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ABSTRACT

In tectonic regions, the flow of fluid within the subsurface is primarily influenced by
subsurface temperature, pressure, porosity and permeability. It is therefore necessary to
characterize these properties which help in estimating the ultimate productivity of a
geothermal reservoir. These properties are used in volumetric calculation of fluids in the
reservoir, calculation of fluid saturations and clustering of the reservoir in terms of
aquifers, water confining stratum, hydro- thermal zones, lithological horizons, faults and
fracture zones. Some of the methods commonly used for estimating these reservoir
properties are time consuming and costly. A decisive method for the reservoir estimation
is therefore desirable. Geophysical methods including seismology, gravity, magnetics
and resistivity have been put in use for geothermal resource mapping at the Olkaria
geothermal field for decades. By applying all the necessary geophysical study
techniques and data integrated during interpretation, deeper wells producing up to 30
MWe have been drilled. However, despite all the advancements, geophysical integration
of multiple datasets is mostly achieved through manual visualization. Machine vision of
Artificial Intelligence is therefore desired. Reservoir temperature distribution and the
electrical conductivity of rocks mainly depend on permeability, porosity and fluid
chemistry. Machine Learning is needed to establish correlation between the temperature
distribution and the electrical conductivity of rocks. This research focused on the
integration of Olkaria Domes geothermal well testing and geophysical electromagnetic
resistivity data. The aim was to establish an alternative estimation method for reservoir
temperature through Machine Learning and application of machine vision perceptions
and better visualization of images. To achieve these, Data Driven Discovery Predictive
Model and multiple image stacking technique using Pivotal Focus Algorithms were built
using Python programming language on Anaconda framework. The open-source web-
based application Jupyter Notebook for coding and visualization was used. Different
Regression models such as Polynomial Regression, Decision Tree Regression, Adaptive
Booster Regression, Support Vector Regression and Random Forest Regression were
attempted. The performances of the models were compared using R² (R-squared) and
Mean Absolute Error (MAE). Based on the performance score, best performing model
was suggested to predict subsurface temperature from resistivity. From the well recovery
results, the Olkaria Domes reservoir can be classified as a convective heat flow system.
Two main heat sources were inferred: One to the Northwest and the other to the Eastern
side of the field. The two heat sources are separated by a NE-SW trending fault that is
believed to control the fluid flow with natural recharge to the reservoir coming from the
SW direction. The reservoir had two major feed zones at depths of (900-1300) m a s l
and (250-0) m a s l. Step rate injection results indicated that both injectivity index and



xxi

transmissivity are higher in the north east regions of the reservoir and decreases towards
southwest. The resistivity structure of Olkaria domes at selected depths revealed three
main resistivity regions; one low resistivity to the Northwest, the second low resistivity
was observed to the Eastern side of the field. The two low resistive regions are separated
by a third NE-SW trending high resistive region. Resistivity decreases with depth up to a
depth of 500 m a s l then it increases with depth. From the resistivity cross sections, the
results reveal three main resistivity zones. The first zone was characterized by a narrow
layer of higher resistivity near the surface, likely to represent unaltered region.
Underlying this layer was another broader layer of high conductivity that was interpreted
to be due to high conductive hydrothermally altered mineralogy such as zeolites and
smectites. A relatively higher resistive zone follows whose resistivity may be due to the
formation of high temperature mineralogy at depth such as epidote. The image stacking
of temperature and resistivity narrowed down Olkaria dome geothermal field into three
main regions of interest. The first is located on the Northwest side of the field; the
second is on the eastern side of the study area trending north-south. These were high
temperature and high conductivity structures regions within the field. The third region is
located in the southwest where both temperatures and conductivity were low. This could
be the recharge zones where cold fluid is entering the reservoir. Decision Tree
Regression (DTR) Machine Learning model was able to learn the trend of resistivity
change and the predicted temperature graph matched well with the actual temperature
graph. Training the model using the DTR algorithm approach provided superior outputs
with the R2 of 0.81 and MAE of 29.8. DTR being the best algorithm based on the
regression model employed was tested then with new data and the R2 was 0.835 with
MAE at 21.7.
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CHAPTER ONE

INTRODUCTION

1.0 Background

The earth’s subsurface contains large volume of heat bearing formations that has the

ability to supply a considerable amount of energy if suitable extraction techniques are

applied for exploitation (Hu, 2016). This heat could be used for electricity generation or

enjoyed simply as a hot spring. It has been put in use in several parts of the world

including Kenya as a green, replenishable and reliable source of energy to curtail the

immense dependency on coal, fossils and other conventional sources of energy. It has

also reduced public health risks and effects of global warming resulting from the use of

conventional sources of energy (Kahlen et al., 2019).

For proper exploitation of this resource, comprehensive and integrated reservoir

analyses need to be implemented (Aragón et al., 2019). Integration knowledge is needed

in the prediction and mapping of subsurface reservoir properties as a result of

recognition of the importance and advantages of integrated reservoir studies (Zhu et al.,

2020). Even though data integration benefits have long been recognized, the

epistemological barriers that obstruct the flow of knowledge and information between

different disciplines have not (Ortiz et al., 2020).

For better determination of reservoir quality and its performance and correct prediction

of complex reservoir behaviours, different techniques must be successfully integrated.

This is because successful geothermal energy exploitation depends on the availability of

a suitable reservoir based sufficient temperature associated with the reservoir, adequate

permeability and porosity of the reservoir rocks (Mania, 2017).

The approaches employed in determination some of subsurface properties such as well

drilling for subsurface temperature measurements are time-consuming and expensive.

Relating and integrating these reservoir properties with the geophysical rock resistivity
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can be highly effective. This is because reservoir temperature distribution and the

electrical conductivity of rocks mainly depend on the same parameters such as porosity,

permeability, tortuosity and pore geometry (Adebayo et al., 2019). The electrical

conductivity of reservoir rocks and aquifers can be measured at the surface using

geophysical survey methods such as Electromagnetic methods. However subsurface

temperature can only be obtained through well logging after drilling the well. Therefore,

a method for reliably estimating subsurface temperatures from surface electrical

conductivity measurements would be beneficial. This is because geothermal industry

operators would wish to have cheap, rapid and dependable techniques by which the

underlying properties can be determined. This could be easily achieved by application of

knowledge of integration by use of Artificial Intelligence (Chaki et al., 2014). In recent

times, Machine Learning (ML) of Artificial Intelligence has been used to solve

complicated issues in different scientific fields with the idea of inputting a number of

related parameters and use them to envision other output properties (Schmidt et al.,

2019).

Different geophysical methods have been put in use for geothermal resource mapping

and process validation to help determine the best possible economical exploitation

model and minimize reservoir model ambiguity (Chaki et al., 2014). This aids in

increasing confidence in siting well location since accuracy of the reservoir

characterization relies upon the uncertainty in the available data and also the processes

employed during collection, interpretation and assigning reservoir description.

1.1 Study Area

The greater Olkaria geothermal area is situated in the southern Kenyan rift, 127 Km

from Nairobi (Figure 1.1). The Kenyan rift constitutes part of the East African rift

structure that extends to Mozambique region in the south from Ethiopia (Kandie et al.,

2016). It forms a section of the eastern arm that extends to Lake Natron from Lake

Turkana, (Omenda, 2010).
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Figure 1.1: Location of Olkaria Field in Kenyan Rift Valley (Wanjohi, 2014)

1.2 Geology of the Study Area

The Olkaria volcanic system (Figure 1.2) is characterized by numerous volcanic centres

of Quaternary age and is an exclusive region within the Kenya rift with occurrences of

comendite on surface (Nyandigisi, 2020). The Eburru, Suswa volcano and Longonot

caldera are the other quaternary volcanic regions neighboring the Olkaria (Okoo et al.,

2017). Although calderas are associated to other volcanic centers, an elaborate caldera is

not linked to the Olkaria volcanic complex. The existence of a covered caldera theory
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has been supported by the visibility of a ring of doming volcanoes in the southwest,

south and east (Mwangi et al., 2018). The study seismicity within the Olkaria region has

shown an anomalous structure that also agrees with the proposed buried caldera. (Sirma,

2019)

Within the Olkaria, basalt rock formation occupies the Upper Olkaria volcanics to the

east of Olkaria Hill sides but they are invisible towards the west ranging from 100 m to

500 m in thickness and are seen as the geothermal system’s cap rock (Kibet et al., 2019).

From the surface down to a depth of 500 m, comendite lavas and their pyroclastic

equivalents and minor trachytes are the dominant rocks (Lagat, 2004). Ololbutot

comendite that is tectonically aligned along the ring structure and the N-S faults is the

youngest lava (Figure 1.2).
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Figure 1.2: Geological Map of Olkaria Volcanic Complex (Okoo et al., 2017)
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The NW-SE and WNW-ESE trending faults are more pronounced in the Northeast, East

and West of the field with the Gorge Farm fault as the most outstanding as compared to

the Olkaria Domes field with scares faults. This could be due to the presence of thick

pyroclastics cover in the Domes field. Olkaria Domes is constrained by the Hell‘s Gate –

Ol‘Njorowa gorge to the west with swams of dykes exposed trending in a NNE and a

ring of domes to the east and south of the area (Mwandigha, 2020).

1.3 Statement of the Research Problem

Geothermal potential is high in regions of active volcanism and high heat-flow such as

the East African Rift in Kenya in which Olkaria Domes geothermal field is located.

Advancing geothermal energy as a substitute form of heat and electricity usage needs an

estimation of the resource and its uncertainty. Improved understanding and visualizing

of a geothermal reservoir leads to fewer wells being drilled, fewer well pads and reduced

surface disturbance, as well as reduced costs in future exploration and development. For

these reasons geophysical methods including seismology, resistivity, gravity, magnetics

and Electromagnetics have been put in use for geothermal resource mapping at the Great

Olkaria Geothermal field for decades. These methods have aided delineating geothermal

fields, siting well locations and locating aquifers (Wanjohi, 2014). They also provide the

best ways of establishing at a lower cost the deep-seated subsurface structures as

compared to the direct drilling method. Application and integration of different

geophysical methods in one field has enabled KenGen to drill good deeper wells

producing up to 30 MWe.

However, with Kenya’s increased attention on geothermal development, advanced

exploration techniques are desired for the purposes of enhancing general knowledge of

geothermal reservoirs, characterize their extent and assess the potential for sustainable

utilization. Despite all the advancements, geophysical data processing for different

techniques is always done independently and integration of multiple datasets only done

through manual visualization. Image processing technique through machine vision of AI
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for stacking multidimensional image data sets into one image for perceptions and better

visualization is therefore needed.

The adoption of predictive modelling through Machine Learning (ML) in different

disciplines has greatly developed in recent times leading to transformation of every field

in science, philosophy, psychology and engineering. There have been no attempts to

develop a predictive model to determine Olkaria Domes subsurface temperature

structures through geophysical Electromagnetic methods.

A model that can result into a cheap, rapid, and dependable method of estimating

temperature properties from surface geophysical electrical conductivity measurements

through the application of Machine Learning algorithms. The main aim being the desire

to establish the unseen pattern behind these multiple data sources through data driven

discovery predictive modelling.

1.4 Justification

Destruction of the world ozone layer by pollution from industries and carbon emission

from green houses, driven by the demand of energy over the years pushed by the world

developing economies has necessitated the need for research for alternative source of

energy. Among the leading sources of the alternative green energy production is

geothermal energy. Kenya’s population is rapidly growing (World Bank, 2016) and

therefore the need for economical and dependable energy for provision of fundamental

services such as lighting, heating, cooking, mobility and communication as well as

spearheading industrial growth is of paramount importance. The need for reliable and

sufficient energy source is stipulated in Vision 2030 (blue print) in which the Kenyan

government aims at achieving a middle class economy, partly through provision of

cheap reliable and clean energy at household and national level. However, there are

concerns in the sustainability of the energy resource base in supporting the needs as the

high population pressure and industrialization has exerted pressure on the available

energy sources.
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In a move to avert this effect, the Kenyan government through the ministry of energy

and other energy stakeholders have ventured into geothermal energy that is vast,

available, but largely underexploited alternative energy source potential for boosting

energy supplies in Kenya. This is evidenced in the steadfast production of geothermal

energy as shown in Figure 1.3.

Figure 1.3: Trend of Geothermal Energy Production in Kenya (Power Technology,

2018)

The country’s geology and hydrogeology favour economic exploitation of geothermal

resources. Kenya being located on the East African Rift, boasts enormous geothermal

potential, estimated at 10,000 MW (Mwawasi, 2018). Unfortunately, currently only 861

MW (about 8%) of geothermal energy is installed. This resource, being among the most

reliable and inexpensive energy source is therefore foreseen to have a greater impact in

generation of alternative energy source for generation of electricity in Kenya. This

research was important in improving the knowledge of the geophysical depth structure

in geothermal reservoirs in Kenya. The cheaper method of reservoir temperature
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determination based on geophysical resistivity was established. Also, application of

multiple images stacking shall improve reservoir visualization. From the study,

geothermal industry operators in Kenya such as KenGen, GDC and the Kenyan

government as well as all geothermal industry stakeholders worldwide who desire cheap,

rapid, and dependable techniques by which the underlying subsurface conditions can be

determined shall benefit. The new recommendations may also be put in use as a guide

for more studies.

1.5 Objectives

1.5.1 Main Objective

To evaluate Olkaria domes geothermal reservoir based on integrated well testing data

and electromagnetic data by use of Artificial Intelligence.

1.5.2 Specific Objectives

1. To evaluate Olkaria domes geothermal reservoir sub surface structures using

temperature heat up and pressure transient tests

2. To image resistivity structures in high-temperature Olkaria domes geothermal

field by use of MT and TEM resistivity methods

3. To map the Olkaria Domes geothermal reservoir by use of multiple image

stacking techniques

4. To predict subsurface temperatures from resistivity data in Olkaria Domes

geothermal fields using Machine Learning (ML) algorithms

1.6 Research Questions

i. Can geophysical resistivity be used to develop a model to predict subsurface

temperature in a high temperature geothermal system?

ii. Can image stacking be used to generate one image obtained from resistivity and

temperature contours for better visualization of a geothermal reservoir?
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1.7 Scope of the Study

This research focused on application of temperature heat up and pressure transient tests

to evaluate reservoir sub surface structures. Resistivity method by use of MT and TEM

was used to image resistivity distribution in high-temperature Olkaria domes geothermal

field. From the temperature and resistivity contours, image processing was performed to

generate an image that was a representation of resistivity and temperature parameters.

This aided in identifying areas with high temperature and high conductivity in the image

since these are parameters required for high well productivity. Regression algorithms of

Machine Learning for predicting subsurface temperature from resistivity data in high

temperature geothermal fields was realized by use of Python Programming on Anaconda

framework.

1.8 Limitations

Due to processes required in collection of data such as shutting the well and the cost of

the equipment, it was not possible to collect primary data. The research used the already

acquired electromagnetic, pressure transients and well recovery temperature data to

which the accuracy of the data collection cannot be ascertained by the researcher.
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CHAPTER TWO

LITERATURE REVIEW

2.0 The Greater Olkaria Geothermal Field

In the early seventies, broad and comprehensive geothermal exploration was carried out

after which drilling for exploration purpose began in the year 1974 and extended into

1977 (Ouma 2012). In 1977, a feasibility report was produced based on the assessment

of the first drilling outcomes (Nzioka, 2017). Production drilling commenced the

following year and extended into 1983. Between 1981 and 1985, the first power plant of

45 MWe was installed after confirmation of satisfactory resource capacity (Nzioka,

2017).

Additional geothermal resource capacity in Olkaria geothermal field was confirmed after

further exploration from which the size of the field was estimated to be about 140 km2

(Omenda et al., 2021). Owing to the expansiveness of the field and for ease of

management and development, it was then partitioned into seven zones. These are

Olkaria East, Olkaria North East, Olkaria Central, Olkaria North West, Olkaria South

West, Olkaria South East and Olkaria Domes (Rogei, 2021) as shown in Figure 2.1.



12

Figure 2.1: Seven Fields of Olkaria Geothermal Area (Okoo et al., 2017)

2.1 Domes Field Development

The high-temperature Olkaria Domes field is based at the SouthEast side of the Greater

Olkaria geothermal area with wells producing two-phase fluid. In 1993, surface

exploration was completed (Nyandigisi, 2020). Drilling of the first three wells for

exploration was conducted between 1998 and 1999 (Warega, 2019). In 2007, six
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evaluation wells were drilled and from the results, an updated conceptual model was

developed. The model resulted into siting and drilling of the production wells. The

Olkaria Domes field is approximately 27 km2 based on available data with 10 to 15

MW/km2 power density and between 270 and 405 MW estimated resource capacity

(Kandie et al., 2016). KenGen is still drilling and testing wells in the field for the

purpose of providing steam for new power plants (Mbithi, 2016).

2.2 Theory of Well Testing

A geothermal energy process from exploration to exploitation is divided into four major

series that include surface exploration, well drilling, reservoir analysis and operation

stage that entails harvest of heat from the earth’s subsurface (Parada, 2016). Dependable

knowledge for the reservoir under study is paramount in determination of the best and

economical exploitation method. Reservoir properties must be known in order to reach

this decision. This is achieved by well testing in combination of other disciplines such as

geology, geochemistry and geophysics through development of a comprehensive

conceptual model (Mortensen & Axelssion, 2013).

Geothermal reservoir performance predictions in most cases depend on the knowledge

of the reservoir’s natural conditions established from temperature and pressure

measurements. These two parameters are the most crucial parameters required for

geothermal resource assessment since they control the movement and distribution of the

reservoir fluids (Franco & Vaccaro, 2020). They also form the basis for development of

reservoir conceptual models (Jansen & Miller, 2017).

Well testing as a tool in geothermal reservoir engineering plays a role in determination

of reservoir quality (Rionomakal et al., 2018). It involves use of pressure and

temperature data (Mwaura, 2018). Well testing after well completion and during

discharge is conducted so that reservoir properties such as transmissivity, injectivity,

storativity and initial reservoir temperature parameters are deduced (Biru, 2016). The

reservoir’s response of temperature and pressure as a function of injection, warm up or

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Salina+Borello%2C+E
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drawdown are monitored during well testing by use of pressure and temperature gauge

in a well.

2.2.1 Analysis of Temperature Profiles

Temperature profiles measured at depth provide crucial data about reservoir physical

conditions and are primary measurements performed in wells (Kargarpour, 2017). In

order to obtain meaningful results, these measurements should be run over the full depth

of the wellbore and are done when the well is flowing, shut in or under injection. This is

performed with the aim of inferring reservoir properties. Temperature profile analysis

amid well warm up helps in identification of feed zones and initial reservoir temperature

(Gebru, 2018).

From the warm up temperature profiles, location that are directly above or close to the

main heat resource should project the highest temperature. In these locations,

temperature should increase with depth. High values are observed closer to the up-flow

zones while zones further away will be expected to be at lower temperatures (Vehling et

al., 2020). Thus temperature variation may indicate proximity to the up-flow zones and

fluid movement from fluid up flow zones laterally outwards. Zones with consistent high

temperature and increasing consistently with depth will define the probable or even

possible reservoir.

It is standard practice to use temperature contours drawn at selected elevations to infer

directions of fluid movement, generally flowing from high temperature areas outwards.

Since temperature can be inverted by cold water inflow, temperature decline could also

be due to cold water inflow (Vihma et al., 2011). Also temperature variations can define

reservoir limits or boundaries. These zones may have low temperature or may show

temperature decline from central locations. It is also possible to have situations where

higher temperature caused by adverting hoter fluid that is lying above a cold zone below

within a well, referred to as inversion. Decreasing temperature with depth after an initial
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increase should indicate this (Zarrouk & McLean, 2019). The inverted temperature

profile shown in Figure 2.2 is most likely an out flow zone.

Figure 2. 2: Inverted Temperature Profile (Vihma et al., 2011)

Temperature recovery in a well after cold water injection or after drilling may also offer

valuable data on intervals with permeability or feed zones. Such zones will generally

accept water during injection or drilling and will start of cooler than less permeable

zones where injection or drilling fluid will be passing largely on the surface and

therefore will be less affected (Schölderle et al., 2021).

2.2.2 Pressure Transient Well Testing Equation

Pressure transient test is done in a well after completion of drilling to access reservoir

conditions with the pressure diffusion equation being applied in obtaining reservoir

pressure at a distance (r) from the well having flow rate (q) as a function of time (t)

(Biru, 2016). The derivation of this equation is guided by the following:



16

1. Mass conservation inside a given control volume:

The rate of change of mass inside a control volume = Mass flow in – Mass flow out

Darcy’s law of momentum conservation (Tahir, 2019):

2.1

2. Equation of the state of the fluid:

2.2

3. The fluid compressibility equation:

2.3

Combining equations (2.1), (2.2) and (2.3) and defining

as total compressibility of rock and water

2.4

� = porosity

is the storativity

is the compressibility of porous rock
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is the transmissivity 2.5

for 2.6

An integral solution for this equation was proposed by Theis:

Initial conditions:

for 2.7

Boundary conditions:

(i) for and

(ii)

Equation 2.8 gives solution to the radial diffusion equation having these boundary and

initial conditions:

2.8

Where

is the exponential integral function

According to Lewis (2014), if
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,

The integral function expressed in exponential form can be expended through series of

convergent. The total pressure change in equation 2.9 for a pumping well with skin is

the Theis solution:

2.9

The additional change in pressure to the normal change in pressure in the wells near

vicinity is the skin factor, s. Plotting for Δ Pt vs. log t results into a semi-log straight line

with a slope m per log cycle in equation 2.10, a method known as semi-log analysis

(Kahuda & Pech, 2020). It is an infinite acting radial flow period of a well response.

(Pa/log cycle) 2.10

The basis of semi-log analysis is the interpretation of the straight-line response of the

semi-log that represents the infinite acting radial flow behavior of the well (Spivey et al.,

2020). Putting in mind that an actual wellbore has finite volume, it’s important to

establish wellbore storage effect duration or the time at which the semi-log straight line

begins (Spivey et al., 2020). This can be determined on a log (ΔP) vs. log (t) graph

whereby the semi log straight line is expected to start after about 1½ log cycle from the

end of the unit slope line (Wang and Sharma, 2018).

Figure 2.3 shows that plotting the change in pressure against time on semi-logarithmic

scale results in an asymptotic straight line whose slope is m. if the volumetric rate of

flow is q, the formation transmissivity, T, can be calculated as (Ferroud et al., 2019):
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2.11

Figure 2.3: Semi-Log Analysis (Gebru, 2018)

Applying drawdown values Δp at some time t, S = cth, the formation storage coefficient

can be established by writing the Theis solution as in equation 2.12 (Naderi, 2019)

2.12

2.3 Resistivity Method

Geophysical method of resistivity is used to show the resistivity changes beneath the

earth. This method has found its application in the expedition of geothermal energy

since good geothermal reservoir has been associated with low resistivity (Seyedrahimi et

al., 2017). Rock electrical conductivity rely on the water salinity, porosity and the pore

structure of the rock, water steam content, temperature, alteration, saturation, pressure

and interaction between water and the rock (Revil & Gresse, 2021).
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The Magneto-telluric and Transient ElectroMagmetic geophysical methods in the earth’s

subsurface study have contributed immensely to the X-Raying and detailing the buried

earth’s interior (Jolie et al., 2021). This has been achieved by establishing structures that

are deeply seated and are in charge of geothermal system control such as sources of heat

and geothermal fluid flow conduits leading to characterizing the potential of the resource

and determining the drilling sites. It gives relevant information concerning the resistivity

structure of the subsurface earth which when well interpreted may be linked to the

presence of the geothermal system (Arthur, 2018). Since they are the best techniques of

establishing deep subsurface structures at much lower costs than the most direct method

of drilling, geophysical exploration methods play a key role (Wamriew, 2019).

Rocks are regarded as poor conductors and their conductivity can only be achieved if

their properties are transformed through alteration by earth processes. Therefore,

porosity and fluid conductivity are the major reasons for rock conductivity near earth

surfaces (Thanh et al., 2019). These two also depend on the salinity, temperature and

pressure as shown in Figure 2.4. Also salinity and temperature varies with depth and

regions.
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Figure 2.4: Effect of Temperature at Different Pressures on Conductivity of

Sodium Chloride Solutions (Yakovlev et al., 2018)

A direct relationship between salinity and conductivity that shows that in a salt solution

rock conductivity is by mobile ions is shown in Figure 2.5 (Hu et al., 2022).
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Figure 2.5: Effect of Concentration and Temperature on Conductivity of Sodium

Chloride (Flóvenz et al., 2012)

Also, the fluid nature and level of its saturation, alteration intensity and mineralogy

influences rock conductivity. Fluids and free ions presence in porous rocks and electrons

in minerals at the water-rock interface are the main mechanism of rock conductivity in

geothermal system (Manning, 2018). These conduction mechanisms are illustrated in

Figure 2.6.

Figure 2.6: Mechanism of Rock Conductivity in Geothermal System (Gylfi &

Árnason, 2013)
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2.3.1 Mineral Alterations and Resistivity of High Temperature Regions

In hydrothermal systems exhibiting elevated temperatures, rock conductivity varies with

depth and temperature. This is because geothermal hot fluids interact with rocks and

react to constitute altered minerals at different temperatures (Ojha et al., 2021). In the

near subsurface region, the resistivity is high since the temperature is low and therefore

the rock formation is un-altered. Pore fluid conduction is the main conduction

mechanism in this zone (Mwaura, 2018). As temperature gradually rises with depth,

from 100 °C to 220 °C, clay minerals such as smectites and zeolites are formed. This

zone is called the smectite-zeolite zone. In this zone, rock resistivity is reduced because

of their loosely bound cations (Escobedo et al., 2021). At a fairly higher temperature

ranging from 220 °C - 250 °C, resistivity of rocks starts to rise since zeolites fades away

and alteration of smectite into chlorite as the prevailing mineral (Weisenberger et al.,

2020) . In the region of temperatures beyond 250 °C, resistivity increases again since

epidote and chlorite are more prevalent and the cations are constrained in the crystal

lattice this is illustrated in Figure 2.7.
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Figure 2.7: High Temperature Geothermal System Resistivity Structure (Gylfi &

Árnason, 2013)

A subsurface temperature and mineral alteration relationship analysis is shown in Figure

2.8.
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Figure 2.8: Alteration Mineralogy and Temperature (Gylfi & Árnason, 2013).

2.3.2 Principles of the TEM and MT Methods

The principle of operation in the TEM entails the use of a generator or battery pack to

transmit a steady current into a large insulated square loop laid on the ground (Figures

2.9 and 2.10) and as a result, a known magnetic field strength is built up (Cai, 2019). In

a fraction of a second, the loop current is abruptly turned off and turned on again. In the

off current mode, magnetic field developed in the loop decays at the same time inducing

in the ground secondary electrical currents (eddy currents) which again induces another

secondary magnetic field that deteriorates with time. The distribution of current and the

secondary magnetic field rate of decay is dependant to the resistivity subsurface

structure of the earth (Mohamud, 2013). By measuring the induced voltage at the

transmitter loop’s centre in a receiver coil in time, the response is monitored on the

ground surface (Nordiana et al., 2016).
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Figure 2.9: Field Layout Schlumberger (Mohamud, 2013)

Figure 2.10: 1/2- Duty Current Square Wave and the Analogous Measured Voltage

(Mohamud, 2013)

According to Hadush (2018), the depth pervading in the TEM sounding central loop

relies on the duration the induction in the coil of the receiver can be traced before the

noise drowns it. Wamriew (2019) states that in a homogeneous half space of
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conductivity σ , the induced voltage in the coil of receiver at so called late times is

given by:

2.13

Where

and

= Transmitter loop cross sectional area (m2)

Elapsed time after the transmitter current is turned to zero (s)

= Receiver loop cross sectional area (m2)

= transmitter loop radius (m)

= receiver loop number of windings

= transmitter loop number of windings

= transient voltage (v)

= transmitter loop current (A)

= magnetic permeability (H/m)

From equation 2.13, the late times transient voltage is proportional to 3/2 and falls off

with time as t-5/2 after the current in the transmitter loop is abruptly turned off. By

solving for the resistivity in Equation 2.13 we get Equation 2.14 as the late time

apparent resistivity.

2.14
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Magnetotellurics (MT) is an approach that makes use of the naturally occurring

Electromagnetic field of the earth imaging the sub surface resistivity structures

(Wamriew, 2019) as shown in Figure 2.11. These natural fields are produced by a scope

of mechanisms such as high frequency signals that originate from the activity lightening,

intermediate frequency signals that originate from the ionospheric resonances and low

frequency signals that originate from the sun-spots. The decay rates of these waves as

they travel into the Earth’s interior depend upon their wavelengths (Sakindi, 2015).

Figure 2.11: MT Field Layout (Mohamud, 2013)

The propagation of EM fields is expressed by the Maxwell’s equation:

Faraday’s law 2.15

Ampere’s law 2.16

Gauss’s law for the electric field 2.17
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Gauss’s law for the magnetic field 2.18

Where Electric field (V/m)

Magnetic intensity (A/m)

Electrical current intensity (A/m2) and

Magnetic permeability (H/m)

Ɛ = electric permittivity (F/m)

Ɛ

2.3.2.1 Electromagnetic Induction in Homogeneous Earth

The electric to magnetic field intensity ratio is the characteristic impedance, (Equations

2.19 and 2.20)

2.19

2.20

and

≈ ≈ 2.21

2.22
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Through equation 2.23, the true earth resistivity is related to the characteristic

impedance for a homogeneous and isotropic earth:

2.23

According to Mohamud (2013) and Nabi et al., (2020), the apparent resistivity (ρa)

formula for a non-homogenous earth can be defined as if the earth was homogeneous.

For a homogeneous earth in practical units, the resistivity, ρ , in equation 2.23 can be

written as:

2.24

The phase (θa) and apparent resistivity (ρa) for non-homogeneous earth are functions

of frequency and are characterized by the equation 2.25 (Nguimbous-Kouoh, et al.,

2018):

2.25

2.3.2.2 The Impedance Tensors

Conductivity σ of 1D layered earth only changes with depth (Elizondo, 2019). Therefore,

the impedance tensor, Z, can be expressed as

2.26

The apparent resistivity , and the impedance phase angle Ф for a layered earth the

apparent resistivity both depend on the angular frequency = 2πf and are expressed by

equations 2.27 and 2.28 respectively (Rosenkjær, 2011):

2.27

2.28
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Conductivity, σ, for a 2D earth changes with depth and in one horizontal direction while

there is no variation in conductivity on the other orthogonal horizontal direction and is

generally referred to as the Electromagnetic or electrical strike direction (Hersir, 2018).

If the E and H are decomposed into normal and anomalous field components, then the

impedance tensor in 2D can be written as in equation 2.29

2.29

Zxx = -Zyy = Zd, the diagonal elements in the impedance tensor are opposite in signs but

equal in amplitude while the off diagonal elements Zxy and Zyx are independent values

(Bravo-Osuna et al., 2021). The Z2D impedance tensor can be written as in equation 2.30

if the impedance tensor is rotated such that the y direction is perpendicular and x

direction is parallel to the Electromagnetic strike direction (Gómez-Treviño et al., 2018)

2.30

Impedance tensor modes; B-polarization or Transverse Magnetic (TM) mode ZTM = Zyx
and E-polarization Transverse Electric (TE) mode ZTE = Zxy can then be independently

evaluated such that the phase angle and apparent resistivity for each of the mode be

obtained from equations 2.31 and 2.32 respectively (Rosenkjær, 2011).

2.31

2.32

The conductivityσ , in 3D earth changes in all directions and all the elements in the

impedance tensor are non-zero elements. Impedance tensor is represented by equation

2.33 (Elizondo, 2019).
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2.33

2.3.2.3 Depth of Penetration (Skin Depth)

According to Brodie 2019, the depth below the surface where the Electromagnetic field

has diminished to 1/e of its original value at the surface and is given by equation 2.34:

= 2.34

This reduces to:

2.35

Skin depth (m)

Period (s)

Resistivity (Ωm)

2.4 Artificial Intelligence

Computers have become immensely powerful over the recent years; therefore, it has

become easier to emulate tasks carried out by a human being (Chaki, 2015). Artificial

intelligence (AI) is used to refer to intelligence in machines to perform certain functions

as illustrated in Figure 2.12 with the ability of rationalizing and taking actions that have

the best chance of achieving a specific goal (Karrar & Sun, 2017).



33

Figure 2.12: Artificial Intelligence Techniques (Gokani, 2017)

2.4.1 Machine Learning (ML)

In order to improve energy productivity and reduce exploration costs, reservoir

evaluation by use of integration techniques has attracted attention (Alhakeem, 2018).

Machine Learning is the ability of a computer algorithm to learn from data and

accordingly through experience make or become better by discovering patterns that can

be later used to analyze new data. This area of study comes in handy because of the

complexity of tasks to be learned, that traditional methods of programming cannot

handle (Dawood, 2019). For this to happen, the issue to be worked out is analyzed,

sufficient data for training the machine is then collected and input in the model to

evaluate the outcomes. From own experiences, the program learns as more data comes

in as illustrated in the Figure 2.13

https://mse238blog.stanford.edu/author/jgokani/
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Figure 2.13: Machine Learning Approach (Sapkota, 2019)

Machine Learning (ML) is a research area in computer science Artificial Intelligence,

which can be incorporated to develop intelligent models for geothermal systems to

improve the learning from the geothermal wells data. Machine Learning can be used in

geothermal research in the prediction of geothermal parameters provided with the wells

data (Muther et al., 2022) Machine Learning applied in geothermal technology can be

used to solve the old problems using the new technology solutions to augment research

in the field from data ingestion, data preprocessing, modelling, visualization and

interpretations. Artificial Intelligence’s Machine Learning, if embraced will aid in the

achievement of predictive models that can be used on existing data to predict future

unseen geophysical properties in direct exploration methods (Antonopoulosa et al.,

2020).

Due to plentiful geophysical and geological data application of Machine Learning

techniques or other different methods of Artificial intelligence in data integration for the

exploration has attracted much interest (AlHakeem, 2018).

2.4.2 Types of Machine Learning

According to Deland (2018) two types of techniques of Machine Learning are employed:

supervised learning, where the model is trained on known input and output data with the

https://www.sciencedirect.com/science/article/pii/S0375650522000037
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aim of predicting future outputs, and unsupervised learning, where intrinsic structures or

hidden patterns are discovered from input data. The two Machine Learning techniques

are displayed in Figure 2.14.

Figure 2.14: Machine Learning Algorithms (Maxhuni, 2017)
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2.4.3 Unsupervised Learning

In this category, the available input data does not have the corresponding output target,

but the machine tries to deduce a pattern from the data provided as shown in Figure 2.15.

The algorithms are left to themselves to identify similar patterns or structures in the data

and gather the clusters. In order to achieve this, the machine will require huge amount of

data (Neupert et al., 2021).

Figure 2.15: Unsupervised Learning Model (Barnadas, 2016)

2.4.4 Supervised Learning

This is where a model that makes prediction based on the known data values is

developed. A program will then learn from the input data, learns and improves its

prediction ability. For this process to yield a good supervised Machine Learning model,

data is prepared, an algorithm chosen, a model developed and validated then applied to

new data sets (Neupert et al., 2021). This is illustrated in the Figure 2.16
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Figure 2.16: Supervised Learning Model (Neupert et al., 2021)

Based on the output to be predicted, the exercise of supervised learning is grouped into

two categories: classification and regression.

2.4.5 Classification

It is used for discrete output values such as classifying whether a tumor is malignant or

benign, predicting the state of weather as sunny, cloudy, or rainy; or detect whether a

movie review is negative or positive statement (Dawood, 2019). To verify that the

machine has learned the classification technique, the test data is used and validated.

2.4.6 Regression Model

Regression, a predictive modeling technique has been proven scientifically to predict the

future and causal inference. It is a long-established statistical procedure that has been

adapted in AI and Machine Learning because its models are understandable (Ahmed et

al., 2020). The choice of a Machine Learning algorithm is dependent with the type of

data. Regression is adapted in numerical data whose value of prediction is a single value

hence the choice of the algorithm in this research.
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2.4.7 Linear Regression

In simple linear regression, there is only a single feature for prediction that is dependent

on a single input variable and a single output variable (Scowen et al., 2021). In multiple

linear regression, there are two or more features or exploratory variables to predict the

result of a single response variable. In linear regression data the equation is given by

equation 2.36:

2.36

Where

Polynomial regression is a special type of a linear regression where the technique of

transforming the original features into polynomial features of different degrees and the

applying regression onto it (Nisbet et al., 2018). This method is used in case where the

explanatory and the response variable do not exhibit linearity in data or are curvilinear in

nature. The polynomial model of nth order is given by equation 2.37

2.37

Where,

β0, β1… βn are the coefficients, the computed values by the regression tool reflecting
the relationships between the explanatory and the response variables. X1, X2,…Xn, ɛ are

the residuals or the bias or the random error term. This is that potion of the response

variable not explained by the model. In the consideration of the order or the degree
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model, it is important to keep the orders as low as possible and if it does not fit well,

other orders are tried.

2.4.8 Support Vector Machine (SVM)

SVM is a technique of finding a hyperplane in the original input space through

optimization by correctly separating a given training set while leaving as much distance

as possible from the closest instances to the hyperplane on both sides (Pupale, 2018).

Support vectors are the data points used in achieving maximal margin in regression

estimation. For nonlinear separable training set, construction of nonlinear boundary is

necessary by mapping original input space into feature space that is defined by a kernel

function. Support Vector Regression (SVR) is the term used when the SVM algorithm

is used in regression problems (Orchel, 2011). The SVR is defined by equation 2.38.

� (x) = (z ⋅ � (x)) + �, 2.38

where

� is a bias value,

z is weight vector, and

�(x) is a kernel function.

The insensitivity loss � is used in SVR and can be written as shown in equation 2.39

with � as the region for �-insensitivity

2.39

To minimize quadratic programming problem, SVR model can be written as shown in

equation 2.40

2.40
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With i = 1, 2, ….., n representing the training data number,

� = regularization parameter,

= empirical risk,

( = structure risk

The structure risk hinders overlearning and lack of applied universality. After the

constants �, � and � are properly chosen, Lagrange function can be used to resolve the

optimum of each parameter. Linear, polynomial, radial basis function (RBF), or

Gaussian and sigmoid kernels illustrated in equations (2.41), (2.42), (2.43), and (2.44)

respectively are the Kernels mostly used.

Linear kernel,

2.41

Polynomial kernel,

2.42

Where d is the degree of polynomial, representing the input and outputs

respectively

Radial Basic Function (RBF) kernel,

2.43

γ represents the variance

Sigmoid/ hyperbolic tangent/ multiplier perceptron (MLP) kernel
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2.44

According to Alwee et al. (2013), RBF kernel is more effective with fast training

process suitable for solving forecasting problems and therefore was employed in this

research work.

2.4.9 Decision Tree Regression (DTR)

It is a technique that is used for fitting a sine curve on a model where the continuous

values are being sought. It can be used for building classification or regression models.

The model observes the features of a dataset to learn the tree structure in the dataset for

predicting a real value output. The dataset is broken down into decision nodes until it

reaches the leaf nodes (Rifat, 2020). The Decision nodes can further be divided into

either one or two more decision nodes. The top decision node is referred to as the root

node and is considered the best predictor.

According to Loh (2011), regression tree was established for evaluation of real-valued

functions and can be referred to as a variant of decision tree. Regression tree is modelled

for solving dependent and continuous variables or ordered discrete values in which the

sum of the squared difference between the predicted and observed values is used to

measure the prediction error. The datasets for the operation of regression trees consists a

single output variable with one or more input variables. The output and input variables

are also known as response and predictor variables, respectively, and the output variable

is numerical. Generally, the methodology employed in the construction of regression

trees allows the input variables to be a combination of continuous and categorical

variables. Whenever each decision node in the regression tree contains a test on the

values of some input variables, a decision tree is developed and the terminal node of the

tree contains the values of the predicted output variable.

The binary recursive partitioning process is an iterative process which splits the dataset

into simple partitions and then continues to split every partition into smaller partitions or

groups at each stage of the process.
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Let �1,�2,…,�� be a collection of observation of the response variable ��. Each

observed value ��,�=1,2,…,�, depends on the explanatory variable �1,�2,…,��. This

implies that we divide the predictor space which is the set of possible values for

�1,�2,…,�� into �- distinct and non-overlapping regions, �1,�2...,��. Then for every

observation that falls into the region Rj, we make the same prediction, which is simply

the mean of the response values for the training observations in ��. The regions can have

any shape depending on the user. Nevertheless, we can decide to split the predictor

space into j-high-dimensional rectangles or boxes because of the ease and effortlessness

in the interpretation of the resulting predictive model. Then we consider all the

predictors �1,�2,…,��, and all the possible values of the split for each of the predictors.

We choose the predictor and split point that will result into a tree that has the lowest

Residual Sum Square (RSS). The goal is to find boxes �1,�2...,�� that minimizes the

Residual Sum Square given by

2.44a

Where is the mean response for the training data set within the ��ℎ box. A top-down

greedy approach called recursive binary splitting is applied. The process is known as at

top-down process since it starts at the top of the tree, that is, the point where all the

observations belong to one region and then splits the predictor space. Each split is

specified through two new branches further down the tree.

In performing the recursive binary splitting, we first select a predictor and a split point

such that splitting the predictor space into two regions results to the greatest possible

reduction in RSS. This process is repeated, with the aim of finding the best predictor and

best split point in order to split the data further and minimize the RSS within each of the

regions. However, instead of splitting the entire predictor space this time, we split one of

the previously identified regions. This process is continued until a certain criterion is
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reached. Let us consider the tree in Figure 3. The first node asks if X1 is less than or

equal to some threshold t1 the mean square error, a measure that tells us how much our

predictions deviate from the original target and that’s the entry-point of mean square

error. In case of a yes, we then ask if X2 is less than or equal to some other threshold t2.

In case of a yes, we go to the bottom left quadrant of the space, in particular R1. In case

of a no, we ask if X1 is less than or equal to t3. And we continue in this same way. The

result of those parallel splits of axis is the partition of a 2d space into 5 different regions.

Figure 2.17: DTR Split

The DTR split the node by use of the core algorithm known as Iterative Dichotomizer

(ID3) (Gao et al., 2018)

2.4.10 Random Forest Regression (RFR)

From the name, RFR is incorporated with numerous individual decision trees each

spitting out a class prediction operating like an ensemble and the model’s prediction is

the class with the most votes. A random sample with replacement of the training set is

selected with response �=�1,...,�� bagging repeatedly (B times) from the training set

�=�1,...,�� fitting trees to these samples. From all the individual trees regression trees on
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x’, predictions for unseen samples x’ can be made by averaging the predictions after the

training (Venkatasubramaniam et al., 2017).

2.45

Prediction’s uncertainty estimates can be made from all the individual regression trees

on x’ as the standard deviation of the predictions based on equation 2.46

2.46

B is a free parameter representing the number of samples/trees ranging from a few

hundred to several thousand. Cross validation can be used to obtain the optimal number

of trees B.

The general algorithm of random forests first selects the number of samples to aggregate,

m , and these m prediction models are aggregated to give a stable and lower variance

prediction response. However, instead of selecting all the original variables at each split

in the bagging trees, a random selection of k variables from all the original variables is

performed at each split. Only the variable with best performance within this subset can

be selected to split the data. Thus, tree correlation can be de-correlated by introducing

this kind of randomness to the tree construction process.

There are two tuning parameters in the Random Forest model: the number of the

samples to aggregate, m and the number of the randomly selected variables, k. As the

number of trees m increase, the computational burden will also go up. As the intuitive

concept of the Random Forest, a forest within a large number of trees (m ˃ 1000 ) is

suggested to use. And typically k = √p where p is the total number of the variables in the

original dataset. As the randomly selected variables is only a small part of the original

variables, even if the number of trees m in Random Forest is much bigger than that in

Bagging Tree, the computation is still more efficient than that of bagging trees.
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Apart from the stable, highly accurate and efficient characteristics, Random Forest is

also able to deal with the dataset with a large number of variables, and the relative

importance of variables can still be estimated even if the correlation among variables

and the tuning parameter k have serious influence on the result. It is also a good

approach to estimate the missing data and maintain good performance for the dataset

with a large number of missing data. The disadvantage of the Random Forest is that it is

not able to do the prediction when the predicted response is beyond the range of the

observed outcomes in the training data.

2.4.11 Adaptive Boosting (AdaBoost)

AdaBoost is a popular boosting algorithm for which the fundamental principle is

combining weak estimators and implementing them on improved data versions. The

results of each prediction are then combined with the help of weighted majority

voting/hard voting. AdaBoost Regressor is used for solving regression problems

(Brownlee, 2020).

Adaptive Boosting (AdaBoost) first gives a weight value to the initial sample, inputs the

sample and the corresponding weights into the base learning method, and trains a base

learner. The distribution of training sample weights is adjusted according to the base

learner's performance, and the next base learner is trained based on the adjusted weights.

The process is repeated until the number of base learners reaches a pre-specified value.

All base learners are finally combined according to a binding strategy to obtain the final

strong learner.

The process of applying the AdaBoost regression algorithm to the grain yield dataset is

as follows:

The input grain yield data training set:
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the base learning algorithm is �; the number of base learners is K, and the output final

strong learner is �(�).

Distribution of weights for initialized training sample samples.

For iterative rounds there is �=1,2,···,�

Train the base learner using a with weights;

Calculate the maximum error of the sample on the training set.

To calculate the relative error for each sample, here the linear error was chosen.

Calculate the regression error rate of the base learner on the training set, weighting

coefficients, update the distribution of weights for the training set sample .
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A linear combination of base learners is constructed, and the binding strategy uses the

median of the weights of the base learners is taken. The base learner is used as the basic

method for the strong learner, and the final strong learner is as follows:

Where is the mediam of all

2.5 Machine Vision

The image processing is an analysed and manipulation of a digitalized image, especially

in order to improve the quality of image processing (Lee et al., 2019). Digital Image

Processing technique can be applied in variety of different fields such as Diagnostic

image analysis, Surgical planning, object detection and matching, background

subtraction in video, localization of tumours, measuring tissue volumes, locate objects

in satellite images (roads, forests, etc.), traffic control systems, locating objects in face

recognition, iris recognition, agricultural imaging, and medical imaging (Habuza et al.,

2021).

Modern digital technology has made it possible to manipulate multi-dimensional signals

with systems that range from simple digital circuits to advanced parallel computers.

Generally image processing consists of several stages: image import, analysis,

manipulation and image output. Computer algorithms play a crucial role in digital

image processing.

2.6 Data-Driven Discovery Predictive Modelling

Data-Driven Discovery Predictive Modelling is defined as the construction of robust

empirical models of real or complex systems with the intention of helping decision

makers establish the relationship between the input and output parameters of the system

https://www.sciencedirect.com/science/article/pii/S2352914821000861
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without having a proper understanding of the physical behavior of the system (Mont´ans

et al., 2019). This is illustrated in Figure 2.18.

Figure 2.18: Data Driven Modelling Block Diagram (Enyenihi, 2018)

The technique can develop models that characterize the performance of correlating

physical processes through the study of relevant data characterizing the systems of

interest (Siebert et al., 2021). This is by inferring the dependencies between system

inputs and outputs using certain learning algorithms without building the complex

physical models (Lee et al., 2019). The detected relations or patterns can be formulated

into mathematical statement or laws in the case of inventions in science, which then

enables prognosis.

Advancements in computational intelligence especially in Machine Learning area have

facilitated rapid growth of empirical modelling and its capabilities. Computational

intelligence and Machine Learning are the two main methods used to construct models

that Data-driven modelling is relied upon (Sarker, 2021). Input and output relationship

of the system is determined by Machine Learning algorithm by use of a training data set

that represents all the systems behaviours. After training the model, independent data set
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is then used to test the model to establish how well it can predict another output data

through testing correlations between different variables and observations. This enables

performing of predictions in the absence of specific laws governing the available data

sets (Ngarambe et al., 2020). Although data-driven modelling techniques have been

widely employed in almost all fields of research, its application in geothermal industry

reservoirs and characterizing reservoir is lacking; in particular, the applications of data-

driven models for subsurface parameter characterization.

2.7 Previous Work

Geochemistry, geology and geophysical methods of survey such as gravity, seismic,

magnetics, TEM, and MT were performed by stakeholders in the Kenya’s rift valley.

These surveys were motivated by the establishment of surface manifestations with the

aim of imaging the subsurface features and subsequently its geothermal potential

(Macharia et al., 2017).

2.7.1 Geochemical Data

The Na-K geothermometer was used to determine subsurface temperature and higher

temperatures were observed from the central towards the western and the southwestern

regions of the Olkaria domes field as shown in Figure 2.19 (Wamalwa et al.,2016)
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Figure 2.19: Na-K Geothermometer Temperature Average (Wamalwa et al., 2016)

2.7.2 Geophysical Techniques

Early exploration for reconnaissance mapping of the geothermal field was done by direct

current (DC) resistivity method (Mariita, 2013). However, improvement in technology

by introduction of state-of-the-art geophysical techniques such as MT made accurate

mapping of subsurface structures achievable leading to development of accurate

geothermal models (Figure 2.2
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Figure 2.20: MT Resistivity Distribution at 1000 m b s l at Olkaria Domes Field

(Mariita, 2013)

In the mid-1990s, TEM method that gives better resolution at depth was introduced.

TEM and MT have been found to complement each other for better resolution.

2.7.3 Reservoir Analysis

The down-hole temperature and pressure profiles tests have been used in Olkaria domes

to estimate permeability, transmissivity and storability for the purposes of determining

individual well productivity (Mbithi, 2016). Feed zones for specific wells have been

identified and interpreted through water loss zones during pumping tests and monitoring

the loss circulation loss of fluid during drilling (Mbithi, 2016; Okoo, 2013).
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2.8 The Research Gaps

Well drilling has been a continuous process and therefore new data which was not

included in the previous temperature and geophysical resistivity studies has been

obtained. The data for new wells were included in the research to improve on the

existing information about subsurface structures.

Despite all the advancements that have made Kenya among the top ten leading

producers of geothermal energy in the world and number one in Africa, geophysical data

processing for different techniques is always done independently. Integration of multiple

datasets is only done through manual visualization to generate a better model. Image

processing technique is therefore needed to stack contours images from different data to

generate one image to solve this.

Integration between the well completion tests such as temperature parameter and

geophysical MT and TEM for correlation analysis and for the purposes of applying

TEM/MT resistivity data as a tool for determining subsurface temperature is also desired.

In data driven modelling, Machine Learning is applied to describe the system by use of

data so that a model is developed to explain how the resulting physical processes behave

based on knowledge, experience and the observed data (Ma, 2018). These models can be

used to build up extremely nonlinear relationships (Herzog et al., 2018). The

development of Machine Learning algorithms as an alternative tool to predict subsurface

temperature from resistivity in geothermal reservoirs was inspired by the absence of

geothermal reservoir research based on data-driven models in the literature.
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CHAPTER THREE

MATERIALS AND METHODS

3.0 Data Collection Methods and Procedures

This research used the Electromagnetic (MT and TEM), pressure and temperature data

that has been acquired by KenGen during geophysical exploration and well testing

between 2004 to 2016.

3.1 Pressure Transient and Temperature Heat Up Data

The Kenya Electricity Generating Company has successfully drilled more than thirty

deep wells in Olkaria domes field for the purpose of energy exploitation (Nyandigisi,

2020). For this study, 15 wells were randomly selected with the aim of getting a good

representation of the entire field. These wells were: OW901, OW902B, OW903,

OW905A, OW907A, OW908, OW910, OW911A, OW912, OW914B, OW915, OW917,

OW918, OW919 and OW921. The data used for this study was collected by KenGen

during well completion tests for each well at different times between 1998 to 2017.

Before any test was conducted during well testing, the maximum depth of the well was

determined by running the logging tool down the well. This was also to ensure that the

well was free from any obstructions (Rionomakal et al., 2018). To establish the depth

where to station the logging tool, temperature profiles were obtained before step

pumping was done. Step pumping was done with the first pumping rate of 1000 lpm.

The rate was increased to 1300 lpm then to 1600 lpm and finally to 1900 lpm. Pumping

was done for 4 hours for the first step and for 3 hours for the other steps. While still

pumping at 1900 lpm, the pump was turned off. The pressure fall-off was then

monitored for 8 hours. After fall-off a temperature profile run was conducted during

well recovery. Grapher v13 software was used for estimation of the formation

temperature and identification of permeable zones or feeder zones. Surfer 16.1 software

was used for generation of contours
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3.2 Resistivity Data Acquisition

3.2.1 MT Data Acquisition

The MT data were collected by KenGen between 2004 and 2016 by use of a 5-channel

(MTU-5A) MT equipment. The equipment layout was as shown in Figure 2.11. MT data

from each station was acquired for about 20 hrs. A total of 120 MT soundings covering

an area of about 45 km2were used for interpretation in the Domes prospect.

3.2.1.1 MT Data Processing

The Synchronized Satellite Magntotelluric (SSMT2000) program, which is provided by

Phoenix Geophysics in Canada (Phoenix Geophysics, 2005), was used to process the

data in time-series form from the MT. through Fourier transformation, the data was

changed to frequency spectrum. Noisy data points were eliminated by the MT editor.

The resulting time-series data were decomposed through Fourier transformation to the

frequency domain. From the Fourier transform band, the robust processing method was

used to compute average cross-powers and auto powers, which were then edited to get

rid of noisy data by the MT editor program graphically. The data was then saved in

Electronic Data Interchange (EDI) files and later used as TEMTD input for joint

inversion with the TEM.

3.2.2 Transient Electromagnetic (TEM) Data Acquisition

The TEM equipment used in this survey is from Zonge. A 200 m × 200 m transmitter

wire loop was used as shown in Figure 3.1. The TEM data were collected by (KenGen)

between 2004 and 2016.
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Figure 3.1: Transient Electromagnetic Equipment Setup (Flóvenz et al., 2012)

A total of 79 Central Loop TEM soundings were carried out and were distributed

3.2.2.1 TEM Data Processing

The raw TEM data was processed using the program TemxZ for Zonge where the data

collected were averaged and late time apparent resistivity computed as a function of

time after current turn-off. The program contains graphical interface that offers editing

or omitting outliers of the noisy raw data possibilities.

3.2.3 The MT Static Shift Analysis

Static shift is a phenomenon in MT method caused by local resistivity inhomogeneities

which disturb the electrical field. The static shifts can be a big problem in volcanic

environments where resistivity variations close to surface are often extreme (Marwan et

al., 2019). It is possible to solve the problem of static shift in MT method through joint

inversion with TEM because TEM measurements at late time have no such distortion

since they do not measure electrical field. The MT static shift was corrected by joint

inversion with the TEM data, and then extracted from the jointly inverted models (Sirma,

2019).
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3.2.4 1-D Joint Inversion of TEM and MT Soundings

The One-dimensional joint inversion was performed simultaneously for both TEM and

MT data by fitting one inversion on both data sets to obtain one model according to

Lichoro (2010). This was achieved by use of an algorithm which determined the

appropriate shift factor to be used to constrain the MT data to fit the TEM response.

Both the MT and TEM data collected on approximately the same location were brought

together in a joint inversion where TEM 1-D inversion was used for static shift

correction on MT data (Christensen, 2022). The TEMTD program was used to invert

MT apparent resistivity and phase derived from the rotationally invariant determinant of

the MT tensor elements. In the joint inversion, one additional parameter was also

inverted for, namely a static shift multiplier needed to fit both the TEM and MT data

with the response of the same model, (Rosenkjær, 2011).

3.3 Image Stacking

Image processing technique for stacking multidimensional contours image data sets into

one image was needed to aid in identifying areas with high temperature and high

conductivity in one image for perceptions and better visualization of the reservoir. The

images were treated as bidimensional arrays.

To achieve this, Python Imaging Library (PIL) an open-source library with many

functions for image processing was used. The model in Figure 3.2 was build using

Python programming language and Anaconda framework. The open-source web-based

application Jupyter Notebook for coding and visualization was used. PIL package was

installed in the anaconda framework. The images from resistivity and temperature data

at different depth locations were then loaded into the model. Image pre-processing was

done by resizing the input images to have equal dimensions. The images were then

merged by using Pivotal Focus algorithm.
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Figure 3.2: Image Stacking Pipeline

3.4 Implementation of Machine Learning Prediction Algorithms

The objective was to obtain independent input values from the geophysical resistivity

data and use them to predict the subsurface temperature variables, implying that the

computer would learn from the input data and predict the output data through Machine

Learning algorithms.

To achieve this, regression analysis was employed based on the nature of the input and

the output data. Looking into the data at hand, the desired output which would be in

terms of temperature values meant that we knew what the output would be, hence,

choosing supervised as opposed to unsupervised learning. The output temperature data

was also continuous values and not discrete hence ruling out classification method of

analysis. Having established regression as the tool for analysis, Linear Regression,

Decision Tree Regression, Adaptive Booster Regression, Support Vector Regression and

Random Forest Regression models were attempted in order to obtain the best model.

Resistivity and temperature dataset were originally provided in excel worksheet. The

data was then merged into one Comma Separated Values (CSV) for modelling. Data
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from thirteen wells was used for training the model while two wells data observations

were set aside for the purposes of model verification during deployment evaluation. This

was in the ration of 80% to 20% for training and testing respectively according to Chaki

(2015). The training dataset was made up of 297 observations and two features;

Resistivity and Temperature while the testing dataset comprised of 72 observations

comprising of Resistivity and Temperature. The testing data was important as it was

used to evaluate how the model was to handle new data that was outside the training

data.

Data-Driven Discovery Predictive Model (3DPM) approach shown in Figure 3.3 using

Machine Learning computational approach was used in this research. This approach was

necessitated by the fact that cross all scientific disciplines, the governing equations have

been of fundamental importance and the governing equations’ traditional derivation has

been based on underlying first principles. Limitations to obtain theoretical or even

empirical but universal relationships between temperature and resistivity in geothermal

systems are because of the very high variability range of chemical and physical

conditions within the Earth. Therefore, the recourse to first-principles derivations could

be untenable.
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Figure 3.3: Data Driven Discovery Predictive Model (Abrahart et al., 2008)

A detailed Machine Learning procedure adopted is described in the flow chart of Figure

3.4. The model was build using Python programming language and Anaconda

framework. NumPy an open-source Python library was used in working with arrays. The

open-source web-based application Jupyter Notebook for coding was used. Matplotlib a

graph plotting library in python was used for graph visualization. Analysis, cleaning,

exploring, and manipulating data into comma separated files was carried by Pandas,

while SciPy, a scientific computation library was applied in optimization and statistical

processing. Sklearn was used for predicting temperature attribute from resistivity.

Resistivity was used as the input parameter while temperature as the output variable.

Using the same set of data, Linear Regression, Decision Tree Regression, Adaptive

Booster Regression, Support Vector Regression and Random Forest Regression

Machine Learning models were developed to establish the best fitting model based on

the performance inspectors.
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Figure 3.4: Machine Learning Prediction Approach (Steuer, 2018)

3.5 Model Performance Evaluation for Data-Driven Model

In this thesis four approaches were applied to analyze the performance of data-driven

models, including cross-plot, line graphs, coefficient of determination (R2) and Mean

Absolute Error (MAE).

3.5.1 Descriptive Statistics

To observe the model predictions pattern and compare with the actual data patterns,

graph of actual values and forecasting of testing data set was plotted.

3.5.1.1 Cross Plot

Cross plot is the most intuitive visualization method that was used to examine the

performance of data-driven models. A schematic of a cross-plot is shown in Figure 3.5.
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Figure 3.5: A Schematic of Cross Plot (Ma, 2018).

The x-axis as in Figure 3.5 represented the measured temperature, while the y-axis

denoted the predicted temperature values from models. The location of the scatter points

in the Figure depicted its corresponding prediction from the model (Das, 2018).

3.5.1.2 Line Graphs

Line graphs were used to display change of data points connected by straight line

segments on the x and y-axes. They were important in determination of how temperature

and resistivity values changed with depth. They were also used to display multiple line

graphs to aid visualising the behaviours of actual and predicted temperature as functions

of depth.

3.5.1.3 Coefficient of Determination (R2)

Coefficient of Determination (R2) is an important statistical measure that was used to

show how well a model fitted the targets. According to Flynn (2019), R2 is defined as:
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3.1

Where �� was the observable variable or target (resistivity); represented the predicted

value from the model (temperature); denotes the average of all targets; n is total

number of samples; for a set of data samples, a larger value of R2 indicates an increasing

prediction precision from a regression. In this thesis, a perfect prediction means the

value of R2 is 1 according to Ma (2018).

3.5.1.4 Mean Absolute Error

Mean Absolute Error (MAE) was used as a measure of errors between measured and the

predicted temperature values (Figure 3.6). MAE is calculated as (Kothapalli, 2021):

3.2

The smaller the MSE, the better the predictor fits the data

Figure 3.6: A Schematic of MAE (Willmott & Matsuura, 2005)
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.0 Introduction

This chapter discusses results with respect to the outlined objectives. Several

contributions were presented in this research. First, the application of temperature heat

up and pressure transient tests to evaluate reservoir sub surface structures. Secondly, the

application of resistivity method by use of MT and TEM to image subsurface resistivity

distribution in high-temperature Olkaria domes geothermal field. Thirdly, from the

temperature and resistivity data, the application of data-driven models involving

geophysical resistivity data to predict subsurface temperature by use of Regression

algorithms of Machine Learning in Artificial intelligence was realized. Also image

stacking by use of PivotalFocus Algorithm of machine vision of Artificial Intelligence

was performed on temperature and resistivity images at particular depths to generate one

image that was a representation of resistivity and temperature parameters at that

particular depth is novel. This aided in identifying areas with high temperature and high

conductivity in one image. This led to locating the best possible drilling sites based on

the merged images of resistivity and temperature at different depths. In doing so, each of

the outlined objectives was achieved.

4.1 Temperature Warm Up and Pressure Transient Tests

4.1.1 Temperature Recovery Profiles

Based on temperature recovery profiles, permeability zones were identified. Two major

permeable structures were identified. The first was in the range of 900-1300 m a s l and

the second permeable structure was at a depth of 250-0 m a s l in the wells as shown in

Figures 4.1, 4.2 and 4.3 for wells OW905A, OW903 and OW919 respectively with the

rest of the wells in appendix 1. At these depths, wells experienced adverting hotter zones

in temperature recovery profiles indicating that hotter fluids from the surroundings

entered the wells faster at these points during well recovery relative to other depths in
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the wells. The two hotter structures appearing at same depths in most of the wells

suggest that permeability in the Domes is dominated by two horizontal structures.

Figure 4.1: OW905A Temperature Profiles from the Heat up Test
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Figure 4.2: OW903 Temperature Profiles from the Heat up Test

Figure 4.3: OW919 Temperature Profiles from Heat up Test

Highly Permeable Zone
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Three recharge zones were identified from the four lateral temperature contours at

depths of 1000 m a s l, 500 m a s l, 0 m a s l and 200 m b s l as shown in Figures 4.4, 4.5,

4.6 and 4.7. These recharge zones were identified as areas with the lowest temperatures

within the field. The low temperatures could have been occasioned by an inflow of cold

fluids into the reservoir. These zones were in the NW, SW and SE directions.

Figure 4.4: Lateral Temperature Contours at 1000 m a s l
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Figure 4.5: Lateral Temperature Contours at 500 m a s l

Also from Figures 4.4, 4.5, 4.6 and 4.7, two major heat sources were inferred. These two

heat sources were identified as areas with the highest temperatures within the field as a

result of being closer to the hot magmatic intrusions. The first heat source is located on

the Northwest side of the field while the second heat source is on the SouthEast side of

the study area. The two regions are characterized by high temperature isotherms. These

regions exhibit temperatures more than 315 0C suggesting magma chambers beneath the

areas. These heat structures could be associated with magmatic intrusions.
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Figure 4.6: Lateral Temperature Contours at 0 m a s l



69

Figure 4.7: Lateral Temperature Contours at 200 m b s l

The two heat sources are separated by a low temperature region that runs in the NE-SW

direction that coincides with the geological fault structure as shown in geological map of

Figure 4.8.
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Figure 4.8: Geological Map of the Olkaria Volcanic Complex

Due to the low temperature nature of the NE-SW fault structure indicating cold fluids

inflow, the fault could be controlling the fluid flow into the reservoir and therefore

considered as the recharge to the reservoir.
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4.1.2 Analysis of Nature of the Fault from Borehole Geology

Rock alteration entails transformation of the mineralogy of rocks as a result of the

changes to the existing conditions such as temperature, chemical composition, tectonic

setting and the interaction period that the rock is subjected to (Haldar, 2020).

Temperature is the major determinant in the hydrothermal alteration as most of the

chemical reactions do occur at elevated temperatures (Lagat, 2004). Also at elevated

temperatures, minerals have been found to become thermodynamically stable.

Some of the favorable conditions for hydrothermal alterations are high temperature and

high permeability to allow rock and fluid interactions. Fluids carry metals in solution,

either from a nearby igneous source or from leaching out of some nearby rocks. This

causes hydrothermal alteration of rocks by passing hot water fluids through the rocks

and changing their composition by adding or removing or redistributing components.

The primary minerals become unstable and forced to undergo chemical reactions with

the hydrothermal fluids altering them to secondary minerals replacing the primary

minerals (Nyandigisi & Katana, 2016). These secondary minerals tend to form at

specific and stable temperatures thus making them suitable for mapping temperatures of

a geothermal system and reservoir (Nyandigisi & Katana, 2016).

The alteration mineralogy and rock appearance were therefore used to investigate the

nature of the fault in relation to the two magma chambers outlined from the temperature

contours. To achieve this, alteration mineralogy and rock appearances in six wells that

included OW901, OW902, OW905A, OW910, OW914B and OW917 were selected

with the main material being the geological logging data obtained from rock cuttings

during well drilling. Depth of the first appearance of Illites and Quartz minerals as well

as Tuff and Rhyolites Rocks for each well was used with the surface elevation depth to

find the depth above sea level of alteration. This depth and coordinates of the well were

used to generate contour maps.
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4.1.2.1 First Appearance of Quartz and Illite Minerals in Wells

Distribution of Quartz in Figure 4.9 that was generated from geological well logging

data shows that in the Eastern region, Quartz was encountered at shallower depths of

about 1600 m a s l compared to the western side where the first appearance of Quartz

was as low as 1300 m a s l.

Figure 4.9: First Appearance of Quartz in Well Under Study

Illites appeared shallower on the SouthEastern side with the shallowest being at the

depth of 1750 m a s l while the deepest was in the northwest side at 1150 m a s l as

shown in Figure 4.10.
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Figure 4.10: First Appearance of Illites in Wells under Study

The Illites and Quartz contour distribution indicate that minerals first appear closer to

the surface on the Eastern region as compared to the Western region of the field hence

high temperature zone characterized by the existence of high-temperature mineral

assemblages in the eastern region. The presence of Quartz and Illites in a well indicate

temperatures of over 180 oC and 200 oC respectively as shown in Figure 4.11 according

to Fulignati (2020). Also, first appearance of Illites and Quartz in wells under study

suggests that the two heat sources separated by the SW-NE fault are at different depths

indicating that the heat source on the SouthEast side is closer to the surface compared to

the Northwest side. Therefore SW-NE oriented fault could be as a result of more

upthrow to the east as compared to the west leading to a normal fault.
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Figure 4.11: Hydrothermal Alteration Minerals and Their Temperature Stability

Range (Fulignati, 2020)

This distribution trend of Illites and Quartz minerals correspond well with the SW-NE

structure.

4.1.2.2 First Appearance of Tuff and Rhyolites Rocks in Wells

Distribution of tuff in Figures 4.12 and 4.13 that were generated from geological well

logging data show that in the Eastern region, it was encountered at shallower depths of

about 1900 m a s l compared to the western side where the first appearance of tuff was

as low as 1340 m a s l.
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Figure 4.12: Rock Stratigraphy in Three Wells under Study
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Figure 4.13: First Appearance of Tuff in Wells under Study

Rhyolites appeared shallower on the south-eastern side with the shallowest being in well

OW917 while in the northwest side the shallowest in well OW905A m a s l as shown in

Figure 4.14.
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Figure 4.14: First Appearance of Rhyolites in Wells under Study

The Rhyolites and Tuff contour distribution indicates that these rocks first appear

shallower on the SouthEast region as compared to the northwest region of the field. This

indicates that there could have been a differential upward movement of magma

chambers with the SouthEastern side moving more closely to the surface. This could

also be the reason why Illites and Quartz minerals appeared shallower on the eastern

region as compared to the western region.

4.1.3: Reservoir Heat Transfer Modes from Temperature Recovery Profiles

Considering individual well warm up profiles, it is observed that OW901, OW902B,

OW903, OW905A, OW910, OW911A and OW919 are dominated by conductive heat

transfer mode. This is indicated by gradual increase in temperature with increase in

depth, with only convective heat transfer being observed at permeable zone at depth of

900-1300 m a s l where adverting hotter fluid is experienced as indicated in Figures 4.15

and 4.16 for wells OW905A and 902B respectively and appendix 1 for the rest of the

wells.



78

Figure 4.15: OW905A Heat Transfer Modes
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Figure 4.16: OW902B Heat Transfer Modes

Convective heat transfer mode dominates in wells OW908, OW912, OW914B, OW9015,

OW917, OW918 and OW921. This is indicated by adverting hotter fluid dominating in

most parts of these wells as indicated in Figures 4.17 and 4.18 for wells 912 and

OW914B respectively and appendix 1 for the rest of the wells.

Convective Heat
Transfer Region

Conductive Heat
Transfer Region
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Figure 4.17: OW912 Heat Transfer Modes

Figure 4.18: OW914B Heat Transfer Mode

Convective Heat
Transfer Region

Convective Heat
Transfer Region
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All the wells in which convection heat transfer dominated were found to be located in

the SouthEast while the wells with conductive heat transfer were found to be located in

the northwest of the Olkaria Domes geothermal field as indicted in Figure 4.19. The blue

rectangular boxes indicate conductive wells while black triangles indicate convective

wells. This implying that the SouthEast region could be more permeable as compared to

the northwest region since convection heat transfer happens only through the fluids

which can only take place in permeable and porous medium.

Figure 4.19: Convective and Conductive Heat Transfer Wells
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4.1.4 Temperature Cross-Section

The vertical temperature cross-section model from west to east direction is shown in

Figure 4.20. An up dome of temperature contours on the western side of the study area

between eastings 202 and 203 indicates an upflow zone. The other upflow zone is found

between eastings 204 to 207 Eastings. The map also indicates lateral recharge zone at a

depth between 1500 m a s l and 1000 m a s l but extending deep into the subsurface at

the fault line up to 800 m below sea level. These upflow zones could be associated with

magmatic intrusions while the lateral recharge zone is associated with the fault line.

Figure 4.20: West - East Temperature Cross Section
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4.1.5 Pressure Analysis from Step-Rate Injection Test

4.1.5.1 Injectivity Index

It is defined by the ratio of the change of injection flow rate to the change in reservoir

pressure measured in the borehole, defined by equation 4.1.

4.1

The last pressure values for each flow step of Figure 4.21 were plotted against the rates

and best-fit lines drawn in Figure 4.22

.

Figure 4.21: Pressure Buid Up and fall off Profile in OW901
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Figure 4.22: Injectivity Profile Plot for OW901

The inverse of the injectivity slope yielded injectivity of the OW901 well.

From the linear equation (injectivity curve)

Where m is the gradient

Injectivity =

For OW901

Therefore,

m = 1.942

and

Injectivity = = = 0.51 lps/bar
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This was done to all the wells and the results are presented in table 4.1. For the rest of

the wells under study, the pressure builds up and injectivity graphs are in appendix 2.

Table 4.1: Well Parameters

Well Injectivity (lps/bar) Transmissivity (m3/pa.s)

OW901 0.51 8.28×10-9

OW902B 2.94 7.82×10-9

OW903 0.35 2.81×10-8

OW910 3.13 1.17×10-8

OW911A 1.79 5.63×10-9

OW912 5.56 5.12×10-9

OW914B 2.65 1.00×10-8

OW915 2.78 9.38×10-9

OW918 2.05 1.08×10-8

OW921 3.13 1.00×10-8

The results show the highest injectivity index 5.56Lps/bar in 0W912 while the lowest

value of 0.35Lps/bar was recorded in 0W903. Also wells in the NE region of the

reservoir have higher injectivity index while the SW wells have lower injectivity index.

Contours for injectivity index were drawn as shown in Figure 4.23. From the results of

this study, it can be said that the permeability of Olkaria Domes geothermal reservoir is

not uniform; it varies for different parts of the reservoir. A well can be drilled into a

high-temperature part of a reservoir but if the permeability is low, the well may not be

productive. From Figure 4.23, injectivity index were generally higher in the Eastern

region suggesting better the reservoir permeability and connectivity between the wells

and the surrounding reservoir. This suggests that wells in the Eastern region of the

reservoir could have intersected more permeable fractures.
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Figure 4.23: Wells Injectivity Distribution in Olkaria Domes Field

4.1.5.3 Semi-log Analysis: Transmissivity

A plot of the Theis solution for Δ Pt vs. log t produced a semi-log straight line with a

slope m per log cycle as shown in Figure 4.24 for well OW901 and appendix 3 for the

rest of the wells. From equation 2.11

q = volumetric injection rate prior to fall-off

m is the gradient of the semi-log straight line

For well OW901
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m = 6.8 bars/log cycle

Hence Transmissivity is

T = 8.28×10-09m3/pa.s

This was done to all the wells and the results are presented in Table 4.1

Figure 4.24: OW901 Semi-Log Graph

The results indicate that highest transmissivity values were 3.81×10-07 m3/Pa.s in

0W907A while well with lowest was 0W914B at 1.62×10-09 m3/Pa.s. Wells in the

eastern region of the reservoir have higher transmissivity while the NW and SE regions

had the lowest transmissivity as compared to other regions in the study area.

These results could imply that wells in the in the eastern region of the reservoir could be

more permeable as compared to the wells in the NW and SE.

4.2 MT and TEM Visualization

4.2.1 Resistivity Iso-Maps

Contour maps at different elevations from 1900 m a s l down to 2000 m b s l were

constructed by TEMRESD program.
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4.2.1.1 Resistivity Map at 1800-1700 m a s l Contours

This is shown in Figures 4.25 and appendix 7a. This covers a depth of 100 metres to 200

metres below the surface. The Figures show a dominant high resistivity region with

resistivity ranging from 16 Ωm-1000 Ωm

Figure 4.25: Resistivity Iso Map at 1800 m a s l

High resistivity in this region is an indication of un-altered subsurface formations near

the earth’s surface. The eastern region of the field exhibits the highest resistivity

trending northwards and in the SW direction. This outlines the ring structure as indicated

in the geological map in Figure 4.8. This could be as a result of resistive rhyolite rocks
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that cover the top parts of the structure. The central part shows lower resistivity that

shifts towards the west and northwest parts as we move down the surface.

In appendix 7a, high resistivity is concentrated to only two areas in the NE and central

part of the East. The rest are low resistive region with the lowest being NW, W, S and

SE. From the two Figures, resistivity decreases with depth

4.2.1.2 Resistivity Maps at 1600- 500 m a s l Contours

This is shown in Figures 4.26, 4.27and appendices 7b and 7c and covers a depth of 300

to 1200 metres below the surface. The Figures show a region of enhanced conductivity

ranging from 1 Ωm-80 Ωm across the area especially in the western and eastern regions.
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Figure 4.26: Resistivity Iso Map at 1600 m a s l

Relatively high resistive anomaly patches appear to emerge at the centre of the study

area aligning in the NE - SW direction. This indicates a structural control that coincides

with the geological fault structure in Figure 4.8. This high resistivity anomaly could be

as a result of un-altered or presence of clay cap fills in the fault line.

High resistivity is observed in the SW region. This indicates patches of un-altered

grounds at this depth. The western and eastern flanks have low resistivity also aligning
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in the NE - SW direction. This is as a result of high permeability as shown in

temperature recovery profiles (Figure 4.28) and low resistivity hydrothermal alteration

minerals such as zeolites and smectites with their cations loosely bound are formed

making the rocks conductive hence an indication of high hydrothermal fluid circulation

exists at depth. The trend of resistivity decreasing with depth continues

Figure 4.27: Resistivity Iso Map at 500 m a s l
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Figure 4.28: OW905A Temperature Profiles from the Heat Up Test

A low resistivity structure trending in the NW-SE direction appears from the depth of

1500 and 500 m a s l as shown in Figure 4.27 and appendix 47c cutting across the NE-

SW trending fault. This could be a discontinuity in the fault line.

4.2.1.3 Resistivity Maps at 0- 2000 m b s l Contours

This is the region that covers 2200-4000 metres below the earth’s surface. In this region,

resistivity starts to increase with depth as shown in Figures 4.29 and 4.30 and

appendices 7d and 7e. However western and eastern regions still show low resistivity as

compared to other areas. The southern region is the most resistive.
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Figure 4.29: Resistivity Iso Map at 0 m a s l

The increase in resistivity with depth indicates the presence of high temperatures that

has resulted into the formation of high temperature alteration minerals. This is because

epidote and chlorite minerals with bounded ions in the crystal lattice dominate at higher

temperatures exceeding 250 °C making the system more resistive.
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Figure 4.30: Resistivity Iso Map at 2000 m b s l

4.2.3 Resistivity Cross-Sections

Two cross-sections were generated by TEMCROSS program, the NW-SE and the SW-

NE Cross-Sections as shown in Figure 4.31
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Figure 4.31: Cross Section Map.

4.2.3.1 NW-SE Resistivity Cross-Section

The NW-SE Resistivity Cross-Section depicts non-uniform resistivity structures as

shown in Figure 4.32. This could be as a result of localized rock distribution in the area.

At the surface, a narrow layer of high resistivity was realized. This could be as a result

of unaltered rock formations. A higher resistive structure R1 on the surface indicates non

uniform distribution of unaltered rhyolitic rocks lava flows and other eruptive materials

such as ashy minerals. This could be an indication of poor water saturation at R1.
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Another broader layer of low-resistivity elevated at the centre of the study area was

observed. This could be attributed to the presence of low resistivity hydrothermal

alteration minerals such as zeolites and smectites with their cations loosely bound that

are formed making the rocks conductive hence an indication of high hydrothermal fluid

circulation exists at depth. Conductivity zones C1 and C4 are indication of elevated

permeability in these regions and therefore there could be a high hydrothermal fluid

circulation. The resistivity discontinuity between C1 and C4 reflects a SW-NE trending

fault line as shown in geological map of Figure 4.8 that could be as a result of un-

altered or presence of clay cap fills in the fault line.

The third layer is dominated by relatively higher resistivity follows at depth. The high

resistivity was attributed to the dominance of high temperature alteration minerals such

as epidote and chlorite minerals with bounded ions in the crystal lattice. West and East

sides of the reservoir are dominated by low resistive regions at depth indicating high

permeability in these regions.

Figure 4.32: NW-SE Resistivity Cross Section
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4.2.3.2 SW-NE Resistivity Cross-Section

Similarly, SW-NE Resistivity Cross-Section of Olkaria dome in Figure 4.33 revealed

similar features as in Figure 4.32 with a non-uniform resistivity structure at depth and a

narrow layer of high resistivity at the surface as a result of unaltered rock formations. It

was also followed by another broader layer of low-resistivity layer with three main

patches (west, central and east). Low resistivity within this region was attributed to the

presence of low resistivity hydrothermal alteration minerals such as zeolites and

smectites with their cations loosely bound are formed making the rocks conductive. A

relatively higher-resistivity zone followed due to dominance of high temperature

alteration minerals such as epidote and chlorite. West and East sides were dominated by

low resistive at depth. High resistive body at the centre from the depth of 1250 m a s l

downwards which is believed to be the heat source was observed.

In Figure 4.33, conductivity regions C1, C2 and C3 indicate elevated permeability in

these regions and therefore there is a high hydrothermal fluid circulation. Resistivity

discontinuity between C1 and C2 is an indication of a possible fault.
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Figure 4.33: SW-NE Resistivity Cross Section

4.3 Predictive Modelling

The objective was to obtain independent input values from the geophysical resistivity

data and use them to predict the subsurface temperature variables. The implication is

that it would be useful to use the computer’s ability to learn from data and predict the

outcome, hence the use of machine learning. Regression analysis was used to help

understand how the dependent variables would change their values on light of the

variance of the independent variables. While there are many approaches through which

this problem could have been tackled such as classification and clustering, they were not

put into consideration based on the nature of the problem at hand. Considering that

Machine Learning principal is to enable the machine to learn from the input data and be

able to predict the output data, the nature of the input and desired output plays a great

role in defining which paths to take in terms of algorithms and process. Looking into the
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data at hand, the desired output which is to be in terms of temperature values means that

the output is known hence, supervised learning was chosen. Also, the output temperature

values were continuous values rather than discrete ruling out classification; given that

the latter answers the question of as to which category a new observation may belong to.

In other words, in classification, input labels are mapped out to output labels whereas in

regression we are mapping input to continuous output.

Having established regression as the Machine Learning method to solve the problem at

hand, the specific algorithm convenient for solving the problem also needed to be

established. Linear regression was ruled out because the relationship between the

dependent and independent variables is not linear. Therefore, other regression

approaches comprising of polynomial Regression, Decision Tree Regression, Adaptive

Booster Regression, Support Vector Regression and Random Forest Regression were

applied.

4.3.1 Exploratory Data Analysis

Before constructing the model, the exploratory analysis of the dataset was performed

with the aim of bringing out the summary of main characteristics of a dataset to

understand what the data yields beyond the formal modeling or hypothesis testing task.

The dataset was made up of 297 Observations and two features, resistivity and

Temperature, of data type float. The statistical values for the two features are shown in

Table 4.2.
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Table 4.2: The Dataset Summary Information

Resistivity (ohm-m) Temperature (°C)

Count 297 297

Mean 56.26 215.49

Std 95.03 78.36

min 3 24.5

25% 11 186.6

50% 20 225.1

75% 51 269.1

max 630 364

The histogram in Figure 4.34 was used to show the nature of statistical data for

resistivity. The histogram shows that the data was asymmetrical and skewed toward the

left with a tail toward the right, Most of the resistivity data values lie between the

resistivity values between 0 to 200 Ω-m and very few points lying above 200 Ω-m.
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Figure 4.34: Resistivity Histogram

Temperature values were similarly plotted, and Figure 4.35 shows a right skewed graph.

More than 60 percent of our temperature data points were between approximately 90 °C

to 290 °C.
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Figure 4.35: Temperature Histogram

As from the scatter plot in Figure 4.36, a complex non-linear relationship between the

temperature and resistivity features is observed. The non-linear relationship in the data

can be modelled by the powerful nonlinear regression through model training and testing.



103

Figure 4.36: Temperature Vs Resistivity Scatter Plot

4.3.2 Nonlinear Regression Model Training and Testing

The model was trained and tested using the polynomial regression, Ensemble regression,

SVR and Decision Tree Regression (DTR) and the results and the graphs are illustrated

in the subsequent sections.

4.3.2.1 Polynomial Regression

Four polynomial regression models of orders 2, 3, 4 and 5 were developed to predict

temperature

from resistivity as shown in the appendix 4a. The Mean Absolute Error (MAE) and

Coefficient of Correlation (R2) for the polynomial models are shown in Table 4.3.



104

Table 4.3: MAE and R2 for Polynomial Models

Algorithm 2-Degree 3-Degree 4-Degree 5-Degree

MAE 50.6 51.18 50.47 49.77

R2 0.5241 0.518 0.521 0.5338

From the table, R2 an important measure of the strength of the relationship between the

independent variables and the dependent variables ranged from the minimum of 0.518 to

a maximum of 0.534. This means that between 51.8% to 53.4% of the variation between

subsurface temperatures is accounted for by the surface resistivity. This is a moderate

relationship between temperature and resistivity. MAE was observed to range from

49.77 to 51.18 indicating that between the predicted temperature value and the actual

temperature value, the absolute value ranged from 49.77 to 51.18.

The estimated values that match the relevant field data should follow the line of Y = X if

the data well fits the model. Therefore, the polynomial regression scatter plot for

predicted temperature vs actual temperature should show a linear positive correlation.

This was not the case as indicated in Figures 4.37, 4.38, 4.39 and 4.40 as a result of the

complexity of the relationship between resistivity and temperature.
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Figure 4.37: Predicted Vs Actual Temperature Degree 2 Polynomial Scatter Plot

Figure 4.38: Predicted Vs Actual Temperature Degree 3 Polynomial Scatter Plot
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Figure 4.39: Predicted Vs Actual Degree 4 Polynomial Scatter Plot

Figure 4.40: Predicted Vs Actual Temperature Degree 5 Polynomial Scatter Plot

The variability in the predicted vs actual temperature values in the polynomial scatter

plots indicates that the data features were not learned by the polynomial model. This was



107

observed in Figure 4.41 and appendices 5 and 6 where resistivity values were observed

to decrease with depth up to 1000 metres below the surface, the trend was then reversed

where resistivity values started to increase with depth, but temperature continued

increasing. At this point, the predicted temperatures started to decrease which was

contrary to the measured temperature values. All the four polynomials could not learn

from this and therefore the prediction was unreliable.

F

Figure 4.41: OW908 Actual and Polynomial Predicted Parameters

From Figure 4.41, It is observed that resistivity values decrease with depth up to 1000

metres below the surface and then the trend reverses increasing with depth, but

temperature continue increasing.
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4.3.2.2 Ensemble Models

The goal of ensemble methods is to combine the predictions of several base estimators

built with a given learning algorithm in order to improve generalizability or robustness

over a single estimator. Adaptive Boosting (AdaBoost) Regression and Random Forest

ensemble regression models were considered for the purpose of this research work and

the results, and the graphs are illustrated in the subsequent sections.

4.3.2.1.1 Adaptive Boosting (AdaBoost) Regression

For AdaBoost Regressor, the following codes in appendix 4b were used for

implementing the algorithm. Mean Absolute Error and coefficient of correlation for the

AdaBoost regressor are shown in table 4.4.

Table 4.4: AdaBoost MAE and R2

Algorithm AdaBoost

MAE 46.99

R2 0.66

From table 4.4, R2 was 0.66 implying that 66% of the variation between subsurface

temperatures is accounted for by the surface resistivity which was an improvement as

compared to polynomial models whose R2 value ranged from 0.518 to a maximum of

0.534 an indication that AdaBoot model performed better than polynomial algorithms.

Mean Absolute Error was 46.99 indicating that the absolute value difference between

the predicted temperature value and the actual temperature is 46.99 which was also a

better performance than polynomial models. The relationship between the predicted

values and the actual temperature values of AdaBoost model is shown in scatter plot of

Figure 4.42. From Figure 4.42, there is a better correlation between the predicted and the

actual temperatures especially at temperatures above 300 oC as compared to lower

temperatures where plots are nonlinear.
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Figure 4.42: Predicted Vs Actual AdaBoost Scatter Plot

The variability in the predicted vs actual temperature values in the scatter plot indicates

that the AdaBoost model was able to learn more features from the data as compared to

polynomial regression where resistivity values were observed to decrease with depth of

1000 metres below the surface, the trend was reversed where resistivity values started to

increase with depth, the AdaBoost predicted temperature showed a slight increase in

temperature as opposed to temperature decrease experienced in polynomials, however

the temperature increase did not match with the actual temperature increase since they

were of lower values shown in Figure 4.43 and appendices 5 and 6.
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Figure 4.43: OW908 Actual and AdaBoost Predicted Parameters

4.3.2.1.2 Random Forest Regression

For Random Forest Regressor, the following codes in appendix 4c were used for

implementing the algorithm. Mean Absolute Error and coefficient of correlation for the

RFR model are shown in table 4.5.

Table 4.5: RFR MAE and R2

Algorithm Random Forest

MAE 36.17

R2 0.758

From the table, R2 was 0.758 implying that 75.8% of the variation between subsurface

temperatures is accounted for by the surface resistivity. This shows that RFR model

performed better that AdaBoost and polynomial algorithms. Mean Absolute Error was
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36.17 indicating that the absolute value of the difference between the predicted

temperature value and the actual temperature is 36.17.

Figure 4.44 shows the relationship between the predicted values and the actual

temperature values of RFR model. From the scatter plot, there is a better correlation

between the predicted and the actual temperatures especially at temperatures above 200
oC as compared to lower temperatures where there are more scattered instead of being

linear.

Figure 4.44: Predicted Vs Actual Temperature RFR Scatter Plot

The variability in the predicted vs actual temperature values in the scatter plot indicates

that the RFR model was able to learn more features from the data where resistivity

values were observed to decrease with depth of 1000 metres below the surface, the trend

was reversed where resistivity values started to increase with depth, the RFR was able to

cope up with the increase in temperature as opposed to polynomial and AdaBoost

regression models as shown in Figure 4.45 and appendices 5 and 6.
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Figure 4.45: OW908 Actual and RFR Predicted Parameters

4.3.2.2 Support Vector Regression (SVR)

For SVR, the following codes in appendix 4d was used for implementing the algorithm.

Mean Absolute Error and coefficient of correlation for the SVR model are shown in

table 4.6.

Table 4.6: SVR MAE and R2

Algorithm SVR

MAE 34.40

R2 0.789

From the table, R2 was 0.789 implying that 78.9% of the variation between subsurface

temperatures is accounted for by the surface resistivity which was an improvement as

compared to polynomial and Ensemble models. SVR model also recorded Mean

Absolute Error was 34.4 indicating that the absolute value of the difference between the
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predicted temperature value and the actual temperature is 34.4 which was also a better

performance compared to polynomial and ensemble models. The relationship between

the predicted values and the actual temperature values of SVR model is shown in scatter

plot of Figure 4.46. From the Figure, there is a better correlation between the predicted

and the actual temperatures.

Figure 4.46: Predicted Vs Actual Temperature SVR Scatter Plot

The variability in the predicted vs actual temperature values in the scatter plot indicates

that the SVR model was able to learn more features from the data where resistivity

values were observed to decrease with depth of 1000 metres below the surface, the trend

was reversed where resistivity values started to increase with depth, the SVR was able to

cope up with the increase in temperature as shown in Figure 4.47 and appendices 5 and

6.
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Figure 4.47: OW908 Actual and SVR Predicted Parameters

4.3.2.3 Decision Tree Regression (DTR)

For DTR, the following codes in appendix 4e were used for implementing the algorithm.

Mean Absolute Error and coefficient of correlation for the DTR model are shown in

table 4.7.

Table 4.7: DTR MAE and R2

Algorithm DTR

MAE 29.8

R2 0.8147

From the table, R2 was 0.8147 implying that 81.47% coefficient of correlation between

the actual and the predicted temperatures. This was the highest value in all the

algorithms used in this research. Mean Absolute Error was 29.8 which was also the
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lowest value in all the algorithms used in this research. The relationship between the

predicted and actual values is depicted in scatter plot of Figure 4.48.

Figure 4.48: OW908 Actual and DTR Predicted Parameters Scatter Plot

As seen from the Figure 4.48, the data points representing the line Y = X was more

visible indicating that the predicted data well fits the model. Also, the DTR model was

able to learn the trend of decreasing resistivity with depth up to 1000 metres below

surface and they started increasing in values after 1000 metres as shown in Figure 4.49

and appendices 5 and 6. From Figure 4.49, the predicted temperature graph matched

well with the actual temperature graph. Training the model using the DTR algorithm

approach provided superior outputs to other algorithms. This is based on the suggested

statistical performance indexes.
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Figure 4.49: OW908 Actual and DTR Predicted Parameters

4.3.3 Testing Best Model with New Data

DTR algorithm having produced the best results as compared to the rest in the study was

tested with new data and the R-squared was 0.835 with MAE at 21.7 as shown in Table

4.8.

Table 4.8: DTR New Data MAE and R2

Algorithm DTR Test Data

MAE 21.7

R2 0.835
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The Predictive performance of the new data is visualized in Figures 4.50 and 4.51.

Figure 4.50: The Predictive Performance of the New Data, OW915

Figure 4.51: The Predictive Performance of the New Data, OW906A
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DTR was then used to predict Temperature at a depth of 2000 m b s l that was beyond

depth of the wells and the results are as shown in Figure 4.52

Figure 4.52: DTR Temperature Prediction at 2000 m b s l

From Figure 4.52, there is a high temperature anomaly aligning in the NW-SE direction

indicating a possible deep NW-SE magmatic intrusion. This intrusion separates into two

dykes that move further nearer to the surface that resulted in high temperature zones as

shown in Figures 4.4 4.5, 4.6 and 4.7.
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The DTR Algorithm could be implemented in high temperature hydrothermal fields with

three main resistivity zones with the first zone being characterized by a narrow layer of

higher resistivity near the surface that represents unaltered region followed by the

second broader layer of high conductivity that is interpreted to be due to high conductive

hydrothermally altered mineralogy such as zeolites and the third zone being a relatively

higher-resistivity zone where resistivity is controlled by the formation of high

temperature mineralogy at depth such as epidote.

4.4 Image Stacking

The Program Code in appendix 4f was used for stacking resistivity and Temperature

images at 500 m a s l and 200 m b s l depths. Figures 4.53 and 4.54 were used as input

images for resistivity at 500 m a s l and 200 m b s l depths respectively while Figures

4.55 and 4.56 were used as input images for temperature at 500 m a s l and 200 m b s l

depths respectively.
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Figure 4.53: Input Images For Resistivity at 500 m a s l
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Figure 4.54: Input Image for Resistivity at 200 m b s l
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Figure 4.55: Input Image For Temperature at 500 m a s l
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Figure 4.56: Input Image for Temperature at 200 m b s l

The output images indicate areas with low resistivity coincide with areas with high

temperatures. The image stacking of temperature and resistivity narrowed down Olkaria

domed geothermal field into four main regions of concern.

Regions A and B

The regions are labelled “A” and “B” as shown in Figure 4.57 for the depth of 500 m a

s l and Figure 4.58 that show merged images at at 200 m.b.s.l. These are areas of high

temperature and high conductivity structures within the field. Resistivity is less than 25

Ωm while Temperature is above 275 oC. This may be an indication that permeability

and porosity are highest in these areas. More wells drilled in these regions may lead to

increased production of steam.
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Figure 4.57: Resistivity and Temperature Image at 500 m a s l

Regions C and D

These are regions with lower conductivity and temperatures as compared to A and B

with Resistivity ranging between between 25Ωm and 100Ωm while Temperatures range

between 225 oC and 260 oC. This may suggest low permeability and therefore wells

drilled in these regions may produce less steam.

Regions E and F

These are regions with lowest conductivity and temperatures with resistivity above 100

Ωm while temperature below 225 oC. These may be recharge zones where cold fluid is

entering the reservoir. Well drilled in these regions may lead to unproductive wells. In

cases of decrease in microgravity, reinjection wells may be drilled in these regions in
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order to balance mass withdrawal. This may increase chances for proper economical

exploitation of the reservoir.

Figure 4.58: Resistivity and Temperature Image at 200 m b s l

4.4.1 Model Validation

The stacked image model was compared with the gravity model carried out within the

same field. The gravity study established two main areas of high gravity anomaly which

was interpreted as denser bodies as a result of magmatic intrusion from the subsurface.

The first denser region was situated in the northwest side of the field. The second denser

area was in the SouthEast region of the field as shown in Figure 4.59. These two denser

bodies correlated with the regions labeled as ‘A’ and ‘B’ in Figures 4.57 and 4.58 that

were categorized as high temperature and high conductivity areas.
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Figure 4.59: Gravity Contour Map of Olkaria Domes

High temperature and high conductivity may therefore be associated with the intrusions

of denser magma chamber that had moved closer to the surface creating density contrast

with the surrounding rocks. The magmatic intrusion aligns in the NW-SE direction that

separates into two dykes as it approaches near surface. This validates the DTR

temperature prediction obtained in Figure 4.52 where the high temperature anomaly

aligned in the NW-SE direction and suggested a possible deep NW-SE magmatic

intrusion.

Figure 4.59 confirmed that to achieve maximum productivity from wells and save well

drilling costs, drilling may be concentrated in the areas marked ‘A’ and ‘B’. These are

areas with denser rock structures as compared to the surroundings, a phenomenon that

was associated with denser magmatic intrusions. The two intrusions resulted in raise in

temperature, an important parameter for a good geothermal reservoir. Also, these two

areas have the lowest resistivity indicating that permeability and porosity may be highest
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in these areas. High permeability and porosity are important in geothermal reservoir as

they allow ease of fluid flow into the well for steam extraction at the well separator.
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.2 Conclusions

With high temperatures exceeding 315oC being encountered in Olkaria Domes

geothermal field, it can be categorized as a high temperature field. From the temperature

recovery profiles, wells in the SouthEast exhibited convection heat transfer as the

dominant mode of heat transfer while the wells with conductive heat transfer are located

in the northwest of the Olkaria Domes geothermal field. This indicates that the

SouthEast region is more permeable since convection heat transfer happens only through

the fluids which can only take place in permeable and porous rocks as compared to the

northwest region.

Ilites and Quartz minerals were encountered at shallower depths of in the eastern side as

opposed to the western side. On the Eastern region Quartz was encountered at shallower

depths of about 1600 m a s l compared to the western side where the first appearance of

Quartz was as low as 1300 m a s l. Illites appeared on the SouthEastern side at the depth

of 1750 m a s l while the deepest was in the northwest side at 1150 m a s l. Therefore

SW/NE oriented fault could be as a result of more upthrow to the east as compared to

the west leading to a normal fault. This indicates that there could have been a differential

upward movement of magma chambers with the SouthEastern side moving more closer

to the surface moving these rocks nearer to the surface.

From the resistivity contours at selected depths, three main resistivity regions were

deduced; one low resistivity to the Northwest, the second low resistivity was observed to

the Eastern side of the field. The two low resistive regions are separated by a NE-SW

trending high resistive region. Resistivity decreases with depth up to a depth of 500 m a

s l then it increases with depth. From the cross sections, the results reveal three main

resistivity zones. The first zone was characterized by a narrow layer of higher resistivity
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near the surface and was depicted to represent unaltered region. The second was a

broader layer of high conductivity that was interpreted to be due to high conductive

hydrothermally altered mineralogy such as zeolites. The third was a relatively higher-

resistivity zone where resistivity is believed to be controlled by the formation of high

temperature mineralogy at depth such as epidote.

For Decision Tree Regression (DTR), R2 was 0.8147 implying that 81.47% coefficient

of correlation between the actual and the predicted temperatures. This was the highest

value in all the algorithms used in this research. Mean Absolute Error was 29.8 which

was also the lowest value in all the algorithms used in this research.

Results from multiple image stacking technique by use of Pivotal Focus Algorithms in

mapping geothermal reservoir indicate that uncertainty in well drilling can be minimized

if results from two or more geophysical methods are merged.

5.3 Recommendations

This research only used data from one of the seven segments of the greater Olkaria

geothermal field and from the available data, the set of resistivity input attributes

employed in this study might not entirely capture all the influences of resistivity on

temperature for the entire Olkaria field. Therefore, future studies should include data

from other producing fields to increase the number of samples. The study can also be

extended to other geothermal fields in the world for comparison purposes.

Other predictive models can also be applied and the results compared with this research.
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