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ABSTRACT 

High throughput sequencing technologies generate large volumes of data and this 

effectively ushers’ life sciences into the big data realm. Data generated using these 

technologies is oftentimes noisy or high-dimensional and therefore several preprocessing 

steps for its computational analysis are required. Dimensionality reduction methods focus 

on evaluating each feature individually instead of putting into consideration the 

interactions or dependencies between features. These relationships are very important 

because they reflect the functional/ phenotypic aspect in living systems. The aim of this 

study was to develop a graph-based network feature selection model for gene-phenotype 

prediction in high dimensional RNAseq data. Three different datasets (RNAseq data from; 

antennae of Glossina morsitans morsitans, Small Cell Lung Cancer (SCLC) and Non-

small Cell Lung Cancer (NSCLC)) were used. Pre-processing involved quality checking, 

adapter trimming, contamination removal and quality filtering. Differential expression 

analysis was done, and genes were considered differentially expressed and retained for 

further analysis if the test statistics p-value (adjusted for false detection rate) (FDR) was 

less than 0.05. Feature selection was performed using Principal Component Analysis 

(PCA), Recursive Feature Elimination (RFE) and a Graph-based approach. Equal 

Frequency Discretization (EFD) was used to transform the selected features from a 

continuous or numerical attributes into discrete values. Association rules were generated 

using a minimum support value between of 0.5 and 0.9, minimum confidence value of 0.9 

and lift of ≥ 2 . Features from the three feature selection techniques were classified using 

three classifiers namely Naïve Bayes, Sequential Minimal Optimization (SMO) and 

Multilayer Perceptron. Results from the quality trimming showed that the window-based 

algorithm performed better than the other two approaches whereby the percentage of the 

surviving reads ranged between 83.39% and 90.87%. Mapping results showed that 

Burrows wheeler algorithm performed better than Bowtie2 in terms of the alignment 

across all the samples with accuracy values between 93% and 97.97%. During differential 

gene (feature) expression analysis, 2,097 low-count features were filtered out leaving a 

final tally of 10,921 features. Three global networks with 2,110 nodes and 4,783 edges, 

990 nodes and 3154 edges and 876 nodes and 3676 edges were generated from three 

datasets used in this study. The resulting networks were further filtered, and the final 

reduced networks had 51 nodes and 148 edges, 134 nodes and 396 edges, and 81 nodes 

and 169 edges respectively. The proposed graph-based feature-selection approach 

provided 15 and 36 non-redundant rules, respectively, from the two datasets at a support 

of 0.5 confidence value of 0.9 and a lift of 2. PCA and RFE feature-selection methods did 

not generate any rules at a support of 0.5. The lower support values provided by RFE 

feature selection approach implies that the features selected by this method were 

negatively correlated. For the PCA-based feature selection, support ranged between 0.405 

and 0.425 which was lower than the support of the rules generated by the graph-based 

feature selection approach. The results of classification before and after feature selection 

showed a reduction in classifier model building time with minimal effect on accuracy. 

This study demonstrates that graph-based feature selection approach combined with 

association rule mining can be very useful in associating genes with a known function 



xx 

with those with unknown function for phenotype prediction based on gene expression 

levels.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study  

Microarray and Next Generation Sequencing (NGS) are high-throughput technologies that 

continuously generate large volumes of high dimensional biological data (Ai et al., 2018). 

These advances in high throughput sequencing and digitalization has effectively ushered 

life sciences into the realm of big data. Discovery of meaningful associations in this kind 

of data consumes a lot of time and is computationally demanding (Curtin et al., 2015). 

Biological data is characterized by high volume, velocity, and variety (Gärtner & Hiebl, 

2017). This type of data is highly heterogeneous due to inherent biological principles and 

experimental designs. In biological systems, functional relationships exist between genes, 

proteins, and pathways. Therefore, big data analytics has over the years become an 

indispensable tool for managing bioinformatics data. 

1.1.1 Genes and gene expression 

Gene expression is the measurement of the activity (the expression) of thousands of genes 

at once, to create a global picture of cellular function. These profiles can, for example, 

distinguish between cells that are actively dividing, or show how the cells react to a 

particular treatment. Many experiments of this sort measure an entire genome 

simultaneously, that is, every gene present in a cell.  

Deoxyribonucleic acid (DNA) is an organic molecule found in all living cells and it carries 

the genetic instructions required for cellular function. It is a long sequence of a 

combination of the four nucleotides A, C, G and T (which are named after their respective 

bases adenine, cytosine, guanine and thymine Watson & Crick, (1953). A gene is a 

specific region within this DNA sequence (Alberts et al., 2013) and it encodes for a 

protein. To synthesize a particular protein, the information on the DNA is transformed to 

a messenger ribonucleic acid (mRNA) in a process referred to as transcription. After some 
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modifications the mature mRNA will be translated to the final protein product which is a 

protein with a particular function. Some of the gene products are not proteins but 

functional ribosomal RNAs. In living systems, these are processes are well coordinated 

and regulated to meet the cellular needs. The whole process from a gene to a functional 

gene product is termed gene expression.  

 

Figure 1.1 Central dogma of molecular biology: DNA is transcribed to RNA; RNA is 

translated to protein. (Les Laboratoires Servier, 2018) 

1.1.2 Gene phenotype  

Phenotype is the physical characteristic of an organism which is reflected  as appearance, 

behavior, or development. Genotype which is the set of genes carried by the organism as 

well as influence by the environment which has an influence on genes determines the 

organism's phenotype. The impact of a gene on an individual’s phenotype therefore is 

dependent on other genes or gene products (Weighill et al., 2019)   

1.1.3 Sources of big data 

Big data is derived from a variety of sources, including spreadsheets, traditional databases, 

text documents, and digital data streams. Internet for example provides data such as 

navigation and search history from different browsers and from social networks. On the 
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other hand, mobile devices provide ubiquity that enable collection of real-life behaviors 

using embedded sensors such as GPS, cameras etc. Social media platforms such as 

Facebook, Twitter and LinkedIn are other sources of big data with tremendous data and 

unprecedented opportunity for big data analytics. (Huang et al., 2015).  

1.1.4 Curse of dimensionality 

Big data is associated with an increase in dimensionality which eventually leads to 

exponential growth of volume of data required for meaningful analysis (Conesa et al., 

2016, Nia et al., 2020). This phenomenon was earlier defined as a curse of dimensionality. 

Dimensionality describes the total number of features or attributes that are present in a 

dataset (Khare et al., 2019). The problem is associated with the increase in dimensions or 

characteristics p that describe every record [𝑛] in the database. Analysis of high 

dimensional data, with more features (p) than observations (N) (p > N), places significant 

computing costs and memory computational usage attributes (Rathor & Gyanchandani, 

2017). When the total number of features used increases, the accuracy and the 

performance of machine learning algorithms decreases (AlSumairi et al, 2020). The effect 

of high dimensional data on training set is a decrease in algorithm performance when the 

dimensionality increases (AlSumairi et al, 2020). Therefore, data mining and machine 

learning are strategies big data analytics to manage growing volumes of data, especially 

in bioinformatics (Curtin et al., 2015).  

1.1.5 Feature engineering 

Feature engineering is the process of establishing features by use of domain knowledge 

thus improving machine learning performance. Selection of the most relevant features is 

regarded as one of the most time-consuming preprocessing tasks in machine learning 

(Najafabadi et al., 2015). As the data size increases, difficulties associated with feature 

engineering arise (Najafabadi et al., 2015). Many learning algorithms assume that data to 

be processed even big data can be stored in memory or in an entirely single file on a disk 

(Kumar et al., 2013). However, if the size of data compromises this principle, all 
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algorithms in that family are affected. This challenge is known as the curse of modularity 

(Rathor & Gyanchandani, 2017). It is also assumed that algorithms used in machine 

learning learn better with a bigger volume of data and provide better or accurate results 

(Grolinger et al., 2014). However, massive volume of datasets imposes several challenges 

since many machine learning algorithms were designed to handle small datasets, with the 

assumptions that entire datasets can fit or be stored in memory (Sharma et al., 2019). The 

second assumption is that the whole or entire dataset could be availed for processing 

during the model training phase. However, big data does not adhere to these assumptions, 

something that makes traditional algorithms unfeasible or significantly impedes their 

performance in terms of execution time (Arora, 2019).  

1.1.6 Processing performance   

Computational analysis of big data is always challenging due to computational 

complexity. Consequently, an increase in scale leads to unimportant operations becoming 

very costly. A good example is the support vector machine (SVM) algorithm’s which has 

a training time complexity of  𝑂(𝑚3) with a space complexity of 𝑂(𝑚2), where 𝑚 implies 

the number of available samples for training (L’heureux et al., 2017). Therefore, increase 

in the size 𝑚 leads to extreme effects on the training time and memory that is needed by 

the SVM algorithm. This is not computationally feasible when handling very huge 

datasets. Other machine learning algorithms that have exhibited increase in time 

complexity are Principal Component Analysis (PCA), Logistic Regression (LR), Gaussian 

Discriminative Analysis (GDA) as well as locally weighted linear regression (LWLR). 

All these have a time complexity of 𝑂(𝑚𝑛2 + 𝑛3), with 𝑚 being the total number of 

samples and 𝑛  representing the total number of features (Hu et al., 2020). In all the above-

mentioned algorithms, computational time increases exponentially when data size is 

increased rendering the algorithms unfeasible for very large datasets (Arora, 2019). 

Another challenge posed by biological data is class imbalance, a term used to describe 

uneven sample number or biased distribution across the classes. The distribution ranges 
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from a little skew to a very severe imbalance, where there are fewer samples in the 

minority class as compared to hundreds in the majority class (Wei & Sekiya, 2021).  

1.1.7 Dimensionality reduction. 

Dimensionality reduction is the process of transforming high dimensional representation 

of data to low dimensional representations without losing any important information 

(Jindal & Kumar, 2017; Nguyen & Holmes, 2019). Using this approach, a lower and 

reduced dimensional feature space is mapped onto a higher dimensional feature space 

thereby developing a linear separability (Hira & Gillies, 2015). The massive growth in 

high dimensional data has led to development of various dimensionality reduction 

techniques (Zebari et al., 2020). These approaches are supportive and essential due to their 

ability to map, trim, distinguish and exemplify datasets through conversion from high 

dimensional space to a much lower dimensional space by influencing the significant 

variables (Arowolo et al., 2017). The benefits of dimensionality reduction include reduced 

data storage space, less computation time, removal of irrelevant, and noisy data etc. 

Another benefit is the ability to examine patterns more clearly as well as improved 

classification accuracy (Zebari et al., 2020). Some algorithms produce good results or 

improved performance when there are fewer number of dimensions. Therefore, these 

benefits make machine learning experts spend most of their time on data cleaning phase 

and feature engineering (Zheng & Casari, 2018).  

There are two major approaches of addressing the challenges associated with high 

dimensionality in data. These techniques are categorized into feature selection and feature 

extraction. Feature selection techniques discover only the relevant features from the 

original dataset using objective measures (Arowolo et al., 2021). Feature extraction is 

achieved by filtering out all the irrelevant, redundant as well as noise that is present in 

high-dimensional dataset. The major feature selection approaches have been classified as 

Filters, Wrappers and Hybrid/ embedded feature (Jindal & Kumar, 2017). Filter methods 

use relevant model learning algorithms that are independent of any classifier and pick only 

the relevant features described by earlier study by Kumar & Minz, (2014). They rely on 
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the uniqueness of the data provided. Statistical procedures are used to calculate feature 

scores since they are robust against the problem of over-fitting as compared to other 

feature selection techniques and procedures (Manikandan & Abirami, 2021). The major 

drawback of filter-based approaches is that they ignore classification interaction as well 

as the interdependencies amongst the features. This may lead to the most relevant features 

not being picked (Mafarja & Mirjalili, 2018). 

Wrapper-based feature selection methods are based on specific machine learning 

algorithm that is used in picking the relevant features while considering the learning 

algorithm that will be used. It evaluates the quality of the selected features using a precise 

classifier which runs several times to assess the quality of features based on the accuracy 

of the assigned scoring model (Ray et al., 2021). A wrapper-based feature selection 

method also performs optimal feature selection by calculating estimated accuracy for 

every feature using induction algorithm (Aziz et al., 2018). The major advantage of using 

wrappers as compared to filter techniques is that they locate the most constructive features 

and optimize selection of features that are required for the learning algorithm (Kumar & 

Minz, 2014). Wrapper processes have high computational complexity because a feature 

subset is chosen and the classifier is run on it in each iteration, followed by the 

computation of classification accuracy using the resultant confusion matrix. This process 

makes it require more computational resources because the algorithms used execute 

iteratively (Hammami et al., 2019).   

Embedded feature selection methods are generally guided by a learning process which is 

called nested subset method (Eswari et al., 2015). They measure the relevance of feature 

subsets, and the entire feature selection is done as a training process while optimizing the 

learning algorithm’s performance. This enables the usage of available data to generate 

faster solutions. The benefits of both filter and wrapper methods are combined in 

embedded approaches and are dependent on the machine learning algorithm used 

(Maldonado & López, 2018). Embedded methods have lower computational 

requirements, less prone to over-fitting and they provide better classifiers by considering 

the feature dependencies thus providing faster solutions. Their major drawback is that they 
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take dependent classification decisions, and this affects the selected features due to the 

varying hypothesis of different classifiers (Abdulrazzaq & Saeed, 2019).  

The second approach in dimensionality reduction is feature extraction which takes the 

most important features from a dataset and express them in a lower-dimensional space. 

The new features are merged into a linear or nonlinear combination of the original 

features. In this case, dimensionality reduction can be done in combination with other 

machine learning algorithms to enhance the model's accuracy and other parameters. 

Appropriate dimensionality reduction algorithms can be evaluated in terms of 

improvement in performance metrics such as accuracy, sensitivity, specificity, recall, 

robustness, computational scalability, and computational cost etc. (Sun et al.,2019). 

However, in the process of mapping from a high-dimensional space to a low-dimensional 

space, feature extraction approaches suffer from erroneous outputs, resulting in a loss of 

data interpretability (Malekipirbazari et al., 2021). 

To overcome the challenges associated with the feature selection and feature extraction 

techniques from high throughput sequencing data, this study provides a graph-based 

feature selection approach that takes into account the inherent interactions between 

features. Three publicly available RNASeq datasets were used. Various data mining tools 

were applied to reduce the dimensionality of the big data. Informative features were then 

extracted using a graph-based method. Thereafter association rule mining was used to 

predict the potential phenotype of unknown features.  

1.2 Problem statement 

Advances in high throughput sequencing and digitalization of almost all procedures has 

effectively ushered life sciences into the realm of big data (Ai et al., 2018). Biological 

data is regarded as high dimensional data because it is characterized by more features than 

observations (Rathor & Gyanchandani, 2017). Discovery of meaningful associations in 

this kind of data is a very challenging task in bioinformatics (Drouin et al., 2019). 

Challenges arise because current approaches fail to consider the relationships between 
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selected/extracted features during feature selection process. These approaches focus on 

evaluating each feature individually while ignoring interactions or dependencies between 

features. In living systems, relationships between features are very important because they 

determine the function/ phenotype. Therefore, the selected features mostly have no direct 

relationship that can be used to associate those with known phenotype with those with 

unknown phenotype. This makes the prediction of the possible phenotype almost 

impossible  . Therefore, there is a need for alternative feature selection approaches picking 

only related features/genes for predicting the phenotype of unknown features/genes based 

on their association with those with an assigned function.  

1.3 Main objective  

The main objective of this study was to develop a graph-based feature selection model in 

association with association rule mining for genes’ phenotype prediction 

1.4 Specific objectives  

1. To analyze techniques for feature extraction and selection in high dimensional 

RNAseq data.  

2. To develop  a graph-based feature selection model for phenotype prediction 

3. To determine association patterns between the selected features by graph-based 

method for phenotype prediction. 

4. To validate the graph-based feature selection model  

1.5 Justification  

High throughput sequencing technologies generate large volumes of data that can be 

useful in addressing important biological question. Different feature selection and 

extraction approaches have been used in dimensionality reduction to deduce meaningful 

information from big data. However, these methods don’t consider the inherent 

relationship amongst the selected/extracted features, which is a key characteristic of 

biological systems. A graph or network provides a representation of related features 
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whereby nodes and edges represent features and the relationship amongst features 

respectively. In biological data a graph would be a more suitable method for visualizing 

and interpreting physical interaction, reaction, regulation, and correlation between the 

features once the dimensionality has been reduced. Association rule mining can then be 

used to predict the phenotype of novel features using the concept of market basket 

analysis. This study combined the above-mentioned approaches to provide a graph-based 

phenotype prediction model. 

1.6 Scope of the study 

This thesis explores techniques applied in feature extraction and feature selection for 

biological data analysis. Since biological features tend to associate in a certain way, graph 

theory was used to cluster features using the guilt by association principle.  Machine 

learning and association rule mining were used to generate rules and identify meaningful 

associations between various features (genes).  

1.7 Knowledge Contributions 

In this study a graph-based feature selection model for genes phenotype prediction was 

proposed. On feature extraction evaluation part, this study contributed by evaluation of 

the most optimal techniques for converting RNASeq data to continuous values. A graph-

based feature selection model was provided that can be used for analysis of similar type 

of data. A detailed comparison with other popularly used feature selection techniques on 

high dimensional data was also done in this study. The concept of market basket analysis 

was the key contribution of this study in prediction of the possible function of genes based 

on how genes/items appeared frequently in the same transaction.  

Based on the results of this study, it is evident that several critical preprocessing steps are 

required before feature selection and feature extraction can be objectively used to make 

predictions based on next generation sequencing data. This would lead to faster discovery 
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of biomarkers for rapid health screening and diagnostics especially for cancer and other 

metabolic diseases.  

1.7 Thesis organization  

This thesis is divided into five chapters organized as follows: 

 Chapter 1 Introduces the study by giving an overview of the study, describing the 

problem statement, research objectives, justification, and thesis organization. The 

next four chapters are organized as follows.  

 Chapter 2 presents the literature review and starts with general introduction of 

bioinformatics theoretical background and of different data structures used in high 

dimensional biological data as well as mapping and feature counting. A description 

of the feature selection and extraction methods used in high dimensional data and 

related literature on the same is discussed. analysis of different machine learning 

and their application in high dimensional biological data and the methods of model 

evaluation follows. Discretization methods and their theoretical basis are also 

described followed by association rule mining.   

 Chapter 3 presents the methodology used in this study, data type and data source, 

data preprocessing and the experiments used to achieve the study objectives.  

 Chapter 4 presents the output or results of the experiments carries out  in chapter 

three together with the discussion of the results in relation to the previous findings 

presented inform of tables, figures, and graphs.  

 Chapter 5 provides the conclusions, knowledge contribution and recommendations 

for further studies  
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CHAPTER TWO 

LITERATURE REVIEW 

This chapter introduces bioinformatics data format, data structures that are used in storage 

of next generation sequencing data, feature selection and extraction techniques and their 

working principles. Graph theory and how it has been used in dimensionality reduction 

followed by data discretization are also discussed. Related literature on machine learning 

in big data analysis is thereafter presented followed by the research gap.  

2.1 Introduction to bioinformatics  

Data generated by sequencing technologies such as Illumina have a certain format as 

shown in Figure 2.1. Every single record also called sequence read has four lines as 

indicated below: 

 

  A      B 

Figure 2.1: a) RNA-seq data format; b) example of quality score encoding 

A shown in figure (2.1 a), the first line always starts with ‘@’ which is followed by 

information about the read, the second line is the actual DNA sequence, the third line 

always starts with a ‘+’ sign and sometimes contains similar information as in line 1 and 

other times acts as a place holder with no information. It depends on the sequencing 

technology used. The fourth line contains a string of characters which represents the 

quality scores and must contain the same number of characters indicated in line 2. The 

characters in the sequence are encoded with quality scores of ASCII as shown in (Figure 

2.1b) shows an example of quality scores mapping where each base quality is an ASCII 

Quality encoding: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI 

                  |         |         |         |         | 

    Quality score: 0........10........20........30........40    
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encoded (Figure 2.1b). Once the data has been preprocessed, reads that pass the quality 

score are mapped to a reference genome followed by counting the mapped reads as 

summarized in Figure 2.2.  

 

Figure 2.2: Summary of the key steps in feature extraction from RNAseq data  

2.2 Data structures used in bioinformatics 

Algorithms and data structures have been regarded as fundamental concepts in computer 

science, and therefore any understanding of bioinformatics that extends beyond the basic 

usage of common tools and methodologies necessitates at least a basic grasp of these 

concepts. Many prominent methods for interpreting sequencing data rely on string 

matching, with most ways focused on first recognizing short, fixed length read substrings. 

These are referred to as k-mers, with k representing the substring length. While these k-
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Mer algorithms are quite distinct, storing and querying a set of k-mers has emerged as a 

common underpinning component. Because of the enormous scale of these datasets, 

reducing their storage requirements and query times has become a separate field of study 

(Chikhi et al., 2021). Next-generation sequencing (NGS) is a technology which is used to 

determine the order of nucleotides order in an entire genome or specific regions of DNA 

or RNA. NGS has a broad spectrum of applications in cancer genomics, however, the 

bioinformatic analysis which is involved in the transformation of the raw “ATGC” 

sequence to meaningful genomic information such as gene expression abundance or gene 

mutations is a non-trivial work. This technology has transformed the field of life sciences 

by enabling fast and cost-efficient generation of big volumes of data. However, NGS is a 

computationally intensive process that requires auxiliary data structures (Wu et al., 2016). 

Basic bricks in bioinformatics begin by first constructing a data structure that is called an 

index. Most of these have been built using data structures that are simple and basic such 

hash tables, suffix trees, suffix arrays etc. Therefore, an index supports fast queries while 

using reasonable amount of memory (Salikhov, 2017). Despite the fact that various data 

structures are created differently and support distinct sorts of operations, they are all 

utilized to solve the same challenge in bioinformatics (Salikhov, 2017).  

2.2.1 Hash tables  

A hash table is a type of data structure that stores collections of associative arrays with 

(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) pairs and allows three operations which are: insert (key, value), find(key) 

and remove(key). For a successful mapping of keys to integers starting from 0 to 𝑚 − 1,  

a hash function ℎ is used by the hash table data structure which is a representation of the 

indexes of an array 𝐴 of size 𝑚. If a key 𝑘 ℎ(𝑘)  =  𝑖, then element (𝑘, 𝑣)  is put in a slot 

𝑖 of the array. Sometimes different keys can be mapped to the same index, and this can 

lead to a situation called a collision. A collision is a major drawback of hash table data 

structures but there are two ways of dealing with it (Wang et al., 2021). The first method 

called separate chaining works by storing a list of elements that are contained in every slot 

of array 𝐴, and if a need arises to add an extra element with key 𝑘 in slot 𝑖, it’s just 
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appended it to the end of its corresponding list. The second strategy is known as open 

addressing whereby the algorithm searches for an empty slot for insertion of key 𝑘 if the 

corresponding position is not empty. Therefore, hash tables offer very fast operations. On 

average, they all work in the same amount of time, depending on the hash table and hash 

function parameters. One operation in a hash table can take 𝑂(𝑛) time in the worst-case 

scenario, with  𝑛 being the number of elements that have been inserted. Practically, hash 

tables are faster than other data structures because they store key: value pairs which allows 

a search to be done using a key. The choice of the appropriate hash function is very crucial 

to obtain best performance of a hash table data structure. When the choice of hash function 

is good, then there is an insertion of  𝑛 elements into array of size 𝑘. This makes an average 

search of a single element to work in 𝑂(1 +
𝑛

𝑘
) time when a separate chaining strategy is 

selected for addressing the challenge of collisions. In this case 
𝑛

𝑘
 is a load factor used to 

show the number of elements in terms of average that have been inserted in the same slot 

of an array. Even though hash tables outperform many other data structures in terms of 

query speed, they are typically quite memory intensive (Petrillo et al., 2019). 

2.2.2 Suffix tree  

A compressed trie of all suffixes in an input string is known as a suffix tree. One of the 

most researched data structures in stringology is this type of data structure, which is used 

in text string processing. (Gog et al., 2014). A suffix tree is usually constructed in linear 

time and space so that it can take time 𝑂 (|𝑃 |) to search for a pattern 𝑝 and time 𝑂(|𝑃 |  +

 𝑜𝑐𝑐)  to report all the occurrences of 𝑃. Since it is  usually a pointer-based structure, then 

the suffix trees require 𝑂(𝑛) words in a computer but the bits of memory required is of 𝑂 

(𝑛 log(𝑛)). This data structure is memory intensive making it unpopular in real program 

implementation. MUMmer is an acronym from "Maximal Unique Matches",  works by 

locating maximal unique matches between two sequences using a suffix tree data structure 

and therefore it requires a memory higher than 45 GB to run for analysis of the human 

genome (Brinda, 2016).  
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2.2.3 Suffix array 

A suffix array is a representation of lexicographically sorted suffixes of an array of a string 

which has been used mainly in string processing applications (Wu et al., 2019). Compared 

to suffix tree, a suffix array is more compact and simpler. Construction of a suffix array 

is done in linear time using a lexicographic traversal of the suffix tree. Suffix array works 

by using the principle of having permutations of the positions of  𝑇 which is picked in a 

lexicographical order of the corresponding suffixes. To search for a pattern of 𝑃 all the 

suffixes of string  𝑇 that has the prefix 𝑃 are identified. These suffixes are then sorted in 

a lexicographical order which makes the suffixes which are prefixed by 𝑃 such that they 

are in a consecutive order in the suffix array that forms an interval. 𝐿𝑃 (left prefix) and 

𝑅𝑃 (right prefix) define the boarders, which are found using a binary search, that has a 

time complexity 𝑂(|𝑃 | 𝑙𝑜𝑔(|𝑇 |)). To reduce the search time complexity to 𝑂(|𝑃 |  +

 𝑙𝑜𝑔 |𝑇 |), longest common prefix (LCP) is usually provided. Unlike suffix tree, suffix 

array data structures are more preferred, but they still suffer the challenge of high memory 

consumption (Shrestha et al., 2014). Earlier study by Abouelhoda et al., (2004) 

demonstrated that any algorithm that uses the suffix tree as the data structure can be 

successfully substituted by an algorithm that can use a certain variant of suffix arrays and 

it use the same time complexity to solve the same problem. Therefore, suffix arrays have 

the capability of fully replacing suffix trees in any practical application.  

2.2.4 Burrows-Wheeler transform 

The Burrows-Wheeler transform (BWT) is a textual transformation data structure that is 

frequently used for compression and indexing and is specifically referred to as BWT-

index. Due to the reversibility of BWT and the accompanying features of the generated 

strings as identical letters, it has been used widely as data structure for storage of sequence 

characters (Brinda, 2016). BWT works by appending a special character (Sigil) '$' to the 

end of the string to complete the string transformation, and all of its cyclic shifts are sorted 

in lexicographical order. The very final column of the matrix, commonly known as the 

Burrows-Wheeler matrix, has these shifts in its rows, resulting in the BWT. A BWT is 
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easily extracted from the suffix array that has been constructed using other data structures 

algorithms discussed above. Earlier studies by Rosone & Sciortino, (2013) and Kucherov 

et al., (2013) studied the aspects of BWT that included its relations to combinatorics on 

words and its statistical properties. To obtain the resulting interval in |𝑃 |steps, the entire 

interval of the suffix array corresponds to an empty pattern, that is obtained by processing 

𝑃 from right to left (Brinda, 2016). After creating a data structure and indexing the genome 

based on the data structure, the next step is mapping the raw reads into the reference 

genome also based on the data structure created in the previous stage. The next section 

describes the mapping algorithms and their theorical background/ working principle  

2.3 Mapping algorithms  

2.3.1 Algorithms based on hash table 

An empty hash table consist of an array of empty buckets (empty boxes). As items are 

added into these empty buckets/boxes they usually become the lists. Also associated with 

this table is a hash function. The hash function maps each distinct key or each distinct 3 −

𝑚𝑒𝑟 unto one of the buckets in this array (Figure 2.3). 
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Figure 2.3: Data structure of the hash table  

Querying the hash table 

The pattern 𝑝 which is the sequence data is used to query the hash table. If GGG is picked 

so that the index can show all the offset where GGG occurs within the text 𝑇 which int 

this case is the reference genome. 
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Figure 2.4: Querying a hash table.  

First, the hash function is used to map the triple G to the bucket, the bucket with red 

pointer is the one looked at because it’s the only one with triple G. The first bucket is 

ignored, and the next three cases is triple G. Therefore, the corresponding key value in 

that offset is what the index will report back as being the offset of T where triple G occurs 

and the index hits at 8,9 and 10 (Figure 2.4). 

2.3.2 Algorithms based on Burrows-Wheeler transform 

BWA is an alignment algorithm that employs a suffix array (SA). Indexes are assigned 

again according to their order throughout the process of producing the SA to specify new 

indexes using Burrow's wheeler matrix alignment. Because of the changed SA index, it is 

now possible to find places inside the data in string form. (Kim et al., 2020) a 

demonstration of BWT is shown in figure 2.5.  
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Figure 2.5: BWT algorithm applied to string ‘AGGCT' 

The BWT algorithm is applied on the string 'AGGCT$,' where '$' is the string's final 

character and is lexicographically smaller than all the other characters in the string. A 

suffix array is formed first, and then it is lexicographically sorted. Only the last column of 

characters and the order of the starting places are preserved in the original string (each of 

which has the same length as the string) are saved after the BWT. The memory needs are 

reduced to a linear scale in relation to the size of the string because of this character storage 

process (Kloetgen et al., 2014). 

2.3.3 Algorithm based on Suffix array  

Algorithms that use Suffix Array (SA) searches an entire genome to find Maximum 

Mappable Prefixes (MMP). The algorithm searches for the junction position in the read 

sequence 𝑟𝑗  that yields the maximum score by finding the maximum of the following 

quantity (Dobin et al., 2013): 
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max
𝑟1<𝑟𝑗

 <𝑟2

{
 
 

 
 

∑  

[
 
 
 
 
 

0

1 𝑖𝑓 𝑅(𝑟1 + 𝑟) = 𝐺(𝑔1 + 𝑟)𝑎𝑛𝑑 (𝑟1 + 𝑟) ≠ 𝐺(𝑔1 + 𝑟 + 𝛥)

−1 𝑖𝑓 𝑅(𝑟1 + 𝑟) ≠ 𝐺(𝑔1 + 𝑟)𝑎𝑛𝑑 (𝑟1 + 𝑟) = 𝐺(𝑔1 + 𝑟 + 𝛥)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 
 
 ]

 
 
 
 
 

𝑟𝑗−𝑟1
𝑟=1 −

𝑃𝑔𝑎𝑝 (𝑟𝑗)

}
 
 

 
 

           (2.1) 

Where R and G are reads (query) and genome sequences respectively, coordinates r1, r2, 

g1, g2. ∆≡ (𝑔2 −  𝑔1)  − (𝑟2 −  𝑟1) is the alignment gap with the corresponding gap 

penalty 𝑃𝑔𝑎𝑝 (𝑟𝑗). The amount of unmapped query sequence bases between the mapped 

seeds determines the algorithm's complexity, i.e., 𝑟2 − 𝑟1 − 1 An example of suffix array 

is shown in figure 2.6 below: 

 

Figure 2.6: The characters (above) and its corresponding suffix array (vertical) 

together with the matching suffixes on the right and the position index on the left (Shrestha 

et al., 2014). 
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2.4 Feature counting  

After the reads are aligned to the genome, the next step is to count how many reads have 

mapped to each gene. Counting techniques are categorized into Count-based quantifiers 

and Poisson model-based quantifiers. 

2.4.1 Count-based quantifiers 

The count-based models assume that all the reads map uniquely to the genome and 

therefore 𝑇 is the set of reads that has a length 𝑙𝑡,𝑡 ∈ 𝜌 = {𝜌𝑡}𝑡 ∈ 𝑇  is defined to be the 

relative abundance of reads such that ∑ 𝜌𝑡𝑡∈𝑇 = 1. 𝐹 denotes the set of single end reads 

and 𝐹𝑡 ⊆ 𝐹 the set of reads mapping to the genome 𝑡. The assumption here is that all the 

reads in 𝐹 have got the same length 𝑚 .Note that in genome 𝑡, the number of positions in 

which a read can start is 𝑙�̃�=𝑙𝑡 −𝑚 + 1. The adjusted length 𝑙�̃� is called the effective length 

of 𝑡.In the generative model, first a transcript is chosen from which to select a read 𝑓 by 

ℙ(𝑓 ∈ 𝑡) =
𝜌𝑡 𝑙�̃�

∑ 𝜌 𝑟𝑙�̃�𝑟∈𝑇
         (2.2) 

Next, a position in that transcript is selected uniformly at random from among the 

𝑙𝑡 −  𝑚 +  1 positions. Thus, the likelihood of observing the reads 𝐹 as a function of the 

parameters 𝜌 is ℒ(𝜌)∏ ∏ (
𝜌𝑡 𝑙�̃�

∑ 𝜌 𝑟𝑙�̃�𝑟∈𝑇
.
1

𝑙�̃�
)𝑓∈𝐹𝑡𝑡∈𝑇 
      (2.3) 

The expression profile is the accumulated read count on each targeted gene, and each 

count-based quantifier uses a proprietary filtering criterion (Kanitz et al., 2015). 

2.4.2 Poisson model-based quantifiers 

This model assumes that for a set of aligned fragments 𝐹, for every 𝑠 ∈  𝑈 the number of 

reads starting at 𝑠 is Poisson distributed with rate parameter: 
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𝜆𝑠 =∑ 𝑐𝑠, 𝑘 

𝑘𝑘

�̃�𝑘

𝑘

𝑘=1
,          (2.4) 

Where 𝜅𝑘 is a rate parameter for transcript 𝑘. Here 𝐶 =  {𝑐𝑠,𝑘} 𝑘=1,∈U
𝑘

  is a site-transcript 

compatibility matrix with 𝑐𝑠, 𝑘 =  1 if transcript 𝑘 appears in some element of 𝑠, and 0 

otherwise.  

2.5 Feature Selection Methods 

Reduction in the initial features to a smaller subset that has got enough information to 

represent the entire dataset and provide better results of the machine learning models have 

been regarded to as feature selection (Mehmood et al., 2019).  

2.5.1 Filter-based Methods 

A filter-based feature selection methods work by selecting the most important features 

from the original list by putting into consideration statistical characteristics of the features 

that have been provided. After the selection only the significant features are provided as 

input for the learning model that produces the output. This process improves the process 

of prediction as well as classification accuracy as well as reduced computation time and 

the problem of overfitting. Since this feature selection technique considers statistical 

relationship only, it is faster than wrapper methods and very suitable in dimensionality 

reduction. Filter techniques like information gain, (IG), Gain Ratio (GR), Chi-squared 

(CS), Relief-F (RF) and Minimum Redundancy Maximum Relevance, (mRMR)  have 

been ranked as best alternatives in handling high dimensional data because of the simple 

ranking strategies that are applied by these algorithms (Bommert et al., 2020). IG, GR, 

CS, have also been reported to provide improved classification accuracy as long as the 

most irrelevant features are removed from the entire dataset by use of a statistical ranking 

scores  and a set of threshold values that have been defined by the user. Significant features 

are those that have the highest-ranking scores above the given threshold values, whilst 

features with lower ranking scores are deleted and not included during the classification 

https://www.sciencedirect.com/science/article/pii/S2666827021000281#b4
https://www.sciencedirect.com/topics/computer-science/classification-accuracy
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phase (Alirezanejad et al., 2020). Ali et al., (2019) indicated in their study that the 

accuracy of classifiers like the widely used support vector machines are affected in terms 

of performance anytime the number of features that are selected from each filter-based 

algorithm are either excessively large or extremely small. This imbalance problem is 

usually caused by the fact that each independent filter-based algorithm focuses on 

evaluation of each feature separately instead of putting into considering other factors such 

as interactions or dependencies between or among features. This working principle  makes 

them fail to produce optimal number of features that are appropriate for classification task 

which makes the classifiers to perform relatively poor (Ali et al., 2019).  

Thakkar & Lohiya, (2021) did a study for analyzing the effect associated with feature 

selection techniques based on detection rate as well as accuracy of the system. They 

measured accuracy, precision, recall, and f-score first using all features of the dataset and 

another experiment using only features selected by three filter-based feature selection 

algorithms which are Chi-Square, IG, and Recursive Feature Elimination (RFE). They 

later did an evaluation of every class individually since they exhibited dissimilar 

characteristics. The comparative analysis of various classifiers showed improvement in 

model performance when filter-based feature selection methods were incorporated in the 

model (Thakkar & Lohiya, 2021). 

2.5.1.1 Chi-Squared statistics (X2)  

This is a univariate filter method that is built on the 𝜒2 statistic that does the evaluation 

of every feature individually with respect to the classes they belong to. Relevance of the 

features with respect to their class is based on the highest Chi-square value. With a number 

of intervals (𝑉) , classes number(𝐵), and instances total number being (𝑁), then the Chi-

squared value for every feature in a class is calculated using equation 2.5 below:  

𝑥2 =∑ ∑
(𝐴𝑖𝑗−

𝑅𝑖∗𝐵𝑗

𝑁
)
2

𝑅𝑖𝑥𝐵𝑗

𝑁

𝐵

𝑗=1

𝑣

𝐼̇=1

      (2.5) 

https://www.sciencedirect.com/science/article/pii/S2666827021000281#b2
https://www.sciencedirect.com/science/article/pii/S2666827021000281#b1
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Where 𝑅𝑖 represents the instances number within the range 𝑖𝑡ℎ ,and  𝐵𝑗 is the number of 

instances in the class 𝑗𝑡ℎ and 𝐴𝑖𝑗 the number of instances in the range 𝑖𝑡ℎ and class 𝑗𝑡ℎ . 

Chi-square has been used in several studies on different types of datasets. Şahin et al., 

(2021) did a classification of microstructure images dataset that used an improved 

wrapper-filter based feature selection technique by use of texture-based feature descriptor. 

A feature descriptor known as rotational local tetra pattern (RLTrP) was used in extraction 

of relevant features from the input images before feature selection. This was then followed 

by an ensemble of three filter-based methods which was generated by the top-n features 

that were selected by Chi-square, Fisher score, and Gini impurity-based filter methods. 

The study's major goal was to combine various filter-based methods to extract features 

that would be used to populate a wrapper-based meta-heuristic feature selection algorithm 

known as harmony search (HS). When determining the fitness value, the author's defined 

HS using the objective function of Pearson correlation coefficient and mutual information. 

The authors reported optimized features with less dimension and improvement in 

classification accuracy of the seven-class microstructural images (Şahin et al., 2021).  

 

Sridhar & Sanagavarapu (2021) accessed information from DarkNet, a database of 

encrypted information from websites that host illicit activity and secret services. The 

internet activity on these privatized networks is anonymous and nearly untraceable. 

DarkNet which was a traffic classification proposed in this study helped in improving 

network security by detecting dangers or risks to any systems of network. CIC-

Darknet2020 dataset was employed in their research and to aid in feature selection, a 

feature importance analysis was done on the dataset using a Chi-Square statistical score. 

Random Forest classifier has been used to produce a multi-class classification in traffic 

encryption categorization, with an F1-Score of 97.87 (Sridhar & Sanagavarapu, 2021).  
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In determining features, Rahman & Mahmood (2022) integrated the Chi Square Test and 

Pearson's Correlation Heatmap. After that, the most relevant output from the classification 

algorithms, which included KNN, SVM, and Decision Tree algorithms, was calculated 

using the stacking ensemble technique. They also used three boosting strategies to obtain 

the output, as well as voting ensemble methods. After preprocessing the data, the 

Cleveland datasets were imported into the constructed model, and the two feature 

selection methods, Chi-square test and Pearson's Correlation, were applied. The Chi-

square test produced six essential features from the dataset, according to the researchers, 

which were based on the top rank (Rahman & Mahmood, 2022) 

 

Mehmood et al., (2021) conducted a study on the efficient and smart use of electrical 

energy in residential and commercial buildings, which necessitated a complete 

examination of energy usage across all equipment. They based their research on IEEE 

standard 1459, which uses voltage and current signals from distinct appliance events that 

are on or off to determine different power quantities. The most relevant collection of 

features was chosen using three feature selection algorithms which were neighborhood 

component analysis (NCA) MRMR and Chi-square tests. The selected features were 

thereafter used as input for categorizing appliances into pre-defined categories. The 

authors claimed that their method reduced processing time and improved classification 

accuracy (Mehmood et al., 2021). 

2.5.1.2 Information Gain 

Information gain (IG) is a feature selection method that determines the relevance and 

calculates the information gain ratio between features and their class labels to determine 

the dependency degree of features (Fahrudin et al., 2016). In order to obtain the ranking 

score, IG calculates the entropy value for each attribute as well as its relevance score. 
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Information gain which is the highest corresponds gaining a substantial information gain, 

the lowest value of entropy is regarded relevant. This implies that if there is a decrease of 

entropy value, then its and indication that the information was obtained based on new 

information that has been added. IG, on the other hand, favors features having a large 

number of different values (Ab Hamid et al., 2021). Therefore, IG can lead to overfitting 

problem since it cannot handle features that are redundant. IG filter has been regarded as 

one of the most commonly used univariate methods of evaluation. This filter considers 

only one feature at a time, filtering a feature based on its information gain. This method 

uses entropy as a criterion for ranking variables. The entropy of a class feature 𝑌 is defined 

as: 

𝐻(𝑌)  =  −𝛴𝑝(𝑦)𝑙𝑜𝑔2(𝑝(𝑦)),        (2.6) 

where 𝑝(𝑦) is defined as the marginal probability of the density function variable 𝑌 which 

is random. When there is partitioning of the values of 𝑌 that have been detected, then 𝑆 

which is the dataset for training is divided based on the second feature 𝑥. Therefore, the 

entropy of 𝑦  in relation to the partitions that have been induced by 𝑥 becomes less than 

the entropy of 𝑌 before partitioning. Therefore, there exist a relationship between features 

of  𝑦 and those of 𝑥. So, the entropy of 𝑦 after observation of 𝑥 is: 

𝐻(𝑌|𝑋)  = 𝛴𝑝(𝑥)𝛴𝑝(𝑦|𝑥)𝑙𝑜𝑔2(𝑝(𝑦|𝑥)),       (2.7) 

with 𝑝(𝑦|𝑥) being the conditional probability of y when given x. If the entropy is provided 

as a criterion of “impurity” in a set of training data S, the measure to reflect extra 

information about 𝑌 when 𝑋 is provided can be to represent the amount by which the 

entropy of 𝑌 decreases. This measure is an indication of the dependency that exist between 

X and Y, which is called IG whereby: 

𝐼𝐺 =  𝐻(𝑌) − 𝐻(𝑌|𝑋)  =  𝐻(𝑋) − 𝐻(𝑋|𝑌).      (2.8) 

IG is regarded as a symmetrical measure. This technique works by providing an ordered 

features for classification with a threshold for selection of the required number based on 
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the order obtained. A main drawback associated with IG criterion is biasness and favoring 

of features that have more values even when they are not informative.  

 

Several studies in data mining have used Information gain as a feature selection technique. 

One of the earliest studies on sentiment analysis was done by Mukras et al., (2007). In 

this study, they investigated information gain accuracy as feature selection method. They 

reported that identification of discriminatory features was not possible with information 

gain. To overcome this problem, they proposed another approach called a probability 

redistribution procedure (PRP). There was an improved classification accuracy that was 

reported using PRP approach (Wu & Xu, 2015).  

 

Nimbalkar & Kshirsagar, (2021) proposed an approach of selecting features for intrusion 

detection systems (IDSs) by use of Information Gain (IG) and Gain Ratio (GR) with the 

highly ranked top 50% features for the detecting both denial of service attacks as well as 

distributed denial of service attacks. Their approach obtained subset of features by use of 

insertion and union operations on the subsets that was obtained to 50% features that were 

ranked by both feature selection techniques (Nimbalkar & Kshirsagar, 2021).  Saheed & 

Hambali, (2021) did a study on customer churn which is an important issue and worries 

large businesses operating online shops. Customer churn prediction for variables 

identification that are potential contributors to customer turnover is an important step in 

reducing churn. Therefore, in their study, they created a churn prediction model using 

machine learning approaches like the Support Vector Machine (SVM), the Multi-Layer 

Perceptron (MLP), the Random Forest (RF), and Naïve   Bayes (NB). The feature 

selection that was used in this study before creating the prediction model was a 

combination of IG combined with Ranker based methods. The performance of the model 

for this study was evaluated using measures such as the accuracy measure, precision 

measure and F-measure combined with 10-fold cross-validation. Authors reported an 
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accuracy of 95.02% after feature selection was done and an accuracy of 92.92% before 

performing feature selection (Saheed & Hambali, 2021). 

 

Fahrudin et al., (2016) used entropy formula in selecting the best attributes from the 

original data. Clustering algorithm was later used in getting the number of attributes that 

could be filtered by information gain from the ranking attributes. This clustering algorithm 

that was used in their study hierarchical K-means (K-means optimization) that categorized 

cancer patients as either normal or cancerous. Their experiments showed that the 

information gain technique had selected 12 of 18 attributes with the highest contributing 

factor to the breast cancer patient’s treatment that was based on the last condition. There 

was a slight decrease in the clustering algorithm error ratio that was reported by authors 

ranging from 44.48% (using 18 initial attributes) to 21.42% (Fahrudin et al., (2016). 

Another study by Pati, (2018) used IG as feature selection approach in cancer prediction 

followed by an advanced machine learning technique which was used to find maximum 

probability of cancer-causing genes. Salem et al., (2017) proposed an ensemble method 

that combined IG and SGA algorithms in classification of human cancer diseases. This 

method used IG for selecting the features followed by feature reduction by GA and finally 

Genetic Programming (GP) was used to classify types of cancer. This approach however 

had a limitation associated with time complexity.  

2.5.1.3 Relief-F 

ReliefF is a filter-based algorithm which handles multiclass data challenges, and it is 

regarded as more robust and has capability to deal with incomplete and noisy high 

dimensional data. ReliefF works by making a random selection on an instance of  𝑅𝑖 from 

the provided data that must be analyzed and all the available k-nearest neighbors who are 

from the same nearest hits, (𝐻𝑗) is placed based on the class and its nearest neighbors from 

every other different class considering the nearest misses 𝑚𝑗(𝐶). The estimation quality 

W(A) for all the attributes 𝐴 depends on their 𝑅𝑖, hits 𝐻𝑗 and 𝑚𝑗(𝐶) misses. In case the 
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instances of 𝑅𝑖, hits 𝐻𝑗  have got different values of the attribute 𝐴, then this attribute 

makes the separation of the same class, which is not appropriate leading to decrease of 

quality estimation 𝑊(𝐴). On the contrary, when instances of 𝑅𝑖 and 𝑚𝑗 have got different 

values of the attribute 𝐴 for a certain class, then the attribute 𝐴 makes a separation of the 

two instances with different class values desirable making 𝑊(𝐴) which is the quality 

estimation increase. Since Relief-F takes into consideration the problem of multiclass, 

then the average of all hits and misses are done. Also, the contribution for every class of 

the misses is usually weighted using estimates from the prior probability of that given 

class 𝑃(𝐶). The entire process is repeated 𝑡 times, with 𝑡 being a parameter that is defined 

by the user (Bolón-Canedo, 2014).  

Relief-F is regarded as a nearest-neighbors feature selection approach because of its ability 

in identification of statistical interactions among features in high dimensional data. This 

algorithm has been widely used to identify effects of gene-gene interaction in both 

simulated and real genome-wide association studies (Urbanowicz et al., 2018). Relief-F 

uses a function called a “diff” which determines the available nearest neighbors within the 

space of single nucleotide polymorphisms (SNPs) and then to computes the importance 

of every SNP based on its ability in separating treatments and controls within SNP space 

(Arabnejad et al., 2018). ReliefF has been widely applied in feature selection across all 

domains. Sadiq et al., (2021) did a study to reveal brain connectivity patterns and applied 

feature selection algorithm ReliefF and Pearson's correlation connectivity (PCC) to 

distinguish diseased samples of patients with Alzheimer's disease from samples of normal 

controls. PCC measures the correlation between specific regions whereas ReliefF is well 

known technique in handling high dimensional data feature vectors and they combined 

both techniques. the authors reported a classification accuracy of 93.5% using a k-nearest 

neighbor (KNN) classifier (Sadiq et al., 2021). Angadi & Reddy, (2021) used ReliefF 

feature selection approach after feature extraction in sentiment analysis study to pick 

optimal features. This was followed by classification using random forest classifier to 

categorize sentiments of speakers as either neutral, positive or negative class. The authors 

reported that the quantitative analysis of the proposed approach enhanced the 
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classification accuracy up to 5.41% as compared to the existing systems (Angadi & 

Reddy, 2021). 

 

Ali & Baiee, (2021), did a study in identifying a subset of attributes from the Queensland 

roads dataset using multiple feature selection methods which were IG, GR, Chi-Squared 

and also Relief-F). A comparison on the evaluation results among these feature selection 

methods showed that features from applying Relif-F resulted into a highest classification 

accuracy with 80.39% over other feature selection methods classified using artificial 

neural networks (Ali & Baiee, 2021). Chen et al., (2022) used relief-F algorithm in 

reduction of the dimensions of feature vector feature selection and optimization for 

reducing the dimensionality with an aim of reducing system calculation complexity that 

ensured accuracy. Finally, using the ranking feature vectors as input, a classifier based on 

support vector machines (SVM) was created, and the authors reported excellent 

classification accuracy (Chen et al., 2022). 

 

ReliefF has been associated with good performance particularly on the microarray data 

sets by providing highest test set accuracy on data sets (Alhenawi et al., 2022). Other than 

dermatology data set, all other datasets showed significant improvement in accuracy for 

the feature selection techniques as compared to test accuracy without feature selection 

done on data. For the KNN classifier, the similarity classifier included all features in the 

classification model, which made it susceptible to irrelevant as well as noisy features. 

Therefore, by the fact that feature selection in most cases has been associated with 

improved accuracy, this classifier is intuitive (Alhenawi et al., 2022). Alsahaf et al., 

(2022) proposed a feature selection-based technique called FeatBoost and in most datasets 

used in their study, the authors reported superiority when compared with Boruta and 

Relief-F but when features are fewer indicating that smaller subsets of data tend to have 

relevant. For the computation time, XGBoost was reported to be the most effective 
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technique across all datasets used in their study seconded by ReliefF (Alhenawi et al., 

2022). 

2.5.1.4 Minimum Redundancy Maximum Relevance (mRMR)  

mRMR is a method for feature selection which eliminates redundant and irrelevant 

features automatically in a high-dimensional feature space and selects only informative 

features based on the criteria of maximum correlation and minimum redundancy. mRMR 

approach is regarded as multivariate filter method which selects only features of the 

highest relevance and minimally redundant to the target class meaning that features that 

are similar to each other are selected (Hu et al., 2020). Being a multivariate filter method, 

feature dependencies are modeled, and redundant features are detected. mRMR approach 

puts into consideration features relevance and the redundancy of the feature in respect to 

target class. Features are considered as relevant if there is best trade-off between 

maximum relevance to the target as well as minimum redundancy. The working principle 

of this approach makes it less scalable and slower when compared with univariate 

techniques (Bolón-Canedo, et al., 2016). Mutual information finds a set of feature S which 

has m features {xi}, and both features have got highest scores based on the target class Y. 

This is known as maximum dependency, described as:  

 

𝑚𝑎𝑥 𝐷(𝑆, 𝑌), 𝐷 =  𝐼({𝑥𝑖, 𝑖 =  1, . . . , 𝑚}; 𝑌).      (2.9) 

 

whenever 𝑚 is equal to 1, solution becomes the features that maximizes 𝐼(𝑥𝑗; 𝑌)(1 ≤ 𝑗 ≤

 𝑀). When m > 1, this is followed by an incremental search scheme which adds every 

feature at a time when given the set with 𝑚− 1 features, 𝑆𝑚 − 1, then 𝑚𝑡ℎ feature is 

determined such that the feature that makes the largest contribution to the increase of 

𝐼(𝑆; 𝑌), that takes form: 
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𝐼(𝑆𝑚; 𝑌) = ∬𝑝(𝑠𝑚:𝑌)log
𝑝(𝑠𝑚,𝑌)

𝑝(𝑠𝑚)𝑝(𝑌)
𝑑𝑆𝑀 𝑑𝑦       (2.10) 

 

Despite the theoretical significance of maximal dependency, getting an accurate estimate 

of density for multivariate data is typically difficult 𝑝(𝑥1, . . . , 𝑥𝑚) and 𝑝(𝑥1, . . . , 𝑥𝑚; 𝑌), 

due to two high-dimensional space difficulty which are insufficiency of total number of 

samples and computation of high-dimensional covariance matrix inverse which a 

challenge. Another drawback associated with maximum dependency is the low 

computational speed. These challenges are prominent in both continuous and discrete 

variables (Bolón-Canedo, et al., 2016). For example, if every feature in 𝑁 samples have 

three categorical states, then K features can have a maximum of min (3𝑘   ; 𝑁) joint sates. 

A quick increase in joint states as compared to the samples number 𝑁 then a problem of 

correct estimation of joint probability and mutual information becomes inherent. 

Therefore, even though maximum dependency selects a relatively small number of 

features, with large 𝑁, this approach is not the best when the aim of experiment is to get 

high classification accuracy since maximum dependency approach is difficult to 

implement, the alternative is selecting features based on Maximum relevance criterion. 

Maximum relevance searches for features that satisfies the equation below which does the 

approximation of the max-dependency using mean values of all mutual information of the 

values between each individual feature 𝑥𝑖 (of set S) and class 𝑌 

𝑚𝑎𝑥𝐷(𝑆, 𝑌), 𝐷 =
1

|𝑠|
∑ 1𝑥𝑖∈𝑠

(𝑥𝑖; 𝑦)        (2.11) 

 

A major challenge associated with maximum relevance is that the selected features can be 

highly redundant with dependency among the features being large. Whenever two features 

depend highly on one another, the discriminative power of the class does not change much 

even when one of them is deleted. Min-Redundancy condition is therefore added to select 

features that are mutually exclusive as shown in the equation below.  
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𝑚𝑖𝑛 𝑅(𝑆), 𝑅 =
1

|𝑠|
𝛴
𝑥
𝑖,𝑥𝑗∈𝑠

1(𝑥𝑖,𝑥𝑗
)
        (2.12) 

Minimal-redundancy maximal- relevance is the name given when the above two 

constraints are combined (Toğaçar et al., 2020).  

 

Li et al., (2018) used mRMR approach in eliminating redundant features and selected the 

first vital features that were used for constructing new fault feature vectors for 

representing characteristics of faults. Validation of mRMR method, which offers faster 

calculation and robustness, was done by Yan, et al., (2019). mRMR feature selection and 

grid search support vector machine was used in mechanical components fault 

identification (Yan et al., 2019).  

 

Chen et al., (2022) proposed a model for diagnostic that was based on convolutional neural 

network (CNN, local interpretable model agnostic annotations (LIME) as well as mRMR 

methods. Their model was meant to detect four different types of white blood cells. To 

determine vital regions of the images to be used for classification SqueezeNet and mRMR 

feature selection algorithm were used to extract features from the images. The obtained 

feature sets were combined with LIME algorithm and classified using support vector 

machines. The authors reported an accuracy of 95.88% for the proposed model therefore 

selecting features with SqueezeNet and mRMR technique coupled with support of LIME 

affected the model performance positively (Chen et al., 2022). Jo et al., (2019) Applied 

Pearson’s correlation coefficient as a measure of redundancy and R-value as a measure of 

relevance. Then later compared the original mRMR and their proposed method by 

selecting features using both methods on various datasets followed by the classification 
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test. The authors reported higher accuracy in their proposed approach as compared to 

original mRMR (Jo et al., 2019). 

2.5.2 Wrapper-based Methods 

When picking a subset of features, wrapper techniques use a learning algorithm as part of 

the evaluation function. To guide the search, this approach uses a black box unlike other 

approaches that use entropy or sufficiency of the subset. An evaluation function for every 

candidate feature subset gives an estimation of the model quality based on the learning 

algorithm induction. This leads to increase in computational time because every candidate 

feature subset must be evaluated when doing the search, and the target learning algorithm 

must be done many times like ten-fold cross-validation which is used in model quality 

evaluation (Bolón-Canedo, 2014). Hameed et al., (2018) in their study did an evaluation 

of wrapper-based methods in which unlike filter methods, there was possible 

communications among the variables. The authors reported that the best subset that had 

the highest accuracy to model was achieved by wrappers. Wrapper-based approaches 

result into few numbers of features which have a robust discriminative power. In another 

study a hybrid in form of filter and wrapper, that consisted of information gain as well as 

a standard genetic algorithm was used in feature selection and classification (Zhao et al., 

2019). Additionally, wrappers are classifier dependent meaning that similar results are not 

certain when a different classifier is applied. Therefore, it is recommended that when 

wrapper method is used, then different classifiers should be applied for the purpose of 

feature selection (Hameed et al., 2018).  

2.5.3 Embedded methods  

Embedded method is a feature selection approach with working principle just wrapper 

approaches, since they also depend on a given learning algorithm. However embedded 

methods are less computationally intensive as compared with wrapper when interacting 

with the classifiers. Hence, the embedded methods combine the filters efficiency with the 

accuracy of wrappers. Their implementation is based on the feature selection that are built-
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in which is performed by the feature reduction. Two major examples of the embedded 

systems are LASSO and RIDGE regression feature selection algorithms (Hameed et al., 

2018). Other studies that have used wrapper methods are for example a study by Salekin 

& Stankovic, (2016) introduced a machine learning based wrapper method to identify a 

set of twelve attributes. Ranking of attributes was done based on a prognostic potential in 

detecting (CKD) followed by attributes reduction to ten using LASSO regularization 

method. Some authors have reported improvement in accuracy of 0.993 together with root 

mean square error of 0. 1084. Guo et al., (2019) proposed an embedded feature selection 

algorithm called ensemble embedded feature selection (EEFS). This approach was 

capable of more effectively and efficiently addressing a multi-label bioinformatics data 

learning challenge. The authors reported that this proposed algorithm could reduce data 

errors that are accumulated through application of an ensemble method. Their 

experimental results were obtained from five multi-label bioinformatics datasets (Guo et 

al., 2019). 

 

Feature selection is an important phase during variable prediction in an industrial 

production according to (Li et al., 2021). In their research, they proposed an embedded 

feature selection method based on vector machine relevance and marginal approximation 

of the likelihood function. Hierarchical prior distributions were established, and the joint 

posterior distribution over the model weights and kernel parameters was calculated using 

a Gibbs sampling method combined with a Laplace approximation. As a result, feature 

selection was done by looking at the posterior of the kernel parameters. Two industrial 

data sets were used to test the performance of their suggested technique. The authors 

reported improved prediction accuracy of their model. a series of benchmark datasets and 

two practical industrial datasets are employed (Li et al., 2021). According to Deng et al., 

(2019) Filter model has been regarded as the most efficient approach whose investigation 

has been extensive in text categorization. However, the use of wrapper and embedded 

methods is limited in text categorization because of computation cost when working with 

a text document that contains a lot of features. This challenge has been addressed by use 
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of hybrid techniques where filter methods are used in eliminating redundant and irrelevant 

features and the selected feature in turn is fed to a wrapper method for further processing 

(Deng et al., 2019).  

2.6 Feature Extraction methods  

Feature extraction is one of the dimensionality reductions approaches that handles the 

problem of obtaining the most informative features of a given problem to improve data 

storage or processing efficiency. The two stages of feature extraction are feature creation 

and feature selection. To transform "raw" data into a set of useful or meaningful features. 

It can be thought of as a preprocessing transformation that includes standardization, 

normalization, discretization, signal augmentation, and local feature extraction, among 

other things. Principal Component Analysis is the most widely used feature extraction 

approach (Liu & Motoda, 2007). 

2.6.1 Principal Component Analysis (PCA) 

PCA is a dimension reduction approach that works by identifying significant data from 

large data sets. The goal of PCA is to reduce the original dataset to a smaller feature set 

with fewer dimensions. PCA relies heavily on determining the number of major 

components. The principal components that best represent the data should be the 𝑝 number 

of principal components chosen from all principal components. Some of the criteria used 

to identify the appropriate number of principal components include the broken-stick 

model, cross-validation, Velicier's partial correlation process, Kaiser's criterion, Barlett's 

test for equality of eigen-values, Cattell's screen-test, and cumulative percentage of 

variance. (Shah  & Patel, 2016). The primary goal of PCA is to find an appropriate linear 

combination of the data matrix 𝑋.The Jordan decomposition of the covariance matrix of 

X is used to achieve this goal of the covariance matrix Σ of X (also the correlation matrix 

𝑆 of 𝑋). The random vector contained in the data matrix 𝑋 is represented as 𝑋𝑖∗𝑃 =

(𝑥1, 𝑥2, … , 𝑥𝑃) 
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with mean 𝜇𝑖 × 𝑝 and covariance matrix 𝛴.A A transformation as shown in the equation 

below is the key component of the PCA: 

𝑥𝑖∗𝑃→𝑦𝑖∗𝑃 = (𝑥 − 𝜇)𝑖∗𝑃𝛤𝑝𝑥𝑃       (2.13) 

Where 𝛤 is attained using Jordan decomposition of Σ, 𝛤𝑇𝛴𝛤𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, 𝜆21, … , 𝜆𝑝)with 

𝜆𝑖𝑠 
′ being the decomposition eigen values. Each element of 𝑦𝑖 × 𝑝 is elements combination 

of a linear representation of 𝑥𝑖 × 𝑝. Furthermore, each element of 𝑦 is independent of the 

others. As a result, we get p main components which are the p eigenvalues of the Jordan 

decomposition Σ. In general, the initial principal components are used for further analysis 

(Dua & Chowriappa, 2012).  

Assumptions of PCA. 

A few conditions must be met to get relevant results from PCA. Because the typical PCA 

explores the covariance/correlation patterns, which makes sense only for the selected 

variables, the input data must first be continuous variables of real value, evaluated on an 

interval scale or ratio (Todorov et al., 2018). For discrete variables which are measured 

on an interval scale like integers or categorical variables, correspondence analysis, or non-

metric multidimensional scaling are all viable methods. Second, the linearity of the link 

between each pair of variables is required by the covariance/correlation measures. When 

nonlinear relationships are discovered, data transformation techniques such as logarithmic 

transformation should be examined. Outlier detection is required prior to analysis as 

atypical values can mislead the results by affecting the amount of the covariance / 

correlation (Tabachnick et al., 2018). 

PCA has been used to reduce dimensionality in a variety of fields of research. Mallick et 

al., (2021) proposed a new paradigm for microarray data classification. Ant Colony 

Optimization (ACO) is used to modify the parameters of an ANN. For dimensionality 

reduction, PCA was performed, and the reduced dataset was optimized by Ant Colony 

Optimization (ACO) in the first phase followed by training with Functional Link Artificial 



38 

Neural Network in the second step (FLANN) (Mallick et al., 2021).  A comparison of RF, 

RF-PCA, as well as a multi-class tumor classification approach using RF classifier, was 

presented by Saraswathi & Gupta (2019). According to the experimental results, the 

random selection of RF-PCA provided higher accuracy than other techniques. In addition, 

Jamal et al., (2018) looked at how feature extraction can reduce the number of features 

that were required to classify breast cancer using original white blood cells data set. 

Dimensionality reduction utilizing the K-means cluster was virtually as excellent as PCA, 

according to the metric assessment (Saraswathi & Gupta, 2019). Salo et al. (2019) 

developed a new hybrid strategy that combines Information Gain (IG) and PCA to 

eliminate extraneous features while retaining the best attribute subset. The proposed 

approach's resilience showed good results in both the NSL-KDD and Kyoto 2006+ 

datasets. To extract useful discriminative properties, Bossaghzadeh, (2020) did their study 

on Hoda dataset using a fine-tuned deep Neural network. The attributes were used to 

classify the data using a linear SVM. In the second experiment, they used PCA to decrease 

the extracted feature measurements to enhance accuracy and reduce processing burden, 

and then submitted the data to a Support Vector Machine (Bossaghzadeh, 2020). 

 

Kim et al., (2018) merged several omics datasets and offered two forms of PCA meta-

analysis frameworks, namely, Meta PCA. Three meta-analysis transcriptional 

investigations in the yeast cycle, prostate cancer, rat metabolism, and a pan-cancer 

methylation research from The Cancer Genome Atlas were created using simulators 

(TCGA) were used in this study. As a result, the proposed structure's detailed 

visualization, resilience, and discovery were improved. Yang et al., (2018) used a 

principal component analysis network (PCANet) to extract features from a noisy 

EigenECG Network (ECG) signal and linear SVM was used to improve the speed of 

classification. They developed five types of imbalanced starting and noise-free conditions 

for testing the effectiveness of their approach. Using waters of China's Lake Nancy Basin 

data set, Xu et al., (2021) Principal Component Analysis was used in a Fuzzy 

Comprehensive Evaluation (FCE-PCA). By generating organic functions through these 
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semi-sinusoidal distribution systems, measuring weight using several additional standard 

methods, solving self-equation using Jacobi, and removing the main components based 

on inherent values, the percentage of the contribution accumulated, and packing, the 

efficiency of extraction of main contaminants was improved. Raunak, (2017) disclosed a 

new strategy for constructing lower-dimensional word embedding that effectively 

combines the reduction of PCA-based dimensionality with a previously described post-

processing algorithm. Empirical studies on 12 typical word similarity benchmarks 

demonstrated that their technique decreases the embedding's dimensionality by half, 

resulting in comparable or (more often) superior efficiency than the higher-dimensional 

embedding (Raunak, 2017). 

Kaya et al., (2017) investigated the efficacy of PCA clustering based on brain tumor 

images. The PCA method was first used to analyze  MRI images of various sizes in this 

model, followed by clustering using K-means and FCM. A greater performance rate is 

achieved by combining PCA and K-means. To categorize intrusion detection datasets, 

Bhattacharya et al. (2020) introduced a PCA-Firefly approach. To perform data 

transformation one-hot encoding technique was used, and the dimensionality reduction 

was done using the PCA-Firefly technique. The XGBoost classifier is then used to classify 

the dimensionally reduced dataset. The superiority of this proposed model was established 

by experimental results (Bhattacharya et al., 2020).  

Gadekallu et al. (2020) introduced a PCA-Firefly based Deep Learning model that was 

used for early diabetic retinopathy detection. A PCA-Firefly algorithm could select the 

best features, then Deep Neural Networks was used to classify the diabetes retinopathy 

dataset. Authors reported improved classification results as compared to other machine 

learning algorithms (Gadekallu et al., 2020). In study by Fujisawa et al., (2021) RNA 

expression profiles of 16 COVID-19 patients and 18 healthy control subjects were 

evaluated using unsupervised feature extraction based on principal component analysis. 

(PCAUFE). From 60,683 potential probes, 123 genes were identified as crucial for 

COVID-19 development, including immune-related genes. The authors did a patient/non-

patient categorization based on the identified genes to ensure that the genes chosen by the 
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proposed model were effective for the diagnosis of COVID-19 patients. Classification 

models such as logistic regression (LR), support vector machine (SVM) and random forest 

were used after feature selection (Fujisawa et al., 2021). 

 

Since the biological signatures of two of the most common subtypes, lung 

adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), are different, Chen 

& Dhahbi (2021) took advantage of the fact that they are generally treated identically and 

lumped together as non-small cell lung cancer (NSCLC). The biomarkers LUAD and 

LUSC are uncommon, and their biological mechanisms are still unknown. To detect 

physiologically significant signals, many studies have attempted to improve existing 

machine learning algorithms or develop unique biomarker discovery methods. However, 

for cancer classification, biomarker discovery, or gene expression analysis, few studies 

have employed overlapping machine learning or feature selection methods. Their study 

recommended use of overlapping classical feature selection or feature reduction strategies. 

Genes that had been chosen using the overlapping technique were then verified using 

random forest. The overlapping method's classification statistics were compared to those 

of classic feature selection methods. AUC and ROC analyses were used to validate the 

biomarkers in an external dataset (Chen & Dhahbi, 2021). 

 

Roy & Taguchi (2021) applied unsupervised feature extraction (FE) based on PCA, tensor 

decomposition (TD), and kernel tensor decomposition (KTD) to a hypoxic data set. 

Authors discovered that unsupervised FE based on PCA, TD, and KTD could successfully 

identify a small number of genes linked to changed gene expression and m6A profiles, as 

well as the enrichment of hypoxia-related biological words, with enhanced statistical 

significance (Roy & Taguchi, 2021). Bai & Hira (2021) proposed a method for 

categorizing cancer data as follows: a) Using various feature selection techniques, such as 

principal component analysis (PCA), chi-square, genetic algorithm (GA), and F-score, 
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were extracted information from a larger dataset; b) using majority voting ensemble SVM, 

authors classified extracted information into normal and malignant classes samples. 

Different SVM kernels, such as linear, polynomial, radial basis function (RBF), and 

sigmoid, were used in SVM ensemble-based technique. A majority voting strategy was 

used to integrate the estimated results of specific kernels. Using ensemble SVM 

classification, the algorithm's performance is validated on six benchmark cancer datasets: 

colon, ovarian, leukemia, breast, lung, and prostate (Bai & Hira, 2021). 

 

Among other drawbacks, the PCA result is frequently uninterpretable on its own and this 

calls for the combination of the various algorithms since different approaches choose 

features based on different criteria. Since each approach has its own set of strengths and 

weaknesses, focusing on the overlapping features will maximize the strengths and reduce 

the flaws of each method, lowering the number of false positives and increasing the 

reliability of the results (Dhahbi, 2021). 

2.6.2 Partial Least-Squares-Based Dimension Reduction (PLS) 

PCA uses an unsupervised approach to determine the linear connection between variables. 

However, it is occasionally desirable to determine the degree of dependence between 

variables while also considering the goal variable. One such dimensionality reduction 

technique is partial least squares (PLS), which was first developed as a matrix 

decomposition technique before being used as a multivariate regression tool. PLS, on the 

other hand, has lately been discovered to be a successful dimension reduction approach. 

PLS is founded on the idea that seen data is generated by a system or process that is driven 

by a small number of latent (non-observable or measured) attributes (Khare et al., 2019). 

As a result, the goal of PLS is to find uncorrelated linear transformations (latent 

components) of the original predictor characteristics that have a high covariance with the 

response features (Khare et al., 2019). 
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Vanitha et al., (2015) developed a classifier model utilizing PLS and the Ridge Penalize 

Logistic Regression regularizing method to minimize the microarray data dimension. 

RPLS was the name of the model developed, and it was able to deliver a low level of 

classification error. However, the problem with the statistical approach is that it has a rigid 

classification system, making it difficult to categorize a sample if the gene expression of 

the sample differs somewhat from the gene characteristic that has been determined. 

Another recent study by Chen et al., (2021) analyzed differences between lung cancer and 

glioma and proposed a method that was based on patient serum Raman spectra in 

combination with deep learning.  According to their findings, the effect of PLS feature 

selection on classification was better than experimental results, the classification effect of 

PLS after dimension reduction is substantially better than that of PCA, most probably 

because PCA retains substantive number of components that had noise. PLS can reduce 

meaningless noise and make the model contain the fewest variables possible to produce 

relatively optimal lowdimensional data. However, the major drawback of this approach is 

that it can only fit linear classification problems and is prone to the over-fitting problem 

(Wang et al., 2020). 

2.6.3 Factor Analysis (FA) 

Factor analysis (FA) is a linear method just like PCA. FA hypothesizes that the measured 

variables are influenced by a set of unknown and frequently unquantifiable common 

causes. FA is motivated by the need to discover hidden relationships, and it can thus be 

used to reduce the dimension of datasets utilizing the factor model. According to the k-

factor model, a p-dimensional random vector 1𝑥𝑝 with covariance matrix 𝛴 satisfies the 

k-factor model if  

𝑥 = 𝛬𝑓 + 𝑢        (2.14) 
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where 𝛬𝑝 × 𝑘 is a matrix of constants, 𝑓𝑘 × 1 represents random common factors, while 

𝑢𝑝 × 1 represents a specific factor. Furthermore, the factors are all uncorrelated in the k-

factor model, and the common factors are normalized (Ghojogh et al., 2021). 

2.6.4 Linear Discriminant Analysis (LDA). 

LDA is a discriminant approach that tries to model differences between samples assigned 

to different groups. The method’s goal is to optimize the between-group variance to 

within-group variance ratio. When this ratio reaches its greatest value, the samples within 

each group have the smallest possible scatter and the groups are the most distanced from 

one another. For a two-class discriminant issue, once the LDA assumption of equal group 

covariance’s is met, the expression is maximized. 

                𝑆 =
𝑃𝐶  𝑏𝑃𝑇

𝑃𝐶𝑤𝑃𝑇
           (2.15) 

where 𝐶𝑏 and 𝐶𝑤 are the between- and within-group covariance matrices, and p is the 

multivariate data space direction that best separates the two groups of samples. It is vital 

to note that p is the eigenvector derived from the PCA decomposition of matrix 𝐶𝑤−1𝐶𝑏   

at this point. A multi-class problem can be generalized from the two-class discriminant 

problem. Because LDA is based on traditional estimators of location and covariance, it is 

sensitive to outlying samples, with an increase in the number of erroneously allocated 

samples lowering LDA performance. Using robust estimators of data location and 

covariance instead of their classic counterparts is a reasonably simple way to address the 

LDA’s lack of robustness (Sarraf & Pattnaik, 2020). 

 

Reddy et al., (2020) did a study using Diabetic Retinopathy (DR) and Intrusion Detection 

System (IDS) datasets to examine the performance of PCA and LDA. PCA reduced the 

features to 26 from 36 dependent attributes while keeping 95% of the dataset, while Linear 

LDA reduced the features to 1. Experiments show that when the dimensionality of the 
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datasets is high, ML techniques using PCA yield better results. When datasets have a low 

dimensionality, it has been observed that ML methods without dimensionality reduction 

produce better results It is evident from the preceding discussion that the goal of LDA is 

not to reduce dimensionality (Reddy et al., 2020). Findings of the study done by Hasan & 

Abdulazeez, (2021) discovered that classifiers with PCA perform better than those with 

Linear Discriminant Analysis (Hasan & Abdulazeez, 2021). 

2.7 Graph Definition and origin of Graph Theory 

A graph is a collection of points with lines that connect pairs of points. These points are 

called nodes or vertices and the lines connecting the nodes are referred to as edges. A 

graph is denoted as G or  𝐺(𝑉, 𝐸) where V represents the set of nodes and 𝐸 ⊆ 𝑉 × 𝑉 

represents a set of edges of graph 𝐺. 𝑛 is often used to represent the number of nodes |𝑉|, 

and 𝑚 to represents the number of edges (Gao et al., 2009). The importance of 

representation of graph was initially introduced by Leonhard with a challenge being to 

traverse each bridge only once (Chartrand et al., 2019). Euler denoted four land areas by 

vertices and seven bridges to represent the edges.  Euler demonstrated that no more than 

2 vertices can have number of edges of odd parity joining them to the other vertices of the 

graph for the existence of such a path. Number of edges of odd parity incident on all 4 

vertices of the Konigsberg bridge graph implied that it is not possible to determine such a 

path. This discovery by Euler led to birth of a branch in mathematics called graph theory 

(Yegnanarayanan, 2020). In mathematics and particularly the field of graph theory, 

networks are usually referred to as graphs (from the Greek “graphos”, meaning 

something that is “drawn” or “written”). Graph theory then denotes the mathematical 

discipline that is concerned with the study of such structures and the modeling of 

relationships between objects (Gross, et al., 2018). 

 



45 

2.7.1 Types of graphs  

Graphs are classified into two types based on the presence or absence of the direction that 

links the nodes or elements. When there exists a directed link from one node to the other, 

the graph is referred to as a directed graph or diagraph while the graph with edges which 

are bidirectional is called undirected graph. For the undirected graph, the adjacency matrix 

is symmetric whereas the adjacency matrix for the diagraph is asymmetric. If there exist 

self-loops present in 𝐺(𝑉, 𝐸), then the total number of elements in 𝐸,  which is denoted 

as |𝐸| is a maximum of  
𝑝(𝑝−𝟏)

2
  for undirected graphs and a maximum of  𝑝(𝑝 − 1) for a 

diagraph where |𝑉| = 𝑝,. If set |𝐸| =
𝑝(𝑝−𝟏)

2
 then G, is called a complete graph (Samanta, 

et al., 2021). 

2.7.1.1 Undirected graph versus a directed graph 

Undirected graph is defined as 𝐺 =  (𝑉, 𝐸), with 𝑉 being a set of finite nodes features in 

a network, and 𝐸  represents a finite set of edges that connects to a network node. The 

edge that connects these two nodes are usually undirected. A symmetric adjacency matrix 

A describes an undirected graph, 𝐺. A is a (|𝑉|  × |𝑉|) matrix, where 𝑎𝑖𝑗 =  1 if and only 

𝑖𝑓 (𝑖, 𝑗)  ∈  𝐸; otherwise, 𝑎𝑖𝑗  =  0. Most of the biological networks, like protein- protein 

interaction networks do not consider direction of the action and for this reason, they are 

built using undirected graphs (Liu et al., 2020). A directed graph is as defined as G = (V, 

E), however the edges of the graph are directed. The direction means that the two nodes 

that are associated have an order of their relationship. For example, edge 𝑒 =  (𝑖, 𝑗) is an 

ordered pair of nodes 𝑖 and 𝑗, where 𝑖 is the starting point of 𝑒 and 𝑗 is the end point of 𝑒 

(Liu, et al., 2020). The meaning of this arrangement is that, for every edge of the graph, 

there exist a definite direction from the start to the end of the edge. These edges are used 

in describing occurrence of biological reactions. For example, when there is a relationship 

between a transcription factor and the regulated gene this becomes an orderly relationship 

which makes the regulatory network to be constructed as directed networks. Additionally, 

some computational methods can only be represented as a directed graph (Liu et al., 2020). 
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2.7.2 Graph connection 

A graph 𝐺(𝑉, 𝐸) is regarded as disconnected if there is a pair 𝑢𝑟 , 𝑢𝑠 ∈ 𝑉  with no path that 

exist between them. If there is a path of length 1 between 𝑢𝑟 and  𝑢𝑗  then it’s called the 

edge that joins 𝑢𝑖
 and 𝑢𝑗 . If there is a pair of vertices 𝑢𝑟,  𝑢𝑗  and a path between them in 

in graph  𝐺, then in that it is a connected graph. A weakly connected graph is the one that 

doesn’t have any path that connects two nodes. A matrix of a weakly connected graph is 

random whereas a graph is strongly connected if in each pair of nodes, there exist an edge 

connecting them (Figure 2.7).  

 

Figure 2.7: (a)Undirected graph; (b) Directed graph; (c) Undirected graph 

(disconnected) (d) complete undirected, graph (Yegnanarayanan, 2020). 

2.7.3 Network topologies  

The way in which nodes and edges are arranged within a network is referred to as network 

topology (Behzadi & Ranjbar, 2019). Topological properties can apply to the network as 

a whole or to individual nodes and edges (Chiang & Yang, 2004). Properties of graphs are 

important in unravelling useful information contained in a network. A crucial aspect of 

any network analysis is the ability to extract useful information that would have been 

difficult to discover if each component was to be examined individually. Therefore, 

network properties, especially topological properties, help identify relevant substructures 

within a network (Bansal et al., 2018) 
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2.7.3.1 Global topology 

Studies of the global topology of graphs shed light on their overall organization, such as 

(i) the overall connectivity of the network, (ii) the distribution of edges across vertices, 

(iii) the degree of clustering in the network, or (iv) the distribution of path lengths in the 

network. For instance, the overall connectivity of the network can be represented by the 

edge density 

𝜌 =
|𝐸|

max |𝐸|
           (2.16) 

Where 𝜌 = 1 implies a complete graph, while a graph with 𝜌 ≪ 1 means that the graph is 

sparse. The graph diameter is defined as the length of the longest path: 𝐷 = max  
𝑖,𝑗

𝑑(𝑖, 𝑗), 

and the mean path length is defined as: 

 𝐿 =∑
ⅆ(𝑖,𝑗)

max|𝐸|𝑖,𝑗
          (2.17) 

Small-world network 

If path length denoted as 𝐿 grows sufficiently slow, for example if 𝐿 ∝ ln (𝑁) the graph is 

said to represent a small-world network (Watts & Strogatz, 1998) (Figure 2.8). The small-

world property implies that any target vertex 𝑣𝑏 can be reached from a source vertex 𝑣𝑎 

by traversing only a small number of edges. Another global property of the graph is 

described by its degree distribution. 
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Figure 2.8: Small-world network adapted from Watts & Strogatz (1998). 

Specifically, vertex 𝑣 𝑗is a neighbor of vertex 𝑣𝑖, if 𝑒(𝑖, 𝑗) ∈ 𝐸. The number of neighbors 

that a vertex has is  referred to as the degree or degree centrality (DC) of that vertex. For 

an unweighted graph, the degree centrality of vertex 𝑣𝑖 for an undirected network is 

computed as:  

𝐷𝐶(𝑉𝑖) =∑ 𝑎𝑖𝑗

𝑛

𝑗=1
          (2.18) 

In directed networks, there is a distinction between in-degree 𝐷𝐶𝑖𝑛  since only incoming 

edges are counted. 

 𝐷𝐶𝑖𝑛(𝑣𝑖) =∑ 𝑎𝑖𝑗

𝑛

𝑗=1
, 𝐷𝐶𝑜𝑢𝑡(𝑣𝑖) =∑ 𝑎𝑖𝑗

𝑛

𝑗=1
      (2.19) 

If the probability 𝑝(𝐷𝐶(𝑣𝑖) = 𝑘, the probability that a vertex 𝑣𝑖 in the graph exhibits a 

degree centrality DC=k, and can be modeled by a power-law distribution as 
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𝑃(𝐷𝐶 = 𝑘)~𝑘−𝛾 .          (2.20) 

 

Scale free graphs  

A graph is said to be scale free if most vertices in the network have very few incident 

edges while few vertices have a large number of incident edges. In random networks on 

the other hand, vertices tend to have similar degree values distributed around a mean 

degree ⟨𝑘⟩. A random network was initially proposed by Gilbert and is denoted as 𝐺(𝑛, 𝑝) 

constructed with 𝑛 vertices V={𝑣1, 𝑣2, . . . , 𝑣𝑛} where each possible edge is included with 

probability 𝑝 (Figure 2.9) 

 

Figure 2.9: Scale free graphs (Whigham & Spencer, 2021). 

Following the description provided by Barabasi (2013) in such a random graph, the 

distribution of degree centralities can instead be modeled by a binomial distribution:  
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𝑃(𝐷𝐶 = 𝑘) = (
𝑛 − 1
𝑘

) 𝑝𝑘(1 − 𝑝) 𝑛−1−𝑘      (2.21) 

 

In the case where ⟨𝑘⟩ ≪ 𝑛 by the Poisson distribution  

𝑃(𝐷𝐶 = 𝑘) = 𝑒−⟨𝑘⟩
⟨𝑘⟩𝑘

𝑘!
         (2.22) 

2.7.3.2 Local topology 

Local topological properties of the network allow the identification of substructures or 

vertices with characteristics. Several metrics have been developed to prioritize vertices in 

terms of their connectivity pattern or other related measures of centrality within networks. 

In addition to degree centrality, local topological measures allow identification of 

bottlenecks e.g., vertices that connect different network modules (Yu et al., 2007) due to 

a high betweenness centrality (BC) of these vertices. Specifically, the BC for a vertex 𝑣𝑖  is 

formally defined by: 

𝐵𝐶(𝑣𝑖) =  ∑
𝜎𝑠𝑡(𝑣𝑖)

𝜎𝑠𝑡
𝑠≠𝑖≠𝑡          (2.23) 

where 𝜎𝑠𝑡 counts the number of shortest paths from vertex 𝑣𝑠 𝑡𝑜 𝑣𝑒𝑟𝑡𝑒𝑥 𝑣𝑡 and 𝜎𝑠𝑡(𝑣𝑖) is 

the representation of the numbers of shortest paths originating from vertex 𝑣𝑠 to vertex 𝑣𝑡 

that also include vertex 𝑣𝑖.  

 

Local clustering coefficient is another example of local topological metric used to identify 

vertices that are linked to highly connected clusters in the network. Let 𝑁(𝑣𝑖)be the set of 

vertices that are neighbors of vertex 𝑣𝑖 . Then CC (𝑣𝑖) can simply be defined as the fraction 

of actual versus possible connections between all the pairs of such neighbors (watts, 

1997). In a directed network, a total of |𝑁(𝑣𝑖)|(|𝑁(𝑣𝑖)| − 1) nodes are present. Let 
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𝑚𝑖denote the number of observed connections between the neighbors of vertex 𝑣𝑖 the CC 

of the vertex 𝑣𝑖  in a directed network is defined as:  

𝐶𝐶(𝑣𝑖) =
𝑚𝑖

|𝑁(𝑣𝑖)|(|𝑁(𝑣𝑖)|−1)
         (2.24) 

 

2.8 Graph-based feature selection methods 

To uncover similarity associations from data, graph-based algorithms have recently been 

applied in machine learning techniques. Graph-based approaches for feature selection give 

an underlying manifold structure as a universal foundation for reflecting feature 

relationships. Graph-based approaches have been used to handle feature selection 

difficulties in several studies. For example, a dense subgraph discovery strategy is used to 

solve the unsupervised feature selection problem in (Yan et al., 2021). In, another feature 

subset selection approach based on clustering is described for high-dimensional data 

(Moslehi & Haeri, 2021). For similar grouping features, this study used a graph-theoretic 

clustering technique. A hypergraph-based technique for feature selection was proposed by 

Zhou et al., (2022). This study considered the related class label of each sample when 

evaluating the applicability of distinct features using an information-theoretic criterion. 

The notion of graph clustering using node centrality measure is merged with the 

unsupervised feature selection process in (Moradi & Rostami, 2015). The authors Ghaemi 

& Feizi-Derakhshi (2016) expanded on this study by selecting features that were more 

informative. In order to rank features based on their importance, Henni et al., (2018) 

employed Google's PageRank centrality measure.  

 

Hashemi et al. (2020) developed another graph-based feature selection method for multi-

label high-dimensional dataset. A PageRank centrality measure was used by the authors 

of this study to rank the properties based on their importance in the graph. In addition, 
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correlation distance criteria was used in their study to eliminate redundant features. Li et 

al., (2019) suggested an unsupervised graph-based feature selection method for high-

dimensional data. Laplacian graph and local geometrical structure were employed in this 

study to better depict features space. By conducting feature selection and subspace 

learning in the sample self-representation framework, Zhu et al., (2017) proposed a 

subspace clustering guided unsupervised feature selection strategy in which a 

transformation matrix was projected to the original data to their low-dimensional space 

by conducting feature selection and subspace learning. They then created a dynamic and 

intrinsic affinity matrix using the rank constraint and the affinity matrix generated directly 

from the source data. Final clustering results were determined using the affinity matrix 

learned from the low-dimensional space. (Zhu et al., 2017). 

 

Other methodologies have been presented together with machine learning approaches to 

tackle the problem of inferring meaningful biological networks. One of the earliest (but 

still widely used) proposed approaches is based on the “guilt-by-association” principle. 

This implies that when two genes show similar expression profiles, the assumption is that 

they are related biologically by either direct or indirect interaction. Networks generated 

from biological data represent a tool to investigate complex biological systems (Yu et al., 

2015). “Guilt-by-proximity” implies that genes that lie closer to each other on the network 

are more likely to lead to the same phenotype (Figure 2.10). 
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Figure 2.10: disease association module (van Dam et al., 2017)  

Zhang and Zeng (2019) increased disease gene prediction model performance by 

combining disease phenotype, biological function, and network topology similarity. Lei 

et al., (2019) combined RWR and Pearson Correlation Coefficient (PCC) to measure 

similarity of two proteins. Zhang et al., (2014) proposed a method, named ESFSC, based 

on RWR to rank disease genes. The innovation of ESFSC is enlarging seed nodes with 

known disease genes and their k-nearest neighbor nodes. Mamoshina et al. (2018) used 

publicly available gene expression profiles of young and aged tissue from healthy donors 

to conduct their research. Differential gene expression and pathway analysis were used to 

compare profiles of young and elderly muscle tissue, as well as data preprocessing for a 

set of machine learning methods. Based on blood gene expression profiles, Kaletsky et 

al., (2019) conducted a study to establish a transcriptome signature that may be used to 

diagnose people with autism spectrum disorder (ASD) compared to controls. Ganegoda 

et al., (2015) introduced a novel method called proximity disease similarity algorithm 

(ProSim), which prioritizes disease genes by considering both aforementioned qualities 
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2.8.1 Graph-based filtering metrics 

Features that are associated with each other tend to have similar functions based on the 

“guilt by association” assumption. In the case of biological data, many forms of networks 

that characterize relationships among features or genes have been employed in disease 

gene prediction. Graph-based analysis algorithms have been categorized into classes such 

as centrality-based methods, distance-based methods, random walk-based methods (Luo 

et al., 2021).  

2.8.1.1 Network Centralities and Node Ranking 

Nodes in a network can be sorted or ranked based on their unique properties and depending 

on the research question at hand. Central nodes or other intermediate nodes are crucial in 

affecting the topology of the network for example finding nodes that tend to interact with 

many other features/ proteins or finding molecules that play important roles in genes 

expression stimulation (Singh et al., 2022). 

2.8.1.2 Degree Centrality  

Degree in a network gives an important node that has the highest number of interactions 

with other nodes. The degree of node 𝑖, is usually calculated as  𝐶ⅆ(𝑖) =  𝑑𝑒𝑔(𝑖) for 

undirected graph and incase of a directed graph, every node is defined by two-degree 

centralities. These are 𝐶 𝑑 𝑖𝑛 (𝑖) =  𝑑𝑒𝑔 𝑖𝑛 (𝑖) and 𝐶 𝑑 𝑜𝑢𝑡 (𝑖) =  𝑑𝑒𝑔 𝑜𝑢𝑡 (𝑖). Nodes 

that have very high degree are regarded as hub because they are connected to many 

neighbors (Figure 2.10). If such nodes are removed, then the topology of the network is 

highly affected such that the network becomes highly disconnected. Biological networks 

have been shown to be very robust against any random disconnection. However, if hub 

nodes are disrupted, then this can lead to a failure of the system (Jardim et al., 2019). 
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Figure 2.11: Hub nodes in a network  

2.8.1.3 Closeness Centrality 

This centrality measure designates the most important nodes which communicate faster 

with other neighboring nodes within a network. With G = (V, E) being an undirected 

graph, the centrality measure is defined as: 

𝐶𝑐𝑙𝑜 =∑ 𝑑𝑖𝑠𝑡(𝑖, 𝑗)
1

|𝑉|

𝑡∈ 𝑣
        (2.25) 

where 𝑑𝑖𝑠𝑡(𝑖, 𝑗) denotes the shortest path 𝑝 between the two nodes 𝑖 and 𝑗. Closeness 

centrality has also been used in identification of non- random structure of genomic as well 

as proteomic networks (Halder et al., 2020). Any reduction in closeness centrality measure 

of the components in the network has a consequence in increasing the distance between 

pathways throughout the entire network (Agrawal et al., 2018). In biological networks, 

closeness centrality has been shown as one of the best centrality measures in identifying 

critical nodes in a network (Liu et al., 2020) 
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2.8.1.4 Betweenness Centrality 

This measure shows nodes that are in-between neighboring nodes, and their rank is usually 

higher. These nodes play a crucial role in facilitating the communication between two 

neighbors. Therefore, betweenness centrality indicates those crucial nodes that lie 

between the paths and other nodes in a network (Feng et al.,2021). For individual 

nodes 𝑖, 𝑗, 𝑤 ∈  𝑉(𝐺), with σ 𝑖𝑗  being all the shortest paths that lie 

between 𝑖 and 𝑗 and σ 𝑖𝑗   (𝑤) which is the total number of shortest paths from 𝑖 to 𝑗 that 

passes through 𝑤. Moreover, for w ∈  𝑉(𝐺), let 𝑉 (𝑖) is the set of all pairs of ordered 

nodes, (𝑖, 𝑗) in 𝑉(𝐺)  ×  𝑉(𝐺) such that 𝑖, 𝑗, 𝑤 are all separate. 

2.8.1.5 Eigenvector Centrality  

This measure ranks the higher nodes which have been connected to neighbors that are 

important. if 𝐺 =  (𝑉, 𝐸) being undirected graph and 𝐴 is its network 𝐺 adjacency matrix 

then the eigenvector centrality becomes eigenvector  𝐶𝑒𝑖𝑣 of the main eigenvalue 𝜆𝑚𝑎𝑥  in 

absolute value in that 𝜆𝐶𝑒𝑖𝑣  = 𝜆𝐶𝑒𝑖𝑣  . If  𝐴 is the adjacency matrix of a 

network 𝐺 with 𝑉(𝐺)  =  {𝑣 
1
, . . . , 𝑣 

𝑛
  }, and , 𝜌(𝐴) = max

𝜆∈𝜎(𝐴)
𝜆 then the eigenvector 

centrality 𝐶𝑒𝑖𝑣(𝑣 𝑖 ) of the node 𝑉𝑖is given by the 𝑖𝑡ℎ coordinate 𝑥𝑖 of any normalized 

eigenvector which satisfies the condition 𝐴𝑥 = 𝜌(𝐴)𝑥. These  algorithms have been used 

for efficient page ranking on the web. Another wide application of this measure has been 

used in identification of genetic interactions in cancer studies (Henkel et al., 2019), gene-

disease associations (Hwang et al., 2019) or network hubs in PPI networks (Amala & 

Emerson, 2019). 

2.8.1.6 Eccentricity Centrality  

This measure shows how easy a node is accessible from other nodes. If 𝐺 =  (𝑉, 𝐸) is an 

undirected graph, then eccentricity is usually calculated as 𝐶𝑒𝑐𝑐 =
1

𝑚𝑎𝑥{ⅆ𝑖𝑠𝑡(𝑖,𝑗)}
 with 
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𝑑𝑖𝑠𝑡(𝑖, 𝑗) being the shortest path connecting two nodes 𝑖 and 𝑗. The 

eccentricity 𝐶𝑒𝑐𝑐 𝑒𝑐𝑐 of a vertex 𝑉 is the longest distance between 𝑣 and any other 

adjacent vertex (Dragan, 2020). These centrality measures such node degree, closeness, 

betweenness, and eigenvector have been very useful in the road networks to identify traffic 

congestion (Jayaweera et al. 2017). These measures have been applied in analyzing urban 

road transport in study done by Wang et al., (2017). Another earlier study that used 

centrality measure is by Grunspan et al., (2014) where they studied the interaction among 

students of a class from a student network. They did a social network analysis and 

concluded that there was improved character, knowledge, and relationship among 

students. The degree and betweenness centrality measures were used in analysis of 

relationship among students and the authors found out that there was a relationship 

between interaction network student’s performance. Centrality measures plays a crucial 

role in network analysis however there should be proper selection of the measure based 

on the application (Das et al., 2018). 

2.8.1.7 Distance-based methods 

Distance based feature selection is a representation of the distance between features and 

the targeted feature set within a metric space (Tan et al., 2020). Distance-based feature 

selection FS is classified into two categories which are based on the output which is 

generated. These categories are either as a subset of features or a ranked list of partial or 

complete features. (Bolón-Canedo, et al., 2016). Methods that provides rated list of 

features are also referred to as rankers and they are the most used subcategory in filtering 

methods. Rankers rely on a given evaluation measure like information dependency or 

distance, that enable measuring and sorting of features based on their predictive 

importance. Evaluation of features is done independently on every feature in these 

measures. The most common distance measures that are used in feature selection are 

Euclidean distance to the complex distances such as Minkowski distance (García, et al., 

2015).  
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Liu & Zhang, (2016) developed three unsupervised feature selection methods that were 

based on the effective distance. These features methods were effective distance-based 

Laplacian Score and two effective distance-based Sparsity Scores 1 and 2. They 

demonstrated using experimental results that their new distance-based feature selection 

methods could achieve much better performance as compared with conventional methods 

that are developed using Euclidean distance. The authors recommended the use of the 

proposed approaches in dimensionality reduction and in graph-based learning algorithms 

(Liu & Zhang, 2016). A fault diagnosis scheme that was derived from envelope analysis 

based on the Euclidean distance as suggested by Li et al., (2014). This algorithm could 

detect faults using an intelligent system even with bearings being under different default 

levels. (Li et al., 2014). Another study on nonlinear feature building technique that was 

derived from Euclidean distance was presented by (Feng et al., 2017) that could point out 

nonlinear features from difference filters (DIFs). In their study, ED was applied between 

DIFs, however feature reduction as well as feature ranking based on Euclidean distance 

to improve on performance of classifiers were unknown. 

 

Patel & Upadhyay, (2020) presented another feature ordering and selection approach 

which was called Feature Ranking and Subset Selection based on Euclidean distance 

(FRSSED). They considered two bearing databases for verification of how robust the 

approach was. Authors used feature extraction on the selected IMF using several statistical 

measures. This was followed by introduction of the extracted features into the proposed 

FRSSED algorithm for ordering. Ordered features were then classified using different 

classifier and the resulting accuracy as well as the computation time compared. The 

authors reported improvement in accuracy and computation time for the proposed 

approach with reduced feature subset (Patel & Upadhyay, 2020).  
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Shahee & Ananthakumar, (2020) proposed a feature selection approach that was based on 

distance. Known as ED-Relief that was meant to use distance measure to handle 

simultaneous occurrences of within and between class imbalances. They tested the method 

using both simulated and real-life datasets and compared the results with the well-known 

distance based such as effective distance-based Laplacian Score (EDLS), and two EDSS-

1 and EDSS-2. The authors claimed enhanced performance based on accuracy metrics, 

revealing that ED-Relief performs better or comparable to other accuracy measures. As a 

result, the ED-Relief distance measure is highly good in incorporating simultaneous 

imbalance for identifying features that better distinguish across the classes (Shahee & 

Ananthakumar, 2020) 

 

Fu et al., (2020) proposed an algorithm known as sssHD that was based on the Hellinger 

distance (HD) combined with sparse regularization techniques. The authors reported the 

sssHD generality since it could combine different re-balance samplings like under-

sampling and over-sampling, could change the sparse regularization structure based on 

the characteristic of the predictor matrix, like LASSO (Yuan et al., 2017). If the predictors 

could possess some form of group structure and lastly, if necessary, SVM classifier used 

in sssHD could be replaced such as discriminant analysis, Naïve Bayes, random forest etc. 

(Fu et al., 2020). In disease genes prediction, distance-based were the first to be developed. 

The length of the shortest path (distance) in networks was used in these ways to see if a 

healthy gene was linked to a disease gene. Unknown genes which have not been given a 

function can also be predicted to be associated with diseased genes as long as the distance 

is smaller than the set threshold. 

Banka & Dara, (2015) introduced a Hamming distance as a proximity measure used to 

update the velocity of particle(s) in binary PSO framework for selecting only the important 

subset of feature. They did their experiment on three colon cancer datasets and evaluation 

was done using classification accuracy. This revealed the importance of proposer selection 

of the preprocessing method and concluded that HDBPSO combined with Hamming 
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distance as a proximity measure can find relevant features from gene expression data with 

better performance (Banka & Dara, 2015). Cheng et al., (2018) constructed a network to 

determine the relationship between a drug and a given disease. The expected distance 

between group of proteins were calculated in a network and z-score was calculated by 

conversion of non-Euclidean distance to a normalized distance. Four network-predicted 

associations were used to test relationship using large healthcare databases with more than 

220 million patients. In conclusion, the authors demonstrated that drug repurposing can 

be facilitated by a unique combination of protein-protein interaction network closeness 

and large-scale patient-level longitudinal data supplemented by mechanistic in vitro 

research (Cheng et al., 2018). In Banuchitra, (2021), the Gaussian kernel was used to 

construct similarity scores using a distance-based approach, and unknown genes with 

greater similarity scores were expected to be disease-associated. Therefore, distance-

related approaches are still valuable, and they have been used in extracting features in 

conjunction with many machines learning-based methods (Luo et al., 2021). 

 

2.8.1.8 Random walk-based methods 

The significance of two neighboring nodes in a network is captured by proximity based 

on node-to-node, and it is an important study subject in data mining (Shin et al., 2021) 

Due to its capacity to evaluate both the local and global structure of the graph, Random 

Walk with Restart (RWR) is an extensively used proximity metric (Lin et al., 2020). In a 

network, the Random Walk algorithm imitates a walker by travelling from a current node 

to a randomly chosen next node or by walking back to the source nodes with a back-

probability of (0,1). (Le & Pham, 2017).Random walk with restart is defined as 𝐺(𝑉, 𝐸) 

for weighted graph which has a set of nodes 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑁} and a set of links 𝐸 =

{(𝑣𝑖, 𝑣𝑗)| 𝑣𝑖, 𝑣𝑗 ∈ 𝑉},a set of source/seed nodes S⊆ 𝑉 and a 𝑁 ×𝑁 are regarded as 

adjacency matrix W of link weights. RWR is described as follows: 

𝑝𝑡+1 = (1 − 𝛾)𝑊′𝑝𝑡 + 𝛾𝑝0         (2.26) 
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Where 𝑝𝑡is a 𝑁 × 1 is the probability vector of |𝑉| nodes at a time in step t of with the 

𝑖𝑡ℎ element representing the probability that the walker is at node 𝑣𝑖 ∈ 𝑉 and 𝑝0 is the 

𝑁 × 1  is the initial probability vector which is defined as: 

𝑃0 {
1

|𝑠|
        𝑖𝑓 𝑣𝑖 ∈ 𝑆 

0        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

        (2.27) 

𝑊′ denotes the transition of the matrix of the graph (𝑖, 𝑗)  being element of 𝑊′. The 

probability that the walker at 𝑣𝑖  moves to 𝑣𝑗  among 𝑉\{𝑣𝑖}, Formally, (𝑊)𝑖𝑗
′ is given as: 

𝑊𝑖𝑗
′ =

(𝑊)𝑖𝑗

∑ (𝑊)𝑖𝑗𝑗
           (2.28) 

Random walk with restart has been applied in several areas of research such as image 

retrieval (Yang et al., 2020). The authors provided a random walk model with nodes 

denoting images and the weights of edges representing image similarities. The images that 

were labelled as relevant and non-relevant by the users were considered as seed nodes that 

solved the random walker problem as well as the ranking score at every unlabeled image. 

The probability that a random walker would start from an image and reach a relevant seed 

without encountering a non-relevant image on the graph was calculated by considering 

characteristic of and spatial relations of images image when a random walk was 

conducted. To realize this, feature weighting using Laplacian Score together with K-

nearest neighbor (KNN) that connects to the random walk were considered (Wang et al., 

2019). Another study that used random walk with restart was by Wu et al., (2019) who 

developed a random walk-based image registration technique that could examine the 

solution search space with efficiency. Their method employed available information of 

probabilistic solution therefore reducing computation cost (Wu et al., 2019). Chang & 

Wang, (2018) presented a novel framework that was based on the sub-Markov random 

walk for interactive image segmentation. The new auxiliary nodes made their framework 

more flexible that could solve a problem associated with thin and elongated parts (Chang 

& Wang, 2018). Earlier study by Yildirim & Coscia, (2014) defined a new similarity 
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measure that utilized a practical procedure in extraction of unipartite graphs without 

having a priori assumptions on underlying distributions. This measure captured 

relationship among objects using a likelihood that a random walker could make a 

sequential pass through the of the bipartite graph (Yildirim & Coscia, 2014).    

Another study by Xia et al., (2016) proposed a method known as CARE that incorporated 

the relationship between authors historical preferences for scientific article 

recommendation. The assumption here was that some researchers tend to search for 

articles that have been published by the same. Therefore, authors construct a graph based 

on the relationship of co-authors’ information employing a random walk with restart that 

generates a possible recommendation list (Xia et al., 2016). Random Walk-based 

approaches have been used in research to predict disease genes prediction. Random walk-

based algorithms iteratively transmit prior knowledge from each node to surrounding 

nodes for a predetermined number of steps or until convergence. The final value of a node 

is basically influenced by its direct neighbor’s values, which in turn affects their neighbors 

(Luo et al., 2021). In earlier study by Köhle et al., 2008, they proposed the first RWR 

algorithm for diseased gene. Jiang et al., (2015) applied RWR to three disease similarity 

networks and nine gene similarity networks, then combined all the findings in prioritizing 

disease genes using a weighted Fisher's technique (Jiang, 2015). Valdeolivas et al., (2019) 

constructed heterogeneous networks with the same nodes connected with each other 

allowing the transition of the random walk between different networks, which authors 

reported improvement in accuracy of the prediction (Valdeolivas et al.,2019). Lei & Bian, 

(2020) proposed a method called RWRKNN, which integrated RWR and k-nearest 

neighbors (KNN) in predicting possible associations between circRNAs and diseases. The 

proposed algorithm used weighting features together with global network topology 

information to classify features using KNN which provided prediction scores of each 

paired circRNA-disease (Lei & Bian, 2020).  

Vural et al., (2019) developed a computation model that used similarity matrices for 

circRNA and disease respectively through application of Gaussian followed by random 

walk with restart algorithm that was applied on the combined matrices (Vural et al., 2019). 
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Wang et al., (2019) provided a disease prediction model that was based on internal 

inclined random walk with restart (IIRWR) to infer potential lncRNA-disease 

associations. The approach introduced a concept of clique that made the process of the 

random walk to have an internal tendency. Wang et al., (2019) and Li et al., (2017) used 

RWR algorithm to search for novel genes by use of known genes as seed nodes. To 

enhance the reliability of the model, screening, permutations test and interaction test were 

used to select important genes that were obtained from RWR algorithm (Li et al., 2017).  

2.9 Graph clustering techniques  

Cluster analysis involves gathering similar data points in the same group such that all data 

points in one group have similar traits to each other than the data points in other groups. 

This technique is an unsupervised used mostly in exploratory data analysis. In 

classification and regression models’ data sets with tagged class labels are used unlike 

clustering where the data sets have no class labels are provided the concept of similarity 

degree is the key to cluster analysis because clustering results depends on the similarity 

measure adopted. In this section we review some of the most famous and most applied 

algorithms in analysis of biological data.  

2.9.1 Partitioning clustering  

Partitioning clustering works by obtaining a section of data in which every point belongs 

to a unique cluster. A K-Means Clustering Algorithm is an example of the best well-

known algorithm for K-Means clustering, 𝑋 =  {𝑥1,… , 𝑥𝑛} is defined a set of 𝑁 points in 

a multi-dimensional space and 𝐾 is the integer value, then the algorithm finds a set of 

𝐾 vectors 𝜇𝑘 that minimize the Within Cluster Sum of Squares (WCSS):  

𝑊𝐶𝑆𝑆 = 𝛴𝑛=1𝑘𝛴𝑥𝑖∈𝐶ℎ ⅆ(𝑥𝑖,𝜇ℎ)        (2.29) 

where 𝐶ℎ is the ℎ -th cluster and 𝜇ℎ is the corresponding centroid. K-means can solve most 

of the practical problems whose results are clusters with hyper spherical shape, and it also 

runs in approximately linear form. Its main drawback is the possibility of being easily 



64 

trapped in local minima at the phase of optimization process. It is also sensitive when 

starting initialization of the centroids (Serra et al., 2018). A random seed is usually set 

before its execution to ensure reproducibility of the experiments. K-means is also sensitive 

to noise since they use the centroids means. Another challenge associated with k-means 

is that the number of clusters required are fixed even if it’s unknown in the data it must be 

estimated using cluster analysis. An algorithm that uses partitions around medoids using 

the medians that are centrally located object within the cluster as medoids were introduced 

to address the issue of the outlier effects on the cluster prototypes (Xu & Wunsch, 2009). 

The improved k-medoids has been used in areas of study such as calculating the optimal 

medoids among the sensor nodes (Wang et al., 2018), Items rating probability distribution 

(Deng et al., 2019), epilepsy signal detection (Zhang et al., 2021) and clustering of 

microarray data (Bustamam et al., 2018). 

2.9.2 Hierarchical clustering  

Hierarchical clustering algorithms have been the most preferred clustering methods that 

has been commonly used in identification of bioinformatics structures (Reddy & 

Vinzamuri, 2018). Their resulting hierarchical tree known as dendrogram that represents 

a nested set of partitions is produced. This dendrogram is usually cut at a particular level 

to produce a partition of 𝐾 disjoint clusters. Squared Euclidean distance between cluster 

centroids is used to calculate the centroid linkage. Data can be represented in a Euclidean 

space, according to the assumption. Hierarchical clustering has been frequently used in air 

pollution analysis (Govender & Sivakumar, 2020), multihop Internet of vehicles 

communication (Dutta et al., 2020) and in bioinformatics (Xiong et al., 2018; Gobin et 

al., 2019; Yousef et al., 2021; Waylen et al., 2020; Teng et al., 2022). 

2.9.3 Density-based clustering 

Clusters in this sort of clustering technique are assumed to be dense groups of points in 

the data space separated by lesser density regions. The DBSCAN algorithm initially 

proposed by Ester et al., in (1996) is the most well-known clustering algorithm based on 
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density. A density-reachability model uses two parameters to connect sites within a certain 

distance: (𝜖) distance threshold and minPts (minimum number of items in a cluster). The 

algorithm starts by identifying the initial neighbors of every point with a distance less than 

minPts, then moves on to identifying core points with more than minPts neighbors. It then 

ignores the noncore points and looks for the core points' related components on the 

neighbor graph. If the cluster is a - neighbor, each noncore point is finally assigned to it; 

otherwise, the point is considered noise. DBSCAN does not require a set number of 

clusters to be returned because it can detect clusters of various shapes and is resistant to 

outliers. This clustering approach has been applied in the integration of environmental 

data for desertification (Peng et al., 2021), picture clustering (Ren et al., 2020), and 

bioinformatics (Thrun & Ultsch, 2021; Mandal & Sarmah, 2018; Mallik & Zhao, 2020). 

2.9.4 Spectral clustering  

Spectral clustering techniques use the similarity matrix's eigenvalues and eigenvectors to 

conduct dimensionality reduction before clustering items in a lower-dimensional space. 

When creating the affinity matrix, most spectral clustering algorithms consider sample 

correlation. The clustering problem is recast as a problem of finding the optimum graph 

partitioning since the affinity matrix may be thought of as a graph. This modification can 

significantly reduce clustering complexity and, as a result, play an important role in 

spectrum clustering. When computing the similarity between two samples, sample self-

representation assumes that each sample is represented by other samples on the same 

subspace (Hu et al., 2017; Zhu et al., 2018). Spectral clustering has been used in a variety 

of applications, including social network clustering (Li et al., 2018), image processing 

(Chen et al., 2017; Cribben & Yu, 2017), and bioinformatics (Hobbs et al., 2017). 

2.9.5 Affinity propagation 

Message parsing idea is used between the data points in the affinity propagation clustering 

technique. The most representative items are found, and clusters are constructed around 

them. Its input is a pairwise similarity between data points. It works by treating several 
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data points as candidate exemplars and sending signals back and forth between them until 

the best exemplars and clusters emerge. There are two sorts of messages used in the 

message passing procedure. The evidence gathered on how suitable point 𝑘 is to serve as 

an instance of point 𝐼 is conveyed from data point I to candidate instance point k, 

considering other possible examples of point 𝑖. The availability message sent from 

candidate example point 𝑘 to point 𝐼 representing the evidence obtained on how 

appropriate it would be for point 𝐼 to choose point k as its example, given support from 

other points for which point 𝑘 may serve as an exemplar (Serra et al., 2018). The affinity 

propagation method does not require several clusters to be chosen, and it generates more 

clusters with unequal cluster sizes than other clustering methods. Even though the number 

of groups isn't required as an input, affinity propagation necessitates the establishment of 

a parameter (preferences) for each point: points with higher preference values are more 

likely to be chosen as samples. Unless otherwise stated, the total number of clusters is 

usually determined by the input preference values, which are initially set to the median of 

the proximities entered. This strategy has been used to solve difficulties in computational 

biology (Fonseca et al., 2017; Busch et al., 2020). 

2.9.6 Projective clustering 

Projective clustering is used to locate subsets of input elements in subspaces of the original 

space that are strongly linked. The purpose is to locate those subsets of input components 

that are significantly associated in subspaces of the original space using high-dimensional 

data (Yu et al., 2017). A subset of correlated points and their corresponding subspace is 

referred to as a projective group. When projected into the related subspace, all the points 

in the group are near together, yet they can be scattered over a full-dimensional space. 

Projective clustering methods are very effective for extracting or indexing data sets where 

full-dimensional clustering is insufficient (as is the case for most high-dimensional data 

sets). Furthermore, unlike global dimensionality reduction, these techniques produce 

projective groups that exist in distinct subspaces, making them more general. A set of 
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projective clustering methods were used in clustering cancer gene expression datasets to 

obtain a more stable and robust solutions to noise (Yu et al., 2017). 

2.10 Graph Similarity measures 

A similarity score between gene pairs is calculated using a variety of methods, each with 

its own set of advantages and disadvantages. In terms of detecting gene correlations and 

performance on huge data sets, simple Pearson or Spearman correlation is frequently 

utilized and outperforms more complicated approaches (Dutta et al., 2018). Although 

Pearson requires a linear correlation, normally distributed numbers, and is sensitive to 

outliers, it is the most widely used correlation measure. The rank correlation of Spearman 

is more robust, but it is also less powerful. Mutual Information (MI) is another commonly 

used metric for describing non-linear gene relationships (Liu et al., 2021).  

2.10.1 Pearson's correlation coefficient (PCC) 

Pearson's correlation is a bivariate normal distribution-based measure of the linear 

relationship between two continuous random variables. Data is said to be near bivariate 

normal distribution only when the sample size is large enough. Regardless of whether the 

joint distribution of two random items is normal or not, the Pearson correlation coefficient 

is extremely instructive regarding the degree of linear dependency between them (Hou et 

al., 2022). If the data are normal, the Pearson correlation coefficient provides a precise 

and full representation of the relationship, and it may have considerable advantages for 

continuous data with no clear outliers. (Ovens et al., 2021). This attribute makes is most 

employed metric for inferring the co-expression relationships in gene expression network. 

Pearson’s correlation coefficient, which for a pair of genes 𝑔𝑖 and 𝑔𝑗 can be estimated 

from the expression. The Pearson correlation coefficient is defined as  

𝑅(𝑖) =
cov(𝑥𝑖,𝑌)

√𝑣𝑎𝑟(𝑥𝑖)𝑣𝑎𝑟(𝑦)
             (2.30)
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with cov being covariance and var being the variance. The estimate of 𝑟(𝑥𝑖, 𝑥𝑗) is given 

by  

𝑟(𝑥𝑖, 𝑥𝑗)  =
∑ (𝑥𝑘𝑖 ,−�̅�𝑖)

(𝑦𝑘−�̅�)
𝑚

𝑘=1

√∑ (𝑥𝑘𝑖,−𝑥𝑖̅̅ ̅)
2
𝛴𝑘=1
𝑚 (𝑦𝑘−�̅�)2

𝑚

𝑘=1

      (2.31) 

where 𝑚 is the number of samples 𝑥𝑖 is the vector holding all 𝑚 expression values of gene 

𝑔𝑖, 𝑥𝑘𝑖 denotes the expression of gene 𝑔𝑖 in sample 𝑠 and �̅�𝑖 is the mean expression of gene 

𝑔𝑖 across all samples. However, similarity scores can also be derived through other 

correlation measures such as Spearman’s rank correlation coefficient or other gene 

association metrics (Shekhovtsov & Sałabun, 2020).). After the initial computation of 

association values, it is then possible to create a sparse network by choosing a ‘hard 

threshold (Feng et al., 2020, Zhang & Horvath, 2005) and setting edges between any pair 

of genes whose correlation value exceeds this threshold, or to generate a weighted network 

by the use of ‘soft thresholding’, e.g., in the form of raising the absolute correlation value 

to a power 𝛽.  

Mu et al., (2018) in their study, tried to confirm the best splitting attributes and splitting 

points in the evolution of decision trees, PCC was used as a new measure of feature 

quality. The suggested solution parallelizes every component of the decision tree learning 

process, which comprises primarily of a parallel PCC-based splitting rule and a parallel 

splitting data strategy, using Map-Reduce technology. The experiment was carried out on 

a variety of UCI benchmark data sets with various scales. Based on results from 17 data 

sets, the authors reported that their approach outperforms numerous classic decision tree 

classifiers, such as BFT, C4.5, LAD, SC, and NBT in terms of computational resources 

required and classification accuracy. Other techniques used in co-expression measure are: 
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2.10.2 Mutual Information 

Mutual information 𝐼(𝑋; 𝑌) is the degree of uncertainty in 𝑋 due to knowledge of 𝑌 in 

probability and information theory and it is defined as below:  

 𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦)𝑙𝑜𝑔
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑥,𝑦         (2.32) 

where 𝑝(𝑥, 𝑦) is the joint probability that shows distribution functions of X and Y, and 

𝑝(𝑥)  and 𝑝(𝑦)  being the marginal probability distribution functions for 𝑋 and 𝑌. 

Therefore, we can as well say 𝐼(𝑋; 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) where 𝐻(𝑋)is the marginal 

entropy, 𝐻(𝑋|𝑌) is the conditional entropy, and 𝐻(𝑋; 𝑌)is the joint entropy of X and Y. 

If 𝐻(𝑋)represents the measure of uncertainty about a random variable, then 𝐻(𝑋|𝑌) 

measures what 𝑌 does not say about 𝑋. This is the degree of uncertainty in 𝑋 after knowing 

𝑌, confirming the intuitive sense of mutual information as the amount of information 

provided by knowing one variable about the other. A mutual information measure is 

employed in our method to quantify the information gain between features and between 

feature and class characteristics (Hughes et al., 2020). 

In gene expression data analysis, this method assigns a significant value (p-value) to each 

MI value based on permutation analysis as a function of sample size (Lall et al., 2021). A 

technique that uses MI is mRMR, a multivariate filter that selects features with the highest 

relevance to the target class while also being minimally redundant, i.e., selecting 

characteristics that are maximally unlike each other. Instead of using MI to assess 

relevance and irrelevance of features it is easier to estimate from data since it has several 

desirable qualities of a measure of dependency, such as being bounded. If two random 

variables have a monotonic connection, it achieves its maximum selection. The addition 

of a free parameter (𝜆) that determines the relative importance given to relevance and 

redundancy is one of its contributions. It should be noted that some of the offered filter 

approaches are univariate in terms of computing cost. When compared to other feature 

selection procedures, this means that each feature is analyzed independently, ignoring 
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feature relationships, which could lead to poor classification results (Bolón-Canedo, 

2014). 

2.10.3 Spearman’s rank correlation coefficient 

This is a non-parametric estimator approach does not rely on making assumptions 

regarding distributions of X and Y, and makes an estimation of monotonic association 

between the variables and is computed as: 

𝑠𝐶𝑜𝑟(𝑋, 𝑌) = 1 −
6𝛴𝑖=1

𝑚 ⅆ𝑖
2

𝑚(𝑚2−1)
       (2.33) 

where, di  represents the difference between the ranks of xi and yi. 

The effectiveness of feature reduction and classification accuracy are linked to the 

relationships that exist between attributes and classes. This link is comparable in terms of 

properties. A correlation coefficient is therefore a measure that is used to calculate the 

relationship between qualities in general. Bivariate normal distribution, chi-square test for 

independence, rank correlation coefficient, and so on are some of the most common 

correlation coefficient measures. Spearman's rank correlation coefficient is a 

nonparametric measure of rank correlation that is statistical dependence between the 

ranking of two variables. It determines how effectively a relationship between two 

variables expressed by a monotonic function is. Although not widely used in coexpression 

networks, this measure has been applied in microarray classification (Xu et al., 2018) and 

gene network (Quintana et al., 2019; Hou et al., 2019)  

Multiple repetitions of experiments, especially in high-throughput data generation are 

performed on the same set of samples to investigate different aspects of the same 

phenomena such as gene expression, miRNA expression, etc. Multiple perspectives can 

be used to provide a better understanding of the fundamental principles of complex 

systems. Many Multiview clustering techniques have been devised to gain a better 

understanding of these complicated processes by integrating diverse viewpoints of the 
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data. Matrix factorization-based approaches for integrating clustering solutions acquired 

for each single view are some examples (Zong et al., 2017). Other methods rely on tweaks 

to the standard k-means clustering technique. Other methods focus on the integrative 

analysis of networks constructed on each view, employing iterative optimization analysis 

based on local neighborhood, and finally applying spectral clustering to the final 

integrated matrix (Wang et al., 2014). 

2.11 Data discretization 

Discretization is a technique for reducing dimensionality that has been employed in big 

data analytics. This method converts continuous data into discrete data, which may then 

be utilized to develop machine learning models. Despite its origins in computer science 

and statistics, this technique has been embraced as a preprocessing step in biological data 

analysis (Gallo et al., 2016). Discretization facilitates the use of methods for the inference 

of biological knowledge that require discrete data as an input by mapping real data into a 

generally limited number of finite values (Alagukumar & Lawrance, 2015). supervised 

and unsupervised data discretization techniques are similarly divided into two types. The 

unsupervised discretization works without relying on any class label information provided 

by the user to compute the discrete states of data whereas supervised methods put into 

consideration prior knowledge of data before performing the discretization (Gallo et al., 

2016). 

This approach is widely used as a preprocessing step in biological data analysis. This is 

because the RNAseq data is continuous and had to be converted to discrete. By mapping 

real data into a small number of finite values, the purpose of gene expression data (GED) 

discretization is to make it possible to apply methods for biological knowledge inference 

that require discrete data as input. The biological problems that discretizing the GED can 

solve are analogous to those that can be solved in the continuous domain. The main 

distinction is in the ultimate modeling of acquired knowledge, where discrete states 

stimulate qualitative model inference whereas continuous values allow quantitative model 

inference (Misra & Ray, 2017). When compared to other methods that use continuous 
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values, the learning process using discrete data is more efficient and effective because it 

requires a less amount of data (Hu et al., 2018). Furthermore, data reduction and simplicity 

speed up the learning process, resulting in more compact and shorter outcomes. 

Discretization approaches in GED can be divided into two groups which are unsupervised 

and supervised discretization (Anguita-Ruiz et al., 2020). 

2.11.1 Unsupervised discretization  

In unsupervised discretization, no class label information is used in the computation of the 

discrete states of the genes that need to be provided by the user. Only GED is used to 

calculate the discrete values. Anguita-Ruiz et al., (2020) classified these techniques based 

on as either supervised or unsupervised. The first is 'discretization utilizing absolute 

values,' which may be used to any GED because it directly discretizes absolute gene 

expression values using several methodologies. The second method is called 

'discretization utilizing expression variations between time points,' and it only works with 

time series expression data, computing variations between each pair of consecutive time 

points (Gallo et al., 2015). 

2.11.1.1 Discretization based on metrics 

The metrics-based approaches compute the cut points 𝑃 for the gene 𝑔 𝐼 in A’ so as to 

determine those corresponding discrete state using a measure. These approaches follow a 

basic concept given in Equation 2.34 where the goal is to discretize the matrix A’ with 

discretization level of two values (0,1). 

𝑎𝑖𝑗 {
1      𝑖𝑓 𝑎𝑖𝑗

′ ≥ 𝛿 

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
         (2.34) 

As shown in equation 2.34, binary matrix is made up of two symbols: one for 'activation' 

and one for 'inhibition' (for example, 1 and 0 as in Equation above). The most 

straightforward method is to define as the average expression value of a given data scope. 
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2.11.1.2 Discretization based on ranking 

This method works by sorting all the expression values on a list 𝐿 in decreasing order. The 

first 𝑥% percent of 𝐿values are assigned 1, while the remaining values are assigned value 

0. This is a basic method who’s top percent  % 𝑋 is the name given to this method. 

2.11.1.3 Discretization based on clustering 

Each value 𝑎’𝑖𝑗 of the GED 𝐴′ is treated as an element of a single-dimensional space in 

this manner. The S elements of 𝛺 that correspond to a certain 'data scope' are then 

subjected to a clustering procedure. A gene profile, a column profile, or a matrix profile 

re used to get value of  groupings where the values in each group are allocated to the same 

discrete state. Groups are created by maximizing similarity between components in each 

cluster while limiting similarity between items in different clusters. Within-Cluster Sum 

of Squares (WCSS ) is a standard quality metric for clusters, which is defined as follows 

for a given discretization scheme D: 

𝑊𝐶𝑆𝑆(𝐷) = ∑ |𝑎’𝑖𝑗 − 𝜇0|
2
+ ∑  ∑ |𝑎’𝑖𝑗 − 𝜇𝑟| 

2

𝑎’𝑖𝑗∈(𝑝𝑟,𝑝𝑟−1)
𝑘−1
𝑟=1

 
𝑎’𝑖𝑗∈[𝑝0,𝑝1]

  (2.35) 

Where 𝝁𝒓 is the mean of the 𝒂’𝒊𝒋 ∈ (𝒑𝒓, 𝒑𝒓−𝟏)  

WCSS is calculated by adding the squared Euclidean distance between items within a 

cluster to the cluster's mean, with lower values indicating greater cluster element 

similarity. 

2.11.2 Supervised discretization of gene expression data (GED) 

Supervised approaches are rarely used in discretization of RNASeq data since 

unsupervised approaches have been devised for dealing with GED discretization. 

However, some approaches employ supervised algorithms and, in general, take prior 

biological knowledge into account when completing the discretization. 
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Supervised discretization approach. 

Supervised” discretization methods take the class into account when setting discretization 

boundaries and works as follows:  

Given a GED matrix 𝐴′ with 𝑁 genes and 𝑀 conditions, a set of classes 𝛤, and a matrix 

𝐶 (with the same dimensionality as 𝐴′), set of classes are created. 𝐴′ and 𝐶 are the inputs 

to a supervised discretization technique, where 𝐶 converts each 𝑎′𝑖𝑗  of 𝐴′ into a target 

class label 𝑐 ∈ 𝛤. A supervised strategy will aim to find a discretized matrix 𝐴 that best 

matches the continuous expression values of 𝐴′ with the target class label information of 

𝐶. The number of classes will determine the level of discretization in this way. A k-means 

clustering algorithm was employed by Liu et al., (2021) to discretize continuous data, and 

the apriori algorithm was used to do association analysis. This discretization method 

enables obtaining of strong association rule that has been validated, as well as the strong 

association rule's association degree and value interval. Results also reveal that the SAR's 

association connection and association degree are directly related to the value interval of 

characteristics, rather than being fully unaffected (Liu et al., 2021).  

Elhilbawi et al., (2021) studied the importance of discretization as a preprocessing step 

that aids classification performance when compared to continuous characteristics. For the 

challenge of forecasting Intensive Care Unit (ICU) mortality, the authors investigated the 

effectiveness of numerous parametric and non-parametric discretization methods in 

combination with several machine learning classifiers. The importance of discretizing the 

input qualities in this challenge is demonstrated by their findings. The classification 

accuracy and F1 score for discretized data were 89.19 percent and 0.38, respectively, 

whereas the classification accuracy and F1 score for continuous attributes were 86.19 

percent and 0.08. These findings show that discretizing continuous attributes before using 

machine learning models can improve performance dramatically (Elhilbawi et al., 2021). 

Sawangarreerak & Thanathamathee (2021) used discretization to partition the data range. 

The best method for discretizing was to use equal-width bins with five bins. To uncover 
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linked patterns, these ranges were combined with association rules and FP-Growth. They 

discovered trends that pointed to symptoms of bogus financial items, which financial 

statement users should pay attention to (Sawangarreerak & Thanathamathee, 2021). 

Miswan et al., (2021) offered a framework that includes data management, such as data 

discretization, binary translation, and data balancing before moving to rule mining using 

ARM. They used supervised rule learning settings, such as readmission kinds and 

fundamental demographic variables, to extend ARM's medical application in hospital 

readmission of heart failure disorder. In terms of theoretical time complexity of the total 

processing framework, the processing stage spends the greatest time in relation to the 

magnitude of a dataset. When employing the Apriori technique from the 'arules' package, 

the rule mining extraction process is easier, and the difficulty is dependent on the number 

of input variables in the dataset (Miswan et al., 2021). 

Sari et al., 2021 conducted a comparison experiment on three discretization methods: 

equal-width, equal-frequency, and K-means. The authors showed that the maximum level 

of accuracy was attained when the K-means algorithm was used to classify three 

continuous variables using the Bayesian networks model (Sari et al., 2021). Bat-KMeans 

technique was introduced by Mohamed & Samsudin (2021) as a feature selection 

approach for finding the best feature from an optimized discrete dataset in order to reduce 

data dimension. Their experiment compares the classification effectiveness of 

discretization and feature selection to continuous datasets without feature selection, 

discrete datasets without feature selection, and continuous datasets without discretization 

and feature selection using the k-Nearest Neighbor approach. Bat is also shown to be 

useful as a feature selection and discretization approach. The experiments employed many 

benchmark datasets from the UCI machine learning repository. Findings show that Bat-

KMeans optimized discretization and Bat-optimized feature selection increase 

classification accuracy (Mohamed & Samsudin, 2021). 

Dhalmahapatra et al., (2020) used a fuzzy discretization strategy, t-SNE technique, and 

fuzzy c-means clustering to improve the standard multiple correspondence analysis 

(MCA). This fuzzy discretization approach converts them to categorical variables o make 
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continuous variables analyzable with MCA, An R2-profile is used to get the most 

concealed dimensions that represent the most category information. t-SNE technique is 

then used to show the significant categorical correlations by representing the high-

dimensional categorical information in a 2D map. The categories are then divided into 

various clusters using fuzzy c-means clustering (FCM) based on their membership degree. 

An ideal number of clusters is calculated using cluster validity indices. FCM findings were 

compared to those produced using the K-means (KM) algorithm and unsupervised fuzzy 

c-means clustering (UPFCM). On the basis of solution quality, FCM surpasses KM and 

UPFCM (Dhalmahapatra et al.,2020). 

Fikri et al., (2020) three simulations were run in their investigation, each with a distinct 

fuzzy discretization output. There are three types of fuzzy discretization outputs: 1) no 

fuzzy discretization, 2) fully fuzzy discretization, and 3) partial fuzzy discretization. The 

classification accuracy of the Random Forest classifier was observed, recorded, and 

assessed for all simulation versions. Addition of fuzzy discretization to random forest 

classification algorithms enhanced classification accuracy. The use of fuzzy discrete 

intervals on all attribute values, on the other hand, can result in a loss of classification 

accuracy for the random forest classification algorithm due to "over-discretization." 

Applying fuzzy discretization to only continuous variables and keeping the other attributes 

with their original discrete values can increase random forest classification accuracy when 

compared to translating all attributes into discrete fuzzy interval values. The authors 

suggested only using fuzzy on discretized attributes that are recognized and picked from 

continuous attribute values to boost classification performance (Fikri et al., 2020). 

Hranisavljevic et al. (2020) developed DENTA (Deep Network Timed Automaton), a 

unique machine learning discretization strategy that tackles the issues associated with 

discretization algorithm by constructing a deterministic timed automaton from the original 

mixed data. First, it uses a deep network of stacked restricted Boltzmann machines to 

extract new features from continuous input in a hierarchical manner (RBMs). They 

showed that high-level RBM abstractions may be used to automatically detect significant 

discrete events in continuous system behavior. Finally, as a discrete representation of 
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overall system behavior, a timed automaton is generated, allowing for a joint timing 

examination of the entire system. The model is verified on a synthetic and real-world 

dataset using anomaly detection, with the results proving the approach's clear advantages 

for a specific class of systems (Hranisavljevic et al. 2020). 

2.12 Machine learning  

Machine Learning (ML) is the automated computational method with capability of 

discovering hidden as well as non-obvious patterns in a dataset using statistical methods 

implemented (Xu, 2019). Machine learning (ML)-based methods have been used in 

addressing the challenges associated with high dimensional big data from life sciences. 

ML have facilitated recognition, classification, and prediction of big biological data 

patterns (Li & Chen, 2014). Machine learning methods are categorized based on the way 

they learn from the data. These approaches are categorized as either supervised or 

unsupervised. Supervised learning works by classifying objects in a pool using known 

features or attributes. Supervised algorithms first learn the pattern from a subset of training 

data and then use the acquired knowledge to classify the remaining test data. In 

unsupervised learning, patterns are defined using a subset of unknown i.e., the algorithms 

start by defining the objects in a pool of data with unknown features or attributes and then 

using the acquired knowledge, they perform classification for the remaining data 

(Mahmud et al., 2021).  

Most machine learning algorithms for classification were developed with an assumption 

that there is an equal number of samples. Any imbalance in the classes leads to difficulties 

in predictive modeling (Bader-El-Den et al., 2018). As a result, poor prediction accuracy 

is reported especially for the minority class (Elsakaan & Amroun, 2021). A problem arises 

since the minority class is usually more important, making the situation more susceptible 

to classification of majority by minority class. This situation makes machine learning 

models to become “lazy” in learning on how to discriminate among classes. In the end, 

the ML models favor the majority class, and this leads to synthetic high accuracy (Douzas 

et al., 2018; Sarkar et al., 2020).  
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Approaches towards addressing class imbalance are classified into three categories: data 

level, algorithm, and cost-sensitive approaches. Data driven techniques are more widely 

accepted because they do not rely on any algorithm and are flexible in integrating other 

techniques. Data driven approaches include under-sampling and oversampling (Zhu et al., 

2017) and are more capable of generating a balanced dataset. Oversampling works by 

increasing the minority class instances randomly or by replicating the same data through 

simulation techniques to improve the imbalance ratio. The main strength of this approach 

is that there is no loss of important information from the dataset. This is because the 

original dataset is usually retained although there is an addition of information to the data 

for the purpose of balancing. The major limitation of this approach is an increase in 

execution time because of the increased instances.  In the under-sampling approach, the 

instances from the majority class are usually removed randomly using a defined criterion 

before classification. This approach is very simple but, in most cases, it leads to loss of 

some important information from the data (Kaur & Gosain, 2018). 

2.12.1 Supervised learning  

Supervised learning is defined as a learning process where the system is guided (either 

automatically or by human interaction) and receives feedback about the correctness of its 

performance. In this type of paradigm, the performance measure P allows the system to 

improve its learning process continuously. The classification problem of the function is 

exemplified by supervised learning systems such as spam classifiers, face recognizers on 

images, and medical diagnostic systems for patients, where the training data take the form 

of a collection of pairs (x, y) and the goal is to produce a prediction and y* in response to 

a query x*. The x elements can be simple vectors or more complicated things such as 

texts, photos, DNA sequences, or graphics. Machine learning techniques have been 

applied to make the integration of different proteomic and genomic information easier 

(Gunaratne et al., 2021). 
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2.12.1.1 Support vector machines 

Support vector machines (SVM) is one of the most popular supervised learning algorithms 

that is used in literature. This algorithm is a non-probabilistic binary linear classifier that 

works by assigning unseen samples of data to one of two possible classes using a linear 

decision boundary. SVM learns a mapping based on training samples which maximizes 

the distance between two classes. Ideally, these classes become linearly separable. 

Nevertheless, SVMs can perform non-linear classification by mapping (Huysmans, 2021). 

SVM and kernel methods have been applied in prediction of protein-protein interactions. 

Experimentally determined interactions are analyzed to find patterns that distinguish the 

sequences of interacting protein pairs from non-interacting pairs (Zahiri et al., 2013). 

These predictions are based on protein information such as physicochemical properties of 

the protein, structural information, evolutionary information, domain information etc. For 

example, protein domains can be identified within sequences and matching pairs of 

domains found to be enriched among known interacting proteins pairs can be used in the 

prediction of new interactions (Zahiri et al., 2013).  

Mazumder & Veilumuthu, (2019) proposed a feature selection approach using Joe's 

normalized mutual information on microarray cancer datasets. They compared five 

classifiers and reported an average increase in the prediction accuracy of 5.1% when 

feature selection was done before classification. Ray et al., (2016) used a Microarray 

Leukemia dataset and proposed a three-step approach that involved: data preprocessing 

and normalization, feature selection using mutual information method and classification 

using SVM and regression analysis. They reported an improved computation time and 

efficiency of both classifiers although SVM performed better than logistic regression in 

terms of accuracy. Lokeswari & Jacob (2017) performed classification before and after 

application of feature selection on a Microarray pediatric tumor dataset. They reported 

that application of feature selection before classification improved the accuracy of the 

results on both SVM and logistic regression. However, SVM achieved accuracy of 75%, 

compared to 63% accuracy by logistic regression. Hasanin et al., (2019) used MapReduce 

for feature selection on Protein Structure Prediction dataset followed by SVM, logistic 
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regression, and Naïve Bayes with and without feature selection. Analysis of the 

performance and running time showed that SVM outperformed the other classifiers 

(Hasanin et al., 2019).  

Alghunaim & Al-Baity (2019) used SVM, decision tree, and random forest algorithms to 

analyze gene expression and DNA methylation datasets to predict breast cancer. An 

experiment done using WEKA showed differences in terms of accuracy for both datasets 

where SVM achieved 98.03%, decision tree 95.09 and random forest 96.07 for gene 

expression data. Accuracies on methylation datasets were 98.03 for SVM, 88.23% for 

decision tree and 95.09% for random forest classifiers. This shows that SVM achieved the 

highest accuracy in both datasets. Turgut et al., (2018) used RFE and RLR (Randomized 

Logistic Regression) on cancer dataset described in Matamala et al., (2016) for feature 

selection. They thereafter applied SVM, KNN, MLP, DT, RF, LR, Ada and GBM 

classification models on the selected features. SVM gave an accuracy of 99.23% using 

both RFE and RLR as compared to 98.49% before feature selection. Morovvat & Osareh, 

(2016) used Symmetric Uncertainty (SU) filter methods and then applied CFS, FCBF, 

GSNR, ReliefF and MRMR feature selection to further reduce the number of attributes. 

Thereafter SVM, J48 decision tree and Naïve Bayes were used for classification. SVM 

gave the best results as compared to the other classifiers.  

2.12.1.2 Naïve Bayes Algorithm 

Simple probabilistic classifiers based on the Bayes theorem and strong independence 

assumptions between features are known as NaïveBayes classifiers. NaïveBayes is a 

simple method for creating classifiers, which are models that assign class labels to issue 

situations represented as vectors of feature values, using a limited number of class labels. 

It refers to a group of strategies for training such classifiers that are all based on the same 

premise. Given the class variable, all Naïve  Naïve Bayes classifiers assume that the value 

of one feature is independent of the value of any other feature (Granik & Mesyura, 2017). 

Nagarajan et al., 2019 used three classifiers which were SVM Naïve Bayes and LDA to 

predict the availability salivary matrix metalloproteinase- 8, serum biomarkers. Predictive 
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model using Naïve Bayes Classifier was able to identify progressors with sensitivity of 

~89% (Nagarajan et al., 2019). 

In classifying ageing-related genes based on real data, researchers utilized NaïveBayes 

classifiers as base models, with uncertain features indicating protein-protein interactions. 

The authors reported that their model experimental results which was an ensemble of 

NaïveBayes Classifiers provided a better prediction performance as compared to a single 

NaïveBayes classifiers and also conventional ensembles (de Holanda et al., 2021). 

2.12.1.3 Multilayer perceptron 

Multilayer Perceptron (MLP) belongs to a class of feedforward artificial neural networks, 

which find complex patterns that a human programmer cannot extract by performing 

machine recognition. In their study, Eluri (2021) used Keras modeling on MLP to discover 

important features from a gene expression dataset. After initial training with top returning 

features from training classifiers, MLP retrieves features from the test datasets. Finally, 

MLP is fine-tuned to extract optimal features from gene expression datasets using top 

returned features, specifically GENT2. In terms of accuracy, f-measure, precision, and 

recall, results suggest that MLP extracts features better than other approaches. 

Seo & Cho (2020) suggested a feature selection approach called ‘boosted regression-based 

feature selection’ for the multilayer perceptron (BREG-MLP). BREG-MLP repeats the 

boosted feature selection procedure to obtain the smallest feature subset while maintaining 

outstanding classification performance.. The authors tested the proposed BREG-MLP on 

certain human cancer-related gene expression data sets in order to extract significant 

features, and the findings were that it performed better than single regression-based 

feature selection methods. Rawat et al., (2018) proposed an advanced machine 

intelligence technology for predicting persistent respiratory disorders in children. Nine of 

the forty-eight extrapolative characteristics of the tenacious respiratory illness were found 

using discriminate partial least square regression. The most effective estimate accuracy is 
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urged by multilayer perceptron setups. These findings indicate that the approach is capable 

of accurately predicting asthma outcomes at 99.77%. 

Desai & Shah (2021) examined artificial neural networks, MLP and CNN, which were 

used to detect breast malignancies for early breast cancer detection to see whether method 

was superior for diagnosing breast cell malignancies based on accuracy. Deep 

comparisons of each network's functioning and design were made, and then analysis was 

done based on the network's accuracy in diagnosing and classifying breast cancer to 

determine which network outperforms the other. In the diagnosis and detection of breast 

cancer, CNN was found to be more accurate than MLP. There is still a need to do a 

complete analysis and research using both methods on the same data set under the same 

conditions to determine the design that provides superior accuracy (Desai & Shah, 2021). 

2.12.1.4 Deep Learning  

Deep learning is one of the most effective machine learning techniques amongthe 

available approaches (Goodfellow et al., 2016). Its main areas of use are image 

recognition and speech recognition where it has set records for other machine learning 

methods. Since deep learning algorithms are exceptionally effective at identifying 

complex structures in high-dimensional data, they have great potential in a wide range of 

other scientific fields, particularly precision medicine and genomics data processing. Deep 

learning techniques, however, are still extremely new to the bioinformatics field, and have 

found a major use in classification of genes based on their expression profiles (Daoud & 

Mayo,2019). Unlike images or text data, gene expression data does not have a structure 

that can be utilized in the construction of a neural network. Multilayer perceptron is an 

architecture utilized for gene expression data prediction (Basavegowda & Dagnew, 2020; 

Guo et al., 2017). Fakoor et al. (2013) employed a stacked autoencoder and principle 

component analysis (PCA) to minimize the dimension of the data prior to building a neural 

network for cancer prediction. Dincer et al. (2018) first used PCA, followed by a 

variational autoencoder for dimensionality reduction and a LASSO to predict the response 

to a leukemia therapy. Hanczar et al., (2018) pretrained each layer of a multi-layer 
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perceptron using a denoising autoencoder and a sizable unlabelled dataset to predict 

malignancies. In particular for deep learning models, interpretation of machine learning 

algorithms is still a developing topic of study (Samek et al., 2020). Prediction and model 

interpretation are two different interpretations that can be distinguished (Chakraborty et 

al., 2017; Guidotti et al., 2018). Model interpretation describes reasoning behind the 

model while forecasting various outputs on the entire population.  Prediction interpretation 

involves describing the prediction of a given input. However, for medical uses, both are 

crucial. 

There hasn't been much research done on the interpretation of neural networks created 

from gene expression. Majority of previous studies concentrate on determining which 

genes had an impact on the prediction but do not look into how the representation of the 

learned gene expression in the hidden layer is represented. For instance, Danaee 

&Ghaeinix et al., (2017) used stacked denoising autoencoders to identify important genes 

for the diagnosis of breast cancer. The Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene Ontology are used to analyze the relevant genes, which are those that 

have a highly transmitted influence on the network's reduced dimension (GO). Finding 

potentially intriguing genes linked to the condition of interest is the goal of all these 

investigations. They do not, however, describe the function of the network, what a neuron 

represents, or how the patient is portrayed in the hidden layers. 

Deep learning architectures have been applied in several studies in the literature to analyze 

biological data. Convolutional neural networks (CNN) were used in analysis of breast 

images to find mitosis and in segmentation of the brain tumor as well as MRI in 

euroendocrine carcinoma detection (Le et al., 2019; Havaei et al.; 2016 Noor et al., 2019; 

Bi et al., 2020). Wekesa et al., (2020) proposed a GPLPI which was a graph representation 

method to facilitate prediction of plant long non-coding RNA-protein interaction (LPI) by 

use of sequence and also structural information. This model employed long short-term 

memory (LSTM)coupled with graph attention. This model was trained and tested using 

two datasets which were Arabidopsis thaliana and Zea mais datasets. The authors reported 

accuracies of 85.76% and 91.97% respectivelyet al.  
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Putin et al., (2016) proposed a deep learning-based framework for chronological age 

prediction. They used an Ensemble-based combination of deep neural networks (DNNs) 

that were trained using blood biomarkers. A variation of the permutation feature 

importance was employed in this study to evaluate importance of each blood markers to 

ensemble accuracy. The best performance reported in this study was by a DNN with a 

mean absolute error (MAE) of 6.07 years in prediction of chronological age. The results 

of the ensemble-based learning provided an MAE of 5.55 years.  

Bobrov et al. (2018) proposed using eye corner pictures to predict BA using a DNN-based 

model PhotoAgeClock. Their method yielded an MAE of 2.3 years and a 95% correlation 

with CA; however, BA was not considered. Mamoshina et al., (2018) employed a 

multilayer DNN model to reveal population-specific aging patterns in Canadians, 

Koreans, and Eastern Europeans. Rahman & Adjeroh (2019) used a deep convolutional 

long short-term memory (ConvLSTM) model to estimate BA on a week's worth of 

physical activity data recorded per minute. Another study that used deep learning on 

biological data was done by Mamoshina et al., (2018) who employed a multilayer DNN 

model in revealing aging patterns of the population. Rahman & Adjeroh (2019) also 

applied a deep convolutional long short-term memory (ConvLSTM) model which helped 

in estimation of biological age using physical activity data that was recorded every minute, 

to estimate BA on a week's worth of physical activity data recorded per minute (Pyrkov 

et al., 2019). Recent advancements and opportunities in employing artificial intelligence 

(AI) for aging and longevity research were reviewed in (Miotto et al., 2019). They 

examined works on DL, transfer, and reinforcement learning. Even though this was a 

thorough study on aging and lifespan that described machine learning (ML) techniques 

utilized in many aging studies, the publication did not address the issue of quantifying 

BA. Ashiqur et al., (2021) examined deep learning algorithms based on several forms of 

bioinformatics data. The DL models DNN, CNN, ConvLSTM, and CNN+LSTM were 

trained to exploit the physiological/activity changes' reliance on age. The DL methods 

were trained to reduce the MSE between the chronological age and the estimated 

biological age in all circumstances (Ashiqur et al., 2021). 
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Some studies have been done on deep learning in mining motifs. The impact of various 

parameters in deep learning, such as the number of layers, on motif mining was studied 

(Zhang et al., 2016). Other researchers made more attempts at deep learning frameworks, 

adding an LSTM layer to DeepBind and obtain a novel model for motif mining that could 

combine CNN and RNN (Quang & Xie, (2016) .Recurrent Neural Networks(RNN)  and 

CNN models have been combined to gain the advantage of both models in classification. 

Addition of RNN layer facilitates the ability to capture dependencies between sequence 

features by learning the features recovered by the CNN layer, thus improving prediction 

accuracy (He et al., 2021).  

A number of studies have attempted to understand the hidden neurons, and practically all 

of them are based on an analysis of the values or connection weight distribution of the 

learnt neural network (Teixeira et al., 2017). Way et al. (2018) examined the connections 

between decoders and their variational autoencoder and linked each neuron to the group 

of genes with the highest absolute values of weight. They used an enrichment analysis to 

find overrepresented pathways and GO biological process terms for each neuron based on 

these gene sets. Way & Greene's (2018) constructed denoising autoencoders and stacked 

denoising autoencoders to extract significant genes from a dataset of cancer gene 

expression.  . The total number of connections that genes have outwardly determines their 

significance. The importance of genes is defined as the sum of their outgoing connections. 

A functional annotation analysis is conducted on a subset of the most significant genes 

before being further examined. In order to determine their significance for the prediction 

of the metastatic tumor, Sharifi et al. (2019) examined the distribution of each neuron's 

output weights. 

Deep learning's lack of interpretability in medical applications is one of the primary 

worries. Neural networks can be thought of as "black boxes," where a patient's gene 

expression profile is fed into one layer and a prediction is drawn from another without any 

explanation of the decision-making process. The demand to make deep neural networks 

more interpretable is growing, notably in the medical area. It's important to make sure a 

neural network does not focus on a data artifact and instead its predictions is based on 

https://builtin.com/data-science/recurrent-neural-networks-and-lstm
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trustworthy representations. Physicians cannot trust the neural network's judgment 

without the interpretability requirement being satisfied, and patients' lives could be in 

danger. Knowing which neurons, genes, and other biological processes are involved in 

prediction and decision-making is essential. In addition, a neural network with strong 

prediction abilities might have discovered patterns in gene expression that might inspire 

fresh biological concepts. Understanding the biological significance of the network's 

hidden layers is essential to examining these patterns. 

2.12.2 Unsupervised  

Unsupervised learning usually entails analyzing unlabeled data while making assumptions 

about the data’s structural features (for example, algebraic, combinatorial or 

probabilistic). The data are assumed to be in a low-dimensional variety, and the goal is to 

explicitly identify that variety from the data. Principal component analysis, multiple 

learning, factor analyses, random projections, and automatic coders are examples of 

dimensional reduction techniques. A variety of grouping processes have been devised, all 

of which are based on certain assumptions about what constitutes “clustering.” Because 

the goal is to use the unusually large data sets that are available if supervised labels are 

not used, computational complexity is crucial in both grouping and dimension reduction 

(Karim et al., 2021). 

2.12.2.1 Association Rule Mining 

Association rule mining (ARM) is a market basket analysis algorithm described by 

Agrawal et al., (1993). It is a data mining approach that has been widely used to discover 

high frequency co-occurrence of items in databases. In ARM, datasets are presented in a 

transaction format whereby a transaction t 𝑻 ∈ 𝑫 contains itemset 𝑿 ⊆ 𝑰if 𝒙 ⊆ 𝑻.  ARM 

has been successfully applied in many areas like market basket analysis, health care and 

in recommender systems (Viktoratos et al., 2018), classification of cancer gene expression 

data (Alagukumar & Lawrance, 2016) and identification of malignant mesothelioma risk 

factors (Alam, 2019). Quality measures are used in selecting the best sets of the generated 
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frequent patterns. Probabilistic measures have been applied to evaluate the generality and 

the reliability of association rules. Support measures the generality of the rules while 

confidence and lift are used to show reliability of the rules. Support and confidence are 

some of the widely used measures in evaluating the quality of the rules (Telikani et al., 

2020). 

A unsupervised method of association rule mining (ARM) is used to uncover patterns in 

massive datasets. Agrawal et al. developed this algorithm in 1993 with an initial 

application's goal being to detect patterns of items purchased together in transaction 

databases. Items are treated as strings in that application, and they might be present or 

absent in a single transaction (Altaf et al., 2017). 

A nondeterministic polynomial is used to find Association Rules (ARs) in a transaction 

database which is a NP-Hard problem. If the dataset has 𝑛 items, the number of itemsets 

is 2𝑘 − 2 is the maximum number of ARs that can be recovered from each itemset, where 

k is the itemset length. Apriori-based algorithms have a time complexity of ( 2𝑛) +

𝑂(  2𝑘). As a result, discovery of ARs has an 𝑂(𝑘 × 2𝑛) time complexity (Almasi & 

Abadeh, 2015). This shows that as the number of items increases, running time increases 

exponentially (Beiranvand et al., 2014). 

Traditional ARM methods necessitate a significant amount of processing time. 

Furthermore, they rely on data preparation prior to executing the algorithm, which results 

in information loss. In fact, traditional ARM approaches have two drawbacks: a strong 

boundary between intervals in numeric characteristics and differentiation of the degree of 

membership for the interval in fuzzy sets. The purpose of association rule mining 

algorithm's is to find a set of rules that are above user-specified support and confidence 

thresholds. The first stage is to identify all 'frequent' itemsets those with a support level 

over the threshold. The frequent itemsets are then used to construct association rules and 

any rules that fall below the confidence threshold are removed. Enumerating the most 

common itemsets is the most complex step since the desired itemsets have to be found 

among the total 2|𝑈|  − 1 itemsets which can actually be generated (Telikani et al., 2020).  
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2.12.2.1.1 Apriori  

The Apriori algorithm was developed to work with transactional databases. Apriori 

employs a "bottom up" strategy, in which frequent subsets are expanded one item at a time 

(a process known as candidate generation), and groups of candidates are evaluated against 

the data. When no more successful extensions are detected, the algorithm ends. Apriori 

uses a Hash tree structure and a breadth-first search to effectively count candidate item 

sets. From item sets of length 𝑘 − 1, it generates candidate item sets of length 𝑘. The 

candidates with an infrequent sub pattern are then pruned. The candidate set comprises all 

frequent k length item sets, according to the downward closure. The system then analyzes 

the transaction database for common item sets among the candidates (Agrawal & Srikant, 

1994). 

An itemset lattice is a set of all itemsets that may be created from a given dataset, in which 

itemsets are linked by subset/superset relationships. To locate all the frequent itemsets in 

the lattice, the Apriori method employs a breadth-first search strategy. First, all size 1 

itemsets are counted. Any superset of an infrequent itemset will also be infrequent, 

therefore itemsets with support below the threshold are deleted. The leftover size 1 

itemsets are used to generate candidate size 2 itemsets, after which infrequent size 2 

itemsets are destroyed. This process is repeated until no frequent itemsets of size n exist, 

in which case candidates are generated from frequent itemsets of size 𝑛 − 1 and infrequent 

itemsets are discarded  

After the itemset mining is completed, the rules are generated. As an example, depending 

on the itemset B, E, we might want to generate the rules B => E or E => B that is based 

on based on the itemset {𝐵, 𝐸}. According to these criteria, if one of the two goods appears 

in a transaction, the other is quite likely to appear as well. The rule B => E has a 100% 

confidence level because every transaction that contains B also contains E, but the rule 

𝐸 =>  𝐵 has a 75% confidence level because 𝐸 appears in four transactions but B in only 

three. While Apriori's method is straightforward it simply requires the union of sets of 
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items and scans over the set of instances to validate support, it is inefficient it prunes 

itemsets with are considered infrequent in subsets (Ryan, 2016). 

2.12.2.1.2 Eclat 

Equivalence Class Clustering and bottom-up Lattice Traversal are abbreviated as Eclat 

(Zaki,2000) This approach decreases these costs by using a vertical transaction ID set 

database format, equivalence class clustering, and bottom-up lattice traversal. Eclat 

converts horizontal databases to vertical databases, i.e., from < 𝑇𝐼𝐷𝑖 , 𝑖1, 𝑖2, … , 𝑖𝑘 > to 

tidset format < 𝑖𝑘, 𝑇𝐼𝐷1, 𝑇𝐼𝐷2, … , 𝑇𝐼𝐷𝑘 >. Each transaction 𝑇𝑖 in a horizontal database 

has a unique identifier 𝑇𝐼𝐷𝑖  𝑎𝑛𝑑 𝑎𝑛 𝑖𝑡𝑒𝑚𝑠𝑒𝑡 in the form of < 𝑇𝐼𝐷𝑖, 𝑖1, 𝑖2, … , 𝑖𝑘 > A. The 

TIDset of an item or itemset 𝑋 is the set of all transaction identifiers containing 𝑋, and is 

denoted as tidset (𝑋) = {𝑇𝑖.𝑇𝐼𝐷|𝑇𝑖 ∈ 𝐷, 𝑋 ⊆ 𝑇𝑖}. Support of an item or itemset 𝑋 is the 

number of elements in tidset (𝑋). For example, 𝜎(𝑋) = |𝑡𝑖𝑑𝑒𝑠𝑒𝑡(𝑋)| An itemset X is said 

to be frequent if  𝜎(𝑋) ≥ min 𝑠𝑢𝑝𝑝, where min _𝑠𝑢𝑝 is specified by the user as a 

minimum support threshold (Dong & Liu et al., 2015). 

The intersection of tidsets of a candidate k-two item set's (𝑘 − 1) -subsets yields its 

support. The vertical database is smaller than the horizontal database and contains all 

necessary information, reducing memory needs and database scanning. In addition, as the 

length of itemsets grows, their tidset decreases, lowering the cost of intersection 

operations. When calculating frequent 2-itemsets, the vertical format is more expensive 

than the horizontal format. To update the counts of candidate 2-itemsets, a triangular 

matrix is employed (Zaki, 2000) 

2.12.2.1.3 Frequent Pattern Growth (FP-Growth) 

Han et al., (2000) proposed a strategy called FP-growth that completely avoids candidate 

generation. This method generates a frequent pattern tree (FP-tree), which keeps track of 

how often each item pattern appears. Because the nodes in the branches of a tree have an 

order, these patterns are sorted sets of objects rather than the unordered sets of things that 
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make up the underlying dataset. A tree can be browsed and managed to enumerate frequent 

itemsets without ever generating infrequent itemsets that must be eliminated. (Wicaksono 

et al., 2020). 

Furthermore, unlike the original dataset, a tree may represent frequency data in a more 

compact fashion. Each branch of the tree shows a common pattern. Beginning with the 

root node and ending with the node in question, each node in the tree corresponds to a 

single item and records the frequency of the pattern generated by it and its ancestor nodes. 

Because an item may appear in a variety of patterns, it may have numerous nodes, with 

the item's overall frequency equal to the sum of the frequencies recorded in all of the 

nodes. A linked list connects nodes that refer to the same item, making traversal of all 

nodes that refer to the same item more efficient (Shabtay et al., 2021). The most often 

occurring item becomes a child of the root node when a new instance is added to the tree, 

the second most frequently occurring item becomes a child of the first item, and so on. 

When patterns in the tree with the same prefix overlap, the frequency recorded in the 

current nodes rises until the patterns diverge, at which point the new pattern's branch splits 

from the existing branch. This is what allows the tree to be a smaller representation of the 

frequencies than the original dataset, as well as removing infrequent items before 

generating the tree (according to the same principle used by Apriori); overlapping patterns 

reduce duplication and save space. Enumerating the frequent itemsets necessitates a 

recursive traversal of the tree.  

The most common items are chosen in reverse order of frequency (i.e., the reverse of the 

order used when building the tree). A conditional FPtree is produced for each item, which 

is effectively an FPtree made up of only those instances that include the target item. This 

is accomplished by traversing the main tree and collecting patterns that contain a target 

item, then constructing an FPtree from the extracted patterns. Items in the conditional 

FPtree that are common are those that appear frequently with the target item, resulting in 

frequent 2-itemsets. (Wicaksono et al., 2020). 
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The conditional FP-tree method is done recursively for each of these frequent itemsets in 

order to find frequent itemsets involving those itemsets until no more frequent itemsets 

arise. The operation continues, ignoring any item that was already processed, by selecting 

the next item from the initial reverse-order list. All the common itemsets are enumerated 

in this fashion, utilizing the FP-tree structure, without the need for candidate generation 

and only two scans of the source dataset, while the dataset is represented in a more 

compact format (Ranjan & Sharma, 2019). 

2.12.2.1.4 Association rule mining on biological data 

As the sets of gene expression data became increasingly large, data mining techniques 

have become crucial to analyze expression data. Many grouping techniques have been 

explored to group genes based on similar expression profiles (Alagukumar & Lawrance, 

2016). Looking for association rules in the data is a common data mining technique that, 

unlike clustering, is used to uncover and explain links between distinct items in a large 

data collection. The format of an association rule is LHS⇒RHS, where LHS and RHS are 

sets of items, and the RHS set is likely to occur whenever the LHS set does. The rules of 

association are known as "market basket analysis" in the retail industry (Sagin & Ayvaz, 

2018). An association rule represents a group of things that are likely to be purchased 

together in a market basket analysis; for example, the rule cereal, milk, juice would state 

that anytime a client buys cereal, he or she is likely to also buy milk and juice in the same 

transaction. In biological datasets, elements in an association rule can represent biological 

features that are strongly expressed or repressed in response to either exposure to certain 

treatments of when comparing a disease versus healthy condition. Public gene expression 

data large enough to search for association rules and obtain meaningful results are now 

available (Deelen et al., 2019). 

Nagata et al., (2014) analyzed toxic genomic and toxicological data using classification 

association rules. They then reported that the statistical t test had been applied often in the 

analysis of microarray data. They then selected only those genes that were up-regulated 

(change of times> 2 and p <0.05) or down-regulated (change of change <0.5 and p <0.05) 
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in the groups with increased or non-decreased groups, respectively (Nagata et al., 2014). 

Methods for analyzing gene connection using frequent patterns were discussed in earlier 

study by Alves et al., (2010). Mining of common patterns has been effectively used to 

identify patterns of knowledge in a variety of data, including commercial and scientific 

data, and is emerging as a promising technique in the study of microarray gene expression. 

These methods, on the other hand, are poorly scaled and often not practicable with dense 

data sets such as telecommunications, microarrays, and so on, where there are numerous 

frequent and extended patterns. This issue arises because of the preceding algorithm's high 

processing expenses. Methods based on trees, such as FP growth, may encounter some 

difficulties when dealing with dense or high-dimensional data sets. Earlier study by 

Zakaria., et al., (2014) proposed an enumeration of columns-based algorithm that uses 

high trust association rules for genes expressed up and down. They then explained that the 

generation of all sets of frequent elements in dense data sets requires a large memory 

(Zakaria et al., 2014)  

Nagata et al., (2014) used the association method to classify toxicological data in earlier 

research. The changes in the folds and the p-values of the student's t test performed 

between a group of treated chemicals and their matching control group were used to 

discretize the genetic expressions and relative liver weights. The Apriori-TFP algorithm 

was used to generate class association rules. CBA is superior to LDA in terms of 

prediction performance and interpretability, according to the classification between CBA 

and A linear discriminant analysis (Nagata et al., 2014) 

Various cross validation approaches were explored by Refaeilzadeh et al., (2009). Cross-

validation is a statistical approach for calculating and comparing learning algorithms that 

divides data into two parts, one for learning or training a classifier model and the other for 

validating it. The associative classification algorithm comprises three stages: 

discretization, rule creation, and classifier construction (Refaeilzadeh et al., 2009). 

Indhumathy et al. (2018) used a bi-clustering algorithm along with a new way of 

association rule mining to evaluate human HCV PPI data. The criteria based on Gene 

Ontology (GO) annotations were weighed using a mathematical model. As a result of this 
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strategy, past knowledge-based protein annotations might be used to make more educated 

predictions when applying association rules. Secondly, when a prediction criterion was 

applied, this strategy assisted to better comprehend the shared properties of proteins based 

on their GO annotations. The novel expected contacts of the HCV human protein were 

predicted using the newly found association rules, and some of the projected interactions 

were confirmed using a literature review. For validation purposes, further enrichment 

studies were conducted, including gene ontology analysis, route-based analysis, and 

disease association analysis. Human proteins that interact with HCV proteins in the 

projected network have similar biological functions, according to our analysis 

(Indhumathy et al., 2018). 

Shui & Cho (2016) suggested a rank-based weighted association rule-mining method for 

gene expression analysis. The authors claimed that by using this method, they were able 

to reduce the number of rules generated, as well as the duration and execution time. Gene 

ontologies were used to validate the rules developed using this method. Agapito et al., 

(2015) conducted another study on association rule mining in gene expression data, and 

they were able to electronically infer annotations of association rules by assigning 

different weights to different forms of annotation. 

2.13 Research gap 

Machine learning, feature extraction and feature selection are some of the strategies used 

in dimensionality reduction. They have been used in the analysis of different types of data. 

However, they have a major limitation in that they focus on evaluating each feature 

individually instead of putting into consideration the interactions or dependencies between 

features. These relationships are very important because they determine the 

functional/phenotypic aspects in living systems. Therefore, there is a need for an 

alternative model that will help not only select the informative features but also help 

predict the phenotype of unknown features based on their interactions with those with a 

known function. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Study design  

Figure 3.1: below gives a summary of the study design in form of a workflow adopted in 

this research. 

 

Figure 3.1: Workflow of the study 

As indicated in figure 3.1, the first step was acquisition of raw RNASeq data from the 

SRA archive for analysis. After data acquisition, the quality of the reads was checked to 

ensure only reads above the cut-off quality score and free from contamination were 

retained for subsequent Three trimming algorithms were compared, and the output of the 

best performing trimming algorithm was used in the next step which mapping the reads to 

the reference genome. However, before this step, the reference genome was indexed to 

create a data structure of the same for purposes of efficiency in the mapping step. A 

genome is the complete set of genetic information in an organism which provides all the 

information the organism requires to function. The essence of mapping the raw RNAseq 

data to the reference genome is to get the identity of the expressed genes and also to 

facilitate counting the number of times each gene is expressed (expression level) in 
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response to a certain condition. The last step of preprocessing is to count the features/genes 

with the final output being a .CSV file of count data.The second phase as shown in figure 

3.1 is filtering of the low counts or the features/genes have zero values. Normalization is 

a crucial step in RNASeq data analysis whereby raw data counts are adjusted taking into 

consideration characteristics such as differing sequence depth that would hinder direct 

comparison of expression values. Only the differentially expressed genes were retained 

for further analysis. Phase three was the feature selection phase. The proposed graph 

feature selection approach was used to filter and retain only related feature/genes from the 

differentially expressed genes. For comparison purposes, two other popular feature 

selection approaches which are RFE and PCA were also evaluated. Features selected using 

the three approaches were used to build classification models and the results compared. 

In the final phase, the count values of each differentially expressed feature/gene were 

retrieved from the normalized count table and discretized. Thereafter association rule 

mining was done and the strength of the rules generated using the three feature selection 

approaches evaluated. Details of each step is explained in the subsequent sections   

3.2 Data type and data source  

RNA-Seq datasets used in this study are shown in Table 3.1. The first dataset is from the 

antennae of Glossina morsitans morsitans under the accession number PRJNA344035. 

This data set is from an ongoing project on Tsetse fly at KALRO and is comprised of 13 

samples with the following classes: 4 control samples, 3 samples from flies exposed to a 

repellent, 3 samples exposed to an attractant 3 and 3 from flies fed using an artificial meal. 

A reference genome used at the mapping stage was downloaded from Vectorbase 

repository (https://www.vectorbase.org). The second dataset referred to as Small Cell 

Lung Cancer (SCLC) has 86 samples with two classes: 79 cancer cells and 7 normal cells.  

The third dataset denoted as Non-small Cell Lung Cancer (NSCLC) has a total of 218 

samples whereby 199 samples are non-small cell lung cancer and 19 are normal cells. The 

gene annotation used was for Homo sapiens (GRCh38).  The second and third datasets 

were downloaded from Gene Expression Omnibus (GEO) database 

https://www.vectorbase.org/
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(http://www.ncbi.nlm.nih.gov/geo/). The Computing resources used in this study was 32 

Cores (Each 8GB) = 256GB of RAM; 2 TB storage. 

Table 3.1: summary of datasets 

Dataset Name Instances  Attributes    Classes Source  

SCLC (GSE60052) 86 28,089 2 (79 small cell 

lung cancer and 

7 normal  

Jiang et al., 

2016 

NSCLC (GSE81089) 218 28,089 2 (199 non-

small cell lung 

cancer and 19 

normal)  

Djureinovic 

et al., 2016 

Glossina morsitans 

morsitans 

(PRJNA344035) 

13 13,080 4 (4control 3 

attractant, 3 

repellant and 3 

fed) 

 

3.3 Graph-based feature selection model algorithm 

The proposed graph-based model for feature selection and phenotype prediction is 

depicted in figure 3.2. the model requires two inputs which is raw RNASeq data generated 

using next generation sequencing technologies (Input P)  and a reference genome (Input 

T) (figure 3.2).  

http://www.ncbi.nlm.nih.gov/geo/
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Figure 3.2: Graph-based model for feature selection and phenotype prediction. 

The detailed explanation of every step in the graph-based feature selection model is 

described below. 

3.3.1 Checking the quality  

Data analysis began with preprocessing which is the most time demanding step in the 

process of RNAseq data analysis (Pérez-Rubio et al., 2019). It involved quality control 

check, adapter trimming, contamination removal and quality filtering before transcript or 

gene quantification/counting (Figure 3.1). The Quality of the reads was checked by first 

assessing the base quality. The usual ASCII encoding is Phred+33. Phred is a base-calling 

program for DNA sequence traces which was developed by Dr. Phil and Brent Ewing 

(Ewing & Green, 1998). Phred reads DNA sequence chromatogram files and analyzes the 

peaks to call bases, assigning quality scores ("Phred scores") to each base call. The process 

of inferring the order of nucleotides (ATCG) in a template from the signals generated by 

the sequencing machine is referred to as base calling. After calling bases, Phred examines 

the peaks around each base call to assign a quality score to each base call. Quality scores 

range from 4 to about 60, with higher values corresponding to higher quality. Quality 
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scores are logarithmically linked to error probabilities, as shown in Table 3.2. Each quality 

score represents the probability that a corresponding nucleotide call is incorrect.  

Table 3.2: Error probabilities for assigning quality scores (Ewing & Green, 1998) 

 

Phred's error probabilities have been demonstrated to be extremely accurate (Ewing & 

Green, 1998). If Phred gives a base a quality score of 40, the chances of this base being 

called wrongly are 1 in 10,000. This logarithmically based quality score is calculated as 

follows:𝑄 =  −10 𝑥 𝑙𝑜𝑔10(𝑃), where P is the probability that a base call is erroneous 

We started by calculating the quality score using formula:𝑄 =  − 10 𝑥 𝑙𝑜𝑔10(𝑃), where 

P is the probability that a base call is erroneous. First the p which is 0.01 according to 

table 3.1 was converted to exponential notation which is (1𝐸−2) 

Log10 * (1𝐸−2)=-2        (3.1) 

Then -2 x-10=20 and this is a confirmation that the minimum quality score for the reads 

is 20. 

3.3.2 Removing low quality reads  

Trimming of low-quality ends was done based on the user specified parameters. With the 

minimum quality score set to be 20, features that did not meet the minimum threshold 

were filtered out. At this step, three techniques classified into three main categories were 

evaluated. These are: 

1. Running sum algorithms 

2. Window based algorithms 
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3. K-mer based algorithm 

3.3.2.1 Experiment 1: Running sum algorithms evaluation  

Given a threshold value Q, the algorithm works in two steps. In the first step, the algorithm 

computes the first index 𝑙 where the quality is greater than Q. In the second step, the 

program calculates S(l) = quality(l) - Q and the running sum:  

S(𝑖) = 𝑆(𝑖 − 1) + 𝑞𝑢𝑎𝑙𝑖𝑡𝑦(𝑖) − 𝑄               (3.2) 

When i is greater than l, the part of the sequence not trimmed is the region between the 

position l and the last position whose running sum is maximal. Everything before and after 

is trimmed. After that, if the good region length was lower than a threshold or if the mean 

quality in the good region was lower than a threshold, then the read was discarded. 

3.3.2.2 Experiment 2: Window based algorithms evaluation  

A window spans the read from 5' to 3'and only bases at 3'-end are removed. Given a 

window's length and a quality threshold Q (the option SLIDINGWINDOW takes two 

parameters which are the window size and the minimum average quality, and it has no 

default values) the algorithm cuts the 3'-end when the average quality drops below Q. The 

minimum quality was set to be 20 for every window in both the forward and reverse reads.  

3.3.2.3 Experiment 3: Kmer-based algorithms evaluation  

K-mer based algorithms work by comparing reads to the reference dataset k-mers enabling 

edit distance. Any read matching a reference k-mer is discarded. Once a reference k-mer 

is matched in a read, that k-mer and all the bases to the right will be trimmed, leaving only 

the bases to the left; this is the normal mode for adapter trimming. They also trim or 

remove those parts that match the reads instead of binning.  
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 3.3.3 Experiment 4: Indexing and mapping to the reference genome  

Genome indexing is the process of sub-setting the genome of length 𝑇 into substrings of 

length 𝑠. Mapping is a very important step in analyzing any new generation sequence data. 

In all cases, the mapping process starts by building an index of the reference genome or 

the reads, which is then used to quickly retrieve the set of positions in the reference 

sequence where the reads are more likely to align. In this phase three indexing approached 

were evaluated and they are categorised based on the data structure they use. These are 

algorithms based on hash tables; algorithms based on Burrows-Wheeler transform and 

algorithms based on Suffix array data structures.   

 3.3.4 Experiment 5: Counting of the features  

The number of reads (counts) aligned onto each transcript were quantified in the 

respective BAM files using Salmon version 1.2.1 software (Patro et al., 2017). Salmon 

algorithm uses the approach of Kallisto (Bray et al., 2016) to compute the effective length 

of a transcript ti defined as:  

 𝑡𝑙= ℓ𝑖 − 𝜇 ⅆ
ℓ𝑖         (3.3) 

where  𝜇 ⅆ
ℓ𝑖 is the truncated fragment mean. The algorithm takes a maximum likelihood to 

look for the sizes of interest. With assumption that there is independence generation of all 

fragments, a known nucleotide fractions η is a binary matrix of transcript-fragment Z with 

𝑧𝑖𝑗= 1. The probability of observing of a set of sequenced fragments ℱ is defined as: 

𝑃𝑟{ℱ| 𝛈 , 𝚭, ℊ} = ∏ 𝑃𝑟{𝑓𝑗 |𝛈 , 𝚭, ℊ }𝑁
𝑗=1 = ∏ ∑  𝑀

𝑖=1 𝑃𝑟{𝑡𝑖|𝛈}. 𝑃𝑟{𝑓𝑗 |𝐭𝐢 , 𝒛𝒊𝒋} = 1
𝑁
𝑗=1                    (3.4) 

|ℱ| = N is the sequenced fragments number, 𝑃𝑟{𝑡𝑖 | 𝛈} is the probability of choosing 

transcript 𝑡𝑖   for generating a fragment given a fraction of the nucleotide η, and 

𝑃𝑟{𝑡𝑖  | 𝛈}  = η𝑖  (Bray et al., 2016). This provided data on relative read abundance by 

different treatments and replicates.  
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3.3.5 Experiment 6: Normalization  

The resulting features were preprocessed to filter out any features with zero counts. This 

was achieved using the upper quartile normalization. A scaling factor of 75th percentile 

of every count was calculated after removing features with zero counts using the formulae: 

𝑑𝑗
𝑈𝑄 = (𝑈𝑄

𝑘𝑔𝑗

∑ 𝐾𝑔𝑗
𝐺
𝑔=1

)            (3.5) 

Where 𝑈𝑄(𝑋) is the upper quartile of sample 𝑋 of 𝑗𝑡ℎ sample of normalized counts and 

𝐾𝑔𝑗 > 0 

3.3.5.1 Experiment 7: Differential expression analysis  

After normalization, differential expression analysis was done on the gene count matrix 

generated by Salmon (Patro et al., 2017) using DESeq2 R-package version 1.28.0 (Love 

et al., 2014). Default parameters for count data normalization as recommended (Conesa 

et al., 2016) were used to allow for control of log2 fold change shrinkage, custom p-value 

and fold change cut-offs. Genes were considered differentially expressed and retained for 

further analysis if the test statistics p-value (adjusted for false detection rate) (FDR) was 

less than 0.05 according to the method from Benjamini & Hochberg (1995). Heatmaps for 

visualizing the relationships between the different treatments were generated using the 

package Pheatmap v1.0.12 (Kolde, 2012) in R software (Team, R. C. 2017). 

3.3.6 Experiment 8: Network construction  

Steps for the network construction  

The first step was to determine Pearson Correlation Coefficient (PCC) as shown in Figure 

3.2.  

Pearson Correlation Coefficient (PCC), which ranges from -1 (perfect negative linear 

coexpression) to +1 (perfect positive linear coexpression), is typically associated with 
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each edge to estimate the amount of coexpression between any gene pair, whereas 0 (no 

correlation) denotes the absence of any linear relationships between two genes. 

where 𝑚 is the number of samples, 𝑥𝑖 is the vector holding all 𝑚 expression values of 

gene 𝑔𝑖, 𝑥𝑘𝑖 denotes the expression of gene 𝑔𝑖 in sample 𝑠 and �̅�𝑖 is the mean expression 

of gene 𝑔𝑖 across all samples (figure 3.2) 

The second step was to determine threshold: The soft threshold algorithm makes a gene 

expression network to be distributed with free-scale network by setting edges between any 

pair of genes whose correlation value exceeds this threshold by raising the absolute 

correlation value to a power 𝛽.  

The third step was to construct a topological overlap matrix TOM that defines the 

topological overlap between two nodes based on the adjacency. 

Where TOM is the Topological Overlap Matrix, 𝑎 is the adjacency matrix, 𝑖 is the row 

number of the Adjacency Matrix and TOM, 𝑗 is the column number of the Adjacency 

Matrix and TOM. 𝑢 increases from 1 to the maximum row number, also the maximum 

column number (Figure 3.2).  

The adjacency matrix was transformed into a topological overlap matrix (TOM). A TOM 

matrix quantitatively describes the similarity in nodes by making comparison between two 

nodes and others. 

3.3.6.1 Experiment 9: Graph filtering 

The graph filtering technique adopted for this model was Maximal cliques. A Bron-

Kerbosch-Algorithm was applied to find all possible cliques within a graph. A clique is a 

complete subgraph ⊆ 𝐺 . 

The process starts by determining a set 𝐶′ of the maximal cliques 𝐶𝑖
𝑚𝑎𝑥 where a maximal 

clique is a complete subgraph 𝐶𝑖 ⊆ 𝐺 which is not a subset of another complete subgraph. 
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Whenever there is |𝐶𝑖
𝑚𝑎𝑥| > 1, where 𝐶𝑖

𝑚𝑎𝑥 ∈  𝐶′ a rating function 𝑟: 𝐶𝑖
𝑚𝑎𝑥  → ℝ, 

∀𝐶𝑖
𝑀𝑎𝑥  ∈  𝐶′  is applied and maximal clique with the highest score selected. A key 

concept of networks is node connectivity, which measures the relative importance of the 

nodes in the network. 

Node degree  

The degree, 𝑑𝑖, of gene i in a network of N genes, represents the number of nodes 

connected to gene i. Genes with large degrees are commonly referred to as hubs. 

Where 𝑎𝑖𝑗 is 1 if gene 𝑖 is linked to gene 𝑗 and 0 otherwise  

This approach considers the number of nodes connected to gene I, edge Percolated 

Component (EPC) which assigns a random number between 0 and 1 to every edge and 

filters the graph by removing edges if their associated random numbers are less than the 

threshold and ecCentricity which considers distance between a vertex to all other vertices 

were used. The resulting features were compared with the maximal cliques based on the 

strength of the rules generated(support). 

3.3.7 Experiment 10: Discretization  

Discretization is a data pre-processing step used in machine learning to transform 

continuous or numerical attributes into discrete ones (Hacibeyoğlu & Ibrahim, 2016). 

Features that did not have any connection in the network were filtered out and the 

remaining genes discretized using Equal Frequency Discretization (EFD). EFD is an 

unsupervised discretization method used in the absence of any knowledge of the class 

memberships of the instances. This method works by dividing a continuous attribute 

A={𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝑎𝑛}  into 𝑘 intervals which include the same number of values. Each 

interval contains 𝑛/𝑘 bins where 𝑛 is the number of values. This method was used because 

it reduces the effect of outliers and collects similar values in the same interval 

(Hacibeyoglu & Ibrahim, 2016). The discretization steps used are outlined below:  
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Two bins in step 3 were defined as described in Gallo et al., (2016), with the final output 

being discretized measurements whereby a value of zero represented a gene that was 

under-expressed, while a value of one represented a gene that was overexpressed. The 

discretization process is summarized in Figure 3.3 below:  

 

Figure 3.3: Discretization process  

3.3.8 Experiment 11: Association rule mining  

The steps followed in mining frequent item sets are described in the algorithm below: 
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Figure 3.4: Apriori algorithm  

The Apriori algorithm in figure 3.4 is explained as follows: 
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In the first step, the database 𝑇 is scanned so as to calculate the support value for every 

item. In step two, items are stored as candidate itemsets with their support values. The 

next step is moving the candidates to the frequent itemsets if their support values are 

greater than or equal to minsupp. The frequent itemsets are joined to generate candidate 

itemsets where each candidate itemset is checked based on every sub-itemset which 

should be frequent itemset in the previous frequent itemsets . Therefore, the support value 

for each candidate itemset is calculated based on scanning the database in the first step. 

Each candidate itemset is checked based on every sub-itemset and should be frequent 

itemset in the previous frequent itemsets otherwise the candidate itemsets is deleted. 

In association rule mining, a rule is typically described by three measures: support, 

confidence, and lift. These three represent the significance and interest of a rule. Support 

of a rule 𝑋 ⇒ 𝑌 is equal to the support of the itemset 𝑋 ∪ 𝑌 and is defined as the 

probability of finding all the genes in sets 𝑋. Support of an itemset X is calculated as: 

𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝐷(𝑥) =
|{𝑇∈𝐷𝑥⊆𝑇}|

|𝐷|
       (3.6)  

The confidence of rule 𝑋 ⇒ 𝑌 is the probability of finding all the differentially expressed 

genes in set 𝑌 as compared with the differentially expressed genes in set X. The confidence 

is calculated as:  

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝐷(𝑥 ⇒ 𝑦) =
𝑆𝑢𝑝𝑝𝐷(𝑋∪𝑌)

𝑠𝑢𝑝𝑝𝐷(𝑋)
      (3.7)  

Lift measures the strength of the rule and varies in the interval [0,∞].Lift is defined as: 

𝑙𝑖𝑓𝑡(𝑋 → 𝑌) =
𝑠𝑢𝑝𝑝(𝑋∪𝑌)

𝑠𝑢𝑝𝑝(𝑋)∗𝑠𝑢𝑝𝑝(𝑌)
      (3.8)  

Minimum support value between of 0.5 and 0.9, minimum confidence value of 0.9 and 

lift of ≥ 2 were the parameters used in generating rules.  
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The proposed Graph-based approach was compared to two other dimensionality reduction 

techniques which are Principal Component Analysis (PCA) and Recursive Feature 

Elimination (RFE).  

Principal Component Analysis (PCA) 

Assuming dataset  𝑥(1)𝑥(2), … . 𝑥𝑚 has inputs of 𝑛 dimensions, this 𝑛 − dimension data 

must be reduced to 𝑘 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 (𝑘 ≪ 𝑛) using PCA. The first step in PCA is 

standardization whereby the raw data should have unit variance and zero mean defined 

as: 

𝑥𝑗
𝑖 =

𝑥𝑗
𝑖−�̅�𝑗

𝜎𝑗
∀𝑗            (3.9) 

In the second step, a covariance matrix of the raw data is calculated. The purpose of this 

step is to determine if there is any relationship between the variables in the input data set 

and how they differ from the mean in relation to one another. Variables can occasionally 

be highly connected to the point where they include redundant data. Therefore, a 

covariance matrix is computed in order to discover these relationships as shown in the 

equation below. 

𝛴 =
1

𝑚
∑ (𝑥𝑖)(𝑥𝑖) 

𝑇𝛴
𝑚

𝑖
∈ 𝑅𝑛∗𝑛          (3.10) 

The third stage is calculation of eigenvector and eigenvalue of the co-variance. To find 

the primary components of the data, the linear algebra concepts of eigenvectors and 

eigenvalues must be computed from the covariance matrix using the equation below:  

𝑢𝑇𝛴 = 𝜆,     

      (3.11) 

 𝑈 = [ 𝑢1,𝑢2,… . 𝑢𝑛,], 𝑢𝑖, ∈  𝑅
𝑛 
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In the fourth step, raw data is projected into a k-dimensional subspace, and this is followed 

by choosing the top 𝑘 eigenvector of a co-variance matrix. The corresponding vector is 

calculated as shown in eqn. 3.12: 

𝑥𝑖𝑛𝑒𝑤 =

[
 
 
 
 
𝑢1
𝑇𝑥𝑖

𝑢2
𝑇𝑥𝑖

……
……
𝑢𝑘
𝑇𝑥𝑖]

 
 
 
 

∈ 𝑅𝑘         (3.12) 

   

The raw data with 𝑛 dimensionality is reduced to a new 𝑘 dimensional representation. By 

eliminating the components with little information and using the remaining components 

as the new variables, principal component analysis allows dimensionality reduction 

without losing much information. 

Recursive Feature Elimination 

The second feature selection approach used was Recursive Feature Elimination (RFE). 

This is a recursive process where features are ranked based on their importance (Rtayli & 

Enn, 2020). RFE employs machine learning models in computing features relevant scores. 

RFE first trains the model using all features and then computes the relevance score of 

every feature in the dataset. All the features with the least relevance score are ignored and 

this is followed by model retraining for computation of new relevant feature scores. This 

process is repeated until the final desired features are obtained (Rtayli & Enn, 2020). 

3.4 Experiment 12: Classification 

Classification of the selected features from three techniques was performed using three 

classifiers namely Naïve Bayes, Sequential Minimal Optimization (SMO) and Multilayer 

Perceptron. The resulting classification accuracy of the different feature selection methods 

were compared. Features were the dependent variables while class was the independent 
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variable. In this case the expression levels (counts) of the features (genes) were used to 

predict the tissues type (diseased/normal).  

3.4.1 Class balancing  

The two cancer datasets used in this study were highly imbalanced whereby the cancer 

samples were the majority class while normal samples were the minority class. Class 

imbalance is a problem that is typically encountered in disease-related datasets, such as 

cancer dataset used in this work. The majority class had a bigger number of cases than the 

minority class, which had a proportionally smaller number of occurrences. When using an 

imbalanced dataset, classifiers tend to prefer the majority class, resulting in very low 

classification rates for the minority class. It's also possible that the classifiers will classify 

all instances as belonging to the majority and ignore the minority. Therefore, for medical 

datasets a good sampling technique is essential. Various sampling strategies, such as 

undersampling, oversampling, and a combination of both, have been devised to address 

the problem of class imbalance. Through the removal of some data from the majority class 

(undersampling) or the addition of some artificially generated or replicated data to the 

minority class (oversampling), sampling procedures are presented to overcome class 

imbalance issue because data must be well-balanced to develop a solid prediction model 

from the training set (Kothandan, 2015). 

Synthetic Minority Oversampling Technique (SMOTE) algorithm was used to balance the 

datasets. Oversampling of minority classes is done by creating synthetic samples to imitate 

minority classes and increase their number of instances in the training set (Rao, & 

Makkithaya, 2017). This approach has the advantage of preserving all the information 

from the original training dataset, as all observations from the majority and minority 

classes are kept. The number of instances (𝑛) and the nearest neighbors are two crucial 

parameters that are used to create these synthetic instances (𝑘). Overfitting is avoided 

because fresh minority instances are created by interpolating between numerous minority 

samples that are close together. Minority classes were increased based on the 5 k-nearest 

neighbors and defined 𝑛 to equal classes.  
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3.4.2 Building classifier models 

After the pre-processing phase which involved addressing class imbalance, 10-fold cross 

validation was applied to reduce the bias associated with random sampling of the training 

data. The original dataset was randomly partitioned into 𝑘 equal size subsets in k-fold 

cross-validation. The categorization model was trained 𝑘 times and tested while a single 

subset was kept as validation data for testing the model each time and the  remaining 𝑘 −

1 subsets were used as training data. A Naïve   Bayes (NB), multilayer perceptron (MLP), 

and Sequential Minimal Optimization (SMO) classification technique were chosen to In 

this experiment default parameters for MLP were used.  

3.4.2.1 Naïve Bayes algorithm 

Naïve Bayes is efficient supervised learning method suitable for both binary and 

multiclass classification. The algorithm is based on Bayes’ theorem (Bhavsar & Ganatra, 

2012). Bayes theorem calculates the 𝑃(𝑐|𝑥), posterior probability using 𝑃(𝑥|𝑐), P(c) and 

𝑃(𝑥), as shown in the equation below. 

 𝑃(𝑐|𝑥) =
𝑃(𝑥|𝑐)𝑃(𝑐)

𝑃(𝑥)
        (3.13) 

        

Where 𝑃(𝑐|𝑥) is the class posterior probability and 𝑃(𝑐) is the prior probability class: 

P(x|c) is the likelihood that is the predictor given class probability.  

P(x) is the predictor prior probability.  

3.4.2.2 Sequential Minimal Optimization (SMO) 

SMO is a supervised machine learning algorithm that belongs to the SVM classifiers (Hall 

et al., 2009). The SVM algorithm works by building a hyperplane that separates different 

instances into their specific classes (Vapnik, 1998). Thereafter a pairwise a multiclass 

classification scheme is performed. Even when 𝑝  >  𝑛 SVM is functional without any 

alteration. SVM hyperplane is defined as: 
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3.4.2.3 Multilayer perceptron 

Multilayer Perceptron (MLP) belongs to a class of feedforward artificial neural networks, 

which find complex patterns that a human programmer cannot extract by performing 

machine recognition. MLP has input layers (attributes), output layer (classes), and hidden 

layer(s) that are interlinked by various neurons. The optimization of interconnected 

weights is done by the backpropagation algorithm by training instances of the dataset 

(Tanwani et al., 2009). In this experiment we used default parameters for MLP which are 

epochs = 500; learning rate of 0.3 and the momentum of updating weights was set to be 

0.2. These are epochs = 500; learning rate of 0.3 and the momentum of updating weights 

was set to be 0.2.  

3.4.2.4 Measures for performance evaluation 

Classification accuracy, classification time, kappa statistic (KS), Mean Absolute Error 

(MAE), and Root Mean Squared Error (RMSE), were used to measure the model’s 

performance for every classifier before and after feature selection using the various 

approaches. The working principle of the techniques is described below. 

Classification accuracy 

Accuracy measures how well a test can predict different categories. It shows the number 

of samples that are correctly classified into their respective classes. Accuracy is expressed 

as a percentage which is calculated by formula shown in equation 3.13: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝑇𝑃+𝐹𝑁+𝐹𝑃
100%       (3.14)  

Where: 

 TN is the True Negative: samples classified as negative class but belongs to 

negative class.  
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 TP is the True Positive: samples classified as positive class and they belong to 

positive class 

 FN is the False Negative: samples that belong to a positive class but have been 

classified in a negative class.  

 FP is the False Positive: samples classified as positive, but they belong to the 

negative class. 

Classification Time 

This is the total CPU time that is required to build a classification model as well as the 

training time required to predict the output of the test data.  

Kappa Statistic (KS) 

Kappa statistic is calculated to evaluate measurement accuracy. The closer the K value is 

from 0 to 1, the more reliable the classification. When K equals 1, the correctness of 

classification is the safest. On the other hand, when K equals 0, the chance of classification 

is right and unreliable. Calculation of Kappa value is given in equation 3.14.  

𝐾 =
𝑃(𝐴)−𝑃(𝐸)

1−𝑃(𝐸)
         (3.15) 

Where: 

K:  is the Kappa Statistics 

P (A): is the Percentage of agreement 

P (E): is the Agreement chance 

Mean Absolute Error (MAE):  

MAE is useful measurement to use for performance evaluation of algorithm. As given in 

(3.15), it is calculated by taking the average of all absolute errors (Chai & Draxler, 2014). 

𝑀𝐴𝐸 =
1

1
∑ |𝑥𝑖 − 𝑥|
𝑛
𝑖=1       (3.16) 
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Where 

n= the number of errors 

∑   = summation symbol (which means “add them all up”) 

|𝑥𝑖 − 𝑥|= the absolute errors  

Root Mean Squared Error (RMSE)  

RMSE is popular measurement for performance evaluation measurement which calculates 

the error without canceling the positive and negative error (Margaret &Sridhar, 2006).  

𝑅𝑀𝑆𝐸 = √
1

𝑛
[∑ (𝑄𝑒𝑥𝑝 − 𝑄𝑐𝑎𝑙)

2𝑁
1 ]      (3.17) 

Where  

n = the sample size  

(𝑄𝑒𝑥𝑝 − 𝑄𝑐𝑎𝑙)
2
= the difference squared  

After classification performance measure we then did a 70: 30 subsets on data and 

performed 10-fold cross validation of the accuracy and then recorded the accuracy and F-

measure. This was repeated to 20 times across each feature selection method followed by 

Kruskal Wallis H-statistic to test if there was significant difference in the mean ranks of 

the groups.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION  

In this section the results and their discussions for this study are presented based on the 

study objectives.  

4.1 Data preprocessing results  

4.1.1 Trimming low quality reads results  

Raw reads per sample in the Tsetse fly antennae dataset ranged between 23 and 73 million. 

A subset of 3 million reads from each sample was used to evaluate three different trimming 

algorithms. Quality-based trimming of RNA-Seq data is usually done to improve mapping 

of reads to the reference genome (Del Fabbro et al., 2013). The three algorithms displayed 

different patterns in terms of the surviving paired reads and the alignment rate. The 

window-based algorithm performed better than the other two approaches whereby the 

percentage of the surviving reads ranged between 83.39% and 90.87% (Figure 4.1). 
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Figure 4.1: Comparison of the output from three trimming algorithms. The values 

show the percentage of surviving paired end reads for each sample.   

The second algorithm evaluated in this study was BBDUK which stands for 

Decontamination using Kmers. The number of surviving reads after running this algorithm 

ranged between 80.27% and 87.81% across all samples (Figure 4.1). The third approach 

evaluated in this study was a running sum algorithm which works by adding the sum of 

the values from the left side of the array and checks the reads that meets the minimum 

quality score. This algorithm had surviving paired end reads ranging between 80.42% and 

88.26% across all samples (Figure 4.1). In this study, the window-based algorithm 

performed better than K-mer based and running sum approaches Window-based 

algorithms have a user-defined window that spans the read from 5' to 3'. Therefore, given 

a window of length 𝑙 and a quality threshold 𝑄, the algorithm cuts the 3'-end when the 

average quality drops below Q. The main advantage of this approach is that it handles 

paired end reads and this may be responsible for the good performance. In addition, the 

performance of this algorithm is improved by calculating the average since any values 
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with high quality score can increase the average of the values with the lower scores. On 

the other hand, BBDUK which is a Kmer-based technique which constructs a truncated 

suffix tree to a depth equal to the pattern size to be searched and works by comparing 

substrings of length 𝐾 while discarding unmatching characters. The challenge associated 

with this approach is that larger k-mers have a higher risk of not having outward vertices 

from every k-mer. This is due to larger k-mers increasing the risk that it will not overlap 

with another k-mer by 𝑘 − 1. Running sum algorithm works by adding the sum of the 

values from the left side of the array and checks the reads that meets the minimum quality 

score and deletes the reads that is lower than the user defined score. Therefore, the 

window-based algorithm performed better than the other two algorithms. Williams et al., 

(2016) reported that reads trimmed with a window-based algorithm mapped better due to 

less aggressive trimming. Another confirmation is by He et al., (2020) who reported a 

survival frequency of between 97% and 98%. 

4.1.2 Indexing and mapping 

The output of the best trimming technique (Window-based algorithm – Trimmomatic) 

was used as the input for the indexing and mapping steps. In this phase, three 

indexing/mapping techniques were evaluated. These mapping tools were classified based 

on the data structure they use i.e., Burrow’s Wheeler transform-based techniques, Hash 

table-based techniques and Suffix array-based techniques. Results showed that BWA 

performed better than Bowtie2 in terms of the alignment across all the samples with 

accuracy values between 93% and 97.97%. Bowtie2 accuracy was between 83.81% and 

90.01% (Figure 4.2). The third algorithm in this category was Spliced Transcripts 

Alignment to a Reference (STAR) algorithm which uses a suffix array to provide faster 

processing. Accuracy values ranged between 83.32% and 95.04%. According to the 

results, SMALT mapped with higher accuracy than NGM with the accuracy ranging 

between 93.27% and 97.89% (Figure 4.2).   
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Figure 4.2: Comparison of the various indexing and mapping algorithms. The values 

indicate the percentage of correctly mapped reads per sample. 

BWA’s performance can be attributed to its working principle. BWA algorithm works by 

constructing a suffix array and Burrows-Wheeler-Transformation (BWT), and subsequent 

matching of the sequences is done using a backward search. During the genome indexing 

phase, BWA combines Burrows-Wheeler transform and an FM-Index that enables it to 

achieve a linear lookup time for an exact match. This facilitates efficient search at a goal 

state and works backward until the initial state is encountered. This function facilitates in 

getting more matching k-mers thus higher accuracy. Bowtie2 also indexes the genome 

using FM-Index. To search and find the match in the reference genome, Bowtie2 performs 

a Depth-first search on the prefix trie and stops when the first qualified hit is found.  

The highly efficient mapping STAR algorithm is due to the two-step process which is 

Seed searching and Clustering, stitching, and scoring. For every read that STAR aligns, 

STAR will search for the longest sequence that exactly matches one or more locations on 

the reference genome. These longest matching sequences are called the Maximal 
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Mappable Prefixes (MMPs): In the second phase, STAR builds alignments of the entire 

read by stitching together all the seeds that were aligned to the genome in the first phase. 

First, the seeds are clustered together by proximity to a selected set of ‘anchor’ seeds. All 

the seeds that map within user-defined genomic windows around the anchors are stitched 

together assuming a local linear transcription model. The size of the genomic windows 

determines the maximum intron size for the spliced alignments. If an alignment within 

one genomic window does not cover the entire read sequence, STAR will try to find two 

or more windows that cover the entire read, resulting in a chimeric alignment, with 

different parts of the read mapping to distal genomic loci, or different chromosomes, or 

different strands.  

Both HISAT2 and STAR have been reported to obtain greater coverage values for 

alignments >1,000 bases, implying that these two tools are better at mapping bigger 

transcripts than the other aligners examined (Musich et al., 2021). Because of the growing 

volume of data produced by high-throughput sequencers, alignment speed may be a 

consideration when choosing a mapper. In all the testing, the STAR aligner was the fastest 

i.e., 25.4 times quicker than Bowtie2 and 86 times faster than BWA. Mapping speed of 

STAR aligner was also reported in earlier study by Ziemann et al., (2016) where STAR 

was 15 percent faster when used on human data. In general, longer reads took longer to 

process, with Bowtie2 experiencing the highest lag (46x) as compared to BWA mem 

(5.5x) and these findings suggested that STAR could be a viable high-throughput option 

for researchers (Ziemann et al., 2016). The main downside of this algorithm is the memory 

requirement of around 32 GB as compared to methods that use Burrows-Wheeler 

transform. 

SMALT and NextGenMap (NGM) are the two algorithms that use a hash table data 

structure. SMALT algorithm uses hash index of short words of less than 15 nucleotides 

long. From every read, potential matching segments in the identified seed matches in the 

index and afterward aligned with the read using a banded Smith-Waterman (SW) 

algorithm. The SW algorithm consists of a matrix-filling phase and a back tracing phase. 

The matrix-filling phase computes the similarity scores of the arbitrary regions of 
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sequences, and the back tracing phase identifies the local alignments that can be found 

from the highest-scoring matrix cell. Given the two sequences of lengths m and n (≥m), 

the time complexity of the SW algorithm is 𝑂(𝑚𝑛). NextGenMap supports a Smith-

Waterman (SW) and a Needleman-Wunsch (NW) banded alignment computation, thus 

allowing for a user-defined maximal number of admissible consecutive insertions and 

deletions. A lookup table is computed that assigns putative genomic positions to a read 

based on a short exact matching word. Preprocessing of the read counts that have mapped 

to a reference genome is an important step that eliminates non-differentially expressed 

features. Features with a False discovery rate (FDR) < 0.05 are usually considered as being 

of biological significance (Von Der Weid et al., 2015). In this study the filtering step 

eliminated 18.9% low-count features from subsequent analysis.   

4.1.3 Feature counting results  

After the evaluation of feature extraction techniques, the optimal approaches were used to 

preprocess the entire dataset. The resulting reads ranged between 66,498 and 22,749 

(Figure 4.3) 

 

Figure 4.3: Final feature counts after feature extraction. 
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4.1.4 Normalization and differential expression analysis results  

In the previous phase, a subset of only 3Million reads were used for feature extraction. 

However, for the development of the graph-based feature selection model for phenotype 

prediction, the entire dataset with raw reads per sample ranging between 23 and 73 million 

was used. Preprocessing involved elimination of non-differentially expressed features and 

normalization. During differential gene (feature) expression analysis, 2,097 low-count 

features were filtered out from the total set of 11,089 features leaving a final tally of 

10,921 features. Features with a False discovery rate (FDR) < 0.05 are usually considered 

as being of biological significance (Von Der Weid et al., 2015).  

4.2 Graph construction  

4.2.1 Graph threshold and module detection results  

A scale-free topology weighted gene expression network was constructed using WGCNA 

based on a soft thresholding power (β). From candidate powers of between 1-20,  β=12 

returned a scale-free topology fit index and an adjacency matrix based on the criterion of 

approximate scale-free topology as shown in Figure 4.4a. Using the dynamic tree cutting 

algorithm, all the features were grouped into modules as shown in Figure 4.4b. The dataset 

had 12 modules, which ranged in size from 42 to 9325 genes per module. A global network 

was generated (Figure 4.4c). This network had 2,110 nodes and 4783 edges but a very low 

network density of 0.002 as shown in Figure 4.4d. 
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                    a              b 

      

             c                                                   d 

Figure 4.4: a) Scale-free fit index versus soft-thresholding power, b) Grouping of 

features into modules based on the expression patterns, c) Global network for all 

features, d) Global network statistics 

4.2.1.1 Correlation between modules 

Potential relationships between features in the turquoise, blue, brown, and yellow 

modules were explored by visualizing only the functionally annotated features in the form 

of a network (Figure 4.5a). Filtering was done to reduce the size of the network by 

excluding all the features with a degree value of less than 5. The final network had 51 

nodes and 148 edges (Figure 4.5b). 
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Figure 4.5a 

 

Figure 4.5b 

Fig. 4.5: a) Co-expression networks for the genes in the turquoise, blue, brown and 

yellow modules. b) Filtered co-expression network for the genes with a degree value 
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greater than five. Chemosensory genes are depicted in green, non-chemosensory in 

yellow and those with unknown function in grey (Figure 4.5a and 4.5b).  

    

                      Figure 4.5c    Figure 4.5d 

4.5c) Network summary statistics before filtering. 4.5d) Summary statistics after 

filtering.  

Filtering improved density of the network from 0.05 to 0.116 while overall clustering 

coefficient improved from 0.475 to 0.587 (Figure 4.5c and 4.5d). The degree, average 

shortest path length and clustering coefficient for the top genes with a node greater than 

8 are shown in Table 4.1.  
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Table 4.1: Network topology for the top genes with a node degree greater than 8.  

No.  Gene Symbol Clustering Coefficient Degree Betweenness Centrality 

1 Ahcy 0.47 11 0.06 

2 CAH3 0.53 11 0.07 

3 Ir64a 0.38 10 0.1 

4 Or67c 0.44 10 0.2 

5 Ir8a 0.6 10 0.03 

6 Or67a 0.29 10 0.08 

7 lqf 0.56 9 0.02 

8 mod(mdg4) 0.58 9 0.01 

9 Or30a 0.31 9 0.24 

10 Or45a 0.5 9 0.11 

11 Or85c 0.36 9 0.32 

12 CG11655 0.57 8 0.18 

13 Wdfy2 0.61 8 0.03 

14 Or82a 0.39 8 0.05 

15 Or2a 0.54 8 0 

16 Or67d 0.32 8 0.22 

17 Or45a 0.46 8 0.2 

18 Or63a 0.68 8 0.02 

19 Or56a 0.46 8 0.09 

20 Gr21a 0.43 8 0.14 

Genes CAH3, Ahcy, Ir64a, Or67c, Ir8a and Or67a can be regarded as the top hub genes 

since they had degree values above 10. Fourteen of the top 20 genes are associated with 

chemosensation, which is an important biological function in insects. Clustering 

coefficient of hub gene nodes ranged between 0.29 and 0.68 and this is an indication that 

some parts of the network were more intricately connected than others. Potential 

relationships between features were explored by visualizing them in the form of a network. 

Weighted gene co-expression network analysis is a statistical model that is used on 

biological data and works even on non-model organisms (Degli Esposti et al., 2019). 

Therefore, when WGCNA was used on G. m. morsitans data, the dimensionality of the 

data was reduced, and meaningful patterns could be extracted using network centrality 

measures. The resulting co-expression network was useful in selecting genes with 

significant connectivity patterns that are biologically meaningful. Node degrees helped 

identify two genes (CAH3 and Ahcy) that had a degree of 11 and therefore these can be 

https://doi.org/10.1038%2Fs41598-019-44203-5
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regarded as the top hub genes. In Drosophila melanogaster, CAH3 is a carbonate 

dehydratase involved in generation of protons and bicarbonate from carbonic acid 

(Overend et al., 2016). Ahcy is involved in methionine biosynthesis and metabolism 

(Brosnan & Brosnan, 2006). The observed betweenness centrality measures mean that 

some of the genes such as Teh2 and Ir21a which had values of 1 and 0.8 respectively 

would have more control over the network as compared to those with lower values. 

Therefore genes/nodes with high betweenness centrality values are more biologically 

informative in a module (Riquelme & Lubovac-Pilav, 2016). Closeness centrality 

measures for majority of the nodes were between 0.1 and 1, which means the resulting 

network was closely connected, while twenty-seven of the nodes in the network had a 

clustering coefficient of 1 an indication of complete node connection (Liu, 2018). 

4.3 Discretization results 

A set of 308 features identified as differentially expressed after exposure to either repellent 

(δ-nonalactone) or attractant (Ɛ-nonalactone) was further filtered to 180 features by the 

graph-based approach, 181 by PCA and 201 features by RFE. All these features were 

discretized for further analysis. A sample results of the discretized and transformed data 

is presented in a transaction format where the samples represent transaction IDs and 

features represent items (Figure 4.6).  

https://doi.org/10.1038%2Fsrep27242
https://scholar.google.com/scholar_lookup?title=The%20sulfur-containing%20amino%20acids:%20an%20overview&author=Brosnan&publication_year=2006
https://scholar.google.com/scholar_lookup?title=Gene%20co-expression%20network%20analysis%20for%20identifying%20modules%20and%20functionally%20enriched%20pathways%20in%20type%201%20diabetes&author=Riquelme%20Medina&publication_year=2016
https://scholar.google.com/scholar_lookup?title=Differential%20Coexpression%20network%20analysis%20for%20gene%20expression%20data&author=Liu&publication_year=2018
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Figure 4.6: A sample output of the discretization process. Count data is converted from 

continuous to discrete format. 

In this study, two states were considered during discretization where the value of zero 

represents no expression or not present and the value of 1 represents expression or present 

(Figure 4.6). Discretization is a dimensionality reduction technique which converts 

continuous values to discretized values. Another popular method is to employ a ternary 

set of discretization symbols, which are {−1, 1, 0}, representing downregulation, 

upregulation, or no change at all. Nonetheless, the values in matrix 𝐴′ can be discretized 

to an arbitrary number of symbols using a multilevel approach. The inference technique 

that relies on the discretized data determines the 'degree of discretization.' However, 

because the loss of information diminishes as 𝑘 grows in value, the computing complexity 

of the inference algorithm increases, the trade-off between loss of information and 

computational complexity may also play a role in determining the 'degree of discretization 

(Gallo et al., 2016) 

The discretized data is crucial for association rule mining especially when dealing with 

gene expression values which are continuous. Discretization facilitates generation of 

informative rules as well as reduction of computation resources such as memory during 
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rules generation. When performing discretization, biological and statistical condition must 

be met by discretization methods. The expression values must be divided into two classes 

that resemble lowly and highly expressed genes. The other condition is that discretization 

technique should ensure a sufficient distribution of genes across classes with minimal 

information loss (Lauria et al., 2020). 

4.4 Apriori Algorithm-Based Association rule analysis  

At a minimum support of 0.5 and a confidence of 0.99, only the features generated by a 

graph-based approach generated 801 rules. Features selected PCA and RFE feature 

selection approaches for this data provided zero rules at the provided minimum support.. 

These rules were further filtered using a lift of ≥ 2 to empirically retain only the highly 

dependent rules as the best results. Lift values lower than 2 or support values less than 0.5 

results into many redundant rules, however a support value greater than 0.5 resulted to no 

rules as per the Glossina dataset. Genes with no assigned biological function were of 

interest since the objective was to find out if association rule mining could help predict 

their phenotype. The anaysis therefore narrowed down to the rules that implied an 

association between known genes and those with no known function. Twenty-two 

representative rules are shown in Table 4.3.  
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Table 4.2: Association rules among genes that showed significant upregulation after 

exposure to an attractant (Ɛ-nonalactone).  

Set A shows association between genes with unknown function and chemosensation 

genes; Set B shows association between genes with unknown biological function and non-

chemosensation genes (Ɛ-nonalactone).  

No. Association rule Set 

1.  {Ir84a, Or2a, Or42a, Or56a} => {CG3679} 

A
 

2.  {Or2a, Or42a, Or56a, Or49b} => {CG3679} 

3.  {Ir84a, Or42a, Or56a, Or49b} => {CG3679} 

4.  {Or88a, Gr63a, CG5273, CG17572} => {CG18480} 

5.  {CG4950, Or88a, Gr63a, CG5273} => {CG18480} 

6.  {Or88a, Gr63a, CG17572, CG31663} => {CG18480} 

7.  {Or88a, Gr63a, CG5273, CG17572} => {CG31663} 

8.  {CG4950, Or88a, Gr63a, CG5273} => {CG31663} 

9.  {CG4950, Or88a, CG18480, Gr63a} => {CG31663} 

10.  {CG4950, Or88a, Gr63a, CG31663} => {CG17572} 

11.  {Or88a, Gr63a, CG5273, CG31663} => {CG17572} 

12.  {Or88a, Gr63a, CG17572, CG31663} => {CG5273} 

13.  {CG4950, Or88a, Gr63a, CG17572} => {CG5273} 

14.  {CG4950, Or88a, CG18480, Gr63a} => {CG5273} 

15.  {Tsf1, Scp1, vkg, Adgf.A} => {CG6126} 

B
 

16.  {Ppn, Sp7, NtR, Adgf.A} => {CG6126} 

17.  {vkg, Sp7, NtR, Adgf.A} => {CG6126} 

18.  {LanB2, Sp7, NtR, Adgf.A} => {CG6126} 

19.  {Sp7, NtR, Adgf.A, CG6126} => {CG3168} 

20.  {Ppn, NtR, Adgf.A, CG6126} => {CG3168} 

21.  {Idgf4, NtR, Adgf.A, CG6126} => {CG3168} 

22.  {Ppn, Sp7, Adgf.A, CG6126} => {CG3168} 

Association rules are represented as 𝑋 => 𝑌, where X and Y are items contained within a 

dataset/database and 𝑋 ∩ 𝑌 = ø. 𝑋 is the antecedent and 𝑌 is the (Table 4.3). This rule 

means that whenever X which is antecedent is present even Y which is consequent will 

be present. Support indicates the frequency of the itemset appearance in the dataset and 

the confidence indicates how often a rule has been found to be true. Support value of 0.5 

means 50% of the items (genes) are found in the transaction and 90% of the rule are true 

(Confidence). The lower support means that most of the items are not frequently found 

together. The lift value is used to measure the rule importance. A lift of greater than 2 

achieved by graph-based feature selection approach indicates the degree to which any two 
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occurrences depend on each other and this is an indication that those rules are useful in 

consequent prediction. Association rule mining enabled identification of itemset patterns 

based on the RNAseq genes expression patterns. The first 22 rules indicate that there is a 

relationship among the genes (itemsets) expression in each condition (transaction) with 

the following genes CG18480, CG31663, Ir84a, CG17572, CG5273, Gr63a, Or88a, 

Or49b, Or2a, Or56a, Or42a, CG3679, Adgf-A, NtR, teq, NimB4, Scp1, CG3168, 

CG6126, Ppn, vkg, LanB2, Tsf1, scf, Sp7 and Idgf4 always being up or downregulated 

in response to either repellent (δ-nonalactone) or attractant (Ɛ-nonalactone). The 

identified rules in this study are biologically significant based on the concept that similar 

items as in market basket analysis appear together is clearly shown in the results. For 

example, where the genes CG18480, CG31663, CG17572, CG5273 and CG3679 referred 

to as consequents (right side) were up (highly expressed), all the genes on the rule 

antecedent (left side) were also up. The rest of the rules can be interpreted in a similar 

manner. Genes Ir84a, Gr63a, Or88a, Or49b, Or2a, Or56a and Or42a are involved in 

chemosensation in insects. However, genes CG18480, CG31663, CG17572, CG5273 and 

CG3679 that are co-expressed with the chemosensation genes have no assigned biological 

function. Therefore, it is possible that these genes also play a role in chemosensation due 

to their co-expression and association with chemosensory genes. Only two genes 

(CG3168 and CG6126) were associated with the top non-chemosensory genes that were 

upregulated due to exposure to an attractant. A lift value greater than 2 in generating the 

rules because values greater than 1 indicate that consequent and antecedent are dependent 

on one another (Ahmadon & Yamaguchi, 2018).  

4.5 Model validation results  

To validate the model, two cancer datasets described in the methodology were used. Both 

datasets had 28,089 initial features as summarized in Table 4.3. Preprocessing involved 

elimination of non-differentially expressed genes and normalization which resulted in 

12.2% features for small-cell lung cancer and 43.2% features for non-small-cell lung 

cancer after preprocessing. Thereafter, three feature-selection approaches were used to 

further filter the features to retain only informative features. RFE retained the highest 
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number of features in both datasets followed by PCA as shown in Table 4.3 and Figure 

4.7. 

Table 4.3: Output from normalization and feature selection using PCA, RFE and 

graph-based approaches. 

   Feature Selection method 

Dataset Number of Features Preprocessed Graph PCA RFE 

GSE60052 28,089 3423 (12.2%) 80 86 198 

GSE81089 28,089 12,145 (43.2%) 134 208 270 

 

 

GSE60052            GSE81089 

Figure 4.7: Features selected by each of the methods from the two datasets. 

 

A graph-based feature-selection approach retained 80 for the SCLC dataset and 134 

features for the NSCLC dataset. Among the three feature selection methods, 14 similar 

features were picked for GSE60052 dataset and only two similar features were picked by 

all feature selection methods as shown in figure 4.7. features selected by the graph are 

fewer and this can be attributed to its working principle where it only considers the 
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connecting features. The other reason is the extra filtering step using maximal cliques 

which is not done by other feature selection methods. This leads to retention of only the 

features that have the highest maximal clique score. Figure 4.8 presents the networks for 

the two datasets before and after filtering using maximal cliques. The networks were 

filtered using MCC technique to obtain a reduced network. Filtering changed the network 

density as well as the overall clustering coefficient in both networks as shown in Figure 

4.9 c and d.  

 

       Dataset GSE81089 
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Dataset GSE81089 

Figure 4.8: Network diagrams for the 2 datasets: a) network before filtering while, b) 

networks after filtering with maximal clique. On the filtered networks, different colors 

denote expression levels with red color showing features that were highly expressed.  

4.6 Association Rule Mining 

Features from PCA, RFE and graph-based selection methods were discretized and 

analyzed to find possible associations using Apriori. The resulting number of rules, 

maximum confidence, support, and lift values are summarized in Table 4.5.  
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Table 4.4: Rules generated using Apriori from features selected using three 

different approaches 

Dataset 
Selection 

Method 
Support Confidence Lift No. of Rules 

Non-Redundant 

Rules 

GSE60052 

Graph-based  0.5 0.9 2 19 15 

PCA 0.4 0.9 2 38 38 

RFE 0.3 0.9 1.98 357,986 112,357 

GSE81089 

Graph-based  0.5 0.9 2 36 36 

PCA 0.4 0.9 1 121 121 

RFE 0.4 0.9 1 899 884 

As shown in Table 4.4, a graph-based feature-selection approach gave 15 and 36 non-

redundant rules, respectively, from the two datasets at a support of 0.5 confidence value 

of 0.9 and a lift of 2. PCA and RFE feature-selection methods did not generate any rules 

at a support of 0.5. Features selected by RFE had the lowest maximum support and lift, 

and this led to the generation of too many redundant rules. The lower support as provided 

by RFE feature selection approach implies that the features selected by this method were 

negatively correlated. For the PCA-based feature selection, support ranged between 0.405 

and 0.425 with a total of 38 rules for the first dataset and 36 rules for the second dataset 

(Table 4.5) In the validation dataset, the maximum support that could generate rules 

was 0.5 and this means that the rules were positively correlated. Association rules are 

represented as 𝑋 => 𝑌, where X and Y are items contained within a dataset/database, and 

𝑋 ∩ 𝑌 = ø. 𝑋 is the antecedent, and 𝑌 is the consequent. It means that whenever X, which 

is the antecedent, is present, even Y, which is the consequent, will be present. Support 

indicates the frequency of the itemset appearance in the dataset, and the confidence 

indicates how often a rule has been found to be true. A support value of 0.5 means 50% 

of the items (genes) are found in the transaction and 90% of the rules are true 

(Confidence). Lower support values mean that most of the items are not frequently found 

together. Lift value is used to measure the rule importance. A lift of greater than 2 achieved 

by the graph-based feature-selection approach combined with MCC filtering approach 

indicates the degree to which any two occurrences depend on each other, and this is an 

indication that those rules are useful in consequent prediction. In association rule mining, 
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the choice of parameters which are support, confidence and lift really affects the quality 

and number of rules generated.  When the thresholds settings are too high, the rules 

obtained become very few or none and when the threshold setting is too low, very many 

redundant rules are generated. Infrequent item sets were utilized by Mahmood et al., 

(2014) to determine positive and negative association rules. Positive association rule 

mining removes often occurring things or item sets, but it is possible that many critical 

items or item sets with low support be rejected. Despite their modest support, these 

occasional items or item sets can induce significant negative association rules. Although 

negative association rule mining is crucial, the search space for negative association rule 

mining is larger than the search space for positive association rule mining since objects 

with low support must be kept. This makes it substantially difficult for typical Apriori 

algorithm sequential implementations. In Bagui & Dhar, (2019), experiments were 

repeated at different support values while keeping the confidence constant at 95% to 

estimate the appropriate support and confidence values to employ for the trials. The 

original 1.5 GB dataset, 1 master node, and 5 slave nodes, as well as the default block size 

of 64 MBs, were employed for this series of trials. Authors tested their method at 15 

percent, 20 percent, 30 percent, and 40 percent minimum support levels. Authors reported 

that for lesser degrees of support and confidence, there are more rules. 

Classification was used as an extra validation approach. NB gave the lowest classification 

accuracy when all features were used for classification. A study by Furat & Ibrikci (2019) 

used five tumor types of gene expression cancer RNA-Seq data and, using Naïve Bayes 

with 10-fold cross validation, achieved an accuracy of 98.7516%. This shows that NB 

accuracy levels will vary with the dataset being analyzed. In dataset GSE81089, which 

had a larger sample size of selected features, SMO and MLP achieved 100% accuracy 

when feature selection was performed prior to classification, and in fact, the PCA-selected 

features could be classified at 100% accuracy by all three classifiers. In the smaller dataset, 

SCLC dataset, accuracy levels were also lower. Notable is that a graph-based feature-

selection approach gave the best classification results in the two datasets and took the least 

time to execute As described in the methodology, four graph filtering techniques which 
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are MCC, EPC, ECC and degree were evaluated. The Graph was filtered using those four 

approaches and generated rules to test the best approach for graph filtering based on the 

maximum support of the rules.  

 

Figure 4.9a: Summary of rules with lift and support MCC 
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Figure 4.9b: Rules maximum support and lift after filtering using Edge Percolated 

Component 
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Figure 4.9c: Rules maximum support after filtering using ECC 
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Figure 4.9d: Rules maximum support after filtering using Degree  

ARM results with support and lift for graph filtering techniques represents balloon plot 

with antecedent grouped as columns and consequents grouped as rows. The total number 

of antecedents and the most important (frequent) items in the group are displayed as the 
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labels for the columns. The size of each balloon shows the support value and the bigger 

the balloon size the larger the support value. The red color of balloons represents the lift 

and the brighter the color of balloons are, the larger value for the lift in that group. The 

maximum support of the rules generated after filtering the network using maximal clique 

was 0.5 and a lift of 2. These rules were positively correlated (Figure 4.9a). However, the 

maximum support and lift after filtering using Edge Percolated Component and ECC were 

0.11 and 0.13 depicting negatively correlated rules (Figure 4.9b, 4.9c). Filtering using 

degree gave the highest support but the lift was lower than others. This makes maximal 

clique filtering approach the optimal solution due to the positive correlation of the rules 

and the high dependency of the frequent item sets as depicted by the lift. 

Table 4.5: A summary of top ten rules generated from the two datasets after graph-

based feature selection. 

GSE60052    

Rules Support Confidence Lift 

X Y    

{SFTPA1, SDC4, LRRK2} => {SLC34A2} 0.5 0.9 2 

{ACVRL1, COL4A3, AQP1} => {SLC34A2} 0.5 0.9 2 

{EDNRB, SFTPC, AGER} => {SLC34A2} 0.5 0.9 2 

{PTPRB, SFTPC, CLDN5} => {SLC34A2} 0.5 0.9 2 

{EPAS1, EDNRB, LRRK2, AQP1} => {SLC34A2} 0.5 0.9 2 

{CLDN18, EPAS1, SFTPA1, AGER} => {SLC34A2} 0.5 0.9 2 

{EPAS1, NAPSA, LRRK2, AGER} => {SLC34A2} 0.5 0.9 2 

{TIMP3, CTSH, SFTPA1, LRRK2} => {SLC34A2} 0.5 0.9 2 

{CTSH, NAPSA, TGFBR2, SFTPC} => {SLC34A2} 0.5 0.9 2 

{RRAS, PTPRB, YAP1, SMAD6} => {SLC34A2} 0.5 0.9 2 

GSE81089    

Rules Support Confidence Lift 

X Y    

{ASPM, KIF4A, NUF2} => {CENPF} 0.5 1 2 

{ASPM, KIF4A, CDC6, NUF2} => {TOP2A} 0.5 1 2 

{ASPM, CDC6, CDC20, NUF2} => {TOP2A} 0.5 1 2 

{ASPM, CDC6, CDCA8, NUF2} => {TOP2A} 0.5 1 2 

{TPX2, FOXM1, NUF2, IQGAP3} => {BIRC5} 0.5 1 2 

{CDC6, FOXM1, CDC20, UBE2C} => {TPX2} 0.5 1 2 

{ASPM, CDC6, DLGAP5, NUF2} => {TOP2A} 0.5 1 2 

{TPX2, CDCA8, UBE2C, IQGAP3} => {BIRC5} 0.5 1 2 

{ASPM, KIF4A, CDC6, UBE2C} => {CENPF} 0.5 1 2 

{TPX2, CDC6, FOXM1, IQGAP3} => {BIRC5} 0.5 1 2 
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In transactional databases, relational databases, and other information repositories, the 

association rule is used to find common patterns, associations, and correlations among 

collections of items. Frequent item creation and association rule generating processes are 

crucial in association rule mining. All frequent sets of items are discovered via frequent 

item generation, which is defined as itemset with at least minimal support. Association 

rules are generated from these frequently occurring items. The output of graph filtering 

using MCC and the features generated were used for mining association rules.  

4.7 Classification as an alternative feature selection method  

In the next step, the performance of three classifiers was compared with the features 

selected in the previous step as input while the raw features were the baseline. Table 4.6 

summarizes the performance of the various classifiers before and after feature selection. 

The accuracy value, root mean squared error (RMSE), mean absolute error (MAE), kappa 

statistic (KS) and the time taken to build the model for every classifier, arising from the 

10-fold cross validation are given. Overall, accuracy levels after selection ranged between 

94.186 and 100% depending on the classification method used and the dataset (Table 4.6). 
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Table 4.6: Classification results after feature selection. 

NAÏVE BAYES 

Dataset Feature Selection Method Accuracy MAE Kappa RMSE 
F-

Measure 
T/s 

GSE60052 

Graph-based 96.4286 0.0357 0.8679 0.189 0.963 0.01 

RFE 100 0 1 0 1 0.01 

PCA 96.4286 0.0357 0.8679 0.189 0.963 0.02 

GSE81089 

Graph-based 100 0 1 0 1 0.06 

RFE 100 0 1 0 1 0.01 

PCA 100 0 1 0 1 0.02 

MULTILAYER PERCEPTRON 

Dataset Feature Selection Method Accuracy MAE Kappa RMSE 
F-

measure 
T/s 

GSE60052 

Graph-based 96.4286 0.0366 0.8679 0.1814 0.979 18.66 

RFE 96.4286 0.0389 0.8679 0.1851 0.963 9.7 

PCA 96.4286 0.0224 0.8679 0.0993 0.963 9.62 

GSE81089 

Graph-based 96.4286 0.0389 0.8679 0.1851 0.963 124.15 

RFE 100 0 1 0 1 131.53 

PCA 100 0 1 0 1 0.77 

SEQUENTIAL MINIMAL OPTIMIZATION 

Dataset Feature Selection Method Accuracy MAE Kappa RMSE 
F-

measure 
T/s 

GSE60052 

Graph-based 96.4286 0.0357 0.8679 0.189 0.889 0.01 

RFE 96.4286 0.0357 0.8679 0.189 0.963 0.01 

PCA 100 0 1 0 1 0.02 

GSE81089 

Graph-based 98.5915 0.0141 0.9567 0.1187 0.986 0.14 

RFE 100 0 1 0 1 0.01 

PCA 100 0 1 0 1 0.01 
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NB performed better on features selected using PCA and a graph-based approach whereby 

accuracy, MAE, kappa and time taken improved as compared to unfiltered features and 

RFE-selected features where there was no difference. This can be attributed to the working 

principle of RFE where the optimal number of features is not known apriori (in advance) 

(Artur,2021). A Kruskal–Wallis test showed that there is no significant difference between 

the mean ranks of the groups (𝑝 <  0.05), i.e., 20 iterations for each of the feature-

selection methods.  

 

Figure 4.10: comparison of classifiers accuracy before and after feature selection for 

dataset GSE60052 

Figure 4.10 shows classifier performance for data set GSE60052 and according to the 

results, PCA-SMO and RFE-NB gave an accuracy of 100% and to note is the consistency 

in classifier accuracy for the proposed graph-based feature selection approach across all 

three classifiers. The time required to build the model improved after feature selection 

across the three classifiers though MLP required the longest duration and a graph-based 

approach the shortest (Table 4.6). 
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Figure 4.11: comparison of classifiers accuracy before and after feature selection for 

dataset GSE81089 

Results for dataset GSE81089 demonstrate that there is clear evidence of model accuracy 

improvement when graph - based, RFE and PCA based feature selection approaches were 

used. The findings also revealed a considerable performance difference across feature 

selection algorithms with accuracy percentages ranging between 96.4 to 100%. As the 

number of features rises, the classier performance is affected in terms of time taken to 

generate a model (Table 4.6). Adlakha & Chhikara, (2016) in their study, increased the 

data size and reported that the accuracy level of SMO classifier remained the same when 

there was no feature selection technique is used. Their findings differ from those of this 

study in that there was an increase of 3.5% in accuracy for SMO and MLP after applying 

graph based, PCA and RFE feature selection. NB classifier had the highest accuracy when 

all features were used for classification. Zaffar et al., (2017) used student dataset and 

reported no significant change in classifiers when feature selection algorithms were 
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applied other than the principal components feature selection approach when it was 

combined with Random Forest classifier. Mohammed et al., (2020) used three classifiers’ 

algorithms among them NB, and SMO on two different datasets of the breast cancer. Just 

like the findings in this study, they reported classifier improvement after feature selection 

before classification. Another improvement in classifiers accuracy after feature selection 

was reported in Basker et al., (2021) where WBC dataset was used for analysis. SMO 

classifier was reported to improve from 71.68 % before feature selection to 99.56% after 

feature selection. Another classifier that was reported to improve in accuracy after feature 

was NB from 86.52% to 99.12 % after feature selection.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 

5.1 Conclusions  

This study proposed a graph-based feature selection model and association rule mining 

for phenotype prediction in high-dimensional protein data. RNAseq data generated by 

next generation sequencing technologies is characterized by large volume and velocity. 

Therefore, the first objective was to analyze techniques for feature extraction and selection 

in high dimensional RNAseq data. This data is curated for quality and mapped to a 

reference genome (animal or plant). The mapping step is usually very critical and is 

determined by the data quality and the bioinformatic data structure used. The window-

based algorithm performed better than k-mer-based and running sum algorithm at the 

trimming step while Burrow’s Wheeler algorithm accurately mapped the highest number 

of reads. 

For the second objective PCA, RFE and graph-based feature selection methods were 

evaluated for their performance when selecting features from RNA-Seq data. RNAseq 

data is derived from living systems and usually the features interact or influence the 

observed phenotype. Based on the results, it can be concluded that a graph-based feature 

selection approach was the most suitable method because because 1) only informative 

features are selected from the high dimensional data based on their associations in the 

graph (nodes and edges). 

The concept of association rule mining derived from market basket analysis is an 

important data mining approach to extract inherent relationships between itemsets. The 

features selected using the graph showed strong association based on the rules generated. 

The findings from this study demonstrate that a graph-based feature selection approach 

combined with association rule mining can be very useful in biomarker discovery or 



147 

disease phenotype prediction based on gene expression levels. This was validated using 

an independent Cancer dataset.  

5.3 Recommendations for future work 

In this study RNAseq data was used for analysis. However, we would recommend: 

1. Further research using other forms of RNA data such as Single-cell RNA 

sequencing (scRNA-seq) and time series data. This will cover other types of 

biological data for the purpose of the proposed model validation. 

2. Use of more feature selection and machine learning approaches on RNAseq data 

and test the correlation of the generated rules. There are many features selection 

approaches that can be used in dimensionality reduction of the biological data and 

compare the strength of the rules generated based on the support and confidence 

measures  

3. In vitro validation of the selected features with no assigned biological function by 

the life scientists to confirm their function. Since this experiment was 'in silico' 

which is the application of computational approaches to model, predict, and 

explain biological function. Validation in a wet lab is recommended  
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