random 

selection from 160 diabetic, 160 normal and 64 prediabetes based on the modified 

QIAamp® DNA Mini & Blood Kit method for the isolation of bacterial DNA from 

swabs. Briefly, the cotton swabs were cut using a sterile razor and placed in 1.2 ml 

sterile Eppendorf tubes. 400 ul of PBS (Phosphate Buffered Saline) was added to the 

Eppendorf tubes and subjected to vortexing to mix the solution. The solution was 

allowed to stand for 90 minutes. The cells were resuspended by pipetting. 200 ul of the 

bacterial solution was transferred into a 2.0 ml sterile Eppendorf tube. The enzymatic 

lysis buffer (ELB) containing 20 mM Tris-HCl, 2 mM EDTA, and 1.2% Triton was 

prepared. 5 mL of 1 M Tris-HCl, 1 mL of 0.5 M EDTA, 3 mL of Triton X-100 was 

mixed and molecular-grade water added to bring the volume up to 250 mL. Purpose of 

this process was to break down bacteria cell wall but gram (+) bacteria cell wall are 

toughest to breakdown its wall hence lysozyme enzyme was added in the solution and 

incubated for 30 minutes then to purify the DNA. Purification enzyme Proteinase K was 

added to the solution then solution was transferred in Mini spin column and 

centrifugation was done for 1 minute. The final process was to add wash buffered 

solution to wash any other contents in DNA then incubation at room temperature (15-

250 C) for 5 min was followed by centrifugation at 8000rpm for 5 min. the eluate DNA 

was then stored at -200 C before sequencing.   
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3.13 DNA Sequencing 

DNA sequencing was done using the Nanopore 16S Barcoding Kit (SQK-RAB204) 

(ONT, UK). This kit was used because it allows samples to be multiplexed in a single 

run hence reducing the price per sample and labour, intensity while allowing genus level 

bacterial identification. The Barcoding kit was used in combination with the FLO-

MIN106 flow cells, the Flow Cell Wash Kit (EXP-WSH004) (ONT, UK), the Flow Cell 

Priming Kit (EXP-FLP002) and the MINION sequencing machine. The Barcoding Kit 

consists of 16S adapters (RAP), sequencing tether (SQT), loading beads (LB), 

sequencing buffer (SQB), and 24 barcode primers labelled from 16S01 to 16S024 (ONT, 

UK). 

3.14 Library Preparation 

The 16S Barcodes were thawed at room temperature, mixed by pipetting up and down, 

and spun down briefly then kept on ice until ready to use. The extracted DNA was 

prepared in nuclease-free water and 10 μl (10 ng) of the DNA dispensed into a 0.2 ml 

thin-walled PCR tube. 14 μl of nuclease-free water, 10 μM 1 μl of 16S Barcode and 25 

μl of LongAmp Taq 2X master mix was added into the PCR tube to make a total of 50 

ul. This was mixed gently by flicking the tube, spun down, and amplified using the 

following cycling conditions shown in Table 3.2. 

Table 3.2: PCR cycling conditions for sequencing 

Cycle Step Temperature  Time  Number of Cycles 

Initial denaturation 95 °C 1 min 1 

Denaturation 95 °C 20 secs 25 

Annealing 55 °C 30 secs 25 

Extension 65 °C 2 mins 25 

Final extension 65 °C 5 mins 1 

Hold 4 °   

Samples were transferred to clean 1.5 ml Eppendorf DNA LoBind tubes and the 

AMPure XP beads resuspended by vortexing. 30 μl of the resuspended AMPure XP 
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beads were added to the reaction and mixed by pipetting then incubated on a rotator for 

5 minutes at room temperature. 500 μl of fresh 70% ethanol was then prepared in 

nuclease-free water. The sample was spun down then pelleted on a magnet. With the 

tube on the magnet, the supernatant was pipetted off and the beads washed with 200 μl 

of freshly prepared 70% ethanol without disturbing the pellet. The ethanol was then 

removed using a pipette and discarded. The tubes were spun down and placed back on 

the magnet. Any residual ethanol was pipetted off and the solutions allowed to dry for 

~30 seconds, taking care not to dry the pellet to the point of cracking. 

The tubes were removed from the magnetic rack and the pellet resuspended in 10 μl of 

10 mM Tris-HCl pH 8.0 with 50 mM NaCl. This was incubated for 2 minutes at room 

temperature. The beads were pelleted on a magnet until the eluate was clear and 

colourless. 1 μl of eluted sample was then quantified using a Qubit fluorometer. All the 

barcoded libraries were then pooled in the desired ratios to a total of 50-100 fmoles in 10 

μl of 10 mM Tris-HCl pH 8.0 with 50 mM NaCl. 1 μl of RAP was added to the 

barcoded DNA and the solution mixed gently by flicking the tube, and spinning it down. 

The reaction was then incubated for 5 minutes at room temperature and the library 

stored on ice until ready to load into the SpotON MinION flow cell.  

3.15 Priming and Loading the SpotON MINION Flow Cell 

The SQB, LB, FLT and FB were thawed at room temperature and the SQB, FLT, and 

FB tubes mixed by vortexing and spinning down at room temperature. The MinION 

Mk1B lid was then opened, the flow cell slid under the clip and pressed down firmly to 

ensure correct thermal and electrical contact. The priming port cover was slid clockwise 

to open the priming port and the SpotON flowcell primed and loaded.  

Before loading, the contents of the Loading Beads (LB) tubes were mixed by vortexing 

and the library prepared as shown in Table 3.3. 
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Table 3.3: Library preparation schema 

Reagent  Volume (μl) 

SQB 34.0 

LB 25.5  

Nuclease-free water  4.5 

DNA library 11.0 

The flow cell priming was completed by loading 200 μl of the priming mix into the flow 

cell. The prepared library was mixed by pipetting up and down and 75 μl of sample 

added to the flow cell. The SpotON sample port cover was closed and the MinION 

Mk1B lid replaced. 

The flowcell was connected to the laptop and the sequencing done using the MinKNOW 

software v 21.11.7 (ONT, UK, London).  

3.16 Data Acquisition 

The sequencing reads were saved in the local computer and loaded into the KENCLUST 

remote server using the WinSCP V 5.19.5. WinSCP is an open-source tool for the secure 

transfer of files between local computers and remote servers. WinSCP was used because 

it is free, secure, fast, portable, and supports secure copy protocol (SCP) client for 

Microsoft Windows, File Transfer Protocol (FTP), SSH File Transfer Protocol (SFTP), 

WebDAV, and Amazon S3 (WinSCP, 2020). 

3.17 Bioinformatics Analysis 

Bioinformatics analysis of the sequenced reads was performed using MOTHUR V 

1.39.0 (Schloss et al., 2009), R v 4.0.3 (R Core Team, 2020) and Microbiome Analyst 

(Chong et al., 2020; Dhariwal et al., 2020). MOTHUR was selected as it has been shown 

to perform better than other metagenomic software such as the Quantitative Insights Into 

Microbial Ecology (QIIME) and other metagenome software. Not only does MOTHUR 

yield higher richness (P < 0.05) and better rarefaction curves than QIIME, but it also has 

a relatively larger analytic sensitivity (Lopez-Garcia et al., 2019). The Silva 1.38 release 
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reference dataset was used since it provides better outcomes than other databases and 

generates significantly higher number of OTUs in known taxa than QIIME (P < 0.001) 

(Lopez-Garcia et al., 2019). 

Analysis of metagenomics data followed the standard MOTHUR pipeline. Briefly, the 

sequencing reads were first subjected to an initial pre-processing step to remove any 

sequencing and PCR errors present. Quality control involved dropping of low-quality 

reads, end trimming, and removal of adaptor sequences, ambiguous sequences, 

duplicates, and any other undesirable sequences including mitochondria, eukaryotes and 

other unknown sequences. After preparation of the contigs, ambiguous, duplicated, and 

long bases were removed. Alignment of the improved sequences to a Silva reference file 

was done (Quast et al., 2013; Yarza et al., 2014; Yilmaz et al., 2014; Glöckner et al., 

2017).  

The alignment was based on the V6-V8 regions. The alignment region was ascertained 

using a reference E. coli sequence obtained from NCBI and the primers used in 

sequencing. Sequences were filtered to remove overhangs and ensure that the sequences 

only overlapped the same alignment coordinates. The VSEARCH algorithm was used to 

remove chimeras followed by clustering using a Bayesian classifier and removal of 

undesirable sequences using the remove.lineages command. Error rates were assessed 

using a mock community.  

OTU-based analysis included alpha and beta diversity. Alpha diversity indices such as 

Shannon, Caswell, Berger-Parker, Simpson, inverse simpson, Hill, Margalef, and 

McIntosh were determined. For beta diversity, species richness was assessed using 

chao1 chao2, jacknife1 and jackknife 2 plots. Statistical significances were determined 

using the AMOVA p-value & T-statistic and Mann-Whitney/Kruskal-Wallis  p-value & 

Mann-Whitney statistic. Beta analysis will entail use of PERMANOVA statistics. 

Additionally, distance matrices were visualized using principal Coordinates (PCoA) and 

a plots. Statistical significance, p values, and R2 values between groups calculated using 

Analysis of MOlecular VAriance (AMOVA) and Homogeneity of molecular variance 
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(HOMOVA) (Excoffier, Smouse & Quattro, 1992). Abundance plots, rarefaction curves, 

principal component analysis (PCOA) and nmds plots were graphed using R. 

Phylogenetic trees were drawn using Phylip v.3.698 (Felsenstein, 2005). The correlation 

of the relative abundance of each OTU with the two axes in the NMDS dataset for 

different groups was determined using the Spearman method. Metastats is a non-

parametric t-test used to determine differentially represented OTUs between the test and 

control groups in this study. Differential representation of OTUs was also assessed using 

LEfSe, a linear discriminant analysis effect size tool, and the LDA scores noted. All 

these tools were used for OTU-based, ASV-based, phylotype-based, and phylogeny-

based analyses. 

Clustering and correlation involved heatmap clustering and dendrogram and correlation 

analysis. Dendrogram analysis involved tree creation based on unweighted Unifrac 

distance while correlation analysis was done using SparCC correlation tables, network, 

and boxplots. Inter-group and within-group comparisons involve classical univariate 

analysis (AMOVA p-value & T-statistic; Mann-Whitney/Kruskal-Wallis p-value & 

Mann-Whitney statistic). It also involved MetagenomeSeq with zero inflated Gaussian 

fit: p-values and FDR values, Differential Abundance Analysis Methods with log2FC, 

logCPM, P-values, and FDR values, and Linear Discriminant Analysis (LDA) Effect 

Size (LEfSe) with outputs of LDA scores, p-values, FDR values, and analysis results 

table. Finally, random forest (RF) classification was done and outputs such as MDA 

Accuracy, OOB error rates, RF plots, important features computed and interpreted. 

Significant differences in types, abundances, and other features were correlated to 

presence or absence of T2DM.  
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Table 3.4 shows different modules used in analysis of data MORTHUR. 

Table 3.4: Bioinformatics Data Analysis plan 

Actual Annotation Models of Analysis Statistical Values 

Visual Exploration Abundance profiling Stacked bar/area plot 

Interactive pie chart 

Rarefaction curves 

  FB Ratio 

Microbial 

community 

profiling 

Alpha diversity analysis  Chao 1 index 

T-test/ANOVA p-value & T-

statistic 

Mann-Whitney/Kruskal-Wallis p-

value & Mann-Whitney statistic 

Beta diversity analysis PCOA plot 

PERMANOVA statistics 

Comparison and 

Classification  

Classical univariate analysis T-test/ANOVA p-value & T-

statistic 

MetagenomeSeq Zero inflated Gaussian fit: p-values 

and FDR values 

Differential Abundance 

Analysis Methods 

log2FC, logCPM, P-values, and 

FDR values 

Linear Discriminant 

Analysis (LDA) Effect Size 

(LEfSe) 

LDA scores, p-values, FDR values, 

analysis results table 

Random forest MDA Accuracy, OOB error rates, 

RF plots, important features 
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CHAPTER FOUR 

RESULTS 

Microbial analysis was done through MOTHUR Pipeline. Before generating OTUs, 

sequencing reads were first subjected to pre-processing step to remove any sequencing 

and PCR error present. Quality control involved dropping off low-quality reads, end 

trimming, removal of adapter sequences, ambiguous sequences and all undesirable 

sequences then alignment of the improved sequences with SILVA Reference file was 

done. The alignment was based on V6-V8 regions and then it generates innumerable 

OTUs.  

Then all OTUs of all groups diabetic, pre-diabetic and normal were analyzed on the 

basis of phylum of microbial and a stacked bar plots were annotated which is depicted in 

figure 4.1 which has two axis, horizontal axis shows total number of samples 79 

including all groups diabetic, pre-diabetic and normal. Figure shows abundance and 

types of gut microbes Proteobacteria, Firmicutes and Actinobacteria were abundantly 

present in diabetic sample compared to pre-diabetic and normal.  Although 

proteobacteria also abundantly present in normal sample. This finding of normal sample 

is abnormal and could be due to normal group participant had been suffering gastro 

intestinal pathology or it could be due to mixed up sample with diabetics. However, 

result of diabetic sample corelates with finding of other study done before (Shin et al., 

2015). Table 4.1 shows Proteobacteria, Firmicutes and Actinobacteria and their 

percentage. Firmicutes was more than 20 times more abundant in the diabetes group 

compared to the prediabetes group and nine times more abundant in the diabetes group 

compared to the normal group. Actinobacteria was also more abundant in the diabetes 

than in the normal and prediabetic group. The abundance of Bacteroidetes was low in all 

the 3 groups. These microbes are incredibly higher in diabetes group in contrast to 

prediabetic and normal except proteobacteria higher in normal  
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Figure 4.1: Stacked bar plot showing the abundance of gut bacteria phyla. 

Phylum           Proteobacteria      Firmicutes        Actinobacteria 

  

(Number of samples) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

40….….……79 

Samples 
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Table 4.1: Percentage abundance of gut microbiota phyla 

 Percent Abundance (%) 

Gut Microbes Phyla Diabetic Normal Prediabetic 

Proteobacteria 89.68 98.63 0.65 

Firmicutes 9.25 0.98 0.28 

Actinobacteria 1.08 0.39 0.07 

OTUs analysis on the basis of gut microbial genera was done which is depicted in Figure 

4.3 
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Figure 4.2: gut microbial in genera of all the three groups 
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Figure 4.3 is depiction of microbiota at genera level found in all three groups diabetic, 

pre-diabetic and normal individual. Horizontal axis of figure indicate number of samples 

and vertical axis indicates microbial abundance. In all three groups, abundance of 

bacteria in descending order Escherichia_Shigella (34.30%), Klebsiella (32.79%), 

Salmonella (14.24%),  Enterobacteriaceae_unclassified (6.61%), Enterococcus (5.70%), 

Staphylococcus (3.39%), Bifidobacterium (1.58%) and Kluyvera (1.39%). This is 

depicted in Table 4.2 

Table 4.2: Bacteria genera in all groups together. 

Bacteria Genus Percent Abundance (%) 

Kluyvera 1.39 

Bifidobacterium 1.58 

Staphylococcus 3.39 

Enterococcus 5.70 

Enterobacteriaceae_unclassified 6.61 

Salmonella 14.24 

Klebsiella 32.79 

Escherichia_Shigella 34.30 

 100.00 

Table 4.3 shows each group diabetic, pre-diabetic and normal OTUs percentage in 

which Escherichia_Shigella is most dominant in diabetic that is 63.6% followed by 

Enterobacteriaceae_unclassified which is 60.3%, and Staphylococcus (51.4%). In pre-

diabetic dominant is Bifidobacterium (66.7%) and Enterococcus (61.4%). In normal 

dominant bacteria is Kluyvera (78.9%) and Salmonella (61.9%). These are the types and 

abundance of gut microbes in diabetic, pre-diabetic and normal individual. Reading of 

normal microbes is considered as abnormal and reason could be mixed sample or 

gastrointestinal pathology. Each group of microbes in percentage is depicted in table 4.3 

and bar diagram of the same is depicted in figure 4.3 



40 

Table 4.3: Percent abundances of gut bacteria genera in diabetic, prediabetic, and 

non-diabetic (normal) sample in each group. 

 Diabetic % Normal %   Prediabetic %  

Bifidobacterium 23.8 9.5 66.7 

Enterobacteriaceae_unclassified 60.3 38.2 1.5 

Enterococcus 34.3 4.3 61.4 

Escherichia_Shigella 63.6 34.7 1.7 

Klebsiella 28.2 51.4 20.4 

Kluyvera 21.1 78.9 0.0 

Salmonella 16.3 61.9 21.8 

Staphylococcus 51.4 5.4 43.2 

 

Figure 4.3: Bar chat of gut microbial in diabetic, pre-diabetic and normal 

Next model of analysis of gut microbes abundance in diabetic, pre-diabetic and normal 

is alpha diversity. This model of analysis further confirm the abundance of microbes in 

diabetic patient. Alpha diversity is a species richness (how many microbes) in each 

sample of diabetic, pre-diabetic and normal and is drawn by Rarefaction curve which is 

shown in figure 4.4 
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Figure 4.4: Rarefaction curve of diabetic 

Figure shows horizontal axis number of cluster of Nucleotides of microbes in diabetic 

and vertical axis indicates species richness which shows increased diversity and density 

of gut microbes in diabetic in contrast to pre-diabetic and normal which are depicted in 

figure 4.5and 4.6. 
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Figure 4.5: Rarefaction curve of normal sample 
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Figure 4.6: Rarefaction curve of pre-diabetic 

Alpha Diversity was calculated using the Chao 1 index and significant differences 

ascertained using the non-parametric Kruskal Wallis/Mann Whitney test. The diabetic 

samples were significantly more diverse than non-diabetic and prediabetic samples 
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(Chao 1 -value: 0.019888; [Kruskal-Wallis] statistic: 7.8353) which is statistically 

significant. 

Alpha diversity was confirmed by drawing the box plot figure 4.7 which also confirmed 

that diabetic sample was more diverse in both upper quartile and lower quartile whisker 

as compared to normal and pre-diabetic. 

 

Figure 4.7: Box plot of diabetic sample Alpha Diversity 

Key 
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Figure 4.8: 2 dimensional picture of Alpha Diversity plot. 

2 dimensional picture of Alpha Diversity of three groups diabetic, pre-diabetic and 

normal, horizontal axis shows number of samples of each group and vertical axis shows 

diversity of Microbes, diabetics sample is more diverse in contrast to pre-diabetic and 

normal samples a shown in figure 4.8. 

Another model of analysis is Beta diversity which tells us similarity or dissimilarity of 

microbes in OTUs between samples of diabetic, pre-diabetic and normal. The beta 

diversity was statistically significant [PERMANOVA] F-value: 4.1884; R-squared: 

0.099279; p-value < 0.002).  Beta diversity is depicted in 2 dimensional picture in figure 

4.9 which shows Euclidean distance between samples of diabetic, pre-diabetic and 

normal. Diabetic samples are closer in different microbes of OTUs which is separated by 

distinct microbes 
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Figure 4.9: Beta diversity measured by Euclidean distance between samples of 

Diabetic, Pre-diabetic and Normal, 2 Dimensional picture of Beta diversity 

Figure 4.10 which shows Principle Coordinate Analysis (PCOA) which is 3 dimensional 

picture of Beta diversity which separate similar microbes from each group. 
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Figure 4.10: Beta diversity in 3 dimensional picture of three groups of samples. 

Another model of microbial analysis is Linear Discriminative Analysis (LDA) and 

Linear Effective Size (LEFSE). This model of analysis give distinct OTU, which is OTU 

000001 which contain statistically significant bacteria genera of Escherichia_Shigella 

which is a metagenomic marker in diabetic sample.  

The LDA threshold for the score was 2. OTU000001 is significantly abundant in the 

diabetic group compared to the normal and pre-diabetic groups (p value =0.000588, 

FDR=0.004706). All other OTUs were not statistically significant we have left with 8 

OTUs which are better p value than rest of OTUs All OTUs are depicted in Table 4.4 in 

which significant OTUs are arrange in descending order  
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Table 4.4: Lefse values testing significance for abundant OTUs 

 P values FDR Statistics 

Otu000001 0.000588 0.004706 14.877 

Otu000004 0.089748 0.27498 4.8215 

Otu000003 0.12563 0.27498 4.1488 

Otu000007 0.13749 0.27498 3.9684 

Otu000020 0.23729 0.37966 2.877 

Otu000006 0.47369 0.63158 1.4944 

Otu000002 0.78462 0.89671 0.48511 

Otu000033 0.94045 0.94045 0.1228 

Significant OTU000001 is Escherichia_Shigella which P value is less than 0.05 and box 

plot was drawn for OTU000001 which is depicted in figure 4.11. In diabetic box plot is 

symmetrical and median line is in center and distance of upper and lower whisker is 

higher compared to pre-diabetic and normal. 
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Figure 4.11: Box plot of OTU000001. 

Another model of analysis is Random Forest. This model tells error in sample of 

diabetic, pre-diabetic and normal. Pre-diabetic group had relatively high error rate 

compared to other groups that is diabetic and normal. The normal group had the lowest 

error rate. This is depicted in figure 4.12. 
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Figure 4.12: Random Forest Clasication 

The robustness of Random Forest Classification was assessed using out of bag (OOB) 

error rate. Normal OOB rate is 0.392, OOB is depicted in Table 4.5. The class error for 

the pre-diabetic group was highest at 75% and lower at diabetic (39.4%) and Normal 

(26.5%) 
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Table 4.5: Out of bag (OOB) error. 

 Diabetic Normal Pre-diabetic Class.error 

Diabetic 20 10 3.0 0.394 

Normal 8 25 1.0 0.265 

Pre-diabetic 1 8 3.0 0.75 

Another model of analysis is Mean Decrease Accuracy (MDA)  

The higher value of Mean Decrease Accuracy (MDA), the higher the importance in 

variable in model. 

Important predictors of diabetes are OTU000001, OTU000006, OTU000003, and 

OTU000020. Important predictors of normal are OTU000004 and OTU000002. 

Important predictors of prediabetes are OTU000007. The Mean Decrease Accuracy 

(MDA) plot expresses how much accuracy the model losses by excluding each variable. 

Mean accuracy plot shown in figure 4.13 and table 4.5 shows important Predictors of the 

Diabetic, Pre-diabetic, and normal groups 
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Figure 4.13: Mean Decrease Accuracy (MDA) plot 

Figure 4.13 shows highest in the right side of bar is red and lowest point is blue , OTUs 

1,OUT 6 ,OTU 3 , and OTU 20 starts with red that is highest point ,higher value of 

MDA, the higher the importance in variable in model that is also confirmed by p value 

and these OTUs are diabetic sample and Table shows the contents in the OTUs that is 

Microbiomes 0f phyla and genera Table 4.6 shows that  
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Table 4.6: Important Predictors of the Diabetic, Pre-diabetic, and normal groups 

Predictor  Group  Phylum Family   Genus 

OTU000001 Diabetes Proteobacteria Enterobacteriaceae Escherichia_Shigella 

OTU000003 Diabetes Proteobacteria Enterobacteriaceae Enterobacteriaceae_unclassified 

OTU000006 Diabetes Proteobacteria Escherichia_Shigella Kluyvera 

OTU000020 Diabetes Firmicutes Staphylococcaceae Staphylococcus 

OTU000004 Normal Proteobacteria Enterobacteriaceae Salmonella  

OTU000002 Normal Proteobacteria Enterobacteriaceae Klebsiella 

OTU000007 Prediabetes  Firmicutes Enterococcaceae Enterococcus 

Finding from microbial metagenomics analysis through MOTHUR Pipeline and 

different model of analysis answer the specific objective; 1. Types and abundance of 

bacteria colonizing the gut of diabetic, pre-diabetic and normal patients from automatic 

annotation of OTUs by drawing a stacked bar chart for phyla and genera of microbes 

like in diabetic proteobacteria, firmicutes and actinobacteria higher in diabetic contrast 

to pre-diabetic and normal. Although proteobacteria was also higher in normal. In 

genera of microbes in diabetic are Escherichia_Shigella, 

Enterobacteriaceae_unclassified and Staphylococcus which are low in pre-diabetic and 

normal. 

Abundance of microbes in diabetic is confirmed by Alpha diversity and Beta diversity. 

MDA modules confirm that predictor of diabetes OTU000001, OTU000006, 

OTU000003 and OTU000020 which have lowest P value. Predictor of Pre-diabetic is 

OTU000007 that is Enterococcus and predictor of Normal are OTU000002 and 

OTU000004 that is Salmonella and Klebsiella and specific objective two metagenomic 

marker of diabetes is OTU000001 which contain Escherichia Shigella which has very 

statistically significant value less than 0.05 and it is also confirmed by Box plot and 

MDA predictor. 
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CHAPTER FIVE 

DISCUSSION 

In this study, 16s rRNA sequencing was performed on fecal samples obtained from 33 

diabetic, 33 Normal, and 13 prediabetic patients. The main objective was to profile the 

differential types and abundances of bacteria in each group and determine metagenomic 

markers of T2DM and prediabetes in patients. To determine the metagenomic markers 

of T2DM, we analysed the sequencing reads to determine the following four parameters 

within and between the groups: relative bacterial abundance, species diversity, 

significantly abundant genera, and important predictors.  

5.1 Types and Abundance of Bacteria Colonizing the Gut of T2DM, Pre-Diabetic, 

and Non-Diabetic (Normal) Patients Visiting South C Health Centre 

Relative bacterial abundance describes the percentages of specific bacteria making up 

the entire microbiome under study. The study findings show that the dominant phyla in 

the three groups under study were Proteobacteria, Firmicutes and Actinobacteria. 

Proteobacteria was most dominant in the normal group and least dominant in the 

prediabetic group. Firmicutes was more than 20 times more abundant in the diabetes 

group compared to the prediabetes group and nine times more abundant in the diabetes 

group compared to the normal group. Actinobacteria was also more abundant in the 

diabetes than in the normal and prediabetic group. The abundance of Bacteroidetes was 

low in all the 3 groups. 

Proteobacterial species are known to be archetypal signatures of microbial dysbiosis 

(Shin et al., 2015).  

Dysbiosis in the normal samples as proteobacteria is highest in contrast to diabetic and 

prediabetic samples, suggesting that such an interpretation should be used with caution. 

These unusual findings can be attributed to the use of patient samples. Unusual finding 

in normal samples could be due to mixed up samples or participant could be using 
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metformin medication for the diabetes and on data collection their sugar came under 

category of Normal sample. It could be also the participants of Normal sample had been 

suffering from some gastrointestinal disorder.  Abundance of proteobacteria, firmicutes 

and actinobacteria in diabetic samples signified the dysbiosis in diabetic group. Diabetic 

is more diverse than normal and prediabetic groups. 

High abundance of microbiota in diabetic group is confirmed by alpha diversity with a 

statically significant Chao 1 index and by using non-parametric Kruskal Wallis/Mann 

Whitney test. So high alpha density is also considered as metagenomic marker in 

diabetic group. Escherichia_Shigella, Enterobacteriaceae_unclassified and 

Staphylococcus are the Microbiota abundantly found in diabetic group. on the other 

hand, Salmonella and Kluyvera were abundantly in normal group. In the prediabetic, 

Bifidobacterium and Enterococcus were the dominant microbiota. This finding answered 

the study objectives 1 and 2 

In our study it was found that high firmicutes and bacteroidetes ratios (F/B) which is 

considered as metagenomic marker in diabetes since firmicutes was higher in diabetis in 

contrast to normal and prediabetic groups and very low bacteroidetes. The same finding 

was reported in previous studies (Sedighi et al., 2017; Komaroff, 2017). High F/B ratio 

is a marker of elevated plasma glucose (Larsen et al., 2010).  

5.2 T2DM Metagenomics Markers Based on the Identified Genera and Abundances 

of Bacteria 

Elevated F/B ratio in diabetic samples was observed and may be used as a metagenomic 

marker of T2DM. Our finding reported high level of Firmicutes and very low level of 

Bacteroids so F/B ratio very high in diabetic samples. Another putative T2DM 

metagenomic marker was the high alpha diversity of T2DM - the diabetic samples are 

significantly more diverse than non-diabetic and prediabetic samples. High alpha 

diversity may be used as a metagenomic marker of T2DM. In our study high alpha 
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diversity was confirmed by Rarefaction curve which showed higher number of clusters 

(Nucleotides) of microbes in diabetic sample. 

In diabetic group OTU000001 which has dominant genera of Escherichia_Shigella is 

metagenomic marker in our study which is statistically significant also confirmed by 

Box plot and other modules of analysis like linear discriminative analysis (LDA), linear 

effective size analysis (LEFSE) and mean decrease accuracy (MDA) which has 

important predictor OTU000001 in diabetes. This our observation of metagenomic 

markers in diabetes Escherichia_Shigella also support the finding by Maskarinec et al 

(2021) who recently reported elevated levels of E. shigella in patients with T2DM and 

associated this abundance with chronic systemic inflammation in T2DM disease 

(Mascarinec et al., 2021). The implication is that screening and treatment of 

Escherichia_Shigella infestation may perhaps slow down the low-grade inflammation 

hence assist in improving outcomes of T2DM disease. 

Metagenomic marker in pre-diabetic group is OTU000007 that is Enterococcus and 

Bifidobacteria. This is confirmed by statistical analysis through Linear Discriminative 

Analysis (LDA) and Linear Effective Size (LEFSE). Although P value is 0.1379 in 

Normal group important OTUs is OTU000004 and OTU000002 that is microbial genus 

Salmonella and Kluyvera. This unusual finding in Normal sample could be due to 

participant may had some gastrointestinal problem or could be mixed up samples from 

pre-diabetic. 

High level of Escherichia_Shigella in diabetes is responsible for upregulating of 

inflammatory pathway through genes of inflammatory that is NF-Kb transcription factor 

causing dysregulated immune response by releasing cytokines and chemokines through 

PAMPS (pathogen associated molecular pattern) ligating with PRR (Pattern Recognition 

Receptors) like Toll and Nod Receptors also Escherichia_Shigella causes opportunistic 

infection and organ damage (Grijalva, et al., 2015). 
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5.3 The correlation between metagenomic markers of T2DM, prediabetes and non-

diabetic subjects and their clinical manifestations 

The findings suggest that T2DM metagenomic markers that are reported in our studies 

can be correlated to clinical manifestation of T2DM in 2 ways. First, 

Escherichia_Shigella is known to produce pro-inflammatory endotoxins. A constant 

feature of T2DM disease is constant low-grade inflammation. The proinflammatory 

endotoxins associated with high abundance of Escherichia_Shigella in T2DM patients 

may be partly responsible for the chronic systemic inflammation in these patients. This 

observation seems to support findings by Maskarinec et al (2021) who recently reported 

elevated levels of E. shigella in patients with T2DM and associated this abundance with 

chronic systemic inflammation in T2DM disease (Mascarinec et al., 2021). The 

implication is that screening and treatment of Escherichia_Shigella infestation may 

perhaps slow down the low-grade inflammation hence assist in improving outcomes of 

T2DM disease. 

In the second instance, we observed high levels of opportunistic pathogens such as 

Escherichia_Shigella, Enterobacteriaceae_unclassified and Staphylococcus in the T2DM 

group. Many studies have previously shown that people with T2DM are more 

susceptible to infections (Grijalva, et al., 2015) compared to normal persons. The 

clinical implication is that screening of the gut microbiome may be a useful strategy in 

monitoring and managing bacterial infections in people with T2DM.   

5.4 Limitations of the study 

 Variables and confounders like age, body mass index (BMI), blood pressure, 

medication and diet are not controlled in this study. These variables affect 

normal gut microbiota and causes imbalance in proportion, diversity and density 

of microbes and the end result is through PAMPS and DAMS which ligats with 

nods and tolls like receptors and causes dysregulation of immune response that is 

cytokine and chemokines which causes upregulation of transcription factors 
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NFKV and cuases chronic inflammation that down regulates the insulin receptors 

in cells and causes propensity of T2DM and organ damage  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions  

This study sought out to find the metagenomic markers of diabetes in patients attending 

South C Medical Centre in Niarobi and also type and abundance of microbes colonizing 

the gut of diabeteic, pre-diabetic and Normal patients visiting South C Medical Centre 

Nairobi using 16s rRNA sequencing, 79 samples were investigated from diabetic, non-

diabetic, and prediabetic patients. This study found out that: 

 High abundance of microbiota in diabetic group and types of microbiota which 

are confirmed in our finding that microbiota in diabetic are Escherichia_Shigella, 

Firmicutes, Actinobacteria and Proteobacteria which answers our objectives 1 

and 2. Therefore, Putative T2DM Metagenomic markers include 

1. High levels of Escherichia_Shigella 

2. Elevated levels of Firmicutes and Actinobacteria 

3. High FB Ratio 

4. Significantly high alpha diversity 

High levels of Escherichia_Shigella in the T2DM patients contributes to progression of 

T2DM disease through dysregulated immune response through cytokines and 

chemokines by ligating PAMPS with PRR(pattern recognition receptors) causing 

inflammatory genes NF-Kb and increased catabolism cells and organs damage (Text 

book of medicine by Harrisons and.Molecular Biology by Lauren Pecorino) 

High levels of opportunistic pathogens such as Escherichia_Shigella, and Kluyvera in 

the diabetic group contributes to susceptibility of infections in diabetes.(Grijlva,et al., 

2015)  
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6.2 Recommendations and Future Prospects 

1. From this study it has been established our diabetic sample is diversed and 

densed ,   and metagenomic marker of diabetes is Escherichia_Shigella, it is 

recommended that medical doctors and Diabotologist put consideration in their 

management of diabetes, metagenomic marker that is Escherichia_Shigella in 

treatment to avoid further progression and mitigation of complication. 

2. From this study it is also recommended that consideration for fecal implantation 

on T2DM be made from Normal gut flora to abate and mitigate the complication 

from T2DM. 

3. Future studies should be conducted to validate the findings of this study 

considering the variables like age, BMI, blood pressure, medication and diet 

which also affect the gut microbial normal flora and causes dysbiosis and 

increase propensity of diabetis. 
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APPENDICES 

Appendix I: Informed Consent Explanation  

PROJECT TITLE: MICROBIAL METAGENOMIC MARKERS OF TYPE 2 

DIABETES MELLITUS (T2DM) IN KENYA PATIENTS 

PRINCIPAL INVESTIGATOR: BINOD KUMAR 

INTRODUCTION 

The study is to be carried out for metabolic Disease, adult-onset type 2 Diabetes 

Mellitus, in order to establish how some gut micro biota act as catalyst in exacerbating 

unabated progression of type 2 Diabetes Mellitus irreversibly and how some micro biota 

play protective role in cessation of progression of type 2 Diabetes Mellitus. The study 

will help us to find out early arrest of T2DM which when afflicted, person has a lifelong 

medication and its metabolic complication in the body leads to debilitating and life-

threatening vital organ damage. In order to establish which bacteria causes this, we need 

to take stool sample from three groups of persons; persons with diabetes, persons with 

prediabetes and person who don’t have diabetes. If you accept to take part in the study, 

then we will take permission from you and take stool sample. Please take time   to read 

this information sheet about the study, and when you have read, feel free to ask question 

or to seek clarification on any issue related to this study or participation in it, or both. 

PURPOSE AND BENEFITS 

The purpose of the study is to see which bacteria in Diabetes aggravate the condition and 

in prediabetes progress unabated to full grown diabetes and the bacteria which has 

protective effects in cessation of progression. This study can latter serve to provide an 

alternative care. There will be free consultation with the Doctor and necessary assistance 

will be provided. The information obtained would contribute to overall improvement of 
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health status of diabetic patients and the participating volunteers are at forefront of any 

benefits achieved.  

PROCEDURE TO BE USED 

Participation in this study is voluntary. You will be required to understand the 

procedures involved. This will be made clear to you by the recruiting personnel. If you 

agree and you are comfortable with the procedure involved after having understood the 

work then you will be required to sign the consent form. Upon this agreement, you will 

be required to give your stool sample for study. This is purely voluntary and you can opt 

out even after signing in case you won’t feel comfortable.  

RISKS, HAZARDS AND DISCOMFORTS ASSOCIATED WITH THE 

PROCEDURES  

Giving stool sample will not cause any harm to you and is less intrusive as the whole 

procedure will be performed at home. For random blood sugar test, only tiny drop of 

blood obtained by puncturing the fingertip is not harmful. This is usually less than 

0.5mls of blood. 

CONFIDENTIALITY 

Your identity and test results will remain confidential. As a study participant, you will 

be assigned a number code, and yourself and the test results that will be carried out on 

the samples obtained from you, will remain confidential. All information and medical 

records will remain confidential, and will remain in lockable cabinet and will only be 

accessible to the people carrying out this study. 

CONTACT OF THE SITE PRINCIPAL INVESTIGATOR: If you need more 

information about the study, please call: BINOD KUMAR _Cell phone: 0721510216 



76 

CONTACT OF JOMO KENYATA UNIVERSITYOF AGRICULTURE AND 

TECHNOLOGY ETHICS REVIEW COMMITTEE: If you have questions about your 

rights as a research participant, please contact: JKUAT ETHICAL COMMITTEE 

SECRETARY Telephone +254725996171, Email: ethics@jkuat.ac.ke 

 INFORMED CONSENT AGREEMENT FOR PARTICIPANTS  

I, Mr./Mrs./Miss_______________________________________, being an adult aged 

18 years and above do hereby give permission to Binod Kumar for new study entitled 

MICROBIAL METAGENOMIC MARKERS OF TYPE 2 DIABETES MELLITUS 

(T2DM) IN KENYA PATIENTS.I have been explained to about the test to be done on 

my stool, I have been given opportunity to ask question and to seek clarification of the 

issues I had not understood clearly   and I am satisfied with the answer and the 

explanation given. I have also been informed that I if have additional question or 

concerns about the study later, I can contact the researcher in charge of the study or the 

Ethics Review Committee at Jomo Kenyatta University of Agriculture and Technology  

I accept and I can provide stool sample for the test needed in this study.  

 

________________________________                ___________________ 

Signature (or Thumb Print) of Participant                   Date 

 

Witnessed by: 

__________________________________ 

Name of PI or study coordinating.  
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Appendix II: Kiswahili Version of Informed Consent 

KICHWA CHA UTAFITI: MICROBIAL METAGENOMIC MARKERS YA 

TYPE 2 DIABETES MELITUS (T2DM) KWA WAGONJWA WA KENYA 

MCHUNGUZI MKUU: BINOD KUMAR 

UTANGULIZI: Utafiti huo unafanywa kwa Ugonjwa wa kimetaboliki, ugonjwa wa 

kisukari wa watu wazima aina ya 2, ili kujua jinsi baadhi ya utumbo wa biota hufanya 

kama kichocheo katika kuzidisha maendeleo yasiyopunguzwa ya aina ya 2 ya ugonjwa 

wa kisukari  bila kubadilika na jinsi biota ndogo ndogo hucheza jukumu la kinga 

kukomesha maendeleo ya aina 2 ya ugonjwa wa kisukari  

Utafiti huo utatusaidia kujua dalili za mapema za  T2DM ambayo wakati mtu anaugua, 

ana dawa ya maisha na shida yake ya kimetaboliki mwilini husababisha kudhoofika na 

kutishia maisha kwa uharibifu muhimu wa viungo. 

Ili kujua ni bakteria gani husababisha hii, tunahitaji kuchukua sampuli ya kinyesi kutoka 

kwa vikundi vitatu vya watu; watu wenye ugonjwa wa sukari, watu walio na prediabetes  

na watu ambao hawana ugonjwa wa kisukari. 

Ikiwa unakubali kushiriki katika utafiti, basi tutachukua ruhusa kutoka kwako na 

kuchukua sampuli ya kinyesi. Tafadhali chukua muda kusoma karatasi hii ya habari juu 

ya utafiti, na wakati umesoma, jisikie huru kuuliza swali au kutafuta ufafanuzi juu ya 

suala lolote linalohusiana na utafiti huu . 

KUSUDI LA UTAFITI: Kusudi la utafiti ni kuona ni bakteria gani katika ugonjwa wa 

sukari wanaongeza hali hiyo na katika ugonjwa wa prediabetes nini hufanya haswa 

kuendelea bila kukoma  na bakteria ambayo ina athari za kinga katika kukomesha 

maendeleo. 
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UTARATIBU WA KUTUMIWA: unaweza kujumuishwa katika utafiti huu ikiwa 

utasaini fomu ya idhini inayopeana idhini ya kushiriki katika utafiti na kutoa ruhusa ya 

kutoa sampuli ya kinyesi chako kwa masomo. 

HATARI, HATARI NA HASARA HUSHIRIKIANA NA TARATIBU: Kutoa sampuli 

ya kinyesi hakutasababisha madhara yoyote kwako. 

USIRI: Utambulisho wako na matokeo ya mtihani yatabaki kuwa siri. Kama mshiriki wa 

utafiti, utapewa nambari, na wewe mwenyewe na matokeo ya mtihani ambayo 

yatafanywa kwenye sampuli zilizopatikana kutoka kwako, zitabaki kuwa siri. Rekodi 

zote za habari na matibabu zitabaki kuwa za siri, na zitabaki kwenye wodrobu  

zinzoweza kufungwa na zitapatikana tu kwa watu wanaofanya utafiti huu. 

MAWASILIANO YA MCHUNGUZI WAKUU WA SEKTA: Ikiwa unahitaji habari 

zaidi kuhusu utafiti huu, tafadhali piga simu: BINOD KUMAR _Cell simu: 0721510216 

MAWASILIANO YA KAMATI YA MAPITIO YA MAADILI YA KITETE 

KENYATTA: Ikiwa una maswali juu ya haki zako kama mshiriki wa utafiti, tafadhali 

wasiliana na: KATIBU WAJKUAT ERC, Simu: +25472599171 ethic@jkuat.ac.ke 

Mimi, Bwana / Bi,Bibi._______________________________________, nikiwa mtu 

mzima mwenye umri wa miaka 18 na zaidi ninampa ruhusa Binod Kumar kwa utafiti 

mpya uitwao MICROBIAL METAGENOMIC markers OF TYPE 2 DIABETES 

MELLITUS (T2DM) kwa  wagonjwa wa KENYA. Nimeelezwa kuhusu mtihani 

utakaofanyika kwenye kinyesi changu, nimepewa nafasi ya kuuliza swali na kutafuta 

ufafanuzi wa maswala ambayo sikuwa nimeelewa wazi na nimeridhika na jibu na 

ufafanuzi uliotolewa. Nimearifiwa pia kwamba ikiwa nina swali la ziada au wasiwasi 

juu ya utafiti baadaye, ninaweza kuwasiliana na mtafiti anayesimamia utafiti huo au 

Kamati ya Ukaguzi wa Maadili katika Hospitali ya Kitaifa ya Kenyatta. 

Ninakubali na ninaweza kutoa sampuli ya kinyesi kwa jaribio linalohitajika katika utafiti 

huu. 
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________________________________ ___________________ 

Saini (au Chapisha Kidole gumba) ya Tarehe ya Mshiriki 

Ameshuhudiwa na: 

__________________________________ 

Jina la PI au mratibu wa masomo     

 


