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ABSTRACT 
Soil water repellency (SWR) is a temporary property of the soil that changes the functionality 
of the soil across a soil-specific range in soil moisture content (W). The severity and persistence 
of soil water repellency in agricultural soils are important for understanding and predicting 
their effects on the soil hydrological processes that optimise plant growth. Therefore, this 
study aimed at characterising the persistence of SWR using the Water Drop Penetration Time 
(WDPT) test, evaluating the SWR curve as a function of gravimetric water content from the 
WDPT results, and finally developing relationships between SWR parameters, i.e.; total SWR 
(SWRAREA), critical moisture content (Wc), and soil properties (total organic carbon, sand, silt, 
clay), to understand the persistence of SWR and its effect on water flow. The degree of SWR as 
a function of soil moisture content was measured and monitored from oven-dry conditions to 
the water content at which the soils turned hydrophilic (Wc). SWRAREA was calculated as the 
trapezoidal area under the SWR-w curve. A total of 37% of the soils representing the six 
dominant soils investigated were water-repellent and expressed wide ranges in clay (10–40%) 
and TOC (0.67–6.08%). The SWR-w curves were either single or double-peaked with SWRAREA 
ranging from 8.38 seconds/%W to 24.91 seconds/%W. The most important soil property in 
explaining SWRAREA and Wc was TOC. The inclusion of clay and silt in the multiple linear 
regression (MLR) expression of SWRAREA significantly improved the prediction of SWRAREA to 
85%. Furthermore, an upper limit for critical water content was derived from the simple 
relationship between Wc and TOC, which could be used to improve agricultural soil irrigation 
practises in Murang'a County, Kenya. When more comprehensive data for each soil type is 
available, it is recommended to develop soil type-specific models for Wc as a function of TOC.  
 
Key words: Soil texture; hydrophobic; water drop penetration time (WDPT); critical soil water 
content (Wc). 
 
1.0 Introduction  
Soil water repellency (SWR) is a property of the soil that significantly reduces its functionality, 
thereby reducing agricultural production (Müller et al., 2010, de Jonge et al., 2009). The effects 
on soil hydrological functions include reduced water infiltration (Doerr et al., 2000; Leighton-
Boyce et al., 2007), increased leaching risk of fertilizers and pesticides to groundwater sources 
(Dekker and Ritsema, 1995), increased overland flow, soil erosion, and decreased soil water 
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storage (Doerr et al., 2000). Primarily, the main cause of soil water repellency is thought to be 
the coating of soil particles by organic substances originating from vegetation (Franco et al., 
2000), organic contaminants from raw sewage and oil spills (Roy et al., 2003), and soil 
microorganisms (Dekker and Ritsema, 1996; Schaumann et al., 2007). However, the governing 
mechanism of soil water repellency formation is associated with the re-orientation and 
reconfiguration of hydrophobic substances when they interact with water (Leelamanie and 
Karube, 2007; Regalado et al., 2008). 
 
Soil water repellency is a transient property and is only exhibited across a soil-specific water 
content (W) (Graber et al., 2009). However, the severity of repellency varies non-linearly with 
the soil water content. Soil water repellency occurs within a transition zone of water content 
that is delimited by an upper critical water content (Wc), above which the soil becomes 
hydrophilic (de Jonge et al., 2007; Kawamoto et al., 2007; Regalado et al., 2008). Wetting 
patterns in repellent soils can reorient the hydrophobic substances in the soil and expose their 
ends, which in turn changes the surface tension of the soil and shifts between hydrophobic 
and hydrophilic conditions in the soil (de Jonge et al., 1999; Doerr et al., 2000; Graber et al., 
2009). 
 
The persistence of SWR can be described by an SWR-w characteristic curve, in which soil water 
repellency is expressed as a function of gravimetric soil water content (de Jonge et al., 2007; 
Regalado et al., 2008; Regalado and Ritter, 2009a; Karunarathna et al., 2010a) or in terms of 
pF values. The SWR-w curve can either start from zero (0 kg/kg) water in oven-dry soil 
conditions or at an air-dry state of the soil (de Jonge et al., 2007; Karunarathna et al., 2010a, 
2010b) and continue until the soil turns wettable at the critical moisture content (Wc). The 
area underneath the SWR-w curve represents the total SWR of soil (SWRAREA), as shown in 
Figure 1. 
 

 
Figure 1: Soil water repellency (SWR) as a function of soil-water content and the derived 
parameters. SWR60 are determined after oven-drying soil samples 60 °C. The SWR AD is 
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determined at airdried conditions. Finally, Wc is the critical soil-water content at which the soil 
turns hydrophilic, and the area the curve represents the total degree of SWR (SWRAREA). 

SWR-w curves for water-repellent soils are non-linear and are either bimodal (double peak) or 
unimodal (single peak). The double-peaked curves usually show repellency at oven-dry 
conditions, but the persistence of SWR decreases with increasing soil water content to a local 
minimum while still maintaining hydrophobicity or becoming temporarily wettable 
(Wijewardana et al., 2016; de Jonge et al., 2007). Afterwards, the persistence of SWR increases 
again to a local maximum (second peak) and again decreases towards Wc. On the other hand, 
the unimodal curves can either exhibit hydrophobicity or are hydrophilic at oven-dry soil 
conditions. 

Monitoring the change in soil water repellency with soil water content takes a long time. 
Nevertheless, the procedure can be used to estimate SWR parameters such as the integrated 
trapezoidal area under the SWR-w curve (SWRAREA) and Wc, which are easily derived from the 
measurable soil properties (Regalado et al., 2008). SWRAREA and Wc are the key parameters 
that are used for characterising the persistence or severity of SWR in the soil. On the other 
hand, soil organic carbon has been reported as the primary soil property controlling the 
severity and persistence of SWR across several ranges of soil moisture contents. Therefore, 
SWRAREA and Wc increase with increasing soil organic carbon (de Jonge et al., 1999; Hermansen 
et al., 2019; Regalado and Ritter, 2005). Hermansen et al. (2019) suggested a linear 
relationship between Wc and soil organic carbon to prevent the onset of SWR and the 
associated effect on the soil hydrological process as a guide for irrigation practices. 

Various methods are used in measuring soil water repellency, which include the Water Drop 
Penetration Time (WDPT) test, the Molarity of Ethanol Droplet (MED) method, and the Sessile 
Drop Method (SDM). WDPT tests the persistence of a drop of water on the surface of the soil, 
hence SWR persistence (King, 1981; Van’tWoudt, 1959). MED measures the severity of SWR, 
which describes how strongly the soil repels water (De Jonge et al., 1999; Kawamoto et al., 
2007). It only works for repellent soils with contact angles greater than 90°. On the contrary, 
the SDM measures all ranges of SWR that are in soils with soil-water contact angles between 
zero degrees and ninety degrees (Chau et al., 2014). 

The severity and persistence of soil water repellency in agricultural soils are important in 
understanding and predicting their effects on the soil hydrological processes that optimise 
plant growth. However, there is a limited understanding of the persistence (measured by 
WDPT) of SWR and its effect on water flow. Although it is very well known that SWR decreases 
with an increase in soil moisture content, little is known about the threshold soil moisture 
conditions needed for braking SWR (Ganz et al., 2013; Jordan et al., 2013). Murang’a County 
falls in agro-climatic zone III, which is characterized by different climatic conditions ranging 
from rainfall, evapotranspiration, and temperatures. All these factors influence the soil-
forming process, which means that the soils in this study area differ in their hydrophysical 
properties. The soil formation factors, such as the parent material, vegetation, and land use 
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(Muller and Deurer, 2011), are also varied, and therefore the physical factors that influence 
soil water repellency, such as soil texture, bulk density, and organic matter, also vary. Given 
the agricultural significance of Murang’a County in Kenya and bearing in mind the negative 
impacts of soil water repellency in agriculture, it was necessary to study the soil hydrological 
behavior, especially the development, distribution, and persistence of soil water repellency in 
this setting. 

Total organic carbon (TOC) has been reported to be the most important soil property that 
controls the severity and persistence of soil water repellency in most soils (Hermansen et al., 
2019). However, soil organic carbon controls soil water repellency with other soil constituents 
such as soil texture and microbial organisms. Thus, this paper aims at examining the basic 
relationship between soil water repellency and soil water content from oven-dry to wet 
conditions for the soils sampled across Murang’a County and further obtain a critical moisture 
content from the basic properties that can be advantageous in preventing the occurrence of 
soil water repellency in agricultural soils. 
 
2.0 Materials and methods 
2.1 Study area 
Murang’a County is in the central region of the Republic of Kenya, bordering Nyeri to the north, 
Kirinyaga, Embu, and Machakos to the east, Kiambu to the south, and Nyandarua to the west. 
It has a total area of 2,558.8 km2 and is situated between latitudes 00 34’ and 10 7’ South and 
360 00’ and 370 27’ East (Murang'a CIDP, 2018–2022). The county has three distinct climate 
zones, including equatorial, sub-tropical, and semi-arid zones. Its two rainy seasons are March-
April-May (MAM) and October-November-December (OND). Kangema, Gatanga, and the 
higher parts of Kigumo and Kandara are generally humid and wet due to the influence of the 
Aberdares. The eastern region receives minimal rainfall, and crop production requires 
irrigation. 
 
The geology consists of volcanic rock structures, and most of the soils have developed from 
volcanic activities. The soils are generally fertile and have good drainage. The soil types that 
dominant in the county and are closely related to agricultural production, as mapped by Kenya 
Crop Land Layer, were considered for sampling. These soil types are Umbric Andosols, Humic 
Nitisols, Rhodic Ferralsols, Chromic Cambisols, Haplic Lixisols, Haplic Acrisols, Dystric 
Cambisols, and Humic Cambisols, as classified by the 1988 FAO-UNESCO Soil Map of the World. 
The common crops grown in this study area, especially by irrigation, include cabbage, spinach, 
kale, onions, tomatoes, beans and maize, or field corn. 
 
Fifty-two (52) soil samples were collected at two soil depths 0–15 cm and 15–30 cm from 26 
sampling sites and were spread across the dominant soil types under agriculture in Murang’a 
County, Kenya. These soil types included Humic Nitisols UP (NTua), Humic Nitisols IB2 (NTub), 
Umbric Andosols (ANu), Rhodic Nitisols (NTr), Rhodic Ferralsopls (FRr)and Ferrallic Cambisols, 
as shown in Figure 2. These soil types were classified according to the FAO/UNESCO Soil Map 
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of the World (1988) and complemented with soil layers from the Kenya Soils and Terrain 
Database (KENSOTER). 
 
The sampling unit boundaries were mapped in ArcGis (ArcMap 10.5) such that each soil type 
represented a sampling unit. Judgmental sampling was used to select the soil types that were 
most relevant to the study, and this was based on the rooting depth of most crops grown in 
the areas. Judgmental sampling involves the selection of sampling units based on expert 
knowledge or professional judgment. It is useful when there is reliable historical and physical 
knowledge about a relatively small feature or condition to develop an efficient sampling design 
(QA, 2002). 
 

 
 
Figure 2: Map Showing Location of the 26 Sampling Sites Distributed Across Murang'a County 

in Kenya. The samples represent the six soil types: Humic Nitisols UP(NTua), Humic Nitisols 
IB2 (NTub), Umbric Andosols (ANu), Rhodic Nitisols (NTr), Rhodic Ferralsols (FRr) and Ferralic 

Cambisols (CMo) 
 
In this case, the average effective rooting depth of most common crops grown in the area was 
used to select the soils that were deep enough to allow effective exploitation of water and 
nutrients by crop roots. Random sampling was then used to select the sampling sites in each 
of the study areas across all the selected soil types. From each sampling site, approximately 1 
kg of disturbed and undisturbed soil samples was collected into sampling bags, which were 
then labelled with the GPS location of the site, soil type and depth of sampling. The samples 
were then transported to the laboratory in sealed bags for analysis. 
 
2.2 Laboratory methods 
The soil texture was determined in the laboratory using the hydrometer method (Bouyoucos, 
1962), while the gravimetric oven drying method was used to determine the soil moisture 
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content and bulk density, from which the porosity of the soil was calculated. Total organic 
carbon (TOC) content was determined by the wet-digestion method (Walkley and Black, 1934).  
 
2.3 Soil preparation and water repellency measurements 
Before measuring soil water repellency, soil samples were thoroughly mixed in their moist 
field conditions. The soil samples were then oven-dried at 60oC to determine the potential or 
current risk of soil water repellency and persistence. This gives an estimate of the potential 
soil water repellency and it is the highest level of repellency that can be reach when the soil 
dries out completely (Ritsema & Dekker, 1994; Deurer et al., 2011). Estimated soil water 
repellency provides insight into the potential consequences of soil hydrophobicity in the event 
of a drought. In situ measurements in field moist conditions, on the other hand, provide the 
actual soil water repellency (Müller et al., 2014). High drying temperatures have been 
observed to influence the formation of organic material coatings responsible for water 
repellency (Dekker et al., 1998). Therefore, drying soils at 105oC can give an incorrect estimate 
of repellency. In different studies (Doerr and Thomas, 2000), air drying was suggested as the 
best approach to studying the soil water repellency-moisture relationship. This was the 
approach adopted for this study. 
 
Changes in soil moisture content during the air-drying process were used to monitor soil water 
repellency. This was conducted in two phases: a wet phase and a dry phase. Wet phase: The 
actual soil water repellency was determined by performing the Water Drop Penetration Time 
Test (WDPT) on the field-gathered moist soil samples before oven-drying them at 600C for 48 
hours, after which the soil moisture content reduced to absolute zero (Crockford et al., 1991; 
Berglund & Persson, 1996; De Jonge et al., 1999). The oven-dried soil samples were then 
divided into three replicates before being saturated for 24 hours in the laboratory. The 
samples were then exposed to air-dry conditions in a greenhouse to simulate the ideal field 
conditions. 
 
Dry phase: Soil samples were left uncovered under greenhouse conditions (240C-390C) to allow 
for gradual drying. Soil moisture loss was determined by weighing the samples each day before 
the soil water repellency measurements were taken. This was done for seven consecutive 
days. WDPT was carried out on each soil sample by placing 5 drops of deionized water on a 
smoothed soil surface and recording the full drop penetration time in seconds (Doerr, 1998). 
Three replicates were done for each soil sample until the soil moisture content reached a 
stable minimum, i.e., the samples attained a constant weight. Air-dried samples were then 
oven-dried at 105oC to estimate the soil's dry weight. 
 
2.4 Data analysis 
The SWR-w curve was plotted after estimating soil water repellency as a function of actual 
gravimetric soil moisture content. The total SWR of each sample was determined as the 
trapezoidal integrated area under the SWR-soil water content curve. The critical soil water 
content was determined as the soil water content at which soil turned hydrophilic. The 
Integrative Repellency Dynamic Index (IRDI) was used to calculate the average soil water 
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repellency function, which gives a measure of the mean water repellency in the soil moisture 
interval between zero (at oven dry condition) and critical soil moisture content (when soil turns 
hydrophilic) (Regalado and Ritter, 2005). The average was calculated as shown in equation (1) 
and tabulated in Table 1. 
 

𝐼𝑅𝐷𝐼 =
𝑆𝑊𝑅𝐴𝑅𝐸𝐴

𝑊𝑐
                                                                                                           Equation 1       

                                                                                                                

 
Where; 
IRDI= Integrative Repellency Dynamic Index (seconds) 
SWRAREA= trapezoidal integrated area under the SWR-w curve (seconds/%soil moisture content) 
Wc= critical soil moisture content at which the soil turned hydrophillic (seconds) 
 
Hydrophilic soil samples were excluded from further examination. Linear correlations were 
evaluated by the coefficient of determination (R2). Forward multiple linear regressions (MLRs) 
were used to correlate physicochemical properties (clay, silt, sand, and TOC) to SWRAREA and 
Wc. 
 
The Akaike information criterion (AIC) is a measure of the fitness of a model used to correlate 
data (Bozdogan, 1987). It was applied to evaluate the accuracy of the SWR and Wc correlations 
with soil properties. The best model is considered to be the one with a low AIC value. This 
value was calculated using Equation 2, given as: 
 

𝐴𝐼𝐶 = 𝑛[𝑙𝑛(2𝜋) + 𝑙𝑛(∑
(𝑑𝑖)2

𝑛−𝐾

𝑛
𝑖=1 ) +1] +K                                                                       (Equation 2) 

Where; 
K = number of input variables 
n = number of samples 
di= residual value between the measured and obtained value from the model 
 
3.0 Results and discussions 
3.1 Soil water repellency persistence 
The actual soil water repellency of the field moist samples varied between 1 second and 355 
seconds, which means that, according to Doerr et al.'s (2000) classification of water repellency, 
SWR ranged from wettable to strongly repellent. Among the 52 soil samples investigated in 
Murang’a, nineteen (19 out of 52) samples, or 37%, were hydrophobic. The hydrophobic soils 
from Murang’a showed an actual water repellency (SWRACT) of between 5 and 355 seconds 
and a total organic carbon range of between 1.38 and 6.08%. These soils were classified into 
sand-clay loam (13 samples), clay (2 samples), and sandy loam (4 samples). Generally, Humic 
Nitisols in UP showed the highest mean actual soil water repellency of 106.5 seconds, with 
Rhodic Nitisols showing the least mean actual repellency of 6.7 seconds in Murang'a, as 
presented in Table 1. 
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Table 1: Soil Characteristics: Clay, Silt, Sand, Total Organic Carbon (TOC), SWR after Oven 
Drying at 60oC(SWR60) and 105oC, the Total Degree of Soil Water Repellency (SWRAREA), the 

Critical Soil Moisture Content (Wc) and the Integrated Repellency Dynamic Index (IRDI) of the 
19 Hydrophobic Soil Samples in Murang’a County. 

 
 

Soil Unit 

Umbric 

Andosol 

Humic Nitisol, 

Up 

Humic 

Nitisol, IB2 

Rhodic 

Nitisol 

Rhodic 

Ferralsols 

Ferrallic 

Cambisols 

n 3 6 4 2 2 2 

Sand (%) mean 58.67 59.33 53 52 86 86 

min 56 44 52 52 86 86 

max 60 68 54 52 86 86 

sd 2.31 11.91 1.16 0 0 0 

Clay (%) mean 31.33 26.67 39 32 14 10 

min 30 20 38 32 14 10 

max 34 40 40 32 14 10 

sd 2.31 10.33 1.16 0 0 0 

Silt 

(%) 

mean 10 14 8 16 0 4 

min 10 12 6 16 0 4 

max 10 16 10 16 0 4 

sd 0 1.79 2.31 0 0 0 

TOC 

(%) 

mean 3.76 4.40 5.74 5.82 1.13 1.15 

min 1.48 3.53 5.51 5.55 1.1 0.67 

max 5.04 6.03 6.00 6.08 1.16 2.41 

sd 1.98 1.11 0.21 0.38 0.04 1.23 

SWR60(seconds) 

mean 2.78 11.22 2.10 3.35 2.65 5.59 

min 1.18 0.60 0.80 1.67 2.03 5.45 

max 5.69 22.41 3.03 5.03 3.26 5.73 

sd 2.53 8.94 1.06 2.38 0.87 0.20 

SWR105(seconds) mean 1.94 1.76 1.75 1.42 0.84 1.91 

min 1.31 1.13 0.81 1.4 0.79 1.16 

max 2.42 3.06 2.63 1.44 0.89 2.65 

sd 0.57 0.77 0.77 0.03 0.07 1.05 

SWRACT (seconds) mean 9.67 106.47 7.7 6.65 7.1 8.2 

min 6.3 5 5.3 6.2 7 7.1 

max 16.3 355 10 7.1 7.2 9.3 

sd 5.75 144.34 2.55 0.64 0.14 1.56 

SWRAREA (sec/%smc) mean 21.93 13.39 24.91 23.67 9.11 8.89 

min 20.61 8.38 23.19 20.46 8.54 8.38 

max 22.76 22.21 26.41 26.90 9.69 9.40 

sd 1.16 4.95 1.34 4.55 0.81 0.72 

wc(%smc) mean 10.47 9.75 13.23 11.29 8.27 6.56 

min 9.5 8.00 11.73 10.04 7.53 6.18 

max 11.48 11.97 16.67 12.54 9.01 6.94 

sd 0.99 1.57 2.31 1.77 1.05 0.54 

IRDI (seconds) mean 2.13 1.38 1.90 2.09 1.12 1.53 

min 1.95 0.84 1.39 2.04 1.11 1.37 

max 2.33 1.98 2.25 2.14 1.14 1.69 

sd 0.20 0.48 0.37 0.07 0.02 0.23 

TOC-Total Organic Carbon; IRDI- Integrative Repellency Dynamic Index; SWR60- Soil Water Repellency 60oC; SWRACT- Actual Soil Water 

Repellency; SWRAREA-Total Soil Water Repellency; SWR105-Soil Water Repellency at 105 °C; WDPT-Water Drop Penetration Time; Wc- 

Critical Soil Water Content 
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The potential water repellency (SWR60) of the samples was also measured at 60 0C to estimate 
the highest level of repellency that can be reached when the soil dries out completely. The 
actual soil water repellency (SWRACT) was observed to be higher than the potential soil water 
repellency after heating (SWR60) across all the soil samples. Despite the fact that high 
temperatures have been shown to influence hydrophobicity due to reorientation of 
hydrophobic molecules (De Jonge et al., 1999; Doerr et al., 2000), the soils studied here had 
lower soil water repellency at oven dry state (600C). The results agreed with those observed 
by Crockforf et al. (1991) and Berglund and Persson (1996), who also observed that soil water 
repellency was lower in the soils at their oven-dry conditions and then increased to a peak at 
various soil moisture levels as shown in the SWR-w curves. This was because the soil organic 
carbon tends to lose its stabilizing effect during drying (Urbanek et al., 2014). However, the 
relationship between potential and actual soil water repellency is not obvious, and thus actual 
soil water repellency cannot be derived from potential soil water repellency, as stated by 
Graber et al. (2006).  
 
3.2 Soil water repellency-soil moisture content curves (SWR-w Curves) 
With respect to repellency and soil moisture content dynamics observed, the soils expressed 
a range of behaviors (Figure 4). It is clear from Figure 4 that a wide range of published SWR-W 
curve shapes (De Jonge et al., 1999; Karunarathna et al., 2010a; Regalado and Ritter, 
2009b;Regalado et al., 2008) were confirmed. Single-peak SWR-w curves (A, B, G, P, Q, R, and 
S) and double-peak SWR-w curves (C, D, E, F, H, I, J, K, L, M, and N) were observed. The curves 
were either rising from a repellent or a wettable state at oven-dry conditions (60°C). The curves 
rising from a repellent state are shown in Figure 4 (D, H, I, J, L, M, and N), while those rising 
from a wettable state are shown in Figure 4 (A, B, C, E, F, G, O, P, Q, and R). The soils with 
bimodal curves were either repellent or hydrophilic at oven-dry conditions. However, the 
degree of soil water repellency for the bimodal curves decreased to a local minimum with an 
increasing moisture content while still retaining some degree of hydrophobicity, as shown in 
Figure 4 (I, M). In addition, there are also some bimodal SWR-w curves whose repellency 
decreased with an increase in soil moisture content to become temporarily wettable (WDPT 5 
seconds) before rising to a maximum repellency under oven-dry conditions. Figure 4 (C, D, E, 
F, H, K and N). Water repellency was observed in some soils near their field capacity (Figure 
3(I)). The soil sample represented in Figure 3 (I) showed repellency of 5.1 seconds at 11% soil 
moisture content, which is very close to its field capacity (11.8%). Most of the soil samples, 
however, reached maximum water repellency at soil moisture content levels below their 
wilting point. 
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Figure 3: Soil water repellency (SWR) near field capacity. FC denotes the Field capacity 

(SMC=11.8%) and SWRfc represents the interpolated SWR near the field capacity (SWRfc=5.1 
seconds at 11% moisture content). 

 
Generally, it was observed that SWR first decreased from the oven-dry state of the soils to a 
local minimum at low soil moisture contents before again increasing at increasing soil moisture 
contents, as it had been observed by de Jonge et al. (1999). Some possible processes and 
mechanisms have been proposed to explain this unusual behavior. Jex et al. (1985) and Roberts 
and Carbon (1971) attributed the behavior to enhanced microbial activity with increasing 
relative humidity. Increased soil water repellency at higher soil moisture content levels is also 
caused by solvent-induced changes in the molecular conformation of soil organic matter (Roy 
and Mc Gill, 2000). Doerr et al. (2002) also attributed the same behavior to the reorientation 
of hydrophobic functional groups that had been previously disrupted during the oven-drying 
process. For the double peak curves, the first peak of soil water repellency occurred at low 
water contents, which are close to zero. However, with an increase in soil moisture content, 
the repellency first decreased and then increased again to an intermediate soil water content, 
reaching a second peak. From the second peak, soil water repellency decreases again until the 
soil becomes wettable above the critical moisture content (Figure 3). For the double-peaked 
curves, the behavior of the first peak is attributed to the reorientation of the hydrophobic 
molecules due to water loss associated with the temperature treatment during oven-drying 
(De Jonge et al., 1999; Doerr et al., 2000). 
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Figure 4: Soil water repellency as a function of soil water content in Murang’a soils. In each 
graph, three curves shown represent the three replicates (S1, S2, S3) examined for each soil 

sample at depths of (0-15cm) and (15-30 cm). 
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It was evident that in soils whose curves were bimodal, their global maximum (the largest 
overall value of WDPT) was observed in the second peak, and therefore, it is necessary to 
measure the whole SWR-w curve in order to estimate the highest degree of repellency that 
can be reached in the soil (Hermansen et al., 2019). The average soil water repellency function 
was calculated using the Integrative Repellency Dynamic Index (IRDI), which provides a 
measure of mean water repellency in the soil moisture interval between zero (at oven dry 
condition) and critical soil moisture content (when soil becomes hydrophilic) (Regalado and 
Ritter, 2005). This average is calculated as shown in equation (1). 
 
The SWRAREA and Wc were highly variable, ranging from a mean of 8.89 to 24.91 sec/% 
moisture content and 132.3 to 65.6 g/kg, respectively (Table 1). Umbric andosols exhibited 
generally high mean SWRAREA of 22.98 sec/% smc and 22.43 sec/% smc, respectively, as 
presented in Table 1. Soil samples that had the lowest and highest SWRAREA also had 
correspondingly low and high TOC contents (Table 1), depicting a strong influence of TOC on 
the persistence of SWR (Weber et al., 2021). The differences in total organic carbon content 
in the soil samples affected the SWRAREA (trapezoidal integrated area under the SWR-w curve) 
for the various soil types, which in turn influenced the total soil water repellency (IRDI). 
Generally, the maximum IRDI for Humic Nitisols, IB2, and Umbric Andosols was 2.25 and 2.33 
seconds, respectively, while Rhodic Ferralsols had a much lower IRDI of 1.14 seconds. This 
could be attributed to differences in the amounts and type of total organic carbon present in 
the soil which resulted in variation in SWRAREA between the investigated soil types. This 
observation was also made by Czachor et al. (2013), who reported that even a small increase 
in organic matter content can change soil hydrological properties from a completely wettable 
to a partially water-repellent state. Among the six soil types studied, the persistence of SWR 
in terms of SWRAREA decreased in the following order: Humic Nitisols IB2 > Rhodic Nitisols 
>Umbric Andosols> Humic Nitisols UP > Rhodic Ferralsols >Ferrallic Cambisol. 
 
3.3 Critical soil moisture content 
The critical soil moisture content at which soil water repellency is broken was determined as 
a "transition zone" rather than a "sharp threshold" (Chau et al., 2014). Depending on its 
wetting history, the soil in this transition zone can be either hydrophobic or hydrophilic. Two 
control limits can be obtained from the transition zone. An upper threshold of the transition 
zone indicates the absence of soil water repellency, and the lower limit indicates the re-
establishment of the repellency; however, this lower limit cannot be specified well and may 
be an unreliable predictor of the re-establishment of soil water repellency (Doerr et al., 2000). 
 
Soil water repellency was observed to be broken at various critical moisture content levels 
(Wc). Humic Nitisols, IB2, were observed to turn hydrophilic at a higher average critical 
moisture content of 13.23% (132.3 g/kg soil), while on the other hand, Ferrallic Cambisols 
turned wettable at a lower soil moisture content level of 6.56% (65.6 g/kg soil). The critical 
water contents ranged between 95.0 g/kg and 114.8 g/kg for Umbric Andosols, 80.0 g/kg and 
119.7 g/kg for Humic Nitisols Up, 117.3 g/kg and 166.7 g/kg for Humic NitisolsIB2, 100.4 g/kg 
and 125.4 g/kg for Rhodic Nitisols, 75.3 g/kg and 90.1 g/kg for Rhodic Ferralsol, and 61.8 g/kg 
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and 69.4 g/kg of soil for Ferrallic Cambisols as presented in Table 1. The average critical water 
content values were way higher than the mean permanent wilting point and closer to the field 
capacity of the soils as presented in Table 2. 
 

Table 2:The average Critical Soil Water Content, Field Capacity, Permanent Wilting Point 
(PWP), Degree of Saturation and the Moisture Content during Sampling in the Field (Field 

Moisture Content) for the Repellent Soil Samples in Murang'a 

 Umbric 
Andosols 

Humic 
Nitisols,
UP 

Humic 
Nitisols,IB2 

Rhodic 
Nitisols 

Rhodic 
Ferralsols 

Ferraliic 
Cambisols 

Wc (%) 10.47 9.75 13.23 11.29 8.27 6.56 
Field capacity (%) 14.54 23.25 22.84 13.23 10.23 11.81 
PWP(%) 6.74 6.08 8.05 6.82 3.98 3.23 
Saturation(%) 25.72 35.51 39.17 22.62 22.02 28.40 
Field moisture 
content (%) 

52.8 41.5 7.05 24.25 5.25 5.95 

 
It was discovered that the critical soil moisture contents of Umbric Andosol, Rhodic Ferralsols, 
and Rhodic Nitisols were very close to their field capacities. This could be attributed to 
overestimation of the critical water content in these soils due to inhomogeneous moisture 
distribution during the wetting-drying regime (Dekker et al., 2001). Furthermore, because of 
the large differences in available surface area between clay and sand particles, it is thought to 
be dependent on soil texture (Doerr & Thomas, 2000). 
 
Taking the critical water contents of all replicate samples from all other soil types, an ANOVA 
test was performed. There is a significant difference (p= 0.006 < 0.05) between the critical 
water contents for the different soil types. 
 
3.4 Relations between soil water repellency and soil properties 
The soil samples investigated exhibited a strong linear relationship between SWR area and 
total organic carbon. The SWRAREA and TOC were strongly correlated (R = 0.90; p < 0.01) with 
an R2 of 0.82 (Figure 5). Therefore, a simple linear regression utilizing SWRAREA and TOC 
(Equation 3) only resulted in a RMSE of 3.07 sec/% soil moisture content. This high correlation 
agrees with other studies that also found a similar positive correlation between SWRAREA and 
TOC (De Jonge et al., 1999; Kawamoto et al., 2007; Regalado et al., 2008). The results of this 
study therefore support the hypothesis that the SWRAREA depends on the total amount of TOC 
present in the soil. 
 
SWR AREA=3.4072TOC+4.7775                                                                                   (Equation 3) 
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Figure 5: The total degree of soil water repellency (SWRAREA) 
 
Similarly, critical soil moisture content was found to be strongly correlated with total organic 
carbon (R = 0.86, P < 0.01), with an R2 of 0.73 and RMSE of 1.04 for 10.4 g/kg of soil. This soil 
property can be described by a linear expression using TOC as the variable (Figure 6).  Notably, 
a strong linear regression ( R= 0.80) between Wc and organic carbon (Equation 4) was found 
by de Jonge et al. (2007) for soils sampled from Denmark, while Kawamoto et al. (2007) 
developed a linear regression yielding an R of 0.87. 
 

 
 

Figure 6:The critical soil water content (Wc) as a function of Total Organic Carbon 
 
Wc= 0.8921TOC+6.7173                                                                               (Equation 4) 

y = 3.4072x + 4.7775
R² = 0.8217
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The critical soil moisture content showed an important soil moisture level above which the 
onset of soil water repellency can be avoided. For practical purposes, upper and lower control 
limits were obtained. The upper limit is applicable in soil water repellency remediation since a 
safety margin will be integrated into the critical moisture content to show the level of soil water 
content that should be maintained to avoid soil water repellency, as shown in Figure 7. 
 

 
Figure 7: An upper and lower control limits to represent the spread around the regression 

coefficient 
 
To get the upper control limit, a safety margin of 1.46% moisture content was added. Ferrallic 
Cambisols and Rhodic Nitisols appeared below the middle regression line, which implied that 
they require a higher extent of irrigation compared to the other four soil types to avoid the 
onset of SWR. This is because they are located closer to the lower control limit for moisture 
content. However, the general behavior of the six soil types suggests that the overall irrigation 
support model Wc = 0.89 TOC + 6.7183 can be utilised to avoid water repellency in those soils. 
However, it is advisable to develop soil type-specific models for WC as a function of TOC when 
more comprehensive data is available for each soil type. 
 
The correlation between SWRAREA and soil texture and TOC is as presented in Table 3. Sand 
content was, however, not included in the regression analysis. This was because there existed 
a multicollinearity between clay, silt, and sand. The multicollinearity can be explained by the 
fact that clay minerals have a high specific surface area, which covers the sand surfaces. This 
is the same reason why claying is used as a remedy for soil water repellency in sandy soils. 
Harper and Gikes (1994) and McKissock et al. (2000) found that an addition of only 1–2% clay 
changes soil from a hydrophobic to a hydrophilic state. 
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Table 3: Pearson product moment correlation matrix of Total organic carbon, clay, silt, sand, 

IRDI, Wc, SWRAREA, SWR105 and SWR60 for 19 hydrophobic soil samples in Murang’a 

 Sand Clay Silt TOC Wc IRDI SWRAREA SWR105 SWR60 

Sand 1         

Clay 0.678** 1        

Silt 0.442 0.483* 1       

TOC 1.000** 0.678** 0.442 1      

Wc 0.819** 0.770** 0.350 0.819** 1     

IRDI 0.604** 0.238 0.113 0.604** 0.252 1    

SWRAREA 0.906** 0.620** 0.264 0.906** 0.735** 0.809** 1   

SWR105 0.156 0.220 0.220 0.156 0.043 0.315 0.166 1  

SWR60 0.035 -0.084 0.403 0.035 -0.018 -0.149 -0.152 0.242 1 

**. Correlation is significant at the 0.01 level(2-tailed) 
*. Correlation is significant at the 0.05 level(2-tailed) 
 
Table 4 shows that clay content correlated positively and significantly with SWRAREA and Wc (R 
= 0.62 and 0.77, respectively) (P < 0.01). Clay content further improved the relationship 
between Wc and SWRAREA to TOC in the forward multiple linear regressions (Figure. 7 and 
Figure 8). These findings are in contrast with the findings of Hermansen et al. (2019), who did 
not observe any significant positive effect of clay content on Wc. 
 
Multiple linear regression was performed utilising TOC, silt, and clay, which significantly 
explained 85 percent of the variation in SWRAREA (RMSE = 3.02 sec/% soil moisture content) as 
shown in Figure 8, and an expression of SWRAREA as a function of the three parameters is shown 
in equation 5. 
 

 

Figure 8:Multiple Linear Regression (MLR) for Trapezoidal Integrated Area under the Soil 
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Water Repellency Curve (SWRAREA) 
SWRAREA= 3.529TOC+0.048Clay-0.253Silt+5.496                                                         (Equation 5) 
 
Concerning the critical soil moisture content, MLR was performed utilizing the same factors 
i.e., Silt, Clay and TOC. The results are shown in Figure 9. 
 

 
 

Figure 9: MLR for critical soil water content using TOC, Silt and Clay as input variables 
 

Similarly, 77% of the variations in the critical soil moisture content for the studied soils could 
be attributed to the different clay, silt and TOC contents in the soil (RMSE = 13.1 g/kg of soil). 
A high correlation between SWRAREA and Wc was also discovered (R = 0.74; p 0.01) (Table 5), 
as previously reported by Kawamoto et al. (2007). On addition of Wc as an input variable, the 
MLR expression of SWRAREA yielded an R2 of 0.85 (Figure 10), and the expression of SWRAREA as 
a function of TOC, sand, silt, and Wc is as presented in equation 6. 
 

 
Figure 10: MLR for SWRAREA using TOC, Sand, Silt and Wc as the input variables 
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SWRAREA=3.766TOC+0.078Clay-0.270Silt-0.313Wc+7.165                                           (Equation 6) 
 
The addition of Wc as an input variable resulted in a slight increase in SWRAREA. Similarly, 
Regalado et al. (2008) used TOC and Wc to improve SWRAREA prediction rather than only organic 
carbon. 
 
4.0 Conclusion 
About 37% (nineteen) of the 52 soil samples collected from the 26 sampling sites were 
hydrophobic. Among the six soil types studied, humic Nitisols, IB2 had the highest SWRAREA and 
Wc. Soil water repellency was observed to be broken at various critical moisture content levels 
(Wc). However, there was a significant difference (p = 0.006 < 0.05) between the critical water 
contents for the different soil types in Murang’a. The SWRAREA and the Wc were highly linearly 
correlated to the TOC, which was identified as the best predictor of these two repellency 
measurement parameters. TOC was the most important soil property in explaining the total 
degree of SWR (SWRAREA) and Wc since it showed 82 and 73 % of the variability of the two 
parameters, respectively, in Murang’a soils. The inclusion of clay and silt in the MLR expression 
of SWRAREA significantly improved the prediction of SWRAREA to 85%. Concerning the Wc and 
TOC relationship, a safety margin of 1.46% (146 g of water/kg of soil) moisture content was 
added to obtain the upper and lower limits for Wc. This upper limit on critical water content 
could be used to derive a threshold water content above which SWR and the related 
degradation of soil functions could be eliminated. The overall model suggested as a guide to 
irrigation practices in this region was Wc = 0.89 TOC + 6.7183. 
 

5.0 Recommendation 
The results of this study suggested that the soils of Murang’a are suitable for agriculture. 
However, it is advisable to integrate a safety margin of 1.46% moisture content when 
determining the amount of water to apply during irrigation to prevent the occurrence of soil 
water repellency in agricultural soils. When more comprehensive data for each soil type is 
available, it could also be advantageous to develop soil-type specific models for Wc as a 
function of TOC. 
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