# RISK PREDICTION AND FACTORS ASSOCIATED WITH CARDIOVASCULAR DISEASES AMONG WORKERS AND THEIR SPOUSES IN TWO BEVERAGE PROCESSING INDUSTRIES IN RWANDA 

## CHARLES NSANZABERA

# DOCTOR OF PHILOSOPHY 

(Public Health)

## JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY

# Risk Prediction and Factors Associated with Cardiovascular Diseases among Workers and their Spouses in Two Beverage Processing Industries in Rwanda 

Charles Nsanzabera

A Thesis Submitted in partial fulfilment of the requirements for the degree of Doctor of philosophy in public health of the Jomo

Kenyatta University of agriculture and technology

## DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

Signature. $\qquad$ Date $\qquad$

## Charles Nsanzabera

# This thesis has been submitted for examination with my/our approval as University Supervisor 

Signature. $\qquad$ Date $\qquad$

Dr. Daniel Nyamongo Sagwe, PhD

JKUAT, Kenya


Dr. Marcel Ndengo, PhD

UoR, Rwanda

## DEDICATION

To the powerful Father of wisdom.

To my beloved wife Lilian and my two daughters: Eden Norah and Eden Naelle.

To my beloved parents, brothers, and sisters.

## ACKNOWLEDGEMENT

My sincere gratitude goes to the almighty God who granted me this brilliant opportunity of digging deep throughout this PhD journey. I also want to reverently extend my thanks to my supervisors Dr. Daniel Nyamongo Sagwe, Dr. Marcel Ndengo for their consistent and devoted correction and support. I extend my gratitude to Dr. Patrick Mulyungi who helped me to stay connected with the University throughout the journey of research seminars, and corrections.

I equally express my thanks to Dr. Jean Pierre Kabarega, Dr. Erigene Rutayisire, Dr. Laurence Rugema and Mr. Felix Hagenimana for their assistance and orientation. Humble thanks to the late Professor Peter Kabanya Mwaniki for his fundamental support to this work. I again want to express my earnest gratitude to Jomo Kenyata University of agricultural and technology for their eagle teaching approach that is taking us to African flying next generation.

I would also extend my special thanks to Mrs. Jeanne d'Arc Uwimana, Mrs. Mariette Bibebityo, Mrs. Marie Clarisse Ingabire, Mr. Etienne Ahobantegeye, Mr. Maurice Mulindwa, Mrs. Liliane Irakoze, Ms. Marie Louise Uwamahoro, Ms. Betty Uwiragiye, Mr. Claude Igiraneza for your tremendous contribution and encouragement to fulfil this endeavor.

## TABLE OF CONTENTS

DECLARATION ..... II
DEDICATION ..... III
ACKNOWLEDGEMENT ..... IV
TABLE OF CONTENTS ..... V
LIST OF TABLES ..... XII
LIST OF FIGURES ..... XIX
LIST OF APPEDICES ..... XX
ABREVIATIONS AND ACRONYMS ..... XXI
DEFINITION OF OPERATIONAL TERMS ..... XXIV
ABSTRACT ..... XXVI
CHAPTER ONE ..... 1
INTRODUCTION ..... 1
1.1 Background of the study ..... 1
1.2 Statement of the problem ..... 4
1.3 Justification of the study ..... 6
1.4 Objectives ..... 8
1.4.1 General objective ..... 8
1.4.2 Specific Objectives ..... 8
1.5 Research questions ..... 8
1.6 Variable of the study ..... 9
CHAPTER TWO ..... 10
LITERATURE REVIEW ..... 10
2.1 Cardiovascular diseases of the study interest for risk prediction ..... 10
2.1.1 Coronary heart disease ..... 10
2.1.2 Heart Failure ..... 11
2.1.3 Stroke ..... 11
2.1.4 Peripheral vascular diseases ..... 12
2.2 Cardiovascular diseases Risk ..... 13
2.2.1 Risk prediction ..... 13
2.2.2 Cox regression formula ..... 14
2.2.3 Ankle brachial index ..... 16
2.3 Cardiovascular diseases risk factors ..... 17
2.3.1 Social-demographic risk factors ..... 18
2.4 Behavioral risk factors ..... 19
2.4.1 Smoking ..... 20
2.4.2 Physical inactivity ..... 20
2.4.3 Poor dietary habits ..... 21
2.4.4 Alcohol consumption ..... 23
2.4.5 Cardiovascular diseases and soft drink ..... 23
2.5 Workplace condition risk factors to cardiovascular diseases ..... 25
2.5.1 Psycho-social risk factors ..... 25
2.5.2 Physical hazards ..... 27
2.5.3 Chemical hazards ..... 30
2.6 Biological risk factors to cardiovascular diseases risk ..... 40
2.6.1 Metabolic syndrome ..... 40
2.6.2 Hypertension ..... 41
2.6.3 Diabetes ..... 42
2.6.4 Dyslipidemia ..... 43
2.6.5 Overweight, obesity, and central obesity ..... 46
2.7 Novel risk factors to cardiovascular diseases ..... 52
2.7.1 Fasting blood glucose ..... 52
2.7.2 Serum Uric Acid ..... 52
2.7.3 C reactive protein ..... 53
2.8 Cardiovascular diseases prevention ..... 53
2.8.1 Pre-employment and redeployment after CVD event experience. ..... 54
2.8.2 Redeployment at work after the heart disease development ..... 54
2.9 Cardiovascular diseases and the community ..... 56
2.10 Conceptual framework ..... 60
2.11 Assumption of the study ..... 62
CHAPTER THREE ..... 64
MATERIALS AND METHODS ..... 64
3.1 Study site ..... 64
3.2 Study design ..... 64
3.3 Study limitation ..... 64
3.4 Study population ..... 65
3.4.1 Inclusion criteria. ..... 65
3.4.2 Exclusion criteria ..... 65
3.5 Sample size determination ..... 65
3.5.1 Cochran formula for general sample size determination ..... 66
3.5.2 Proportionate stratification formula for stratum sample size ..... 67
3.6 Sampling techniques ..... 67
3.7 Data collection Instruments ..... 68
3.7.1 Research Tool: Questionnaires ..... 68
3.7.2 Research Materials and procedures for clinical and anthropometric measures ..... 68
3.7.3 Laboratory methods and quality ..... 70
3.7.4 Prediction models ..... 71
3.8 Validity and reliability of research instruments ..... 77
3.8.1 Validity ..... 77
3.8.2 Reliability ..... 78
3.9 Data management and analysis ..... 78
3.10 Ethical consideration ..... 80
CHAPTER FOUR ..... 81
RESULTS ..... 81
4.1 Demographic characteristics of the study participants ..... 81
4.2 Levels of the 10-year cardiovascular diseases risk predicted among the study participants of Kicukiro soft drink plant and Rubavu Brewery plant ..... 83
4.2.1 The 10 -year cardiovascular diseases risk prediction by Framingham risk score and WHO/ISH ..... 83
4.2.2 Framingham general risk score and WHO/ISH model's comparison ..... 85
4.3 Proportion of behavioral factors associated with cardiovascular diseases among the study participants of Kicukiro soft drink plant and Rubavu Brewery plant ..... 87
4.3.1 Level of smoking behavior risk factor to cardiovascular diseases ..... 87
4.3.2 Alcohol consumption behavior of the study participants ..... 89
4.3.3 Level of fruits intake and servings amongst the study participants ..... 96
4.3.4 Level of vegetable's intake: weekly and servings for participants in the study area ..... 97
4.2.5 Level of oil intake amongst the study participants in the study ..... 98
4.3.6 Physical activities for the study participants based on frequency, duration, and intensity of energy expenditure ..... 100
4.3.7 Sitting time /sedentarity for the study participants ..... 105
4.4 Proportion of working condition factors associated with cardiovascular diseases among workers of Kicukiro soft drink and Rubavu Brewery plant . ..... 109
4.4.1 Workplace condition factors for workers in the study area ..... 109
4.4.2 Association of working conditions to cardiovascular diseases risk ..... 127
4.5 Level of awareness of traditional cardiovascular diseases Risk factors and use of Personal protective equipment among the participants ..... 129
4.5.1 Level of Awareness amongst participants in the study ..... 129
4.5.2 Level of PPE wearing and correlation to cardiovascular diseases risk ..... 130
4.6 Proportion of people with biological factors among the study participants in the study area ..... 133
4.6.1 Hypertension ..... 133
4.6.2 Diabetes. ..... 140
4.6.3 Overweight, obesity, and central obesity for study participants in study area ..... 143
4.6.4. Dyslipidemia for all participants in the study area ..... 146
4.6.5 Metabolic syndrome for all participants in the study area ..... 150
4.7Cardiovascular diseases traditional risk factors and novel risk differentials among the study participants in the study area ..... 156
4.7.1 Novel risk factors to cardiovascular diseases risk ..... 156
4.7.2 Traditional risk factors to cardiovascular diseases risk ..... 158
CHAPTER FIVE ..... 166
DISCUSSION, CONCLUSION AND RECOMMENDATION ..... 166
5.1 Levels of the 10 -year cardiovascular diseases risk predicted and models comparison among the study participants in the study area ..... 166
5.2 Proportion of behavioral factors associated with cardiovascular diseases among the study participants in the study area ..... 168
5.2.1 Level of smoking behavior for participants in the study area ..... 168
5.2.2 Alcohol consumption behavior of the study participants ..... 169
5.2.3 Level of fruits intake (weekly and servings intake) for participants in the study area ..... 170
5.2.4 Level of vegetable's intake (weekly and servings) for participants in the study area ..... 171
5.2.5 Level of Oil intake for study participants in the study area ..... 171
5.2.6 Physical activities for the study participants based on frequency, duration, and intensity of energy expenditure ..... 172
5.2.7 Sitting time /sedentarity for the participants in the study area ..... 174
5.3 Work condition factors to CVDs risk in the study area ..... 175
5.3.1 Proportion of working condition factors for workers in the study area ..... 175
5.3.2 Association of working conditions to cardiovascular diseases risk ..... 179
5.4 Awareness on traditional Risk factors and Personal protective equipment usage among the study participants in the study area ..... 180
5.4.1 Awareness on hypertension, diabetes, and dyslipidemia as prominent risk factors to CVD risk for all participants in the study area ..... 180
5.4.2 Workers using personal protective equipment (PPE) for prominent worksite hazards exposure to noise and chemical handling ..... 181
5.5 Proportion of people with biological factors among the study participants in the study area ..... 182
5.5.1 Hypertension ..... 182
5.5.2 Diabetes ..... 185
5.5.3 Overweight, Obesity and Central obesity for study participants in study area ..... 186
5.5.4 Dyslipidemia for all participants in the study area ..... 187
5.5.5 Metabolic syndrome for all participants in the study area ..... 188
5.6 Cardiovascular diseases traditional risk factors and novel risk differentials among the study participants in the study area ..... 189
5.6.1 Novel risk factors to cardiovascular diseases risk ..... 189
5.6.2 Traditional risk factors to cardiovascular diseases risk. ..... 190
5.7 Conclusions ..... 193
5.8 Recommendations ..... 194
5.9 Suggestion for further studies ..... 196
5.10 Contribution of the current study to learning ..... 196
REFERENCES ..... 199
APPENDICES ..... 244

## LIST OF TABLES

Table 2.1: Gender and age-specific waist circumference cut-offs ............................ 47
Table 2.2: Body mass index relation to waist circumference as reference to central adiposity ..... 48
Table 3.1: Target population of the study ..... 65
Table 3.2: The proportions of the sample by workers and spouses in each drink processing plant ..... 67
Table 3.3: Cardiovascular diseases score sheet for man ..... 73
Table 3.4: Cardiovascular points toward the risk percentage for man ..... 74
Table 3.5: Cardiovascular diseases score sheet for women ..... 75
Table 3.6: Cardiovascular points toward the risk percentage for woman ..... 76
Table 4.1: Socio-demographic characteristic of respondents ..... 81
Table 4.2: Distribution of cardiovascular diseases risk predictors ..... 83
Table 4.3: Cardiovascular diseases risk stratification by age and gender for two models. ..... 84
Table 4.4: Level of agreement of Framingham general risk prediction model andWorld Health organization/International Society of hypertension modelby Cohen kappa87
Table 4.5: Proportion of people with smoking behavior in the study participants ..... 88
Table 4.6: Bivariate analysis of smoking by gender ..... 89
Table 4.7: Proportion of behavioral alcohol consumption in the study participants ..... s. 90

Table 4.8: Level of beer $5 \%$ intake, 12 Oz glass of $354 \mathrm{ml}=1$ Standard with 14 gr of
pure alcohol consumption in the study participants by status and gender.
............................................................................................................... 91

## Table 4.9: Level of alcohol consumption in 143 ml of wine $12 \%$ in 30days amongst the study participants by status and gender <br> 92

Table 4.10: Level of alcohol in 44 ml of liquor consumption in 30 days amongst the study participants by status and gender ..... 93
Table 4.11: Largest standard alcohol intake mean value on one occasion of alcohol drinking by age and gender for only drinker in last 30 days ..... 94
Table 4.12: Excess of Alcohol standard intake mean value of times taken 5 and more standard drinks for a man, 4 and more standard drink for a woman by age and gender for only drinkers for 30 days ..... 95
Table 4.13: Bivariate analysis of times consumed four or more alcoholic drinks for women and five or more for men with gender and age. ..... 96
Table 4.14: Proportion of fruits intake by status and gender ..... 97
Table 4.15: Proportion of vegetable's intake by status and gender ..... 98
Table 4.16: Proportion of source of oil, type of oil, nutrient content, and temperaturemarkings for oil usage in the study participants99

Table 4.17: Bivariate analysis of physical activity with vigorous and moderate intensity spent at work by gender101

Table 4.18: Bivariate analysis of physical activity: going to and from places on feet or bicycle by gender102

Table 4.19: Bivariate analysis of physical activity with vigorous intensity spent by sport, fitness, and leisure for recreational by gender
Table 4.20: Proportion of physical activity with moderate intensity spent by sport, fitness, and leisure for recreational by gender 104
Table 4.21: Levels of metabolic equivalent of study participants (MET) by age, location, occupation status and gender ..... 105
Table 4.22: Prevalence of sedentary and metabolic syndrome ..... 106
Table 4.23: Association of sitting time with metabolic diseases ..... 106
Table 4.24: Association of sitting time with cardiovascular diseases risk (FGRS) ..... 107
Table 4.25: Association of sitting time with metabolic syndrome components ..... 107
Table 4.26: Bivariate analysis of sitting time and other factors to cardiovascular diseases risk ..... 108
Table 4.27: Distribution of regular shift work and regular night shift ..... 109
Table 4.28: Bivariate analysis of regular night shift and occupation ..... 110
Table 4.29: Bivariate analysis of night shift and cardiovascular diseases risk (FGRS model) ..... 110
Table 4.30: Prevalence of physical working hazards concerning working conditions of the study participants ..... 111
Table 4.31: Bivariate analysis between physical hazard factors to cardiovascular diseases risk and gender ..... 112
Table 4.32: Bivariate analysis of physical hazards factors to cardiovascular diseases and age ..... 113
Table 4.33: Analysis of physical hazards factors by Workstations. ..... 114
Table 4.34: Role and performance-based stress level amongst workers in the study area ..... 115
Table 4.35: Pressure or workload-based stress amongst workers participants 116
Table 4.36: Workplace behavior-based stress ..... 118
Table 4.37: Prevalence of stress and relationship by gender and age among the employees ..... 120

Table 4.38: Association between Stress levels and cardiovascular disease's risk by FGRS123
Table 4.39: Stress levels association with cardiovascular disease's risk by WHO/ISHscore chart123

Table 4.40: Distribution of hazardous chemicals by the area of handling/ encountering hazardous substances124

Table 4.41: Prevalence of workplace chemical hazard exposure (Chemical handling, Dust, Fumes, or reagents) and relationship with gender and age126

Table 4.42: Association of working conditions to cardiovascular diseases risk by Framingham general risk score model 128

Table 4.43: Association between working conditions and cardiovascular diseases risk by WHO/ISH score chart model128

Table 4.44: Level of awareness among participants concerning hypertension and diabetes as prominent risk factors to cardiovascular diseases 129

Table 4.45: Proportion of workers using Personal protective equipment (PPE) against prominent worksite hazards exposure (noise and chemical handling by department) 130

Table 4.46: Distribution of non-parametric correlation test statistic for cardiovascular disease and PPE usage for all employees (total employees:TE) 131
Table 4.47: Correlation for non-parametric test for CVD risk and PPE Wearing by Noise and chemical 132
Table 4.48: Distribution of mean systolic and diastolic blood pressure ( mmHg ) by age and gender ..... 133
Table 4.49: Hypertension prevalence of previous and update classification of blood pressure by gender and age group among study participants ..... 134
Table 4.50: Prevalence of Hypertension by site, and status of study participants ..... 135
Table 4.51: Distribution of normal blood pressure (BP), hypertension, systolic and diastolic isolated hypertension by status of participants ..... 136
Table 4.52: Distribution of hypertensive patients in comparison with combinants anti-hypertensive therapy ..... 137
Table 4.53: Association of modifiable and non-modifiable risk factors to hypertension ..... 139
Table 4.54: Bivariate analysis of blood sugar categorization/normal, prediabetes, and diabetes by gender ..... 140
Table 4.55: Distribution of mean blood sugar $\mathrm{mg} / \mathrm{dl}$ and glycosylated hemoglobin (HBA1C \%) by age and gender ..... 141
Table 4.56: Distribution of diabetic drugs by gender in the study participants ..... 142
Table 4.57: Bivariate analysis body fat accumulation (BMI category) of the study participants by gender ..... 143
Table 4.58: Bivariate analysis of waist circumference (Central fat accumulation) and gender of the study participants ..... 144
Table 4.59: Distribution of mean value and standard deviation of waist to hip ratio (WHR) of the study participants ..... 145
Table 4.60: Bivariate analysis of body fat distribution of WHO cut points of WHR by gender of the study participants 145
Table 4.61: Bivariate analysis of body fat distribution of very high waist hip ratio (WHR) by gender of the study participants ..... 146
Table 4.62: Distribution of mean value of total cholesterol and triglycerides in $\mathrm{mg} / \mathrm{dl}$ by age and gender ..... 147
Table 4.63: Distribution of mean value of high-density lipoprotein and low-density lipoprotein in $\mathrm{mg} / \mathrm{dl}$ by age and gender ..... 148
Table 4.64: Distribution of relationship of lipid profile and cardiovascular diseases risk by Framingham general risk score ..... 149
Table 4.65: Analysis of lipid profile and cardiovascular diseases risk by WHO/ISH score chart ..... 150
Table 4.66: Distribution of impaired and non-impaired components of metabolic syndrome by gender ..... 151
Table 4.67: Association between metabolic syndrome components and level of CVDs Framingham general risk score ..... 152
Table 4.68: Association between full metabolic syndrome and level of risk of CVDs (FRSC) ..... 153
Table 4.69: Association between metabolic syndrome components and CVDs risk (WHO/ISH) ..... 154
Table 4.70: Association between full metabolic syndrome and CVDs risk (WHO/ISH) ..... 155

Table 4.71: Distribution of metabolic syndrome by level of risk of cardiovascular diseases155
Table 4.72: Novel risk factors differentials by location, status, and gender of the study participants 156

Table 4.73: Bivariate analysis of novel risk factors by cardiovascular diseases risk
based on FGRS and WHO/ISH score chart models
157

Table 4.74: Association between novel risk factors and CVDs risk (FRSC) ......... 158

Table 4.75: Association between novel risk factors and CVDs risk (WHO/ISH) .. 158

Table 4.76: Traditional risk factors differentials by location, status, and gender of the
study participants ...................................................................... 160

Table 4.77: Cardiovascular diseases absolute risk level by study participants and location 161

Table 4.78: Association between traditional risk factors and cardiovascular diseases (FGRS)

Table 4.79: Association between traditional risk factors and cardiovascular diseases (WHO/ISH)

165

## LIST OF FIGURES

Figure: 2.1: Peripheral vascular diseases ................................................................ 13

Figure 2.2: Bottom-up concentration of risk factors to cardiovascular diseases 22

Figure 2.3: Relationship of stress and cardiovascular diseases ............................... 25

Figure 2.4: The lipid overflow-ectopic fat model.................................................... 50

Figure 2.5: Conceptual framework ......................................................................... 62

Figure 3.1: Region total blood cholesterol can be measured ................................... 71

Figure 3.2: Region total blood cholesterol cannot be measured .............................. 72

Figure 4.1: Cardiovascular diseases risk pyramid by status of the participants ....... 85

Figure 4.2: Performance comparison of the area under the curve (AUC) of two prediction models WHO/ISH and FGRS

Figure 4.3: Relationship of stress and organizational department 121

Figure 4.4: Relationship between Stress levels and cardiovascular disease's risk according to Framingham general risk score ..................................... 122

Figure 4.5: Proportion of Chemical hazard exposure versus worksite department 127

Figure 4.6: Distribution of predicted cardiovascular risk mean by 100(Framingham risk cox regression) by previous and updated SBP classification 138

## LIST OF APPEDICES

Appendix I: Participant consent form ..... 244
Appendix II: Questionnaires ..... 246
Appendix III: School Data collection authorization ..... 301
Appendix IV: BPS Approval ..... 301
Appendix V: Field data collection authorization ..... 303
Appendix VI: Introduction letter from Rwanda Ministry of Education ..... 304
Appendix VII: Rwanda Biomedical Center Collaboration note ..... 305
Appendix VIII: Ethical Clearance ..... 306

## ABREVIATIONS AND ACRONYMS

| ASSIGN | Assessment Scottish Intercollegiate Guidelines Network |
| :---: | :---: |
| ASTDR | Agency for Toxic Substances and Disease Registry |
| BP | Blood pressure |
| CAD | Coronary Artery Disease |
| CDC | Center for Disease and control |
| CHD | Coronary Heart Disease |
| CI | Confidence Interval |
| CNS | Centre Nerve System |
| CRP | C Reactive Protein |
| CSLA | Cooperative Study on Lipoprotein and atherosclerosis |
| CVD | Cardiovascular Disease |
| CVI | Content Valid Index |
| CVPD | Cardiovascular and Pulmonary diseases |
| DALYs | Day Adjusted life years |
| DIP | Drinks Processing Industry |
| DM | Diabetes mellitus |
| DORICA | Dyslipidemia, Obesity, and Cardiovascular Risk |
| FGRS | Framingham General Risk score |


| FRS | Framingham Risk Score |
| :---: | :---: |
| GDP | Gross Domestic Product |
| HB | Hemoglobin |
| HB1A3 | Glycated Hemoglobin |
| HBM | Health Believe Model |
| HDL-C | High Density Lipoprotein-Cholesterol |
| HL | Hosmer lemeshow |
| HPA | Hypothalamic-pituitary-adrenal axis |
| HTN | Hypertension |
| IHD | Inflammatory Heart Disease |
| ILO | International Labor Organization |
| KUTH | Kigali University Teaching Hospital |
| LDL-C | Low-density Lipoprotein-Cholesterol |
| LMICs | Low- and middle-income countries |
| MI | Myocardial Infarction |
| NCD | Non communicable Disease |
| NCEP | National Centers for Environmental Prediction |
| NICE | National Institute for Health and Care Excellence |
| NYHA | New York Heart Association |


| OSH | Occupational safety and Health |
| :---: | :---: |
| PBT | Planned behavior theory |
| PROCAM | Prospective Cardiovascular Munster |
| QRISK | Cardiovascular Risk Prediction algorithm |
| RHD | Rheumatoid Heart Disease |
| SAM | Sympathetic-adrenal medullary axis |
| SCORE | Systematic Coronary Risk Evaluation |
| TC | Total Cholesterol |
| TG | Triglycerides |
| TRA | Theory of reasoned action |
| UNPA | United Nation Population Fund |
| USEPA | United States Environmental Protection Agency |
| WHO | World Health Organization |
| WHO/ISH | World health Organization/International Society of Hypertension |
| YLD | Years Lost due to a Disability |
| YLL | Years of Life Lost due to premature deaths |

## DEFINITION OF OPERATIONAL TERMS

Atherosclerotic disease Refers to an intricated pathological phenomenon that undergoes many years to evolve into the inner layer of the vessels. It is within the lumen of medium and largesized blood vessels that fatty and or adipose matter made by cholesterol accumulate to form the plaques. Therefore, the formed plaques reduce the vessel's caliber and flexibility due to the created irregularities. Thus, blocking the normal blood flow.

Behavior /Practices
Is a series of repetitive actions and mannerisms expressed by organisms, systems, or artificial entities in return to their animate or inanimate environmental factors. It is the reaction of the system or organism to different inner or outer catalysts or inputs, whether deliberately or not deliberately, observably, or not observably, and awarely, or unawarely (Daniel, 2009).

Cardiovascular Diseases
Refers to the general term that describes a variety of disease and condition, which affect heart and vessels. They include coronary heart disease, brain vessels diseases, Peripheral heart diseases including hypertension and heart failure (Yuling, 2009; Olvera, 2020). Rheumatic and congenital heart diseases were not taken into consideration in model-based risk prediction (Bengt, 2015).

Cardiovascular risk
Is the probability of developing a heart and vessels diseases within a defined period. The 10 years is taken into consideration for the inbuilt model of prediction, as well as analyzing several risk factors simultaneously.

Are the performed activities with the aim to prevent or diagnose illnesses or for heightening the quality of health and well-being. It is also explained as health maintenance, restoration, and enhancement-oriented gestures, activities, performance, and habits due to health impairing. Health impairing behaviors negatively affect health or otherwise make individuals susceptible to the disease. Some impairing behaviors are inactivity, tobacco use, high fat, and alcohol consumption. On the other hand, the person's promotion of health-enhancing behaviors creates health benefits and protects individuals from the disease (Corner, 2002).

Hypertension prevalence Refers to the proportion of hypertension disease cases existing in study participants at a specific point in time (Ward, 2013; Spronk, 2019).

## Incidence

Prevalence

Risk factors

Refers to the number of new cases of a disease over a period divided by the population at risk.

It is the result of the division of existing illness cases by the total population at a point in time.

Is any attribute, characteristic, or exposure of an individual that increases the likelihood of developing a disease or injury. Besides, it is explained as, variables, features, or hazards that will cause the development of certain illnesses to everyone who presents it in the entire population (Tora, 2016).


#### Abstract

Cardiovascular diseases are responsible for $30 \%$ of all deaths worldwide and assume $80 \%$ of the burden in low and middle-income countries. Although they affect people at large, a big proportion of these diseases afflict people of working age with a great negative impact on premature death, dependencies, and loss of working days. Rwanda in 2008 was in the top region countries with high blood pressure prevalence in the whole African region. This study's aim was to determine factors associated with cardiovascular diseases predicted risk among workers and spouses of two beverage-processing plants in Rwanda and was conducted under a cross-sectional quantitative research design. The sample size of this study was 440 study participants calculated by the Cochran formula from 822 target population. The study used proportionate stratified random sampling for the sample size of the study where each subgroup was adequately represented. The instruments of this study were the WHO standardized questionnaire and cardiovascular diseases risk prediction models: WHO/ISH and FGRS (Framingham general risk score). The Data was analyzed by SPPS version 22, where a descriptive, bivariate, and multivariate analysis, C-statistic, and Kappa test with $95 \%$ CI were applied. The significance was set at $\mathrm{p}<0.05$. Overall risk prediction ( $<10 \%$ ) by FGRS and WHO/ISH score were $74.5 \%$, $95.4 \%$, respectively while the CVD elevated risk ( $>=10 \%$ ) was $25.5 \%, 4.6 \%$, respectively. FGRS CVD risk ( $>=10 \%$ ) was $16.1 \%$ of males versus $9.3 \%$ of females while $2.7 \%$ of males versus $1.5 \%$ of females classified by WHO/ISH. CVD risk increases in both models with age but very much in FGRS. $8.4 \%$ of employees versus $5.2 \%$ of spouses are classified as having the risk of 10 $20 \%$ by FGRS while WHO/ISH classify $2.5 \%$ of employees and $0.9 \%$ of spouses as having the risk of $10-20 \%$. FGRS classified $11.7 \%$ of all participants as having absolute cardiovascular diseases risk above $20 \%$ while WHO/ISH classify only $1 \%$ as having absolute cardiovascular diseases risk above $20 \%$. Two models' kappa agreement level was fair or minimal interrater reliability with 0.25 with a p-value $<0.001$ and the correlated ROC curve of FGRS and WHO/ISH of 0.887 AUC, 0.847 AUC all with a p-value $<0.001$, respectively. Night shift dominated other working conditions with $A O R=2.41(1.27-4.58)$, $\mathrm{p}=0.007$, and a high level of sedentary ( $>10 \mathrm{hrs}$ ) also dominated to be associated with metabolic diseases with crude OR=8.196(2.07-32.3) while its association to CVDs was: $\mathrm{OR}=3.777$ (1.7-8.2), hypertension prevalence was $32.27 \%$ in the previous classification while it was $61.81 \%$ in updated classification, metabolic syndrome prevalence was $38.2 \%$. The use of PPE for Noise and chemicals was negatively correlated with cardiovascular disease risk for both models after Kendall's tau_b $-0.218 \mathrm{p}<0.001,-0.157 \mathrm{p}=0.004$, respectively, and spearman's rho test $-0.244, \mathrm{p}<0.001,-0.175, \mathrm{p}=0.004$, respectively. Noise and vibration and radiation were significantly associated with cardiovascular diseases by Framingham risk score with $\mathrm{p}<0.05$. The three unchangeable factors (Age, Gender, and family history) were associated with CVD risk, $\mathrm{p}<0.05$. The workplace risk factors such as radiation and high stress with $A o R=0.36(0.15-0.86), p=0.02$ and $A o R=21.398(2.65-172.59), p=0.004$. The FGRS showed that eight modifiable factors were associated with CVDs while it was only four factors for WHO/ISH. The most prominent factors were diabetes, hypertension, low physical inactivity (<600MET/Week), times exceeded alcohol standards, low fruits, and vegetable intake, and tobacco use. The two novel risks (CRP and HBA1C) were four to fivefold linked with cardiovascular disease risk, $\mathrm{p}<0.05$. Male employees dominated other groups for 10 risk factors. The study conclusion demonstrated a fair agreement between the two models and suggested the usage of FGRS for proactive management of cardiovascular disease risk. Additionally, the employees presented a high cardiovascular disease risk with more novel risk factors and traditional risk factors than the remaining groups. Moreover, a culturally based strategy, evidence-based preventative program, workplace, and community policies would be advised to establish a safe world of work in the industrial environment and for the community at large. Hence, a reduction of CVDs direct and indirect costs and improvement of quality of health and production.


## CHAPTER ONE

## INTRODUCTION

### 1.1 Background of the study

Cardiovascular diseases and their epidemiology did not exist in 1946. Then Ancel Keys and his group (Medical Marco Polos) established the laboratory of physiological hygiene regarding cardiovascular diseases (Frederik, 1996). Including the Evidence-based clinical and preventative public health approach (Blackburn \& Darwin, 2012).

The birth of the Framingham heart study, on the idea of Joseph Mountin in 1946 was the cardiovascular epidemiology milestone. This was influenced by White Dudley, who was the presidential medical doctor in the US during World War II. The Framingham heart study started after the death of Franklin Delano Roosevelt due to a stroke caused by hypertension and stress (Mahmood, 2013). This death happened two months following WWII aftermaths management meeting with allied country presidents, Joseph Stalin and Winston Churchill at the Black Sea, Crimea today (Bitton, 2010).

In addition, The US showed that cardiovascular diseases were the most economic burden on businesses including death and disability waged by these medical conditions (CDC, 2004; American Heart Association., 2005; Rohan, 2020).

The global burden of disease has drastically changed from infectious diseases, perinatal, maternal, and nutritional causes, to non-communicable diseases (NCDs) (Fuster, 2014). In India alone, two-thirds of the total morbidity burden were attributed to NCDs for the entire population. Around $53 \%$ of total mortality ( $40.4 \%$ in 1990 to $59 \%$ in 2015) were caused by the abrupt change in the country's society and lifestyle (WHO, 2013).

A study carried out by Dumper in 2007 showed that after the Primitive drinkprocessing maneuver, which started in Mesopotamia, Iraq today earlier in 2500 years

BC , the new working conditions and technologies potentially produce risks to the workforce. Some of those working conditions involved hazardous substances, where over one million chemicals were identified by the international labor organization (ILO). Moreover, thousands more are created every year and can harm the heart health of the workers (Elisa, 2010).

The change that marked the last century was a typical example of economic development, industrialization, broad urbanization, and market globalization (Fuster, 2011). Thus, the significant shift in food patterns, type of diet, and inactive lifestyle endangered the current society toward the increase of cardiovascular diseases (Santosh, 2020).

Heart disease and stroke fatality were forecasted to increase to more than 24 million by 2030 and be the major global population cause of death and disability by 2020 (Mozaffarian, 2008; Fuster, 2011). These deadly killers are currently burdening the low and middle-income countries, which harbor $80 \%$ of global deaths related to cardiovascular diseases in comparison to the western countries (Fuster, 2014).

In the United States, cardiovascular diseases were high, where 82 million people had one or more types of CVDs, 76 million had high blood pressure, 16 million had CHD, 7 million had Stroke in 2007 and 800,000 people died in 2009 (Roger, 2011). In addition, heart conditions consumed 116.3 billion dollars in 2011 and were projected to be 1,208 billion dollars from 2015 to 2030 (Mozaffarian, 2015).

A study carried out by Goldhaber in 1983 showed that carbon tetrachloride and carbon disulfide were the sources of exposure for more than five hundred employees in the United States in 1983. Hence, they noted an increase in heart issues in settings with exposure to carbon disulfide (Chung, 2017). The rayon industry employees presented 2.5 times the death rate among men than in other industries due to carbon disulfide exposure for more than 10 years. This was due to the workplace hazards brought into the industrial world by new technology. Currently, technology is an important component, especially in the brewery industry. The change of primitive drinks processing maneuver, which started in 2500 BD in Mesopotamia, Iraq Today, to modern technology is an obvious hazard. This exposes many people of working
age to Workplace hazards (Stress, Sound, vibration, Cold, chemicals) (Elisa, 2010). Whereas the international labor organization at the World Day of Health and safety in 2013 emphasized safety and health in the use of chemicals. Thus, prevention of occupational diseases which can jeopardize the health of workers (ILO, 2014).

The workplace provides a large audience to cardiovascular diseases, where workers in 2012 were 2.9 billion and projected to be 3.5 billion in 2030 around the world (MGI, 2012). An estimated $25 \%$ to $30 \%$ of companies' medical costs per year were spent on employees with the major cardiovascular risk factors in the USA (Carnethon, 2009, Elizabeth, 2018; Rohan, 2020).

Besides sleep time, work is a reality that globally consumes more time in human life. Furthermore, it obliges many people to stay at the worksite. The workplace is a necessary environment for the adult world. It consists of elements that can improve health as well as elements that can harm it. This happens in the case of the presence of cardiovascular risk factors in the working environment (Carnethon, 2009). In addition, the worksite is an appropriate setting to provide various opportunities to promote the adoption and maintenance of healthy lifestyle behaviors (WHO/WEF, 2008).

Observational and nutritional research was carried out in Massachusetts at EMC Corporation. This study included employees and their spouses to tackle factors of cardiovascular diseases such as Obesity, not eating fruits, and sedentarity, showed good results in their nutritional approach. They also included spouses to show that workplace is tied with home regarding the nutritional issues (Thomas et al., 2008).

The shared social-economic factors such as high industrial wages and beverage donations from the brewery, behaviors, and a common environment among spouses are the major contributors to similar health outcomes. As found in research done in US communities for estimating the association of hypertension status to spouses. Being married to a hypertensive person was taken as an exposure to develop High blood pressure which is a major risk of cardiovascular diseases (DeMarco et al., 2011).

The involvement of spouses in this study is of great importance to better understand work-home stress spillover. Where stress experienced in one domain results in stress in another domain of life. In other words, stress crossover when experienced at work can be transmitted to the spouses at home (Bolger, 1989; Chong, 2016). Moreover, type two diabetes, coronary heart disease, and stroke were found associated with workplace stress (Mika \& Ichiro, 2015).

A study done on Korean couples highlighted the crossover effect of spouse weekly working hours on an estimated 10 -years risk of cardiovascular diseases. The Comparison showed that the partners with spouses who worked 30 hours per week, developed higher cardiovascular risk than partners with spouses who worked a few hours per week (Kang, 2017).

### 1.2 Statement of the problem

Cardiovascular diseases exasperate the working-age people (Wolfgang, 2007) and are responsible for $30 \%$ of all deaths worldwide. CVDs assume $80 \%$ of the burden in Low- and Middle-Income Countries (Jabaris, 2014). Especially in sub-Saharan Africa, wherein 2017, a ten-year retrospective study done on heart failure scope in three rural districts of Rwanda demonstrated that 719 patients who managed to get to the clinic were transferred with confirmed heart failure. Females were $72 \%$ of the adult majority and $78 \%$ were farmers, $39.7 \%$ of the patients had dilated cardiomyopathy, and $26.8 \%$ had rheumatoid heart diseases. Hypertensive heart diseases were $13 \%$ and only $42.8 \%$ were retained and alive, $29.5 \%$ of their deaths were documented, and $23.9 \%$ were lost to follow up, which highly explains the undocumented death due to missing in their rural environment without any health care (Eberly et al., 2019).

In 2012/13, a STEPS study was carried out in Rwanda as stated in NCDs policy. This study showed the shared risk factors for non-communicable diseases and cardiovascular diseases. Where $12.9 \%$ were tobacco users, $99.7 \%$ could not eat fruit per day. A proportion of the $91.1 \%$ could not eat enough vegetables, $78.6 \%$ were not engaged in low-level physical activity, $41.3 \%$ were alcohol drinkers and 23.5 were episodic binge drinkers (WHO, 2015).

Cardiovascular diseases are an impediment in the life of the labor force, increase dependencies, and lost working days (Stephen et al., 2003). Moreover, WHO statistical profile, 2015 has shown that Rwanda has lost around 300 DALYs due to only cardiovascular diseases and diabetes.

One Cardiac Surgery Hospital serves 120,000 People, in North America, while it is 33 million per Cardiac Surgery Hospital in Sub-Saharan Africa (Jabaris, 2014). The stagnant of patients due to a lack of health professionals increases the morbidity and mortality in Rwanda and in the region without knowing the cause. Mucumbitsi stated that in sub-Saharan Africa including Rwanda 2.5 million heart patients (5-16yrs) have been diagnosed and 300,000 deaths have been recorded per year in 2007.

Cardiovascular diseases contributed to more than $13 \%$ of overall mortality in Kenya. Myocardial infarction was Obvious, while rheumatic heart disease was rare (Ogeng, 2011). Hospital mortality by cardiovascular diseases was high reaching $9.2 \%$ in Cameroon and $21.9 \%$ in Tanzania (Mocumbi, 2012), and $14 \%$ of all deaths in Rwanda in 2016 (WHO, 2018). In addition, a heavy burden on global employees' health was $50 \%$ of all causes of death and at least $25 \%$ of work disability (Tsutsumi, 2015).

According to the beverage industry absenteeism record in 2013, cardiovascular diseases were one of the three major causes of workplace absenteeism (153 days lost for CVDs). This shows only to what extent cardiovascular disease burdens life and the indirect cost that weighs on the industry. It is also necessary to fight this emerging problem in Rwanda and in the industrial arena where many risk factors are higher than in other industries. As some studies have shown that Arterial hypertension prevalence among workers in the soft drink industry was $27 \%$ and $26 \%$ in the São Paulo City hospital complex. However, it was $24.7 \%$ among workers at an iron and steel company (Cavagioni, 2012).

WHO statistical profile, 2015 showed that Rwanda in 2008 was counted in the top region countries with high blood pressure prevalence ( $43.6 \%$ among males; 40.2\% among Females). Whereas the whole African region's high blood pressure prevalence was $38.1 \%$ among males, and $35.5 \%$ among females. Around $10 \%$ of cardiovascular
diseases equaled to the low respiratory infectious diseases which were the first killer diseases in Rwanda. A recent multicenter stroke study in Rwanda showed a worse stroke burden. Where around $2.1 \%$ of all received patients were due to stroke and about $61 \%$ of stroke patients died and $14.3 \%$ were tremendously disabled (Nkusi, 2017).

### 1.3 Justification of the study

The industrial manufacturing process produces hazards, which can endanger the employees and the community as well. The Rwanda industrial survey in 2013 by establishment census carried out in 2011 showed that around $97 \%$ of all Rwandan manufacturing industries were micro institutions. In addition, around $2.2 \%$ were small and medium industries, whereas big industries were from $0.2 \%$ to $0.8 \%$. The beverage industry was ranked as one of the big industries in terms of workers number and production as well (Kamarudeen, 2014).

This study of cardiovascular diseases prediction and associated factors in beverage manufacturing industry served as a unique watertight evidence-based and modelbased prediction approach. In addition, this paramount approach is significant, in occupational clinics at the worksite and a cost-effective health program to fight heart diseases. The proactive and reactive program should also rely on the research findings as corroboration and nationalization of international theory on the matter.

There are various external and internal factors affecting cardiovascular health. Apart from working conditions, the worker's spouses in the drink processing industries would be affected by the availability of financial resources. This is high in beverage industries compared to other employers in society. Their economical level and easy accessibility to beer and soft drinks by bonuses from their companies may expose them on sedentarity, mechanized transport, and high BMI due to change of diet and lifestyle.

Therefore, the change in working nature in many organizations has pushed us to undertake this study in the manufacturing workplace. Where the working way has been radically transformed due to the growth of industrial technology hazards.

Especially in the drink processing industries, the exposure was influenced, and dictated by the presence of multifactorial issues related to cardiovascular diseases. It is in this working environment that daily hazard such as alcohol and soft drink may be available. Hence, irresponsible consumption may be a source of the overweight, high blood sugar, and heart muscle weakness if not moderated (Zahran, 2017; Romina, 2020). Working in a stressful workplace and with much sound area (Zamanian, 2013). And staying longtime in the chamber with refrigeration and cooling systems, ice, and stress were associated with CVDs and the Reynaud phenomenon in causing peripheral vascular diseases (Plissonneau, 2015). Carbon dioxide exposure in brewing, fermentation using yeast and malt (Smallegange, 2010), and carbonated drinks manufacturing (Cable, 2004). The presence of Sodium hydroxide $(\mathrm{NaOH})$ used in bottle washing and NO2(nitrogen dioxide), Ammonia gazes are daily hazards. These hazards may cause less severe lesions of the heart, lungs, and skin to workers in the production of soda if not protected. The metal intoxication of the drinks was assessed three decades ago when cobalt was used in American and Canadian breweries. This study showed its serious effects on the heart as stated by Alexander in 1972 and Goldhaber in 1983. However, a recent study showed a lack of negative effects of cobalt on the heart (Lantin, 2013). Today's mechanized transport, sedentarity and new brewing technology effect are in such worksite where adult at working age can meet those factors. All these risk factors can be more found in this workplace than being found alone outside in the community.

The linkage of the workplace, community, and cardiovascular diseases explained the purpose of showing the riskier and unsafe working conditions. Additionally, the strategy to address, protect and advise the workforce, employers, community, and policymakers. Hence, developing a safe working environment where a part of society spends most of their time.

Additionally, the significance of this study is to reduce the cost spent on cardiovascular diseases and improve the health of the brewery workforce and their spouses in Rwanda. Hence, this generated a positive impact and more benefits in increasing awareness and behavior change toward CVDs Risk Factors. Therefore, a reduction of the direct cost due to treatment and indirect cost due to low productivity,
presenteeism, workers' compensation, absenteeism, and low quality of health. Furthermore, this study's significance is to help reduce the deaths, disabilities, and dependencies due to cardiovascular diseases. Hence, reducing the cost of doing business.

### 1.4 Objectives

### 1.4.1 General objective

To determine factors associated with cardiovascular diseases predicted risk among workers and spouses of Kicukiro soft drink plant and Rubavu brewery plant and their spouses.

### 1.4.2 Specific Objectives

i. To predict the 10 -year cardiovascular diseases risk and compare two prediction models among the study participants in the study area
ii. To determine the behavioral factors associated with cardiovascular diseases among the study participants in the study area
iii. To determine the Working condition factors associated with cardiovascular diseases among workers in the study area.
iv. To determine the proportion of people with Awareness of cardiovascular diseases factors and using personal protective equipment among the study participants in the study area.
v. To determine the proportion of people with biological risk factors among the study participants in the study area.
vi. To determine the differentials between groups for novel risk, traditional risk factors, and cardiovascular disease risk levels among the study participants in the study area.

### 1.5 Research questions

i. What is the 10 -year cardiovascular diseases Risk and the agreement level between two models among study participants in the study area?
ii. What are the behavioral, and lifestyle factors associated with cardiovascular diseases among study participants in the study area?
iii. What are the work condition factors associated with cardiovascular disease among workers in the study area?
iv. What are the proportion of people with awareness of cardiovascular diseases and using Personal protective equipment among study participants in the study area?
v. What are the proportions of people with biological factors associated with cardiovascular diseases among study participants in the study area?
vi. What are the differentials between groups for novel risk, traditional risk factors, and cardiovascular diseases risk levels among the study participants in the study area?

### 1.6 Variable of the study

The dependent variable in the study was the cardiovascular diseases risk, defined as a predicted risk level of fatal and non-fatal cardiovascular diseases (heart failure, cerebrovascular diseases, coronary heart disease, and peripheral vascular disease). The independent variables were eight predictors (age, gender, total cholesterol, HDL, smoking, blood pressure, treated and untreated hypertension, and diabetes). The cofactors such as working conditions, and behavioral and biological factors were also the contributory independent variables. The moderating variables were the awareness of cardiovascular diseases risk factors and using personal protective equipment.

## CHAPTER TWO

## LITERATURE REVIEW

### 2.1 Cardiovascular diseases of the study interest for risk prediction

Cardiovascular diseases represent a constellation of diseases that affect the heart and the vessels (Yuling, 2009; Olvera, 2020). The subject of this study was atherosclerotic cardiovascular disease (CVD) events, such as coronary heart disease, cerebrovascular disease, peripheral vascular disease, and heart failure (D'Agostino, 2008). In addition, many others like congenital; rheumatoid; congestive; Arrhythmias heart diseases, and Aortic aneurism were not studied in this research. Although they are all heart and vessel pathologies and are typically categorized into structurally, electrically, and circulatory aspects but not necessarily associated with atherosclerotic process (Bengt, 2015; Thiriet, 2018; WHO, 2021).

### 2.1.1 Coronary heart disease

Coronary heart disease is the illness of the blood vessels supplying the heart muscle (Coupland, 2017). It is one common type of heart disease, which is sometimes referred to as coronary artery disease (Janet, 2009). It consists of a number of diseases due to atheromatous changes in coronary vessels (Ashley, 2004). It was considered to be a simple, ineluctable process of reducing the artery caliber. It consequently causes Ischemia (Oxygen deficiency in the heart muscle cells) or finally ended by completely blocking the blood vessels, which leads to myocardial infarction (heart attack) (Janet, 2009). The discovery of the existence of plaque in the entire coronary spectrum changed the explanatory pattern. It showed the plaques phases toward rupturing, where the stable phase was composed of the thick fibrous and poor lipid cap. The unstable phase was composed of the lipid-rich and thin fibrous cap. The rupturing of unstable plaque makes it much more unstable and much more prone to future rupture. Hence, the additional vasoconstrictive and prothrombin secretion raise the probability of obstruction of the entire artery (Peter \& Pierre, 2005). Furthermore, the prognostic outcome at the rupture site was determined by the thrombolytic pathways and the body's prothrombotic balance. The transitory
blockage leads to pain and ischemia; permanent obstruction leads to transmural Myocardial Infarction (Ashley, 2004; Taqueti,2018).

### 2.1.2 Heart Failure

Heart failure is a chronic condition with cardiac reduced longevity. It is characterized by a group of signs and symptoms of the inability of the heart to execute its usual function of pumping blood, which marks the four-stage of cardiac dysfunction.

To set up a diagnosis of heart failure, the European Society of Cardiology guidelines warrant the presence of signs and symptoms and objective-based evidence of cardiac dysfunction preferably by echocardiography. Hence, a favorable response to treatment was established for heart failure (Arend, 2007). The clinical definition establishment of heart failure was based on several studies and provided various views. However, the universal definition demonstrated heart failure as a clinical constellation of signs or symptoms due to functional and structural heart abnormality. This is confirmed by the high levels of the natriuretic peptide with evidenced pulmonary systemic congestion. Heart failure has been divided into four levels(A-D) based on individual signs and symptoms accumulation. Although reduced ejection fraction <40\% was not considered, it hence, suggested classifying the heart failure. (Coronel, 2001; Bozkurt, 2021).

### 2.1.3 Stroke

A stroke is the turmoil of the blood provision into the brain. This may be caused by either obstruction (ischemic stroke) or a burst of a blood vessel (hemorrhagic stroke) (Coupland, 2017). Moreover, it is a significant cause of death and disability. A stroke is a neurological deficiency due to a central nervous system (CNS) focal injury.

It starts with a vascular cause, cerebral infarction, and intracerebral hemorrhage (ICH). In addition, it includes the subarachnoid hemorrhage (SAH). Hippocrates circa firstly used this condition as apoplexy in 400 BC. Furthermore, William Cole introduced the word stroke in medicine in 1689 as stated by Adams in 1939 (Sacco, 2013).

### 2.1.4 Peripheral vascular diseases

Peripheral vascular diseases (PVDs) are the affections of all blood vessels outside the heart and brain due to atherosclerotic vascular impairment. Besides, the distant veins, arteries, and lymphatic vessels of legs and arms, PVDs attack the vessels that supply the blood into the organs below the stomach.

Peripheral vascular diseases (PVD) showed up as inadequate tissue perfusion due to the early deposit of atheroscleromatous (Thukkani \& Kinlay, 2015). This is associated with either embolus or thrombus (Suzuki, 2015).

Peripheral vascular disease (PVD) is the universal term, which consists of venous, vasospastic, and lymphatic diseases. The disease of veins is subdivided into two categories where, the first category is regarding the Obstruction of the vein due to a blood clot or thrombosis. There are also two types of thrombosis (Deep vein thrombosis (DVT) and superficial thrombophlebitis (ST)). The second category is the insufficiency of drainage of the veins. It is caused by either a blood clot or inherited vein wall abnormality. The classification of the second category can also fall into deep thrombosis, with chronic venous insufficiency, and superficial thrombophlebitis with varicose veins (Joshua, 2002; Gul, 2022).

The different meanings of words justified the preference for utilization of the general term" disease" rather than utilizing "stenosis". For instance, the general term such as "renal artery disease could be utilized in the place of "renal artery stenosis" instead. Because the artery occlusion and artery stenosis may present similar clinical manifestations. Hence, the term" disease" is suitable for covering all conditions (Mark et al., 2008). Peripheral vascular diseases have different types of subdivisions due to the significant manifestations of various organic and functional dimensions. The arteries diseases caused by atherosclerosis are having one general term, which is "Atherosclerotic vascular disease".

## Peripheral vascular diseases apart from Heart and cerebral vascular diseases



Figure: 2.1: Peripheral vascular diseases
(William, 2008)

### 2.2 Cardiovascular diseases Risk

### 2.2.1 Risk prediction

Risk prediction is a crucial element in cardiovascular diseases prevention and global health as well. The predicted risk level for cardiovascular diseases development in a defined time was neatly studied to proactively understand and prevent the factors associated with the diseases (Yang, 2020). The severity, exposure, and probability risk assessment model (SEP model) is mostly used in a workplace incident and accident risk assessment. However, this study used the pre-established models (WHO/ISH and FGRS) to predict the 10-year cardiovascular diseases level for proactive cardiovascular diseases management. The model for risk prediction refers to mathematical equations that used patients' information as predictors to generate the probability of a patient to develop the disease. Hence, the risk level was generated for a defined period (Xia, 2019).

There are many cardiovascular prediction models such as FGRS, PROCAM (Prospective Cardiovascular Munster), ASSIGN, QRISK1, QRISK2, and SCORE (Systematic Coronary Risk Evaluation) (Selvarajah et al., 2014). The Reynolds Score and WHO/ISH (Stephan, 2015).

However, four of them are cardiovascular risk prediction models calculated at the time of renal transplant, which are the Framingham Risk Score and the European Systematic Coronary Risk Evaluation (SCORE) equation. The REGICOR Registre Giron'1 delcor (Gerona Heart Registry), and the DORICA (Dyslipidemia, Obesity, and Cardiovascular Risk). The last two models were adapted from the Framingham equation for Spanish population characteristics (Mansell, 2014),

There are various ways of model development using mathematical equations, among others, logistic and Cox regressions (Stuart, 2018).

### 2.2.2 Cox regression formula

$$
\Rightarrow \hat{p}=1-s_{o}(t)^{\exp \left(\sum_{i=1}^{p} B_{i X i X i}-\sum_{i=1}^{p} B i \bar{X}\right.}
$$

$\widehat{\boldsymbol{p}}=$ Cardiovascular risk
$\mathbf{p}=$ denotes the number of risk factors.
$\mathbf{S o}_{\mathbf{o}}(\mathbf{t})=$ denotes the baseline survival at follow-up time t (here $\mathrm{t}=10$ years)
$\mathbf{B i}=$ is the estimated regression coefficient (log hazard ratio)
$\mathbf{X i}=$ is the log-transformed value of the $i$ th risk factor, (if continuous)
$\overline{\boldsymbol{X}}=$ is the corresponding mean.

The survival or failure time data was processed through cox or proportional hazards regression.

The original Cox regression importance was not to measure the mean and another measure of location. However, it was to model the hazard function, which is sometimes called the intensity function or the mortality force. The hazard function is the likelihood of estimating the death of alive people in a certain little unity of time. A conditional hazard was proposed to be modeled as the product of an arbitrary baseline hazard $\lambda 0(\mathrm{t})$ by the cox model (Cox, 1972). In addition, it is a linear exponential form in an explanatory variable (Andersen, 1991; Zhang, 2018).

The cox model was explained as the multiple linear regression of hazard logarithm on the variables xi, with an intercept being the baseline hazard, which could vary with time (Cox, 1972; Stuart, 2018).

The hazard is multiplicatively affected by the covariates at any point in time. Hence, it generates the key assumption of the proportional hazard model, which is that "the hazard of the event in any group is a constant multiple of the hazard in any other" (Nihal \& Tekin, 2007). In addition, the hazard curves for the group must be proportional without crossing, which is the implication of the above-mentioned assumption. The quantities $\exp$ (bi) were called hazard ratios due to proportionality implication.

Furthermore, the covariate value (ith) grows with the event hazard. it is, therefore, the result of the symmetrical increase of (bi) value and hazard ratio higher than zero and one, respectively. Hence, the extent of survival period decreases" (Clark \& Bradburn, 2003). The event likelihood is positively associated with the covariate when a hazard ratio is superior to one. The higher the covariates and the hazard ratio, the higher the probability of the event happening. Hence, the length of survival is negatively impacted. In other words, survival is reduced. The Cox model is mathematically exhibited as:

$$
h(t)=h_{0}(t) \times \exp \left\{b_{1} x_{1}+b_{2} x_{2}+\cdots+b_{p} x_{p}\right\}
$$

It is noted that the use of hazard formula $\mathrm{h}(\mathrm{t})$ depends on p covariates ( $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y}, \mathrm{xp}$ ) whereby its influence may be calculated based on the size of its coefficients (b1, b2,
$\mathrm{y}, \mathrm{pb}$ ). In addition, the h 0 is named the baseline hazard on the condition that all xi's are equal to zero. In the same way, it was well clarified that the hazard may change from time to time if we use the function " t " in $\mathrm{h}(\mathrm{t})$ (Bradburn, 2003; Zhang, 2018).

### 2.2.3 Ankle brachial index

The Ankle-branchial index (ABI) is the cardiovascular health gauge, which predicts cardiovascular risk and indicates the systemic atherosclerosis establishment in the human body. The ABI levels under 0.90 were associated with cardiovascular disease occurrences and eventual mortality (Matthew, 2018). The ankle-branchial index is a useful benchmark, which informs the establishment of peripheral arterial diseases (PAD) at the lower-extremities (Lange, 2007).

It is an easy measure to perform and is a cost-efficient gauge that can serve the primary health care facilities to discover peripheral arterial stenosis. In addition, it can detect the patients with arterial injury of the lower extremities after a certain disease or accidental penetrating or blunt trauma.

More than $50 \%$ of lower-extremities arterial stenosis was associated with the ABI gauge under 0.90 with high specificity and sensitivity of $98 \%$, and $90 \%$, respectively (Ouriel, 1982). Another study showed similar results, where the sensitivity and specificity of ABI<0.90 were exceeding $87 \%$ and $97 \%$, respectively. It also executed for detecting the lower-extremity arterial injury in an accidental emergency setting (Johansen, 1991; Casey, 2019). The ABI interpretation was executed by ranges creation to facilitate the readings and decisions.

The range of $0.00-0.40$, is the status capable of causing pain at rest and even gangrene, $0.41-0.90$, is the peripheral artery diseases (PAD), which is capable of causing claudication. The level between 0.91-1.30: is the normal range that indicates the normal peripheral cardiovascular health. Finally, the level $>=1.31$ : was associated with severe vessel calcification (Chan, 2015). A study done by Carmo in Brazil showed that measuring the ABI using a stethoscope was a practical method to discover the PAD. In addition, the mean stethoscope ABI was $1.01 \pm 0.15$, and the mean Doppler ABI was $1.03 \pm 0.20$ with $\mathrm{p}=0.04$, which showed a good relationship.

The gold standard test comparison showed a specificity of $91 \%, 95 \%$ CI (81.5-96.6), and a sensitivity of $71.4 \%, 95 \%$ CI (41.9-91.6). Hence, the Receiver Operating Curve (ROC) was 0.895 , $95 \%$ CI, ( $0.804-0.986$ ), p < 0.001, (Carmoa, 2008). However, ABI was not used here because it predicts only the PAD risk (Casey, 2019).

### 2.3 Cardiovascular diseases risk factors

The risk factors concept (RF) was turned into the foundation for the prevention of morbidity and mortality from cardiovascular diseases and other non-communicable diseases. In addition, it was largely used in clinical and public health practice (Petrukhin \& Lunina, 2012). Moreover, the risk factor can be based on finding out in the workplace what is the major source of cardiovascular diseases. This is perfomed for improving the employees' life in changeable working environmental exposures, as adults people spend most of their working time at work (McEachan, 2008). Hence, it makes the workplace ideal for providing health promotion education (WHO, 2012).

The classification of cardiovascular risk factors in three different constellations is paramount to the prevention of cardiovascular diseases (CVDs). Because they indicate the modifiable risk factors to target before and after the establishment of the disease. Moreover, those factors are necessary for every onset of CVDs. The reversible risk factors are the changeable risk factors to prevent the non-established or reverse the established condition. These factors are among other sedentarity, alcohol abuse, stress, smoking, obesity, arterial hypertension, and hyperlipidemia. The irreversible risk factors are the unmodifiable factors, which are age, family history, genetic, and gender. The partially reversible factors are the factors that you can partially modify, which are diabetes and menopause.

One or more cardiovascular risk factors could be prevented from individuals who annually develop stroke and heart attack. We can find among others: hypertension, diabetes, smoking, physical inactivity, high-calorie, and saturated fat diet, obesity, and high stress (Roger, 2011).

### 2.3.1 Social-demographic risk factors

In the study done in Bangladesh concerning the risk of developing heart and vessel diseases in relation to the social demographic factors. They found that regional residence such as urban was onefold associated with CVDs than rural residence (AOR $=1.32$ ). The old age ( $\geq 70$ years) (AOR=2.87) was twofold (AOR=2.87) associated with CVDs while being aged (55-69 years) was onefold AOR=1.95) or $\geq 70$ years than $35-54$ years. Urban residence and old age were significantly associated with higher CVD risk (Rahman, 2015). In Canada, the period from 1994 to 2005 was marked by a heart disease increase of $19 \%$ for men and $2 \%$ for women with 1.29 million patients in 2005.

The lowest-income countries showed a major increase of $27 \%$ in heart disease, $37 \%$ in lower-middle-income countries, and finally $12 \%$ in middle-income countries. However, the highest income countries showed a slight increase of 6\% (Douglas et al., 2009).

### 2.3.1.1 Age

Age is an unchangeable factor, which acts as an independent factor in cardiovascular disease. The aging-induced alterations on the heart. Such alteration in the heart and in arteries decreased the elasticity, and the atherosclerosis process decreased compliance of heart activity. Hence, heart mass increased, the fibrosis, and calcification follow. In addition, this previous aging process increases the resistance to the heart-pumping action. Therefore, it hampers the work of the heart to deliver blood to different parts of the body. Moreover, it leads to cardiovascular diseases and events such as increased blood pressure, angina pectoris, heart attack, and heart failure. Aging is, hence, an independent risk factor for cardiovascular diseases (Shlomo, 2003; Jennifer, 2019).

### 2.3.1.2 Gender

The misperception of women's protection in reproductive age based on endogenous estrogen that trivializes the risk of women suffering CVDs. it was also shown that

CVDs evolve in women, seven to ten years after their development in men (Maas \& Appelman, 2010).

Coronary heart disease (CHD) occurrence in men compared with women was $\approx 3$ times higher and mortality was $\approx 5$ times higher with an obvious gender difference in a middle-aged population. Moreover, men presented two to fivefold more coronary heart diseases than women. However, the difference remains obvious between populations. Biological differences and gene expressions for sex hormones are the major causes of differential risk factors. This is shown by the remarkable difference in vascular function, signaling level, and myocardial remodeling under stress, or metabolism of drugs by sex-specific cytochrome expression (Vera, 2015). Although more cardiovascular risk factors were auspicious to females, age increase reduces drastically the level of risk factor gender difference. The risk of CHD increases either for men or for women with age. However, females have a higher risk of cardiovascular diseases than age-matched men (Jennifer, 2019).

### 2.3.1.3 History of family diseases

Family history of cardiovascular diseases can differently affect the family members with dependence on the age and position of first-degree relatives. The offspring of the patient with cardiovascular diseases have the CVD risk from $60 \%$ to $75 \%$, which is relatively high than a CVD risk of $40 \%$ for the siblings. The true attributable risk approximate could be conferred by the steady premature CVD definition (Michael, 2014). A person whose one parent has CVD presents a double 8-year risk for males and a rise of CVD risk to $70 \%$ for females, which is significant epidemiological evidence for family history and cardiovascular diseases association (Christopher, 2014).

### 2.4 Behavioral risk factors

Behavioral risk factors are tangible and changeable risk factors for people in every community to prevent CVDs. Inadequate physical activity, sedentarity, poor diet, tobacco use, and alcohol abuse are the core factors of CVDs. In addition, their
association with CVDs was found in a study carried out in Russia, the USA, and in Rwanda (Zabina, 2001; Nahimana, 2018).

### 2.4.1 Smoking

Smoking affects all processes of atherosclerosis as a significant hazard. It can trigger the rise of inflammation, oxidative stress, and thrombosis by the endothelial dysfunction towards acute clinical events. Hence, this mechanism continues until smoking causes cardiovascular dysfunction (Ambrose, 2004).

Different tobacco products use had been the source of an astonishing morbidity and mortality burden in the United States (Catherine, 2014). Although the period from 2000 to 2011 marked a reduction in cigarette smoking, cigars and cigarillo consumption had doubled during the same period, which was seriously bad. In addition, it was found that the cigar contained in the binder or wrapper and filler, a high level of tobacco. However, the cigar without filter or not premium brand users were described as cigarillo smokers but were all taken as consuming increased levels of tobacco (Perelman, 2011). Cigarette smoking was considered to cause $30 \%$ of coronary heart diseases and the double risk of ischemic stroke with increased peripheral vascular diseases in the USA. Smoking cessation from heavy smokers or former smokers has great benefits for even people who have already suffered tobacco use-oriented illnesses. In addition, smoking cessation can reduce $50 \%$ of total mortality, abrupt cardiac death, and risk of reinfarction for already coronary heart disease diagnosed patients (Cole, 2019).

### 2.4.2 Physical inactivity

Physical inactivity epidemiology was born after the weight and coronary heart disease mortality rate comparison of drivers who must collect the fares after climbing stairs and others who stayed behind the wheel in London. The 2008 guideline was supported by a systematic evidence review, where the expert panel opinion showed that people who performed much more physical activities both men and women had a lower risk of CHD development. The median risk reduction was from $30 \%$ to $35 \%$ for those who are physically active. The current recommended weekly physical
activity dose is $150 \mathrm{~min} /$ week for moderate-intensity aerobic physical activity (PA) while it is $75 \mathrm{~min} /$ week for vigorous-intensity aerobic physical activity (Eric, 2010; Mohammad, 2018).

Another study had shown a positive impact of physical activities to reduce the triglyceride, the apolipoprotein B, and triggering the rise of the HDL. In addition, physical activity can increase the tissue plasminogen activator activity; change the low-density lipoprotein particle size. Hence, decreases the coronary artery calcium (Haitham, 2012).

### 2.4.3 Poor dietary habits

Diet is paramount for cardiovascular diseases evolvement and prevention. In a prospective cohort study, baseline exposure for sodium intake was assessed and then examined in relation to subsequent health outcomes (cardiovascular events). In some analyses of these studies, a part of the usual sodium intake with a defined range between 3000 to $5000 \mathrm{mg} /$ day was assessed. They found that either low or high intake of salt was associated with elevated cardiovascular disease risk (Mary, 2016). A study carried out in SSA revealed that hypertension and cardiovascular diseases could be enormously controlled and managed by a dietary salt reduction in countries where the prevalence is currently rising, particularly in Sub-Saharan Africa (Noubiap, 2015).

The selection of dietary carbohydrates is crucial to reducing the risk of type 2 diabetes and cardiovascular diseases. On the one hand, the concomitant use of whole-grain, dietary fiber, and drugs could provide excellent results in diabetes management; on the other hand, the only dietary measures could protect people against prediabetic and diabetic status (Dagfinn, 2016). Hence, their selected intake reduces the risk of coronary heart disease and other CVDs (Lorene, 2015; Dagfinn, 2017).

A better way to prevent CVDs would be tied to the selection of vegetables, fruits, fibers, and whole grains, which are the excellent source of cardioprotective
components and good carbohydrates with non-starch polysaccharides (NSP) (Mann, 2007; WHO, 2020).

## Relationship of lifestyle risk factors and established diseases to cardiovascular diseases



Figure 2.2: Bottom-up concentration of risk factors to cardiovascular diseases (Mozaffarian, 2008).

Lifestyle has a markable link with the established and non-established novel risks and CVDs.

In the best way of optimistic results of scientific studies, performance measures, practice guidelines, and treatment must significantly target hypertension, diabetes, and dyslipidemia. This creates a successful healthcare and society health improvement. The lifestyle examples that influence cardiovascular diseases are smoking, inactivity, and bad dietary behaviors, which may increase adiposity due to excessive calories. Bad lifestyle behaviors may trigger the risk of illness by being the impetus of underlying inflammation/oxidative stress, thrombolytic, and arrhythmia
factors. Hence, the accumulation of lifestyle-related risk factors pushes the speed of cardiovascular diseases occurrence (Mozaffarian, 2008).

### 2.4.4 Alcohol consumption

Studies showed contradictory and controversial results concerning the alcohol effect has on adult morbidity and mortality. A Russian study suggests that the high levels of binge drinking in Russia translated into increased cardiovascular disease mortality (Leon, 2010). Outside heavy irregular or binge drinking, there has been a long tradition of considering the optimal health promotion with moderate alcohol intake, which was first empirically demonstrated. In addition, recently many studies associated the moderate intake of alcoholic beverages with positive effects of antioxidants and blood pressure reduction. Moreover, the polyphenol contents exerted a positive effect on the coagulation system and on the human lipid profile. It has also anti-inflammatory action by the inhibition of inducible nitric oxide synthase (iNOS). Furthermore, it causes the inhibition of the activity of cyclooxygenase 1(COX-1), which may explain the reduction in the risk of cardiovascular disease (Arranz, 2012). However, Ethanol metabolism produces free radicals and reduces the levels of glutathione. It is the major cellular protection against oxidative stress, which was related to coronary heart disease (Covas, 2004; Luc, 2009; WHO, 2016).

### 2.4.5 Cardiovascular diseases and soft drink

Cardiovascular diseases and obesity were linked to excessive sugar-sweetened beverages (Fung, 2009; Malik, 2010).

A study that followed 40,000 participants, men, for two decades, was performed on sugary drinks. This study showed that men who rarely consumed sugary beverages had a $20 \%$ lower risk of heart attack morbidity and mortality. However, the risk increases for men who regularly consumed an average of one can per day (DeKoning, 2012).

Another follow-up study for two decades was carried out for around 90,000 women participants. It showed that women who rarely took sugary beverages developed a $40 \%$ lower risk of heart attack morbidity and mortality. However, the risk increases
for women who regularly took superior or equal to three servings of sugary drinks (Fung, 2009). Sugary beverages' high glycemic content was attributed to increasing cardiac disease risk due to their effect on blood sugar and inflammatory factors. In addition, some cardiovascular disease risks may also be attributed to the metabolic effects of High fructose corn syrup (HFCS). Moreover, it was found to be produced at a lower cost. It has markedly become an attractive choice of sweetener in the commercial industry than sucrose. HFCS is industrially processed in two forms: HFCS-42 (42\% fructose) and HFCS-55 (55\% fructose), from cornstarch, which is initially converted to glucose. Hence, it then undergoes isomerization to fructose (Bray, 2004). Several studies have shown that High fructose corn syrup and sucrose have been found to increase adiposity (Bantle, 2000), insulin resistance (Elliott, 2002), (D’Angelo, 2005), uric acid, and hypertension (Farah, 2006; Brown, 2008). However, Dagfinn in his study of soft drinks, aspartame, and the risk of cancer and cardiovascular disease, did not find any association between aspartame and CVDs but with NHL (Non-Hodgkin lymphoma) (Dagfinn, 2017).

A study of 155,000 participants women showed that the caffeine consumed alone as coffee was less likely to be associated with high blood pressure than the added caffeine in soft drinks (Winkelmayer, 2005). In addition, caffeine is a constituent of many soft drinks, with concentration doses ranging from 10 mg to 15 mg per 100 ml (Frary, 2005). Another study conducted by Dullo in 1986 showed that Caffeine was much lower than the dosages that have been shown to acutely elevate blood pressure. However, it can potentiate the thermogenic effects of sympathetic stimulation induced by other substances. The modification of ingested sugar autonomic responses by the soft drink added caffeine was attributed to causing the acute cardiovascular dysregulation. In addition, it was found to be highly concentrated in energy drinks with 32 mg per 100 ml than 10 mg to 15 mg in regular soft drinks (Brown, 2008; Lugasi, 2015).

### 2.5 Workplace condition risk factors to cardiovascular diseases

### 2.5.1 Psycho-social risk factors

Several studies showed that the stress was a cause of $1 / 4$ of the overall mortality increase in people of working age in Russia (Brainerd, 2004). A study carried out by Friedman in 1958 showed that workplace stress in the accountant group was linked to increased serum cholesterol and blood clotting (Cooper, 2013).


Figure 2.3: Relationship of stress and cardiovascular diseases
(James, 2014)

Stress was defined as the body's awkward response to the stressor, which could bring adverse health outcomes if stressors are exaggerated. Threatening internal and external environmental demands can create a total reaction from the body, which is termed stress reaction behavior. In addition, it is physiological and behavioral expressed where physiological reaction implied the neuroendocrine response and transformed the defense system function. Two axes of the autonomous nervous system (ANS) work together to create stress. The Sympathetic nervous system (SNS) and Parasympathetic Nervous system (PNS) are sources of short-term and long-term
stress (James, 2014). The SNS acts through the sympathetic-adrenal-medullary (SAM) axis by triggering the secretion of epinephrine and norepinephrine. Hence, the direct sympathetic action and the circulating catecholamines generate the physiological short-term responses. This creates in turn, the flight or fight response and encourage the coping mechanism by SAM (Bitsika, 2014). The PNS acts through the hypothalamic-pituitary-adrenal (HPA) axis by controlling and exerting influences on the secretagogues and all related hormones to create long-term stress responses. We can find among the secreted hormones, corticotropin-releasing factor (CRF) known as a corticotrophin-releasing hormone, cortisol, and adrenocorticotropic hormone (Sivan, 2016).

The effect of cortisol on physiology and behavior makes it a stress hormone. It generates some physiologic changes such as lipolysis, gluconeogenesis, inflammatory reaction, and finally proteolytic reaction. Cortisol affects behavior by influencing vigilance, arousal, and cognition (Cohen, 2007). Hence, the balance of this hormone can help to cope with the situation and homeostasis re-establishment (Bitsika, 2014).

The potential contributor was a researcher named Karasek who coined the "job strain model". The researcher stated that the low job decision level with the excessive physiological occupational request could create job strain. Hence, the generation of a deleterious factor, which is social isolation. However, the high demand coupled with high occupational decisions generates a climate of better learning and coping with the situation. Therefore, promote health outcome improvement (Nehal \& Kanwal, 2011).

Workplace stress measurement has followed many different models such as the "effort reward-model". This model was used to assess the occupational imbalance between the effort and the reward and its impact on employees (Colby \& Karen, 2014). A study named the Whitehall expressed that in around 5.3 years employees developed a double risk of coronary heart disease (CHD) for people who faced high effort with low reward. A high psychological burden was observed for work, which requires a high level of vigilance to prevent workplace disasters. The assessment
showed that sea pilots, air traffic controllers, and finally professional drivers were among those types of jobs.

Shift work was found to be associated with workplace factors to cardiovascular diseases. The definition of shift work was not conventionally explained. However, the shift pattern was organized as fixed activities at night for certain employees in a certain workplace. In addition, the night shift workers are currently rising. Wedderbun showed that around $18 \%$ of employees carried out their activities at night and about $25 \%$ of total hours are executed outside of the normal working hours. The occurrence of metabolic syndrome was $15.9 \%$ for night shift workers versus $10.3 \%$ for daily shift workers (Abu, 2018).

Studies currently showed that the night shift is a workplace factor that is associated with cardiovascular diseases. Eradicating the night shift as a cardiovascular disease factor is impossible due to the growing work requirement. The current work schedule requires working even at night. Hence, the strategic maneuver must be applied to the night shift for preventing associated cardiovascular diseases by modifying the night impact for employees on night roster. The discrepancy between circadian rhythms, behavioral changes, and social disruption for people who work at night and the normal daily workers, marks the source of cardiovascular diseases. Hence, lennermas in 1994 stated that those changes create eating patterns and metabolism disturbances and finally increase cholesterolaemia (Anne, 2004). Moreover, the early morning was associated with myocardial infarction rates and angina pectoris (Marianna, 2018).

### 2.5.2 Physical hazards

### 2.5.2.1 Temperature extremes

The workplace with extreme heat or cold factors exposure was linked with an elevated risk of acute cardiovascular events, usually where workers presented preexisting CVDs. The heatstroke or heat exhaustion was due to the magnitude of heat stress. Hence, this exposure causes cardiac ischemia in people with existing CVDs (Anne, 2004).

The cold was found to be present at home and in the industrial workplace. Hence, it is a prominent environmental risk factor. Ice factories and breweries were found in a working cold environment. Working in a cold microclimate can lead to health problems, decreased performance, and absenteeism because of related sickness. The worst-case working in cold conditions may be linked to deaths due to accidents related to cold or because of an acute event occurring in a pre-existing condition (Florin, 2011).

Research showed that approximately $4 \%$ of the general population developed cardiovascular symptoms such as chest pain and arrhythmias when exposed to the cold (Ikäheimo, 2018). Exposure to cold causes vasoconstriction, which increases peripheral resistance and central blood volume. Hence, increase the load of heart activity. In addition, the increased pressure in the left ventricle at the end of the diastole and increased filling volumes, lead to stroke. Raynaud's phenomenon (FR) is marked by common clinical disorders, which are shown by recurrent vasospasm in fingers and toes (Fujii, 2020). They are often associated with exposure to cold temperatures or emotional stress. Aggravated vasoconstriction in response to cooling, may lead to decreased job performance. Therefore, cause a failure of thermoregulation in patients with Renal Failure (Nia, 2010; Ikäheimo, 2018).

According to Kim, men who work around one-third (about $3 \mathrm{~h} /$ day) of the total work time in a cold environment ( -20 to $-50^{\circ} \mathrm{C}$ ), develop asymptomatic hypertensive episodes at work compared with employees working in a hot environment (Kim, 2012). A study of 102 participants in Poland exposed to cold temperatures from - 26 to $20^{\circ} \mathrm{C}$ in deposits measured the physiological responses (cold pressure test, blood pressure monitoring). It was found that systolic and diastolic blood pressure during the day and at night was significantly higher in those working in cold $\left(0-10^{\circ} \mathrm{C}\right)$. However, it was lower for those who worked in an environment less cold $\left(10-14^{\circ} \mathrm{C}\right)$ with an increased response in women (Florin, 2011).

### 2.5.2.2 Noise

Noise is an important occupational hazard worldwide, which may lead to hypertension as a well-known risk factor for cardiovascular disease worldwide
(Hahad, 2019). It is currently the greatest cause of disability in retirement. Biomedical evidence of the association between noise exposure and the non-hearing effect was able to show a higher level of stress among individuals exposed to 55 dBA. Therefore, above $50 \mathrm{~dB}(\mathrm{~A})$, every $10 \mathrm{~dB}(\mathrm{~A})$ road traffic noise increase, creates an increase of $8 \%$ in coronary heart disease incidence due to sleep fragmentation, hormone disturbance, and oxidative stress (Hahad, 2019).

Another study showed that the association between hypertension and noise could be explained by the biochemical changes related to the mechanisms of stress (Babisch, 2003; Hahad, 2019). Therefore, the increased heart rate increased arterial blood pressure and peripheral vasoconstriction. These effects are profoundly expressed in response to the stress caused by noise due to elevated blood concentrations of cortisol, adrenaline, and noradrenaline (Ising, 2004).

A study carried out by Tatiana on noise exposure and hypertension showed the investigation of a silent relationship using the $\leq 75 \mathrm{~dB}$ (A) as the reference category. The risk increment was detected by the increase of noise measure were, $75-85 \mathrm{~dB}$ (A) and $>=85 \mathrm{~dB}(\mathrm{~A})$ showed the OR: $1.56,95 \% \mathrm{CI}(1.13-2.17)$ and OR $1.58,95 \%$ CI (1.10-2.26), respectively. Other parameters such as BMI, gender, and age were independently linked with hypertension (Tatiana, 2015).

The relationship of industrial noise exposure at borderline exposure measure was significantly linked to ST-segment depression in ambulatory ECG monitoring (Anne, 2004; WHO, 2004; OSHA, 2020).

### 2.5.2.3 Vibration

Exposure to the vibration of the hand can cause a variety of disorders collectively named hand-arm vibration syndrome (VHA). The neurovascular component is represented by a white finger (VWF), which appears to users of vibrating tools or machinery such as chain saws, and pneumatic hammers (Florin, 2011). The vibration exposure can reach a certain part of the body, which is qualified as segmental vibration such as hand-arm vibration (HAV). This can even affect the whole-body part in case of Whole-body vibration (WBV) for truck machine operation such as

Forklift. Both hand-arm and whole-body vibration have an adverse effect on the arterial intima. Hence, this leads to a cardiovascular negative outcome (Anne, 2004; HSE, 2005; Oluseyi, 2019).

### 2.5.3 Chemical hazards

Exposure to the various occupational chemicals was linked to specific cardiovascular conditions with the strongest evidence at a high level of exposure (Bulka, 2019).

### 2.5.3.1 Carbon monoxide (CO)

Some combinations of organic materials that occurred at the workplace are the source of intoxication for employees. Employees may breathe the fumes generated by a complex mixture of gases. The sources are enormous where; carbon monoxide, polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrosamines, and oxides of nitrogen constitute the hazardous materials.

Certain studies showed that exposure to a high level of Carbon monoxide could increase cardiovascular diseases risk. The low-level exposure to carbon monoxide could also generate heart ischemia in people with existing coronary heart diseases. A cigarette smoking generates an elevated level of carboxyhemoglobin around 5-15\%, which is more than the level generated by workplace hazards. While the worksite hazards may generate a level between $2 \%-8 \%$ of exposure. An incremental level may jeopardize the health of employees with existing CVDs and Pulmonary diseases. Moreover, People with existing cardiovascular diseases and chronic pulmonary diseases could not tolerate a carboxyhemoglobin of 5\% (Anne, 2004).

Carbon monoxide reduces the oxygen delivery to tissues and cardiac muscles by competitively binding on hemoglobin. Although it is rarely happening in the workplace, the carbon monoxide exposure increment could cause a $25 \%$ carboxyhemoglobin blood concentration. This may only happen by using diesel engines in confined spaces and in firefighting environments. Hence, cause myocardial infarction, arrhythmias, and even sudden death (Gonullu, 2011).

### 2.5.3.2 Carbon disulfide (CS2)

The absorption of carbon disulfide could pass through the skin and through inhalation to intoxicate people at the workplace. Those hazardous materials may occur during manufacturing chemicals, solvents, and viscose rayon. The exposure beyond the acceptable level, which is lower than 4 parts per million (ppm) for eight hours shifts and 12 ppm for short-term, could cause adverse health outcomes. The level of 20-60 ppm was reportedly associated with cardiovascular diseases (Anne, 2004).

Research conducted to assess the cardiotoxicity in 1992 at the workplace showed an increment from two to five-fold in mortality due to cardiovascular diseases for CS2 exposed employees in 1968. However, the exposure reduction to CS2 reduced the risk of cardiovascular diseases. Furthermore, the CS2 effect on cardiovascular diseases was reversible (Chung, 2017).

The higher toxic effect could cause cardiovascular diseases. The adverse effects caused by this toxicity increment were the increase of low-density lipoprotein, decreased fibrinolysis, hypertension occurrence, and microaneurysms. In addition, the appearance of a negative inotropic effect and direct ECG Changes. This happened after multilateral cascaded reactions to produce dithiocarbamates. The last was formed after the reaction of amine and amino acids. The reaction was observed in the pyridoxine coenzyme, zinc, and copper. Hence, all these reactions caused the inhibition of the enzymatic systems and cause cardiovascular diseases. Moreover, a safe workplace was associated with reduced exposure and eventual reduced cardiovascular diseases (Schramm, 2016). A study done for workers with carbon disulfide cumulative exposure index of 128.2 ppm and exposure of $\geq 10 \mathrm{ppm}$ for some workers and below 10 ppm . This study has shown that the prevalence of hypertension was $69.2 \%, 13.9 \%$ for coronary artery disease. In addition, around $24.8 \%$ had cerebral vascular disease, and $1.3 \%$ had diabetes prevalence among the exposed workers (Chung, 2017).

### 2.5.3.3 Carbon dioxide (CO2)

The brewers, carbonated beverage employees including miners, and grain elevator employees were mostly exposed to carbon dioxide. According to the Canadian Centre for Occupational Health and Safety (CCOHS) in 2005, CO2 engaged an active replacement of O 2 on hemoglobin. Hence, according to Nelson in 2000 and Tox review in 2005, the CO2 released by yeast caused poisoning hazards at the brewer's workplace in the process of alcohol fermentation (Permentier, 2017).

The CO2 could silently cause problems in the workplace due to its odorless, colorless state, and non-flammable gas. It is generated by the breathing of cells and fossil fuel burning. Its molecular weight is $44.01 \mathrm{~g} / \mathrm{mol}$ as depicted by National Institute for Occupational Safety and Health (NIOSH) in 1976). In addition, it was shown that the environmental rise in C02 pollutants, aggravated the illness and jeopardized the quality of health of existing cases of cardiopulmonary illness (Rice, 2014). Moreover, the mixture of CO2 and other gaseous substances with Particle matters (PM) can harm humans. Those Particle matters have an aerodynamic diameter of $10,2.5,1$, or $<1 \mu \mathrm{~m}$. They caused 3.7 million deaths in 2012 and $29 \%$ were caused by cardiac disease and stroke (Lee, 2014).

Although the atmosphere contains CO2, it is present at a very low level of $0.035 \%$ that cannot harm humans as stated by CCOHS in 2005. The CO2 permissible exposure limit (PEL) for workplace safety was established by the occupational safety and health administration (OSHA) to ensure worksite safety. The PEL was set to $5,000 \mathrm{ppm}$ for the 8 -hours workday, the level that is equivalent to $0.5 \%$ by volume of air. This level is exceeding $0.015 \%$ of the atmospheric CO 2 content by volume of air. Similarly, the American Conference of Governmental Industrial Hygienists (AACGIH) also established the threshold limit value (TLV) of 5,000 ppm for an 8hour workday. In addition, they established a 30.000 ppm of ceiling exposure limit (CEL). This stand for $0.3 \%$ by volume of air, for a period of 10 -minute adjusted on the basis of acute inhalation as depicted by the Massachusetts Department of Public Health (MDPH) in 2005. The increased concentration of CO2 from $0.5 \%$ to $5 \%$ in the sports rooms was substantially linked to the rise in cardiac frequency and systolic blood pressure after the 3-minute exercise (Liu, 2015).

### 2.5.3.4 Methylene chloride

Workplace exposure to methylene chloride can increase carboxyhemoglobin. The carboxyhemoglobin could be very much increased again when the liver metabolizes the methylene chloride into part of carbon monoxide. Hence, this shows the utility of carboxymeter for exposure monitoring (Hoang, 2021).

### 2.5.3.5 Nitrate esters

Inhalation and skin passages are the intoxication pathway of nitrate esters for human people. Although hand chemical manipulation is currently being replaced by automation, occupational exposure is providing elevated blood concentration than the therapeutic mechanism. A study carried out by Anne in 2004 showed that 1 mg tablet of nitroglycerine or glyceryl trinitrate (GTN) through sublingual route taking produced $5.7 \mathrm{nmol} / \mathrm{l}$. However, in the factory of gun production exposure produced $98.1 \mathrm{nmol} / \mathrm{l}$ of median measurement (Anne, 2004). Hence, in 2011 the scientific committee for occupational exposure limits set the GTN time-weighted average (TWA) to $0.01 \mathrm{ppm}(0.095 \mathrm{mg} / \mathrm{m} 3)$ for eight-hour TWA. They also set occupation exposure level to $0.02 \mathrm{ppm}(0.19 \mathrm{mg} / \mathrm{m} 3)$ for short-term, exposure limits (STEL) (15 minutes).

The GTN is normally used to treat coronary stenosis, peripheral artery resistance, peripheral ischemia, and diabetic peripheral neuropathic pain by creating vasodilatation and blood pressure reduction. However, it was also found to create methemoglobinemia and insulin resistance (Sean, 2012).

The much-known exposed industry employees to GTN and ethylene glycol dinitrate are munition, explosive, and construction industrial employees. The exposure increases as long as they handle dynamite in construction, cartridge, and explosives mixing.

After World War II, an epidemic of chest pain and sudden death occurred. Studies showed that the attacked people were employees in munition industries and the issue occurred in three days around 36 to 72 hours after exiting from munition industries. In addition, they found that the nitrate esters were able to cause withdrawal
syndrome in workers. Moreover, chronic exposure to nitrate ester triggers the reninangiotensin system to produce an opposing effect. This can balance the vasodilatation effect caused by nitrate ester. Hence, any withdrawal leaves the body with more compensating vasoconstrictors. This leads to heart vessels spasm, coronary stenosis, chest pain, angina, myocardial infarction, and sudden death. Furthermore, the effect name was coined and named "Monday morning angina" (Anne, 2004; Münzel, 2011).

### 2.5.3.6 Cobalt

Cobalt had been added to beer in the form of cobaltous chloride at a dosage of about 1 ppm by several breweries in Belgium from 1959 on. This was added to prevent beer from gushing, to stabilize and improving the appearance of its foam. Some breweries ceased the addition of cobalt to beer in the middle of 1965 after a change in the Belgian law on food additives. All breweries stopped adding cobalt to beer in March 1967, after the possible toxic influence of this agent became apparent. The disease was called "alcoholic peri-myocardiopathy" It was thought to be due to a direct influence of alcohol, although another toxic origin was not excluded. It was by the correspondence of Professor Morin of the Laval University of Quebec to enlighten the darkness of the unknown and showed the toxicity of beer containing Cobalt (Parker, 2016; Gessner, 2019).

In Quebec, a total of 48 patients studied, 20 died, and in Omaha 11 of 28 patients died. Most patients died in profound shock. Multiple arterial emboli were seen. Shock is a known complication of the intravenous administration of cobalt. It was found in the dog that the intravenous administration of 3 mg of cobalt/kg lowers the blood pressure to between 50 and $70 \%$ of the initial value. This is not due to a direct action of cobalt on the heart, as its action in this concentration was shown to be positively inotropic but was found to cause cardiomyopathy (Parker, 2016).

It may be assumed that beer drinkers consumed an average of 6 mg of cobalt a day. Much larger doses of cobalt, however, have been given in the treatment of anemia without cardiotoxicity being reported as a result of the therapy. Doses of between 20 and 35 mg of cobalt a day were given for several months, and no heart disease was
described. Although hypothyroidism and thyroid hyperplasia have developed. Cobalt has been given in a dosage of 75 mg a day for 6 weeks in cases of sickle cell anemia, nerve deafness, and tinnitus, but no cardiac toxicity was reported. Cobalt has also been given in a dosage of about 20 mg a day for three months to 78 pregnant women. The anemia of pregnancy was prevented in this group, and no toxic manifestations were observed.

Studies have not found any association between heart toxicity with cobalt miners or cobalt purification professionals. Cobalt was even used for therapy in cases of hypertension at a dosage of 6 to 8 mg a day, and no toxic effects have been noted. Around 22 Doses of cobalt of $2.5 \mathrm{mg} / \mathrm{kg} /$ day have been given to experimental animals for a period of 6 months. At autopsy, nothing special was found. In a dosage of 5 mg of cobalt/kg/day, no animal died after 5 months. At autopsy, some myocardial edema without degeneration was observed. In a dosage of cobalt of 25 $\mathrm{mg} / \mathrm{kg} /$ day the animals died after 1 month and massive pericardial effusion was noted. The myocardium was edematous; degeneration and swelling of the myocardial fibers were present with clarification and vacuolization of the cytoplasm. Thus, very high concentrations of cobalt seem to be necessary to produce toxicity. This may occur in both humans and experimental animals, and even in the cobalt production worksite (Linna, 2020; Zhang, 2020). Some study results showed that cardiomyopathy was brought about by the combination of cobalt, excessive alcohol consumption, and malnutrition (Anne, 2004). However, a recent study proved contrary to the cobalt effect on cardiomyopathy (Lantin, 2013).

### 2.5.3.7 Arsenic/Arsine

Contaminated beer caused subacute arsenic poisoning has been linked to cardiomyopathy and cardiac failure. With the unclear mechanism, 70 deaths have been recorded from an epidemic that touched 6000 people in Manchester (National Research Council, 1977; Moon, 2012).

The recurrent ventricular fibrillation and abnormal ECG were observed with acute arsenic intoxication. Heavy intoxication with arsine gas can generate cascade adverse health outcomes, which start from hemolysis of red blood cells, heart failure, and
eventually hypercalcemia. The arsenic occupational intoxication was observed in arsenic ore processing in metallurgical industries and in agricultural vineyards exposure by spraying the arsenical insecticides (Anne, 2004; Assadi, 2017). A study carried out in Italy to detect the three heavy metals in beer contents (arsenic, lead, and cadmium) showed that nine out of nineteen beer samples were below the limits of detection. They found that the quantifiable residue level of lead was noted in $52.6 \%$ of samples, three for cadmium and none for arsenic. Furthermore, the Italian regulation for drinking water found that arsenic was beyond the legal limit for nine samples. Additionally, the Tukey post-hoc test indicated that arsenic was found at a significantly higher level than lead and cadmium. A significant correlation at the 0.034 level (Pearson's $\mathrm{R}=0.489$ ) was found between cadmium and lead. Also, a highly statistically significant correlation (Pearson's $\mathrm{R}=0.620$ ) at the 0.01 level was found between \% Alcohol by Volume (ABV) (Donadini, 2008) and total arsenic content, (Bengt, 2015).

### 2.5.3.8 Lead

Studies showed that people exposed to lead developed hypertension. The lead intoxication can pass through the lungs by inhalation of environmental lead, exhaust fumes, and water intoxicated by leaded petrol and lead pipes. One millimeter and 0.6 mm increase in systolic and diastolic blood pressure were associated with a 2 -fold blood concentration of lead. According to steenland in 2000, the physio-pathologic phenomenon was that Lead creates an effect on vascular smooth muscle and enhances sympathetic stimulation (Navas-Acien, 2007). Hence, it interferes with calcium metabolism (Bengt, 2015).

### 2.5.3.9 Solvents and arrhythmias

Exposure to solvents chemicals has been linked with heart rhythm troubles (Bradycardia, atrial ventricular block). Arrhythmias were observed for some chemicals among others methylene chloride, methyl chloroform, bromofluorocarbons, and trichloroethylene. However, Glue sniffing was found to be
intentional exposure. The concerned exposure employees were found in chemical manufacturing industries, dry cleaning, painting, and finally degreasing chemicals.

It was noted in the literature that abuse and workplace solvent chemical exposure caused several cases of sudden death. In addition, solvent exposures increase the sensitivity of the heart to catecholamines, where a lower dose of adrenaline can generate ventricular tachycardia and fibrillation. Moreover, exposure to halogenated hydrocarbons could exert a negative effect on the heart (Anne, 2004; Assadi, 2017).

A study carried out to examine the effect of hazardous chemicals with epinephrine and norepinephrine showed that toluene, styrene, and xylene exposure induced cytochrome P-450 isoenzymes disturbances (Bulka, 2019). Hence, the metabolism of cholesterol disturbance inevitably follows for the exposed group (Ki-Woong, 2012).

### 2.5.3.10 Cardiovascular disease and workplace

In Brazil, a study done in a carbonated beverage industry has shown that $83 \%$ was with a sedentary lifestyle, and $63 \%$ with obesity. Around $28 \%$ presented systematic hypertension while $45 \%$ were with pre-hypertension. In addition, $49 \%$ of the study participants were with impaired blood glucose, and $7 \%$ and $11 \%$ presented hypercholesterolemia in the study participants, respectively (Cassani, 2009).

The study done on the 123 workers of são Paulo state distillery (Liquor factory), showed that $26 \%$ presented Cerebral vascular accidents, $27.6 \%$ presented Diabetes mellitus, and $65.9 \%$ reported alcohol intake. In addition, $11 \%$ had systolic hypertension and $12.2 \%$ with diastolic hypertension, and finally, levels one and two of obesity were $27.6 \%$ (Simao, 2002).

A study carried out in the united brewery of America, union in New York revealed 25 deaths over two years' experience due to heavy drinkers' workers. This was estimated without considering other industrial factors in their working environment. However, the mortality rate was rising in breweries and distilleries according to the organization of life insurance and the official statistic for occupational mortality (Kiran, 2022).

Recently industrial workers in the US showed that people of advanced age were suffering from CHD and stroke. In addition, the risk increased in the people out of the labor force by $6.3 \%$ while unemployed people searching for jobs presented $2.5 \%$. Moreover, employed adults' people beyond 55 years presented a lower history for CHD and stroke at a level of 1.9. This study was the baseline of CHD and stroke prevention programs in adult people (Luckhaupt \& Geoffrey, 2014).

The mega industrial corridor Nepal study revealed that the prevalence of cardiovascular diseases was $13.8 \%$ in 494 industrial employees. The aged people were prone to have cardiovascular diseases, where the Odd of developing the cardiovascular disease for people with more than 45 years was 2.72. In addition, it was $1.9,2.47$ and 4.32 times more likely to develop CVD for people with hypertension in family history, lack of fruit consumption, and tobacco use, respectively. Moreover, the higher the LDL $\geq 130 \mathrm{mg} / \mathrm{dl}$, the higher the risk of developing cardiovascular disease (Schnall, 2000). Furthermore, the risk of suffering CVDs increased to OR=3.03 for such people (Pyakurel, 2016).

A case-control study concerning the alcohol intake impact on coronary heart disease was conducted on Indian employees and their family members. This study has declined the positive impact of alcohol to prevent coronary heart disease (CHD). This happened after finding out that many cardiovascular diseases risk factors were elevated in the drinkers than in the abstainers.

Therefore, coronary heart diseases were less likely to attack non-alcohol users at a level of $2.4 \%$ while it was $3.3 \%$ for alcohol users. The fasting blood glucose and hypertension levels were higher for alcohol users $(98.7 \pm 30.5 \mathrm{mg} / \mathrm{dl})$, $(128.7 \pm 17.6$ $\mathrm{mmHg} / 80.1 \pm 11.3 \mathrm{mmHg})$. However, the FBG and blood pressure levels were lower for the non-alcohol users $(96.6 \pm 26.0 \mathrm{mg} / \mathrm{dl}, \mathrm{p}<0.01)$, $(126.9 \pm 15.9$ $\mathrm{mmHg} / 79.5 \pm 10.3 \mathrm{mmHg}, \mathrm{p}<0.01$ ), respectively (Roy, 2010).

Another study done in India in the industrial workplace for the NCDs profile risk factors has revealed the overall risk factors profile of the study subjects. The study showed a universal prevalence of inferior 500 gms daily intakes of vegetables and
fruits, followed by $65.7 \%$ and $65.5 \%$ prevalence of High blood pressure and high BMI, respectively.

The proportion of $72.7 \%$ of the high waist to hip ratio and $32.3 \%$ of high abdominal circumference were observed in the increment of abdominal obesity. The prevalence of alcohol intake, smoking, and inactivity was $5 \%, 31.4 \%$, and 17.3 , respectively.

The three factors such as diabetes $19.1 \%$, hypertension with $38.2 \%$, and cholesterolemia with $40.5 \%$ were found in $34.1 \%$ of the study participant with high risk (Mehan, 2006).

A South African study revealed that the intake of sugar-sweetened beverages (SSBs), has been linked with increased high BMI and risk of stroke. They forecasted a reduction of around 550,000 stroke-related-adjusted life years and 72,000 stroke deaths. Hence, a reduction of healthcare costs of around $\$ 400$ million if only they impose an SSB tax over 20 years. Moreover, the prevalent and incident cases may be reduced to approximately 13,000 and 85,000 , respectively (Manyema, 2012).

Another study concluded that, although artificially sweetened beverages and fruit juice also showed positive associations with the incidence of type 2 diabetes and adiposity, the bias was more likely to be found in the findings (Imamura, 2015).

A study conducted in the UK for three cardiovascular factors (high blood pressure, alcohol intake, and metabolic syndrome) in comparison to non-drinkers showed a reduction in CHD risk over 10 years with the alcohol consumption increase. The risk was greatly reduced for women with consumption between 1-7 units/week, $\mathrm{OR}=0.9$, ( $95 \%$ CI: $0.72-0.87$ ). However, the alcohol consumption between 15-21 units/week, increased the prevalence of hypertension with $\mathrm{OR}=1.68$, ( $95 \% \mathrm{CI}: 1.14-2.46$ ) (Nanchahal, 2000).

A study carried out in Korea to assess the impact of a Worksite Multiple cardiovascular Disease Risks Reduction Program (WMCVDRRP) revealed a positive effect. It has presented $40 \%$ behavior improvement in the study subjects after six months of implementation. The improved factors are diet and stress management, physical activity, and finally sticking to medication. Although the improvement in
drinking behaviors did not show statistical significance, $21 \%$ of the participants changed in alcohol consumption and $21 \%$ quit smoking. Eight physical indicators including systolic and diastolic blood pressure, total cholesterol, triglyceride, body mass index, waist-hip ratio, body fat, and muscle weight improved significantly (Huang, 2013).

The workplace self-reported study that was carried out in United Kingdom for occupational diseases from 2011 to 2012 showed that 2.3 million were work-related illnesses (WRI). In addition, 33 million days were lost due to the WRI. Hence, they estimated around 80,000 CVD prevalence due to WRI or made worse by the work during the period of the study year. The average number lost days in a year due to sickness was 23 days for each reported person with WRI. In addition, all lost days were equal to 1.84 million days due to work-related cardiovascular disease. Moreover, the associated cost was around $£ 120$ million (Jones, 2002).

A study carried out in Rwanda, on the cardiovascular disease changeable risk factors in university employees, has revealed that 36 participants were hypertensive, with a significant age correlation. Cardiovascular diseases were associated with factors such as smoking, sedentary, lack of physical activities, diabetes mellitus, high BMI, and alcohol intake. About $28 \%$ of study participants were physically inactive and $41 \%$ of the participants were overweight (Phillips \& Banyangiriki, 2015).

### 2.6 Biological risk factors to cardiovascular diseases risk

### 2.6.1 Metabolic syndrome

Metabolic syndrome (MetS) is a group of clinical, physiological, biochemical, and metabolic disorders that create a state of a complex of interrelated factors. It is subsequent to low-level inflammation, which may increase type 2 diabetes, cardiovascular disease risk, and death (Grundy, 2005). The MetS are formed by various factors among others elevated blood pressure, impaired fasting glucose, central obesity, atherogenic dyslipidemia, and endothelial dysfunction (Jaspinder, 2014). In addition, genetic vulnerability, high coagulability, and prolonged stress are the core factors of the MetS (Kazim, 2014).

Having metabolic syndrome is very critical to the extent of increasing three to fourfold myocardial infarction development, two to four-fold of stroke increased risk, and finally two-fold the risk of death occurrence than people without metabolic syndrome (Alberti, 2005). These morbidity and mortality risks happen to people without any cardiovascular event history (Olijhoek, 2004).

The qualification of atherothrombotic complications could be based on the development of the metabolic syndrome as a first-line risk factor. Presenting or not presenting the MetS could be a gauge of long-term risk. However, some other benchmarks of the short-term risk such as REGICOR (Registre Gironí del Cor) and Framingham could be used to ascertain the risk between five and ten years (Grundy, 2006).

### 2.6.2 Hypertension

High Blood pressure was evaluated as one of the significant causes of the global disease burden, which caused 9.5 million deaths each year and $16.5 \%$ of all deaths. Hypertension was considered the twin risk factor to cardiovascular diseases and is therefore presenting a global rising prevalence and occurrence (Lim, 2012).

High blood pressures were approximated to be $30 \%$ of the adults' population in the European WHO region while it was $23 \%$ in the Americas WHO region as stated by the World health organization in 2008. However, the 2019 study showed that the rate would rise from 30 to $45 \%$ in the general population (Giuseppe, 2013).

Hypertension control and management showed a remarkable reduction of $40 \%$ in mortality due to cerebrovascular diseases and a reduction of $20 \%$ in coronary heart diseases. This makes it a major risk factor and an important target to prevent and fight cardiovascular disease burden in the global population (Kaplan, 2002; Flávio, 2019). Hence, continuous practical behavior studies and treatment are necessary (Kaplan, 2010).

A joint effort of three entities, which are the Colombia Earth Institute and Harvard School of public, and finally the millennium village's project on the prevalence of hypertension. The study showed that in three villages selected in various countries,
hypertension prevalence was $22.8 \%$ in one village in Rwanda, $15.9 \%$ in one village in Malawi, and $26.8 \%$ in also one village in Tanzania. These prevalence's were not negligible and as taken in small and sporadic villages, the real burden could be high (Stewart, 2010).

### 2.6.3 Diabetes

Diabetes development is critically linked to the development of cardiovascular development. Hence, it is an independent risk factor for cardiovascular diseases. Diabetes damage peripheral and extremity small vessels, which is the source of diseases such as nephropathy, retinopathy, and eventually peripheral vascular diseases. Moreover, the degenerative destruction of vessels in the brain and in the heart causes stroke and coronary artery diseases (CAD). Therefore, the heart muscle develops infarction, reduction of ejection fraction. Then, diastolic, and systolic disorders start, which lead to heart failure (Dokken, 2008).

The impairment of fasting glucose (IFG) is one of the major causes of metabolic syndrome. Diabetic patients without effective control of metabolic gauge develop macrovascular and microvascular degeneration. This causes irreversible diabetic complications. Hence, these complications lead to worldwide Morbi-mortality and economic burden. In 2004, the deaths due to diabetes in the population older than 65 years in the USA were associated with $16 \%$ of stroke and $68 \%$ of other cardiovascular diseases (Alessandra, 2013). The American heart association showed that in around $65 \%$ of deaths due to cardiovascular diseases, diabetes was a major and an independent risk factor. Stamler in his study in 1993, showed that patients with diabetes presented increased mortality due to stroke by three-fold than no diabetic patients (Martín-Timón, 2014). In addition, diabetes causes the occlusion of small arteries. Some prospective studies showed that patients with diabetes have an increased risk and development of CVD events when other independent risk factors (smoking, hypertension, high serum cholesterol) accumulate. However, the diabetic health improvement by only drugs administration cannot change the cardiovascular risk increment if other factors are not controlled (Martín-Timón, 2014).

### 2.6.4 Dyslipidemia

The lipid metabolism turmoil creates a disorder of lipid deposits in cardiovascular pathways, which is the source of heart diseases and other cardiovascular diseases. A study done by Carlson, 1979 showed that a $1 \%$ increase in total cholesterol was expected to cause a $2-3 \%$ incidence of coronary heart disease (Mee, et al., 2017). Another study done by Law, 1994 showed a strong relationship with an increase of $38 \%$ of the risk of coronary mortality after an increase of $10 \%$ in total cholesterol. Therefore, various studies described that the increase of triglyceride-rich lipoproteins (Quilomicra and VLDL) has a direct and significant correlation with coronary heart disease incidence (Mee et al., 2017). In addition, the study showed that the proportion of $37 \%$ of women and $13 \%$ of men suffered cardiovascular diseases due to high triglycerides (Telmo, 2012).

People with HDL-cholesterol, have also a low risk of coronary heart disease. Hence, every increase of $1 \mathrm{mg} / \mathrm{dl}$ of HDL-Cholesterol was linked to the reduction of 2 to $3 \%$ of coronary heart diseases as shown by Gordon in 1989 (Rajagopal, 2012). Highdensity lipoprotein is a part of the reverse transport of cholesterol and can carry out the work of inflammation prevention and eventually ensure the blocking action against the oxidation caused by the LDL-Cholesterol (Ansell, 2004). On the other hand, people with a decreased level of HDL are having concomitant hypertriglyceridemia, obesity, a sedentary lifestyle, and active tobacco intoxication (Cui, 2001). In addition, decreased glucose tolerance and an increased occurrence of cardiovascular events were noted for levels of HDL-cholesterol below $40 \mathrm{mg} / \mathrm{dl}$ ( 1.0 $\mathrm{mmol} / \mathrm{L}$ ) in men. This phenomenon was also noted for women with less than 46 $\mathrm{mg} / \mathrm{dl}$ ( $1.2 \mathrm{mmol} / \mathrm{L}$ ) of HDL-c (UK HDL-Consensus Group., 2004). Moreover, HDLCholesterol is of great importance to be determined as a parameter of cardiovascular health. HDL-c can better translate the risk of cardiovascular mortality than LDL cholesterol, and express more accurately the lipoprotein atherogenicity (Telmo, 2012).

### 2.6.4.1 Lipid's metabolism

Lipids constitute an essential source of energy storage, represented by triglycerides, and were made by a very heterogeneous group of compounds. The lipid influence on metabolism goes far beyond the misdeeds attributed to it. They are transported by apoproteins, which constitute the protein fraction of lipoproteins. In addition, lipids form a part of the brain ( $17 \%$ of its dry weight), hormones, and lipoproteins. Ultimately, lipids play a substantial role in the creation of bile acids, vitamins, and the structure of cell membranes.

Relying on the composition, type, size, function, and density, lipoproteins are oftentimes classified into six groups. Those groups are: Quilomicra, VLDL (very low-density lipoproteins), IDL (intermediate density lipoprotein), LDL (low-density lipoprotein), HDL (high-density lipoprotein), and Lipoprotein (a)

The large lipoprotein particles (ApoB48, ApoAI, and ApoAIV) and chylomicron aid the transportation of the diet fat rich in triglyceride from the intestine into the bloodstream (Hussain, 2014).

By the way, other elevated quantities of lipoproteins such as Very low-density lipoprotein (VLDL) and triglycerides were ultimately produced by the liver alone. Hence, VLDL and triglycerides are finally broken down by the extracellular enzyme (Lipoprotein-lipase) and the degraded free fatty acids are deposited in tissues. The low-density lipoprotein binds to peripheral or liver receptors after being produced from Intermediate-density lipoprotein. This was also formed after hydrolysis of lipoproteins by hepatic-lipase. Thus, in another cycle of reverse cholesterol transport, HDL particles pick up cholesterol deposited in the arterial wall. Therefore, they ensure its transportation to the liver, where it is subsequently excreted in the bile (Eckardstein, 2005). The equilibrium of a complex metabolism formed by the interaction of lipoproteins with an elevated number of enzymes, transport proteins, and receptors, is determined by intrinsic and extrinsic factors. Hence, the prominent clinical consequences were manifested due to the pathological process of atherosclerosis caused by the system disequilibrium (Silva, 2003; Rafieian-Kopaei, 2014).
2.6.4.2 Atherogenesis and cardiovascular diseases risk-atherosclerotic plaque

The course of events takes place in the lumen of the arterial wall until the clinical devastating manifestation to the person. The arterial wall is the inner portion of our vessels, which can be compared to a thin membrane that carpets the blood vessels. Thus called the vascular endothelium. The maintenance of several potentially unstable equilibrium requires the fundamental integrity of the vascular endothelium. However, endlessly blood and other circulating factors are closely alternating defense and aggression with Nitric Oxide as the key protector. Therefore, many interactions are produced in the vicinity of endothelium produced such as vasodilation/ vasoconstriction, anti-thrombotic/pro-thrombotic, anti-inflammatory/ pro-inflammatory. In addition, around ten lipidic factors were involved to explain this phenomenon. Those factors are lipoprotein a, lipoprotein remnants, HDL subspecies, small and dense LDL, and apolipoprotein A-1. Besides, the aforementioned factors we can include, the apolipoprotein $\mathrm{B}, \mathrm{C}$ reactive protein, homocysteine, interleukin-6, cell adhesion molecule-1, and finally the selectionCD40. Moreover, metabolic postprandial hyperinsulinemia, and coagulation factors such as fibrinogen, Von Willebrand factor, factor VII, and plasminogen activator inhibitor (PAI-1). Hormonal: Loss of estrogen production (menopause); and neurotransmitter, enzymes, and chemicals released in the blood after the psychological/behavioral events. Those events are: alcoholism, depression, social isolation, loss, and social support, low socioeconomic status as stated by the International lipidic information bureau (ILIB) in 2003 (Linton, 2019). The relative dominance of each of these interacting factors could determine the final maintenance of endothelial integrity or, conversely, its dysfunction, and destruction (Houston, 2002; David et al., 2004; Chen, 2015; Houston, 2018).

The initial phase starts with the endothelial dysfunction of atherosclerosis, once the endothelial barrier is compromised; the process of lipid flooding starts in the vascular wall. Hence, it mobilizes the inflammatory cells and influences the chemotactic factors and multiplication of smooth muscle and connective tissue.

The vascular changes and calcification due to the lipid streak-atherosclerosis process marked the histologic consequence, which generates the vascular stenosis (Silva, 2003; Rafieian-Kopaei, 2014).

The atherosclerotic plaque stability is thus due to the type of plaque. Vasoconstrictor triggers, hypertension, and sympathetic activity could not sometimes disrupt the plaque with a thin lipid core and small inflammation. This plaque is less vulnerable due to the though and thick outer layer. In contrast, plaques with a rich lipid core, inflammatory activity (Ridolfi \& Hutchins, 1977), and a significantly weak fibrous cap will present a higher risk of fracture and exposure to their internal contents (Telmo, 2012).

### 2.6.5 Overweight, obesity, and central obesity

The definition of obesity was universally expressed as a surplus of body fat in relation to height. It is actually calculated by the weight in kilograms over height in meters squared. The usual and general benchmark is called Body mass index (BMI).

Many prospective studies have reported a J-shaped curve between BMI and mortality/morbidity (Despres, 2012). Overweight and obesity were found to be associated with cardiovascular diseases versus underweight (AOR=1.80) (Rahman, 2015). Obesity especially produces visceral fat deposition. This is associated with low-grade inflammation, which plays a role in the pathogenesis of diabetes. Moreover, both diseases are associated with a significant increase in morbidity and mortality due to CVD (Alessandra, 2013).

Obesity, with the common benchmark, is defined as having a $B M I>=30 \mathrm{~kg} / \mathrm{m} 2$. Hence, it creates several long-term detrimental health consequences of surplus weight. This condition leads to premature atherosclerosis, increased risk of myocardial infarction, and heart failure. Moreover, it reduces the survival time due to early cardiovascular death for people with morbid obesity (Berrington, 2010). Through a complex phenomenon, obesity interconnects with different factors, which lead to cardiovascular diseases. We can find among those factors; atherogenic risk factors, insulin resistance, metabolic disorders, dyslipidemia, and hypertension. Moreover, it causes detrimental heart muscle change, heart hypertrophy, the reduction of ejection fraction with a systolic and diastolic impediment, and vascular endothelial disorders.

Furthermore, this complex phenomenon generates an adverse effect on the rise of sympathetic tone, pulmonary venous, and artery hypertension, and early coronary artery diseases. Finally, the damages extend to the right-sided heart and the creation of arrhythmias (Poirier, 2011).

The hepatic adipose particles produce constant circulating pro-inflammatory and inflammatory factors such as cytokines, which leads to various consequences. Therefore, cardiovascular diseases are manifested after the litany of issues such as insulin resistance, the activation of plaque, and enlargement of the heart muscle.

In fact, it is the pathogenic-adipose-cardiovascular complex that generates systematic arterial disorders due to observable body traits adversely changing (Apovian, 2008).

BMI represents a crucial element for the overall risk forecast. However, there are numerous factors to consider for clinically estimating the occurrence. The body fat percentage, fat distribution, and the quality of adipose tissue are also other factors used in combination with BMI to estimate the overall risk (Apovian, 2012).

## Table 2.1: Gender and age-specific waist circumference cut-offs

| Country/Ethnic group | Waist circumference cut-off |  |
| :---: | :---: | :---: |
|  | Male(cm) | Female(cm) |
| Europids | $\geq 94$ | $\geq 80$ |
| In USA the ATPIII values $(102 \mathrm{~cm}$ male and 88 cm for female) are likely to continue to be used for clinical purposes |  |  |
|  |  |  |
| South Asian | $\geq 90$ | $\geq 80$ |
| Based on Chinese, Malay and Asian Indian population |  |  |
| Chinese | $\geq 90$ | $\geq 80$ |
| Japanese | $\geq 90$ | $\geq 80$ |
| Ethnic south and central | Use south Asian's recommendations until more specific data are available |  |
| Americans |  |  |
| Sub-Saharan Africans | Use Europ available | more specific data are |

Eastern Mediterranean and Middle Use European data until more specific data are East (Arabs) population available
(Jaspinder, 2014)

### 2.6.5.1 Body mass index (BMI) and cardiovascular diseases

Body mass index (BMI) is the gauge of low, normal, and surplus weight which uses the weight in kg divided by the squared height in meters ( $\mathrm{KG} / \mathrm{m} 2$ ) (Berrington, 2010).

The measure beyond the normal or overweight range (BMI $\geq 25 \mathrm{~kg} / \mathrm{m} 2$ and $\geq 30$ $\mathrm{kg} / \mathrm{m} 2$ ) of BMI has been linked with an increase in hypertension, diabetes, and cardiovascular diseases. Hence, the combination of such diseases increases mortality (Robert, 2014).

BMI is frequently used as a surrogate measure of fatness in children and adults (Poirier et al., 2006). Although studies stated that it measures surplus weight rather than surplus fat, its results correspond to body fat gauges like dual-energy x-ray absorptiometry and underwater weighing.

Table 2.2: Body mass index relation to waist circumference as reference to central adiposity

| Disease Risk Relative to Normal weight and Waist Circumference |  |  |  |
| :---: | :---: | :---: | :---: |
|  | Body mass index $\mathbf{K g} / \mathbf{m}^{2}$ | Men, $\leq 102 \mathrm{~cm}$; <br> Women, $\leq 88 \mathrm{~cm}$ | $\begin{aligned} & \text { Men, } \quad>102 ; \\ & \text { Women, }>88 \mathrm{~cm} \end{aligned}$ |
| Underweight Normal Overweight Obesity, class | <18.5 |  |  |
|  | 18.5-24.9 |  |  |
|  | 25.0-29.9 | Increased | High |
|  |  |  |  |
| I | 30.0-24.9 | High | Very high |
| II | 35.0-39.9 | Very high | Very high |
| III |  |  |  |
| Extreme obesity | $\geq 40$ | Extremely high | Extremely high |
| Disease risk for type 2 diabetes, Hypertension, and Cardiovascular diseases |  |  |  |

(Poirier, 2006)

### 2.6.5.2 Free fat in the body

Some studies showed that regional fat distribution was not the key element to assess its linkage with adverse health outcomes and complications. The pattern of fat accumulation like gynoid or android was also involved. The waist-to-hip ratio (WHR) or the ratio of waist to hip circumference is the crucial benchmark. This was more associated with metabolic consequences and cardiovascular adverse outcomes than the BMI. Moreover, the recent evidence declared that the elevated level of WHR served as a good predictor of elevated hypertension, diabetes, dyslipidemia, and cardiovascular disease risk (Despres, 2012).

## Fat maldistribution process



Figure 2.4: The lipid overflow-ectopic fat model
(Despres, 2012).

### 2.6.5.3 Excess visceral adiposity

Adipose tissue dysfunction is marked by fat maldistribution with central obesity. The storage and inappropriate concentration of fatty acid due to excess energy production impede and harm the liver metabolism. Therefore, it implicates systemic inflammation, glucose intolerance, insulin resistance, and high triglyceridemia. Besides those factors, the body generates apolipoprotein B , atherogenic
dyslipidemia, and a reduction of high-density lipoprotein-Cholesterol follow (Björntorp, 1990; Longo, 2019).

The capacity of the body to cope and adapt itself to sedentary and the consumed energy (plenty of calories) balances the metabolic syndrome occurrence. In addition, the maladaptive response to stress and the way the body fights smoking and genetic effect. Therefore, the excess triglycerides could be deposited or stored in unneeded body places like the heart, the liver, skeletal muscles, and the abdomen. Thus, called the ectopic fat deposition phenomenon (Bergman, 2006; Palikaras, 2017).

The fat surplus increases saturated subcutaneous adiposity, which generates excessive intrahepatic and pericardial fat. This serves as a marker of heart incapacity to manage the excessive fat. Therefore, the increment of using free fatty acids as a surrogate and the excretion of cytokine/adipokine caused by excessive fat liver-heart mechanism; creates many adverse health outcomes. Furthermore, this excessive fat liver mechanism generates vasodilatation deterioration, diastolic impairment, and eventually heart failure (Iozzo, 2011).

A larger waistline for a given BMI would predict a greater accumulation of visceral adipose tissue. It can be taken as an index of total adiposity, which is influenced by abdominal adiposity. Waist circumference was used to distinguish visceral from subcutaneous adiposity when coupled with fasting hypertriglyceridemia (Despres, 2012).

## Fat Percentage

The percentage of Body Fat (PBF) is the benchmark for measuring body fat and it is calculated by the body fat mass of an individual divided by the total mass times 100 . The percentage of body fat breaks down more the body parts' fat composition than BMI. However, both gauges increment indicated an increase in cardiovascular disease risk. Different formulae use different parameters to calculate the PBF for men, women, young males, and females (Qiang, 2012).

### 2.7 Novel risk factors to cardiovascular diseases

### 2.7.1 Fasting blood glucose

A study carried out in Korea showed that ischemic heart disease (IHD) and ischemic stroke were linked to grade two impaired fasting glucose (IFG). The IFG was undependably linked to cardiovascular diseases for men and was defined as blood glucose concentration $>=100 \mathrm{mg} / \mathrm{dl}$ and $<126 \mathrm{mg} / \mathrm{dl}$. In addition, type 2 diabetes was potentially associated with CVDs and IHD (Hong-Kyu, 2013). Besides, cardiovascular diseases, coronary heart disease, and stroke, they found intermittent claudication to be associated with hyperglycemia (James, 2002). For the understanding of the different levels of plasma glucose concentration in contrast of IFG, the Impaired glucose tolerance (IGT) was explained as an elevated glucose plasma concentration after 2 hours of taking 75 g of oral glucose that is comprised between $>=140 \mathrm{mg} / \mathrm{dl}$ and $<200 \mathrm{mg} / \mathrm{dl}$ (Genuth, 2003). The oral glucose tolerance test (OGTT) could be processed after finding out a fasting plasma glucose (FPG) concentration superior to $126 \mathrm{mg} / \mathrm{dl}$ (David, 2007; Sakaguchi, 2015).

### 2.7.2 Serum Uric Acid

Since the $19^{\text {th }}$ century, the linkage between cardiovascular disease and hyperuricemia was observed (Luis \& César, 2012). The elevated level of serum uric acid was positively associated with cardiovascular diseases. This novel risk was also linked with other CVD risk factors such as triglycerides, hypertension, and glycosylated hemoglobin. In addition, BMI, waist circumference, FPG, and finally two-hour postprandial plasma glucose were all significantly associated with hyperuricemia with $\mathrm{p}<0.05(\mathrm{Li}, 2014)$.

High uric acid was potentially used as a tangible predictor of acute and chronic heart failure morbidity and mortality (Luis \& César, 2012). Other studies confirmed the increased uric acid and hypertension development (Daniel, 2008).

### 2.7.3 C reactive protein

Inflammation is the core factor in the initiation and progression of atherothrombosis, which leads to cardiovascular disease. Clinical studies have linked chronic inflammation to future cardiovascular events. In addition, the emerging biomarker of inflammation reveals the overshadowed identification of asymptomatic patients (Omair, 2013).

Studies revealed C reactive protein (CRP) to be a predictor of recurrent ischemia and death for patients with stable and unstable angina. In addition, it is used for patients that are undergoing percutaneous angioplasty and patients who are suffering acute coronary syndromes in the emergency department (Ridker, 2003). The hs-CRP is a very sensitive gauge of inflammation, which is measuring the trace amounts of CRP in the blood between 0.5 to $10 \mathrm{mg} / \mathrm{L}$. It is therefore accurate, and reliable with high precision, whereas the CRP is measured within the range of 10 to $1000 \mathrm{mg} / \mathrm{dl}$ (Pearson, 2003).

The hs-CRP is classified into three categories where the first range is inferior $1 \mathrm{mg} / \mathrm{L}$ is low risk, the range between 1 to $3 \mathrm{mg} / \mathrm{L}$ is classified as average risk, and the range $>3 \mathrm{mg} / \mathrm{L}$ is high risk (Hong, 2008). Finally, the hs-CRP which is $>10 \mathrm{mg} / \mathrm{dl}$ was associated with plaque rupture, which leads to thrombosis (Michelle, 2015).

### 2.8 Cardiovascular diseases prevention

The need for effective prevention strategies is necessary for the working area where adult people spend most of their time. The extension of preventive strategies in their family should be taken into account to maintain and improve the acquired good results. The American heart association had set the strategic goal to ensure a $20 \%$ improvement in American cardiovascular health by ensuring the reduction of $20 \%$ of cardiovascular diseases and stroke mortality by 2020 . However, this ambitious goal requires great collaboration efforts. The multilateral effort from experts to lowerlevel health professionals such as cardiologists, clinicians, nurses, pharmacists, and nutritionists. In addition, the family medicine, pediatrics, and Exercise science involvement is of great necessity in all stages of prevention throughout people's
lifespan. Although some studies targeted high-risk old people for behavioral risk modification, the risk factors, majority stroke, and CVD events were also found in people with averaged years and with mildly elevated factors. Hence, preventive strategies should be extended to people of all ages and of both workplace and community populations.

### 2.8.1 Pre-employment and redeployment after CVD event experience

Heart disease has a negative effect on work. Its diagnosis may also have an impact on different ways capacity and manners of carrying out the assigned duties. Therefore, it is important to get evidence of this impact in a broad spectrum of the workplace.

Besides, the Hippocratic procedure in regard to patient consultation, the emphasis on the history taking that requires questioning patients in regard to five hazardous dimensions. In the $17^{\text {th }}$ century, Ramazzini proposed the involvement of the following five-dimension inpatient treatment, which are physical, biological, chemical, ergonomic, and psychosocial hazards. These factors must be documented to ensure the complete evaluation and proposition of strategic preventive and curative treatment (Carnevale, 2014). The pre-employment is governed by the occupational service plan for employee health, working conditions, and safety history. Then, considering the workplace exposure effect on the health of employees and improvement of health practice. The employees with congenital health conditions should be known to help their adaptability and orientation to safe carrier vis a vis their health conditions (Anne, 2004; Reibis, 2019).

### 2.8.2 Redeployment at work after the heart disease development

Studies showed that returning to work after the start of the cardiac disease requires the consideration of different factors such as occupational requirement profile, their heart function, psychosocial factors, and physical fitness (Reibis, 2019).

### 2.8.2.1 Nature of the person

It is more crucial to evaluate the psychosocial factors than only relying on the clinical factors for predicting the probability of employees returning to work after a cardiac event. In addition, it is necessary to consider the period of being sick, place of occurrence of cardiac event, type of work, personal capacity, and finally the lack of appropriateness of redeployment.

Many other factors were considered, where the employer feared the workplace event recurrence and linked litigation. This is also due to the attitude of the employer and his adaptability, education, and personality. The existence of a "cardionoxious" workplace, low employer motivation, lack of consideration of rehabilitation period, and risk acceptability. Moreover, the lack of safety procedures for related medical issues could negatively create the lassitude of returning to work than considering the illness prognosis (Anne, 2004; Reibis, 2019).

### 2.8.2.2 Functional capacity of a person after heart disease

The examination of the functional capacity of an employee who suffered a cardiac event should be carried out before returning to his usual or any other job. People with coronary artery disease and hypertension must pass the exercise stress test to get useful information for permission of returning to work. However, further investigation should be done on people with cardiac failure (Anne, 2004).

### 2.8.2.3 Cardiovascular event nature: root cause which let to stop the work

Drugs alone or angioplasty and coronary artery bypass count in the treatment of coronary heart disease. Myocardial infarction and angina could also be treated in the same way.

Coronary heart disease can take different forms. However, the crucial aspect for getting back to work is relying on the evaluation of the persistence of chest pain during exercise, the risk of arrhythmia, and the level of left ventricular function. Especially if this may affect exercise capacity.

It is also crucial to heighten the careful consideration for high-risk people to detect silent ischemia. It is interesting that patients who underwent coronary artery bypass surgery (CABG) patients and angioplasty have the same long-term employment expectation. However, the patients that underwent angioplasty have a quick return to work (Anne, 2004). Another study showed that one-fifth get early retirement while four-fifth returns to work (Kirsten, 2014).

The work redeployment must be considered after ensuring the effectiveness of treatment regimens. In addition, it is paramount to control physical and psychological factors to avoid their negative effect on the pre-redeployment employee's health status. Some symptoms such as dizziness, headache, general malaise, and syncope may drastically and negatively affect the patient health. Moreover, non-controlled hypertension can worsen the situation. Furthermore, the pre-examination is necessary to evaluate the relapse indicator, which is shown by syncope or and general malaise. It is finally important to note that higher heart failure treatment effectiveness, higher chances of returning to work. Because the treatment improvement demonstrated that more people with cardiac failure can return to work in whatever condition (Anne, 2004).

### 2.8.2.4 The prognosis of the causative cardiovascular diseases

Prognostic indicators were well documented for most cardiological problems. It was found that people with poor prognoses presented a high risk of recurrence. Hence, the return to work may be inappropriate and create unrealistic expectations for the patient and his family (Anne, 2004).

### 2.9 Cardiovascular diseases and the community

A third of cardiovascular disease deaths occurred in the United States each year. In addition, coronary heart disease and stroke account for most of those deaths (Sara, 2014). A study called The Global Burden of Disease (GBD) demonstrated that Ischaemic stroke was 11.6 million cases, whereas low and middle-income countries (LMICs) sustained $65 \%$ in 2010. Moreover, it was 5.3 million hemorrhagic strokes ( $80 \%$ in LMICs) occurred worldwide in 2010. Sixty-four percent of the disability-
adjusted life years (DALYs) were caused by ischaemic stroke and $86 \%$ of DALYs due to hemorrhagic stroke were lost in LMICs (Krishnamurthi, 2013).

The relevant strategies to prevent cardiovascular diseases and deaths are articulated to accessibility and use of information on global cardiovascular risk factors and exposure. In addition, the knowledge improvement concerning the CVD factor's effect on exposed people can help to curb these silent killers. The Global comparative risk assessment study showed that a high number of CVD-related mortality was attributed to cardiovascular risk factors. High blood glucose, hypertension, high cholesterol, and smoking were the first factors to cause cardiovascular disease burden. In addition, High BMI, excessive alcohol use, sedentarity and environmental exposure were also among such CVD factors. Hypertension is the strongest cardiovascular risk factor, which caused more CVD deaths than any other risk factor. In addition, the BMI and other accumulated obvious risk factors have caused around 9.7 million annual cardiovascular disease mortality (Tzoulaki, 2016).

The nine modifiable traditional risk factors were attributed to the CVD population risk of CVD morbidity and mortality. The nine factors are smoking, sedentarity, unhealthy diet, obesity, history of hypertension or diabetes; harmful alcohol consumption raised blood lipids, and psychosocial factors (Gersh, 2010). Around $61 \%$ of worldwide cardiovascular disease mortality was attributed to eight risk factors. These factors are: (harmful alcohol use, hypertension, smoking, Obesity, sedentarity, unhealthy diet, diabetes, and high levels of cholesterolemia). The low and middle-income countries sustained about $84 \%$ of the total CVDs worldwide burden. Therefore, studies demonstrated that the reduction of exposure to those CVD risk factors could enhance the improvement of worldwide life expectancy by almost 5 years (Francesco, 2016).

The active people in industrialized regions were vulnerable to cardiovascular diseases. This vulnerability is currently increasing in developing countries. Around $15 \%$ to $20 \%$ of active people were registered with CVDs in industrialized countries. The risk increase was observed with age, where $1 / 3$ of men and $1 / 4$ of women that suffered CVDs were people between 45 to 64 years (Florin, 2011).

Cardiovascular diseases account for 57 percent of all deaths in Russia in 2012 (Petrukhin \& Lunina, 2012). Cardiovascular disease hit adults in their most productive years. For example, in South Africa, $41 \%$ of deaths due to cardiovascular disease occur in adults between 35 and 64 years old, compared to $12 \%$ in the United States (Leeder, 2014).

The potential costs of this cardiovascular disease epidemic for African countries are staggering. United States cardiovascular disease burden estimate was tremendously elevated to the level of the entire African continent's gross domestic product. It was around 300 billion United States dollars annually. Therefore, if this happens in Africa, it can drastically harm the full African economy and hamper the African development trend. In this way, the growing CVD epidemic in Africa will increase unacceptable levels of inequity in access to health care services (Jamison, 2006).

A study carried out in Tunisia showed the estimates of cardiovascular disease risk factors. Where $36 \%$ were android obesity, $28 \%$ were general obesity, and $21 \%$ of tobacco use. In addition, the risk factors were $19 \%$ and $10 \%$ for hypertension and diabetes respectively. Recently the prevalence of cardiovascular risk factors was 50.5\% for hypertension, $18.2 \%$ for diabetes, $44 \%$ for dyslipidemia, $24.4 \%$ for obesity, and $24 \%$ for smokers (Jemaa, 2020). Moreover, the diet intake showed 2,483 kilocalories with $67 \%, 18 \%$, and $15 \%$ for carbohydrates, protein, and fat respectively. Currently, a decrease in high-fiber diet coupled with an increase in the high-fat diet was noted in sub-Saharan city dwellers. The rural population with a traditional lifestyle showed a lower mean level of serum cholesterol than urban people (de Groot, 2019).

Another study was done in Nigeria on the Prevalence of cardiovascular disease risk factors among a Nigerian adult population, to assess the relationship between income level and accessibility to CVD risks screening. This study showed that females were $64.7 \%$ while the males were $35.3 \%$ for 422 participants with a mean age ( $\pm$ SD) of $42.9 \pm 20.7$ and $38.3 \pm 20.5$ years, successively.

The study also showed an elevated level of central obesity of $52.2 \%$, hypercholesterolemia (38.1\%), hypertension (35.7\%), hypertriglyceridemia (23.2\%),
low HDL (17.8\%). It has also showed a low prevalence of prediabetes (4.9\%), diabetes (5.4\%) (Oguoma, 2015).

A study carried out in Gabon demonstrated that the ongoing epidemiological transition in Sab-Saharan Africa increased the prevalence of clinical and subclinical CVD in this community. This study showed that $13.3 \%$ were identified as having CVDs with highly prevalent hypertension up to $47.7 \%$ and $53.7 \%$ in men and women aged 50 to 60 years, respectively. Among the 382 participants with hypertension, $19.4 \%$ were treated and only $5.8 \%$ had controlled blood pressure (Ngoungoua, 2012).

According to Rhonda, in his research of an overview of cardiovascular risk factor burden in sub-Saharan African countries, demonstrated that SSA intricated factors are the sources of cardiovascular diseases increase.

The increasing prevalence of cardiovascular diseases in SSA is due to some changeable lifestyle risk factors such as an unhealthy diet, sedentarity, and smoking. Some lifestyle factors were considered gender-oriented; some are salient for women and others for men. Obesity was a predominant risk factor for women compared to men, but smoking remained mostly a risk factor for men.

The prevention and treatment efforts to fight these silent killers are blocked by insufficient healthcare facilities, poor planning, or lack of government programs such as surveillance. In addition, Poverty, promiscuity coupled with rising urbanization are also the underlying factors to the issue (Rhonda, 2009). An epidemiologic study has shown that ischemic heart diseases will rise in the two next decade due to the rising prevalence of risk factors. Especially hypertension, diabetes, obesity, physical inactivity, increased tobacco use, and dyslipidemia.

Ischemic heart disease was projected to grow by $25 \%$ in women and $27 \%$ in men for the entire African continent in 2015. It was forecasted to rise from $74 \%$ to $70 \%$ agestandardized mortality for women and men by 2030 (Lukwiya, 2013).

### 2.10 Conceptual framework

The conceptual framework of this study was presented in the schematic illustration of variables' interaction and relationship. In this study, the factors that affect the development the cardiovascular disease risk were classified into two categories (Predictor and cofactor variables) and were termed independent variables. The dependent variable is made of the predicted fatal and non-fatal cardiovascular disease risk (Cerebrovascular diseases, peripheral vascular diseases, heart failure, and coronary heart disease).
The prediction was carried out by two models using the different predictors among the eight predictors. The WHO/ISH model used six predictors while the FGRS used eight predictors (WHO, 2007; D’Agostino, 2008).

The predictor variables were:

1. Age
2. Gender
3. Cholesterol
4. High-density lipoprotein
5. Smoking
6. Blood pressure
7. Treated and untreated hypertension
8. Diabetes

The cofactor variables were:

1. Working condition factors
2. Behavioral factors
3. Novel risk and biological factors

The two moderating variables were the awareness of study participants toward cardiovascular disease factors and the use of personal protective equipment.

The choices of the predictor variables were based on the evidence brought out at the end of the Framingham heart study. Moreover, cross-validation studies were carried out to prove the effects of these variables on the outcome (Kuklina, 2010; Chia, 2015).

The correlation between predictor variables and cardiovascular disease risk cofactors was evaluated to determine those which were associated with a high risk in the study participants.

The cofactors (behavioral, biological, and working conditions) were deeply learned to assess their contribution to cardiovascular disease development for workers and spouses separately. Workplace hazards to cardiovascular disease development such as cold and Reynaud phenomenon (Peripheral vascular disease), (Plissonneau, 2015) and stress were also learned (Mika et al., 2002). Besides, a comparison between groups concerning cardiovascular disease risk was carried out.

This study sought to predict the cardiovascular disease risk, compare the prediction models, and determine factors associated with cardiovascular diseases risk for employees and spouses in two beverage manufacturing industries in Rwanda. Figure 2.5 illustrates the predictor and independent cofactor variables and the dependent variable which is cardiovascular disease risk of fatal and non-fatal cardiovascular diseases.

## COFACTORS



Figure 2.5: Conceptual framework

### 2.11 Assumption of the study

The study design was a cross-sectional where the interview and blood samples were collected at the industrial environment facility.

It was assumed that all study participants would be screened to exclude those with established cardiovascular diseases and respect the selection criteria to avoid the introduction of confounding or other biases in the study.

It was assumed that the blood samples would be taken the following day after the interview, in the morning without taking breakfast by considering eight to twelve hours of fasting. It was also assumed that the study participant who would not respect the eight to 12 hours of fasting, the blood sample collection would be postponed the next day.

## CHAPTER THREE

## MATERIALS AND METHODS

### 3.1 Study site

## Kicukiro site

Kicukiro plant site started in 1973 in Kicukiro district with soft drink processing. Kicukiro district is in the middle south of Kigali town of Rwanda. Its population is predominantly urban with $87.9 \%$ ( 279,941 inhabitants) that reside in urban areas and $12.1 \%$ live in rural areas.

## Rubavu site

Rubavu plant worksite started in 1957 in Rubavu with beer processing. Rubavu district is a rural district in northwest Rwanda. The population of Rubavu District is predominantly rural, where $63 \%$ of the resident population (254,453 inhabitants) lives in rural areas vs. $37 \%$ in urban.

### 3.2 Study design

An analytical quantitative cross-sectional study was conducted from May to December 2018 in the beverage manufacturing industry. Its aim was to determine factors associated with cardiovascular diseases predicted risk among workers and spouses of the Kicukiro soft drink plant and Rubavu brewery plant and their spouses.

### 3.3 Study limitation

Although this study has predicted the cardiovascular disease risk for all the study participant. The risk has been limited to four cardiovascular diseases (Cerebrovascular diseases, heart failure, coronary heart diseases and peripheral vascular diseases). The congenital heart diseases and rheumatoid heart diseases were not involved in this study.

As this study is a cross sectional design has learned the exposure and the effect at the same time. The study has predicted the cardiovascular disease risk based on the model inbuilt cox regression but has not done survival analysis with hazard ratio as for cohort study.

### 3.4 Study population

The target population of this study was composed of 822 population of regular employees and their spouses of two worksites. Kicukiro worksite and Rubavu worksite study population are described in the table below.

Table 3.1: Target population of the study

| Study site | Study population | Employees | Spouses |
| :--- | :--- | :--- | :--- |
| Rubavu | 336 | 204 | 132 |
| Kicukiro | 486 | 299 | 187 |
| Total | 822 | 503 | 319 |

### 3.4.1 Inclusion criteria

i. To be a worker in Kicukiro soft drink plant or in Rubavu brewery plant.
ii. Participant age must be $\geq 30$ years to 75 years.
iii. To be a spouse of the worker of Kicukiro soft drink plant or Rubavu brewery plant.

### 3.4.2 Exclusion criteria

i. Anyone selected and who didn't want to join the study.
ii. Visitors and casual workers have not been selected for the study.
iii. Participants with clinically established cardiovascular disease were excluded due to bias of elevating the CVD risk.

### 3.5 Sample size determination

In the following formula for populations that are large, a sample for proportion was used to estimate sample size (Anokye, 2020).

### 3.5.1 Cochran formula for general sample size determination

The $n=\frac{z^{2} p q}{e^{2}}$

Where
$\mathbf{n}$ is sample size
$\mathbf{e}$ is a standard error and assumed to be 0.05
$\mathbf{z}$ is normal deviation assumed to be 1.96
$\mathbf{p}$ is the proportion of workers and spouses with cardiovascular diseases, assumed to be $50 \%$ due to non-exact prevalence of CVDs in Rwanda.
$\mathbf{q}$ is the proportion of workers and spouses without cardiovascular diseases
$\mathrm{p}=50 \%=0.5$
$\mathrm{q}=1-0.5=0.5$
$n=\frac{1.96^{2} x 0.5 \times 0.5}{0.05^{2}}=\frac{0.9604}{0.0025}=385$ Hence, after the sample size
adjustment for the $12 \%$ of non-response bias, the formula is as follow:
$\mathrm{n} 1=385$, the adjustment allowance was based on the addition of $10-20 \%$ individuals to take care of missed data, non-response rate and withdrawals (Suresh, 2012). The non-response rate is assumed to be $12 \%$ or 0.12 . The final adjusted sample size was $\mathbf{n}=n 1 /(1-0.12)$. Hence, $385 /(1-0.12)=437.5 \approx$ 440.

Participants were proportionately allotted according to the size of workers and spouses in each site (Anokye, 2020).

### 3.5.2 Proportionate stratification formula for stratum sample size

The: $n h=(N h / N) * n$

Where
nh=Sample size for stratum $h$
$\mathrm{Nh}=$ the population size for stratum h
$\mathrm{N}=$ is the total population
$\mathrm{n}=$ is the total sample size

### 3.6 Sampling techniques

Stratified Random sampling techniques were mixed with simple random sampling where the first technique was used to select participants from their different organizational plants. This was performed to ensure the representativity of all sites' employees who met the inclusion criteria and the second was used to select participants in each status-based stratum.

Table 3.2: The proportions of the sample by workers and spouses in each drink processing plant

| Drink processing plant | Target Population | Mean age | Gender | Formula | Sample Size |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Kicukiro plant workers | 299 | 39,5 | F:25 | $(299 / 822) * 440$ | 160 |
| Kicukiro plant worker's spouses | 187 | 37,1 | $\begin{aligned} & \text { M:135 } \\ & \text { F:89 } \end{aligned}$ | $(187 / 822) * 440$ | 99 |
| Rubavu plant workers | 204 | 42,5 | $\begin{aligned} & \mathrm{M}: 10 \\ & \mathrm{~F}: 11 \end{aligned}$ | $(204 / 822) * 440$ | 110 |
| Rubavu plant worker's spouses | 132 | 39,6 | $\begin{aligned} & \text { M:99 } \\ & \text { F:66 } \end{aligned}$ | $(132 / 822) * 440$ | 71 |
| Total | 822 | 39,6 | $\begin{aligned} & \text { M:5 } \\ & \text { F:191 } \\ & \text { M:249 } \end{aligned}$ | Cochran+12\% for Sample adjustment. | 440 |

Employees and spouses list Jan 2017.

### 3.7 Data collection Instruments

### 3.7.1 Research Tool: Questionnaires

The tools consisted of three parts: A standardized questionnaire with Clinical and anthropometric measures form and a laboratory form for biochemical samples. The WHO/ISH risk prediction chart and FGRS were used to determine the cardiovascular disease risk.
i. Who stepwise standardized and semi-structured interview questionnaire. Health, and Safety Executive management standards indicator tool regarding the demographic and behavioral factors. In addition, the work conditions and lifestyle cardiovascular risk factors were addressed to the participants.
ii. The clinical inquiry and anthropologic measurement were filled on the designed form to record the blood pressure, height, weight, and abdominal circumference.
iii. Biochemical specimens were taken for prediction analysis purposes. The taken samples were fasting blood sugar, High-density lipoprotein (HDL) Low-density lipoprotein (LDL), and total cholesterol. In addition, C reactive protein, HB1AC, and Uric Acid were taken. Moreover, the venous samples were all taken after a certain fasting period. National Cholesterol Education Program (NCEP) explained that the fasting lipid profile data of adult people $\geq$ 20 years old could be taken once every five years. The values of HDL-C and Total cholesterol (TC) could be used alone without any other implication if fasting samples were not obtained (NCEP, 2001). However, 440 study participants followed the requested requirement of this study sampling and testing.

### 3.7.2 Research Materials and procedures for clinical and anthropometric measures

### 3.7.2.1 Research materials

i. Stethoscope: was used in clinical examination to eliminate the established CVDs with pathologic modification of heart sounds (WHO, 2007).
ii. Scale for Height in $\mathbf{C m}$ and weight in Kg measurement: Scale Name: Seca mod: 220 , $\mathrm{Max}=150 \mathrm{Kg}$ Min $=5 \mathrm{~kg}, \mathrm{~d}=0,1 \mathrm{~kg} \mathrm{e}=0,1 \mathrm{~kg}$. The BMI was calculated after using the above-mentioned (height and weight) data by considering the World Health Organization (WHO) - Anthro Plus 2007 program.
iii. Sphygmomanometer for Blood pressure measurement in $\mathbf{m m H g}$ : Medical tensiometer: Beurer GmbH, Söflinger str.218, 89077. 652.10 Typ: Bm 20. The researcher took blood pressure three times at 10 minutes intervals. Then record the mean value of blood pressure to eliminate the bias of white coat hypertension by using the mean blood pressure after 3 times measurements (Mion, 2006).
iv. Waist tape Tool for Waist circumference measurement in Cm: Waist tape tool: It was used to measure the waist circumference at the central point between the last rib and iliac crest.

### 3.7.2.2 Procedure for data collection

This study data was collected in three-fold by 2 trained interviewers and 1 medical laboratory scientist for each site and supervised by the principal investigator. Firstly, a standardized questionnaire interview started. Then, clinical, and Anthropometric measurements followed and lastly biological measurements. In addition, the condition of blood sugar measures relied on the fasting blood sugar taken in the morning.

Biological measurements were based on for Cardiovascular risk prediction to predict the cardiovascular diseases risk. The prediction relied on mostly three biological variables HDL, total cholesterol, and fasting blood glucose among eight predictor variables. Those predictors are: (Age, gender, HDL, smoking, taking or not taking hypertension medicine, diabetes, systolic blood pressure, and finally total cholesterol). The calculation was also based on the mean of risk factors averaged in 10 years of event occurrences based on the specific sub-region countries for the WHO/ISH model and Framingham general risk score model (WHO, 2007). Hence, after the prediction, the 10-year cardiovascular diseases risk level was classified into different categories: $>40,40-30 \%, 20-30 \%, 10-20 \%$ and $<10 \%$.

### 3.7.3 Laboratory methods and quality

Apart from semi-structured questionnaires, anthropometric and clinical measurements used the following laboratory method. The measurement processes were executed with accuracy, reliability, and consistency to the national laboratory measurement regarding the calibration, and quality control of measurements:

Biochemistry measurements: The total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), C reactive protein (CRP), glycated hemoglobin (HBA1C), fasting blood sugar, and Acid uric: were all measured by:

Machine: Humalyser 3500, Human GmbH, Max Pbg Ring 21, 65205 Miesbaden Germany ref: 16800 Vers: 2014. The blood samples were taken between 8 to 12 hours of fasting. The used procedure to collect blood 440 samples was venipuncture in the ante-cubital region (Lorene, 2015).

The conversion formula had only regarded the total cholesterol, HDL, and blood sugar. The total cholesterol and high-density lipoprotein were converted from $\mathrm{mg} / \mathrm{dl}$ to $\mathrm{mmol} / \mathrm{l}$ by dividing 38 , 67 (Rugge, 2011). The value can also be multiplied by 0.0259 (Balder, 2017). The blood sugar values were converted from $\mathrm{mg} / \mathrm{dl}$ to $\mathrm{mmol} / \mathrm{l}$ by dividing the value by 18.01 (Ming, 2000; Jennifer, 2013).

### 3.7.4 Prediction models

### 3.7.4.1 WHO/ISH Cardiovascular risk prediction charts

Risk prediction chart for AFR E. with cholesterol measurement


This chart can onty be used for countries of the wHO Region of Africa, sub-region E ,
in settings where blood cholesterol can be measured (see Table 1).

Figure 3.1: Region total blood cholesterol can be measured

This is the World Health Organization/international society of hypertension chart used to predict the 10 -year risk of fatal and non-fatal cardiovascular events. This chart is only applied in Africa subregion E, in a setting where blood cholesterol can be measured. Its adoption relied on because Rwanda is mentioned in this subregion. It uses six predictors among others, gender, age, total blood cholesterol, smoking status, systolic blood pressure, and absence, or presence of diabetes Mellitus (WHO, 2007).

Risk prediction chart for AFR E. without cholesterol Measurement


Figure 3.2: Region total blood cholesterol cannot be measured

This is also the World health organization/international society of hypertension chart and was used to predict the 10-year risk of fatal and non-fatal cardiovascular events. It was also applied in Africa subregion E. Contrary to the previous chart. This was applied in a setting, where blood cholesterol cannot be measured and used five predictors among others, gender, age, smoking status, systolic blood pressure, absence, or presence of diabetes Mellitus (WHO, 2007).

### 3.7.4.2 Framingham general cardiovascular diseases risk score model

Table 3.3: Cardiovascular diseases score sheet for man

| Points | Age, Y | HDL | Total <br> Cholesterol | $\begin{aligned} & \hline \text { SBP not } \\ & \text { treated } \end{aligned}$ | SBP <br> Treated | Smoker | Diabetic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2 |  | 60+ |  | $<120$ |  |  |  |
| -1 |  | 50-59 |  |  |  |  |  |
| 0 | 30-34 | 45-49 | <160 | 120-129 | $<120$ | No | No |
| 1 |  | 35-44 | 160-199 | 130-139 |  |  |  |
| 2 | 35-39 | <35 | 200-239 | 140-159 | 120-129 |  |  |
| 3 |  |  | 240-279 | 160+ | 130-139 |  | Yes |
| 4 |  |  | 280+ |  | 140-159 | Yes |  |
| 5 | 40-44 |  |  |  | 160+ |  |  |
| 6 | 45-49 |  |  |  |  |  |  |
| 7 |  |  |  |  |  |  |  |
| 8 | 50-54 |  |  |  |  |  |  |
| 9 |  |  |  |  |  |  |  |
| 10 | 55-59 |  |  |  |  |  |  |
| 11 | 60-64 |  |  |  |  |  |  |
| 12 | 65-69 |  |  |  |  |  |  |
| 13 |  |  |  |  |  |  |  |
| 14 | 70-74 |  |  |  |  |  |  |
| 15 | 75+ |  |  |  |  |  |  |
| Points |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

(D'Agostino et al., 2008)
SBP: Indicate Systolic Blood Pressure
HDL: indicate High density lipoprotein
This table 3.3 illustrates a score sheet of six predictors with points to attribute to each factor, whether present or not. This score sheet is only reserved for men to predict the 10-year risk for a cardiovascular event (D'Agostino, 2008).

Table 3.4: Cardiovascular points toward the risk percentage for man

| Points | Risk, \% |
| :--- | :--- |
| $\leq-3$ Or less | $<1$ |
| -2 | 1.1 |
| -1 | 1.4 |
| 0 | 1.6 |
| 1 | 1.9 |
| 2 | 2.3 |
| 3 | 2.8 |
| 4 | 3.3 |
| 5 | 3.9 |
| 6 | 4.7 |
| 7 | 5.6 |
| 8 | 6.7 |
| 9 | 7.9 |
| 10 | 9.4 |
| 11 | 11.2 |
| 12 | 13.2 |
| 13 | 15.6 |
| 14 | 18.4 |
| 15 | 21.6 |
| 16 | 25.3 |
| 17 | 29.4 |
| $18+$ | 230 |

(D'Agostino, 2008)

The table 3.4 illustrates how after scoring the men's points in accordance with the presence or absence of predictors. The points obtained are matched to the risk from the lower risk to the higher risk of cardiovascular events (D'Agostino, 2008).

Table 3.5: Cardiovascular diseases score sheet for women

| Points | Age, ${ }^{\text {Y }}$ | HDL | Total <br> Cholesterol | SBP not treated | SBP <br> Treated | Smoker | Diabetic |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -3 |  |  |  | <120 |  |  |  |
| -2 |  | 60+ |  |  |  |  |  |
| -1 |  | 50-59 |  |  | $<120$ |  |  |
| 0 | 30-34 | 45-49 | $<160$ | 120-129 |  | No | No |
| 1 |  | 35-44 | 160-199 | 130-139 |  |  |  |
| 2 | 35-39 | <35 |  | 140-149 | 120-129 |  |  |
| 3 |  |  | 200-239 |  | 130-139 | Yes |  |
| 4 | 40-44 |  | 240-279 | 150-159 |  |  | yes |
| 5 | 45-49 |  | 280+ | 160+ | 140-149 |  |  |
| 6 |  |  |  |  | 150-159 |  |  |
| 7 | 50-54 |  |  |  | 160+ |  |  |
| 8 | 55-59 |  |  |  |  |  |  |
| 9 | 60-64 |  |  |  |  |  |  |
| 10 | 65-69 |  |  |  |  |  |  |
| 11 | 70-74 |  |  |  |  |  |  |
| 12 | 75+ |  |  |  |  |  |  |
| Points |  |  |  |  |  |  |  |
| allotted |  |  |  |  |  |  |  |

(D'Agostino et al., 2008)
SBP: Indicate Systolic Blood Pressure
HDL: Indicate High Density Lipoprotein
Table 3.5 illustrates a score sheet of six predictors with points to attribute to each factor, whether present or not. This score sheet is only reserved for women to predict the 10-year risk for a cardiovascular event (D'Agostino et al., 2008).

Table 3.6: Cardiovascular points toward the risk percentage for woman

| Points | Risk, $\%$ |
| :--- | :--- |
| $\leq-2$ | $<1$ |
| -1 | 1.0 |
| 0 | 1.2 |
| 1 | 1.5 |
| 2 | 1.7 |
| 3 | 2.0 |
| 4 | 2.4 |
| 5 | 2.8 |
| 6 | 3.3 |
| 7 | 3.9 |
| 8 | 4.5 |
| 9 | 5.3 |
| 10 | 6.3 |
| 11 | 7.3 |
| 12 | 8.6 |
| 13 | 10.0 |
| 14 | 11.7 |
| 15 | 13.7 |
| 16 | 15.9 |
| 17 | 18.5 |
| 18 | 21.5 |
| 20 | 24.8 |
|  | 28.5 |

(D'Agostino, et al., 2008)
Table 3.6 illustrates how after scoring the women's points in accordance with the presence or absence of predictors. The points obtained are matched to the risk from the lower risk to the higher risk of cardiovascular events (D'Agostino, 2008).

### 3.8 Validity and reliability of research instruments

The validity and reliability of the instruments relied on the pre-validation of the models (D'Agostino, et al., 2008). Including the WHO steps standardized questionnaire with longtime scientific performance.

### 3.8.1 Validity

## Questionnaire validity

The WHO stepwise approach for non-communicable diseases, standardized and validated questionnaire was applied. This was performed with the aim to emphasize the facilitation of comprehension and relevance to the intended topics (WHO, 2008; WHO, 2018). In addition, it helps to raise the effectiveness of useful information delivery and enhance the degree to which the questions were interpreted and understood by different individuals (Sarma, 2019).

## Model validity

This study adopted two prediction models: Framingham general risk score (FGRS) and the World Health Organization/International Society of Hypertension (WHO/ISH) risk prediction chart. The models' validity is based on their global capacity, useful research, and WHO recommendations for Its application in the African population. Their validity (Calibration, Discrimination, and clinical usefulness) has been tested and accepted by the World health organization in the subregion of Africa (Kuklina, 2010).

The multi-ethnic Asian population study revealed a good calibration of the Framingham general CVD risk score. In addition, the Hosmer-Lemeshow test showed a good result with $\chi 2=3.25, \mathrm{p}=0.78$ (chia, 2015). CVD prediction models have also presented a good calibration where the $\chi^{2}$ for men was $\chi 2=13.48$ and $\chi 2=7.79$ with excellent goodness of fit. Moreover, the study expressed an AUC of $0.763,95 \%$ CI ( 0.746 to 0.780 ) for men, and an AUC of 0.793 , $95 \%$ CI ( 0.772 to $0.814)$ for women. Hence, this was a C statistic with good discrimination (D'Agostino, 2008).

The clinical importance and usefulness of risk function were gauged by decision curve analysis, sensitivity, specificity, and finally the net benefit fraction. It was, therefore, resulted by the recommendations in Iran's population, which was taken as a screening tool (Davood, 2012).

The revised Framingham function has a good performance and ability for accurately predicting the total CVDs versus the risk function evolved specifically from the individual cohorts' data. Hence, resulted in good validity (Kuklina, 2010). The predicted total CVDs are Coronary heart disease, Cerebrovascular diseases, Peripheral vascular diseases, and Heart Failure (Peter, 2016). In addition, after recalibration, considering the different prevalence of risk factors and underlying rates of developing CHD, the Framingham functions worked well. Moreover, the Framingham prediction function showed a good discrimination ability between CHD patients and safe persons than non-Framingham cohorts (D'Agostino, 2001).

Predicting cardiovascular diseases with one, multiple variable risk function was represented by the Framingham general CVD risk score (D’Agostino, 2008). The '"WHO/ISH'’ risk prediction model was used regarding the sub-region as recommended by WHO and has shown a good agreement with FRS (WHO, 2007; Norhayati, 2013).

### 3.8.2 Reliability

The reliability and validity of instruments were based on the adoption of a prevalidated WHO stepwise-standardized questionnaire. Moreover, the researcher conducted the instruments simulation on 40 participants chosen before the study. The simulation analysis for the item of the instruments showed a significant Cronbach alpha $>0.8$. We followed the WHO guideline on a stepwise approach to ensure understanding and valid and reliable application.

### 3.9 Data management and analysis

The analysis of this study data was conducted using SPSS software version 22, according to respective objectives. Bivariate and multivariate analyses were used to
determine the factors associated with high-risk categories and underlying risk factors correlated to predictor variables.

The prediction was applied to the first objective. This was based on the inbuilt cox hazard regression model (Framingham general cardiovascular risk score) and WHO/ISH risk prediction chart to determine the 10 -year CVD risk in the population of the study. The comparison of FGRS and WHO/ISH was facilitated by four procedures. These procedures were: binary categorization of cardiovascular diseases risk level, predictive probability generation of the two models by binary status, multilevel categorization, and status correlation. Finally, the performance of AUC comparison with predictive probability by a correlated status.

Cohen Kappa test for model's agreement and ROC curve classification performance (NCEP, 2001). Therefore, this test was used to determine the level of risk prediction agreement between the two models (Mary, 2012).

The Anova model and $\mathrm{X}^{2}$ were used to compare the group participants and determine the relationship between variables in two different areas regarding cardiovascular risk factors differences. The analysis helped to express the factors' interaction between exposure and outcome for explaining what factors could be focused on to minimize the cardiovascular disease risk. The significance level was set at a P -value less than 0.05 at $95 \%$ CI.

## Confounding management

The twisting bias that is risen when similar causal factors interact with the exposure and effect phenomenon is termed confounding (Wallach, 2020). Wayne explained it as a contortion or an alteration bias. Hence, this bias occurred when other factors interact with the exposure effect to render a null, positive, or negative influence on the outcome; different from what would happen if such confounding was managed (Wayne, 2016). For this study's management of cardiovascular factors confounding was managed by the following interventions.

- The researcher has done the restriction of people with established CVDs. This was done to prevent that, one of the independent factors
would be accounted for the high strength of being associated with the CVDs while it is not. Alternatively, when the potential common causes of exposure factors were not involved in predictors. Restriction of older people of $>=75 \mathrm{yrs}$ who may also have the CVDs (Wallach, 2020).
- After the identification of known confounders and their classification, we have used multivariate analysis to measure and adjust their level of association (Taravatmanesh, 2017).
- The stratum divisions were created to only analyze the workplacebased cardiovascular factors alone and common community cardiovascular factors alone (Wallach, 2020).


### 3.10 Ethical consideration

The researcher got a letter of authorization from the Board of postgraduate studies. In addition, ethical clearance was received from the Rwanda National Ethical Committee (RNEC) in the Ministry of Health. The Beverage processing worksite Company also gave permission to collect data. Trained data collectors filled the translated data collection form during permitted or convenient time before proceeding to the Physical examination and biochemical sample taking.

Moreover, each participant had the freedom to participate voluntarily after his consent and approval in the study without coercion. The participant had a right and a possibility to withdraw from the investigation whenever they became uncomfortable or do not want to continue. Participants' comfortability and protection were ensured during the data collection to avoid psychological and physical harm. The results were confidentially and anonymously used for the purpose of the study only.

## CHAPTER FOUR

## RESULTS

### 4.1 Demographic characteristics of the study participants

The analysis results for demographic characteristics were processed on the total study participants sample ( $\mathrm{N}=440$ ). 270 employees were $61.8 \%$ of all participants and 170 of their spouses were $38.6 \%$ of all participants in Rwandan Beverage Company. They all consented to participate in the study where $58.9 \%$ were in Kigali plant and $41.1 \%$ were in Rubavu plant. The median age was ( 45 Years, IQR: 14). Other demographic findings are tabulated in table 4.1.

Table 4.1: Socio-demographic characteristic of respondents

| Variables | n (440) Subjects | Rate (\%) |
| :--- | :---: | :---: |
| Location |  |  |
| $\quad$ Kicukiro | 259 | 58.9 |
| $\quad$ Rubavu | 181 | 41.1 |
| Age Group |  |  |
| <35 | 84 | 19.1 |
| $35-49$ | 73 | 16.6 |
| $40-44$ | 65 | 14.8 |
| $45-49$ | 86 | 19.5 |
| $50-54$ | 89 | 20.2 |
| $55-59$ | 30 | 6.8 |
| >=60 | 13 | 3 |
| Gender |  |  |
| Males | 249 | 56.6 |
| Females | 191 | 43.4 |
| Marital status |  |  |
| Single | 36 | 8.2 |
| Married | 401 | 91.1 |
| Living together | 0 | 0 |
| Divorced | 0 | 0 |
| Widow | 3 | 0.7 |
| Place of birth |  |  |
| Kigali city | 30 | 6.8 |
| Eastern province Rwanda | 34 | 7.7 |
| Western Province Rwanda | 98 | 22.3 |
| Northern | province | 58 |
| Rwanda |  | 13.2 |


| Variables | N (440) Subjects | Rate (\%) |
| :---: | :---: | :---: |
| Southern province | 104 | 23.6 |
| Rwanda |  |  |
| DRC | 90 | 20.5 |
| Burundi | 10 | 2.3 |
| Uganda | 13 | 3 |
| Tanzania | 2 | 0.5 |
| Peru Latina America | 1 | 0.2 |
| Religion |  |  |
| Roman catholic | 293 | 66.6 |
| Protestant | 102 | 23.2 |
| Muslim | 16 | 3.6 |
| $7^{\text {th }}$ day Adventist | 15 | 3.4 |
| Witness of Jehovah | 9 | 2 |
| Branham believer | 1 | 0.2 |
| Others | 4 | 0.9 |
| Participant status |  |  |
| Employees | 270 | 61.4 |
| Spouses | 170 | 38.6 |
| Education |  |  |
| None | 2 | 0.5 |
| Primary | 70 | 15.9 |
| A3 post primary | 21 | 4.8 |
| certificate |  |  |
| Secondary | 155 | 35.2 |
| Diploma | 36 | 8.2 |
| Bachelor's degree | 145 | 33 |
| Master's degree | 11 | 2.5 |
| Experience for employees |  |  |
| <=4 | 33 | 7.5 |
| 5-9 | 56 | 12.7 |
| 10-14 | 67 | 15.2 |
| 15-19 | 8 | 1.8 |
| 20-24 | 86 | 19.5 |
| 25-29 | 12 | 2.7 |
| $>=30$ | 8 | 1.8 |

Researcher, 2019
4.2 Levels of the 10-year cardiovascular diseases risk predicted among the study participants of Kicukiro soft drink plant and Rubavu Brewery plant

### 4.2.1 The 10-year cardiovascular diseases risk prediction by Framingham risk score and WHO/ISH

The prediction of cardiovascular diseases risk was processed by using the Framingham general risk score and WHO/ISH model score chart and the Cox regression formula for only Framingham general risk score. Among the eight predictors' findings, gender was composed of $56.6 \%$ of males and $43.4 \%$ of females in the total sample ( $\mathrm{N}=440$ ). Treated systolic blood pressure findings showed that $17 \%$ were under treatment among $32 \%$ of respondents with systolic blood pressure, ( $\mathrm{N}=440$ ). Out of the sample of $440(100 \%)$, the smokers were $6.8 \%$ versus $93.2 \%$ of non-smokers. The diabetic respondents were $11.1 \%$ versus $88.9 \%$ of non-diabetic respondents. The mean age was 44.92 years. The presentation of the mean value of the lipide profile (Total cholesterol, triglyceride, and high-density lipoprotein) is tabulated in Table 4.2.

## Table 4.2: Distribution of cardiovascular diseases risk predictors

| Variables | Proportion (\%) |
| :--- | :---: |
| Gender |  |
| Male | 56.6 |
| Female | 43.4 |
| Treated SBP |  |
| yes | 17 |
| No | 83 |
| Smoking |  |
| Yes | 6.8 |
| No | 93.2 |
| Diabetic |  |
| Yes | 11.1 |
| No | 88.9 |
| Age | 44.92 |
| Total Cholesterol(mg/dl) | 164.4 |
| High density lipoprotein (mg/dl) | 49.35 |
| Triglyceride (mg/dl) | 145.5 |

The cardiovascular diseases risk prediction showed that the Framingham general risk model predicted more people ( $25.5 \%$ ) with elevated cardiovascular diseases risk ( $>10 \%$ ), than $4.6 \%$ by WHO/ISH model. The risk increased by age with dominance in male respondents than in female respondents ( $\mathrm{N}=440$ ). Table 4.3 shows the comparative risk prediction levels by age and gender.

Table 4.3: Cardiovascular diseases risk stratification by age and gender for two models.

| Model | N Male |  | Female |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FGRS | 440 | $<40 \mathrm{yrs}$ | $40-50 \mathrm{yrs}$ | $>50 \mathrm{yrs}$ | $<40 \mathrm{yrs}$ | $40-50 \mathrm{yrs}$ | $>50 \mathrm{yrs}$ |
| Low risk (<10\%) | 328 | 90 | 53 | 35 | 62 | 59 | 29 |
| 2nd level risk (10-20\%) | 60 | 2 | 12 | 19 | 2 | 14 | 11 |
| rd level risk (20-30\%) | 28 | 0 | 5 | 13 | 1 | 4 | 5 |
| 4th level risk (30-40) | 24 | 0 | 3 | 17 | 0 | 1 | 3 |
| 5th level of risk (>40) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Total | 440 | 92 | 73 | 84 | 65 | 78 | 48 |
| WHO/ISH | 440 | $<40 y r s$ | $40-50 y r s$ | $>50 \mathrm{yrs}$ | $<40 \mathrm{yrs}$ | $40-50 \mathrm{yrs}$ | $>50 \mathrm{yrs}$ |
| Low risk (<10\%) | 420 | 91 | 69 | 76 | 65 | 72 | 47 |
| 2nd level risk (10-20\%) | 15 | 0 | 2 | 6 | 0 | 6 | 1 |
| 3rd level risk (20-30) | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
| 4th level risk (30-40) | 3 | 1 | 1 | 1 | 0 | 0 | 0 |
| 5th level of risk(>40) | 1 | 0 | 1 | 0 | 00 | 0 | 0 |
| Total | 440 | 92 | 73 | 84 | 65 | 78 | 48 |

This study findings were based on the comparison of cardiovascular diseases risk between employees $(\mathrm{n}=270)$ and $\operatorname{spouses}(\mathrm{n}=170),(\mathrm{N}=440)$. The findings showed that employees presented higher cardiovascular risk than spouses with $x^{2}=2.152$, $\mathrm{p}<0.001$. Figure 4.1 shows the pyramid of comparative risk levels between employees and spouses.


Figure 4.1: Cardiovascular diseases risk pyramid by status of the participants

### 4.2.2 Framingham general risk score and WHO/ISH model's comparison

The comparison of the model's performance was conducted by means of generated predictive probabilities in logistic regression with elevated risk ( $>10 \%$ ) and low risk ( $<10 \%$ ). The comparison of the model's discriminatory capacity by the receiveroperating characteristic showed a perfect performance with AUC above 0.847 for both models, $\mathrm{p}<0.001$, $(\mathrm{n}=440)$. The comparative performance of the two models were depicted in Figure 4.2.


Correlated WHOIISH and FRS ROC Curve


Figure 4.2: Performance comparison of the area under the curve (AUC) of two prediction models WHO/ISH and FGRS

The cardiovascular diseases prediction risk model's agreement comparison was performed by using the Kappa test inter-rater reliabilities, $\mathrm{p}<0.05$. The comparison of the Framingham general risk score chart and the WHO/ISH score chart by the kappa test showed a minimal value of $0.25, \mathrm{p}<0.001$. The comparative agreement level is portrayed in Table 4.4.

Table 4.4: Level of agreement of Framingham general risk prediction model and World Health organization/International Society of hypertension model by Cohen kappa

| Symmetric Measures of model agreement |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Asymp. Std. |  |  |  |  |  |
|  |  | Value | Error ${ }^{\text {a }}$ | Approx. ${ }^{\text {b }}$ | Approx. Sig. |
| Measure of Agreement | Kappa | . 250 | . 047 | 7.928 | . 000 |
| N of Valid Cases |  | 440 |  |  |  |
| a. Not assuming the null hypothesis. |  |  |  |  |  |
| b. Using the asymptotic standard error assuming the null hypothesis. |  |  |  |  |  |

### 4.3 Proportion of behavioral factors associated with cardiovascular diseases among the study participants of Kicukiro soft drink plant and Rubavu Brewery plant

The second study objective was to determine the proportion of behavioral factors associated with cardiovascular diseases risk for the total sample size(n=440). All the seven factors were modifiable behavior risk factors among the study participants.

### 4.3.1 Level of smoking behavior risk factor to cardiovascular diseases

The findings of this study showed that the level of smoking among the study respondents, was ranged from $6.8 \%$ of current smokers, $6.6 \%$ of daily smokers, and $3.2 \%$ of respondents smoking 1 to 5 cigarettes a day. Second-hand smoking was $4 \%$ at the workplace while it was $15.8 \%$ at home. The proportion levels are portrayed in Table 4.5.

Table 4.5: Proportion of people with smoking behavior in the study participants

| Variables | Subjects (n) | Rate (\%) |
| :---: | :---: | :---: |
| Currently smoke any tobacco products: Cigarettes, Cigars, Pipe |  |  |
| Yes | 30 | 6.8 |
| No | 410 | 93.2 |
| Currently smoke tobacco daily |  |  |
| Yes | 29 | 6.6 |
| No | 411 | 93.4 |
| How old were you when you start smoking |  |  |
| <20 Years | 10 | 2.2 |
| 20-30 Years | 10 | 2.2 |
| 31-40 Years | 5 | 1.1 |
| 41 years and above | 4 | 0.9 |
| Average daily tobacco products smoked: manufactured and hand-rolled cigarette, pipe, cigar, cigarillos or others |  |  |
| 1-5 Tobacco Products | 14 | 3.2 |
| 6-10 Tobacco Products | 3 | 0.7 |
| 11-20 Tobacco Products | 2 | 0.5 |
| 21-30 Tobacco Products | 3 | 0.7 |
| 31\&+ Tobacco Products | 1 | 0.2 |
| Other tobacco product specification |  |  |
| Shisha | 5 | 1.1 |
| Cannabis | 3 | 0.7 |
| Ever smoke in the past |  |  |
| Yes | 9 | 2 |
| No | 397 | 92.2 |
| Age in the past when stop smoking |  |  |
| <40 Years | 5 | 1.1 |
| >40 Years | 4 | 1.8 |
| Time spent after stop smoking |  |  |
| 1-5 Years | 3 | 0.7 |
| 6-10years | 4 | 1.1 |
| 11-15years | 1 | 0.2 |
| 16 Years and more | 1 | 0.2 |
| Current use of any smokeless tobacco, betel |  |  |
| Yes | 12 | 2.7 |
| No | 428 | 97.3 |
| Current daily use of smokeless tobacco products |  |  |
| Yes | 12 | 2.7 |
| No | 428 | 97.3 |
| Average times a day of using smokeless tobacco products |  |  |
| 1-59 Min | 8 | 1.8 |
| 1-2 Hours | 4 | 0.9 |
| Past ever use smokeless tobacco, betel, snuff, chewing tobacco |  |  |
| Yes | 8 | 1.8 |
| No | 432 | 98.2 |
| How many days in the past 7 days someone smoke around you at home |  |  |
| 1 day | 17 | 3.9 |
| 2 days | 25 | 5.7 |
| 3 days | 7 | 1.6 |
| 4 days | 3 | 0.7 |
| 5 days | 7 | 1.6 |
| 6 days | 1 | 0.2 |
| 7 days | 10 | 2.3 |
| How many days in the past 7 days someone smoke around you at work |  |  |
| 2 days | 2 | 0.5 |
| 3 days | 3 | 0.7 |
| 4 days | 4 | 0.9 |
| 5 days | 3 | 0.7 |
| 6 days | 2 | 0.5 |
| 7 days | 3 | 0.7 |

Bivariate analysis was processed using the chi-square, where male respondents showed elevated smoking levels versus females regarding the daily smokers ( $\mathrm{n}=29$ ) and current smokers $(\mathrm{n}=30)$, where $(\mathrm{N}=440), \mathrm{p}<0.05$. The association findings are tabulated in table 4.6.

Table 4.6: Bivariate analysis of smoking by gender

| Variable | N(440) | Male | Female | Statistical test |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{X}^{2}$ (df); $P$ |
| Currently smoke any <br> tobacco products: cigarettes, Cigars, Pipe |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Yes | 30(6.8) | 24(5.5) | 6(1.4) |  |
| No | 410(93.2) | 225(51.1) | 185(42.0) |  |
| Total | 440(100) | 249(56.6) | 191(43.4) | 7.182 (1); . 005 |
| Currently smoke tobacco products daily |  |  |  |  |
| Yes | 29(6.6) | 23(5.2) | 6(1.4) | 6.523(1); . 008 |
| No | 411(93.4) | 226(51.4) | 185(42.0) |  |
| Total | 440(100) | 249(56.6) | 191(43.4) |  |

### 4.3.2 Alcohol consumption behavior of the study participants

These alcohol consumption behavior findings were presented regarding the type of Alcohol intake: beer $5 \%$, wine $12 \%$, liquor $40 \%$, and their daily consumption standards.

The findings of this study about the behavioral alcohol consumption as portrayed in Table 4.7 showed the general alcohol intake and the levels of alcohol intake in the study respondents. The majority of people have ever consumed alcohol with ( $\mathrm{n}=355$ ) while ( $n=303$ ) of respondents took alcohol in the past 30 days $(\mathrm{N}=440)$.

Table 4.7: Proportion of behavioral alcohol consumption in the study participants

| Variables | Subjects (n) | Rate (\%) |
| :--- | :---: | :---: |
| Ever consumed alcoholic drink (Beer, wine, spirits, fermented <br> cider or local) |  |  |
| Yes | 355 | 80.7 |
| No | 85 | 19.3 |
| Alcoholic consumption in the past 12 months |  |  |
| Yes | 303 | 68.9 |
| No | 137 | 31.1 |
| Frequency of alcoholic consumption in the past 12 months |  |  |
| None | 137 | 31.1 |
| <1 day per month | 1 | 0.2 |
| 1-2 days per month | 2 | 0.5 |
| 2-3 days per month | 13 | 3 |
| 3-7 days per month | 4 | 0.9 |
| 7-10 days per month | 2 | 0.5 |
| 10-15 days per month | 1 | 0.2 |
| 4 days per week | 160 | 36.4 |
| 5-6days a week | 13 | 3 |
| Daily | 107 | 24.3 |
| Alcohol consumption within the past 30 days |  |  |
| Yes | 303 | 68.9 |
| No | 137 | 31.1 |
| How many occasions at least one occasion of alcoholic drink |  |  |
| for 30 days | 137 |  |
| None | 57 | 31.1 |
| 1-5 Occasion | 43 | 13.0 |
| 6-10 Occasion | 36 | 9.8 |
| 11-15 Occasion | 48 | 8.2 |
| 16-20 Occasion | 17 | 10.9 |
| 21-25 Occasion | 101 | 3.9 |
| 26-30 Occasion | 153 | 23.0 |
| Alcohol intake at workplace for employees | 8 |  |
| NA | 11 | 80.1 |
| Never | 18 | 4.2 |
| Seldom |  | 5.8 |
| Sometimes | 9.4 |  |
| Often | 0.5 |  |

This study's findings on the $5 \%$ beer consumption were processed in terms of average beer $5 \%$ standard drink in 30days. Where, $9 \mathrm{oz}=10 \mathrm{gr}$ of pure alcohol $/ 266 \mathrm{ml}$, $9-12 \mathrm{oz}=10-14 \mathrm{gr}$ of alcohol in the $266-350 \mathrm{ml}$ glass. Glasses were counted based on the reported bottles consumed on different occasions in 30 days by the study respondents, where $67.5 \%$ consumed $5 \%$ beer, $(n=440)$. The presentation of $5 \%$ beer intake was carried out in line with the status (employees, spouses) and gender. Male employees( $\mathrm{n}=234$ ), Female employees( $\mathrm{n}=36$ ), Male spouses( $\mathrm{n}=15$ ), female spouses( $\mathrm{n}=155$ ), with the total sample of 440 . The $5 \%$ beer intake levels were depicted in table 4.8.

Table 4.8: Level of beer $\mathbf{5 \%}$ intake, 12 Oz glass of $354 \mathrm{ml}=1$ Standard with 14 gr of pure alcohol consumption in the study participants by status and gender.

| Variables | $\mathbf{N}(\mathbf{4 4 0})$ | Employees | Spouses |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | Male | Female |

Average beer 5\% standard drink in 30 days $9 \mathrm{oz}=10 \mathrm{gr}$ of pure alcohol $/ 266 \mathrm{ml}, 9-12 \mathrm{oz}=10-14 \mathrm{gr}$ of alcohol in $266-350 \mathrm{ml}$ glass
(Deborah, 2003)

| None | 143 | 52 | 13 | 3 | 75 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1-5 Glasses | 22 | 7 | 4 | 1 | 10 |
| 6-10 Glasses | 22 | 13 | 3 | 0 | 6 |
| 11-15Glasses | 50 | 29 | 5 | 1 | 15 |
| 16-20 Glasses | 14 | 7 | 1 | 0 | 6 |
| 21-25 Glasses | 30 | 14 | 2 | 3 | 11 |
| 26-30 Glasses | 5 | 3 | 0 | 0 | 2 |
| 31-60 Glasses | 39 | 27 | 3 | 0 | 9 |
| 61-90 Glasses | 42 | 30 | 3 | 1 | 8 |
| 91-120 Glasses | 30 | 27 | 0 | 2 | 1 |
| 121-150 Glasses | 13 | 4 | 2 | 2 | 5 |
| 151-180 Glasses | 13 | 8 | 0 | 2 | 3 |
| 181-210 Glasses | 10 | 7 | 0 | 0 | 3 |
| 211-240 Glasses | 5 | 5 | 0 | 0 | 0 |
| 241-270 Glasses | 1 | 1 | 0 | 0 | 0 |
| 271-300 \& Glasses | 1 | 0 | 0 | 0 | 1 |
| Total | 440 | 234 | 36 | 15 | 155 |

This study's findings on the $12 \%$ wine consumption were processed in terms of the average $12 \%$ vine standard drink in 30days. Where, $5 \mathrm{oz}=147 \mathrm{ml} / \mathrm{glass}$ which contains 14 gr of pure alcohol. Glasses were counted based on the reported glasses consumed on different occasions in 30 days by the study respondents where $41 \%$ consumed vine $(\mathrm{n}=440)$. The presentation of $5 \%$ beer intake was carried out in line with the status (employees, spouses) and gender. Male employees( $\mathrm{n}=234$ ), Female
employees( $\mathrm{n}=36$ ), Male spouses( $\mathrm{n}=15$ ), female $\operatorname{spouses(~} \mathrm{n}=155$ ), with the total sample of 440 . The $12 \%$ wine intake levels were portrayed in Table 4.9.

Table 4.9: Level of alcohol consumption in 143 ml of wine $12 \%$ in 30days amongst the study participants by status and gender

| Variables | N(440) | Employees | Spouses |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Average Wine 12\% |  | Male | Female | Male | Female |
| None | 260 | 121 | 27 | 3 | 109 |
| 1-2 Glasses | 63 | 43 | 2 | 4 | 14 |
| 3-4 Glasses | 51 | 27 | 3 | 4 | 17 |
| 5-6 Glasses | 22 | 16 | 0 | 3 | 3 |
| 7-8 Glasses | 13 | 6 | 2 | 2 | 3 |
| 9-10 Glasses | 18 | 13 | 0 | 4 | 1 |
| 11-12 Glasses | 10 | 7 | 2 | 0 | 1 |
| 13-14 Glasses | 3 | 1 | 0 | 0 | 2 |
| Total | 440 | 234 | 36 | 15 | 155 |

The study findings portrayed the $40 \%$ liquor consumption for 30 days. The standard liquor drink was measured as 1.5 oz equated to 44 ml per glass containing 14 gr of pure alcohol. Around $23.9 \%$ consumed $40 \%$ liquor in different occasions for 30 days, among others male employees ( $n=84$ ), female employees $(\mathrm{n}=5$ ), male $\operatorname{spouses}(\mathrm{n}=3)$, female spouse( $\mathrm{n}=13$ ), where ( $\mathrm{N}=440$ ). The $40 \%$ liquor intake levels were portrayed in Table 4.10.

Table 4.10: Level of alcohol in 44 ml of liquor consumption in $\mathbf{3 0}$ days amongst the study participants by status and gender

| Variable | N(440) | Employee |  | Spouse |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Average liquor 40\% standard drink |  |  |  |  |  |
| of alcohol in 30days |  |  |  |  |  |
| None | 335 | 150 | 31 | 12 | 142 |
| 1-2 Shot glasses | 40 | 33 | 3 | 0 | 4 |
| 3-4Shot glasses | 30 | 20 | 2 | 2 | 6 |
| 5-6 Shot glasses | 18 | 16 | 0 | 1 | 1 |
| 7-8 Shot glasses | 13 | 12 | 0 | 0 | 1 |
| 9-10 Shot glasses | 3 | 2 | 0 | 0 | 1 |
| 11-12 Shot glasses | 0 | 0 | 0 | 0 | 0 |
| 13-14 Shot glasses | 0 | 0 | 0 | 0 | 0 |
| 15-16 Shot glasses | 0 | 0 | 0 | 0 | 0 |
| 17-18 Shot glasses | 0 | 0 | 0 | 0 | 0 |
| 19-20 \& more Shot glasses | 1 | 1 | 0 | 0 | 0 |
| Total | 440 | 234 | 36 | 15 | 155 |

The mean value differences between gender and the different level of age groups on the largest alcohol intake on one occasion were processed by the F test and standard deviation. The variation between the age groups of females was statistically significant, $\mathrm{p}<0.001$. However, the variation was not significant in groups of males alone. The total gender groups showed a significant difference within age groups, $\mathrm{F}=3, \mathrm{p}=0.03$ for only drinker respondents ( $\mathrm{n}=303$ ). The mean value and standard deviation were portrayed in Table 4.11.

Table 4.11: Largest standard alcohol intake mean value on one occasion of alcohol drinking by age and gender for only drinker in last $\mathbf{3 0}$ days

| Largest alcohol intake on one occasion (Mean value $\pm$ SD) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | $\mathrm{n}=303$ |  |  |  |
| Age group |  | Male | Female | Total |
| <40Years | 97 | $4.96(4.653)$ | $2.07(1.668)$ | $4.09(4.206)$ |
| 40-50Years | 97 | $6.58(4.829)$ | $3.64(2.775)$ | $5.31(4.307)$ |
| $>50 Y e a r s$ | 109 | $5.78(4.969)$ | $5.29(4.644)$ | $5.62(4.851)$ |
| Total | 303 | $5.72(4.841)$ | $3.75(3.507)$ | $5.03(4.513)$ |
| Statistical test |  |  |  |  |
| $F=$ |  | 1.738 | 7.541 | 3.269 |
| $d f=$ | 2 | 2 | 2 |  |
| $p=$ |  | 0.179 | 0.001 | 0.039 |

The mean value differences between gender and the different level of age groups on the excess of 5 drinks for men and 4 drinks for women were processed by the F test and standard deviation. The variation between the age groups of females was statistically significant, $\mathrm{p}=0.006$. However, the variation as not significant in groups of males alone. The total gender groups showed a significant difference within age groups, $\mathrm{F}=5, \mathrm{p}=0.007$, for only alcoholic drinker respondents ( $\mathrm{n}=303$ ). The mean value and standard deviation were portrayed in Table 4.12.

Table 4.12: Excess of Alcohol standard intake mean value of times taken 5 and more standard drinks for a man, 4 and more standard drink for a woman by age and gender for only drinkers for $\mathbf{3 0}$ days

| Five drinks and more for men/Four drink and more for women (Mean value $\pm$ |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | SD) |  |  |  |
|  | $\mathrm{n}=303$ |  |  |  |
| Age group |  | Male | Female | Total |
| <40Years | 97 | $2.63(4.350)$ | $0.28(0.841$ | $1.93(3.819)$ |
| 40-50Years | 97 | $4.44(5.249)$ | $3.24(5.226)$ | $3.92(5.245)$ |
| $>50$ Years | 109 | $3.47(4.603)$ | $3.23(4.305)$ | $3.39(4.491)$ |
| Total | 303 | $3.45(4.738)$ | $2.42(4.314)$ | $3.09(4.613)$ |
| Statistical test |  |  |  |  |
| $F=$ | 2.233 | 5.364 | 5.005 |  |
| $d f=$ | 2 | 2 | 2 |  |
| $p=$ | 0.110 | 0.006 | 0.007 |  |

The findings on the relationship of exceeding 5 drinks for men and 4 drinks for women by gender and age groups were conducted using the chi-square. The relationship was not significant for the gender and the level of excess drinks in the study respondents. Whereas, the relationship was significant with age group, $x^{\wedge} 2=14$, $\mathrm{p}=0.02$, $(\mathrm{n}=123)$. The level of this relationship was tabulated in Table 4.13.

Table 4.13: Bivariate analysis of times consumed four or more alcoholic drinks for women and five or more for men with gender and age.


### 4.3.3 Level of fruits intake and servings amongst the study participants

The level of fruit intake behavior findings was presented regarding the weekly and quantity of servings intake for the entire study respondents ( $\mathrm{N}=440$ ).

In a typical week, the study findings on the fruit intake in terms of daily servings for employees were (male: $\mathrm{n}=234$, female: $\mathrm{n}=36$ ). The spouse's findings were (Male: $\mathrm{n}=15$, female: $\mathrm{n}=155$ ) showed that $53.3 \%$ took fruit for only one day while $24.8 \%$ ( $\mathrm{n}=109$ ) did not (see Table) 4.14.

Table 4.14: Proportion of fruits intake by status and gender

| Variables | N(440) | Employees |  | Spouses |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | Male | Female |
| How many days you eat |  |  |  |  |  |
| fruits in a typical week |  |  |  |  |  |
| None | $109(24.8)$ | $63(14.3)$ | $14(3.2)$ | $4(0.9)$ | $28(6.4)$ |
| One day | $235(53.3)$ | $138(31.4)$ | $17(3.9)$ | $8(1.8)$ | $72(16.4)$ |
| Two days | $85(19.3)$ | $30(6.8)$ | $5(1.1)$ | $3(0.7)$ | $47(10.7)$ |
| Three days | $11(3.5)$ | $3(0.7)$ | $0(0.0)$ | $0(0.0)$ | $8(1.8)$ |
| Four days | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Total | $440(100)$ | $234(53.2)$ | $36(8.2)$ | $15(3.4)$ | $155(35.2)$ |
| Number of fruits servings |  |  |  |  |  |
| on one day |  |  |  |  |  |
| None | $109(24.8)$ | $63(14.3)$ | $14(3.2)$ | $4(0.9)$ | $28(6.4)$ |
| Under one serving | $183(41.6)$ | $95(21.6)$ | $13(3.0)$ | $8(1.8)$ | $67(15.2)$ |
| One serving | $143(32.5)$ | $74(16.8)$ | $8(1.8)$ | $3(0.7)$ | $58(13.2)$ |
| Two servings | $5(1.2)$ | $2(0.5)$ | $1(0.2)$ | $0(0.0)$ | $2(0.5)$ |
| Total | $440(100)$ | $234(53.2)$ | $36(8.2)$ | $15(3.4)$ | $155(35.2)$ |

### 4.3.4 Level of vegetable's intake: weekly and servings for participants in the study area

The level of vegetable intake behavior findings was presented regarding the weekly and quantity of servings intake for the study respondents ( $\mathrm{N}=440$ ).

In a typical week, the study findings on the vegetable intake in terms of daily servings for employees (male: $\mathrm{n}=234$, female: $\mathrm{n}=36$ ) and spouses (Male: $\mathrm{n}=15$, female: $\mathrm{n}=155$ ). The findings showed that $56.6 \%(\mathrm{n}=249)$ took fruit for only two days while $2.8 \%$ ( $\mathrm{n}=12$ ) did not (see Table) 4.15.

Table 4.15: Proportion of vegetable's intake by status and gender

| Variables | N(440) | Employees |  | Spouses |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | Male | Female |
| How many days you eat |  |  |  |  |  |
| vegetables in a typical week |  |  |  |  |  |
| None | $12(2.8)$ | $6(1.4)$ | $2(0.5)$ | $0(0.0)$ | $4(0.9)$ |
| One day | $60(13.7)$ | $46(10.5)$ | $1(0.2)$ | $2(0.5)$ | $11(2.5)$ |
| Two days | $249(56.6)$ | $132(30.0)$ | $25(5.7)$ | $11(2.5)$ | $81(18.4)$ |
| Three days | $96(21.8)$ | $41(9.3)$ | $5(1.1)$ | $2(0.5)$ | $48(10.9)$ |
| Four days | $18(4.2)$ | $6(1.4)$ | $2(0.5)$ | $0(0.0)$ | $10(2.3)$ |
| Five days | $5(1.1)$ | $3(0.7)$ | $1(0.2)$ | $0(0.0)$ | $1(0.2)$ |
| Total | $440(100)$ | $234(53.2)$ | $36(8.2)$ | $15(3.5)$ | $155(35.3)$ |
| of vegetables |  |  |  |  |  |
| Number |  |  |  |  |  |
| servings on one day | $12(2.8)$ | $6(1.4)$ | $2(0.5)$ | $0(0.0)$ | $4(0.9)$ |
| None | $240(54.5)$ | $137(31.1)$ | $19(4.3)$ | $11(2.5)$ | $73(16.6)$ |
| Under one serving | $88((20.0)$ | $71(16.1)$ | $11(2.5)$ | $2(0.5)$ | $65(14.8)$ |
| One serving | $33(11.8)$ | $19(4.3)$ | $4(0.9)$ | $2(0.5)$ | $8(1.8)$ |
| Two servings | $6(1.3)$ | $1(0.2)$ | $0(0.0)$ | $0(0.0)$ | $5(1.1)$ |
| Three servings | $440(100)$ | $234(53.2)$ | $36(8.2)$ | $15(3.5)$ | $155(35.3)$ |
| Total |  |  |  |  |  |

### 4.2.5 Level of oil intake amongst the study participants in the study

The level of oil intake behavior findings was presented regarding the type of oil, the source of oil, nutrients and lipid content, and smoking temperature label for the users at the time of data collection $(\mathrm{N}=440)$. The labels were recorded after the recognition of the type of oil used by the respondent at the time of the interview.

The findings of this study in terms of oil consumption showed that $38.4 \%$ of consumed oil was sunseed oil while most of the source oil consumed was palm with $41.6 \% ~(\mathrm{~N}=440)$. The findings showed that $93.4 \%$ of oil contents were unmarked for trans-fat content. In addition, $74.1 \%$ didn't mark the heating smoke as a point level when cooking the oil. The remaining findings were tabulated in Table 4.16.

Table 4.16: Proportion of source of oil, type of oil, nutrient content, and temperature markings for oil usage in the study participants

| Variable | Subjects (n) | Rate (\%) |
| :---: | :---: | :---: |
| What type of oil or fat used for meal |  |  |
| Sunseed Oil | 169 | 38.4 |
| Mukwano Oil | 78 | 17.7 |
| Golden oil | 55 | 12.5 |
| Dyanas oil | 32 | 7.3 |
| Neo oil | 29 | 6.6 |
| Crystal oil | 22 | 5.0 |
| Palm oil | 12 | 2.7 |
| Sabroso (olive oil) | 11 | 2.5 |
| Canola oil | 9 | 2.0 |
| Butter or ghee | 6 | 1.4 |
| Zahabu oil | 4 | 0.9 |
| Rafael Salgado | 4 | 0.9 |
| Slite oil | 3 | 0.7 |
| Jambo oil | 2 | 0.5 |
| Yonca oil | 2 | 0.5 |
| Viking oil | 1 | 0.2 |
| Karanga oil | 1 | 0.2 |
| Source of oil |  |  |
| Palm | 183 | 41.6 |
| Sunflower | 179 | 40.7 |
| Soybean | 43 | 9.8 |
| Olive fruits | 15 | 3.4 |
| Rapeseed | 9 | 2.0 |
| Fat of Milk | 6 | 1.4 |
| Soybean and Palm olein | 4 | 0.9 |
| Corn, Palm and blended vegetables | 1 | 0.2 |
| Total fat in 100 gr of oil |  |  |
| Unmarked | 191 | 43.4 |
| $99.9 \mathrm{~g} / 100 \mathrm{~g}$ | 169 | 38.4 |
| $100 \mathrm{~g} / 100 \mathrm{~g}$ | 32 | 7.3 |
| $14 \mathrm{~g} /$ Serving | 29 | 6.6 |
| $14 \mathrm{~g} / 15 \mathrm{ml}$ (sab) | 11 | 2.5 |
| $91 \mathrm{~g} / 100 \mathrm{ml}$ (Y\&J) | 4 | . 9 |
| $100 \mathrm{~g} / 100 \mathrm{~g}$ (Rs) | 4 | . 9 |
| Cholesterol content in oil |  |  |
| Unmarked | 228 | 51.8 |
| Free cholesterol (Marked) | 147 | 33.4 |
| $0.0 \mathrm{mg} / 100 \mathrm{~g}$ | 34 | 7.7 |
| 0 mg | 27 | 6.1 |
| 0 mg (Y\&J) | 4 | . 9 |
| Monounsaturated fat |  |  |
| Unmarked | 370 | 84.1 |
| $42.7 \mathrm{~g} / 100 \mathrm{~g}$ | 32 | 7.3 |


| Variable | Subjects (n) | Rate (\%) |
| :---: | :---: | :---: |
| $3.08 \mathrm{~g} / 14 \mathrm{~g}$ (cs) | 16 | 3.6 |
| $10 \mathrm{~g} / 15 \mathrm{ml}$ (Sab) | 11 | 2.5 |
| $31 \mathrm{~g} / 100 \mathrm{ml}$ (Y\&J) | 4 | 0.9 |
| $75 \mathrm{~g} / 100 \mathrm{~g}$ (Rs) | 4 | 0.9 |
| $3.80 \mathrm{~g} / 14 \mathrm{~g}$ (Csun) | 3 | 0.7 |
| Polyunsaturated fat |  |  |
| Unmarked | 341 | 77.5 |
| $10.7 \mathrm{~g} / 100 \mathrm{~g}$ | 33 | 7.5 |
| Omega 6(1488mg/serv) \& Omega 9(5891mg/serv) | 28 | 6.4 |
| $8.54 \mathrm{~g} / 14 \mathrm{~g} \mathrm{cs}$ | 16 | 3.6 |
| $1.5 \mathrm{~g} / 15 \mathrm{ml}(\mathrm{sab})$ | 11 | 2.5 |
| 51 g (Y\&J) | 4 | 0.9 |
| $10 \mathrm{~g} / 100 \mathrm{~g}$ (Rs) | 4 | 0.9 |
| $8.4 \mathrm{mg} / 14 \mathrm{~g}$ (Csun) | 3 | 0.7 |
| Saturated fat |  |  |
| Unmarked | 343 | 78.0 |
| $46.6 \mathrm{~g} / 100 \mathrm{~g}$ | 32 | 7.3 |
| $6 \mathrm{~g} /$ serv | 27 | 6.1 |
| $2.38 \mathrm{~g} / 14 \mathrm{~g}$ (cs) | 15 | 3.4 |
| $2 \mathrm{~g} / 15 \mathrm{ml}$ (sab) | 11 | 2.5 |
| $15 \mathrm{~g} / 100 \mathrm{~g}$ (Rs) | 5 | 1.1 |
| 9 g (Y\&J) | 4 | 0.9 |
| $1.8 \mathrm{~g} / 14 \mathrm{~g}$ Csun) | 3 | 0.7 |
| Hydrogenated oil |  |  |
| Unmarked | 431 | 98.0 |
| Marked | 9 | 2.0 |
| Trans fat amount |  |  |
| Unmarked | 411 | 93.4 |
| $0 \mathrm{mg} /$ serving | 27 | 6.1 |
| Trans fat free | 2 | 0.5 |
| Heating smoke point |  |  |
| Unmarked | 326 | 74.1 |
| Not overheat | 114 | 25.9 |

### 4.3.6 Physical activities for the study participants based on frequency, duration, and intensity of energy expenditure

The analysis results for physical activities were processed regarding the vigorous and moderate intensity spent while at work ( $\mathrm{n}=270$ ). Sport, fitness, and leisure for recreational activities, going to and from places by feet or by bicycles for study participants were also considered for the entire study participants ( $n=440$ ).

The relationship between physical activities with vigorous and moderate intensity spent at work, and gender was not significant. Almost $98.5 \%$ of the employees didn't
do vigorous-intensity physical activity for at least 10 min in a typical week ( $\mathrm{n}=270$ ) as shown in Table 4.17.

Table 4.17: Bivariate analysis of physical activity with vigorous and moderate intensity spent at work by gender

| Variable | n(270) | Male | Female | Statistical test $X^{2}(d f) ; P$ |
| :---: | :---: | :---: | :---: | :---: |
| Work vigorous intensity at least 10 min |  |  |  |  |
| Yes | 4(1.5) | 4(1.5) | $0(0.0)$ | 0.625(1);.429 |
| No | 266(98.5) | 230(85.2) | 36(13.3) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| How many days you do vigorous intensity work a week |  |  |  |  |
| None | 266(98.5) | 230(85.2) | 36(13.3) | 0.625(3);.891 |
| One day | $1(0.04)$ | 1(0.4) | $0(0.0)$ |  |
| Two days | 1 (0.4) | 1(0.4) | 0 (0.0) |  |
| Three days | 0 (0.0) | 0 (0.0) | 0 (0.0) |  |
| Four days | 2(0.7) | 2(0.7) | 0 (0.0) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| How much time(Min) you spend do Vigorous-intensity a day |  |  |  |  |
| None | 266(98.5) | 230(85.2) | 36(13.3) | 0.625(2);.732 |
| 10-20 Min | 2(0.7) | 2(0.7) | $0(0.0)$ |  |
| 21-30 Min | 0 (0.0) | 0 (0.0) | 0 (0.0) |  |
| 31-40 Min | 0 (0.0) | 0 (0.0) | 0 (0.0) |  |
| 41-50 Min | $0(0.0)$ | 0 (0.0) | $0(0.0)$ |  |
| 51-60 Min | 2(0.7) | 2(0.7) | 0 (0.0) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| Your work involves moderateintensity activity with breathing increase at least 10 min |  |  |  |  |
| Yes | 34(12.6) | 31(11.5) | 3(1.1) | 0.685(1);.408 |
| No | 236(87.4) | 203(75.2) | 33(12.2) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| How many days do $u$ do moderateintensity activity at work |  |  |  |  |
| None | 236(87.4) | 203(75.2) | 33(12.2) |  |
| One day | 5(1.9) | 5(1.9) | $0(0.0)$ |  |
| Two days | 5(1.9) | 4(1.5) | 1(0.4) | 3.272(5);.658 |
| Three days | 2(0.7) | 2(0.7) | $0(0.0)$ |  |
| Four days | 11(4.1) | 9(3.3) | $2(0.7)$ |  |
| Five days | 11(4.1) | 11(4.1) | 0 (0.0) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| How much time(Min) you spend do Moderate-intensity a day at work |  |  |  |  |
| None | 236(87.4) | 203(75.2) | 33(12.2) | 1.488(5);.914 |
| 10-20Min | 11(4.1) | 10(3.7) | 1(0.4) |  |
| 21-30Min | 15(5.5) | 13(4.8) | 2(0.7) |  |
| 31-40Min | 3(1.1) | 3(1.1) | $0(0.0)$ |  |
| 41-50Min | 2(0.7) | 2(0.7) | 0 (0.0) |  |
| 51-60Min | 3(1.1) | 3(1.1) | 0(0.0) |  |
| Total | 270(100) | 234(86.7) | (36(13.3) |  |

The results of gender-based relationship with physical activities: going to and from places on feet or bicycle showed that $9.1 \%$ of males walked or used bicycles for at least 10 min to get or from places. Whereas it was only $3.9 \%$ of females who did so with $\mathrm{p}=0.02$. Other variables were not significant. This relationship is tabulated in Table 4.18.

Table 4.18: Bivariate analysis of physical activity: going to and from places on feet or bicycle by gender

| Variable | N(440) | Male | Female | Statistical test |
| :--- | :---: | :---: | :---: | :--- |
|  |  |  |  | $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| Do walk or use bicycle for at least |  |  |  |  |
| 10min to get to or from places | $57(13)$ | $40(9.1)$ | $17(3.9)$ | $4.919(1) ; .027$ |
| Yes | $383(87)$ | $209(47.5)$ | $174(39.5)$ |  |
| No | $440(100)$ | $249(56.6)$ | $191(43.4)$ |  |
| Total |  |  |  |  |
| How many days you walk or bicycle |  |  |  |  |
| at least 10Min continuously to get to |  |  |  |  |
| or from places | $383(87)$ | $209(47.5)$ | $174(39.5)$ | $6.546(6) ; .365$ |
| None | $1(0.2)$ | $1(0.2)$ | $0(0.0)$ |  |
| One day | $8(1.8)$ | $5(1.1)$ | $3(0.7)$ |  |
| Two days | $4(1.0)$ | $2(0.5)$ | $2(0.5)$ |  |
| Three days | $7(1.6)$ | $5(1.1)$ | $2(0.5)$ |  |
| Four days | $25(5.7)$ | $19(4.3)$ | $6(1.4)$ |  |
| Five days | $12(2.7)$ | $8(1.8)$ | $4(0.9)$ |  |
| Six days | $440(100)$ | $249(56.6)$ | $191(43.4)$ |  |
| Total |  |  |  |  |
| How much time(Min) spend walking |  |  |  |  |
| or bicycling to travel on a typical day | $383(87)$ | $209(47.5)$ | $174(39.5)$ | $6.774(4) ; .148$ |
| None | $28(6.3)$ | $20(4.5)$ | $8(1.8)$ |  |
| 10-30 | $25(5.6)$ | $16(3.6)$ | $9(2.0)$ |  |
| 31-60 | $1(0.2)$ | $1(0.2)$ | $0(0.0)$ |  |
| 1-90 | $3(0.7)$ | $3(0.7)$ | $0(0.0)$ |  |
| $91-120$ | $440(100)$ | $249(56.6)$ | $191(43.4)$ |  |
| Total |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

The analysis results of the relationship between gender and physical activity with vigorous intensity spent on sport, fitness, and leisure for recreation were conducted. The results showed a significant relationship between doing the sport, the number of days in a typical week, and the time in minutes spent doing physical activity. Male
respondents were more than female respondents for recreational physical activity with $\mathrm{p}<0.05$. These results were tabulated in Table 4.19.

Table 4.19: Bivariate analysis of physical activity with vigorous intensity spent by sport, fitness, and leisure for recreational by gender

| Variable | N(440) <br> n(\%) | Male n(\%) | Female $\mathrm{n}(\%)$ | Statistical test $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :---: | :---: | :---: | :---: | :---: |
| Vigorous-intensity sport, fitness, recreational or leisure with large increase of breathing |  |  |  |  |
| Yes | 30(6.8) | 25(5.7) | 5(1.1) | 9.376(1);.002 |
| No | 410(93.2) | 224(50.9) | 186(42.3) |  |
| Total | 440(100) | 274(56.6) | 191(43.4) |  |
| How many days you do vigorous intensity sport, fitness, leisure for recreational |  |  |  |  |
| None | 410(93.2) | 224(50.9) | 186(42.3) | 10.405(2);.034 |
| One day | 23(5.2) | 18(4.1) | 5(1.1) |  |
| Two days | 5(1.1) | 5(1.1) | $0(0.0)$ |  |
| Three days | 1(0.2) | 1(0.2) | $0(0.0)$ |  |
| Four days | 1(0.2) | 1(0.2) | 0 (0.0) |  |
| Total | 440(100) | 274(56.6) | 191(43.4) |  |
| How much time(Min) you spend do Vigorous-intensity a day for sport, fitness, leisure |  |  |  |  |
| None | 410(93.2) | 224(50.9) | 186(42.3) | 9.160(3);.021 |
| 10-30 | 14(3.2) | 12(2.7) | 2(0.5) |  |
| 31-60 | 14(3.2) | 11(2.5) | 3(0.7) |  |
| 61-90 | 2(0.5) | 2(0.5) | 0 (0.0) |  |
| Total | 440(100) | 274(56.6) | 191(43.4) |  |

The analysis results of the relationship between gender and physical activity with moderate intensity spent on sport, fitness, and leisure for recreation were conducted. The results showed a non-significant relationship between doing the sport, the number of days in a typical week, and the time in minutes spent doing physical activity. These results were tabulated in Table 4.20.

Table 4.20: Proportion of physical activity with moderate intensity spent by sport, fitness, and leisure for recreational by gender

| Variable | N(440) <br> n(\%) | Male n(\%) | Female <br> $\mathbf{n}(\%)$ | Statistical test $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :---: | :---: | :---: | :---: | :---: |
| You do moderate intensity sports, fitness, leisure all recreational at least 10 min |  |  |  |  |
| Yes | 66(15.0) | 42(9.5) | 24(5.5) | 1.569(1);.210 |
| No | 374(85.0) | 207(47.0) | 167(38.0) |  |
| Total | 440(100) | 249(56.5) | 191(43.5) |  |
| How many days you do moderate intensity sport, fitness; leisure for recreational |  |  |  |  |
| None | 374(85.0) | 207(47.0) | 167(38.0) | 8.947(df);. 111 |
| One day | 24(5.5) | 11(2.5) | 13(3.0) |  |
| Two days | 21(4.8) | 13(3.0) | 8(1.8) |  |
| Three days | 13(3.0) | 11(2.5) | 2(0.5) |  |
| Four days | 7(1.6) | 6(1.4) | 1(0.2) |  |
| Five days | 1(0.2) | 1 (0.2) | $0(0.0)$ |  |
| Total | 440(100) | 249(56.5) | 191(43.5) |  |
| How much time (Min) you spend do Moderate intensity a day for sport, fitness, leisure |  |  |  |  |
| None | 374(85.0) | 207(47.0) | 167(38.0) | 9.260(4);.05 |
| 10-30 | 24(5.5) | 10(2.3) | 14(3.2) |  |
| 31-60 | 36(8.1) | 27(6.1) | $9(2.0)$ |  |
| 61-90 | 5(1.1) | 4(0.9) | $1(0.2)$ |  |
| 91-120 | 1(0.2) | 1(0.2) | $0(0.0)$ |  |
| Total | 440(100) | 249(56.5) | 191(43.5) |  |

The analysis results for the levels of metabolic equivalent for the task (MET) were processed and presented in Table 4.21. The classification of the MET followed the number of MET expenditures. Given that one MET equals the quantity of energy spent while sitting. This implies consumption of approximately 3.5 milliliters of oxygen per kg of body weight per minute. The classification of weekly energy expenditure was based on the intensity of physical activity executed per week. Therefore, The low-intensity physical activity (<4MET), moderate-intensity physical activity (MET=4), and high-intensity physical activity (MET=8) per minute.

The energy>= 1500 MET was classified as high weekly energy expenditure. The energy between 600-1500 MET was classified as moderate weekly energy expenditure. The energy <600 MET was classified as low weekly energy expenditure. The findings showed the level of energy expenditure with a $95 \%$ confidential interval, where $1.8 \%$ of the respondents were classified as having high energy expenditure >=1500 MET per week. ( $\mathrm{N}=440$ ), (Table 4.21).

Table 4.21: Levels of metabolic equivalent of study participants (MET) by age, location, occupation status and gender

| $\begin{aligned} & \text { Metabolic equivalence classification 8Met/Min Vigorous intensity PA: } \\ & >=1500 \mathrm{MET} / \mathrm{WEEK}, 4 \mathrm{MET} \text { moderate intensity PA for MET/min/Week:600- } \\ & \text { 1500MET/week, Low MET:<600MET/Week } \end{aligned}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Variables | N (\%) | $\begin{gathered} \text { Low \% (CI, } \\ 95 \%) \end{gathered}$ | $\begin{gathered} \hline \text { Moderate \% } \\ (\mathrm{CI}, \mathbf{9 5 \%}) \end{gathered}$ | $\begin{gathered} \text { High \% (CI, } \\ 95 \%) \end{gathered}$ |
| Overall | 440(100\%) | 89.8(86.8-92.7) | 8.4(5.6-11.1) | 1.8(0.5,3.1) |
| Age category |  |  |  |  |
| <40 Years | 157(35.7) | 30.5(23.3-37.7) | $3.9(0.8-6.9)$ | 1.4(-0.4-3.2) |
| 40-50 Years | 151(34.3) | 31.8(24.3-39.2) | $2.5(0.0-4.9)$ | $0.0(0.0-0.0)$ |
| >50Years | 132(30.0) | 28.0(20.3-35.6) | $2.0(-0.3-4.3)$ | 0.0(0.0-0.0) |
| Field location |  |  |  |  |
| Kicukiro | 259(58.9) | 56.2(50.1-62.2) | 1.8(0.1-3.4) | 0.7(-0.3-1.7) |
| Rubavu | 181(41.1) | 33.9(27.0-40.8) | 6.6(2.9-10.2) | 0.7(-0.5-1.9) |
| Status of the participants |  |  |  |  |
| Employees | 270(61.4) | 53.0(47.0-58.9) | 7.0(3.9-10.0) | $1.4(0.0-2.8)$ |
| Spouses | 170(38.6) | 37.3(30.0-44.5) | 1.4(-0.3-3.1) | $0.0(0.0-0.0)$ |

Gender

| Male | $249(56.6)$ | $48.9(42.6-55.1)$ | $6.4(3.3-9.4)$ | $1.4(-0.06-2.8)$ |
| :--- | :---: | :---: | :---: | :---: |
| Female | $191(43.4)$ | $41.4(34.4-48.3)$ | $2.0(0.0-3.9)$ | $0.0(0.0-0.0)$ |

### 4.3.7 Sitting time/sedentarity for the study participants

The analysis results were processed by classifying the level of sedentarity as a prominent risk factor for cardiovascular diseases. The low level of sedentarity was
classified as a low level of sitting time inferior to 6 hours, the moderate sedentarity was classified as a moderate level of sitting time between 6 to 10 hours. The high sedentary was classified as long sitting time >10hours. The results showed that $6.6 \%(\mathrm{n}=29)$ of respondents were classified as having a high level of sedentarity while $38.2 \%(\mathrm{n}=168)$ were classified as having metabolic syndrome (Table 4.22).

Table 4.22: Prevalence of sedentary and metabolic syndrome

| Variables | Frequency | Percentage\% |
| :---: | :---: | :---: |
| Sedentarity levels |  |  |
| Short sitting time (<6hrs) | 316 | 71.8 |
| Moderate sitting time (6-10hrs) | 95 | 21.6 |
| Long sitting time (>10hrs) | 29 | 6.6 |
| Metabolic Syndrome (MetS) |  |  |
| No MetS | 272 | 61.8 |
| With MetS | 168 | 38.2 |

The analysis results showed the association of sedentarity levels and metabolic syndrome with crude odd ratios $(95 \% \mathrm{CI}) \mathrm{N}=440$. The findings showed the higher the sedentarity levels, the higher the likelihood to develop the metabolic syndrome (Table 4.23).

Table 4.23: Association of sitting time with metabolic diseases

| Variables | df | OR (95\%CI) | P-value |
| :--- | :---: | :---: | :---: |
| Sedentary levels |  |  |  |
| Short sitting time (<6hrs) | 2 | Reference |  |
| Moderate sitting time (6-10hrs) | 1 | $2.686(1.42-5.06)$ | 0.002 |
| Long sitting time (>10hrs) | 1 | $8.196(2.07-32.3)$ | 0.003 |
| BMI | 1 | $1.207(1.11-1.30)$ | $<0.001$ |

The analysis results showed that after the classification of the sedentary levels and evaluation of their association to other cardiovascular risk factors such as metabolic syndrome; the moderate and high levels of sedentary were three-fold associated with cardiovascular disease elevated risk (Table 4.24).

Table 4.24: Association of sitting time with cardiovascular diseases risk (FGRS)

| Variables | df | OR (95\%CI) | $\boldsymbol{P}$-value |
| :--- | :---: | :---: | :---: |
| Sedentary levels |  |  |  |
| Short sitting time (<6hrs) | 2 | Reference |  |
| Moderate sitting time (6-10hrs) | 1 | $3.238(2.238-6.050)$ | $<0.001$ |
| Long sitting time (>10hrs) | 1 | $3.772(1.718-8.285)$ | 0.001 |

Bivariate analysis results portrayed the association between sitting time and components of metabolic syndrome which were all significantly associated with a high level of sedentary (Table 4.25).

Table 4.25: Association of sitting time with metabolic syndrome components


The findings result portrayed the bivariate analysis of the association of sitting time with other factors of cardiovascular diseases risk. Only gender was not linked to sedentarity levels ( $\mathrm{N}=440$ ), (Table 4.26).

Table 4.26: Bivariate analysis of sitting time and other factors to cardiovascular diseases risk

| Variables | N(440) | Sedentary levels |  |  | Statistical test |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| FGRS |  | Short sitting time | Moderate sitting time | High sitting time |  |
| Low risk ( $<10 \%$ ) | 328(74.6) | 261(59.3) | 61(13.9) | 6(1.4) | 105.552(6);.001 |
| $2^{\text {nd }}$ level risk ( $10-20 \%$ ) | 60(13.7) | 35(8.0) | 19(4.3) | 6(1.4) |  |
| $3{ }^{\text {rd }}$ level risk ( $20-30 \%$ ) | 28(6.3) | 14(3.2) | $9(2.0)$ | 5(1.1) |  |
| $4^{\text {th }}$ level risk ( $30-40 \%$ ) | 24(5.5) | 6(1.4) | 6(1.4) | 12(2.7) |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) | 29(6.6) |  |
| Gender |  |  |  |  |  |
| Male | 249(56.6) | 182(41.4) | 52(11.8) | 15(3.4) | .542(2);.7 |
| Female | 191(43.5) | 134(30.5) | 43(9.8) | 14(3.2) |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) | 29(6.6) |  |
| Age Group |  |  |  |  |  |
| <40 years | 249(35.6) | 123(28.0) | 29(6.6) | 5(1.1) | 11.292(4);.02 |
| 40-50Years | 132(30) | 84(19.1) | 38(8.6) | 10(2.3) |  |
| >50 Years | 151(34.4) | 109(24.8) | 28(6.4) | 14(3.2) |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) | 29(6.6) |  |
| Status of participant |  |  |  |  | 22.411(2);.001 |
| Employees | 270(61.4) | 206(46.8) | 50(11.4) | 14(3.2) |  |
| Spouses | 170(38.6) | 110(25.0) | 45(10.2) | 15(3.4) |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) | (29(6.6) |  |
| Waist Circumference |  |  |  |  |  |
| Central Obesity: | 73(37) | 96(21.8) | 49(11.1) | 18(4.1) | 7.102(2);.02 |
| $\mathrm{F}>88 \mathrm{Cm}, \mathrm{M}>102 \mathrm{Cm}$ |  |  |  |  |  |
| Normal: $\quad \mathrm{F}<88 \mathrm{Cm}$, | 277(63) | 220(50) | 46(10.5) | 11(2.5) |  |
| $\mathrm{M}<102 \mathrm{Cm}$ |  |  |  |  |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) | 29(6.6) |  |

4.4 Proportion of working condition factors associated with cardiovascular diseases among workers of Kicukiro soft drink and Rubavu Brewery plant

### 4.4.1 Workplace condition factors for workers in the study area

### 4.4.1.1 Organizational hazard (Shift workers and Night workers)

The analysis findings presented the shift levels including the regular night shift. The regular shift work $(\mathrm{n}=125)$ with $(\mathrm{N}=270)$ of the total employees. The regular night shift work $(\mathrm{n}=118)$, with $(\mathrm{N}=270)$ of the total employees. The findings showed that the higher the age, the lower the regular night shift work (Table 4.27).

Table 4.27: Distribution of regular shift work and regular night shift

| Variables | Frequency | Percentage \% |
| :--- | :---: | :---: |
| Regularly Doing shift work in current position |  |  |
| Yes | 125 | 46.3 |
| No | 145 | 53.7 |
| Regularly doing Night shift Work |  |  |
| Yes | 118 | 43.7 |
| No | 152 | 56.3 |
| Regularly doing night shift work |  |  |
| Gender | 115 | 97.4 |
| Male Yes | 3 | 2.5 |
| Female Yes |  |  |
| Age | 48 | 40.6 |
|  | 38 | 32.2 |
| <40 years | 30 | 27.1 |
| 40-50 Years | $>50$ Years |  |

The analysis findings painted the bivariate analysis on the association of work occupation with night shift. The technical ( $\mathrm{n}=76$ ) and logistic ( $\mathrm{n}=17$ ) departments were on regular night shifts with $\mathrm{p}<0.001,(\mathrm{~N}=270)$ of the total employees (Table 4.28).

Table 4.28: Bivariate analysis of regular night shift and occupation


The analysis findings painted the bivariate analysis on the association of night shift work( $\mathrm{n}=119$ ) and elevated cardiovascular diseases risk>10\% by the Framingham general risk score model ( $\mathrm{N}=270$ ), (Table 4.29).

Table 4.29: Bivariate analysis of night shift and cardiovascular diseases risk (FGRS model)

|  |  | n(270) | Low level <br> risk $<\mathbf{1 0 \%}$ | Elevated risk <br> $(\mathbf{1 0 - 4 0 \%})$ | Statistical <br> Test. ${ }^{2}(\mathrm{df}) ; P$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Regular doing night |  |  |  |  |  |
| shift |  |  |  |  |  |
| $\quad$ Yes | $119(44.1)$ | $94(34.8)$ | $25(9.3)$ | $3.92(1) ; .03$ |  |
| $\quad$ No | $151(55.9)$ | $103(38.1)$ | $48(17.8)$ |  |  |
| $\quad$ Total | $270(100 \%)$ | $197(73.0)$ | $73(27.0)$ |  |  |

### 4.4.1.2 Physical hazards for industrial worker status participants

The analysis findings described the prevalence of physical hazard conditions. The cold room ( $\mathrm{n}=31$ ), vibration exposure $>1.15 \mathrm{~m} / \mathrm{s}$ for WBV and $2.5 \mathrm{~m} / \mathrm{s}$ for $\operatorname{HAV}(\mathrm{n}=66)$, much noise exposure $>85 \mathrm{~dB}(\mathrm{n}=139)$, radiation $(\mathrm{n}=48)$ were the physical hazards with $(\mathrm{N}=270)$ for total workers. The results showed that $11.5 \%$ of employees worked in cold chambers (Cold rooms), $24.4 \%$ of employees were exposed to a high level of vibration at work, $51.5 \%$ were exposed to a high level of
noise at work, and $17.8 \%$ of employees were exposed to whether gamma or X rays (Table 4.30).

Table 4.30: Prevalence of physical working hazards concerning working conditions of the study participants

| Variables | Frequency | Percentage (\%) |
| :--- | :---: | :---: |
| Regular working in cold chamber or <br> refrigeration |  |  |
| Yes(-4 $\left.{ }^{\circ} \mathrm{C}\right)$ | 31 | 11.5 |
| No | 239 | 88.5 |
| Days working in cold chambers | 239 | 88.5 |
| None | 13 | 4.8 |
| A day a week | 12 | 4.4 |
| 2days a week | 1 | .4 |
| 3 days a week | 5 | 1.9 |
| 5days a week and more | 66 |  |
| Much vibration exposure at work | 204 | 24.4 |
| Yes(>1.15m/s) |  | 75.6 |
| No | 139 | 51.5 |
| Much noise exposure at work | 131 | 48.5 |
| Yes(>85dB) | 48 |  |
| No | 222 | 17.8 |
| Gamma ray exposure at work |  | 82.2 |
| Yes | 48 |  |
| No | 222 | 17.8 |
| X ray exposure at work |  | 82.2 |
| Yes |  |  |

The analysis findings portrayed bivariate analysis which showed the association between physical hazards and gender (Table 4.31), ( $\mathrm{N}=270$ ). Physical hazards and gender relationships were insignificant, with $11.5 \%$ of male-dominated and $0.4 \%$ of female, $\mathrm{p}=0.07$. The exposure to much vibration (WBV>1.15m/s for 8 hours HAV $>2.5 \mathrm{~m} / \mathrm{s}$ ) was $23.3 \%$ for males and $1.1 \%$ for females with a significant $\mathrm{p}=0.01$. Males were more exposed to noise (>85dB) with $49 \%$ than females with $2.5 \%$ with a significant $\mathrm{p}<0.001$. In addition, $17.8 \%$ of males were exposed to gamma and X rays with $17.8 \%$ with $\mathrm{p}=0.003$. This was due to few women in the industrial working environment (Table 4.31).

Table 4.31: Bivariate analysis between physical hazard factors to cardiovascular diseases risk and gender

| Variables | n(270)\% | Male | Female | Statistical test $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :---: | :---: | :---: | :---: | :---: |
| Regular working in cold chamber or refrigeration |  |  |  |  |
| Yes( $-4^{\circ} \mathrm{C}$ ) | 31(11.5) | 30(11.1) | 1(0.4) | 3.096(1);.07 |
| No | 239(88.5) | 204(75.6) | 35(13.0) |  |
| Total | 270(100\%) | 234(86.7) | 36(13.3) |  |
| Days are you working in cold chambers |  |  |  |  |
| None | 239(88.5) | 204(75.6) | 35(13.0) |  |
| A day a Week | 13(4.8) | 13(4.8) | $0(0.0)$ | 3.538(4);.4 |
| 2days a Week | 12(4.4) | 11(4.1) | 1(0.4) |  |
| 3days a week | 1 (0.4) | $1(0.4)$ | $0(0.0)$ |  |
| 4days a week | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
| 5days\& more | 5(1.9) | 5(1.9) | 0 (0.0) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| Much vibration Exposure at work |  |  |  |  |
| Yes(>1.15m/s) | 66(24.4) | 63(23.3) | 3(1.1) | 5.838(1);.016 |
| No | 204(75.6) | 171(63.3) | 33(12.2) |  |
| Total | 270(100) | 234(86.7) | 36(13.3) |  |
| Much Noise exposure at work |  |  |  |  |
| Yes(>85Db) | 139(51.5) | 132(49) | 7(2.5) | 17.069(1);.001 |
| No | 131(48.5) | 102(37.7) | 29(10.8) |  |
| Total | 270(100\%) | 234(86.7) | 36(13.3) |  |
| Gama Rays Radiation exposure |  |  |  |  |
| Yes | 48(17.8) | 48(17.8) | $0(0.0)$ | 8.981(1);.003 |
| No | 222(82.2) | 186(68.9) | 36(13.3) |  |
| Total | 270(100\%) | 234(86.7) | 36(13.3) |  |
| X rays radiation Exposure |  |  |  |  |
| Yes | 48(17.8) | 48(17.8) | 0 (0.0) | 8.981(1);.003 |
| No | 222(82.2) | 186(68.9) | 36(13.3) |  |
| Total | 270(100\%) | 234(86.7) | 36(13.3) |  |

A bivariate analysis of physical hazards and age (Table 4.32), indicated for total workers( $\mathrm{N}=270$ ). Around $11.5 \%(\mathrm{n}=31)$ of workers were working in cold chambers (Cold rooms: -4 oC ), and $25.9 \%(\mathrm{n}=66)$ of workers were exposed to high-level
vibration (WBV>1.15m/s, 8 hours). Around $51.5 \%(\mathrm{n}=139)$ of workers were exposed to much noise $(>85 \mathrm{~dB})$ and $17.8 \%$ of workers were exposed to radiation. This was not significantly related to age structure (Table 4.32).

Table 4.32: Bivariate analysis of physical hazards factors to cardiovascular diseases and age

| Variables | N(270) | <40 Years | 40-50Years | >50Years | Statistical test, $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Regular working in cold chamber or refrigeration |  |  |  |  |  |
| Yes | 31(11.5) | 11(4.1) | 11(4.1) | 9(3.3) | 0.622(2);.733 |
| No | 239(88.5) | 89(33.0) | 69(25.6) | 81(30.0) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |
| Days are you affected in cold chambers |  |  |  |  |  |
| None | 239(88.5) | 89(33.0) | 69(25.6) | 81(30.0) | 8.827(8);.357 |
| A day a Week | 13(4.9) | 4(1.5) | 5(1.9) | 4(1.5) |  |
| 2 days a Week | 12(4.4) | $7(2.6)$ | 2(0.7) | 3(1.1) |  |
| 3days a week | 1(0.4) | 0 (0.0) | 1(0.4) | $0(0.0)$ |  |
| 4days a week | 0(0.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
| 5days\& more | 5(1.8) | $0(0.0)$ | 3(1.1) | 2(0.7) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |
| Much vibration Exposure at work |  |  |  |  |  |
| Yes | 66(25.9) | 26(11.1) | 19(7.0) | 21(7.8) | 0.212(2);.899 |
| No | 204(74.1) | 74(25.9) | 61(22.6) | 69(25.6) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |
| Much Noise exposure at work |  |  |  |  |  |
| Yes | 139(51.5) | 53(19.6) | 45(16.7) | 41(15.2) | 2.086(2);.352 |
| No | 131(48.5) | 47(17.4) | 35(12.9) | 49(18.1) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |
| Gama Rays Radiation exposure |  |  |  |  |  |
| Yes | 48(17.8) | 20(7.4) | 13(4.8) | 15(5.6) | 0.542(2);.763 |
| No | 222(82.2) | 80(29.6) | 67(24.8) | 75(27.8) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |
| X rays radiation Exposure |  |  |  |  |  |
| Yes | 48(17.8) | 20(7.4) | 13(4.8) | 15(5.6) | 0.542(2);.763 |
| No | 222(82.2) | 80(29.6) | 67(24.8) | 75(27.8) |  |
| Total | 270(100) | 100(37.0) | 80(29.6) | 90(33.3) |  |

The analysis results portrayed bivariate analysis which showed the association between physical hazards and departments. The results showed that the technical department presented more exposed people and all the physical hazards were
significantly linked with the technical department except the days working in cold rooms ( $\mathrm{N}=270$ ). The technical department dominated other departments in all studied physical hazards aspects. This was due to the fact that a high proportion of technical department workers around $10.4 \%$ were exposed due to regular working in the cold chamber (Cold room with $\mathrm{t}<-4 \mathrm{oC}$ ) or refrigeration $\mathrm{p}<0.001$. Thus, $19.6 \%$ were exposed to vibration with $\mathrm{p}<0.001,26.7 \%$ were exposed to noise with $\mathrm{p}<0.001$, and $17 \%$ were exposed to radiation with $\mathrm{p}<0.001$ (Table 4.33).

Table 4.33: Analysis of physical hazards factors by Workstations

| Variables | $\mathbf{N}(\mathbf{2 7 0}) \%$ | Sales | Marketing | $\mathbf{H R}$ | Logistic | Finance | Techn | General <br> $\mathbf{M}$ | Statistical <br> $\mathrm{X}^{2}(\mathrm{df}) ; P$ | test |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Regular working in <br> cold chamber or <br> refrigeration |  |  |  |  |  |  |  |  |  |  |


| $\quad$ Yes | $31(11.5)$ | $0(0.0)$ | $1(0.4)$ | $0(0.0)$ | $1(0.4)$ | $0(0.0)$ | $28(10.4)$ | $1(0.4)$ | $32.585(6) ;<.001$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\quad$ No | $239(88.5)$ | $56(20.7)$ | $10(3.7)$ | $16(5.9)$ | $27(10)$ | $19(7.0)$ | $89(33.0)$ | $22(8.1)$ |  |
| $\quad$Total | $270(100)$ | $56(20.7)$ | $11(4.1)$ | $16(5.9)$ | $28(10.4)$ | $19(7.0)$ | $117(43.3)$ | $23(8.5)$ |  |


| None | $239(88.5)$ | $56(20.7)$ | $10(3.7)$ | $16(5.9)$ | $27(10.0)$ | $19(7.0)$ | $89(33.0)$ | $22(8.1)$ | $35.146(24) ; .06$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| day a Week | $13(4.8)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $1(0.4)$ | $0(0.0)$ | $12(4.4)$ | $0(0.0)$ |  |
| 2days a Week | $12(4.5)$ | $0(0.0)$ | $1(0.4)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $10(3.7)$ | $1(0.4)$ |  |
| 3days a week | $1(0.4)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $1(0.4)$ | $0(0.0)$ |  |
| 4days a week |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
| 5days \& more | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
| $\quad$ | $5(1.9$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $5(1.9)$ | $0(0.0)$ |  |
| Total | $270(100)$ | $56(20.7)$ | $11(4.1)$ | $16(5.9)$ | $28(10.4)$ | $19(7.0)$ | $117(43.3)$ | $23(8.5)$ |  |



### 4.4.1.3 Psychological hazards amongst the workers

### 4.4.1.3.1 Stress levels

The analysis results portrayed the prevalence of role and performance-based stress levels ( $\mathrm{N}=270$ ). The study participants were comfortable concerning clear objectives. The mean stress level of the job process was very low for Kicukiro and Rubavu study areas, respectively. However, the mean stress level was high for unclear duties and unachievable deadline items. The stress levels in two manufacturing plants were classified based on the Likert scale levels as shown in Table 4.34 below.

Table 4.34: Role and performance-based stress level amongst workers in the study area

| Variables | Subjects (n) | Rate (\%) | Mean | Interpretation |
| :---: | :---: | :---: | :---: | :---: |
| Likert scale stress score |  |  |  |  |
| Level 4 |  |  | $3.40-5.0$ | Very high |
| Level 3 |  |  | 2.60-3.40 | High |
| Level 2 |  |  | 1.80-2.60 | Low |
| Level 1 |  |  | 1.0-1.80 | Very Low |
| Unclear objectives |  |  |  |  |
| Kicukiro |  |  |  |  |
| Never | 79 | 49.4 | 1.62 | Very low |
| Seldom | 65 | 40.6 |  |  |
| Sometimes | 14 | 8.8 |  |  |
| Often | 1 | 0.6 |  |  |
| Always | 1 | 0.6 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Never | 54 | 49.1 | 1.58 | Very low |
| Seldom | 48 | 43.6 |  |  |
| Sometimes | 8 | 7.3 |  |  |
| Often | 0 | 0.0 |  |  |
| Always | 0 | 0.0 |  |  |
| Total | 110 | 100 |  |  |
| Unclear duties |  |  |  |  |
| Kicukiro |  |  |  |  |
| Never | 1 | 0.6 | 4.11 | Very high |
| Seldom | 3 | 1.9 |  |  |
| Sometimes | 3 | 1.9 |  |  |
| Often | 123 | 76.9 |  |  |
| Always | 30 | 18.8 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Never | 0 | 0.0 | 4.1 | Very high |
| Seldom | 1 | 0.9 |  |  |
| Sometimes | 5 | 4.5 |  |  |
| Often | 82 | 74.5 |  |  |
| Always | 22 | 20.0 |  |  |


| Variable | Subjects (n) | Rate (\%) | Mean | Interpretation |
| :---: | :---: | :---: | :---: | :---: |
| Total |  |  |  |  |
| Don't know job process | 110 | 100 |  |  |
| Kicukiro |  |  |  |  |
| Never | 4 | 2.5 |  | Low |
| Seldom | 143 | 89.4 |  |  |
| Sometimes | 10 | 6.2 |  |  |
| Often | 2 | 1.2 |  |  |
| Always | 1 | 0.6 |  | Low |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Never | 1 | 0.9 |  |  |
| Seldom | 108 | 98.2 |  |  |
| Sometimes | 1 | 0.9 |  |  |
| Often | 0 | 0.0 |  |  |
| Always | 0 | 0.0 |  |  |
| Total | 110 | 100 |  |  |
|  |  |  |  |  |

The analysis results presented the prevalence of pressure and workload-based stress levels $(\mathrm{N}=270)$. The stress levels in two manufacturing plants (Kicukiro and Rubavu) were classified based on the Likert scale levels. The four items of pressure-based stress, among others working very intense, task negligence, long pressure hours, and being unable to take sufficient breaks were all very high. The mean stress level indicated that workplace stress was very high for Kigali and Rubavu employees The findings are tabulated in Table 4.35 below.

Table 4.35: Pressure or workload-based stress amongst workers participants

| Variables | Subjects (n) | Rate (\%) | Mean | Interpretation |
| :--- | :---: | :---: | :---: | :---: |
| Unachievable deadline |  |  |  |  |
| Kicukiro | 0 |  |  |  |
| Never | 18 | 11.2 |  | Very high |
| Seldom | 80 | 50.0 |  |  |
| Sometimes | 36 | 22.5 |  |  |
| Often | 26 | 16.2 |  |  |
| Always | 160 | 100 |  |  |
| Total | 0 |  |  |  |
| Rubavu | 1 | 0.0 | 3.9 |  |
| Never | 49 | 0.9 |  |  |
| Seldom | 20 | 18.5 |  |  |
| Sometimes | 40 | 36.4 |  |  |
| Often | 110 | 100 |  |  |
| Always |  |  |  |  |
| Total | 0 | 0.0 |  |  |
| Having to work very intensively | 4 | 2.5 |  |  |
| Kicukiro | 26 | 16.2 |  |  |
| Never | 81 | 50.6 |  |  |
| Seldom |  |  |  |  |
| Sometimes |  |  |  |  |
| Often |  |  |  |  |


| Variable | Subjects (n) | Rate (\%) | Mean | Interpretation |
| :---: | :---: | :---: | :---: | :---: |
| Always | 49 | 30.6 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu | 0 |  | 4.0 | Very high |
| Never | 4 | 0.0 |  |  |
| Seldom | 24 | 3.6 |  |  |
| Sometimes | 41 | 37.8 |  |  |
| Often | 41 | 37.3 |  |  |
| Always | 110 | 100 |  |  |
| Total |  |  |  |  |

Having negligence of some task because of much to do

| Kicukiro |  |  |
| :--- | :---: | :---: |
| Never | 4 | 2.5 |
| Seldom | 71 | 20.0 |
| Sometimes | 25 | 44.4 |
| Often | 28 | 15.6 |
| Always | 160 | 17.5 |
| Total |  | 100 |

Rubavu
Never $\quad 0 \quad 0.0$
Seldom 220.
Sometimes 44
Often 4

| Always | 40 | 36.4 |
| :--- | :--- | :--- |

Total $110 \quad 100$

Pressured to work long hours
Kicukiro

| Never | 2 | 1.2 |
| :--- | :---: | :---: |
| Seldom | 6 | 3.8 |
| Sometimes | 52 | 32.5 |
| Often | 47 | 29.4 |
| Always | 53 | 33.1 |
| Total | 160 | 100 |


| Rubavu |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
| Never | 0 | 0.0 | 3.9 | Very high |
| Seldom | 1 | 0.9 |  |  |
| Sometimes | 43 | 39.1 |  |  |
| Often | 28 | 25.5 |  |  |
| Always | 38 | 34.5 |  |  |
| Total | 110 | 100 |  |  |

Being Unable to take sufficient Break
Kicukiro

| Never | 0 | 0.0 | 3.6 | Very high |
| :--- | :---: | :---: | :---: | :---: |
| Seldom | 9 | 5.6 |  |  |
| Sometimes | 82 | 51.2 |  |  |
| Often | 26 | 16.2 |  |  |
| Always | 43 | 26.9 |  |  |
| $\quad$ Total | 160 | 100 |  |  |
| ubavu |  |  | 3.7 | Very high |
| Never | 0 | 0.0 |  | Very high |
| Seldom | 5 | 4.5 |  |  |
| Sometimes | 58 | 52.7 |  |  |
| Often | 11 | 10.0 |  |  |
| Always | 36 | 32.7 |  |  |
| $\quad$ Total | 110 | 100 |  |  |

The analysis results presented the prevalence of workplace behavior-based stress levels $(\mathrm{N}=270)$. The stress levels in two manufacturing plants (Kicukiro and Rubavu) were classified based on the Likert scale levels. Two behaviors related to stress items: bullying at the workplace was very low for all employees. This means that respect between employees was perfect. However, the last three items (no opportunity to question the manager at work, unable to talk to the manager about an annoying thing, unable to get line manager Encouragement) mean stress level was very high. The findings are tabulated in Table 4.36 below.

Table 4.36: Workplace behavior-based stress

| Variables | Subjects (n) | Rate (\%) | Mean | Interpretation |
| :---: | :---: | :---: | :---: | :---: |
| Being subject to Bullying at Work |  |  |  |  |
| Kicukiro |  |  |  |  |
| Never | 113 | 70.6 | 1.5 | Very low |
| Seldom | 7 | 4.4 |  |  |
| Sometimes | 35 | 21.9 |  |  |
| Often | 4 | 2.5 |  |  |
| Always | 1 | 0.6 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Never | 58 | 52.7 | 1.9 | Low |
| Seldom | 6 | 5.5 |  |  |
| Sometimes | 45 | 40.9 |  |  |
| Often | 1 | 0.9 |  |  |
| Always | 0 | 0.0 |  |  |
| Total | 110 | 100 |  |  |
| Don't receive due respect from colleagues |  |  |  |  |
| Kicukiro |  |  |  |  |
| Strongly Disagree | 126 | 78.8 | 1.3 | Very low |
| Disagree | 26 | 16.2 |  |  |
| Neutral | 3 | 1.9 |  |  |
| Agree | 3 | 1.9 |  |  |
| Strongly Agree | 2 | 1.2 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Strongly Disagree | 95 | 86.4 | 1.1 | Very low |
| Disagree | 12 | 10.9 |  |  |
| Neutral | 2 | 1.8 |  |  |
| Agree | 1 | 0.9 |  |  |
| Strongly Agree | 0 | 0.0 |  |  |
| Total | 110 | 100 |  |  |
| No opportunity to question manager at work |  |  |  |  |
| Kicukiro |  |  |  |  |
| Strongly Disagree | 1 | 0.6 | 3.9 | Very high |
| Disagree | 12 | 7.5 |  |  |
| Neutral | 23 | 14.4 |  |  |
| Agree | 87 | 54.4 |  |  |
| Strongly Agree | 37 | 23.1 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Strongly Disagree | 0 | 0.0 | 3.9 | Very high |
| Disagree | 5 | 4.5 |  |  |
| Neutral | 6 | 55 |  |  |
| Agree | 85 | 77.3 |  |  |
| Strongly Agree | 14 | 12.7 |  |  |
| Total | 110 | 100 |  |  |
| Unable to talk to manager about annoying thing |  |  |  |  |
| Kicukiro |  |  |  |  |
| Strongly Disagree | 2 | 1.2 | 3.9 | Very high |
| Variable | Subjects | Rate (\%) | Mean | Interpretation |


| Disagree | 10 | 6.2 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Neutral | 26 | 16.2 |  |  |
| Agree | 83 | 51.9 |  |  |
| Strongly Agree | 39 | 24.4 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Strongly Disagree | 0 | 0.0 | 3.9 | Very high |
| Disagree | 2 | 1.8 |  |  |
| Neutral | 10 | 9.1 |  |  |
| Agree | 89 | 80.9 |  |  |
| Strongly Agree | 9 | 8.2 |  |  |
| Total | 110 | 100 |  |  |
| Unable to get line manager Encouragement Kicukiro |  |  |  |  |
|  |  |  |  |  |
| Strongly Disagree | 11 | 6.9 | 3.6 | Very high |
| Disagree | 15 | 9.4 |  |  |
| Neutral | 23 | 14.4 |  |  |
| Agree | 76 | 47.5 |  |  |
| Strongly Agree | 35 | 21.9 |  |  |
| Total | 160 | 100 |  |  |
| Rubavu |  |  |  |  |
| Strongly Disagree | 27 | 24.5 | 2.8 | High |
| Disagree | 15 | 13.6 |  |  |
| Neutral | 14 | 12.7 |  |  |
| Agree | 51 | 46.4 |  |  |
| Strongly Agree | 3 | 2.7 |  |  |
| Total | 110 | 100 |  |  |

### 4.4.1.3.2 Stress relationship with department, gender, age, and cardiovascular risk by both models

The analysis results presented the bivariate analysis of the association of stress levels prevalence and gender, with a significance of $\mathrm{p}<0.05$. The level of stress in the workplace after a Likert scale-based classification, the results showed that the severe form of stress was $30 \%$, moderate stress was $64.4 \%$, and mild stress form was $5.2 \%$. Males highly dominated women in all forms of stress levels with a significant gender relationship $p=0.03$. Stress increased with age where employees with age $<40$ Years were $5.2 \%$ with a severe form of stress, 40-50 years were $8.9 \%$ with a severe form of stress, >50 years were $15.9 \%$ with a severe form of stress with an age significant relationship $\mathrm{p}<0.001$. The findings are tabulated in Table 4.37 below.

Table 4.37: Prevalence of stress and relationship by gender and age among the employees


The analysis results portrayed the prevalence and association of stress levels and the organization departments. Three departments presented high levels than others, starting with the technical department with $26.6 \%$ in moderate stress and $14 \%$ in high stress. Commerce (Sales) with $12.5 \%$ in moderate stress, $6.6 \%$ in high stress and at last logistic department with $7.0 \%$ in moderate stress and $7 \%$ in high stress. The high stress-level was more predominant in technical department than the remaining departments $(\mathrm{N}=270)$. The findings are presented in Figure 4.3 below.

Stress level relationship with occupational departement for employees


Figure 4.3: Relationship of stress and organizational department

The analysis results portrayed the association of stress levels and cardiovascular diseases with elevated levels $>10 \%$ by Framingham general risk score model. The results showed that the high-level stress was associated with elevated cardiovascular diseases risk with $\mathrm{p}<0.001$, $(\mathrm{N}=270)$. The findings are presented in Figure 4.4 below.

## Stress Relationship with cardiovascular risk(Framingham general risk score)



Workplace stress categorization of employees according Renis likert scale 1932

Figure 4.4: Relationship between Stress levels and cardiovascular disease's risk according to Framingham general risk score

The analysis results portrayed the association of stress levels and cardiovascular diseases with elevated levels> $10 \%$ by the Framingham general risk score model. The results showed that the higher the stress level, the higher the likelihood of association with cardiovascular diseases elevated risk with $95 \% \mathrm{CI}, \mathrm{p}<0.05$. The findings are presented in Table 4.38 below.

Table 4.38: Association between Stress levels and cardiovascular disease's risk by FGRS

| Variable | Odds ratio (CI: 95\%) <br> reduced Model | $\boldsymbol{P}$-value |
| :---: | :---: | :---: |
| Working conditions | Reference |  |
| Low stress level | $2.459(0.310-19.513)$ | 0.394 |
| Moderate stress level | $18.400(2.308-146.671)$ | 0.006 |
| High stress level |  |  |

The analysis results portrayed the association of stress levels and cardiovascular diseases with elevated levels>10\% by the WHO/ISH score chart. The results showed no association with each type of stress $(\mathrm{N}=270)$. The findings are tabulated in Table 4.39 below.

Table 4.39: Stress levels association with cardiovascular disease's risk by WHO/ISH score chart

| Variable | Odds ratio (CI: 95\%) <br> reduced Model | $\boldsymbol{P}$-value |
| :---: | :---: | :---: |
| Working conditions | Reference |  |
| Low stress level | $7.785(-)$ | 0.999 |
| Moderate stress level | $1.770(-)$ | 0.998 |
| High stress level |  |  |

### 4.4.1.4 Chemical hazards to workers

The analysis results portrayed the prevalence of 132 chemical hazards in various departments. The analysis was processed regarding the chemical hazards encountered or handled by the employees in their working stations. All those department are: technical department ( $\mathrm{n}=118$ ), logistic $(\mathrm{n}=28)$, human resource $(\mathrm{n}=16)$, general management $(\mathrm{n}=23)$, sales( $\mathrm{n}=56),(\mathrm{N}=270)$. The technical department handled more chemical hazards than other departments in both beverage manufacturing industries plants. technical department employees encountered and or
handled many more chemical hazards than other departments. Four chemical hazards (SpectrusOX, Cortrol IS 2015, Optiperse PQ517.6, and Continum AT 4505) were more handled or encountered to a level of $84.7 \%$ of all technical department employees and $40.7 \%$ of all employees. The three hazardous substances lowly handled or encountered were Gentian violet, Safranin, and Spectrus NX 1102, at the level of 3\% for all employees. Only the marketing department has never handled nor encountered any chemical hazardous material. The General management, sales, and human resources departments were the least exposed departments to hazardous substances, where dust dominated other chemicals. Technical and logistic departments have encountered or handled more chemical hazards than other departments. The findings are tabulated in Table 4.40 below.

Table 4.40: Distribution of hazardous chemicals by the area of handling/ encountering hazardous substances

| Variables | N:270 | TD | Logistic | HR | GM | Sales |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | n | 118 | 28 | 16 | 23 | 56 |
|  | Ex | 51826 | 195 | 46 | 12 | 8 |
| Carbon Monoxide | 32(11.9) | 28(23.7) | 2(7.1) | $0(0.0)$ | $0(0.0)$ | 2(3.6) |
| Carbon Dioxide | 86(31.9) | 76(64.4) | 7 (25.0) | $0(0.0)$ | $0(0.0)$ | 3(5.4) |
| Ammonia(NH3) | 24(8.9) | 23(19.5) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Nitric Acid | 28(10.4) | 28(23.7) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Kieselguhr(DE/Sio2*nH2O | 26(9.6) | 25(24.4) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Caustic Soda | 48(17.8) | $46(39.0)$ | 2(7.1) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ethanol | 10(3.7) | 8(6.8) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Methanol | 10(3.7) | 8(6.8) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Sulfuric acid | 20(7.4) | 17(14.4) | 1(3.6) | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Hydrochloric acid(HCL) | $9(3.3)$ | $9(7.6)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| VB13 | $9(3.3)$ | 9 97.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| VA4(Super dulac H3PO4,HNO3) | 21(7.8) | 21(17.8) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| VT5 | 21(7.8) | 21(17.8) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Divo 100 | 10(3.7 | 10(8.5) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Gentian violet | 3(1.1) | 1 (0.8) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Safranin | 3(1.1) | $1(0.8)$ | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Spectrus NX 1102 | 3(1.1) | $3(2.5)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Methyl Orange Indicator (C14H12N3NaO3S) | 12(4.4) | 12(10.2) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Methyl red sodium salt indicator | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Phenolphthalein indicator | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Bromocresol green indicator | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Eriochrome Black indicator | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Murexide | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | $0(0.0)$ | $0(0.0)$ |
| Methylene Blue | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| 2-Tolidine | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Methyl Violet | 15(4.8) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Diethyl ether extra pure | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Toluene extra pure | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Mucasol | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Dichloromethane | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | $0(0.0)$ | $0(0.0)$ |
| Carbon tetrachloride | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Toluidine | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Methyl isobutyl ketone | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Acetone | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Denatured Alcohol | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Sodium Thiosulfate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ammonia buffer solution | 13(4.8) | 13(11.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
| Variables | $\mathrm{N}: 270$ | TD | Logistic | HR | GM | Sales |
| Ethylenediaminetetraaceticacid(EDTA) | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Crown crock corrosion test solution | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Calcium chloride 2-hydrate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Zinc sulfate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ammonium ferrous sulphate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Anhydrous Sodium carbonate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Copper sulphate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Potassium Dichromate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Potassium Chloride | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Copper Chloride | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Sodium Arsenate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Potassium Permanganate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ammonium Chloride | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Hexamethylenetetramine | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |


| Hydraziniumsulfate | 13(4.8) | 13(11.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0(0.0) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tri-potassium citrate monohydrate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Sodium metabisulfite | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ammonium Molybdate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ammonium heptaMolybdate tetrahydrate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Potassium di-hydrogen orthophosphate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Potassium hydrogen phthalate | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | 0 (0.0) | $0(0.0)$ |
| Hydroquinone | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Sodium acetate trihydrate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Sodium Disulphite | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | $0(0.0)$ | $0(0.0)$ |
| Sodium Acetate anhydre | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Sabouraud Dextrose Agar | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Plate count Agar | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| MacConkey Broth | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Ortho-Phosphoric acid 85\% (H3PO5) | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Phosphoric Acid(H3PO4) | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Oxalic Acid | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | 0 (0.0) | $0(0.0)$ |
| Citric acid monohydrate | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Potassium Hydroxide | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Manganese | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Chloride | 15(5.6) | 13(11.0) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | $0(0.0)$ |
| Chloride test | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| $\mathrm{N}, \mathrm{N}$-Diethyl-p-phenylenediamine sulfate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Alminium test | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | 0 (0.0) | $0(0.0)$ |
| Cyanuric Acid test | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| THM Reagent 1,2,3,4(Total trihalomethanes) | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| 3 phosphate reagent | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ascorbic Acid | 13(4.8) | 13(11.0) |  | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Buffer powder Citrate for Manganese | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Molybdate reagent and Molybdate 3 reagent | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Acid reagent for silica | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Citric Acid | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Amino Acid reagent | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ca and Mg indicator solution | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Alcalinity for Ca and Mg | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | 0 (0.0) | $0(0.0)$ |
| EGTA solution(Egtazic acid or | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Aminopolycarboxylic acid) |  |  |  |  |  |  |
| Sodium Peliodate | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| PAN indicator solution0.1\% | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Ferric Ion solution | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Mercuric Thiocyanate solution | 13(4.8) | 13(11.0) | $0(0.0)$ | 0 (0.0) | $0(0.0)$ | $0(0.0)$ |
| Alkaline Cyanide Reagent | 13(4.8) | 13(11.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Iron Reagent | 22(8.1) | 20(16.9) | $0(0.0)$ | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Speedloob(VL9) | 72(26.7) | 72(61.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Acifoam VF10 | 72(26.7) | 72(61.0) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Safefoam VF9 | 86(31.9) | 72(61.0) | 14(50) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| DivoLEVF92 | 86(31.9) | 72(61.0) | 14(50) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Divo AI(VB93) | 86(31.9) | 72(61.0) | 14(50) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Divo brite Y-81-S | 82(30.4) | 68(59.6) | 14(50) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Divsan Osan vs 37 | 89(33.0) | 75(63.6) | 14(50) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Fosfree G VB11 | 93(34.4) | 79(67.5) | 14(50) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Videojet ink/Solvent/Cleaning solution/Makeup | $96(35.6)$ | 82(69.5) | 14(50) | 0 (0.0) | 0 (0.0) | $0(0.0)$ |
| Greases\& oils/Lubricants | 87(32.2) | 86(72.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Triphosphates | 95(35.2) | 95(80.5) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Aluminium sulphate | 95(35.2) | 95(80.5) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Calcium Hypochlorite | 101(37.4) | 100(84.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| SpectrusOX | 110(40.7) | 100(84.7) | 10(35.7) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Cortrol IS 2015 | 110(40.7) | 100(84.7) | 10(35.7) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Optiperse PQ517.6 | 110(40.7) | 100(84.7) | 10(35.7) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Continum AT 4505 | 110(40.7) | 100(84.7) | 10(35.7) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Glycol Water | 103(38.1) | 101(85.6) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ion Chloride | 28(10.4) | 27(22.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Chemical oxygen demand (COD) cell test(Inlet)/Effluent | 28(10.4) | 27(22.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Phosphate tests | 28(10.4) | 27(22.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0(0.0) |
| Variables | N:270 | TD | Logistic | HR | GM | Sales |
| Nitrogen(Total) tests | 28(10.4) | 27(22.9) | 1(3.6) | 0 (0.0) | 0 (0.0) | 0 (0.0) |
| Methane | 28(10.4) | 27(22.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Butane | 28(10.4) | 27(22.9) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Freon R134a,R404a | 34(12.6) | 33(28.0) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Argon(inert gas of group 18(Noble gas) | 34(12.6) | 33(28.0) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Isooctane | 56(20.7) | 55(46.6) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| 2-Phenylethanol | 56(20.7) | 55(46.6) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Cycloheximide (Actidione) | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ortophenylnediamine | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Ninhydrin | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Potassium Iodate(KI03) | 49(18.1) | 48(40.7) | $1(3.6)$ | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Formazine | 103(38.1) | 102(86.4) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| Potassium di-hydrogenophosphate(KH2PO) | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| Di-sodium hydroenophosphate (Na2HP04) | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | $0(0.0)$ | 0 (0.0) |
| D(-)-Fructose | 103(38.1) | 100(84.7) | 1(3.6) | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Glucose | 103(38.1) | 100(84.7) | 1(3.6) | 2(12.5) | $0(0.0)$ | 0 (0.0) |
| Glycine | 49(18.1) | 48(40.7) | 1(3.6) | $0(0.0)$ | 0 (0.0) | 0 (0.0) |
| Dust | 56(20.7) | 19(16.1) | 20(71.4) | 2(12.5) | 12(52.2) | 3(5.4) |

The analysis results portrayed the chemical hazards exposure/handling prevalence ( $\mathrm{n}=156$ ) and the bivariate analysis of the association of chemical handling with age and gender. The only significance was found in gender due to few women in the industrial workplace ( $\mathrm{N}=270$ ). Around $57.8 \%$ of workers handled chemical hazards
and males were $37.8 \%$ among workers with $\mathrm{p}=0.01$ for gender relationships. Whereas the age-chemical handling relationship was not significant with $\mathrm{p}=0.1$. The findings are tabulated in Table 4.41 below.

Table 4.41: Prevalence of workplace chemical hazard exposure (Chemical handling, Dust, Fumes, or reagents) and relationship with gender and age

| Variables | Frequency | Percentage (\%) |  |
| :---: | :---: | :---: | :---: |
| Workplace chemical exposure |  |  |  |
| Yes | 156 | 57.8 |  |
| No | 114 | 42.2 |  |
| Relationship of chemical exposure with gender and age |  |  |  |
| Variable | Frequency | Percentage (\%) | Statistical test |
| Chemical exposure |  |  | $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| Gender |  |  |  |
| Male Yes | 102 | 37.8 |  |
| Female Yes | 8 | 3.0 | 5.9(1);.01 |
| Age |  |  |  |
| <40 years | 43 | 15.9 | 4.43(2);.1 |
| 40-50 Years | 38 | 14.1 |  |
| >50Years | 29 | 10.7 |  |

The bivariate analysis findings showed the association between chemical exposure to the working department. A high proportion of $32.9 \%$ of technical department employees handled chemical substances whereas all other departments didn't with $\mathrm{p}<0.001$. The findings are presented in Figure 4.5 below.

Chemical exposure and work Directions


Figure 4.5: Proportion of Chemical hazard exposure versus worksite department

### 4.4.2 Association of working conditions to cardiovascular diseases risk

The analysis results were processed by a logistic regression, where the multivariate analysis by the Framingham general risk score model showed that three variables. These variables: being a worker in human resources, exposed to much noise $>85 \mathrm{~dB}$, and night-shift workers) were associated with cardiovascular diseases elevated risk by full model. Whereas one variable (Night shift) was significantly associated to CVDs risk by reduced model. The results are tabulated in Table 4.42.
able 4.42: Association of working conditions to cardiovascular diseases risk by Framingham general risk score model

| Variables | Full model (OR) CI95\% <br> (Risk>=10\%) |  | Reduced model <br> (AOR) $\quad$ CI $95 \%$ <br> (Risk $>=10 \%)$  | $P$ - <br> value |
| :---: | :---: | :---: | :---: | :---: |
| Commerce(dpt) | Reference |  |  |  |
| Marketing | 0.669(0.12-3.50) | 0.634 | - | - |
| Human resource | 3.52(1.08-11.48) | 0.037 | - | - |
| Logistic | 1.40(0.47-4.1) | 0.536 | - | - |
| Finance | 1.62(0.52-5.03) | 0.397 | - | - |
| Technical | 0.95(0.36-2.47) | 0.923 | - | - |
| General mgt | 1.49(1.22-2.22) | 0.761 | - | - |
| Shift workers | 0.362(0.08-1.51) | 0.163 | - | - |
| Night shift workers | 4.257(1.03-17.44) | 0.044 | 2.41(1.27-4.58) | 0.007 |
| Cold chambers | 1.66(0.54-5.13) | 0.3125 | - | - |
| Vibration | 2.11(0.81-5.13) | 0.125 | - | - |
| Much sound | 0.209(0.071-0.61) | 0.004 | 0.54(0.28-1.04) | 0.06 |
| Chemical handlers at work | 1.89(0.74-4.79) | 0.17 | - | - |

The analysis results were processed by a logistic regression. The multivariate analysis by the WHO/ISH score chart showed that three variables (shift work, night shift work, and vibration) were significantly associated with CVDs elevated risk by the full model $(\mathrm{N}=270)$. The findings are presented in Table 4.43.

Table 4.43: Association between working conditions and cardiovascular diseases risk by WHO/ISH score chart model

| Variable | Odds ratio (CI: 95\%) <br> reduced Model | $\boldsymbol{P}$-value |
| :---: | :---: | :---: |
| Working conditions |  |  |
| Shift work (1) | $0.156(0.31-0.784)$ | 0.024 |
| Night shift work (1) | $14.227(2.533-79.913)$ | 0.003 |
| Vibration (1) | $0.289(0.088-0.950)$ | 0.041 |

### 4.5 Level of awareness of traditional cardiovascular diseases Risk factors and use of Personal protective equipment among the participants

### 4.5.1 Level of Awareness amongst participants in the study

The analysis results for the prevalence of awareness regarding the three prominent cardiovascular risk factors (hypertension, diabetes, and dyslipidemia) were processed on two-item questions. The respondents were asked if they have been told by Dr or a health worker about the factor or if the respondents are aware that the control of the factor could prevent cardiovascular diseases ( $\mathrm{N}=440$ ). Only $30.7 \%$ were told by health workers to have hypertension. A proportion of $13 \%$ was told by health professionals to have diabetes. A proportion of $6.8 \%$ was told to have dyslipidemia.

Table 4.44: Level of awareness among participants concerning hypertension and diabetes as prominent risk factors to cardiovascular diseases

| Variables | Frequency | Percentage\% |
| :---: | :---: | :---: |
| People ever told by Dr. or health worker to have high BP |  |  |
| Yes | 135 | 30.7 |
| No | 305 | 69.3 |
| People aware that controlling BP reduces Heart and vessels diseases |  |  |
| Yes | 218 | 49.5 |
| No | 222 | 50.5 |
| People ever told by Dr. or Health worker to have diabetes |  |  |
| Yes | 57 | 13 |
| No | 383 | 87 |
| People aware of Diabetes control reduces heart and vessels diseases |  |  |
| Yes | 190 | 43.2 |
| No | 250 | 56.8 |
| People ever told by Dr. or health worker to have dyslipidemia |  |  |
| Yes | 30 | 6.8 |
| No | 410 | 93.2 |
| People Aware of reducing bad fat reduces heart and vessels diseases |  |  |
| Yes | 180 | 40.9 |
| No | 260 | 59.1 |

### 4.5.2 Level of PPE wearing and correlation to cardiovascular diseases risk

The analysis results were processed regarding the frequency of wearing personal protective equipment against the noise (Earmuffs, Ear Plugs) and chemical (Mask, Gloves, Boots, Gown, Goggles) exposure for only workers (N=270). The findings are tabulated in Table 4.45 below.

Table 4.45: Proportion of workers using Personal protective equipment (PPE) against prominent worksite hazards exposure (noise and chemical handling by department)

| Variables | Frequency | Percentage\% |
| :---: | :---: | :---: |
| Wearing PPE (Earmuffs, EarPlugs) <br> exposure $(>85 \mathrm{~dB})$with |  |  |
| NA | 131 | 48.5 |
| Yes | 133 | 49.3 |
| No | 6 | 2.2 |
| Frequency of wearing PPE(Earmuffs, Ear plugs) when working with noise exposure(>85Db) |  |  |
| NA | 131 | 48.5 |
| Never | 13 | 4.8 |
| Seldom | 15 | 5.6 |
| Sometimes | 30 | 11.1 |
| Often | 46 | 17 |
| Always | 35 | 13 |
| Wearing PPE(Mask, Gloves, boots, Gown, Goggles) with chemical exposure |  |  |
| NA | 114 | 42.2 |
| Yes | 117 | 43.3 |
| No | 39 | 14.4 |
| Frequency of wearing PPE with Chemical exposure |  |  |
| NA | 114 | 42.2 |
| Never | 43 | 15.9 |
| Seldom | 18 | 6.7 |
| Sometimes | 38 | 14.1 |
| Often | 40 | 14.8 |
| Always | 17 | 6.3 |

The analysis results of this study were processed regarding the correlation between the frequency of wearing PPE and cardiovascular disease risk. The analysis used the non-parametric correlational test with a two-sided level of 95CI, $\mathrm{p}<0.01$, for the total employees ( $\mathrm{N}=270$ ). The two prediction models were used (Framingham general risk score and WHO/ISH model). The two non-parametric tests were also used
(Spearman's Rho and Kendall's tau b) to generate the correlation level. The frequency of putting PPE against much noise was $-0.218 \mathrm{p}<0.001$, frequency of putting PPE against chemical exposure was $-0.157 \mathrm{p}=0.004$ for Kendall's tau_b. The listwise ( $\mathrm{N}=270$ ) for total workers. The findings showed a negative correlation for both tests. The results are tabulated in Table 4.46 below.

Table 4.46: Distribution of non-parametric correlation test statistic for cardiovascular disease and PPE usage for all employees (total employees:TE)
$\left.\begin{array}{lllllllll} & & \text { Non-parametric Correlation test statistic }\end{array}\right]$

The results of this study regarding the correlation between the frequency of wearing PPE and cardiovascular disease risk were processed by using a non-parametric correlational test. The two-sided significance level was 95CI, p<0.01, ( $\mathrm{n}=117$ ), where ( $\mathrm{N}=270$ ). The two prediction models were used (Framingham general risk score and WHO/ISH model) including two non-parametric tests (Spearman's Rho and Kendall's tau b). The findings showed a negative correlation for both tests. The negative correlation results for both tests were $-0.211, \mathrm{p}=0.022$, and $-0.182 \mathrm{p}=0.049$, regarding the frequency of Putting PPE/earplugs when exposed to much noise $>85 \mathrm{~dB}$. Moreover, the item about how often you put PPE when handling chemicals by the WHO/ISH Model and a correlation test was $-0.560 \mathrm{p}<0.001$, and $-0.459, \mathrm{p}<0.001$. This was done on the two respective factors by Framingham's general risk score model. The listwise ( n ) stand for technical department employees ( $\mathrm{n}=117$ ). The results are tabulated in Table 4.47 below.

Table 4.47: Correlation for non-parametric test for CVD risk and PPE Wearing by Noise and chemical

| Non-parametric Correlation test statistic for most exposed employees=117 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Test | variables |  | Put PPE/ear <br> plugs when <br> Much noise | How often you put PPE when chemicals | WHO/ISH | FRSC |
| Kendall's tau_b | Put PPE/ear plugs when Much noise | Correlation Coefficient | 1.000 | . $497{ }^{* *}$ | -. $192^{* *}$ | $-.508^{* *}$ |
|  |  | Sig. (2-tailed) |  | . 000 | . 023 | . 000 |
|  | How often you put PPE when chemicals | Correlation | . $497{ }^{* *}$ | 1.000 | -. $165^{* *}$ | -. 414 ** |
|  |  | Coefficient <br> Sig. (2-tailed) | . 000 |  | . 049 | . 000 |
|  | WHO/ISH | Correlation | -. $1922^{* *}$ | $-.165^{* *}$ | 1.000 | . 450 ** |
|  |  | Coefficient <br> Sig. (2-tailed) | . 023 | . 049 |  | . 000 |
|  | FRSC | Correlation | -. $508^{* *}$ | -. $414^{* *}$ | . 450 ** | 1.000 |
|  |  | Coefficient Sig. (2-tailed) | . 000 | . 000 | . 000 |  |
| Spearman's rho | Put PPE/ear plugs when Much noise | Correlation | 1.000 | . 570 ** | -.211** | $-.560^{* *}$ |
|  |  | Coefficient |  |  |  |  |
|  |  | Sig. (2-tailed) |  | . 000 | . 022 | . 000 |
|  | How often you put PPE when chemicals | Correlation | . 570 ** | 1.000 | -. $182^{* *}$ | -. 459 ** |
|  |  | Coefficient |  |  |  |  |
|  |  | Sig. (2-tailed) | . 000 | . | . 049 | . 000 |
|  | WHO/ISH | Correlation | -. $211{ }^{* *}$ | -. $182^{* *}$ | 1.000 | . 450 ** |
|  |  | Coefficient |  |  |  |  |
|  |  | Sig. (2-tailed) | . 022 | . 049 |  | . 000 |
|  | FRSC | Correlation | -. 560 ** | -. 459 ** | . 450 ** | 1.000 |
|  |  | Coefficient |  |  |  |  |
|  |  | Sig. (2-tailed) | . 000 | . 000 | . 000 | . |
| **. Correlation is significant at the 0.01 level ( 2 -tailed). <br> a. Listwise $\mathrm{n}=117=\mathrm{TDE}$ |  |  |  |  |  |  |

### 4.6 Proportion of people with biological factors among the study participants in the study area

### 4.6.1 Hypertension

Table 4.48 compares the mean values of systolic blood pressure and diastolic blood pressure by gender and age. The F test was calculated for each gender subdivision (Male, female) and total parts versus the age structure. The age-related blood pressure levels for men are superior to women's levels which explains the high CVDs risk for men. There is a significant difference in all age groups by gender in BP mean values (systolic BP Male $\mathrm{p}=0.002$, female $\mathrm{p}<0.001$, the total mean SBP $\mathrm{p}<0.001$, Diastolic BP male $\mathrm{p}<0.001$, female $\mathrm{p}<0.001$, the total mean DBP $\mathrm{p}<0.001$ ).

Table 4.48: Distribution of mean systolic and diastolic blood pressure ( $\mathbf{m m H g}$ ) by age and gender

|  |  | Systolic BP (Mean $\pm$ SD) |  |  | Diastolic BP (Mean $\pm$ SD) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age group | $\begin{aligned} & \mathrm{N}= \\ & 440 \end{aligned}$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  | Male | Female | Total | Male | Female | Total |
| <35 | 84 | $130.32 \pm 11.27$ | $122.25 \pm 9.89$ | $127.63 \pm 11.43$ | $74.39 \pm 9.97$ | $70.57 \pm 8.94$ | $73.12 \pm 9.75$ |
| 35-39 | 73 | $132.19 \pm 12.97$ | $126.78 \pm 11.61$ | $129.45 \pm 12.51$ | $75.33 \pm 13.71$ | $74.70 \pm 11.42$ | $75.01 \pm 12.52$ |
| 40-44 | 65 | $132.55 \pm 16.20$ | $130.03 \pm 12.32$ | $131.23 \pm 14.25$ | $79.16 \pm 12.85$ | $78.82 \pm 11.90$ | $78.98 \pm 12.27$ |
| 45-49 | 86 | $137.33 \pm 16.16$ | $133.23 \pm 14.77$ | $135.23 \pm 15.51$ | $84.10 \pm 13.92$ | $83.25 \pm 10.95$ | $83.66 \pm 12.42$ |
| 50-54 | 89 | $137.24 \pm 13.58$ | $136.71 \pm 11.75$ | $137.01 \pm 12.77$ | $82.84 \pm 12.76$ | $79.11 \pm 11.87$ | $81.25 \pm 12.46$ |
| 55-59 | 30 | $141.14 \pm 11.36$ | $139.25 \pm 8.65$ | $140.63 \pm 10.60$ | $86.27 \pm 8.40$ | $89.62 \pm 8.12$ | $87.17 \pm 8.32$ |
| $>=60$ | 13 | $144.82 \pm 11.65$ | $141.00 \pm 1.41$ | $144.23 \pm 10.74$ | $89.91 \pm 5.68$ | $91.00 \pm 0.00$ | $90.08 \pm 5.20$ |
| Total | 440 | $135.06 \pm 14.03$ | $130.83 \pm 13.09$ | $133.22 \pm 13.78$ | $80.22 \pm 12.78$ | $78.47 \pm 11.91$ | $79.46 \pm 12.43$ |
| Significanc | $F$ | 3.663 | 5.604 | 8.488 | 6.496 | 6.321 | 12.324 |
|  | $d f$ | 6 | 6 | 6 | 6 | 6 | 6 |
|  | $p$ | <0.002 | <0.001 | <0.001 | <0.001 | $<0.001$ | <0.001 |

Table 4.49 compares the levels of blood pressure regarding previous versus updated classifiers and bivariate analysis of blood pressure levels with age. These levels moderate the cardiovascular risk association $(\mathrm{N}=440)$ and were all significant to age increment, $\mathrm{p}<0.05$. The results showed a significant difference in prevalence within blood pressure classifiers and gender group by age group. The previous systolic classification for men with $x^{\wedge} 2=34.215, \mathrm{p}=0.001$ and for women with $\mathrm{x}^{\wedge} 2=41.494$
$\mathrm{P}=0.001$. Previous Diastolic classification for men with $\mathrm{x}^{\wedge} 2=41.345 \mathrm{p}=0.001$ and women with $\mathrm{x}^{\wedge} 2=45.377, \mathrm{P}<0.001$. The updated systolic classification for men with $x^{\wedge} 2=40.746, \mathrm{P}=0.002$ and for women with $\mathrm{x}^{\wedge} 2=46.162, \mathrm{P}<0.001$. Update diastolic classification for men with $x^{\wedge} 2=31.814, \mathrm{P}=0.001$ and for women with $\mathrm{x}^{\wedge} 2=38.100$, $\mathrm{P}<0.001$. The updated classifier shifts several patients from normal and prehypertension of the previous classifier into stages 1 and 2 of the updated classifiers. More patients were shifted in systolic BP than in diastolic BP according to the above-displayed p -values while there is no significant difference in age groups by previous and updated blood pressure classification.

Table 4.49: Hypertension prevalence of previous and update classification of blood pressure by gender and age group among study participants

| Variable |  | Age group of the study participants |  |  |  | $\begin{gathered} \hline \text { Significance } \\ \mathrm{X}^{2}(\mathrm{df}), P \\ \hline \end{gathered}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Previous_S | n | <35 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | > $=60$ |  |
| Men |  |  |  |  |  |  |  |  |  |
| Normal | 29 | 6 (20.6) | 5 (17.2) | 7 (24.1) | 4 (13.7) | 5 (17.2) | 2 (6.8) | 0 (0.0) | 34.2(18);.001 |
| Pre-HTN | 129 | 42(32.5) | 22(17.0) | 13(10.0) | 18(13.9) | 22(17.0) | 7(5.4) | 5(3.8) |  |
| HTN-1 | 82 | 7(8.5) | 8(9.7) | 10(12.1) | 18(21.9) | 21(25.6) | 13(15.8) | 5(6.0) |  |
| HTN-2 | 9 | 1(11.1) | 1(11.1) | 1(11.1) | 2(22.2) | 3(33.3) | $0(0.0)$ | 1(11.1) |  |
| Women |  |  |  |  |  |  |  |  |  |
| Normal | 29 | $8(27.5)$ | 7(24.1) | 4(13.7) | 7(24.1) | 3(10.3) | $0(0.0)$ | $0(0.0)$ |  |
| Pre-HTN | 109 | 20(18.3) | 24(22.0) | 25(22.9) | 19(17.4) | 18(16.5) | 3(2.7) | $0(0.0)$ | 41.4(18);.001 |
| HTN-1 | 50 | $0(0.0)$ | 6(12.0) | 4(8.0) | 17(34.0) | 16(32.0) | 5(10.0) | 2(4.0) |  |
| HTN-2 | 3 | $0(0.0)$ | 0 (0.0) | 1(33.3) | 1(33.3) | 1(33.3) | $0(0.0)$ | $0(0.0)$ |  |
| Previous_D |  |  |  |  |  |  |  |  |  |
| Men |  |  |  |  |  |  |  |  |  |
| Normal | 139 | 41(29.4) | 23(16.5) | 20(14.3) | 19(13.6) | 28(20.1) | 7(5.0) | 1(0.7) | 41.3(18);.001 |
| Pre-HTN | 52 | 10(19.2) | 7(13.4) | 7(13.4) | 10(19.2) | 7(13.4) | 8(15.3) | 3(5.7) |  |
| HTN-1 | 40 | 3(7.5) | 5(12.5) | 3(7.5) | 6(15.0) | 12(30.0) | 5(12.5) | 6(15.0) |  |
| HTN-2 | 18 | 2(11.1) | 1(14.2) | 1(14.2) | 7(38.8) | 4(22.2) | 2(11.1) | 1(14.2) |  |
| Women |  |  |  |  |  |  |  |  |  |
| Normal | 102 | 23(22.5) | 25(24.5) | 18(17.6) | 19(18.6) | 17(16.6) | $0(0.0)$ | $0(0.0)$ |  |
| Pre-HTN | 54 | 5(9.2) | 7(12.9) | 12(22.2) | 12(22.2) | 13(24.0) | 5(9.2) | $0(0.0)$ | 45.3(18); <. 001 |
| HTN-1 | 28 | $0(0.0)$ | 4(14.2) | 2(7.1) | 10(35.7) | 8(28.5) | 2(7.1) | 2(7.1) |  |
| HTN-2 | 7 | $0(0.0)$ | 1(14.2) | 2(28.5) | 3(42.8) | 0 (0.0) | 1(14.2) | $0(0.0)$ |  |
| Updated-S |  |  |  |  |  |  |  |  |  |
| Men |  |  |  |  |  |  |  |  |  |
| Normal | 29 | 6(20.6) | 5(17.2) | 7(24.1) | 4(13.7) | 5(17.2) | 2(6.8) | $0(0.0)$ | 40.7(18);.002 |
| elevated | 68 | 24(35.2) | 12(17.6) | 9(13.2) | 11(16.1) | 11(16.1) | 1(1.4) | $0(0.0)$ |  |
| HTN stage 1 | 61 | 18(29.5) | 10(16.3) | 4(6.5) | 7(11.4) | 11(18.0) | 6 (9.8) | 5(8.19) |  |
| HTN stage2 | 91 | 8(8.7) | $9(9.8)$ | 11(12.0) | 20(21.9) | 24(26.3) | 13(14.2) | 6 (6.5) |  |
| Women |  |  |  |  |  |  |  |  |  |
| Normal | 29 | $8(27.5)$ | 7(24.13) | 4(13.7) | 7(24.13) | 3(10.3) | $0(0.0)$ | $0(0.0)$ | 46.1(18);<. 001 |
| elevated | 77 | 16(20.7) | 20(25.9) | 16(20.7) | 14(18.1) | 9(11.6) | 2(2.5) | $0(0.0)$ |  |
| HTN stage 1 | 32 | 4(12.5) | 4(12.5) | 9(28.1) | 5(15.6) | 9(28.1) | 1(3.1) | $0(0.0)$ |  |
|  | n | <35 | 35-39 | 40-44 | 45-49 | 50-54 | 55-59 | >=60 |  |
| HTN stage 2 | 53 | $0(0.0)$ | 6(11.3) | 5(9.4) | 18(33.9) | 17(32.0) | 5(9.4) | 2(3.7) |  |
| Updated-D |  |  |  |  |  |  |  |  |  |
| Men |  |  |  |  |  |  |  |  |  |
| Normal | 139 | 41(29.4) | 23(16.5) | 20(14.3) | 19(13.6) | 28(20.1) | 7(5.0) | 1(0.7) | 31.8(12);.001 |
| HTN-1 | 53 | 10(18.8) | 7(13.2) | 7(13.2) | 10(18.8) | 7 (13.2) | 8(15.0) | 4(7.5) |  |
| HTN-2 | 57 | 5(8.7) | 6(10.5) | 4(7.0) | 13(22.8) | 16(28.0) | 7(12.2) | 6(10.5) |  |
| Women |  |  |  |  |  |  |  |  |  |
| Normal | 102 | 23(22.5) | 25(24.5) | 18(17.6) | 19(18.6) | 17(16.6) | $0(0.0)$ | $0(0.0)$ | 38.1(12); <. 001 |
| HTN-1 | 54 | 5(9.2) | 7(12.9) | 12(22.2) | 12(22.2) | 13(24.0) | 5(9.2) | $0(0.0)$ |  |
| HTN-2 | 35 | $0(0.0)$ | 5(14.2) | 4(11.4) | 13(37.1) | $8(22.8)$ | 3(8.5) | 2(5.7) |  |

Table 4.50 depicts a comparison of the blood pressure levels by the previous and update classifiers for employees and spouses in two plants (Rubavu and Kicukiro)
$(\mathrm{N}=440)$. The normal systolic blood pressure participants decreased from $238(54.1 \%)$ to $58(13.2 \%)$ and an increase in BP from pre-hypertension of 58(13.2\%) to elevated BP of 145(33.0). The reduction of stage 1 and an increase of stage 2 from $12(2.7 \%)$ to $144(32.7)$ by the updated systolic classifier (USC). Whereas the diastolic classifier increased the $39(8.6 \%)$ to stage 1 and $67(15 \%)$ to stage 2 of diastolic hypertension. A high proportion of SBP and DBP were found in the Kicukiro plant where PSC 91(20.7\%), PDC 63(14.3\%) and USC 147(33.4\%), UDC 130(29.5\%) were employees and spouses. Whereas PSC 53(12\%), PDC 30 (6.8\%) and USC 90(20.4\%), UDC 69(15.6\%) were Rubavu plant employees and spouses, respectively.

Table 4.50: Prevalence of Hypertension by site, and status of study participants

| Variable | Kicukiro worksite |  |  |  | Rubavu worksite |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N=440 | Employee | spouse | Total | Employee | spouse | Total |
| Previous |  |  |  |  |  |  |  |
| SBP |  |  |  |  |  |  |  |
| Normal | $238(54.1)$ | $83(18.9)$ | $40(9.1)$ | $123(28.0)$ | $64(14.5)$ | $51(11.6)$ | $115(26.1)$ |
| Pre-HTN | $58(13.2)$ | $21(4.8)$ | $24(5.5)$ | $45(10.2)$ | $9(2.0)$ | $4(0.9)$ | $13(3.0)$ |
| HTN | $132(30.0)$ | $52(11.8)$ | $35(8.0)$ | $87(19.8)$ | $31(7.0)$ | $14(3.2)$ | $45(10.2)$ |
| stage1 |  |  |  |  |  |  |  |
| HTN | $12(2.7)$ | $4(0.9)$ | $0(0.0)$ | $4(0.9)$ | $6(1.4)$ | $2(0.5)$ | $8(1.8)$ |
| stage2 | $440(100)$ | $160(36.4)$ | $99(22.5)$ | $259(58.9)$ | $110(25.0)$ | $71(16.1)$ | $181(41.1)$ |
| Total |  |  |  |  |  |  |  |
| Updated SBP |  |  |  |  |  |  |  |
| Normal | $58(13.2)$ | $21(4.8)$ | $24(5.5)$ | $45(10.2)$ | $9(2.0)$ | $4(0.9)$ | $13(3.0)$ |
| Elevated | $145(33.0)$ | $45(10.2)$ | $22(5.0)$ | $67(15.2)$ | $37(8.4)$ | $41(9.3)$ | $78(17.7)$ |
| HTN |  |  |  |  |  |  |  |
| stage1 | $93(21.1)$ | $38(8.6)$ | $18(4.1)$ | $56(12.7)$ | $27(6.1)$ | $10(2.3)$ | $37(8.4)$ |
| HTN |  |  |  |  |  |  |  |
| stage2 | $144(32.7)$ | $56(12.7)$ | $35(8.0)$ | $91(20.7)$ | $37(8.4)$ | $16(3.6)$ | $53(12.0)$ |
| Total | $440(100)$ | $160(36.4)$ | $99(22.5)$ | $259(58.9)$ | $110(25.0)$ | $71(16.1)$ | $181(41.1)$ |
| Previous |  |  |  |  |  |  |  |
| DBP |  |  |  |  |  |  |  |
| Normal | $241(54.8)$ | $84(19.1)$ | $45(10.2)$ | $129(29.3)$ | $69(15.7)$ | $43(9.8)$ | $112(25.5)$ |
| Pre-HTN | $106(24.1)$ | $36(8.2)$ | $31(7.0)$ | $67(15.2)$ | $20(4.5)$ | $19(4.3)$ | $39(8.9)$ |
| HTN |  |  |  |  |  |  |  |
| stage1 | $68(15.5)$ | $29(6.6)$ | $21(4.8)$ | $50(11.4)$ | $11(2.5)$ | $7(1.6)$ | $18(4.1)$ |
| HTN |  |  |  |  |  |  |  |
| stage2 | $25(5.7)$ | $11(2.5)$ | $2(0.5)$ | $13(3.0)$ | $10(2.3)$ | $2(0.5)$ | $12(2.7)$ |
| Total | $440(100)$ | $160(36.4)$ | $99(22.5)$ | $259(58.9)$ | $110(25.0)$ | $71(16.1)$ | $181(41.1)$ |
| Updated |  |  |  |  |  |  |  |
| DBP |  |  |  |  |  |  |  |
| Normal | $241(54.8)$ | $84(19.1)$ | $45(10.2)$ | $129(29.3)$ | $69(15.7)$ | $43(9.8)$ | $112(25.5)$ |
| HTN stage1 | $107(24.3)$ | $36(8.2)$ | $31(7.0)$ | $67(15.2)$ | $21(4.8)$ | $19(4.3)$ | $40(9.1)$ |
| HTN stage2 | $92(20.9)$ | $40(9.1)$ | $23(5.2)$ | $63(14.3)$ | $20(4.5)$ | $9(2.0)$ | $29(6.6)$ |
| Total | $440(100)$ | $160(36.4)$ | $99(22.5)$ | $259(58.9)$ | $110(25.0)$ | $71(16.1)$ | $181(41.0)$ |

The analysis results were processed to compare the levels of blood pressure for spouses and employees, where the normal blood pressure, hypertension, and isolated
blood pressure levels changed. The proportion of respondents with blood pressure was increased in the updated classifier where, spouses ( $\mathrm{n}=170$ ), and employees ( $\mathrm{n}=270$ ) with the total sample size $(\mathrm{N}=440)$. The findings are tabulated in Table 4.51 below. In the previous blood pressure classifier, the normal blood pressure of employees and spouses was reduced from 298(67.22\%) to $168(38.18 \%)$ by the updated blood pressure classifier. Whereas full hypertension was increased from $82(18.63 \%)$ to $37.72 \%$ ). The isolated systolic hypertension was increased from $50(11.36 \%)$ to $73(16.59 \%)$ while the isolated diastolic hypertension was also increased from $10(2.27 \%)$ to $33(7.50 \%)$. The total additional hypertension was from 142 ( $32.27 \%$ ) to $272(61.81 \%)$ with a total difference of $130(29.54 \%)$. The increase was subdivided among 270 employees, from $97(35.92 \%)$ to $176(65.18 \%)$, and among 170 spouses, from $45(26.47 \%)$ to $96(56.47 \%)$. The percentage of hypertension among employees is slightly $5.8 \%$ superior compared to the spouses.

Table 4.51: Distribution of normal blood pressure (BP), hypertension, systolic and diastolic isolated hypertension by status of participants

| Status <br> participants | of | $\mathbf{N}=\mathbf{4 4 0}$ | Normal BP | Hypertension | Isolated <br> HTN | $\mathbf{S}$ | Isolated D HTN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| Previous-C |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Employees | $270(61.36)$ | $173(64.07)$ | $56(20.74)$ | $35(12.96)$ | $6(2.22)$ |
| Spouses | $170(38.64)$ | $125(73.52)$ | $26(19.29)$ | $15(8.82)$ | $4(2.35)$ |
| Total | $440(100 \%)$ | $298(67.7)$ | $82(18.63)$ | $50(11.36)$ | $10(2.27)$ |
| $\quad$ Update-C |  |  |  |  |  |
| Employees | $270(61.36)$ | $94(34.81)$ | $100(37.03)$ | $60(22.22)$ | $16(5.92)$ |
| Spouses | $170(38.64)$ | $74(43.52)$ | $66(38.82)$ | $13(7.64)$ | $17(10.00)$ |
| $\quad$ Total | $440(100 \%)$ | $168(38.18)$ | $166(37.72)$ | $73(16.59)$ | $33(7.50)$ |
| Gender |  |  |  |  |  |
| Male | $249(56.6 \%)$ | $155(62.2)$ | $53(21.3)$ | $35(14.1)$ | $6(2.4)$ |
| Female | $191(43.4 \%$ | $143(74.9)$ | $29(15.2)$ | $15(7.9)$ | $4(2.1)$ |
| Total | $440(100 \%)$ | $298(67.7)$ | $82(18.6)$ | $50(11.4)$ | $10(2.3)$ |

The analysis results depict the comparison of the drugs used by the hypertensive study respondents $(\mathrm{N}=72)$, where employees ( $\mathrm{n}=49$ ), and spouses $(\mathrm{n}=23)$. Most of the respondents used dual therapy for hypertension treatment. Out of the overall
percentage of used combinants anti-hypertensive employees were $68.1 \%$ and followed by $31.9 \%$ of spouses. The findings are tabulated in Table 4.52 below.

Table 4.52: Distribution of hypertensive patients in comparison with combinants anti-hypertensive therapy

| Variables Overall <br> \% Mono therapy <br> \% Dual <br> (SD) <br> Status of Participants   3-therapy <br> $\%$$\boldsymbol{P}$ - <br> value |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Employees |  | $49(68.1)$ | $16(22.2)$ | $32(44.4)$ | $1(1.4)$ |
| Spouses | $23(31.9)$ | $15(20.8)$ | $8(11.1)$ | $0(0.0)$ | $<0.03$ |
| Total | $72(100)$ | $31(43.1)$ | $40(55.6)$ | $1(1.4)$ |  |

Figure 4.6 shows the comparison of predicted mean risk intergroup differences within the previous and updated blood pressure classification. The figure presented cardiovascular diseases risk reduction for the updated blood pressure classifier while it was high for the previous blood pressure classifier ( $\mathrm{N}=440$ ). The previous classification was slightly showing a high mean risk of $0.06 \%$ prehypertension, $0.17 \%$ hypertension stage $1,0.40 \%$ hypertension stage 2 . Whereas the updated classification marked a reduction of mean risk of $0.04 \%$ on elevated SBP, $0.09 \%$ hypertension stage 1, $0.19 \%$ hypertension stage 2 . All the blood pressure classifications showed intergroup significant differences with $\mathrm{p}<0.001$.


Figure 4.6: Distribution of predicted cardiovascular risk mean by 100(Framingham risk cox regression) by previous and updated SBP classification

The analysis results for the multivariate analysis for the association of modifiable and non-modifiable risk to hypertension were processed. The non-modifiable risk factors such as being male and family history of hypertension were significantly associated with hypertension. The modifiable factors such as smoking, central obesity, stress, and diabetes were also significantly associated with hypertension with, $\mathrm{p}<0.05,(\mathrm{~N}=440)$. The odds of being hypertensive were higher among the male subjects with (AOR: 0.736) and (AOR: 0.205). The eldest age group of $>50$ years with (AOR: 3.787) and (AOR: 3.383), being employees (AOR: 0.229) and (AOR: 0.316 ), Family history with hypertension (AOR: 0.314) and (AOR: 0.498). The odds of being hypertensive for alcohol intake within 30 days were (AOR: 0.541) and (AOR: 0.792), with moderate central obesity (AOR: 2.063) and (AOR: 2.958). The odds of being hypertensive with high waist circumference were (AOR: 1.235) and (AOR: 6.964), being diabetic (AOR: 0.719) and (AOR: 1.328). Being moderately stressed (AOR: 0.206) and (AOR: 0.267), smoking (AOR: 0.282) and (AOR: 0.2418) by previous and update hypertension classification, respectively. All p-values were
significant with a p-value $<0.05$ except for males, with a high waist circumference and being diabetic in previous hypertension classification reduced model. Mild stress, being diabetic, and taking alcohol within 30 days presented a p-value $>0.05$ in the updated hypertension classification. The findings are presented in Table 4.53.

Table 4.53: Association of modifiable and non-modifiable risk factors to hypertension

| Variables | Odds ratio (CI 95\%) Reduced model pre | $p$ value <br> _htn | Reduced model update_htn | $P$-value <br> htn |
| :---: | :---: | :---: | :---: | :---: |
| Gender |  |  |  |  |
| Female | 1.0 (reference) |  | 1.0 (reference) |  |
| Male | 0.736(0.345-1.568) | 0.42 | 0.205(0.092-0.458) | $<0.001$ |
| Age category |  |  |  |  |
| <40 | 1.0 (reference) |  | 1.0(Reference) |  |
| 40-50 | $2.710(1.429-5.140)$ | 0.002 | 1.416(0.841-2.382) | 0.190 |
| $>50$ | $3.787(1.985-7.224)$ | <0.001 | 3.383(1.884-6.074) | <0.001 |
| Status of participants |  |  |  |  |
| Spouse | 1.0(Reference) |  | 1.0(Reference) |  |
| Employee | 0.229(0.121-0.435) | <0.001 | 0.316(0.122-0.815) | 0.017 |
| Family history |  |  |  |  |
| Without HTN | 1.0(Reference) |  | 1.0(Reference) |  |
| With HTN | 0.314(0.190-0.518) | <0.001 | 0.498(0.303-0.819) | 0.006 |
| Alcohol intake in 30days |  |  |  |  |
| No | 1.0 (reference) |  | 1.0 (reference) |  |
| Yes | 0.541(0.310-0.944) | 0.031 | $0.792(0.486-1.289)$ | 0.348 |
| Central obesity |  |  |  |  |
| Normal WC | 1.0(Reference) |  | 1.0(Reference) |  |
| Moderate WC | 2.063(1.068-3.984) | 0.031 | $2.958(1.588-5.508)$ | 0.001 |
| High WC | 1.235(0.592-2.576) | 0.572 | 6.964(3.456-14.029) | <0.001 |
| Diabetes |  |  |  |  |
| Normal | 1.0 (Reference) |  | 1.0 (Reference) |  |
| Diabetes | 0.719 (0.342-1.514) | 0.386 | 1.328(0.582-3.029) | 0.500 |
| Stress level |  |  |  |  |
| Low stress | 1.0 (Reference) |  | 1.0 (Reference) |  |
| Mild stress | 0.112(0.013-0.947) | 0.044 | $0.458(0.235-0.126)$ | 0.235 |
| Moderate stress | 0.206(0.109-0.389) | <0.001 | 0.267(0.124-0.574) | <0.001 |
| High stress | - | - | - | - |
| Smoking |  |  |  |  |
| No | 1.0 (Reference) |  | 1.0 (Reference) |  |
| Yes | 0.282(0.111-0.715) | 0.008 | 0.2418(0.075-0.773) | 0.017 |

### 4.6.2 Diabetes

Diabetes is a prominent risk factor for cardiovascular diseases risk. The analysis of the diabetes data was carried out for all layers of diabetes such as blood sugar levels, glycosylated hemoglobin, and diabetes treatment.

The analysis results of this study presented the categorization of blood sugar as normal blood sugar, prediabetes, and diabetes or treated diabetes ( $\mathrm{N}=440$ ). Nondiabetics were $59.6 \%$, followed by $26.8 \%$ of prediabetics and $13.6 \%$ of diabetics. Bivariate analysis showed no significant association with gender. The findings are presented in Table 4.54.

Table 4.54: Bivariate analysis of blood sugar categorization/normal, prediabetes, and diabetes by gender

| Variable | N(440) | Male | Female | $\begin{gathered} \text { Statistical } \\ \text { Test } X^{2}(\mathrm{df}) ; P \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Type 2 Diabetes Mellitus |  |  |  |  |
| No diabetes: BS $<100 \mathrm{mg} / \mathrm{dl}$ | 262(59.6) | 145(32.9) | 117(26.5) | $0.697(1), .247$ |
| Prediabetes:BS $=100-125 \mathrm{md} / \mathrm{dl}$ | 118(26.8) | 73(16.5) | 45(10.2) |  |
| Diabetes: $\mathrm{BS}>125 \mathrm{mg} / \mathrm{dl}$ or | 60(13.6) | 31(7.0) | 29(6.5) |  |
| treated |  |  |  |  |
| Total | 440(100) | 249(56.5) | 191(43.5) |  |

Table 4.55 portrayed the blood sugar and glycosylated hemoglobin mean value and standard deviation comparison by age and gender. Women presented slightly elevated levels of both blood sugar and glycosylated hemoglobin. The mean value of blood sugar by age was only significant for males with different levels of $<40$ years: $94.89 \pm 15.52,40-50$ years: $108.92 \pm 51.85,>50$ years: $107.22 \pm 32.82, \mathrm{p}=0.018$. Whereas it was not the case for females with different levels of <40 years: $101.75 \pm$ $44.08,40-50$ years: $101.27 \pm 28.60,>50$ years: $108.70 \pm 32.15, \mathrm{p}=0.475$. There was also a significant difference in age levels, $\mathrm{p}=0.043$. There was also an increase in glycosylated hemoglobin levels by age.

Table 4.55: Distribution of mean blood sugar mg/dl and glycosylated hemoglobin (HBA1C \%) by age and gender


The result of this study indicate that diabetes drugs users were $8.9 \%(\mathrm{n}=39)$, females $4.5 \%(\mathrm{n}=20)$, males $4.3 \%(\mathrm{n}=19)$. The monotherapy $6.6 \%(\mathrm{n}=29)$, bi-therapy $2 \%(\mathrm{n}=9)$ and tri-therapy $0.2 \%(n=1)$, with the total diabetics $(\mathrm{n}=60)$, where $(\mathrm{N}=440)$. A proportion of $61.5 \%$ of all diabetic participants on treatment took metformin 850 mg , which was the most, used diabetic drug and followed by $12.8 \%$ of the diabetic participant on treatment, who took glimepiride 3 mg for the first indicated drug. Then $5.1 \%$ of the diabetic participant on treatment took daonil, 5 mg as the second most prescribed drug combination. Around $6.6 \%$ of all participants, that is $74.3 \%$ of total diabetic participants on treatment. This was on monotherapy while $2 \%$ of all participants that is $23 \%$ of total diabetic participants on treatment was on bi-therapy and $0.2 \%$ of all participants, that is $2.5 \%$ of total diabetic participants on treatment, were on tri-therapy diabetic drugs. (See table 4.56).

Table 4.56: Distribution of diabetic drugs by gender in the study participants

| Variable | N(440) | Male | Female |
| :---: | :---: | :---: | :---: |
| Current taking Diabetes medication |  |  |  |
| Yes | 39(8.9) | 19(4.3) | 20(4.5) |
| No | 401(91.1) | 172(39.1) | 229(52.0) |
| Total | 440(100) | 249(56.6) | 191(43.4) |
| Types of diabetes medication taken as $1^{\text {st }}$ drug |  |  |  |
| None | 401(91.1) | 229(52.0) | 172(39.1) |
| Metiformine/Glycophage 850mg | 24(5.5) | 11(2.5) | 13(3.0) |
| Amarel/Glimepiride 3mg | 5(1.1) | 3(0.7) | 2(0.5) |
| Insulin Lente | 1(0.2) | $0(0.0)$ | $1(0.2)$ |
| Insulin Mixte | 1 (0.2) | $0(0.0)$ | 1 (0.2) |
| Galvus or Vildagliptin 50/Met | 2(0.5) | 1(0.2) | 1(0.2) |
| 1000mg |  |  |  |
| Galvus or Vildagliptin 50/Met 850 mg | 3(0.7) | 1(0.2) | 2(0.5) |
| Galvus or Vildagliptin 50/Met 500mg | 1(0.2) | 1(0.2) | $0(0.0)$ |
| Gliclazide/Diamicron 60mg | 2(0.5) | 1 (0.2) | 1 (0.2) |
| Total | 440(100) | 249(56.6) | 191(43.4) |
| Type of diabetes medication taken as $2^{\text {nd }}$ or $3^{\text {rd }}$ drug |  |  |  |
| None | 34(87.1) | 17(43.5) | 17(43.5) |
| Daonil 5mg | 2(5.1) | 1(2.5) | 1(2.5) |
| Amarel/Glimepirirde 3mg | 1(2.5) | 1(2.5) | $0(0.0)$ |
| Insulin Mixte | 1(2.5) | $0(0.0)$ | 1(2.5) |
| Gliclazide/Diamicron 60mg | 1(2.5) | $0(0.0)$ | 1(2.5) |
| Total | 39(100) | 19(48.7) | 20(51.2) |
| Monotherapy diabetes |  |  |  |
| No | 411(93.4) | 234(53.2) | 177(40.2) |
| Yes | 29(6.6) | 15(3.4) | 14(3.2) |
| Total | 440(100) | 249(56.6) | 191(43.4) |
| Bi-therapy diabetes |  |  |  |
| No | 431(98.0) | 244(55.5) | 187(42.5) |
| Yes | 9(2.0) | 5(1.1) | 4(0.9) |
| Total | 440(100) | 249(56.6) | 191(43.4) |
| Tri-therapy diabetes |  |  |  |
| No | 439(99.8) | 249(56.6) | 190(43.2) |
| yes | 1 (0.2) | 0 (0.0) | 1 (0.2) |
| Total | 440(100) | 249(56.6) | 191(43.4) |

### 4.6.3 Overweight, obesity, and central obesity for study participants in study

 areaThe bivariate analysis results showed the association between body mass index (BMI) and gender. This study's findings presented a significant association between BMI and gender, $\mathrm{p}<0.001$, where, female respondents ( $\mathrm{n}=191$ ) have more elevated BMI than male respondents ( $\mathrm{n}=249$ ). Levels of body fat accumulation by gender were expressed where only $27.7 \%$ were in normal weight class, $46.6 \%$ were in overweight class. Among $24.6 \%$ of obese participants, $15.5 \%$ were the female population with a gender-based BMI relationship significance of $\mathrm{p}<0.001$. The findings are tabulated in Table 4.57 below.

Table 4.57: Bivariate analysis body fat accumulation (BMI category) of the study participants by gender

| Variable | N(440) | Male | Female | Statistical Test <br> $X^{2}(\mathrm{df}), P$ |
| :---: | :---: | :---: | :---: | :---: |
| BMI Group |  |  |  |  |
| Underweight | $5(1.1)$ | $4(0.9)$ | $1(0.2)$ | $25.667(5) ;<.001$ |
| Normal Weight | $122(27.7)$ | $78(17.7)$ | $44(10.0)$ |  |
| Overweight | $205(46.6)$ | $127(28.9)$ | $78(17.7)$ |  |
| Obesity Class I | $80(18.2)$ | $33(7.5)$ | $47(10.7)$ |  |
| Obesity Class II | $21(4.8)$ | $6(1.4)$ | $15(3.4)$ |  |
| Obesity Class III | $7(1.6)$ | $1(0.2)$ | $6(1.4)$ |  |
| Total | $440(100)$ | $249(56.5)$ | $191(43.5)$ |  |
|  |  |  |  |  |

The study findings displayed the bivariate analysis of the association between waist circumference levels and gender. The low-level Waist circumference (WC) ( $\mathrm{n}=183$ ), the high-level $\mathrm{WC}(\mathrm{n}=94)$, and the very high-level $\mathrm{WC}(\mathrm{n}=163)$ with $\mathrm{p}<0.001$. The results are tabulated in Table 4.58 below.

Table 4.58: Bivariate analysis of waist circumference (Central fat accumulation) and gender of the study participants

| Variable | N(440) | Male | Female | Statistical <br> Test, $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :--- | :---: | :---: | :---: | :---: |
| Waist Circumference: |  |  |  |  |
| Owolabi,2017 |  |  |  |  |
| Low: Men | $183(41.6)$ | $150(34.1)$ | $33(7.5)$ | $1.089(2) ;<.001$ |
| <94cm,Women<80cm |  |  |  |  |
| High:Men94-102cm,Women $94(21.4)$ $56(12.7)$ $38(8.6)$  <br> 80-88cm <br> Very High: $163(37.0)$ $43(9.8)$ $120(27.3)$  <br> Men>102cm, Women>88cm     <br> Total  $440(100)$ $249(56.5)$ $191(43.5)$ |  |  |  |  |

The analysis results portrayed the comparison of mean value and standard deviation of the waist to hip ratio (WHR) in different age structures by location and gender. Men presented a slightly elevated mean value than women in different age structure: <40years $(\mathrm{n}=157)$, 40-50 years $(\mathrm{n}=151),>50$ years $(\mathrm{n}=132)$, $(\mathrm{N}=440)$. Age differences were significant for Kicukiro male population <40years: $0.93 \pm 0.08,40-$ 50 years: $0.96 \pm 0.07,>50$ years: $0.97 \pm 0.06, \mathrm{p}=0.04$. The age differences were also significant for Rubavu Female population<40years: $0.80 \pm 0.08$, $40-50$ years: $0.86 \pm 0.09,>50$ years: $0.82 \pm 0.07, \mathrm{p}=0.03$. The results are tabulated in Table 4.59 below.

Table 4.59: Distribution of mean value and standard deviation of waist to hip ratio (WHR) of the study participants

| Age | N=440 | Kicukiro |  | Rubavu |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Male | Female | Total | Male | Female | Total |
| $<40$ | 157 | $0.93 \pm 0.08$ | $0.91 \pm 0.10$ | $0.92 \pm 0.09$ | $0.90 \pm 0.08$ | $0.80 \pm 0.08$ | $0.85 \pm 0.09$ |
| $40-50$ | 151 | $0.96 \pm 0.07$ | $0.95 \pm 0.06$ | $0.95 \pm 0.06$ | $0.89 \pm 0.08$ | $0.86 \pm 0.09$ | $0.88 \pm 0.09$ |
| $>50$ | 132 | $0.97 \pm 0.06$ | $0.94 \pm 0.06$ | $0.96 \pm 0.06$ | $0.91 \pm 0.08$ | $0.82 \pm 0.07$ | $0.88 \pm 0.09$ |
| Total | $440(100)$ | $0.95 \pm 0.07$ | $0.93 \pm 0.07$ | $0.94 \pm 0.07$ | $0.90 \pm 0.08$ | $0.83 \pm 0.09$ | $0.87 \pm 0.09$ |
|  | $F$ | 3.071 | 2.577 | 5.165 | 0.598 | 3.549 | 1.453 |
|  |  | 2 | 2 | 2 | 2 | 2 | 2 |
| Significance df | $p$ | 0.04 | 0.08 | 0.006 | 0.55 | 0.03 | 0.23 |
|  |  |  |  |  |  |  |  |

The analysis results presented the bivariate analysis for the association of the waist to hip ratio (WHR) WHO cut-off and gender. The association between WHR and gender was only significant for Kicukiro respondents. The central obesity for Kicukiro and Rubavu was $79.9 \%(n=207)$ and $44.2 \%(n=80)$ respectively. The results are tabulated in Table 4.60 below.

Table 4.60: Bivariate analysis of body fat distribution of WHO cut points of WHR by gender of the study participants

| Variable | N(440) | Male | Female | Statistical test, $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| :---: | :---: | :---: | :---: | :---: |
| Kicukiro |  |  |  |  |
| Normal<0.85 F, <0.90M | 52(20.1) | 36(13.9) | 16(6.2) | 4.633(1);.022 |
| Central Obesity > $=0.85$ | 207(79.9) | 109(42.1) | 98(37.8) |  |
| $\mathrm{F},>=0.90 \mathrm{M}$ |  |  |  |  |
| Total | 259(100) | 145(56.0) | 114(44.0) |  |
| Rubavu |  |  |  |  |
| Normal<0.85 F, $<0.90 \mathrm{M}$ | 101(55.8) | 54(29.8) | 47(26.0) | 1.491(1);.142 |
| Central Obesity > $=0.85$ | 80(44.2) | 50(27.6) | 30(16.6) |  |
| $\mathrm{F},>=0.90 \mathrm{M}$ |  |  |  |  |
| Total | 181(100) | 104(57.5) | 77(42.5) |  |

The analysis results portrayed the association of very high cut-off $>=1$ of WHR and gender. Rubavu WHR high cut-off was alone associated with gender and the proportion of high WHR levels was decreased. The very high level of WHR which is $>=1$, in Kicukiro was $17.0 \%$ and $8.8 \%$ for Rubavu with a significant gender relationship for only Rubavu, $\mathrm{p}=0.03$. The findings are tabulated in Table 4.61 below.

Table 4.61: Bivariate analysis of body fat distribution of very high waist hip ratio (WHR) by gender of the study participants

| Variable | N(440) | Male | Female | Statistical <br> test $X^{2}(\mathrm{df}) ; P$ |
| :--- | :---: | :---: | :---: | :---: |
| Kicukiro |  |  |  |  |
| Low WHR<1 | $215(83.0)$ | $117(45.2)$ | $78(37.8)$ | $1.259(1) ; .170$ |
| Very High $>=1$ | $44(17.0)$ | $28(10.8)$ | $16(6.2)$ |  |
| Total | $259(100)$ | $145(56.0)$ | $114(44.0)$ |  |
| Rubavu |  |  |  |  |
| Low WHR<1 | $165(91.2)$ | $91(50.3)$ | $74(40.9)$ | $4.064(1) ; 036$ |
| Very High $>=1$ | $16(8.8)$ | $13(7.2)$ | $3(1.7)$ |  |
| Total | $181(100)$ | $104(57.5)$ | $77(42.5)$ |  |

### 4.6.4. Dyslipidemia for all participants in the study area

Table 4.62 displayed the comparison of the mean value and standard deviation of total cholesterol, and triglyceride by age structure. The cholesterol and triglyceride were calculated in $\mathrm{mg} / \mathrm{dl}$ and the F tests were also used to determine the age structure levels. The age difference was only significant for males <40years: $131.86 \pm 51.27$, $40-50$ Years: $146.60 \pm 47.98>50$ years: $162.26 \pm 47.3, \mathrm{p}<0.001$. The total mean value was for people <40years: $133.75 \pm 44.82$, 40-50Years: $147.52 \pm 43.42$, >50years: $157.37 \pm 49.03, \mathrm{p}<0.001$.

Table 4.62: Distribution of mean value of total cholesterol and triglycerides in $\mathrm{mg} / \mathrm{dl}$ by age and gender

|  |  | Total Cholesterol (Mean $\pm$ Triglyceride (Mean $\pm$ SD) <br> SD) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age $\mathrm{N}=440$ <br> group  |  |  |  |  |  |  |  |
|  |  | Male | Female | Total | Male | Female | Total |
| $<40$ | 157 | $155.97 \pm$ | 154.24 | $155.26 \pm$ |  |  |  |
|  |  | 31.72 | $\pm 30.83$ | 31.27 | $131.86 \pm 51.27$ | $136.42 \pm 33.88$ | $133.75 \pm 44.82$ |
| 40- | 151 | $167.48 \pm$ | $170.41 \pm$ | $169.0 \pm$ |  |  |  |
| 50 |  | 40.11 | 37.51 | 38.69 | $146.60 \pm 47.98$ | $148.38 \pm 38.97$ | $147.52 \pm 43.42$ |
| >50 | 132 | $170.99 \pm$ | $169.04 \pm$ | $170.28 \pm$ |  |  |  |
|  |  | 41.39 | 32.90 | 38.40 | $162.26 \pm 47.3$ | $148.81 \pm 51.24$ | $157.37 \pm 49.03$ |
| Total | 440 | 164.41 |  | $164.48 \pm$ |  |  |  |
|  |  | $\pm 38.12$ | $164.57 \pm 34.82$ | 36.69 | $146.44 \pm 50.46$ | $144.42 \pm 41.05$ | $145.56 \pm 46.57$ |
|  | $F$ | 3.824 | 4.509 | 7.998 | 8.445 | 1.890 | 9.805 |
| Significance df |  | 2 | 2 | 2 | 2 | 2 | 2 |
|  | $p$ | 0.023 | 0.01 | $<0.001$ | $<0.001$ | $<0.154$ | $<0.001$ |

Table 4.63 displays the comparison of the mean value and standard deviation of high-density lipoprotein (HDL-c) and low-density lipoprotein (LDL-c) by age structure. The HDL and LDL were also calculated in $\mathrm{mg} / \mathrm{dl}$ and the F tests were calculated for the age group's difference. There was a significant difference for males $<40$ years: $53.69 \pm 13.39,40-50$ years: $50.49 \pm 13.79$, >50years: $46.47 \pm 10.29$, $\mathrm{p}=0.001$.

Table 4.63: Distribution of mean value of high-density lipoprotein and lowdensity lipoprotein in mg/dl by age and gender


The bivariate analysis results showed that the association of lipid profile components was significantly associated with cardiovascular disease elevated risk (>10\%) by the Framingham general risk score model, $\mathrm{p}<0.001$. The high levels of lipid profile (total cholesterol, triglyceride, LDL-c, and low levels of HDL-c) are tabulated in Table 4.64.

Table 4.64: Distribution of relationship of lipid profile and cardiovascular diseases risk by Framingham general risk score

| Variable | N(440) | FRGRS Model | Statistical <br> test $\mathrm{X}^{2}(\mathrm{df}) ; P$ |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Low CVD <br> risk $(<10 \%)$ | Elevated <br> $(10-40 \%)$ | Risk |

Table 4.65 expressed the analysis results for the association of lipid profile with cardiovascular risk diseases elevated risk (>10\%) by the WHO/ISH model. These results also expressed a significant association of the lipid profile components to elevated cardiovascular diseases. The lipid profile high levels in elevated risk for total cholesterol were ( $\mathrm{n}=9$ ), borderline high ( $\mathrm{n}=5$ ); for triglyceride: borderline high ( $\mathrm{n}=5$ ), high ( $\mathrm{n}=11$ ); for HDL-C; borderline low ( $\mathrm{n}=6$ ) very low ( $\mathrm{n}=13$ ); for LDL-C: borderline high ( $\mathrm{n}=10$ ), high ( $\mathrm{n}=0$ ), very high ( $\mathrm{n}=2$ ) with the total sample of ( $\mathrm{N}=440$ ).

Table 4.65: Analysis of lipid profile and cardiovascular diseases risk by WHO/ISH score chart

| Variable | $\mathbf{N ( 4 4 0 )}$ | WHO/ISH Score model |  | Statistical test |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Low CVD risk ( $<10 \%$ ) | Elevated Risk (10-40\%) |  |
| Total Cholesterol |  |  |  |  |
| Desirable : $:<200 \mathrm{mg} / \mathrm{dl}$ | 390(88.6) | 384(87.3) | 6(1.4) | 93.724(2);.001 |
| Borderline high : $200-239 \mathrm{mg} / \mathrm{dl}$ | 30(6.8) | 25(5.7) | 5(1.1) |  |
| High :>=240mg/dl | 20(4.5) | 11(2.5) | $9(2.0)$ |  |
| Total | 440(100) | 420(95.5) | 20(4.5) |  |
| Triglyceride |  |  |  |  |
| Normal : $<150 \mathrm{mg} / \mathrm{dl}$ | 285(64.8) | 281(63.9) | 4(0.9) | 60.596(2);.001 |
| Borderline high :150-199mg/dl | 118(26.8) | 113(25.7) | 5(1.1) |  |
| High : $200-499 \mathrm{mg} / \mathrm{dl}$ | 37(8.4) | 26(5.9) | 11(2.5) |  |
| Very high :>500mg/dl | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
|  | 440(100) | 420(95.5) | 20(4.5) |  |
| HDL-Cholesterol |  |  |  |  |
| Low :High risk : $<40 \mathrm{mg} / \mathrm{dl}$ | 89(20.2) | 76(13.3) | 13(3.0) | 26.078(2);.001 |
| Borderline low : $40-59 \mathrm{mg} / \mathrm{dl}$ | 284(64.5) | 278(63.2) | 6(1.4) |  |
| High: No risk :>60mg/dl | 67(15.2) | 66(15.0) | 1(0.2) |  |
| Total | 440(100) | 420(95.5) | 20(4.5) |  |
| LDL-Cholesterol |  |  |  |  |
| Optimal : $<100 \mathrm{mg} / \mathrm{dl}$ | 313(71.1) | 309(70.2) | 4(0.9) |  |
| Above optimal : $100-129 \mathrm{mg} / \mathrm{dl}$ | 78(17.7) | 74(16.8) | 4(0.9) | 52.999(3); $<.001$ |
| Borderline high: $130-159 \mathrm{mg} / \mathrm{dl}$ | 42(9.5) | 32(7.3) | 10(2.3) |  |
| High $\quad: 160-189 \mathrm{mg} / \mathrm{dl}$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
| Very High : > $=190 \mathrm{mg} / \mathrm{dl}$ | 7(1.6) | 5(1.1) | 2(0.5) |  |
| Total | 440(100) | 420(95.5) | 20(4.5) |  |

### 4.6.5 Metabolic syndrome for all participants in the study area

Table 4.66 displayed the analysis results of impaired and non-impaired components of the metabolic syndrome and its relationship to gender. Males presented impaired levels of fasting glucose, triglyceride, high level of blood pressure (HLBP), and highdensity lipoprotein than females. Except for the waist circumference (WC). Three
metabolic syndrome components (HLBP, WC, HDL-C) were significantly associated with gender, $\mathrm{p}<0.05$. Therefore, a total of Impaired Fasting glucose was $39.6 \%$, and the male was $23.2 \%$. Whereas the female was $16.4 \%$ with an insignificant gender relationship, $\mathrm{p}=0.487$.

The Triglyceridemia for Metabolic Syndrome was $35.7 \%$. The male population was $20.5 \%$ while the female was $15.2 \%$ with an insignificant relationship, $\mathrm{p}<0.817$. The High Blood Pressure for Metabolic was $57.7 \%$, the male was $36.6 \%$ while the female was $21.1 \%$ with a significant relationship, $\mathrm{p}=0.001$. The HDL for abnormal Metabolic Syndrome was $39.3 \%$. The male population was $10.9 \%$ while the female was $28.4 \%$ with a significant gender relationship $\mathrm{p}<0.001$. Central obesity participants were $37.0 \%$.

Table 4.66: Distribution of impaired and non-impaired components of metabolic syndrome by gender

| Variables | N(440) | Gender |  | Statistical test |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| Impaired Fasting Glycose for Metabolic |  | Male | Female | 0.483(1);.487 |
| Syndrome Classification FPG >= |  |  |  |  |
| $100 \mathrm{mg} / \mathrm{dl}(5.6 \mathrm{mmol} / \mathrm{l})$ or treatment( Rx ) |  |  |  |  |
| Normal $<100 \mathrm{mg} / \mathrm{dl}$ | 266(60.4) | 147(33.4) | 119(27.0) |  |
| IFG $>=100 \mathrm{MG} / \mathrm{DL}$ | 174(39.6) | 102(23.2) | 72(16.4) |  |
| Total | 440(100\%) | 249(56.6)) | 191(43.4) |  |
| Triglyceridemia for Metabolic Syndrom Classification(High level Triglyceride $>=150 \mathrm{mg} / \mathrm{dl}(1.7 \mathrm{mmo} / \mathrm{dl})$ or ttt for high TG |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| High Triglycerides $>=150 \mathrm{mg} / \mathrm{dl}$ | 157(35.7) | 90(20.5) | 67(15.2) | 0.054(1);.817 |
| Normal<150mg/dl | 283(64.3) | 159(36.1) | 124(28.2) |  |
| Total | 440(100\%) | 316(71.8) | 95(21.6) |  |
| High Blood Pressure for Metabolic Syndrome Criteria HBP>=130/85mmgh or Treatment of HBP+ |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| HLBP for MetS $>=130 / 85 \mathrm{mmgh}$ | 254(57.7) | 161(36.6) |  | 11.293(1);.001 |
| LLBP for MetS<130/85mmgh | 186(67) | 88(20.0) | $93(21.1)$ $98(22.3)$ |  |
| Total | 440(100\%) | 249(56.6) | 191(43.4) |  |
| HDL for Metabolic Syndrome Classification (low level men $<40 \mathrm{mg} / \mathrm{dl}(1 \mathrm{mmol} / \mathrm{l})$, low level women $<50 \mathrm{mg} / \mathrm{dl}(1.3 \mathrm{mmol} / \mathrm{l})$ or ttt for low HDL |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
| Normal | 267(60.6) | 201(45.7) | 66(15.0) | 96.563(1) ; <. 001 |
| Abnormal(Low levels) | 173(39.3) | 48(10.9) | 125(28.4) |  |
| Total | 440(100\%) | 249(56.6) | 191(43.4) |  |
| Waist Circumference |  |  |  |  |
| Central Obesity: F>88Cm,M>102Cm | 163(37.0) | 43(9.8) | 120(27.3) | 96.194(1) ; <. 001 |
| Normal: F<88Cm, M<102Cm | 277(63.0) | 206(46.8) | 71(16.1) |  |
| Total | 440(100\%) | 249(56.6) | 191(43.4) |  |

Table 4.67 presented the analysis results of the significant association of three components factor for metabolic syndrome (MetS) with elevated CVDs risk (>10\%) by full model and reduced model of FGRS. The findings showed that high blood pressure (HBP), impaired fasting glucose (IFG), and triglyceride (TG) were significantly associated with an elevated cardiovascular diseases risk in Kicukiro plant. Whereas Rubavu showed two factors (HBP and TG) associated with cardiovascular diseases elevated risk ( $>10 \%$ ), $\mathrm{P}<0.05$. The triglyceride for Metabolic syndrome (TG MetS) was with the highest AOR: 12.879(4.48-36.99), $\mathrm{P}<0.001$. This was followed by high blood pressure for Metabolic syndrome (HBP MetS) with AOR: 9.440(3.79-23.48), $\mathrm{p}<0.001$.

Table 4.67: Association between metabolic syndrome components and level of CVDs Framingham general risk score
$\left.\begin{array}{ccccc}\hline \text { Variable } & \begin{array}{l}\text { Full model (OR) } \\ \text { Cl95\% } \\ \text { (Risk>=10\%) }\end{array} & \text { p-value } & \begin{array}{l}\text { Reduced } \\ (\mathbf{A O R}) \\ (\text { Risk>=10\%) }\end{array} & \begin{array}{c}\text { model } \\ \text { 95\% }\end{array}\end{array} \begin{array}{l}\boldsymbol{P} \text { - } \\ \text { value }\end{array}\right]$

The full metabolic syndrome was calculated based on the fulfilled three or above of five metabolic syndrome factors. The respondents with the full metabolic syndrome were six times more likely to develop cardiovascular diseases at a risk> $10 \%$ than respondents who didn't have metabolic syndrome. However, results showed that
employees had an eight-fold likelihood to develop cardiovascular diseases while spouses had a five-fold likelihood to develop CVD at a risk $>10 \%$, $\mathrm{p}<0.001$. The findings for full metabolic syndrome and Framingham general risk score elevated risk (>10\%) are tabulated in Table 4.68 below.

Table 4.68: Association between full metabolic syndrome and level of risk of CVDs (FRSC)

| Variable | Full model (OR) CI95\% <br> $($ Risk $>=10 \%)$ | $\boldsymbol{P}$-value |
| :--- | :--- | :--- |
| Kicukiro | $6.172(3.77-10.08)$ | $<0.001$ |
| Metabolic Syndrome <br> Rubavu <br> Metabolic Syndrome | $6.000(2.76-13.03)$ | $<0.001$ |
| Employees <br> Metabolic Syndrome | $8.014(4.40-14.58)$ | $<0.001$ |
| Spouses <br> Metabolic Syndrome | $5.284(2.31-12.07)$ | $<0.001$ |

Table 4.69 presented the analysis results of the components factor for metabolic syndrome (MetS) with elevated cardiovascular risk (>10\%) by full model and reduced model of WHO/ISH model. All components were neither significant for the full model nor the reduced model.

Table 4.69: Association between metabolic syndrome components and CVDs risk (WHO/ISH)

| Variable | $\begin{aligned} & \text { Full model } \quad \text { (OR) } \\ & \text { (Risk> }=\mathbf{1 0 \%}) \end{aligned}$ | $\text { CI95\% } \quad P \text {-value }$ |
| :---: | :---: | :---: |
| Kicukiro |  |  |
| HBP MetS | 7.479(-) | 0.9 |
| IFG MetS | 1.887(0.47-7.47) | 0.3 |
| CO MetS | 0.555(0.16-1.90) | 0.3 |
| TG MetS | $3.126(0.76-12.82)$ | 0.1 |
| HDL MetS | 0.500(0.14-1.77) | 0.2 |
| Rubavu |  |  |
| HBP MetS | 5.597(-) | 0.9 |
| IFG MetS | 0.020(0.02-2.86) | 0.2 |
| CO MetS | 0.663(0.10-4.35) | 0.6 |
| TG MetS | 4.957(0.47-52.31) | 0.1 |
| HDL MetS | 0.2(0.02-2.75) | 0.2 |

Table 4.70 demonstrated the analysis results of the association of full metabolic syndrome toward cardiovascular diseases risk by the WHO/ISH model. The full model showed that the location (Kicukiro, Rubavu) and employees were significantly associated with cardiovascular diseases elevated risk, except for spouses, $\mathrm{p}<0.05$. However, no significance was found in the reduced model.

Table 4.70: Association between full metabolic syndrome and CVDs risk (WHO/ISH)

| Variable | Full model (OR) <br> CI95\% (Risk>=10\%) | $\boldsymbol{P}$-value |
| :--- | :--- | :--- |
| Kicukiro | $25.203(3.31-191.49)$ | 0.002 |
| Metabolic Syndrome <br> Rubavu <br> Metabolic Syndrome | $14.133(1.74-114.82)$ | 0.01 |
| Employees <br> Metabolic Syndrome | $16.707(3.70-75.31)$ | $<0.001$ |
| Spouses <br> Metabolic Syndrome | $8.616(-)$ | 0.9 |

The bivariate analysis results showed that there is an association between cardiovascular diseases elevated risk and metabolic syndrome. The findings are tabulated in Table 4.71 below.

Table 4.71: Distribution of metabolic syndrome by level of risk of cardiovascular diseases

| Variable | $\mathbf{N ( 4 4 0 )}$ | No MetS | MetS | Stastical test |
| :--- | :---: | :---: | :---: | :---: |
|  |  |  |  | $\mathrm{X}^{2}(\mathrm{df}) ; P$ |
| FGRS |  |  |  |  |
| Low level risk $(<10 \%)$ | $329(74.8)$ | $329(748)$ | $112(25.5)$ | $24.121(1) ; .02$ |
| Elevated level of risk (>10\%) | $111(25.2)$ | $55(12.5)$ | $56(12.7)$ |  |
| Total | $440(100 \%)$ | $272(61.8)$ | $168(38.2)$ |  |

4.7Cardiovascular diseases traditional risk factors and novel risk differentials among the study participants in the study area

### 4.7.1 Novel risk factors to cardiovascular diseases risk

Table 4.72 portrayed the analysis results of novel risk factors levels by location and gender. The proportions of the locations were at Kicukiro plant ( $\mathrm{n}=259$ ) and at Rubavu plant ( $\mathrm{n}=181$ ). Male employees presented elevated levels of C reactive protein and Serum uric acid than other groups, either for Kicukiro plant or Rubavu plant. The total high level $>=7 \mathrm{mg} / \mathrm{dl}$ of serum uric acid was $4.5 \%$ in Kicukiro. Thus, male employees were $4.1 \%$, male spouses were $0.2 \%$, and female spouses were $0.2 \%$. whereas the total was $1.3 \%$ in Rubavu, $1.1 \%$ for male employees, and $0.2 \%$ for male spouses.

Table 4.72: Novel risk factors differentials by location, status, and gender of the study participants

| Variable | n(259) | KICUKIRO Location |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Employees |  | Spouses |  |
|  |  | Male | Female | Male | Female |
| C reactive protein |  |  |  |  |  |
| Negative(hs-CRP<2mg/l) | 232(52.7) | 114(25.9) | 25(5.7) | 10(2.3) | 83(18.9) |
| Positive(hs-CRP>2mg/l) | 27(6.2) | 21(4.8) | $0(0.0)$ | 0(0.0) | 6(1.4) |
| Serum Uric Acid mg/dl |  |  |  |  |  |
| Normal Uric Acid<7 mg/dl | 239(54.3) | 117(26.6) | 25(5.7) | 9(2.0) | 88(20.0) |
| High Uric Acid> $=7 \mathrm{mg} / \mathrm{dl}$ | 20(4.5) | 18(4.1) | 0 (0.0) | 1(0.2) | 1 (0.2) |
| Variable | n (181) | RUBAVU Location |  |  |  |
|  |  | Employees |  | Spouses |  |
|  |  | Male | Female | Male | Female |
| C reactive protein |  |  |  |  |  |
| Negative(hs-CRP<2mg/l) | 173(39.3) | 93(21.1) | 10(2.3) | 5(1.1) | 65(14.8) |
| Positive(hs-CRP>2mg/l) | 8(1.8) | 6(1.4) | 1(0.2) | 0 (0.0) | 1 (0.2) |
| Serum Uric Acid mg/dl |  |  |  |  |  |
| Normal Uric Acid<7 mg/dl | 175(39.8) | 94(21.4) | 11(2.5)) | 4(0.9) | 66(15.0) |
| High Uric Acid>=7mg/dl | 6(1.3) | 5(1.1) | $0(0.0)$ | 1(0.2) | $0(0.0)$ |

Table 4.73 portrayed the bivariate analysis results for novel risk factors associated with elevated cardiovascular diseases risk (>10\%) by Framingham general risk score and WHO/ISH score chart model. The novel risk factors (C reactive protein and Serum uric acid) were significantly associated with cardiovascular diseases risk $>10 \%, \mathrm{p}<0.05$. The proportion of $3.6 \%$ of study participants with high uric
acid $>=7 \mathrm{mg} / \mathrm{dl}$ had elevated CVD risk while $2.3 \%$ had low CVD risk, $\mathrm{p}<0.001$ by Framingham general risk score model. The WHO/ISH model showed that $1.6 \%$ of study participants with positive CRP>2mg/l had elevated CVD risk while $6.6 \%$ had low CVDs risk, $p<0.001$. Around $0.9 \%$ of participants with High uric acid $>=7 \mathrm{mg} / \mathrm{dl}$ had thus elevated CVD risk while $5.0 \%$ had also low CVD risk, $p=0.006$.

Table 4.73: Bivariate analysis of novel risk factors by cardiovascular diseases risk based on FGRS and WHO/ISH score chart models

| Variable | N(440) | FGRS |  | $\begin{array}{c}\text { Statistical test } \\ \text { X }^{2}(\mathrm{df}) ; P\end{array}$ |
| :--- | :---: | :---: | :---: | :---: |
|  |  | Low CVD | Elevated CVD |  |
| risk (<10\%) |  |  |  |  |
| risk (10-40\%) |  |  |  |  |$]$

Table 4.74 portrayed the multivariate analysis results of the association of novel risk factors (glycosylated hemoglobin ( Hb 1 Ac ), C reactive protein (CRP), and serum uric acid (SUA)) toward cardiovascular diseases risk. A part of the SUA, others were all significantly associated with cardiovascular diseases risk by Framingham general risk model $>10 \%, \mathrm{p}<0.05$.

Table 4.74: Association between novel risk factors and CVDs risk (FRSC)

| Variable | $\begin{aligned} & \text { Full model (OR) } \\ & \text { CI95\% } \\ & \text { (Risk>=10\%) } \end{aligned}$ | p-value | Reduced model <br> (AOR) $\quad$ CI $95 \%$ <br> (Risk> $>=10 \%$ )  | $P$-value |
| :---: | :---: | :---: | :---: | :---: |
| Kicukiro \& Rubavu |  |  |  |  |
| Normal HbA1c | Reference | - | Reference | - |
| Moderate HbA1c | 3.029(0.93-9.79) | 0.06 | 3.428(1.07-10.90) | 0.03 |
| High HbA1c | 4.884(2.170-10.99) | <0.001 | 4.391(1.96-9.80) | <0.001 |
| CRP | 2.875(1.11-7.39) | 0.02 | 4.482(2.03-9.88) | <0.001 |
| Serum Uric acid | 2.407(0.83-6.92) | 0.1 | - | - |

Table 4.75. portrayed the multivariate analysis results of novels risk factors by WHO/ISH model. This result showed that one novel risk factor (CRP) was significantly associated with cardiovascular diseases risk only in the full model OR:5.53(1.33-22.95), $\mathrm{p}=0.01$.

Table 4.75: Association between novel risk factors and CVDs risk (WHO/ISH)

| Variable | Full model (OR) CI95\% <br> $($ Risk $>=\mathbf{1 0 \%})$ | $\boldsymbol{P}$-value |
| :--- | :---: | :---: |
| Kicukiro \& Rubavu | Reference |  |
| Normal HbA1c | $3.868(0.82-18.13)$ | 0.08 |
| Moderate HbA1c | $1.220(0.26-5.64)$ | 0.7 |
| High HbA1c | $5.535(1.33-22.95)$ | 0.01 |
| CRP | $1.043(0.21-5.03)$ | 0.9 |
| Serum Uric acid |  |  |

### 4.7.2 Traditional risk factors to cardiovascular diseases risk

Table 4.76 portrayed the analysis results of the traditional risk differentials for both Kicukiro plant ( $\mathrm{n}=259$ ) and in Rubavu plant ( $\mathrm{n}=181$ ) for the total sample of ( $\mathrm{N}=440$ ). Kicukiro male employees presented elevated levels for 11 traditional risk factors than other groups while female spouses dominated other groups for sedentary $(\mathrm{n}=41)$, obesity( $\mathrm{n}=40$ ), central obesity $(\mathrm{n}=64)$, LDL- $\mathrm{C}(\mathrm{n}=2)$. Rubavu male employees presented elevated levels of 13 traditional risk factors than other groups and followed by female spouses.

Kicukiro plant presented high levels of sedentarity >7hours than Rubavu plant where $9.3 \%$ of female spouses and $5.2 \%$ of male employees. Females dominated males for sedentarity >7hours risk factor while in Rubavu plant male employees dominated with $3.9 \%$ and followed by $3.4 \%$ of female spouses. Being with hypertension with $>=140 / 90 \mathrm{mmhg}$ was dominated by male employees with $7.2 \%$ and followed by female spouses with 3.4\%. Whereas Rubavu male employees dominated with 3.9\% and followed by $1.6 \%$ of female spouses. Diabetes mellitus with $>=125 \mathrm{mg} / \mathrm{dl}$ was dominated by male employees with $4.7 \%$ and followed by female spouses with $2.7 \%$, whereas in Rubavu plant male employees dominated with $3.9 \%$ and followed by female spouses with $3.4 \%$. Smoking was dominated by male employees with $3.4 \%$ and followed by female spouses with $0.7 \%$ while Rubavu male employees was $1.3 \%$ and $0.7 \%$ of female spouses were smokers. Obesity>=30 BMI was dominated by female spouses with $9 \%$ and followed by $4.3 \%$ of male employees in Kicukiro while Rubavu male employees and female spouses were equally distributed at the same level of $3.6 \%$ of obesity. Central obesity $>=94 \mathrm{~cm}$ for females, $>=102 \mathrm{~cm}$ for Males, was dominated by $15.5 \%$ of female spouses and followed by male employees with $7 \%$ and female employees with $4 \%$ of central obesity while also in Rubavu 8\% were female spouses and $2.5 \%$ of male employees.

Table 4.76: Traditional risk factors differentials by location, status, and gender of the study participants

| Variable | n(440) | KICUKIRO PLANT LOCATION |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Traditional Modifiable risk factors to CVDs |  | Employees |  | Spouses |  |
|  |  | Male | Female | Male | Female |
| Sedentary>7hours | 74 | 23(5.2) | $9(2.0)$ | 1 (0.2) | 41(9.3) |
| Hypertension 140/90mmgh and or on | 57 | 32(7.2) | 6(1.3) | 4(0.9) | 15(3.4) |
| treated |  |  |  |  |  |
| Diabetes mellitus BS: $125 \mathrm{mg} / \mathrm{dl}$ or | 36 | 21(4.7) | $3(0.7)$ | 0(0.0) | 12(2.7) |
| treated |  |  |  |  |  |
| Smoking | 20 | 15(3.4) | $0(0.0)$ | 2(0.5) | 3(0.7) |
| Obesity>=30 BMI | 68 | 19(4.3) | 7(1.6) | 2(0.5) | 40(9.0) |
| Central obesity> $=94 \mathrm{~cm} \mathrm{F}, \mathrm{>=}=102 \mathrm{~cm} \mathrm{M}$ | 113 | 30(7.0) | 18(4.0) | 1(0.2) | 64(15.5) |
| Variable | $\mathbf{N}(440)$ | KICU | IRO PLA | T LOC | TION |
| High stress for 270 workers only | 44 | 39(9.0) | 5(1.1) | - | - |
| Physical inactivity | 186 | 88(20.0) | 18(4.1) | 10(2.3) | 70(15.9) |
| Lack of fruits consumption | 67 | 37(8.4) | 10(2.2) | 5(1.1) | 15(3.4) |
| Lack of vegetable consumption | 7 | 3(0.7) | 0 (0.0) | 3(0.7) | 1(0.2) |
| Alcohol consumption | 204 | 118(27.0) | 22(5.0) | 9(2.0) | 55(12.5) |
| Dyslipidemia |  |  |  |  |  |
| Hypercholesterolemia ${ }^{\text {2 }}$ 240mg/dl | 13 | 7(1.6) | $0(0.0)$ | 0(0.0) | 6(1.4) |
| Hypertriglyceridemia $>150 \mathrm{mg} / \mathrm{dl}$ | 96 | 52(11.8) | 7(1.6) | 4(0.9) | 33(8.5) |
| High LDL-C | 3 | 1(0.2) | $0(0.0)$ | 0(0.0) | 2(0.5) |
| Low HDL-C | 46 | 24(5.5) | $4(0.9)$ | 2(0.50 | 16(3.6) |
| Traditional risk factors by status and gender |  |  |  |  |  |
| Variable | N(440) | RUBAVU PLANT LOCATION |  |  |  |
|  |  | Employees |  | Spouses |  |
| Traditional Modifiable risk factors to CVDs |  | Male | Female | Male | Female |
| Sedentarity>7hours | 34 | 17(3.9) | 2(0.5) | O(0.0) | 15(3.4) |
| Hypertension 140/90mmgh and or on | 25 | 17(3.9) | 1 (0.2) | 0(0.0) | 7(1.6) |
| treated |  |  |  |  |  |
| Diabetes mellitus BS: $125 \mathrm{mg} / \mathrm{dl}$ or | 34 | 17(3.9) | 2(0.5) | 0(0.0) | 15(3.4) |
| treated |  |  |  |  |  |
| Smoking | 9 | 6(1.3) | $0(0.0)$ | 1(0.2) | 3(0.7) |
| Obesity>=30 BMI | 35 | 16(3.6) | $3(0.7)$ | 0(0.0) | 16(3.6) |
| Central obesity> $=94 \mathrm{~cm} \mathrm{F}, \mathrm{>=}=102 \mathrm{~cm} \mathrm{M}$ | 50 | 11(2.5) | 3(0.7) | 1(0.2) | 35(8.0) |
| High stress for 270 workers only | 37 | 37(8.4) | $0(0.0)$ | - | - |
| Physical inactivity | 117 | 59(13.4) | 4(0.9) | 4(0.9) | 50(11.4) |
| Lack of fruits consumption | 44 | 27(6.1) | 3(0.7) | 0(0.0) | 14(3.1) |
| Lack of vegetable consumption | 3 | 1(0.2) | $0(0.0)$ | 0(0.0) | 2(0.5) |
| Alcohol consumption | 99 | 66(15.0) | 2(0.5) | 4(0.9) | 27(6.1) |
| Dyslipidemia |  |  |  |  |  |
| Hypercholesterolemia $>240 \mathrm{mg} / \mathrm{dl}$ | 7 | 5(1.1) | $0(0.0)$ | 0(0.0) | 2(0.5) |
| Hypertriglyceridemia $>150 \mathrm{mg} / \mathrm{dl}$ | 59 | 32(7.3) | 4(0.9) | 2(0.5) | 21(4.7) |
| High LDL-C | 4 | 3(0.7) | $0(0.0)$ | 0(0.0) | 1(0.2) |
| Low HDL-C | 43 | 24(5.5) | 3(0.7) | 0(0.0) | 16(3.6) |

Table 4.77 summarized the comparative view of the cardiovascular diseases' absolute 10 -year risk prediction and classification by location. The status was $44.5 \%$ of employees versus spouses with $30 \%$. All were classified as having low cardiovascular diseases risk ( $<10 \%$ ) by FGRS. Whereas WHO/ISH score chart classified $57.7 \%$ of employees versus $37.7 \%$ of spouses as having low cardiovascular diseases risk ( $<10 \%$ ). The absolute cardiovascular risk levels by location showed that Kicukiro plant employees and spouses presented higher cardiovascular diseases absolute risk than Rubavu plant employees and spouses by the FGRS model. However, the WHO/ISH model showed that Rubavu and Kicukiro spouses had the same cardiovascular disease absolute risk level while Kicukiro plant employees remained at high risk than Rubavu plant employees.

Table 4.77: Cardiovascular diseases absolute risk level by study participants and location

| Models |  | $\mathrm{n}(\%)$ | Rubavu |  | Kicukiro |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| FGRS |  | 440 | Employee | Spouse | Employee | Spouse |
| Low risk | $(<10 \%)$ | $328(74.5)$ | $88(20)$ | $63(14.3)$ | $108(24.5)$ | $69(15.6)$ |
| 2nd level risk | $(10-20 \%)$ | $60(13.6)$ | $16(3.6)$ | $6(1.3)$ | $21(4.7)$ | $17(3.8)$ |
| 3rd level risk | $(20-30 \%)$ | $28(6.3)$ | $2(0.4)$ | $1(0.2)$ | $17(3.8)$ | $8(1.8)$ |
| 4th level risk | $(30-40)$ | $24(5.4)$ | $4(0.9)$ | $1(0.2)$ | $14(3.1)$ | $5(1.1)$ |
| 5th level of risk (>40) | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |  |
|  | Total | $440(100)$ | $110(25.0)$ | $71(16.1)$ | $160(36.3)$ | $99(22.5)$ |
| WHO/ISH |  |  |  |  |  |  |
| Low risk | $(<10 \%)$ | $420(95.4)$ | $106(24.0)$ | $69(15.6)$ | $148(33.6)$ | $97(22.0)$ |
| 2nd level risk | $(10-20 \%)$ | $15(3.4)$ | $2(0.4)$ | $2(0.4)$ | $9(2.0)$ | $2(0.4)$ |
| 3rd level risk | $(20-30 \%)$ | $1(0.2)$ | $1(0.2)$ | $0(0.0)$ | $0(0.0)$ | $0(0.0)$ |
| 4th level risk | $(30-40 \%)$ | $3(0.6)$ | $1(0.2)$ | $0(0.0)$ | $2(0.4)$ | $0(0.0)$ |
| 5th level of risk $(>40 \%)$ | $1(0.2)$ | $0(0.0)$ | $0(0.0)$ | $1(100.0)$ | $0(0.0)$ |  |
| Total |  | $440(100)$ | $110(25.0)$ | $71(16.1)$ | $160(36.3)$ | $99(22.5)$ |

The multivariate analysis results for traditional risk factors to cardiovascular diseases risk were divided into three levels: four unmodifiable risk factors, three workplace modifiable risk factors, and fifteen general modifiable risk factors. The findings showed that after the adjusted odds ratios (AOR) with the reduced model; three
unmodifiable factors, two modifiable workplace factors, and eight modifiable general factors were significantly associated with elevated CVDs risk $>10 \%, 95 \%$ CI, $\mathrm{p}<0.05$.

Three of the non-modifiable risk factors were statistically significant by the FGRS model. Gender factor was associated with CVDs risk with AOR=0.541(0.32-0.90), $\mathrm{p}=0.01$. Age structure from 40-50 years with AOR=6.836(2.90-16.09), $\mathrm{p}<0.001$. Age structure $>50$ years with AOR= 19.517(8.40-45.34), p<0.001. The family member who suffered the CVD with AOR $=0.333(0.20-0.55)$, $\mathrm{p}<0.001$. Only two workplace modifiable factors (Radiation and high stress) were statistically significant with $\mathrm{AOR}=0.360(0.15-0.86), \mathrm{p}=0.02$, and $\mathrm{AOR}=21.398(2.65-172.59), \mathrm{p}=0.004$, respectively.

The eight modifiable factors (Physical inactivity, insufficiency of fruit and vegetable intake, smoking, exceeding four drinks for women and five for men, diabetes, and hypertension) were scientifically and statistically significant. The significance was observed for both full model and reduced model. Although exceeding four drinks for women and five drinks for men was statistically significant, alcohol consumption in 30 days was not significant alone. Its significance was observed in the full and reduced model on only the point of participants who have not taken alcohol in 30 days. Hence, not taking alcohol, slightly increased the cardiovascular risk with AOR $=0.2, \mathrm{p}=0.005$. However, exceeding four and five drinks was associated with cardiovascular diseases risk with $\mathrm{AOR}=11.162, \mathrm{p}<0.001$. Diabetes and physical inactivity were highly associated with cardiovascular disease risk, AOR=29, $\mathrm{p}<0.001, \mathrm{AOR}=13, \mathrm{p}=0.001$, respectively. The findings of the multivariate analysis using the Framingham general risk score model, are tabulated in Table 4.78 below.

Table 4.78: Association between traditional risk factors and cardiovascular diseases (FGRS)
$\left.\begin{array}{lllll}\hline \text { Variable } & \begin{array}{c}\text { Full model (OR) } \\ \text { CI95\% }\end{array} & \boldsymbol{P} \text {-value } & \begin{array}{c}\text { Reduced model } \\ \text { (AOR) CI 95\% } \\ \text { (Risk>=10\%) }\end{array} & \\ \hline \text { Pisk>=10\%) }\end{array}\right]$

Table 4.79 displays the multivariate analysis results of the traditional risk factors towards elevated cardiovascular diseases absolute risk $>10 \%$ by the WHO/ISH model. The findings also presented four unmodifiable factors, three modifiable workplace factors, and fifteen modifiable general risk factors. After the factor's adjustment, the reduced model showed that only two unmodifiable risk factors and four modifiable general risk factors were significantly associated with cardiovascular diseases elevated risk $>10 \%, 95 \% \mathrm{CI}, \mathrm{p}<0.05$.

The reduced Model of the WHO/ISH score chart showed that two of the nonmodifiable risk factors were statistically significant. Age structure from 40-50 years with AOR= 10.454(1.31-83.21), $\mathrm{p}<0.02$, Age structure $>50$ years with AOR= 11.519(1.43-92.74), $\mathrm{p}<0.02$. Having a family member who died from the CVDs was significant with AOR $=0.233(0.08-0.65), \mathrm{p}<0.006$.

Of the eight modifiable factors only 3 factors (Alcohol intake, diabetes, and hypertension with previous blood pressure threshold) were statistically significant. This was observed on the full model and reduced model. However, exceeding four and five drinks was associated with cardiovascular diseases risk with AOR $=5.243(1.08-25.31), \mathrm{p}=0.03$. Diabetes and hypertension as the prominent risk factors for cardiovascular diseases, were highly associated with cardiovascular diseases risk, $\mathrm{AOR}=3.620(1.29-10.12), \mathrm{p}=0.01, \mathrm{AOR}=15.992(3.50-72.98), \mathrm{p}<0.001$, respectively. All the factors' associations are tabulated in Table 4.79.

Table 4.79: Association between traditional risk factors and cardiovascular diseases (WHO/ISH)

| Variable | $\begin{gathered} \text { Full model (OR) } \\ \text { CI95\% } \\ \text { (Risk>=10\%) } \\ \hline \end{gathered}$ | $P$ value | $\begin{gathered} \text { Reduced model } \\ \text { (AOR) CI 95\% } \\ \text { (Risk>=10\%) } \\ \hline \end{gathered}$ | $P$-value |
| :---: | :---: | :---: | :---: | :---: |
| Unmodifiable factors |  |  |  |  |
| Gender | 0.678(0.24-1.85) | $\mathrm{p}=0.4$ | - | - |
| Age structure |  |  |  |  |
| <40 years | Reference |  | Reference |  |
| 40-50years | 9.607(1.19-77.18) | 0.03 | 10.454(1.31-83.21) | 0.02 |
| >50years | 10.155(1.25-82.36) | 0.03 | 11.519(1.43-92.74) | 0.02 |
| Family member who suffer CVD | 0.502(0.17-1.42) | 0.1 | - | - |
| Family member who died from CVD | 0.352(0.10-1.14) | 0.08 | 0.233(0.08-0.65) | 0.006 |
| Modifiable Workplace factors |  |  |  |  |
| Radiation | 0.224(0.02-1.86) | 0.1 | - | - |
| Chemical handling | 0.776(0.26-2.24) | 0.6 | - | - |
| $\begin{aligned} & \text { Stress for only } 270 \\ & \text { employees } \end{aligned}$ |  |  |  |  |
| Low level stress | Reference |  | Reference |  |
| Moderate stress | 8.077(-) | 0.9 | - | - |
| High stress | 2.00(-) | 0.9 | - | - |
| Modifiable general factors |  |  |  |  |
| Location(Urban place) | 0.750(0.20-2.78) | 0.6 | - | - |
| Status of participants (Employee) | 2.835(0.80-10.02) | 0.1 | - | - |
| Sedentary | 0.635(0.07-5.22) | 0.6 | - | - |
| $\begin{aligned} & \text { Physical } \\ & \text { <600MET } \end{aligned} \quad \text { inactivity }$ | 4.505(-) | 0.9 | - | - |
| Low fruits intake | 1.617(0.36-7.27) | 0.5 | - | - |
| Low vegetable intake | 1.034(0.10-16.9) | 0.9 | - | - |
| Tobacco smoke | 4.141(1.01-16.9) | 0.04 | - | - |
| Second hand smoke at home | 1.160(0.02-1.26) | 0.08 | - | - |
| Second hand smoke at workplace | 2.196(0.27-17.61) | 0.4 | - | - |
| Alcohol consumption in 30 days | 0.136(0.02-0.89) | 0.03 | 0.192(0.03-0.99) | 0.04 |
| Times exceeded 4 drinks for female | 4.901(0.81-29.48) | 0.08 | 5.243(1.08-25.31) | 0.03 |
| And 5 drinks for male in 30 days |  |  |  |  |
| General obesity | 1.797(0.21-15.30) | 0.5 | - | - |
| Central obesity(WHR) | 1.719(0.36-8.09) | 0.4 | - | - |
| Diabetes | 5.132(1.31-20.00) | 0.01 | 3.620(1.29-10.12) | 0.01 |
| Previous HTN | $\begin{aligned} & \text { 15.133(1.69- } \\ & 135.38) \end{aligned}$ | 0.01 | 15.992(3.50-72.98) | <0.001 |
| Updated HTN | 0.775(0.04-14.15) | 0.8 | - | - |

## CHAPTER FIVE

## DISCUSSION, CONCLUSION AND RECOMMENDATION

### 5.1 Levels of the 10 -year cardiovascular diseases risk predicted and models comparison among the study participants in the study area

Cardiovascular diseases risk predictors were the known cardiovascular disease risk factors, which have been used in this study to predict 10 -year risk. All the used risk factors were with incontrovertible evidence of being associated with cardiovascular diseases (Yeates, 2015). Their selection showed how they were technically and economically crucial in the primary follow-up study, and accurately predicted the needed result. However, a choice of local predictors that are associated with cardiovascular diseases outcome could be included for future model creation. WHO/ISH Score chart applied six (Kaptoge et al., 2019), predictors' age, gender, smoking, TC, BP, diabetes, and five predictors, where there is no cholesterol capacity measurement (Savitharani, 2016; Arvind, 2015). Whereas FGRS applied eight predictors, which were age, gender, HDL, TC, Untreated and treated SBP, smoking, and diabetes (Yangfeng et al., 2006; D’Agostino et al., 2008; D’Agostino, 2011). The use of all these predictors was consistent with other studies that applied these two models. However, there are other multiple studies (Selvarajah et al., 2014) that used different predictors to predict the future conditions and diseases of their local population (Mansell, 2014).

The overall study results displayed a cardiovascular disease risk predicted by FGRS and WHO/ISH models. Males presented high CVDs Risk (16.1\%), (2.7\%) than females $(9.3 \%),(1.5 \%)$ and The CVDs risk was elevated for Employees ( $16.8 \%$ ), (3.6\%) than for spouses (8.6\%), ( $0.9 \%$ ), respectively. Urban participants presented elevated CVDs risk (18.6\%), (3.1\%) than rural participants (6.8\%), (1.3\%), respectively. These findings were consistent with some studies. However, other studies exposed a cardiovascular disease transition such as stroke in the US, where rural and urban stroke trends crosscut in 2007 (Ambar, 2014). Employees’ CVDs risk was high than the risk in spouses and high in men than in women (O'Neil,
2018). This difference was due to Gender-specific, workplace, and home Stress increases, (Regitz-Zagrosek, 2015) for workers. Additionally, the accumulation of most of the factors of the cardiovascular diseases for urban than rural populations (Miranda, 2011; Auley, 2013). Moreover, the current almost study's findings explain the rise of cardiovascular disease risk factors in rural communities (Prabhakaran, 2016).

This study's findings showed a minimal or fair level of agreement of 0.25 between the Framingham general risk score and the WHO/ISH score chart. This is not acceptable in the model prediction agreement by Cohen kappa due to the models' lack of discriminatory capacity for fulfilling the accuracy requirement of a test. A classifier or a model requires the interrater reliability coefficient to be perfect. It should be at least 0.8 for the accurate agreement between the used two models (FGRS and WHO/ISH Score chart) to be, interchangeably applied to the Rwandan population (Mary, 2012). The Framingham general risk score (FGRS) predicted $25.5 \%$ of the population to be at elevated cardiovascular disease absolute risk in the coming 10years ( $>=10 \%$ ). Whereas the WHO/ISH score chart predicted only $4.6 \%$ of the population to be at elevated risk of ( $>=10 \%$ ). This result showed a high predictable difference of $20.9 \%$ risk. This underlined a suspicion of underprediction of the WHO/ISH Score chart (WHO, 2007) and over prediction of FGRS (Buitrago et al., 2011). The correlated status of ROC curve performance with respectively, FGRS and WHO/ISH score chart, was 0.887 AUC, 0.847 AUC all with a p-value $<0.001$, which showed a perfect performance. Although the ROC curve performance capacity was perfect, the interrater agreement of 0.25 Cohen kappa coefficient was low and consequently inadequate agreement (Mary, 2012). This could demote its ROC curve accuracy for underdiagnosis or overdiagnosis (Bantis, 2016).

Worldwide stroke and heart attack equated to $85 \%$ of all deaths caused by cardiovascular diseases (WHO, 2017). A recent multi-center study on the burden of stroke in Rwanda showed that $2.1 \%$ of all received patients had a stroke, and $61 \%$ of them died (Nkusi et al., 2017). Whereas these study findings showed that the 10 -year predicted risk of fatal and non-fatal CVDs including stroke was between $4.6 \%$ and $25.5 \%$ of elevated Risk >=10\% by WHO/ISH and FGRS models, respectively. This
may be a good future indicator if applied to the whole population for pro-actively planning preventive measures for lessening the burden of stroke and other CVDs in Rwanda. Reaching the preventive strategy goal could only be possible by setting practical barriers to changeable risk factors. Moreover, improving personal cardiovascular disease awareness risk level, and health-seeking behavior for heightening early health service utilization (Herbert \& Moses, 2019) to reach the equipped stroke unit in due time (Aldo, 2018).

Cardiovascular prediction models including other disease prediction models are of great importance for current sound scientific health events and conditions forecasting and prevention (Mustafa, 2018). It is now the platform for creating strategic countermeasures for improving the population's quality of health. Additionally, reducing the physical, psychosocial, and economic burden of diseases on LMIC including Rwanda. Such diseases caused around 300 DALYs according to WHO, 2015 and $61 \%$ of death of all strokes received patients and $14 \%$ of worse disability (Nkusi et al., 2017; Herbert \& Moses, 2019).

### 5.2 Proportion of behavioral factors associated with cardiovascular diseases among the study participants in the study area

The discussion of the second objective findings was organized regarding the seven modifiable behavioral risk factors. This discussion shows a better and deep clarification of behavioral factors' contribution to the cardiovascular diseases risk.

### 5.2.1 Level of smoking behavior for participants in the study area

The smoking prevalence as displayed in Table 4.5 showed a low smoking level of $6.8 \%$ of all smokers and $6.6 \%$ of daily smokers. The low second-hand smoking that occurred at home was $15.8 \%$ and $4 \%$ at work, while shisha was at $1.1 \%$. However, a study done in SSA showed that Rwanda had a high smoking prevalence level from 2007 to 2014 of $20.9 \%$ for males and $12 \%$ for females (Brathwaite, 2015). In addition, in 2013, another study carried out in Rwanda showed a low prevalence of $8 \%$ ( $95 \%$ CI: 7.08-9.01) for a population between 15-34 years old (Habiyaremye, 2019). Shisha use in 2016/2017, among Kigali university students, was $26.1 \%$
(Omotehinwa, 2018). However, the 2015 global health observatory repository showed $19.2 \%$ for males and $7.2 \%$ for females in Rwanda (WHO, 2015). The findings showed that smoking is high in males than in females (Table 4.6) where current smokers are $5.5 \%$ of males and 1.4 of females, $\mathrm{p}=0.005$. The daily smoking for males was $5.2 \%$ and $1.4 \%$ for females, $\mathrm{p}=0.008$. This is in agreement only with the significance of other studies carried out in Thailand where $67 \%$ of males smoked daily while the female was $41.9 \%$, $\mathrm{p}=0.002$ (Dujrudee, 2018). It is equally in agreement with another study done in Namibia on the prevalence of smoking where it was reported to be $8.8 \%$ (8.1-9.5) (Zhifei, 2019)).

### 5.2.2 Alcohol consumption behavior of the study participants

Alcohol consumption appeared to be high due to the age difference in this study with a mean age of 44.84 (SD:8.2) years. Table 4.7 showed that $68.9 \%$ consumed alcohol in the last 30 days and $24.3 \%$ used to consume alcohol daily. Whereas WHO reported in 2016 that alcohol consumption in Rwanda for total consumption per capita of people of 15 years and above. The results were also $15 \%$ for beer and $3 \%$ for liquor and $<1 \%$ for wine. However, the data was slightly low compared to the study done in Nigeria on a population with 39.10 (12.06) mean age. The study showed that $88.9 \%$ were current drinkers (Lasebikan, 2018). This is high compared to the study done in Namibia where the prevalence of alcohol take was $53.1 \%$ (51.554.6) (Zhifei, 2019).

Overall findings on alcoholic drink consumption showed that beer consumption for males was $44 \%$ with 2.8 mean standard drinks a day. Whereas the females' beer consumption was $23.3 \%$ with 1.6 mean standard drinks a day (Table 4.8). Wine consumption for males was $28.3 \%$ with 0.2 mean standard drink a day while the female's wine consumption was $12.4 \%$ with 0.2 mean standard drink a day (Table 4.9). The liquor consumption for males was $19.7 \%$ with 0.2 mean standard drink a day while the females' liquor consumption was $4.1 \%$ with 0.1 mean standard drink a day (Table 4.10). The findings of alcohol beverage average showed that males slightly took more units than females for beer and liquor but took an equal standard drink on wine. A high percentage of males took more standard drinks than females. This is in line with another study carried out in South Africa on alcohol use. This
showed that the prevalence of alcohol consumption was high for men than women with $41.5 \%$ versus $17 \%$, respectively (Peltzer, 2011).

The findings presented the mean value of the largest intake for one occasion (Table 4.11) and taking 5drinks or more for males and taking 4 drinks or more for women (Table 4.12). This was highly and significantly varied by age for females. This showed that women took more drinks as long as their age increased, $\mathrm{p}=0.001$, $\mathrm{p}=0.006$ respectively. Therefore, these findings were consistent with Brazilian study results, where alcohol intake prevalence was high in men than in women in all age groups (Cynthia, et al., 2011). The study showed that a high percentage of men took more alcohol than women ( $71.5 \%$ versus $28.5 \%$ ). However, the gender relationship was not significant in the times they exceeded the above drinks, $\mathrm{p}=0.207$. However, the alcohol intake percentage significantly increased with age increase. This was shown in results, where participants <40years were $25.2 \%, 40-50$ years were $35 \%$, and $>50 y$ years were $39.8 \%$ with $\mathrm{p}=0.02$ (Table 4.13) (Lasebikan, 2018).

### 5.2.3 Level of fruits intake (weekly and servings intake) for participants in the study area

The overall findings on fruit consumption showed that $24.8 \%$ reported not eating fruits in a past typical week. The majority of participants of $53.3 \%$ ate fruit one day a week and $41.6 \%$ ate very insufficient fruits (under one serving). In addition, fruits intake insufficiency was low compared to South African fruit intake insufficiency of $68.5 \%$ (Peltzer, 2011). Around $38.7 \%$ of male employees reported eating fruits at worksite restaurants. However, a high proportion of male employees did not eat fruits with $14.3 \%$ of male employees versus $6.4 \%$ of female spouses. Although male employees dominated in eating more servings a day, female spouses dominated in eating fruits by two and more days a week with $12.5 \%$ than male employees with $7.5 \%$ (Table 4.14).

These findings were low in comparison with the WHO cut-off that recommended eating five servings of fruits a day. Therefore, none took fruits at the WHO recommended level. Furthermore, the results were in line, in terms of days of fruit consumption, with the steps study done in Rwanda in 2013. This study showed that
the mean day of fruit consumption was 1.6 days a week. In addition, many countries were found to not comply with the recommended threshold of a minimum level of consumption. This threshold is a daily 80 -gram serving, or 400 grams of fruits and vegetables a day (FAO, 2017; Dhandevi, 2015).

### 5.2.4 Level of vegetable's intake (weekly and servings) for participants in the study area

The only percentage of no vegetable consumption was $2.8 \%$, which was very low compared to fruit-eating by the study participants. However, the population style is to cook a few vegetables, mix them with water and beans, and serve them as vegetables (Imboga). This cooking way undermines the usual way of counting vegetable servings. Female spouses consumed vegetables for three and more days than male employees. However, male employees dominated in eating vegetables in two days and less. Although many people reported vegetable intake during five days of the week, the servings are insufficient. Almost $100 \%$ did not meet the recommended five portions of vegetable intake a day. Moreover, another study showed that $82 \%$ didn't meet the recommended daily intake.

It was $44.2 \%$ consumed vegetables daily in Tanzania (Beverly et al., 2018) while 87.8\% didn't meet the recommended portions in Uganda (Kabwama, 2019). According to WHO, 2020 the availability of phytochemicals, polyphenol, potassium, dietary fibers, and flavonoids in fruits and vegetables are relevant elements in homocysteine and other free radicals' moderation. Hence, they provide the ability to prevent body parts' oxidative damage. Furthermore, they extend the prevention of coronary heart diseases and other cardiovascular diseases. Hence, their use will be important in strengthening the cardiovascular health of people.

### 5.2.5 Level of Oil intake for study participants in the study area

Three types of oil are the most used by the study participants. The sunseed oil dominated with $38.4 \%$ and followed by Mukwano oil at $17.7 \%$ and Golden oil at $12.5 \%$. Then Palm $41.6 \%$, sunflower $40.7 \%$, and Soybean $9.8 \%$ were also the three prominent oil sources. A big proportion of oil components was unmarked on oil
bottles tag: total fat $43.4 \%$ unmarked, cholesterol content $51.8 \%$ unmarked, Monounsaturated fat $84.1 \%$ unmarked. Polyunsaturated $77 \%$ unmarked, saturated fat $78 \%$ unmarked, hydrogenated $98 \%$ unmarked, trans-fat $93.4 \%$ unmarked, and a Heating smoke point $74.1 \%$ unmarked (table 4.16).

The negative impact of Trans-fatty acids on cardiovascular life and mortality was demonstrated many years ago (Iqbal, 2014). The findings showed that trans-fat was unmarked (unlabeled) on the oil containers at $93.4 \%$ of all consumed oil. The transfatty acids must be traced and marked on the oil container. In addition, they must be reduced under the WHO recommended rate of $4 \%$ to save the life of the consumers. The $25 \%$ of cardiovascular risk increases for every $2 \%$ energy of hydrogenated fat (Nichols et al., 2012). Most of the used oil was processed from palm at a rate of 41.6\%. Palm oil contains a part of mono-unsaturated fatty acids (Oleic, Linoleic acids). The last elements are subjected to be reduced in the manufacturing process and remain the saturated fatty acids parts (Palmitic, stearic, lauric, myristic). This has a strong harmful effect on cholesterol increase and on cardiovascular health (Iqbal, 2014).

It was observed that Palmitic acid was associated with myocardial infarction risk (MI) (OR: 2.76; 95\%CI = 1.39-5.47 (Ismail, 2018; Sowmya, 2019). Around 74.1\% of the oil used was not labeled regarding the heating smoking points, which may indicate to the consuming community not to overheat the oil. The fact that repeatedly heating oil use ( $\mathrm{Ng}, 2014$ ) increases lipid peroxidation and free radicals. These factors harm the heart and vessels through cholesterol and triglyceride accumulation. Hence, this leads to atherogenic plaque and aggravates cardiovascular diseases (Ganesan, 2018).

### 5.2.6 Physical activities for the study participants based on frequency, duration, and intensity of energy expenditure

Physical activity execution is the required lifestyle to strengthen the cardiovascular system (Saeid, 2012) and cognitive life (Leyland, 2019). In addition, it helps to prevent related diseases through endothelial function regeneration and mitochondrial adaptation (Matthew, 2018). However, the study findings showed in (Table 4.17) that
$98.5 \%$ didn't perform vigorous-intensity physical activity at work during the whole past week. And $87.5 \%$ couldn't perform moderate-intensity physical activity at work. This showed a high level of inactivity at work concerning moderate and vigorous physical activity. Although there was a difference between exerting physical energy at work and walking to or from work, $87 \%$ couldn't walk or bicycle to or from work.

The proportion of $13 \%$ of people who performed bicycling and walking to work used a mean time of $48.9 \mathrm{~min} /$ person and 4.4 days $/$ person. This is good and similar to other studies compared to 150 min of moderate to vigorous physical activity (MVPA) required a week for a person (Table 4.18) (Pedro, 2018). (Table 4.19), (Table 4.20) showed that leisure, sport, and recreational vigorous-intensity physical activity were performed by $6.8 \%$ while moderate was $15 \%$ of the study participants. Moreover, more time was also significantly performed by men and $93.2 \%$ and $85 \%$ were inactive for vigorous and moderate-intensity sport, respectively.

At least $3.9 \%$ of moderate (600-1500MET) per week and $1.4 \%$ high energy expenditure (>1500MET) per week were inferior for 40 years while participants of $40-50$ and > 50 years were $2.5 \%$ and $2.0 \%$ for moderate energy expenditure. At least $3.9 \%$ of moderate ( $600-1500 \mathrm{MET}$ ) per week and $1.4 \%$ high energy expenditure ( $>1500 \mathrm{MET}$ ) per week were inferior for 40 years while participants of $40-50$ and $>$ 50 years were $2.5 \%$ and $2.0 \%$ for moderate energy expenditure. The high-energy expenditure was $0 \%$ for both the age range of 40-50 and $>50$ years (Table 4.21).

Rubavu study participants presented an elevated percentage of $6.6 \%$ and $1.1 \%$ while Kicukiro presented $1.8 \%$ and $0.7 \%$ for moderate and high-energy expenditure, respectively. Employees spent more energy than spouses whereas the elevated percentage of employees are moderately and highly spend their weekly energy. This is obviously the same for males in comparison with females where $6.4 \%$ and $1.8 \%$ of males were more than $2.0 \%$ and $0.0 \%$ for females for moderate and high-energy expenditure, successively.

The obvious difference was marked between Kicukiro and Rubavu. The energy expenditure in those two locations was justified by the semi-urban region where people can walk to work and for other life-related requirements. This research
finding is slightly above the result of a study carried out in Rwanda for Government office employees in Kigali with 600 participants. The study showed that 61.1 \% of the participant were not sufficiently active.

There was a concordance to the decrease of physical activity by age and observation of a slight increase in physical activity in men than in women (Mukaruzima, 2020). This study showed similar findings to the 2015 Rwanda non-communicable diseases report, where men were with high physical activity levels than women, as well as younger than older participants (WHO, 2015). In addition, the level of physical activities and low energy expenditure were found to be associated with cardiovascular diseases, (Ahad, 2016; Carl, 2019).

### 5.2.7 Sitting time /sedentarity for the participants in the study area

Sedentarity is a critical modern risk factor for metabolic diseases as well as cardiovascular diseases (Mohammad, 2018). Table 4.23 showed that $6.6 \%$ were required to sit for more than 10 hours and $21.6 \%$ were required to sit between 6 and 10 hours. Although workplace-sitting time was reported, it was never compensated by outside work, but rather increased (Clemes, 2014). Therefore, discussed strategies such as sit-stand desks, active workstations, walking during breaks, walking meetings, and counseling could be crucial if evidently applied. This can aid to reduce the amount of sitting time at work and outside work to prevent long sitting negative effects (Shrestha et al., 2018).

The association of sedentarity levels to metabolic syndrome was OR: 2.686 (1.425.06) $\mathrm{p}=0.002$ for the moderate sitting period while the high sitting time period was 8 -fold. This result association was slightly high in the regard to moderate sitting time and very higher in comparison to the study done in South Korea. The study showed a higher OR of 1.21 -fold for participants who sat $>7$ hours than those who sat $<7$ hours (Jin et al., 2016). Although there was a big difference between the OR of the moderate and high sitting periods concerning Metabolic syndrome (MetS). The association of moderate and high sitting periods with cardiovascular disease risk was OR: 3.238(2.238-6.050) $\mathrm{P}<0.001,3.772(1.718-8.285) \mathrm{p}=0.001,95 \%$ CI, respectively (Table 4.24). The findings showed high OR regarding the association of Metabolic
syndrome than CVD risk. The relationship of all components of metabolic syndrome (IFG, HBP, Triglyceride, Cholesterol, and Central obesity) with sedentarity levels was highly significant with $\mathrm{p}<0.0001$. The relationships with other cardiovascular disease factors (Age, waist circumference, the status of participants: being employee or spouse) (Table 4.26) were all significant except for gender. These findings were in line with a Poland study, where the relationship between long sitting time was significant with central obesity. The findings indicated there was a statistically significant relationship between low physical activity and high triglyceridemia, low high-density lipoprotein, high cholesterol, and elevated blood pressure (Edyta, 2018).

### 5.3 Work condition factors to CVDs risk in the study area

### 5.3.1 Proportion of working condition factors for workers in the study area

### 5.3.1.1 Organizational hazard (Shift workers and Night workers)

The organizational hazards results showed that $46.3 \%$ regularly did shift work while $43.7 \%$ did night shift work. A percentage of $97.4 \%$ were males. $40.6 \%$ were under 40 years, $32.2 \%$ were between $40-50$ years while $27.1 \%$ were >50years (Table 4.27). The night shift and the occupation presented a substantial relationship with $\mathrm{p}<0.001$. In the total of $43.7 \%$ of all regular night shift work, technical direction employees dominated other groups with $28.1 \%$. Whereas $6.2 \%$ of logistic employees did regularly the night shift (Table 4.28). Around $9.3 \%$ of employees who regularly did night shifts were at elevated risk ( $10-40 \%$ ) with $\mathrm{x}^{\wedge} 2=3.9, \mathrm{p}=0.03$ (Table 4.29).

The relationship between the night shift and cardiovascular disease risk was significant and consistent with other studies. This showed that the duration of sleeping was linked to cardiovascular diseases at $40-50 \%$ of the risk increase of dying (Bridget, 2019). In addition, the Jordanian employee's study showed that monthly numbers of night shifts and their duration were significantly associated with CVDs with $\mathrm{p}=0.012$ and $\mathrm{p}<0.001$, respectively (Rana, 2018).

The study findings showed that $43.7 \%$ reported doing the regular night shift and most of them were males at a level of $97.4 \%$ (Table 4.27). Moreover, technical direction employees were more subjected to serving the night shift at a level of
$28.1 \%$. This study showed that $9.3 \%$ of regular night shift employees were at elevated cardiovascular risk. Their respective significant relationships were for workplace direction, $\mathrm{p}<0.001$ (Table 4.29), and elevated cardiovascular risk, $\mathrm{p}=0.03$. Another study done on Jordanian employees confirmed the link between the night shift and CVDs regarding the monthly numbers and duration time of the night shift. These factors were significantly associated with the high cardiovascular disease risk by 30 years Framingham risk model with $\mathrm{p}=0.012$ and 0.000 , respectively (Rana, 2018). Thus, shift workers were more associated with coronary artery diseases than non-shift workers (Havakuk, 2018).

### 5.3.1.2 Physical hazards for industrial workers status participants

This study finding showed that $51.5 \%, 24.4 \%, 17.8 \%$, and $11.5 \%$ were exposed to noise, vibration, Gamma and X rays, and cold chambers respectively (Table 4.29). These physical factors' relationships with gender were all significant with $\mathrm{p}<0.05$ (Table 4.30). However, the age and physical hazards relationships were not statistically significant (Table 4.31). The workplace departmental relationships with physical hazards were all statistically significant with $10.4 \%$ of technical workers exposed, $\mathrm{p}<0.001$ (Table.4.32). Another study showed that physical hazards caused effects on cardiovascular disease risk. This showed that the road-traffic noise raised the coronary heart disease risk by $8 \%$ per $10 \mathrm{~dB}(\mathrm{~A})$ and rise when $50 \mathrm{~dB}(\mathrm{~A})$, (Hahad, 2019; Thomas, 2014; Daniel, 2017; Thomas et al., 2018).

The vibration was associated with myocardial infarction with OR:1.6 (95\% CI: 1.12.4) (Bodil, 2006; Dzhambov, 2016). The Gamma rays and X-rays caused ionization (John, 2011; Bjorn, 2016), and gamma rays radiation increased up to 7 kGy affected fat composition, and increased trans-fatty acids (Ismail, 2007). Cold exposure was associated with cardiovascular diseases due to limitation of blood flow and myocardial damage (Bin, 2012; Tiina, 2018).

### 5.3.1.3 Psychological hazards for workers in the study area

### 5.3.1.3.1 Type of stress levels for workers in the study area

This This study's findings showed that only one item (Unclear duty) was with a high mean stress score of 4.1, which points to the role ambiguity (Iraj, 2013). The study done in Iran showed that role ambiguity and role conflict were considered to have a significant path relationship with job stress (Bhui, 2016).

Pressure or workload-based stress mean score rate was 3.6 , which is very high stress. This is consistent with other study findings. The results explained that workload equated to the work demand was a key determinant of stress and fatigue in industrial repetitive work (Macdonald, 2003). The components of pressure-based stress such as working long hours displayed a higher OR:1.56 (95\% CI: 1.344-1.824). This showed a positive relationship between occupational stress, cardiovascular disease effects, and work-life balance disturbance (Wong, 2019; Hsu et al., 2019).

The following three behavioral items (lack of opportunity to question the manager, unable to talk to the manager about an annoying thing, unable to get line manager encouragement) are very important to boost employee morale. They indeed improve the employee's engagement toward perfect management of workplace stress. The findings of this study as shown by the above table are consistent with other studies on factors such as lack of support (Bhui, 2016). As well as, poor worksite relationships, (Van, 2016), and difficulties to cope with change due to a lack of the opportunity to question managers (Wisse, 2016; Roy, 2015; Guy, 2019).

### 5.3.1.3.2 Stress relationship with department, gender, age, and CVD risk in the study area

The study's prevalence of workplace stress was $64.4 \%$ in moderate stress and $30 \%$ in high stress (Table 4.37). This is high compared to the industrial study done in Bangalore where the overall stress was $22.2 \%$ and $33.3 \%$ of managers versus $20.9 \%$ of supervisors (Basavakumar, 2017). This study showed that Stress increased with age and male-dominated females with $\mathrm{p}=0.03$, and $\mathrm{p}<0.001$, respectively. This is in
line with the study done in India where males presented more stress than females (Tandon, 2014).

Figure 4.3 showed that only two directions (Departments) dominated the other five directions. The technical department was with a high stress of $14 \%$ and moderate stress of $26.6 \%$. The sales department followed with $6.6 \%$ of high stress and $12 \%$ of moderate stress. The relationship between stress levels and cardiovascular disease risk was significant with $17 \%$ of elevated stress in high cardiovascular disease risk, $\mathrm{p}<0.001$ (Figure 4.4). Table 4.38 showed a high difference of odd ratio where moderate stress was 2.5 -fold versus high stress with 18 -fold, $\mathrm{p}<0.001$ for Framingham genera risk score. It was sevenfold for moderate stress, and 1-fold for high stress concerning WHO/ISH but not statistically significant (Table 4.39).

Although this study's level of stress and cardiovascular diseases associated with Framingham's general risk score was consistent with other studies. This study's results were far higher than those found in other studies for long working hours and associated cardiovascular disease risk. Other studies showed that the associated coronary heart disease and stroke risk increase was 1.12 -fold ( $95 \%$ CI 1.03-1.21) and 1.21 -fold ( $95 \%$ CI 1.01-1.45) respectively (Marianna, 2018). The exposed participants to stressors were with $10-40 \%$ excess risk compared to the unexposed group (Mika \& Ichiro, 2015).

### 5.3.1.4 Chemical hazards for workers study participants

The findings of this study displayed 132 chemical hazards with 4126 of direct and indirect handling where technical employees have encountered more chemical substances than others. However, another study found that in 308 chemical hazards handling, 693 were direct exposure. This was increasingly a burden for technicians, operators, and agricultural workers as well as elementary workers (Montano, 2014).

Chemical hazards handling was neither associated with cardiovascular disease risk by Framingham general risk score with $\mathrm{OR}=1.1, \mathrm{p}=0.6$ nor by WHO/ISH with $\mathrm{OR}=0.7, \mathrm{p}=0.6$. This finding consists of the study about the solvents part where there was no association of organic solvents exposure to Hispanic Americans with
cardiovascular diseases at the workplace. However, metal and pesticide exposure were associated with cardiovascular diseases (Bulka et al., 2019). One of the presented chemical hazards was found to cause anthemia in another study but not in the current research (Joshi, 2019).

The study results showed that $57.8 \%$ of all the workers handled or encountered chemical hazards. Men were more exposed to chemical handling than women $\mathrm{p}=0.01$ (Table 4.41). Around $32.9 \%$ of technical direction (department) workers were more likely in chemical hazards handling, $\mathrm{p}<0.001$ (Figure 4.5). The association of whole chemical handling exposure, including all solvents for workplace employees, was OR $1.89(0.74-4.79)$, but not statistically significant (Table 4.42). On the other hand, other studies showed that some chemicals such as toluene cause hypokalemia and auricular-ventricular block (Zhou et al., 2011; Cruz, 2014). Moreover, xylene, hexane, lipophilic, heptane, ethyl ether trichloroethylene, trichlorotrifluoroethane chemicals were associated with cardiovascular diseases by causing metabolic change (Kim, 2012).

Furthermore, raising catecholamine to cause arrhythmia and death showed that the exposed group to solvent was significantly associated with electrocardiographic changes. Hence, the QRS complex change was high with an RR of 1.53(1.46-1.61), and the modified P wave was $1.02(1.01-2.28)$ and $1.15(1.08-1.49)$ for arrhythmia (Assadi, 2018). The solvents were found to increase cholesterol and affect the central nervous system (Zeliger, 2013). And as well as halogenated hydrocarbons such as chloroform (Sridhar et al., 2011; Butkiewicz et al., 2017).

### 5.3.2 Association of working conditions to cardiovascular diseases risk

This study finding showed all workplace hazards (working departments, shift workers, regular night Shifts, much sound, vibration, chemicals) that employees are exposed to, at different levels. Their association with cardiovascular disease risk expressed a significant Crude Odd ratio to workers. The findings showed that in human resources $\mathrm{COR}=3.52(1.08-11.48) 95 \% \mathrm{CI}, \mathrm{p}=0.037$, night shift COR=4.257(1.03-17.44) $95 \% \mathrm{CI}, \mathrm{p}=0.044$, much sound $\mathrm{COR}=0.209(0.071-0.61)$ $\mathrm{pp}=0.007$. Whereas the AOR was only significant to one factor which was night shift
workers $\mathrm{AOR}=2.41(1.27-4.58), \mathrm{p}=0.007$. Much noise $(>=85 \mathrm{Db})$ showed the insignificant result with AOR $=0.54(0.28-1.04), \mathrm{p}=0.06$. These results were, hence, not different from other studies that showed an increase in cardiovascular risk. Additionally, they showed similar metabolic changes, and sugar spikes due to the night shift (Daniel, 2017; Rana, 2018; Keithellakpam et al., 2019; Li et al., 2019).

Some studies showed that Whole body vibration training executed at 30 Hz frequency with an amplitude of 3-mm peak-to-peak caused reactive hyperemia (RH). This exerts an acute effect on the endothelial system but does not show a direct significant effect on hypertension and heart rhythm (Aoyama et al., 2019). However, the risk increased among men and women Bulgarian industrial workers (European Agency for Safety and Health at Work, 2008; Dzhambov, 2016; Akinnuli, 2018).

### 5.4 Awareness on traditional Risk factors and Personal protective equipment usage among the study participants in the study area

### 5.4.1 Awareness on hypertension, diabetes, and dyslipidemia as prominent risk factors to CVD risk for all participants in the study area

The participant's awareness was related to three cardiovascular diseases' traditional risk factors, where people knew or were told previously about hypertension, diabetes, and dyslipidemia. This study showed that $30.7 \%$ were previously told to have hypertension. Around $49.7 \%$ of participants knew that hypertension control would help to curb cardiovascular diseases. This awareness level was low compared to the awareness level in a Cameroonian study, where the awareness level was $63.4 \%$ (Frank, 2018). Moreover, another study showed high results, where $75 \%$ were aware of, and recognized the need to improve their lifestyle to reduce cardiovascular risk factors (Table 4.44), (Ramirez, 2017).

Participants had more elevated awareness levels of hypertension with $49.7 \%$ than diabetes with $43.2 \%$ and dyslipidemia with $40.9 \%$. They are aware that controlling them can help to fight cardiovascular diseases. These study findings are also low compared to the study carried out on immigrant Latinas. The results showed that $88 \%$ of non-Hispanic whites were aware that all components of Metabolic syndrome
were leading to death. In addition, $81 \%$ were aware of heart attack symptoms and the level of knowledge of risk factors for cardiovascular diseases. This has increased after the intervention among both Hispanics and non-Hispanic white (Deborah, 2015).

### 5.4.2 Workers using personal protective equipment (PPE) for prominent worksite hazards exposure to noise and chemical handling

Personal protective equipment was worn to protect employees from workplace hazards exposure. Such as $49.3 \%$ of employees were exposed to noise hazards and 43.3\% of employees were exposed to chemical hazards. Although some workers wore PPE (Personal protective equipment) frequently, $15.9 \%$ and $4.8 \%$ of employees didn't always wear PPE correctly for Chemical and noise exposure, respectively (Table 4.47). This study showed that most employees always wear PPE (Personal protective equipment) correctly. The Europian agency for safety and health at work demonstrated the exposure level and CVD development in 2005. This study showed that employees who don't wear PPE correctly may develop cardiovascular diseases at 75 dB of noise exposure and chemical exposure (Kim, 2012). The findings as shown in (Table 4.48) displayed a negatively correlated test, which explained a protective mark to whoever wore PPE. This revealed a significant negative correlated test, which also showed a protective mark to whoever wore PPE frequently for both WHO/ISH and FGRS models. This painted the importance of always wearing PPE when exposed to workplace hazards. Hence, it was emphasized by Kim's discussion in 2012 regarding the link between chemical exposure and cardiovascular disease development. He also discussed the negative impact of noise exposure on heart diseases. Consequently, as depicted in another study, the risk reduction mechanism (PPE wearing, sound moving, and blocking) below permissible exposure levels can prevent and control the incidence of cardiovascular diseases (Wu, 2017).

### 5.5 Proportion of people with biological factors among the study participants in the study area

### 5.5.1 Hypertension

The overall study findings on hypertension have shown a prevalence of $32.27 \%$ by previous blood pressure classification. This is not relatively high compared to other studies that showed a prevalence of $26 \%$ of workers participants in four African countries (Guwatudde et al., 2015). It was $46 \%$ and $35 \%$ in two different studies of the African region (Wamba, 2019). The prevalence was $52 \%$ in the South African nurse study (Monakali, 2018), $55.2 \%$ in the whole of Africa (Kaze et al., 2017), and $34.9 \%$ worldwide prevalence (Thomas et al., 2018). The prevalence has increased to $61.81 \%$, ( $38 \%$ for males, and $23.8 \%$ for females) by the updated blood pressure classification with a difference increase of $29.54 \%$. Employees have a relatively high hypertension prevalence from $35.92 \%$ to $65.18 \%$ compared to the spouses with $26.47 \%$ to $56.47 \%$ by previous and updated classification, respectively (Table 4.51).

Although health systems continually Increase the effort to tackle the issue of health coverage. This high prevalence of $65.18 \%$ found by the updated blood pressure classification would be covered if we only associate different theoretical culturerelated theories and models. Such as health belief models, the theory of planned action and planned behavior, trans-theoretical theory, and clinical, workplace, and community models. Thus, coupled with structured non-pharmacological interventions (Kévin, 2010). This showed surprising results to fight the diseases in the community instead of waiting for the patients to come to the hospital through public health prevention strategies.

This second classifier showed an increase in hypertension prevalence which can astoundingly cause a low quality of health delivery. This is due to a low number of health professionals to support the high percentage of patients and an increase in drug use prescription and laboratory testing (Khera et al., 2018).

The combinants drug use findings were classified as dual therapy with $55.6 \%$, monotherapy with $43.1 \%$, and $1.4 \%$ tri-therapy (Table 4.52). Normally,

Pharmacological intervention was considered to be very crucial to sensibly reduce blood pressure. It was applied to patients with advanced levels of hypertension that could not be reduced with non-pharmacological intervention alone (Ipek, 2017). However, the current strategy of waiting for people at the health facility is rampantly implying the increase of hypertension beyond the normality of cut points due to low health-seeking behavior. It can also cause the failure of the application of nonpharmacological alone. This would be considered important in the early application (Hema, 2011), due to the cultural resistance of patients and halting hypertension consequences. Relying on the little time that a patient spends with a health professional in the consultation room. Therefore, this will not permit a health professional to convince the patient to adopt a new protective non-pharmacological intervention. Because it seems difficult for many people to change their modifiable behavior to fight hypertension. They rather believe in the pharmacological intervention, with which they are even not compliant if no planned structured community follow-up.

However, clinging to the previous blood pressure classification can hide the obvious rising burden of hypertension diseases. Its cardiovascular mean risk of 4\% for normal blood pressure, $6 \%$ for prehypertension, $17 \%$ for hypertension stage 1, and $40 \%$ for hypertension stage 2 by the previous classification. The Framingham general risk score Prediction showed a high risk of stage 1 and stage 2 hypertension. Hence, this was caused by the retaining of a big number of people, who always and unknowingly develop high hypertension without the benefit of any health prevention strategy. On the other hand, the updated classification shows a minimized mean risk of $4 \%$ for elevated blood pressure. The risk increased at $9 \%$, and $19 \%$ for hypertension stage 1 and 2, respectively (Figure 4.6). The second classification uncovers the reality of hypertension prevalence and its cardiovascular diseases associated risk. This really requires public health urgent interventions to maintain people in the normality. It will also help to prevent the progression of poorly controlled hypertension, and nonhypertensive drugs compliant toward hypertensive crisis (Ipek, 2017). This is and will remain the mark of the intersection of cardiology and health promotion.

We found that systolic and diastolic blood pressure increases by age (Table 4.48). Hypertension is more likely to develop in advanced age by 2 -fold for $40-45$ years. It is threefold for more than 50 years on two reduced models of the two-blood pressure classification (Table 4.53) (Thomas, 2016). In addition, HBP is high for men with a total systolic blood pressure mean of $135.06 \pm 14.03$ and $130.83 \pm 13.09$ for women. The total diastolic blood pressure mean was $80.22 \pm 12.78$ and $78.47 \pm 11.91$ for males and females, respectively. With a single updated blood pressure classification significance of being likely to develop to males p-value <0.001(Table 4.48). However, the highest systolic blood pressure mean was found in males while the highest diastolic pressure mean levels were found in females (Table 4.48). The most prevalent hypertensive participants were found in employees where Kigali employees had high hypertension prevalence and followed by Rubavu employees. Kigali spouses were the third while Rubavu spouses come with a low prevalence (Table 4.50).

We observed that the association of unchangeable factors such as gender, Age (Thomas, 2016), Family history (Priyanga, 2015), and being employed or spouses was significant with a p-value $<0.05$. This was found for the reduced model of two blood pressure classifications except for gender, for a single previous classification with a p-value of 0.42 (Table 4.53). On the other hand, changeable factors such as central obesity were two to six-fold more associated with HBP in two reduced models. Alcohol intake in 30 days (Kazim, 2014), diabetes, stress level (Tanya, 2010), and smoking (Kaiye, 2017), were also significantly associated with hypertension except for alcohol intake (Luc, 2009). This was not significant on a single previous classification reduced model.

Although diabetes is a major risk factor for hypertension (Sowers \& James, 1992), it was not significant in two reduced models of the previous and updated classification of blood pressure (Table 4.53). The high level of stress was missing in the reduced model. However, it was the highest significant factor in hypertension with seven-fold to be associated with hypertension in the crude model.

Overall, the findings on hypertension bring up the crucial need for early and primary prevention of hypertension using constructive, structured, and effective socio-
cultural strategies and psychological behavior change. Whereby some of which were consistent with other studies in their effective use. Such as the health belief model, where the improved result was significant with $\mathrm{p}=0.03$ ). Planned behavior and planned action, social cognitive theory, stage of change theory, or trans-theoretical model are important theories. Hence, they highlight the consideration of workplace clinical and community approaches to improve the level of health promotion success (Chu-Hong, 2015; Eng, 2016; Azam, 2018; Jafaralilou, 2019; Mozhdeh, 2019).

### 5.5.2 Diabetes

The findings of this study showed that $13.6 \%$ of study participants were diabetics and $26.8 \%$ were prediabetics and $59.6 \%$ were normal participants. The gender and diabetes relationships were not significant (Table 4.54). These results painted a higher proportion compared to the findings of $2.8 \%$ stated by the world health organization in 2012 and Rwanda's non-communicable disease risk factor report of 2015. This showed that diabetes patients, were $3.06 \%$ and prediabetes patients were $1.59 \%$ in a survey conducted with the 6,662 -study population (WHO, 2012).

Diabetes was statistically significant on either FGRS or WHO/ISH models. In addition, the study conducted at Kigali university teaching hospital demonstrated that diabetic microvascular complications preceded macrovascular complications. This was associated with $53 \%$ of neuropathy, $23 \%$ of retinopathy, and $20 \%$ of nephropathy versus $15 \%$ of peripheral vascular diseases. In addition, $4 \%$ of cerebrovascular diseases, and 3\% of coronary artery diseases are also followed by diabetic microvascular complications (Rudasingwa, 2012).

The variation of mean blood sugar and glycosylated hemoglobin for age category difference was only significant for men and total mean value, respectively (Table 4.55). This expressed an increase in diabetes with aging (Rita, 2017). Out of $13.6 \%$ of total diabetics in all study participants, $8.9 \%$ are taking diabetics drugs. Metformin was the most used medication at a level of $61.5 \%$. Around $74.3 \%$ of all diabetic participants were on monotherapy treatment. This is also consistent with other studies (Yi-Wei et al., 2017).

### 5.5.3 Overweight, Obesity and Central obesity for study participants in study area

This study's findings showed that $46.6 \%$ were overweight and were predominantly men. Around $24.6 \%$ were obese predominantly women with $\mathrm{p}<0.001$ (Table 4.57). This is high compared to the survey done in 2012 in Rwanda NCDs risk factor report of 2015 , where overall obesity was $2.8 \%$. Obesity was predominant in urban with $10.2 \%$. However, it was slightly low in Kigali with $7.7 \%$. The normal weight proportion was only $27.7 \%$ while $75 \%$ of all Rwandans were credited to be within normal weight level. However, another study showed that obesity in 2010 was $16.5 \%$ among women in Rwanda, $35 \%$ in Kigali, and $31.5 \%$ among women in other urban areas in Rwanda (Mukabutera, 2016).

Relying on Owolabi's study in 2017 waist circumference threshold for men and women. Around $21.4 \%$ of study participants were with high central obesity, where men were $12.7 \%$ versus $8.6 \%$ of women. The total number of participants with very high central obesity was $37 \%$. Women dominated with $27.3 \%$ versus $9.8 \%$ of men (Table 4.58). Another study done in Dodoma Tanzania showed that women obese dominated men with $35.14 \%$ vs. $6.89 \%$, $\mathrm{p}<0.001$ (Munyogwa, 2018).

The prevalence of general obesity and central obesity was low compared to the study done in South Africa. The study results showed that central obesity was $66.6 \%$ while general obesity by BMI was $46 \%$ and central obesity by WHR was $57.8 \%$ (Owolabi, 2017).

This study's findings showed that regarding the World health organization cut point, the WHR results were divided into two different district plants. Kicukiro had high central obesity of $79.9 \%$, dominated by men with $42.1 \%$ versus $37.8 \%$ of women. whereas Rubavu had $44.2 \%$ of central obesity and was dominated by men with $27.6 \%$ versus $16.6 \%$ (Table 4.60). The age-related variation of WHR mean values was significant for only Kicukiro males and Rubavu females and kept a continuous rise for men. This explained the rise of abdominal obesity in men by age (Table 4.59).

These findings displayed a higher level of central obesity based on WHR with the World health organization threshold than measurements obtained using tape for waist circumference based on NCEP ATP-III cut points (Table 4.60). However, the application of the very high threshold ( $>=1$ ), showed a reduction of central obesity in Kicukiro with $17 \%$. This central obesity level was dominated by males with $10.8 \%$ versus $6.2 \%$ whereas Rubavu had $8.8 \%$ also dominated by males with $7.2 \%$ versus $1.7 \%$ of females (Table 4.61). However, the waist to hip ratio displayed a slightly elevated level of central obesity than a mere waist circumference.

We have observed, in another study carried out by de Koning in 2007, that these two measures correlated well for cardiovascular disease prediction. This showed that every 1 cm and 0.01 U increase of waist circumference and WHR, respectively (deKoning, 2007). There was also an increase of $2 \%$ and $5 \%$ in the relative risk of cardiovascular diseases event. However, another study showed a slight increase in central obesity by WC than WHR in Malaysian adults' study and concluded to be a good indicator for Malaysian adults (Norfazilah, 2016).

### 5.5.4 Dyslipidemia for all participants in the study area

Total cholesterol and triglyceride age-related incremental variation were significant, except for females on triglyceride with insignificant incremental variation $\mathrm{p}<0.1$ (Table 4.62). Low-density lipoprotein's mean value increased with the age while High-density lipoprotein decreased dominantly for men than women with the age. Even though, it was not significant for women (Table 4.63). However, the Rancho Bernado study carried out by Assiamira in 1997, painted discrepant results. The study explained that total cholesterol and Low-density lipoprotein decreased for men with age for a very older community from 50-93 years. This may explain a sound age difference with the current community (Assiamira, 1997). In addition, another study showed a tendency to reduction of Total cholesterol, Triglyceride, and Low-density lipoprotein in the elderly (+65 years). It has also shown the stabilization of HDL for people inferior and superior to 65 years (Zhao, 2018).

The relationship of the lipid profile to cardiovascular disease risk, as depicted in this study's findings (Table.4.64), showed elevated numbers of the lipid profiles. The
studied lipids were total cholesterol (TC), triglyceride (TG), Low-density lipoprotein (LDL-C), and High-density lipoprotein (HDL-C). They were all at elevated cardiovascular disease risk (>10\%) by Framingham general risk score model. Where among $25.2 \%$ of elevated risk, were in high and very high lipid profiles. There were all scientifically significant ( $\mathrm{p}<0.001$ ). It was also found that the second model (WHO/ISH), displayed $4.5 \%$ of elevated cardiovascular disease risk (>10\%), where lipid profile slightly increased cardiovascular disease risk with $\mathrm{p}<0.001$ (Table 4.65). These findings were also consistent with another study, where an increase in one of the lipid profiles (Total cholesterol) was associated with myocardial infarction and stroke. Hence, its reduction was inversely associated with CVD (Mee et al., 2017).

### 5.5.5 Metabolic syndrome for all participants in the study area

No component of the metabolic syndrome was associated with cardiovascular disease risk by the WHO/ISH model. However, three separate components of the metabolic syndrome (hypertension, Impaired fasting glycemia, and Hypertriglyceridemia) were significant in the reduced model by FGRS. A low level of high-density lipoprotein (HDL) and central obesity was not significant. However, other studies showed an association between cardiovascular disease with an increase in myocardial infarction (MI) risk by central obesity and an increase in stroke risk by HDL (Kazlauskienė, 2015).

The full metabolic syndrome was also statistically significant on the full model with cardiovascular diseases risk by FGRS whether for location or participant's status. This finding is surely consistent with another study result, which clearly demonstrated the association of the metabolic syndrome with cardiovascular diseases (Barbara, 2002; Wilson, 2005).

The findings of this study, regarding metabolic syndrome components relationship with gender. This revealed that only two components were only dominated by females with a significantly high level of abnormalities than the males. The Highdensity lipoprotein was $28.4 \%$ for females versus $10.9 \%$ for males. Whereas Central obesity, was $27.3 \%$ for females versus $9.8 \%$ for males, $\mathrm{p}<0.001$. Other three components among others, impaired blood sugar, Triglyceride, and High blood
pressure were all dominated by men and only significant for High blood pressure. In addition, a high level of blood pressure for metabolic syndrome was $36.6 \%$ for males versus $21.1 \%$ for females, $\mathrm{p}<0.001$ (Table 4.66). Moreover, males were dominated by females with $46.3 \%$ versus $29.3 \%$ of males, among farmer's participants in South Africa (Maritza, 2017).

The total metabolic syndrome prevalence was $38.2 \%$. Its relationship with cardiovascular diseases elevated risk was slightly significant with $12.7 \%$ in elevated risk ( $>10 \%$ ) versus $12.5 \%$ in low risk ( $<10 \%$ ), (Table 4.71). However, a systematic review study carried out in SSA, 2019, showed that according to NCEP-ATP III the prevalence of metabolic syndrome was $17.1 \%$ (95\%CI: 12.8-22.0) (Maritza, 2017). This result is far low than the current prevalence study of $38.2 \%$, (Faijer-Westerink, 2019). The estimates of this African metabolic syndrome prevalence from $17 \%$ to $27 \%$ in 2012 are nearly approaching the current finding figures (Okafor, 2012).

A meta-analysis study carried out by Mottillo concluded that metabolic syndrome was associated with a 2 -fold increase in cardiovascular diseases and a 1.5 -fold, increase in all-cause of mortality (Salvatore et al., 2010).

### 5.6 Cardiovascular diseases traditional risk factors and novel risk differentials among the study participants in the study area

### 5.6.1 Novel risk factors to cardiovascular diseases risk

These study findings are consistent with another study done in 2010, where several studies confirmed the relationship of serum uric acid with cardiovascular disease morbidity and mortality. It stated that an increase of roughly $1 \mathrm{mg} / \mathrm{dl}$ was associated with a roughly 1 -hazard ratio of total mortality and cardiovascular mortality. It was also associated with an increase of about $13 \%$ for metabolic syndrome. Again, a rough increase of one odd ratio for hypertension and a $48 \%$ increase for women's stroke events (Adriana, 2010). C reactive protein was also found to contribute to cardiovascular events and mortality. Moreover, high sensitivity C reactive protein (hs-CRP) with its inflammation-causing capacity was the impetus for complications associated with atherosclerotic plaques (Audrey, 2015; Francisco, 2016).

This study finding displayed CRP to be either associated with cardiovascular disease risk by FGRS with AOR=4.482(2.03-9.88), $\mathrm{P}=0.001$ or by WHO/ISH model $\mathrm{OR}=5.535(1.33-22.95), \mathrm{p}=0.01$. This result showed that CRP had an obvious association with cardiovascular disease risk. This is consistent with other studies that demonstrated CRP to be both a marker and mediator of atherosclerosis. Moreover, it is an independent predictor of abrupt heart death, ischemic stroke, myocardial infarction, and finally cardiovascular events (Amit, 2015; Zhuang, 2019; Koosha et al., 2020). Serum uric acid was neither associated with cardiovascular disease risk by FGRS nor the WHO/ISH model in this study. In contrary to other studies, which showed the association of Serum Uric Acid (SUA) with cardiovascular diseases (Muiesan, 2016; Rahimi-Sakak, 2019).

Moderate and high Glycosylated hemoglobin (HB1Ac) were associated with cardiovascular disease risk by only the FGRS model. Other studies demonstrated that HB1AC could be a predictive biomarker for coronary artery disease in non-diabetic (Ewid et al., 2019) and diabetic patients. Hence, the increase of HB1Ac was positively associated with cardiovascular diseases and fatal coronary heart diseases (Zhang, 2012; Jennifer et al., 2013; Danesh et al., 2014).

### 5.6.2 Traditional risk factors to cardiovascular diseases risk

The findings of this study showed that male employees dominated other groups with a high prevalence of people with traditional risk factors. Except for levels of general obesity, central obesity, inactivity, and high triglyceridemia for Kicukiro female spouses. Obviously, Rubavu female spouses presented a low level of cardiovascular disease traditional risk factors than all other groups (Table 4.75). It was clearly depicted in another study, comparing traditional risk factors for south Asian countries and European countries. This showed that the TC/HDL ratio and diabetes explained the excess of risk factors in south Asia more than in Europe (Rabanal et al., 2017).

Kicukiro study participants (Employees and spouses) dominated Rubavu study participants (Employees and spouses) with a high prevalence of cardiovascular risk (>= 10\%) (Table 4.76). Where, $18.6 \%$ versus $6.8 \%$ of elevated cardiovascular risk
(>=10\%) by FGRS model, for Kicukiro and Rubavu study participants, respectively. Even the second model (WHO/ISH score chart) showed that the prevalence of elevated cardiovascular risk ( $>=10 \%$ ) dominated with $3.1 \%$ versus $1.3 \%$ of Kicukiro and Rubavu study participants, respectively. Therefore, traditional risk factors were practical guidance that heralded the development of the prediction and treatment of cardiovascular diseases. Risk factors don't immediately mean causality. However, they can in one way or another, explain the increase in disease and mortality events. They can be the basic targets for treatment, and modification to delay, and or prevent cardiovascular diseases (Emil, 2012).

These study findings showed that three unmodifiable factors were significant by the FGRS reduced model (Gender/Male, age, and family member who suffer CVDs). On the other hand, relationships with family members who died from CVDs and age were significant by the WHO/ISH reduced model. This result is similar to other studies where age was demonstrated as an independent risk factor for cardiovascular diseases (Dhingra, 2012).

Males were found to have a higher incidence of cardiovascular diseases than females. Even though women were more prone to high hospitalization rate and mortality due to cardiovascular diseases (stroke, heart failure, heart failure and coronary heart disease, stroke) (Zujie, 2019). The two models showed a segregated significance concerning the two factors (The family member who suffers CVDs and the Family member who died from CVDs). However, other studies demonstrated that there was an increased risk of sudden cardiac death (SCD) four-fold and two-fold for firstdegree and second-degree relatives, respectively (Ranthe, 2013). Another study showed that $12.2 \%$ of CVD patients reported having a parent or sibling with a heart attack or angina before age 50 years (Emelia, 2017).

Even though the WHO/ISH did not show significance to workplace factors, the FGRS model demonstrated the industrial exposure to two factors. The models showed that radiation and high stress were associated with cardiovascular disease risk. In fact, this is similar to other studies that revealed the link between occupational stress with cardiovascular diseases (Jian, 2016), (Luigi et al., 2018). Concerning occupational radiation exposure, the International Commission for
radiological protection (ICRP) elaborated on this issue. The commission showed that after 10 years exposure to a dose of 0.5 Sievert (Sv) may cause the development of cardiovascular diseases in $1 \%$ of exposed people to radiation. Moreover, the undetectable radiation dose-risk level was below 0.5 Grey (Gy) (Baselet, 2016). Another study done in England did not reveal any effect of radiation cumulative exposure below 0.1 Sv. However, heart disease was only detected in people exposed around 40 years on more than 0.4 Sv . Yet, the mortality was low in this cohort (Zhang, 2019). Moreover, each Gamma-ray is approximately ten times more energetic than an X-ray and $100 \mathrm{rad}=1$ sievert=1 Gray.

Eight modifiable general factors (urban place, being employee, sedentarity, secondhand smoking, general obesity, central obesity, and updated hypertension) were studied. These factors were not statistically significant in the reduced model by FGRS. On the other hand, twelve general modifiable factors were also studied. Those factors are: (location, participant status, sedentarity, physical inactivity, low fruit intake, low vegetable intake, tobacco smoke, second-hand smoking, general obesity, central obesity, and updated hypertension). They were not statistically significant in the reduced model by WHO/ISH model. However, other studies have demonstrated the link between cardiovascular diseases with urbanization (Smith, 2012), sedentarity, general obesity and central obesity (Carl, 2019), and second-hand smoking (Olasky, 2012). Being either employee or spouse was not significantly linked to cardiovascular diseases in the full model of all general risk factors, probably due to the crossover effect of employees to spouses or vice versa or due to lifestyle sharing (Kang, 2017).

Eight general modifiable risk factors were statistically and significantly linked to cardiovascular diseases. However, one of them taking alcohol in the last 30 days was not alone significant. It was only significant in association with the time of exceeding four drinks by women and five drinks by women. The more times the person exceeds the standards, the more the association becomes high AOR=11.162(4.58-27.15). This result is consistent with other studies where the link to cardiovascular diseases was established for alcohol (Larsson, 2020), inactivity (Carl, 2019; Ahad, 2016), diabetes (Alessandra et al., 2013; Leon, 2015), and hypertension (Flávio, 2019). The fruit and vegetable intake was inversely associated with cardiovascular diseases, cancer, and
premature death. An estimate of 5.6 to 7.8 million worldwide premature death was attributed to Low fruit (<500g/day) and vegetable (<800g/day) intake in 2013 (Karl, 2012; Dagfinn, 2017). Another study showed that cardiovascular diseases and mortality were reduced by fruits and vegetables eating at a level of three to four servings per day (equivalent to 375-500 g/day), (Victoria et al., 2017). In addition, a reduction of peripheral vascular diseases (Heffron, 2017).

### 5.7 Conclusions

1. This study showed that cardiovascular disease risk is high in employees than in spouses for both two models (Framingham general risk score and WHO/ISH model). Although the ROC Curve of the Framingham risk score model and WHO/ISH is perfect for a correlated rater, their level of agreement is minimal. This brings an issue of overestimation in Framingham general risk score and underestimation in WHO/ISH score chart. The use of the above well-performing prediction model in clinical and preventative medicine practice is important until the development of a local model.
2. This study showed that amongst the 7 behavioral factors, three (alcohol, oil, and sedentarity) were consumed a lot more by the society than other factors (Smoking, Fruits, and vegetables, and Physical activities). It was also found that the weekly quantity and servings consumptions for fruits and vegetables were low. Only smoking, low fruit and vegetable intake, sedentarity, and excessive alcohol intake were significantly associated with cardiovascular disease risk.
3. It was found that among the 8 working conditions (Shift work, night shift, occupational stress, much sound, vibration, cold, chemical substance, and radiation), shift work, night shift and chemical handling/ or encountering were with an elevated proportion of the study participants. Only 4 working conditions (Nightshift, occupational stress, much sound $>85 \mathrm{db}$, and radiation) were statistically associated with cardiovascular disease risk.
4. The study determined that the awareness level of three variables (if controlling hypertension, diabetes, and dyslipidemia) can help to prevent cardiovascular diseases was below fifty percent for all study participants. It
was also found that the chemical handling and sound exposure negative effect can be controlled. The higher the frequency of wearing personal protective equipment, the lower the risk of developing cardiovascular diseases for employees.
5. The study found that among the 6 biological factors (Hypertension, diabetes, general obesity, central obesity, dyslipidemia, and metabolic syndrome), only three variables (hypertension, central obesity, and metabolic syndrome) have the elevated levels than the three remaining factors. Although the HBP prevalence was around one-third of the study population by the measurement of the old threshold, it was almost doubled with the new threshold measurement. This could increase the queue at the hospital and reduce the treatment quality. It was equally shown that hypertension and diabetes are the prominent risk factors associated with cardiovascular diseases elevated risk.
6. This study found that among the novel risk factors, Glycosylated hemoglobin (HB1AC) and C reactive protein (CRP) presented more levels than serum uric acid (SUA). It was also found that elevated levels of glycosylated hemoglobin and C reactive protein were significantly associated with cardiovascular disease risk. There is no significant difference found across all groups regarding glycosylated hemoglobin. However, Kicukiro male employees and Rubavu male spouses have high levels of SUA while it is Kicukiro male employees only who have elevated CRP. It was also found that the difference between groups was significant regarding the traditional factors. Kicukiro male employees and Rubavu male employees dominated other groups on larger alcohol intake, physical inactivity, stress, and low fruits intake. Whereas Kicukiro female Spouses dominated other remaining groups on, central obesity and sedentarity.

### 5.8 Recommendations

i. This study's findings on the cardiovascular diseases risk prediction showed that a third of the respondents had an elevated risk of developing cardiovascular diseases in ten years. It is recommended to ensure the
proactive prevention of cardiovascular diseases by using the Framingham general risk score.
ii. This study showed the effect of behavioral factors on cardiovascular diseases factors. It is recommended to ensure the moderation of these behavioral predisposing factors and increment of behavioral protecting factors. It is also recommended to the ministry of health and the agricultural ministry for a joint Agri-health effort program. To ensure the availability and preparation of indigenous and improved fruits and vegetables for daily consumption.
iii. This study's findings on workplace conditions, are the first findings for elucidating the manufacturing industry factors toward cardiovascular disease risk in Rwanda. It is recommended to the ministry of health, the Ministry of labor, and industry administrations to ensure the safety of employees. Hence, observing the safety requirement (PELs, TWA, TLV), creating workplace health policies to protect employees, minimize the risk, and increase the employee's longevity and production.
iv. This study's results determined that the awareness of hypertension, diabetes, and metabolic syndrome diseases was low in the study area. Wearing personal protective equipment was associated with a protective capacity against the chemical and sound harm to employees. It is, hence, recommended to create a cultural-based occupational and community awareness. It is also recommended to ensure the use of tangible cues to action, instead of using force in the unknown or vacuum in the industrial safety.
v. The findings of this study on biological factors are the prominent risk factors for cardiovascular diseases. It is recommended to the ministry of health, adopt, and practice the approach of hypertension level-based prevention strategies. To ensure the early non-pharmacological interventions are applied and monitored. To ensure the awareness of personal responsibility, choice of oil by label check to reduce unnecessary saturated fat and trans-fat.
vi. This study's results highlighted the difference between groups and showed that employees are having high cardiovascular disease risk than spouses. It is recommended to track the Workplace exposure effect on workers by
monitoring the levels of traditional and Novel risk factors. Ensuring the people accompaniment by cultural theories to change their lifestyle.

### 5.9 Suggestion for further studies

- A follow-up study of the local population to create our own national model to predict cardiovascular diseases.
- Study the pure African culture-related theories to fight cardiovascular diseases with a highlight of the difference of African American population due to the slavery and colonization epigenetic and long-term stress on hypertension.
- Study of African obesity versus African values of being obese (fat) as taken to be healthy and rich.


### 5.10 Contribution of the current study to learning

- The first and foremost contribution is the comparison of the WHO/ISH model and the Framingham general cardiovascular risk prediction model. Additionally, in the Rwandan population of industrial brewery employees and their spouses' community. Hence, it has a direct implication in:
- Early quantification of cardiovascular disease burden at workplace and community.
- It implies also proactive management of the burden and quality of health improvement.
- Informing the future follow-up study to create our own model due to poor agreement of the two models, which was not yet used by the local population.
- Early highlight of Professional implication of new cutoff of Hypertension-onhypertension prevalence increment, consultation long lines, which will consequently, increase poor service, High utilization of antihypertensive drugs. Hence, underscores the capital importance of health promotion to curb the issue and balance the middle ground scale before treatment and after the treatment of the Rwandan population.
- Highlight the beverage industry's chemical presence with departmental differential use and risk. It contributed also to the minimization of chemical impact on the employees with safety measures toward a standardized Rwandan workplace safety without cardiovascular diseases and other diseases due to chemical manipulation.
- The implication goes beyond the risk reduction and minimization with the creation of a properly secured workplace and community environment safe from cardiovascular diseases.
- Highlight the impact of workplace stress, night shift, sedentary, and inactivity. In addition, indicate their great and growing negative effect on the development of metabolic diseases and cardiovascular disease risk. Thus, a reduction in production in the Rwandan workplace.
- Inform the policymakers on the industrial working conditions to facilitate the development of standardized country workplace policy. Moreover, serve as a relevant model to heighten worksite health and minimize the negative effect of hazardous activities.
- Due to the accumulation of many harmful behaviors, which increases the development of non-communicable diseases among other cardiovascular diseases. It has been shown by the high prevalence of hypertension before and after the new cutoff despite the treatment guidelines.
- This study has informed the development of a culture behavior change theory concept (Culture treason theory). This theory was fostered after realizing the growing tension of cardiovascular diseases and difficulties of behavior change.
- Its development will positively influence future preventive and rehabilitative approaches. In addition, it will support instilling the inner behavioral power change and alternative proposition. Moreover, this theory concept was clearly and deeply developed elsewhere out of this thesis.
- This study has also contributed to the highlight of novel risks, and their association with cardiovascular diseases. In addition, explained novel risk, which could be used in model development prior to a cohort study.


## REFERENCES

Abu, F. R.(2018). Shift Work and the Risk of Cardiovascular Diseases and Metabolic Syndrome Among Jordanian Employees. Oman Med J. 33(3), 235-242.

Adriana, I. A. (2010, Jul). Serum uric acid and cardiovascular disease,. Maedica (Buchar)/A journal of clinical medecine, 5(3), 186-192.

Ahad, W. N. (2016). Quantifying the Association Between Physical Activity and Cardiovascular Disease and Diabetes: A Systematic Review and Meta Analysis. J Am Heart Assoc, 5, e002495.

Akinnuli, B., Dahunsi, O., Ayodeji, S., \& Bodunde, O. (2018). Wholebody vibration exposure on earthmoving equipment operators in construction industries, Cogent. Engineering, 5(1), 1507266..

Alberti, K. Z. (2005). Themetabolic syndrome, new worldwide definition. The Lancet, 366(9491), 1059-1062.

Aldo, A. M.-G. (2018). Update in the Early Management and Reperfusion Strategies of Patients with Acute Ischemic Stroke. Critical Care Research and Practice, 15.

Alessandra, S., Lucianne, R., Roberta, A., Catia, C., Carlos, A., \& Marilia , d. (2013). Impact of Diabetes on Cardiovascular Disease: An Update. International Journal of Hypertension,10(1155), 653789.

Ambar, K. A. (2014). Urban-Rural Differences in Coronary Heart Disease Mortality in the United States:1999-2009. Public Health Rep, 129(1), 19-29.

Ambrose, J. B. (2004). The pathophysiology of cigarette smoking and cardiovascular disease: an Update. J Am Coll Cardiol,43(10), 1731-7.

American Heart Association. (2005). Heart Disease and Stroke Statistics: 2005 Update. . Dallas, TX: AHA.

Amit, K. S. (2015). C-reactive protein, inflammation and coronary heart disease. The Egyptian Heart Journal, 67, 89-97.

Anne, E. P. (2004). heart disease and work,heartjournal, 2004;. Heart Journal, 90,1077-1084.

Anokye, M. A. (2020). Sample size determination in survey research. Journal of scientific research \& resports, 26(5), 90-97.

Ansell, B. N. (2004). Anti-inflamatory properties of HDL. RevEndocr Metab Disord, 51-358.

Aoyama, A., Yamaoka-Tojo, M., Obara, S., Shimizu, E., Fujiyoshi, K., Noda, C., . . . Ako, J. (2019). Acute Effects of Whole-Body Vibration Training on Endothelial Function and Cardiovascular Response in Elderly Patients with Cardiovascular Disease. Int Heart J, 60(4), 854-861.

Apovian, C. B. (2008). Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial function in obese subjects. Arterioscler Thromb Vasc Biol, 28, 1654-1659.

Apovian, C. N. (2012, March 6). Obesity and cardiovascular disease. Circulation, 125(9), 1178-82.

Arend, M. A. (2007, Sept). Clinical epidemiology of heart failure. Heart, 93(9), 1137-46.

Arranz, S. G.-B.-M.-R.-R. (2012). Wine, Beer, Alcohol and Polyphenols on Cardiovascular Disease and Cancer. Nutrients, 4(7), 759-781.

Arvind, R. D. (2015). Implications of Cardiovascular Disease Risk Assessment Using the WHO/ISH Risk Prediction Charts in Rural India. PLOS ONE; 10(8), e0133618.

Ashley, E. N. (2004). Cardiology Explained. London: Remedica.

Assadi, S. N. (2018). Electrocardiographic changes and exposure to solvents. Journal of Arythmia, 34(1), 65-70.

Assiamira, F. E.-C. (1997). Total, LDL, and HDL Cholesterol Decrease with Age in Older Men and Women, the Rancho Bernardo Study 1984-1994, Circulation., 96, 37-43.

Audrey, H. W. (2015). Relation of serum uric acid to cardiovascular disease. international journal of cardiology. 213, 4-7.

Auley, D. G. (2013). Comparative study of risk factors of cardiac diseases amongurban and rural population, . Int J Hum Genet. , 15-9.

Azam, L. R. (2018). Factors Predicting Self-Care Behaviors among Low Health Literacy Hypertensive Patients Based on Health Belief Model in Bushehr District, South of Iran. Int J Hypertension. 14(1), 4-12.

Babisch, W. (2003). Stress hormones in the research on cardiovascular effects of noise. Noise Health, 5(18), 1-11.

Balder, J. W. (2017). Lipid and lipoprotein reference values from 133,450 Dutch Lifelines participants. Journal of Clinical Lipidology, 1, 11(4), 1055-1064.e6.

Bantis, L. F. (2016). Comparison of two correlated ROC curves at a given specificity or sensitivity level. Stat Med., 35(24), 4352-67.

Bantle, J. R. (2000). Effects of dietary fructose on plasma lipids in healthy subjects. Am J Clin Nutr , 72, 1128-1134.

Barbara, E. R. (2002, Oct). Components of the Metabolic Syndrome and Risk of Cardiovascular Disease and Diabetes in Beaver Dam. DIABETES CARE, 25(10), 94-112..

Basavakumar, S. A. (2017). assessment of work-related stress and its associated factors among managerial staff in an industry. National Journal of Research in Community Medicine, 6(1), 009-014.

Baselet, B. C. (2016). Cardiovascular diseases related to ionizing radiation: The risk of low-dose exposure (Review. International journal of molecular Medicine, 1623-1641.

Bengt, S. (2015). Cardiovascular Disease. In S. C. Bengt, \& B. A. Gunnar F. Nordberg (Ed.), Handbook on the Toxicology of Metals (Fourth Edition) (Vol. I, pp. 313-331). New York: Elsevier academic

Bergman, R. K. (2006). Why visceral fat is bad: mechanisms of themetabolic syndrome. Obesity. Silver Spring, 14(supp11), 16S-19S.

Berrington, d. G.-C. (2010). Body mass index and mortality among 1.46 million white adults. $N$ Engl JMed, 363, 2211-2219.

Beverly, M., Ikenna, C. E., Ramadhani, A., Salim, A., Paul, K., Marcel, T., . . . Nicole, P.-H. (2018). Insufficient Fruit and Vegetable Intake in a Low- and Middle-Income Setting: A Population-Based Survey in Semi-Urban Tanzania. Nutrients, 10, 222.

Bhui, K. S.-M. (2016). Perceptions of work stress causes and effective interventions in employees working in public private and non-governmental organisations: a qualitative study. BJPsych Bulletin, 40, 318-325,.

Bin, L. S. (2012). Effects of Cold Air on Cardiovascular Disease Risk Factors in Rat. Int. J. Environ. Res. Public Health, 9, 2312-2325.

Bitsika, V. S. (2014). HPA and SAM axis responses as correlates of self- vs. parental ratings of anxiety in boys with an Autistic Disorder. Physiol. Behav., 127, 17.

Bitton, A. G. (2010). The Framingham Heart Study's impact on global risk assessment. Progress in Cardiovascular Diseases, 53(1), 68-78.

Bjorn, b. c. (2016). cardiovascular diseases related to ionizing radiation: the risk of low-dose exposure (review. international journal of molecular medicine, 38, 1623-1641.

Blackburn, H., \& Darwin, 1. (2012, Nov). Stories From the Evolution of Guidelines for Causal influence in epidemiologic association:1953-1965. AJE. American journal of epidemiology, 176(12), 1071-1077.

Bodil, B. L. (2006). Vibration exposure and myocardial infarction incidence:the VHEEP case-control study,. Occupational Medicine, 56, 338-344. doi:doi:10.1093/occmed/kql024

Bolger, N. D. (1989). The contagion of stress across multiple roles. Journal of Marriage and Family,, 51, 175 - 183.

Bozkurt, B. (2021). Universal Definition and Classification of Heart Failure. Journal of cardiac failure. 27(4), 387-413.

Bradburn, M. C. (2003). Survival Analysis Part II: Multivariate data analysis - an introduction to concepts and methods. British Journal of Cancer, 89, 431 436.

Brainerd, E. C. (2004). Autopsy on an Empire: Understanding Mortality in Russia and the Former Soviet Union.NBER working paper 10868, National Bureau of Economic Research. Cambridge, MA. Retrieved from http://www.nber.org/papers/w1086

Brathwaite, R. A. (2015). A Systematic Review of Tobacco Smoking Prevalence and Description of Tobacco Control Strategies in Sub-Saharan African Countries;2007 to 2014. PLoS ONE, 10(7), e0132401.

Bray, G. A. (2004). Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr, 79(4), 537-43.

Bridget, M. K. (2019). Sleep Duration Linked to Cardiovascular Disease, Circulation., 139, 2483-2484.

Brown, C. D.-P. (2008). Sugary drinks in the pathogenesis of obesity and cardiovascular diseases. International Journal of Obesity, 32, S28-S34.

Buitrago, F., Juan, I., Lourdes, C., Gerónimo, P., Luis, M., Manuel, E., \& al., e. (2011). Original and REGICOR Framingham Functions in a Nondiabetic Population of a Spanish Health Care Center:A Validation Study. Ann Fam Med, 9(5), 431-8.

Bulka, C. M. (2019). Association of occupational exposures with cardiovascular disease among US Hispanics/Latinos. heart, 105, 439-448.

Butkiewicz, M., Wang, Y., Bryant, S., Lowe , E., Weaver, C., \& Meiler, J. (2017). "High-throughput screening assay datasets from the PubChem database,". Chemical Informatics, 3(1), 1 .

Carl, J. L. (2019). Sedentary Behavior, Exercise, and Cardiovascular Health. Circ Res., 124, 799-815.

Carmoa, G. M. (2008). Can we measure the ankle-brachial index using only a stethoscope, A pilot study,. Oxford journal fp,, 22-26.

Carnethon, M. W. (2009). Worksite wellness programs for cardiovascular disease prevention: a policy statement from the American Heart Association. Circulation, 120, 1725-41.

Carnevale, F., \& Iavicoli, S. (2014). Bernardino Ramazzini (1633-1714): a visionary physician, scientist and communicator. Occupational and Environmental Medicine, 72(1), 2-3

Casey, S.(2019). The reliability of the ankle brachial index: a systematic review. $J$ Foot Ankle Res 12, 39.

Cassani, R. S. (2009). Prevalence of Cardiovascular Risk Factors in a Population of Brazilian Industry Workers, . Arq Bras Cardiol, 92(1), 15-21.

Corey, C. G., King, B. A., Coleman, B. N., Delnevo, C. D., Husten, C. G., Ambrose, B. K., \& Apelberg, B. J. (2014). Little filtered cigar, cigarillo, and premium cigar smoking among adults—United States, 2012-2013. MMWR. Morbidity and mortality weekly report, 63(30), 650.

Cavagioni, L., \& Pierin, AMG (2012). Cardiovascular risk among health professionals working in pre-hospital care services. Journal of the USP School of Nursing, 46, 395-403.

CDC. (2004). Preventing Heart Disease and Stroke: Addressing the Nation's Leading Killers. National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Department of Health and Human Services. Atlanta: CDC At-A-Glance Report.).

Chan, W. P. (2015). Ankle-Brachial Index Measurement. Medline, 2(6), e000257.

Chen, X. Z. (2015). Regulation of Coronary Endothelial Function by Interactions between TNF- $\alpha$, LOX-1 and Adiponectin in Apolipoprotein E Knockout Mice. J Vasc Res, 52, 372-382.

Chia, Y. G. (2015). Validation of the Framingham general cardiovascular risk score in a multiethnic Asian population: a retrospective cohort study. $B M J, 5$, e007324.

Chong, A. (2016). Home and work stress spillover: the roles of social support and positive reappraisals. Unpublished PhD desertation, Ohio: Kent State University.

Christopher, C. I. (2014 ). Family history of cardiovascular disease (CVD), perceived CVD risk, and health-related behavior: A review of the literature. J Cardiovasc Nurs, 29(2), 108-129.

Chu-Hong, L. S.-T.-X.-Q.-Q.-H. (2015). Community-based interventions in hypertensive patients: a comparison of three health education strategies. $B M C$ Public Health., 15, 33.

Chung, H.(2017). Carbon disulfide exposure estimate and prevalence of chronic diseases after carbon disulfide poisoning-related occupational diseases. Ann of Occup and Environ Med. 29, 52.

Clark, T., \& Bradburn, M. L. (2003). Survival analysis. Part I: basic concepts and first analyses. . Br J Cancer , 89, 232-238.

Clemes, S. P. (2014). Sitting time and step counts in office workers. Occup Med, 64(3), 188-92.

Cohen, S. J.-D. (2007). Psychological stress and disease. . JAMA, 298(14), 1685-7.

Colby, S. P., \& Karen, H. (2014). Validation of the Use of the Effort-Reward Imbalance Scale in Human Services Using Confirmatory Factor Analysis, Journal of the Society for Social Work and Research, 5(4), 565-587.

Cole, TB. (2019). Smoking Cessation and Reduction of Cardiovascular Disease Risk. JAMA. 322(7), 651.

Cooper, C. M. (2013). Occupational Sources of Stress: A Review of the Literature Relating to Coronary Heart Disease and Mental Ill Health In: Cooper C.L. (eds) From Stress to Wellbeing Volume 1 (Vol. 1). London, UK: Palgrave Macmillan.

Corner, M. (2002). Health Behaviors, UK: University of Leeds.

Cornner, M., \& Norman, P. (1996). Predicting Health Behaviour. UK: Buckingham.

Coronel, R. d. (2001). Defining heart failure, On behalf of the editorial team of Cardiovascular Research. Cardiovascular Research, 419-422.

Coupland, A. P. (2017). The definition of stroke. Journal of the Royal Society of Medicine, 110(1), 9-12.

Covas, M. (2004). The Mediterranean Diet and the Contribution and Role of Alcohol. In Comprehensive Handbook of Alcohol Related Pathology (Vol. 1). San Diego,, USA: ElsevierAcademic Press.

Cox, D. (1972). Regression models and life tables (with discussion),. Journal of the Royal Statistical Society, ,Series B 34, 187-220.

Cruz, S. L. (2014). Review of toluene action: clinical evidence, animal studies and molecular targets. Journal of drug and alcohol research, 3(10), 4303.

Cui, Y., Blumenthal, R. S., Flaws, J. A., Whiteman, M. K., Langenberg, P., Bachorik, P. S., \& Bush, T. L. (2001). Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Archives of internal medicine, 161(11), 1413-1419.

Cynthia, C. W., Marcos, S., Monica, L. Z., Raul, C., Marcos, Z., Ronaldo, R. L., \& Ilana, P. (2011, Dec). Differences in drinking patterns between men and women in Brazil,. Brazilian Journal of Psychiatry, 33(4). S1516.

D'Agostino, R. B. (2011). Validation of the Framingham Coronary Heart Disease Prediction Scores. Jama, 286(2), 180-187.

D’Agostino, R., Ramachandran, S., Vasan, M., Pencina, P., Wolf, M., Joseph, M., \& al, e. (2008). General Cardiovascular Risk Profile for Use in Primary Care, The Framingham Heart Study. Circulation., 117, 743-53.

D'Angelo, G. E. (2005). Fructose feeding increases insulin resistance but not blood pressure in Sprague-Dawley rats. Hypertension;, 46, 806-811.

Dagfinn, A. (2012). Soft drinks, aspartame, and the risk of cancer and cardiovascular disease. Am J Clin Nutr, 96, 1249-51.

Dagfinn, A. E. (2017). Fruit and vegetable intake and the risk of Cardiovascular disease, total cancer and all cause mortality-a systematic review and dose response meta-analysis of prospective studies. International Journal of Epidemiology, 1029-1056.

Dagfinn, A. N. (2016). Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and causes pecific mortality systematic review and dose-response meta-analysis of prospective studies,. BMJ, 353, i2716.

D'Agostino RB., ,. G. (2001). Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA, 286(2), 180-7.

Danesh , J., Emanuele , D., Pei , G., Hassan , K., Adam , S., David, W., \& Stephen , K. (2014). Glycated Hemoglobin Measurement and Prediction of Cardiovascular Disease. JAMA, 311(12), 1225-1233.

Daniel, A. L., \& G. F. (2009). Behavioural biologists don't agree on what constitutes behavior. Animal behaviour, 78(1), 103-110.

Daniel, I. F.-H. (2008). Uric Acid and Cardiovascular Risk,. Engl J Med, 359(17), 1811-1821.

Daniel, J. (2017, Jan). What Is a Safe Noise Level for the Public?,. AJPH, 107(1).

David, M. N. (2007). Impaired Fasting Glucose and Impaired Glucose Tolerance, Diabetes Carer, 30(3), 753-759.

David, P., Mark , A., Sidney, C., Richard, C., Jeffrey, W., Michael , A., . . . \& Joseph, L. (2004). , Atherosclerotic Vascular Disease Conference, Executive Summary: Atherosclerotic Vascular Disease Conference Proceeding for Healthcare Professionals From a Special Writing of the American Heart Association. Circulation, 109(21), 2595-2604.

Davood, K., Farzad , H., Hamid, S., Ewout , W., Mohammadreza , B., \& Fereidoun, A. (2012). Clinical Usefulness of the Framingham Cardiovascular Risk Profile Beyond Its Statistical Performance,The Tehran Lipidand Glucose Study. AJC,, 76(3).

Deborah, K.-G. A. (2015). Awareness of Cardiovascular Disease and Preventive Behaviors among Overweight Immigrant Latinas. J Cardiovasc Nurs., 30(5), 447-455.
de Groot, R. (2019). Urban-rural differences in the association between blood lipids and characteristics of the built environment: a systematic review and metaanalysis. BMJ global health. 4(1), e001017.
deKoning, L. M. (2007, Apr). Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J, 28(7), 850-6.

DeKoning, L. M. (2012). Sweetened beverage Consumption, incident coronary heart disease, and biomarkers of risk in men. Circulation, 126, 1301-1313.

DeMarco, M., Josef, C., Mark , W., Kenneth , R., W., H., Thomas , H., . . . Cheryl , A. (2011). Hypertension Status, Treatment and Control among Spousal Pairs in a Middle-aged Adult Cohort. Am J Epidemiol. 174(7), 790-796.

Despres, J. (2012). Body Fat Distribution and Risk of Cardiovascular Disease an Update. Circulation., 126, 1301-1313.

Dhandevi, P. R. (2015, Oct). Fruit and Vegetable Intake: Benefits and Progress of Nutrition Education Interventions- Narrative Review Article. Iran J Public Health, 44(10), 1309-1321.

Dhingra, R. (2012). Age as a Cardiovascular Risk Factor. Med Clin North Am, 96(1), 87-91.

Dokken, B. B. (2008, JUL). The Pathophysiology of Cardiovascular Disease and Diabetes: Beyond Blood Pressure and Lipids. Diabetes Spectrum, 21(3), 160165.

Donadini, G. S. (2008). Arsenic, Cadmium and Lead in Beers from the Italian Market. J. Inst. Brew, 114(4), 283-288.

Douglas, S. L.(2009). Cardiovascular Outcomes Research Team. Trends in risk factors for cardiovascular disease in Canada: temporal, socio-demographic and geographic factors. cmaj. 4(3-4), E55-66.

Dujrudee, C. N. (2018). Comparison of Gender Differences in Smoking Behaviors, Intention to Quit, and Nicotine Dependence among Thai University Students,. Journal of Addiction, 2018, 1155.

Dzhambov, A. D. (2016). Heart disease attributed to occupational noise, vibration and other co-exposure: Self-reported population-based survey among Bulgarian workers. Med Pr., 67(4), 435-45.

Eberly, L. A., Rusingiza, E., Park, P. H., Ngoga, G., Dusabeyezu, S., Mutabazi, F., ... \& Bukhman, G. (2019). 10-Year heart failure outcomes from nurse-driven clinics in rural sub-Saharan Africa. Journal of the American College of Cardiology, 73(8), 977-980.

Eckardstein, A. H. (2005). Current understanding of the metabolism and biological actions of HDL. Curr Opin Clin Nutr Metab Care, 8, 147-152.

Edyta, S. E. (2018). Relationship Between Sitting Time, Physical Activity, and Metabolic Syndrome Among Adults Depending on Body Mass Index (BMI),. Med Sci Monit, 24, 7633-7645.

Elisa, U. (2010). Occupation health and safety report. Australia: Mc grow.

Elizabeth, B. (2018). Moran Trends in Healthcare Expenditures Among US Adults With Hypertension: National Estimates, 2003-2014. Journal of the American Heart Association. 7, e008731.

Elliott, S. K. (2002). Fructose, weight gain, and the insulin resistanc syndrome. Am J Clin Nutr, 76, 911-922.

Emelia, J. B. (2017). Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation, 135(10), e146-e603.

Emil, M. d. (2012). The Evolution and Refinement of Traditional Risk Factors for Cardiovascular Disease. Cardiol Rev, 20(3), 118-129.

Eng, J. M. (2016). Impact of a Workplace Health Promotion Program on Employees Blood Pressure in a Public University. PLoS One., l(2), e0148307.

Eric, J. S. (2010, August 17). Physical Physica Activity and Cardiovascular Health, Lessons Learned From Epidemiological Studies Across Age, Gender, and Race/Ethnicity,. Circulation, Volume 122,(Issue 7).

European Agency for Safety and Health at Work. (2008). Workplace exposure to vibration in Europe: an expert review. UK: Office for Official Publications of the European Communities.

Ewid , M., Hossam , S., Syed , M., Nazmus , S., Wael, A., Omer , R., . . . \& Rami, A. (2019). Glycated hemoglobin predicts coronary artery disease in non-diabetic adults. BMC Cardiovascular Disorders, 19, 309.

Faijer-Westerink, H. J., Kengne, A. P., Meeks, K. A., \& Agyemang, C. (2020). Prevalence of metabolic syndrome in sub-Saharan Africa: A systematic review and meta-analysis. Nutrition, Metabolism and Cardiovascular Diseases, 30(4), 547-565.

FAO. (2017). fruit and vegetables for health initiative,WHO/FAO Joint report. Geneva: FAO.

Farah, V. E. (2006). Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci, 130, 41-50.

Flávio, D. F. (2019). High Blood Pressure and Cardiovascular Disease. Hypertension, 75, 285-292.

Florin, M. M. (2011). Exposure to cold environments at working places and cardiovasculare disease. rcis, 33, 197-208.

Francesco, P. C. (2016). Cardiovascular disease and hypertension in sub-Saharan Africa: burden, risk and interventions. Intern Emerg Med., 11, 299-305.

Francisco, A. H. (2016). High-Sensitivity C-Reactive Protein and Cardiovascular Disease across Countries and Ethnicities,. Clinics (Sao Paulo), 71(4), 235242.

Frank, L. T. (2018). Prevalence, awareness, treatment, and control of hypertension in Cameroonians aged 50 years and older: A community- based study. Health Sci Rep, 1, 44.

Frary, C. J. (2005). Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc, 105, 110-113.

Epstein, F. H. (1996). Cardiovascular disease epidemiology: a journey from the past into the future. Circulation, 93(9), 1755-1764.

Fujii, Y., Kishimoto, S., \& Higashi, Y. (2020). Finger blood flow after the cold challenge with primary Raynaud's syndrome: a case report. European heart journal. Case reports, 4(6), 1-5.

Fung, T. M. (2009). Sweetened beverage Consumption and risk of coronary heart disease in women. Am J Clin Nutr, 89, 1037-42.

Fuster, V. (2014). Global Burden of Cardiovascular Disease, Time to Implement Feasible Strategies and to Monitor Results. Journal of the American college of Cardiology, 64.

Fuster, V., Kelly, B. B., \& Vedanthan, R. (2011). Promoting global cardiovascular health: moving forward. Circulation, 123(15), 1671-1678.

Ganesan, K. K. (2018). Impact of consumption and cooking manners of vegetable oils on cardiovascular diseases- A critical review,. Trends in Food Science \& Technology, 71, 132-154.

Genuth, S. A. (2003). Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care, 26(11), 3160-3167.

Gersh, B. S. (2010). Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J., 31(16), 642-648.

Gessner, B.D.(2019). A Systematic Review of Systemic Cobaltism After Wear or Corrosion of Chrome-Cobalt Hip Implants.Journal of patient safety.15(2), 97-104.

Giuseppe, M. R. (2013). 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). European Heart Journal, 34(28), 2159-2219,.

Gonullu, H. K. (2011). ST Elevation Myocardial Infarction Due to Carbon Monoxide Poisoning. The Eurasian journal of medicine, 43(2), 125-128.

Grundy , S. (2006). Metabolic syndrome: connecting and reconciling cardiovascular and diabetesworlds,". Journal of theAmerican College of Cardiology, 47(6), 1093-1100.

Grundy, S. C. (2005). Diagnosis and management of the metabolic Syndrome: an American Heart Association/NationalHeart, Lung, and Blood Institute Scientific statement. Circulation, 112(17), 2735-2752.

Gul, F.(2022). Peripheral Vascular Disease. In: StatPearls.Treasure Island (FL): StatPearls.

Guwatudde, D., Nankya-Mutyoba, J., Kalyesubula, R., Laurence, C., Adebamowo, C., Ajayi, I., \& al., e. (2015). The burden of hypertension in sub-Saharan Africa: a four-country cross sectional study. BMC Public Health, 15, 1211.

Guy, N, Törnroos, M., \& Salin, D. (2019). Effort-reward imbalance: A risk factor for exposure to workplace bullying. Frontiers in psychology, 10, 386.

Habiyaremye, F. R. (2019). Tobacco use and associated factors among Rwandan youth aged 15-34 years: Findings from a nationwide survey, 2013. PLoS ONE, 14(10), e0212601.

Hahad, O. K.-S. (2019). The cardiovascular effects of noise. Dtsch Arztebl Int, 116, 245-50.

Haitham, M. A. (2012). Effects of Physical Activity on Cardiovascular Disease, Amercan journal of cardiology, 102(2), 288-295.

Havakuk, O. Z. (2018). Shift Work and the Risk of Coronary Artery Disease: A Cardiac Computed Tomography Angiography Study. Cardiology 2018, 139, 11-16.

Heather, L. G. (2005). Peripheral arterial Disease. Circulation, 111, e169-e172.

Heffron, S. P. (2017). Greater Frequency of Fruit and Vegetable Consumption Is Associated With Lower Prevalence of Peripheral Artery Disease, Arterioscler Thromb Vasc Biol, 37, 1234-1240.

Hema, S. S. (2011). Non-pharmacological Interventions in Hypertension: A Community-based Cross-over Randomized Controlled Trial. Indian J Community Med, 36(3), 191-6.

Herbert, C., \& Moses, J. (2019). Cardiovascular Disease Healthcare Utilization in Sub-Saharan Africa: A Scoping Review. Int J Environ Res Public Health, 16, 419.

Hoang, A. Assessment of Methylene Chloride-Related Fatalities in the United States, 1980-2018. JAMA Intern Med. 181(6), 797-805.

Hong, Y. M. (2008). Impact of plaque rupture and elevated C-reactive protein on clinical outcome in patients with acute myocardial infarction: an intravascular ultrasound study. J Invasive Cardiol, 20(9), 428-435.

Hong-Kyu, k. C.-H.-Y.-W.-J. (2013). Impaired Fasting Glucose and Risk of Cardiovascular Disease in Korean Men and Women. Diabetes Care Feb, 36(2), 328-335.

Houston, M. (2002). he Role of Vascular Biology, The Role of Vascular Biology. Retrieved from https://www.scripps.org/assets/documents/houston_gr_jan_ 20. pdf

Houston, M. (2018). The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease. Therapetic advances in cardiovascular disease, 13(3), 85-108.

HSE. (2005). Whole-body vibration, The Control of Vibration at Work Regulations 2005 Guidance on Regulations. crown. Retrieved from https://www.hse.gov. uk/pUbns/priced/l141.pdf

Hsu , Y.-Y., Chyi-Huey , B., Chien-Ming, Y., Ya-Chuan , H., Tzu-Ting, L., \& ChihHung , L. (2019). Long Hours' Effects on Work-Life Balance and Satisfaction, BioMed Research International, 2019, 8.

Huang, J.J. (2013 , jun). Effects of a workplace multiple cardiovascular disease risks reduction program. Asian Nurs Res (Korean Soc Nurs Sci), 7(2), 74-82.

Hussain, M. M. (2014, JUN). Intestinal Lipid Absorption and Lipoprotein Formation. Curr Opin Lipidol, 25(3), 200-206.

Ikäheimo T. M. (2018). Cardiovascular diseases, cold exposure and exercise. Temperature, 5(2), 123-146.

ILO. (2014). safety and health in the use of chemicals Report at work, World Day for safety and health at work. Geneva: International Labor Organization.

Imamura, F. L. (2015). Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type ,diabetes:
systematic reviewmeta-analysis, and estimation of population attributable fraction. BMJ , 351-357.

Iozzo, P. (2011). Myocardial, perivascular, and epicardial fat. Diabetes Care, 34, 371-S379.

Ipek, E. O. (2017). Hypertensive crisis: an update on clinical approach and management. Curr Opin Cardiol, 32(4), 397-406.

Iqbal, M. (2014). Trans fatty acids - a risk factor for cardiovascular disease. Pak J Med Sci, l(30), 194-197.

Iraj, S. S. (2013). Investigating the effect of role conflict and role ambiguity on employees' job stress: Articulating the role of work-family conflict. Management Science Letters, 1927-1936.

Ising, H. K. (2004). Health effects caused by noise: evidence in the literature from the past 25 years. Noise Health. 2004, 6(22), 5-13.

Ismail, S. M. (2018). Systematic review of palm oil consumption and the risk of cardiovascular disease. PLoS ONE, 13(2), e0193533.

Ismail, Y. U. (2007). Effects of gamma irradiation on trans fatty acid composition in ground beef. Food Control, 18, 635-638.

Swain, J. D., Pugliese, D. N., Mucumbitsi, J., Rusingiza, E. K., Ruhamya, N., Kagame, A., ... \& Morton Bolman, R. (2014). Partnership for sustainability in cardiac surgery to address critical rheumatic heart disease in sub-Saharan Africa: the experience from Rwanda. World journal of surgery, 38(9), 22052211.

Jafaralilou, H. I. (2019). The impact of theory-based educational intervention on improving helmet use behavior among workers of cement factory iran. $J$ Egypt Public Health Assoc., 94, 1.

James, B. M. (2002, Oct ). Fasting and Postchallenge Glycemia and Cardiovascular Disease Risk. Diabetes Care, 25(10), 1845-1850.

James, N. R. (2014). Risk Factors for Cardiovascular Diseases in Youth. Exerc Sport Sci Rev., 42(4), 145-152.

Jamison, D. T. (2006). Disease and Mortality in Sub-Saharan Africa. In D. T. Jamison, 2nd edition,Cardiovascular diseases,. Geniva: The International Bank for Reconstruction and Development/The World Bank.

Janet, M. T. (2009). Coronary Heart Disease Risk Factors. JAMA, 302(21), 2388.

Jaspinder, K. (2014). A Comprehensive Review on Metabolic Syndrome. Cardio Res Pract.

Jemaa, R.(2020). Prevalence of cardiovascular risk factors in the Tunisian population: The ATERA-survey, Archives of Cardiovascular Diseases Supplements.12(1), 1878-6480.

Jennifer, L.(2019). Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 6(19), 3390.

Jennifer, P. K., Cahill, L. E., Hu, F. B., Rexrode, K. M., Manson, J. E., \& Rimm, E. B. (2013). Hemoglobin alc is associated with increased risk of incident coronary heart disease among apparently healthy, nondiabetic men and women. Journal of the American Heart Association, 2(2), e000077.

Jian, L. A. (2016). Work stress and cardiovascular disease: a life course perspective. J Occup Health, 58, 216-219.

Jin, Y. N., Juyoung, K., Kyung, H. C., Young, C., Jaewoo, C., Jaeyong, S., \& EunCheol, P. (2016). Associations of sitting time and occupation with metabolic syndrome in South Korean adults: a cross-sectional study,. BMC Public Health, 16(1), 943.

John, E. B. (2011). Radiation as a Risk Factor for Cardiovascular Disease. ANTIOXIDANTS \& REDOX SIGNALING, 15(7).

Jones, J. H. (2002). Self-reported work related illness in Great Britain. HSE Epidemiology and Medical Statistics Unit.

Joshi, D. R. (2019). An Overview on Common Organic Solvents and Their Toxicity. JPRI, 28(3), 1-18.

Joshua, A. (2002). Diseases of the veins. Circulation, 106, 2170-2172 .

Kabwama, S. N. (2019). Low consumption of fruits and vegetables among adults in Uganda: findings from a countrywide cross-sectional survey,. Archives of Public Health, 77(4), 0332-6

Kaiye, G. X. (2017). The life-course impact of smoking on hypertension, myocardial infarction and respiratory diseases. Sci Rep, 7, 4330.

Kamarudeen, S. (2014). Constraints and Opportunities in Rwanda's Industrial Sector: Kamarudeen-Soederbom-2013-Working-Paper.pdf. London: International Growth Centre. Retrieved from https://www.theigc.org/wp-content/uploads/2014/09/Kamarudeen-Soederbom-2013-Working-Paper.pdf

Kang, M.-Y. H.-C. (2017). Crossover effect of spouse weekly working hours on estimated 10-years risk of cardiovascular disease. PLoS ONE, 12(8). e0182010.

Kaplan, N. G. (2010). Kaplan's Clinical Hypertension. Philadelphia: Lippincot Williams \& Wilkins.

Kaplan, N. L. (2002). Kaplan's Clinical Hypertension. Philadelphia: Lippincot Williams \& Wilkins.

Kaptoge, S., Pennells, L., DeBacquer, D., Cooney, M., Kavousi, M., Stevens, G., \& al., e. (2019). The WHO CVD Risk Chart Working Group, World Health

Organization cardiovascular disease risk charts:revised models to estimate risk in 21 global regions. Lancet Glob Health, 7, 1332-45.

Karl Peltzer \& Nancy Phaswana-Mafuya (2012) Fruit and vegetable intake and associated factors in older adults in South Africa, Global Health Action, 5(1), 18668,

Kaze, A., Schutte, A., Erqou, S., Kengne, A., Echouffo-Tcheugui, J., \& al, e. (2017). Prevalence of hypertension in older people in Africa: a systematic review and meta-analysis. J Hypertens, 35(7), 1345-52.

Kazim, H. R. (2014). Alcohol-induced hypertension: Mechanism and prevention. World J Cardiol, 5, 245-52.

Kazlauskienė, L. B. (2015). Metabolic syndrome related to cardiovascular events in a 10-year prospective study. Diabetol Metab Syndr, 7, 102.

Keithellakpam, K., Mohammad , A., Brijesh , K., Mishra, R., Jhamb , S., \& Venkata , M. (2019). Association of postprandial triglyceride responses with insulin resistance among rotational night shift healthcare workers. New York: wiley.

Kévin , D. (2010). Social Cognitive Theory in IS Research - Literature Review, Criticism, and Research Agenda. ICISTM, 54, 3-642.

Khera, R., Lu, Y., Lu, J., Saxena, A., Nasir, K., \& Jiang, L. e. (2018). Impact of 2017 ACC/AHA guidelines on prevalence of hypertension and eligibility for antihypertensive treatment in United States and China: nationally representative cross-sectional study. BMJ., 362, k2357.

Kim, K.-W. Y.-H. (2012). The Effects of Hazardous Chemical Exposure on Cardiovascular Disease in Chemical Products Manufacturing Workers, Toxicol. Res, 28(4), 269-277.

Kiran J. Biddinger. (2020). Association of Habitual Alcohol Intake With Risk of Cardiovascular Disease, JAMA.5(3), e223849.

Kirsten, F. L.-C. (2014). Work Status and Return to the Workforce after Coronary Artery Bypass Grafting and/or Heart Valve Surgery: A One-Year-Follow Up Study. Rehabil Res Pract. 10, 1155

Ki-Woong, K. Y.-H. (2012). The Effects of Hazardous Chemical Exposure on Cardiovascular Diseasein Chemical Products Manufacturing Workers. Toxicol. Res., 28(4), 269-277.

Koosha, P., Hamidreza, R., Nizal, S., Mehrbod, V., Mohammad, T., Erfan, S., \& Masoumeh, S. (2020). High Sensitivity C-Reactive Protein Predictive Value for Cardiovascular Disease: A Nested Case Control from Isfahan Cohort Study (ICS). Global Heart, 15(1), 3.

Krishnamurthi, R. V. (2013). Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health, 1(5), e259-81.

Kuklina, E. V. (2010). Assessing and Managing Risk for Cardiovascular Disease: A Worldwide Perspective. North American Journal of Medicine and Science, 3(2), 1246-1258.

Lange, S. T. (2007). Profound influence of different methods for determination of the ankle brachial index on the prevalence estimate of peripheral arterial disease. BMC Public Health, 7, 147.

Lantin, A. V. (2013). Occupational exposure to cobalt is not associated with incipient signs of dilated cardiomyopathy in a Belgian refinery. Occup Environ Med, 70(6), 386-392.

Larsson, S. C., Burgess, S., Mason, A. M., \& Michaëlsson, K. (2020). Alcohol consumption and cardiovascular disease: a Mendelian randomization study. Circulation: Genomic and Precision Medicine, 13(3), e002814.

Lasebikan, V. A. (2018). Prevalence of alcohol consumption and alcohol use disorders among outdoor drinkers in public open places in Nigeria. BMC Public Health, 18, 400.

Lee, B. J. (2014). Air pollution exposure and cardiovascular disease. Toxicological research, 30(2), 71-75.

Leeder, S. (2014). A race against time: the challenge of cardiovascular disease in developing Economies. Colombia: The Earth Institut. Retrieved from https://www.researchgate.net/publication/277279425

Leon, B. M. (2015, Oct). Diabetes and cardiovascular disease: Epidemiology biological mechanisms, treatment recommendations and future research. World J Diabetes, 6(13), 1246-1258.

Leon, D. M. (2010). Alcohol increases circulatory disease mortality in Russia: acute and chronic effects or misattribution of cause. Int J Epidemiol, 39, 1279-90.

Leyland, L. S. (2019). The effect of cycling on cognitive function and well-being in older adults. PLoS ONE, 14(2), e0211779.

Li, Q., Yang, Z., Gu, H., Lu, S., Shi, Q., Xing, Y., ... \& Su, Q. (2014). Association between serum uric acid levels and cardiovascular disease in middle-aged and elderly Chinese individuals. BMC cardiovascular disorders, 14(1), 1-8.

Li, X., Dong, Q., Wang, B., Song, H., Wang, S., \& Zhu, B. (2019). The influence of occupational noise exposure on cardiovascular and hearing conditions among industrial workers. Scientific Reports, 9(1), 1-7.

Lim, S. V.-R. (2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions1990-2010: a systematic analysis for the Global Burden. Lancet., 380(9859), 2224-60.

Linna, A. (2020). Effects of occupational cobalt exposure on the heart in the production of cobalt and cobalt compounds: a 6-year follow-up. International archives of occupational and environmental health. 93(3), 365-374.

Linton, M. Y. (2019). The Role of Lipids and Lipoproteins in Atherosclerosis. NCBI. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK343489/

Liu, G. L. (2015, Sept). Cardiovascular System Response to Carbon Dioxide and Exercise in Oxygen-Enriched Environment at 3800 m. International journal of environmental research and public health, 19(9), 11781-11796.

Longo, M.(2019). Adipose Tissue Dysfunction as Determinant of ObesityAssociated Metabolic Complications. International journal of molecular sciences. 20(9),2358.

Lorene, G. C.-C. (2015). Food habits and risk of cardiovascular disease in schoolchildren from Ouro Preto, Minas Gerais,. Rev. Nutr., Campinas, 28(2), 133-142.

Luc, D. M. (2009). Alcohol Consumption and Risk of Hypertension: Does the Type of Beverage or Drinking Pattern Matter? Rev Esp Cardiol, 62(6), 603-5.

Luckhaupt, S. E., \& Calvert, G. M. (2014). Prevalence of coronary heart disease or stroke among workers aged< 55 years—United States, 2008-2012. MMWR. Morbidity and Mortality Weekly Report, 63(30), 645.

Lugasi, A. B. (2015). CAFFEINE INTAKE IN HUNGARY - A POPULATION BASED ESTIMATION. Acta Alimentaria, 42(2), 242-250.

Luigi, I., Marcello , C., Igor , P., Maura, G., Nicola , M., Michele, M., \& Pierluigi, C. (2018). Work Related Stress, Well-Being and Cardiovascular Risk among Flight Logistic Workers: An Observational Study. Int. J. Environ Res. Public Health, 15, 1952.

Luis , R., \& César , C. (2012, Mars 02). Uric acid and cardiovascular risk considered. an update e-journal of the ESC Council for cardiology Practice, 10.

Lukwiya, O. C. (2013 , Mar). Epidemiology of ischaemic heart disease in subSaharan Africa. Cardiovasc J Afr, 24(2), 34-42.

Maas, A., \& Appelman , Y. (2010). Gender differences in coronary heart disease, Netherlands. Heart Journal, 18(12), 598-603.

Macdonald, W. (2003, July). The Impact of Job Demands and Workload on Stress and Fatigue. Australian psychologist, 38(2), 102-117.

Mahmood, S. L. (2013, Sep). The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet, 999-1008.

Malik, V. P. (2010). Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes a meta-analysis. Diabetes Care, 33, 2477-83.

Mann, J. ( 2007). Dietary carbohydrate: relationship to cardiovascular disease and disorders of carbohydrate metabolism. European Journal of Clinical Nutrition, 61(Suppl 1), S100-S111 .

Mansell, H. S. (2014). Validity of cardiovascular risk prediction models in kidney transplant recipients. Scientific World J. 2014.

Manyema, M. L. (2012). modelling the potential impact of a sugar-sweetened beverage tax on stroke mortality, costs and health-adjusted life years in South Africa. BMC Public Health. 16(1), 1-10.

Marianna, V. M. (2018). Long Working Hours and Risk of Cardiovascular Disease, Current cardiology reports, 20(11), 1-7.

Maritza, J. K. \& Nell, T. A. (2017). The prevalence of the metabolic syndrome in a farm worker community in the Boland district, South Africa. BMC Public Health, 17(1), 1-10.

Mark, A. C., Christopher, J. W., William, R. H., Michael, H. C., Shellie, C. J. (2008). Atherosclerotic Peripheral Vascular Disease Symposium II Executive Summary. Circulation, 118, 2811-2825.

Martín-Timón, I.(2014). Type 2 diabetes and cardiovascular disease: Have all risk factors the same strength?. World journal of diabetes, 5(4), 444-470.

Mary, E. C. (2016, June). Dietary Sodium and Cardiovascular Disease Risk Measurement Matters,. the new England journal of medicine, 375(6), 580.

Mary, L. (2012). Interrater reliability: the kappa statistic. Biochem Med(Zagreb), 22(3), 276-82.

Matthew, A. N. (2018). Cardiovascular Effects and Benefits of Exercise. Front Cardiovasc Med, 5, 135.

McEachan, R. C., Lawton, R. J., Jackson, C., Conner, M., \& Lunt, J. (2008). Evidence, theory and context: Using intervention mapping to develop a worksite physical activity intervention. BioMedical Central Public Health, 8, 326.

Mee, K. K., Kyungdo, H., Hun-Sung, K., Yong-Moon, P., Hyuk-Sang, K., Kun-Ho, Y., \& Seung-Hwan, L. (2017, Oct). Cholesterol variability and the risk of mortality, myocardial infarction, and stroke: a nationwide population-based study,. Eur Heart J., 38(48), 3560-3566.

Mehan, M. S. (2006). Profile of non-communicable diseases risk factors in an industrial setting. j postgrad med, 52(3), 276-82.

MGI. (2012). Global labor full report, the world at work. Seoul: McKinsey Global Institute. Retrieved from https://www.mckinsey.com/~/media/McKinsey/ Featured\%20Insights/Employment\%20and\%20Growth/The\%20world\%20at \%20work/MGI\%20Global_labor_Full_Report_June_2012.ashx

Michael, R. K., \& Cathy, S. (2014, Nov). Family history of cardiovascular disease,. Can Fam Physician, 60(11), 1016.

Michelle, L. K. (2015). The Application of High-Sensitivity C-Reactive Protein in Clinical Practice: A 2015 Update. US Pharm., 40(2), 50-53.

Mika, K., \& Ichiro, K. (2015). Work Stress as a Risk Factor for Cardiovascular Disease. Curr Cardiol Rep, 17(9), 74.

Mika, K., Päivi, L., Ritva, L., Hilkka, R., Jussi, V., \& Juhani, K. (2002). Work stress and risk of cardiovascular mortality:prospective cohort study of industrial employees. bmj, 325, 857.

Ming, W., Larry, W. G., Tedd, L. M., James, B. K., Michael, P. S., \& Steven, N. (2000). Low Fasting Plasma Glucose Level as a Predictor of Cardiovascular Disease and All-Cause Mortality,. Circulation, 101, 2047-2052.

Mion Júnior, D., Junior, O. K., \& Gomes, M. A. M. (2006). V Diretrizes brasileiras de hipertensão arterial. Sociedade Brasileira de Cardiologia. Sociedade Brasileira de Hipertensão. Sociedade Brasileira de Nefrologia.

Miranda, J. R. (2011). Differences in cardiovascular risk factors in rural, urban and rural-to-urban migrants in Peru. . Heart, 97(10), 787-96.

Mocumbi, A. O. (2012). Lack of focus on cardiovascular disease in sub-Saharan Africa. cdt.org, 2.

Mohammad, G. S. (2018). The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep, 20(2), 12.

Monakali, S. G. (2018). Prevalence, awareness, control and determinants of hypertension among primary health care professional nurses in Eastern Cape,South Africa. African J Primary Health Care Family Med, 10(1), a1758.

Montano, D. (2014). Chemical and biological work-related risks across occupations in Europe: a review. Journal of Occupational Medicine and Toxicology, 9, 28.

Moon, K. (2012). Arsenic exposure and cardiovascular disease: an updated systematic review. Current atherosclerosis reports. 14(6), 542-555.

Mozaffarian, D. W. (2005). Beyond Established and Novel Risk Factors Lifestyle Risk Factors for Cardiovascular Disease. CIRCULATION, 117, 3031-3038.

Mozaffarian, D., Emelia, J. B., Alan, S. G., Donna, K. A., Michael, J. B., Mary, C., . . . Heather, J. F. (2015). Heart Disease and Stroke Statistics, Update. Circulation, 131(4), e29-e322.

Mozhdeh, H. A.-F.-N. (2019). Transtheoretical Model of Health Behavioral Change: A Systematic Review. Iran J Nurs Midwifery Res, 24(2), 83-90.

Muiesan, M. L.-R. (2016). Uric Acid and Cardiovascular Disease: An Update. European Cardiology Review, 11(1), 54-9.

Mukabutera, A. N. (2016). Overweight or Obesity prevalence, trends and risk factors among women in Rwanda: A cross-sectional study using the Rwanda Demographic and Health Surveys 2000-2010. Rwanda Journal Series F: Medicine and Health Sciences, 3(1), 235-242.

Mukaruzima, L. A. (2020). Leisure-time physical activity practices and the influencing factors among government office employees in Kigali, Rwanda. Occupational Health Southern Africa, 26(1), 3-7.

Munyogwa, M. J. (2018). The Prevalence of Abdominal Obesity and Its Correlates among the Adults in Dodoma Region, Tanzania: A Community-Based CrossSectional Study. Hindawi Advances in Medicine, 2018.

Münzel, T.(2011). Andreas Daiber and Tommaso Gori, Nitrate Therapy New Aspects Concerning Molecular Action and Tolerance.Circulation, 123, 21322144.

Mustafa, J. A., \& ., M. S. (2018). Ensemble approach for developing a smart heart disease prediction system using classification algorithms. Res Rep Clin Cardiol, 1, 33-45.

Nahimana, MR.(2018). A population-based national estimate of the prevalence and risk factors associated with hypertension in Rwanda: implications for prevention and control. BMC Public Health. 18, 2 (2018).

Nanchahal, K. D. (2000). Alcohol consumption, metabolic cardiovascular risk factors and hypertension in women,. International Journal of Epidemiology, 29, 57-64.

National Research Council. (1977). Biological effects of arsenic on man. In: Arsenic. Washington DC:. National Academy of Sciences, 173-91.

Navas-Acien, A. G. (2007). Lead exposure and cardiovascular disease--a systematic review. Environmental health perspectives, 115(3), 472-482.

NCEP. (2001). National Institutes of Health, Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Executive Summary of the Third Report of theNational Cholesterol Education Program (NCEP) Expert Panel. JAMA, 285, 2486-97.

Nehal, H., \& Kanwal, K. (2011). impact of karasek job demand control model on the job satisfaction of the employees of nadra. ijcrb. Interdisciplinary journal of contemporary research in business, 3(5), 566-594.

Ng, C. L. (2014). Heated vegetable oils and cardiovascular disease risk factors. Vascul Pharmacol, 61(1), 1-9.

Ngoungoua, E. B., Victor, A., Philomène, K., Roger, M., Ecke, N. J., Carine Ndong, A., . . . Philippe, L. (2012). Prevalence of cardiovascular disease in Gabon: A population study. Elsevier,Archives of Cardiovascular Diseas, 105, 77-83.

Nia, A. F. (2010). Torsades de pointes tachycardia induced by common cold compound medication containing chlorpheniramine. Eur J Clin Pharmacol, 66(11), 1173-1175.

Nichols, M., Townsend, N., Scarborough, P., Luengo-Fernandez, R., Real, J., Gray, A., \& Rayner, M. (2012). European Cardiovascular Disease Statistics. European Heart Network. Retrieved from http://www.ehnheart.org/cvdstatistics.html

Nihal, A. M., \& Tekin, S. (2007). cox regression models with nonproportional hazards applied to lung cancer survival data,. Hacettepe Journal of Mathematics and Statistics, 36(2), 157-167.

Nkusi, A., Muneza, S., Nshuti, S., Hakizimana, D., Munyemana, P., Nkeshimana, M., \& al, e. (2017). Stroke Burden in Rwanda:A Multicenter Study of Stroke Management and Outcome. World Neurosurg., 106, 462-9.

Norfazilah, A. S. (2016). Abdominal Obesity Indicators: Waist Circumference or Waist-to-hip Ratio in Malaysian Adults Population. Int J Prev Med, 7, 82.

Norhayati, M. S. (2013). Cardiovascular risk: associated factors, assessment and agreement between WHO/ISH risk prediction chart and Framingham Scoring System among Primary Care Patients in Kelantan, Malaysia. ijcrimph. International Journal of Collaborative Research on Internal Medicine \& Public Health, 5(12), 0-0.

Noubiap, J. J., Bigna, J. J., \& Nansseu, J. R. (2015). Low Sodium and High Potassium Intake for Cardiovascular Prevention:Evidence Revisited With Emphasis on Challenges in Sub-Saharan Africa. The Journal of Clinical Hypertension, 17(1), 81-83.

O'Neil, A. S. (2018). Gender/Sex as a Social Determinant of Cardiovascular Risk. Circulation., 137, 854-64.

Ogeng'o, J. A., Gatonga, P., \& Olabu, B. O. (2011). Cardiovascular causes of death in an east African country: an autopsy study. Cardiology journal, 18(1), 6772.

Oguoma, V., Ezekiel, U., Timothy, C., Kester , A., Innocent, C., \& Ross, S. (2015). Prevalence of cardiovascular disease risk factors among a Nigerian adult population:elationship with income level and accessibility to CVD risks screening,. BMC Public Health., 15, 397.

Okafor, C. I. (2012). The metabolic syndrome in Africa: Current trends. Indian J Endocrinol Metab, 16(1), 56-66.

Olasky, S. J. (2012). Second hand smoke and cardiovascular disease in Low and Middle Income Countries: a case for action. Glob Heart, 7(2), 151-160.

Olijhoek, J., Van Der Graaf, y., Banga, J.-D., Algra, A., Rabelink, T., \& Visseren, F. (2004). The Metabolic Syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. European Heart Journal, 25(4), 342348.

Oluseyi, A. O. (2019). Evaluation of Health Risk Level of Hand-Arm and WholeBody Vibrations on the Technical Operators and Equipment in a TobaccoProducing Company in Nigeria. Journal of Healthcare Engineering, 12, 2019.

Olvera, L. E. (2020, jan). Cardiovascular Disease. (StatPearls, Editor) Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK535419/.

Omair, Y., Bibhu, D. M., Seth, S., Parag , H., Michael , J., Khurram, N., . . . \& Matthew, J. (2013). High-Sensitivity C-Reactive Protein and Cardiovascular Disease. J Am Coll Cardiol., 62, 397-408.

Omotehinwa, O. J. (2018). Shisha use among students in a private university in Kigali city, Rwanda: prevalence and associated factors,. BMC Public Health, 18, 713.

OSHA,. (2020). protecting yourself from noise in construction, OSHA pocket guide.
Occupational safety and health administration, workers safety series. OSHA. Retrieved from https://www.osha.gov/Publications/3498noise-in-construction-pocket-guide.pdf

Owolabi, E. O. (2017). Central obesity and normal-weight central obesity among adults attending healthcare facilities in Buffalo City Metropolitan

Municipality, South Africa: a cross-sectional study. Journal of Health, Population and Nutrition. 36(1), 1-10.

Packer, M. (2016). Cobalt cardiomyopathy: a critical reappraisal in light of a recent resurgence. Circulation: Heart Failure, 9(12), e003604.

Palikaras, K. (2017). Ectopic fat deposition contributes to age-associated pathology in Caenorhabditis elegans. Journal of lipid research. 58(1),72-80.

Pearson, T. M. (2003). Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation, 107(3), 499-511.

Pedro, F. S.- M. (2018). Moderate- to- Vigorous Physical Activity and All- Cause Mortality: Do Bouts Matter?,. Journal of the American Heart Association, 7, e007678.

Peltzer, K. D. (2011). Alcohol use and problem drinking in South Africa: findings from a national population-based survey. Afr J Psychiatry, 14, 30-37.

Perelman, R. (2011). Perelman's pocket cyclopedia of cigars. Glendale, CA:: Chromatic Lithographers.

Permentier, K. V. (2017). Carbon dioxide poisoning: a literature review of an often forgotten cause of intoxication in the emergency department. International journal of emergency medicine,, 10(1), 14.

Peter, L., \& Pierre, T. (2005). Pathophysiology of Coronary Artery Disease,. Circulation, 111, 3481-3488.

Peter, W. (2016). Estimation of cardiovascular risk in an individual patient without known cardiovascular diseases. Journal of the American College of Cardiology, 66(24), 2812.

Petrukhin, I., \& Lunina, E. (2012). Cardiovascular disease risk factors and mortality in Russia: challenges and barriers. Public Health Reviews, 33, 436-49.

Phillips, J., \& Banyangiriki, J. (2015). Modifiable Risk Factors for Cardiovascular Disease: The Case of an African University. African Journal for Physical, Health Education, Recreation and Dance, 66(24), 2812..

Plissonneau, P. P. (2015, Oct). Cold climate could be an etiologic factor involved in Raynaud's phenomenon physiopathology. Epidemiological investigation from 954 consultations in general practic. Int Angiol, 34(5), 467-74.

Poirier, P., Cornier, M., Mazzone, T., Stiles, S., Cummings, S., Klein, S., . . . \& Franklin, B. (2011). Bariatric surgery and cardiovascular risk factors: a scientific statement from the American Heart Association. Circulation, 123, 1683-1701.

Poirier, P., Giles, T. D., Bray, G. A., Hong, Y., Stern, J. S., Pi-Sunyer, F. X., \& Eckel, R. H. (2006). Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation, 113(6), 898-918.

Prabhakaran, D. P. (2016). Cardiovascular Diseases in India, Current Epidemiology and Future Directions. Circulation, 133, 1605-20.

Priyanga, R. D. (2015). The influence of family history of Hypertension on disease prevalence and associated metabolic risk factors among Sri Lankan adults. BMC Public Health., 15, 576.

Pyakurel, P. P. (2016). Cardiovascular risk factors among industrial workers: a cross-sectional study from eastern Nepal. J Occup Med Toxicol, 11(25), 016019.

Qiang, Z. S.-Y.-N. (2012, jul). Percent body fat is a better predictor of cardiovascular risk factors than body mass index. Braz J Med Biol Res, 45(7), 591-600.

Rabanal, K. S., Meyer, H. E., Tell, G. S., Igland, J., Pylypchuk, R., Mehta, S., ... \& Jackson, R. (2017). Can traditional risk factors explain the higher risk of cardiovascular disease in South Asians compared to Europeans in Norway and New Zealand? Two cohort studies. BMJ open, 7(12), e016819.

Rahimi-Sakak, F. M. (2019). Serum uric acid and risk of cardiovascular mortality: a systematic review and doseresponse meta-analysis of cohort studies of over a million participants. BMC Cardiovascular Disorders, 19(1), 1-7.

Rahman, M., Nakamura, K., Seino, K., \& Kizuki, M. (2015). Socio-demographic factors and the risk of developing cardiovascular disease in Bangladesh,. Am J Prev Med, 48(4), 456-61.

Rafieian-Kopaei, M. (2014). Atherosclerosis: process, indicators, risk factors and new hopes. International journal of preventive medicine, 5(8), 927-946.

Rajagopal, G. S. (2012). High-density lipoprotein cholesterol: How High. Indian journal of endocrinology and metabolism, 16(2), S236-S238.

Ramirez, F. C. (2017). Association Between Self- Reported Potentially Modifiable Cardiac Risk Factors and Perceived Need to Improve Physical Health: A Population- Based Study. J Am Heart Assoc, 6(5), 117 - 129.

Rana, A. F. (2018). Shift Work and the Risk of Cardiovascular Diseases and Metabolic Syndrome among Jordanian Employees. Oman Medical Journal, 33(3), 235-242.

Ranthe, M. F. (2013). Risk of cardiovascular disease in family members of young sudden cardiac death victims. European Heart Journal, 34, 503-511.

Regitz-Zagrosek, V. S. (2015). Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Europian heart journal, 37(1), 24-34.

Reibis, Rona. (2019) The importance of return to work: How to achieve optimal reintegration in ACS patients. European journal of preventive cardiology. 1(12), 2047-4881.

Rhonda, B. T. (2009). An overview of cardiovascular risk factor burden in subSaharan African countries: a socio-cultural perspective;. Globalization and Health, 5(10), 1186-9.

Rice, M. B. (2014). Climate change. A global threat to cardiopulmonary health. American journal of respiratory and critical care medicine,, 189(5), 512519.

Ridker, P. M. (2003). Clinical Application of C-Reactive Protein for Cardiovascular Disease Detection and Prevention. Circulation, 107, 363-369.

Rita, R. K. (2017). Diabetes and Aging: Unique Considerations and Goals of Care. Diabetes Care, 40(4), 440-443.

Robert, C. K., Avilés-Santa, M. L., Christina, M. P., David, B. H., Molly, J., Sheila, F. C., . . . Neil, W. (2014). Body Mass Index, Sex, and Cardiovascular Disease Risk Factors Among Hispanic/Latino Adults: Hispanic Community Health Study/Study of Latinos. J Am Heart Assoc., 3(4), e000923.

Rohan, Khera.(2020). Financial Toxicity in Atherosclerotic Cardiovascular Disease in the United States: Current State and Future Directions, Journal of the American Heart Association, 9, e017793.

Roger, V. L., Lloyd-Jones, D. M., Adams, R. J., Berry, J. D., \& Brown, T. M. (2011). Heart disease and stroke statisticsd2011 update: a report from the American heart association. Circulation, 123(4), e18e209.

Romina, G.-M. (2020). Soft drink intake is associated with weight gain, regardless of physical activity levels: the health workers cohort study. International Journal of Behavioral Nutrition and Physical Activity. 17(1), 1-10

Roy, A., Prabhakaran, D., Jeemon, P., Thankappan, K. R., Mohan, V., Ramakrishnan, L., ... \& Sentinel Surveillance in Industrial Populations Study Group. (2010). Impact of alcohol on coronary heart disease in Indian men. Atherosclerosis, 210(2), 531-535.

Roy, K. (2015). Causes of stress before, during and after organizational change: a qualitative study. Journal of Organizational Change Management, 301-314.

Rudasingwa, G. A. (2012, Nov). Clinical patterns and complications of African diabetic patients: preliminary data from Kigali University Teaching Hospital, Rwanda,. African Journal of Diabetes Medicine, 20(2).

Rugge, B., Balshem, H., Sehgal, R., Relevo, R., Gorman, P., \& Helfand, M. (2011). Screening and Treatment of Subclinical Hypothyroidism or Hyperthyroidism. NCBI,AHRQ. Retrieved from https://europepmc.org/article/NBK/nbk 83496.

Sacco, R. L. (2013). An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke., 44, 2064-2089.

Saeid, G. I. (2012). Exercise and the Cardiovascular System. Cardiology Research and Practice, 10, 1155.

Sakaguchi, K. (2015). Glucose area under the curve during oral glucose tolerance test as an index of glucose intolerance. Diabetology international, 7(1),53-58.

Salvatore, M., Kristian, B., Jacques, G., Lawrence, J., Louise, P., Paul, P., . . \& Mark, J. (2010). The Metabolic Syndrome and Cardiovascular Risk: A Systematic Review and Meta-Analysis. Journal of the American College of Cardiology, 56(14), 1113-1132.

Santosh, K. S. (2020). Cardiovascular Disease Risk Factors among Group C Employees in a Tertiary Health Care Centre in Puducherry: A Cross-sectional Study. nternational Journal of Medicine and Public Health, 10(4), 147-151.

Sara, E. L. (2014). Prevalence of Coronary Heart Disease or Stroke Among Workers Aged <55 Years-United States, 2008-2012,. United States,, 63(30).

Sarma, P. R. (2019). Prevalence of risk factors of non-communicable diseases in Kerala, India: results of a cross-sectional study. BMJ journals. BMJ open, $9(11), \mathrm{e} 027880$.

Savitharani, B. M. (2016). Utilization of who-ish 10 -year cvd risk prediction chart as a screening tool among supporting staff of a tertiary care hospital, Mysuru,India. Heart India, 4, 13-6.

Schnall, P. B. (2000). The Workplace and Cardiovascular Disease. Occup Med, 15(1), 1-5.

Schramm, A. (2016). Increased intima-media thickness in rayon workers after longterm exposure to carbon disulfide. Int Arch Occup Environ Health. 89, 5139.

Sean, j. J. (2012). Acute and chronic effects of glyceryl trinitrate therapy on insulin and glycose regulation in human, Journal of Cardiovascular Pharmacology and Therapeutics, 18(3), 211-216.

Selvarajah, S., Kaur, G., Haniff, J., Cheong, K., Hiong, T., van, Y., \& al., e. (2014). Comparison of the Framingham Risk Score, SCORE and WHO/ISH cardiovascular risk prediction models in an Asian population. Int J Cardiol., 176(1), 211-8.

Shlomo, S. S. (2003). Aging and Diseases of the Heart,. Circulation, 108(14).

Shrestha, N., Kukkonen-Harjula, K., Verbeek, J., Ijaz, S., Hermans, V., \& Pedisic, Z. (2018). Workplace interventions (methods) for reducing time spent sitting at work. Cochrane. doi:doi/10.1002/14651858.CD010912.pub5/epdf/abstract

Silva, J. (2003). Colesterol, lípidos e doença vascular. Lidel, Edições Técnicas Lda.Shlomo Stern, Solomon Behar and Shmuel Gottlieb, Aging and Diseases of the Heart, Circulation. 108(14), 3264-3275.

Simao, M. M. (2002). Cardiovascular diseases: profile of male workers from a distillery in the countryside of são paulo state. Revista Eletrônica de Enfermagem, 4(2), $27-35$.

Sivan, R. J. (2016, May). Inter-relation between autonomic and HPA axis activity in children and adolescents,. Biol Psychol., 117, 16-25.

Smallegange, R. C. (2010). Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae. Malar J, 25(9), 292.

Smith, , S. (2012). Urbanization and cardiovascular disease: Raising heart-healthy children in today's cities. GENEVA: The World Heart Federation. Retrieved from http://www.worldheart.org/urbanization

Sowmya, K. R. (2019). The palm oil industry and noncommunicable diseases. Bull World Health Organ, 97, 118-128

Sridhar , N., Krishnakishore , C., Sandeep , Y., Sriramnaveen , P., Manjusha, Y., \& Sivakumar, V. (2011). Chloroform poisoning-a case report. Ren Fail., 33, 1037-9.

Stephan, G. G. (2015). The Esc Textbook of Preventive Cardiology: Clinical Practice. Oxford University Press, 43-53.

Stephen, J., David, M., Murray , D., Ian , B., David, H., V Michael, E., . . . \& Andrew, M. (2003). Stress" and coronary heart disease. psychosocial risk factors, Medical Journal of Australia, 178(6), 272-276.

Stewart, S. E. (2010). Prevalence and correlates of hypertension: a cross-sectional study among rural populations in sub-Saharan Africa. J Hum Hypertens, 12, 786-95.

Stuart, W., Grant, SC., \& Samer, A. (2018). Statistical premer: developing and validating a risk prediction model. European Journal of Cardio-Thoracic Surgery, 52(2), 203-208.

Suresh, K.(2012) . Sample size estimation and power analysis for clinical research studies. J Hum Reprod Sci. 5(1), 7-13.

Suzuki, J. S. (2015, December). Current therapies and investigational drugs for peripheral arterial disease. Hypertens Res, 39(4), 183-191.

Tandon, J. C. (2014). effect of age and gender on occupational stress:a study on teaching fraternity. ijetmas, 2(2), 2349-4476.

Tanya, M. (2010). Chronic Psychosocial Stress and Hypertension. Curr Hypertens Rep, 12, 10-16.

Taqueti, V. R. (2018). Coronary Microvascular Disease Pathogenic Mechanisms and Therapeutic Options: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 72(21), 2625-2641.

Taravatmanesh, S. K. (2017). Determining the Factors Associated with Cardiovascular Disease Recurrence: Tehran Lipid and Glucose Study. J Teh Univ Heart Ctr, 12(3), 107-113.

Tatiana, C. F. (2015). Noise exposure and hypertension: investigation of a silent relationship. BMC Public Health, 15, 328.

Telmo, P. (2012). Dyslipidemia and Cardiovascular Risk: Lipid Ratios as Risk Factors for Cardiovascular Disease. Dyslipidemia-From Prevention to Treatment, 14, 279-302.

Thiriet, M. (2018). Cardiovascular Disease: An Introduction. Vasculopathies, 8(1), 190.

Thomas , J., Alsabeeh , N., Apovian, C., Megan, C., Coffman , G., Diana , C., . . . \& Howard, C. (2008). Weight, Blood Pressure and Dietary Benefits After 12 Months of a Web-based Nutrition Education Program (DASH for Health): Longitudinal Observational Study. J Med Internet Res. 37(1), 24-34.

Thomas, B., Aletta, E., Maciej, T., Ariti, C., Burrell, L., Castillo, R., \& al., e. (2018). May Measurement Month 2017: an analysis of blood pressure screening results worldwide. Lancet Global Health, 6, e736-43.

Thomas, M. T. (2014). Cardiovascular effects of environmental noise exposure. European Heart Journal, 35, 829-836. doi:doi:10.1093/eurheartj/ehu030

Thomas, M., Frank, P., Sebastian, S., Johannes, H., Andreas, D., \& MetteS. (2018). Environmental Noise and the Cardiovascular System,. Journal of the American College of Cardiology, 71(6), 688-697.

Thomas, W. (2016). Hypertension and Aging. Ageing Res Rev, 26, 96-111.

Thukkani , A., \& Kinlay , S. (2015). Endovascular intervention for peripheral artery disease. Circ Res., 116(9), 1599-613.

Tiina , M. (2018). Cardiovascular diseases, cold exposure and exercise. TEMPERATURE, 5(2), 123-146.

Tora, G. W. (2016, jun). The role of diseases, risk factors and symptoms in the definition of multimorbidity - a systematic review. Scandinavian Journal of Primary Health Care, 34(2), 112-121.

Tsutsumi, A. (2015). Prevention and management of work-related cardiovascular disorders. Int J Occup Med Environ Health, 28(1), 4-7.

Tzoulaki, I. P. (2016). Worldwide Exposures to Cardiovascular Risk Factors and Associated Health Effects Current Knowledge and Data Gaps. Circulation, 133(23).

UK HDL-Consensus Group. (2004). Role of fibrates in reducing coronary risk:a UK consensus. Curr Med Res Opin,, 20, 241-247.

Van , T. (2016). Relationship at work as a cause of occupational stress: the case of academic women in Vietnam. Int J Ment Health Syst, 10, 42.

Vera, R.-Z. S.-P. (2015). Gender in cardiovascular diseases: impact on clinical manifestations, management, and outcomes. Europian heart journal. 37(1), 24-34.

Victoria , M., Andrew , M., Mahshid , D., Sumathy , R., Xiaohe , Z., \& Sumathi , S. (2017). Fruit, vegetable, and legume intake, and cardiovascular disease and deaths in 18 countries (PURE): a prospective cohort study. Lancet, 390, 2037-49.

Wallach, J. S. (2020). Evaluation of confounding in epidemiologic studies assessing alcohol consumption on the risk of ischemic heart disease. BMC Med Res Methodol, 20(64). doi:https://doi.org/10.1186/s12874-020-0914-6

Wamba, A. T. (2019). The impact of interventions for the primary prevention of hypertension in Sub-Saharan Africa: A systematic review and meta-analysis. PLoS ONE, 14(7), e0219623.

Wayne, W. L. (2016). Confounding and Effect Measure Modification. Retrieved from https://sphweb.bumc.bu.edu/otlt/MPH-Modules/BS/BS704-EP713_ Confounding-EM/BS704-EP713_Confounding-EM_print.html

WHO. (2004). Assessing the burden of disease from work-related hearing impairment at national and local levels, Occupational noise,Environmental Burden of Disease Series, No. 9,. Geneva: WHO. Retrieved from https://www.who.int/quantifying_ehimpacts/publications/en/ebd9.pdf

WHO. (2008). 2008 STEPwise Approach to Chronic Disease Risk Factor Survey Report. Geneva: World Health Organization. Retrieved from https://www.who.int/ncds/surveillance/steps/2007_Report_StKitts.pdf

WHO. (2012). Introduction to health settings. Geneva: World Health Organization.

WHO. (2015). Global Health Observatory data repository, Prevalence - most recent adult survey Data by country, tobacco use, Rwanda Steps. Geneva: WHO. Retrieved from http://apps.who.int/gho/data/node.main.TOB1249?lang=en

WHO. (2015). Rwanda Non-communicable Diseases Risk Factors Report. Geneva: World Health Organization.

WHO. (2016). alcohol consumption: levels and patterns,2016, Recorded alcohol per capita (15+), consumption (in litres of pure alcohol) by type of alcoholic beverage, 2016 Recorded alcohol per capita(15+) consumption, 1961-2016. Geneva: WHO.

WHO. (2017). Fact sheets: Cardiovascular diseases,2017. Geneva: Fact sheets: Cardiovascular diseases, 2017. Retrieved from https://www.who.int/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds).

WHO. (2018). Rwanda Country statistics and global health estimates and UN partners, Global Health. Geneva: WHO.

WHO. (2020). Fruits and vegetables antioxidants content to prevent cardiovascular diseases. Geneva: World Health Orgnaization.

WHO. (2021). Types of cardiovascular disease. Retrieved from www.who.int: https://www.who.int/cardiovascular_diseases/en/cvd_atlas_01_types.pdf

WHO. (2007). Prevention of cardiovascular disease: Pocket guidelines for assessment and management of cardiovascular risk. Geneva: WHO.

WHO/WEF. (2008). Preventing Noncommunicable Diseases in the Workplace through Diet and Physical Activity,WHO/World Economic Forum Report of a Joint Event. Geneva: World Health organization.

William, R., Jerry , G., Sidney , C., Jr, Mary , M., Gregory , M., . . . \& William, H. (2008). Atherosclerotic Peripheral Vascular Disease Symposium II Nomenclature for Vascular Diseases. Circulation, 118, 2826-2829.

Wilson, P. F. (2005). Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation, 112(20), 3066-307.

Winkelmayer, W. C. (2005). Habitual Caffeine Intake and the Risk of Hypertension in Women. JAMA, 294(18), 2330-5.

Wisse, B. S. (2016). When Change Causes Stress: Effects of Self-construal and Change Consequences. J Bus Psychol, 31, 249-264.

Wolfgang, B., \& Heike , K. (2007). Hearts and Minds at Work in Europe A European work-related public health report on Cardiovascular Diseases and Mental Ill Health, Europe: Essen.

Wong, K., Chan, A. H., \& Ngan, S. C. (2019). The effect of long working hours and overtime on occupational health: a meta-analysis of evidence from 1998 to 2018. International journal of environmental research and public health, 16(12), 2102.

World Health Organization. (2013.). Country cooperation strategy brief: India.May. Geneva: World Health Organization.

World Health Orgnaization. (2007). Prevention of cardiovascular disease: Pocket guidelines for assessment and management of cardiovascular risk. World Health Orgnaization. Retrieved from https://www.who.int/cardiovascular diseases/guidelines/PocketGL.ENGLISH.AFR-D-E.rev1.pdf

Wu, X. D. (2017). Cardiovascular Risk Factors in Noise-Exposed Workers in China: Small Area Study. Noise Health, 19, 245-253.

Xia, E., Yu, Y., Xu, E., Mei, J., \& Sun, W. (2019). From Risk Prediction Models to Risk Assessment Service: A Formulation of Development Paradigm. arXiv preprint arXiv:1903.07551.

Yang, L., Wu, H., Jin, X., \& al, e. (2020). Study of cardiovascular diseases prediction model based on random forest in eastern China. Sci Rep., 10, 5245.

Yangfeng, W., Xiaoqing, L., Xian, L., Ying, L., Liancheng, Z., Zuo, C., \& al, e. (2006). Estimation of 10 -Year Risk of Fatal and Nonfatal Ischemic Cardiovascular Diseases in Chinese Adults. Circulation., 14, 2217-25.

Yeates, k. L. (2015). A global perspective on cardiovascular disease in vulnerable Populations. Can J Cardiol., 31(9), 1081-93.

Yi-Wei, W., Si-Jia, H., Xiao, F., Jin, C., Yun-Tao, L., Ling, T., \& Qian, H. (2017). Metformin: a review of its potential indications. Drug Des Devel Ther, 11, 2421-2429.

Yuling, H. (2009). The Burden of Cardiovascular Disease in Asia: Big challenges and ample opportunities for Action and Making a Difference. Clinical Chemistry., 1450-1452.

Zabina, H. S. (2001). Monitoring behavioral risk factors for cardiovascular disease in Russia. Am J Public Health, 91(10), 1613-4.

Zahran, S. M. (2017). Association of beverage consumption with obesity in healthy adults. Arab Journal of Nutrition and Exercise (AJNE), 37.

Zamanian, Z. R. (2013). Investigation of the effect of occupational noise exposure on blood pressure and heart rate of steel industry workers. Journal of environmental and public health, 2013.

Zeliger, H. I. (2013). Lipophilic chemical exposure as a cause of cardiovascular disease. Interdiscip Toxicol, 6, 55-62.

Zhang, N.(2020). Association between metal cobalt exposure and the risk of congenital heart defect occurrence in offspring: a multi-hospital case-control study. Environ Health Prev Med. 25, 38.

Zhang, W. R. (2019). Mortality from heart diseases following occupational radiation exposure: analysis of the National Registry for Radiation Workers (NRRW) in the United Kingdom. J. Radiol. Prot, 39, 327-353.

Zhang, Y. H. (2012). Glycosylated Hemoglobin in Relationship to Cardiovascular Outcomes and Death in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE, 7(8), e42551.

Zhang, Z. (2018). Time-varying covariates and coefficients in Cox regression models. Annals of translational medicine, 6(7), 121.

Zhao, P. L. (2018). Age- and sex-related difference of lipid profile in patients with ischemic stroke in China. Medicine, 97(23), 10930.

Zhifei, H. B. (2019). Prevalence of Alcohol and Tobacco Use among Men and Women in Namibia. Int. J. Environ. Res. Public Health, 16, 59.

Zhou, Y., Wu, H., Zhang, Y., Sun, H., Wong, T., \& Li, G. (2011). Ionic mechanisms underlying cardiac toxicity of the organochloride solvent dichloromethane. Toxicology. 290(2-3), 295-304.

Zhuang, Q. C. (2019). Association of high sensitive C-reactive protein with coronary heart disease: a Mendelian randomization study. BMC Medical Genetics, 20(170), 1186.

Zujie, G. Z. (2019). Gender differences in cardiovascular disease. Medicine in Novel Technology and Devices. 4, 100025.

## APPENDICES

## Appendix I: Participant consent form

Protocol Nr $\qquad$

Protocol Title: Risk prediction and factors associated with cardiovascular diseases among workers and their spouses in two drink processing industries in Rwanda.

Dear Participant

You have been invited to take part in a research thesis with NSANZABERA Charles Ph.D. student at Jomo Kenyatta University of Agricuture and Technology (JKUAT) titled: Risk prediction and factors associated with cardiovascular diseases among workers and their spouses in two drink processing industries in Rwanda.

Before joining the project in questions, you need to read this information form, since it contains important information to assist you in deciding whether or not signing up to participate, is in your best interests. We request that you ask as many questions as you wish in order to make sure that you understand the procedure of the study, the risks and benefits. If you have a question about this documents that has not been sufficiently answered or explained, don't hesitate to ask one of the research team members for more information.

The study has been approved by the National Research Committee (NHRC) in the Ministry of Health and Institutional Review Board of College of medicine and Health Science of University of Rwanda since it complies with medical ethics standards. Additionally, the study will be conducted according the Helsinki Declaration and Guide on Best Clinical Practices.

You may choose not to participate in the study or to leave it at any time simply by informing the investigator. If you decide not to participate in the study or to retract your consent, you will not lose any advantage that you would be due.

If client refused to participate, please check this box

I have been told about the study and I have understood its main aim that it is Voluntary and Confidential, and the results will be used to improve community health.

Therefore, I willingly accept to participate in this study.

Respondent's Signature/Thumb print.
Date.

## Appendix II: Questionnaires

## Participant's questionnaires

## Instructions:

i. These questionnaires will be filled by the interviewer
ii. Read thoroughly the questions below for the participants
iii. Fill in the number below regarding the asked information


|  |  | Southern Province |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | Eastern Province |  |  |
| 12 | Kigali town |  |  |  |



| Working conditions for employees |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: |
| N/Q | QUESTIONS | ANSWERS AND CODES |  | Code |  |
| 18 | Are you in your current <br> position doing shift works | Yes | 01 | W1 |  |
| 19 | Are you regularly doing a <br> night shift work | No | 02 |  |  |
| 20 | Are you regularly working in | Yes | 01 | W2 |  |


|  | cold chambers, refrigeration? | No $02$ |  |
| :---: | :---: | :---: | :---: |
| 21 | How many days a week are you affected in cold chambers? | A day a week 01 <br> 2days a week 02 <br> 3days a week 03 <br> 4days a week 04 <br>   | W4 |
| 22 | Are you regularly experiencing much vibration in your area of work? | Yes 01 <br> No 02 | W5 |
| 23 | Are you regularly experiencing much sounds in your area of work? |  | W6 |
| 24 | Are you wearing PPE when working in area with much noises? |  | W7 |
| 25 | How often are you wearing PPE (Ear Plugs)? | Never 01 <br> Seldom 02 <br> Sometimes 03 <br> Often 04 <br> Always  | W8 |


| 26 | Are you handling or breathing chemicals, gas, fumes and dust or reagents in your area of work? | Yes No | 01 <br> 02 <br> If no go to W11 | W9 |
| :---: | :---: | :---: | :---: | :---: |
| 27 | Which ones are you handling in this list | CO | 01 | W10 |
|  |  | CO 2 | 02 |  |
|  |  | Nitrites | 03 |  |
|  |  | Cobalt | 04 |  |
|  |  | Other | 05 |  |
|  |  | If other go toW10a |  |  |
| 28 | If other chemical, Gas, fumes, dust | Specify. | - | W10a |
| 29 | Are you wearing PPE at work when handling Chemicals, Gas, Dust and Fumes? |  | $01$ | W11 |
|  |  | No | 02 |  |
|  |  |  | If no got to S1 |  |
| 30 | How often are you wearing PPE? | A | 01 | W12 |
| Occupational stress |  |  |  |  |


| Now I am going to ask you about stress related to the working conditions, It is <br> recognized that working conditions affect worker well-being, it is important that your <br> responses reflect your work in the last six months |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 31 | Are you clear of what is <br> expected of you at work? | Never | S1 |
|  |  | Seldom |  |


|  |  | Sometimes | 03 |
| :--- | :--- | :--- | :--- | :--- |


|  |  | Seldom | 02 |
| :--- | :--- | :--- | :--- | :--- |
|  | Sometimes | 03 |  |
|  | Often |  |  |
|  |  |  |  |

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& Always \& \& <br>
\hline \multirow[t]{5}{*}{39} \& \multirow[t]{5}{*}{Are you subject to bullying at work?} \& Never 01 \& 01 \& \multirow[t]{5}{*}{S9} <br>
\hline \& \& \multirow[t]{2}{*}{Seldom

Sometimes} \& \multirow[t]{2}{*}{02} \& <br>
\hline \& \& \& \& <br>
\hline \& \& Sometimes

Often \& 04 \& <br>
\hline \& \& Always \& 05 \& <br>
\hline \multirow[t]{5}{*}{40} \& \multirow[t]{5}{*}{Do you have sufficient opportunities to question managers about change at work?} \& Strongly disagree \& 01 \& \multirow[t]{5}{*}{S10} <br>
\hline \& \& Disagree \& 02 \& <br>
\hline \& \& Neutral \& 03 \& <br>
\hline \& \& Agree \& 04 \& <br>
\hline \& \& Strongly agree \& 05 \& <br>
\hline \multirow[t]{3}{*}{41} \& \multirow[t]{3}{*}{Do you receive the respect at work you deserve from your colleagues?} \& Strongly disagree \& 01 \& \multirow[t]{3}{*}{S11} <br>
\hline \& \& Disagree \& 02 \& <br>
\hline \& \& Neutral \& 03 \& <br>
\hline
\end{tabular}

|  |  | Agree <br> Strongly agree | 04 <br> 05 |  |
| :---: | :---: | :---: | :---: | :---: |
| 42 | Can you talk to your line manager about something that has upset or annoyed you about work? | Strongly disagree <br> Disagree <br> Neutral <br> Agree <br> Strongly agree | 01 <br> 02 <br> 03 <br> 04 <br> 05 | S12 |
| 43 | Is your line manager encourages you at work? | Strongly disagree <br> Disagree <br> Neutral <br> Agree <br> Strongly agree | 01 <br> 02 <br> 03 <br> 04 <br> 05 | S13 |




|  |  | No | 0 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 56 | On average, how many times a day do you use .... <br> (record for each type, use showcard) | Snuff, by mouth |  |  | T10a |
|  |  | Snuff, by nose |  |  | T10b |
|  |  | Chewing tobacco |  |  | T10c |
|  |  | Betel, quid |  |  | T10d |
|  |  | Other |  |  | T10e |
|  |  | Other (specify) |  |  | $\begin{aligned} & \text { T10 } \\ & \text { other } \end{aligned}$ |
| 57 | In the past, did you ever use smokeless tobacco such as [snuff, chewing tobacco, or betel] daily? | Yes <br> No | $01$ |  | T11 |
| 58 | During the past 7 days, on how many days did someone in your home smoke when you were present? | Numb | week |  | T12 |
| 59 | During the past 7 days, on how many days did someone smoke in closed areas in your workplace (in the building, in a work area or a specific office) when you were present? | Num | week |  | T13 |
| Alcohol Consumption |  |  |  |  |  |
| Next questions ask about the consumption of alcohol |  |  |  |  |  |
| 60 | Have you ever consumed an alcoholic drink such as beer, wine, spirits, fermented cider or (add other local examples)? | Yes <br> No | $01$ $02$ |  | A1a |
| 61 | Have you consumed an alcoholic drink within the past 12 months? | Yes <br> No | $01$ | 02 | A1b |
| 62 | During the past 12 months, how frequently have you had at least one alcoholic drink? | Daily $5-6 \text { day }$ |  | $01$ $02$ | A2 |


|  | (read responses, use <br> showcard) |  |  |  |  |  | $1-4$ days per week |  |  |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |


|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Seldom | 02 |  |
|  |  | Sometimes | 03 |  |
|  |  | Often | 04 |  |
| Diet | Always |  |  |  |
| Thext qua |  |  |  |  |

The next questions ask about the fruits and vegetables that you usually eat. I have a nutrition card here that shows you some examples of local fruits and vegetables. Each picture represents the size of a serving. As you answer these questions please think of a typical week in the last year.

| Q/N | Questions | Responses | Code |
| :---: | :---: | :---: | :---: |
| 69 | In a typical week, on how many days do you eat fruit? <br> (use showcard) | Number of days <br> If zero days go toD3 | D1 |
| 70 | How many servings of fruit do you eat on one of those days? (USE SHOWCARD) | Number of servings $\square$ | D2 |
| 71 | In a typical week, on how many days do you eat vegetables? <br> (USE <br> SHOWCARD) | Number of days <br> If zero days, go to D5 | D3 |
| 72 | How many servings of vegetables do you eat on one of those days? (USE SHOWCARD) | Number of servings $\square$ | D4 |


| 73 | What type of oil or fat is most often used for meal preparation in your household? | Vegetable oil <br> Lard or suet <br> Butter or ghee <br> Margarine <br> None in particular <br> None used <br> other <br> If other go to |  | D5 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Other <br> Specify $\qquad$ |  | D5 Other |

## Physical activity

Next I am going to ask you about the time you spend doing different types of physical activity in a typical week. Please answer these questions even if you do not consider yourself to be a physically active person.

Think first about the time you spend doing work. Think of work as the things that you have to do such as paid or unpaid work, study/training, household chores, harvesting food/crops, fishing or hunting for food, seeking employment. [Insert other examples if needed]. In answering the following questions 'vigorous-intensity activities' are activities that require hard physical effort and cause large increases in breathing or heart rate, 'moderate-intensity activities' are activities that require


## Travel to and from places

The next questions exclude the physical activities at work that you have already mentioned.

Now I would like to ask you about the usual way you travel to and from places. For example to work, for shopping, to market, to place of worship. (Insert other examples if needed)


## Recreational activities

The next questions exclude the work and transport activities that you have already mentioned.

Now I would like to ask you about sports, fitness and recreational activities (leisure), [Insert relevant terms].

| $\mathbf{8 3}$ | Do you do any vigorous- <br> intensity sports, fitness or <br> recreational (leisure) <br> activities that cause large <br> increases in breathing or <br> heart rate like [running or <br> football] for at least 10 <br> minutes continuously? | No |
| :--- | :--- | :--- | :--- | :--- | :--- |





| $\mathbf{1 0 3}$ | Is any person died in Your <br> family due to CVDs? | Yes | 01 | H7 |
| :--- | :--- | :--- | :---: | :--- |
| $\mathbf{1 0 4}$ | Indicate relationship with this <br> person | Relationship: | 02 |  |
| if no go to M1 |  |  |  |  |


| ANTROPOMETRIC AND BIOCHEISTRY REPORT FORM |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Q/N | MEASUREMENT | Type of measurement | Responses | Code |
| Anthropometric measurement |  |  |  |  |
| 105 | Interviewer ID |  |  | M1 |
| 106 | Device ID |  |  | M2a |
| 107 | Device ID |  |  | M2b |
| 108 | Height | $\begin{aligned} & \text { In centimeters } \\ & (\mathrm{Cm}) \end{aligned}$ |  | M3 |
| 109 | Weight <br> If too large for scale 777 | $\begin{gathered} \text { In } \\ \text { Kilograms(Kg) } \end{gathered}$ |  | M4 |
| 110 | For women: are you pregnant? | Yes 01 | If | M5 |
| 111 | Waist Circumference | In centimeters(Cm) |  | M6 |
| 112 | Hip Circumference | Cm |  | M6a |


| Blood pressure measurement |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| 113 | Cuff size use | Small |  |  |  |  |
|  |  |  |  |  |  |  |


|  | specimen $\operatorname{taken}(24$ <br> hour clock)  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 122 | Fasting blood glucose | $\mathrm{mg} / \mathrm{dl}$ |  | B5 |
|  | Choose accordingly $\mathrm{mg} / \mathrm{dl}$ or mmol/l | $\mathrm{mmol} / \mathrm{l}$ |  |  |
| 123 |  | $\mathrm{Mg} / \mathrm{dl}$ |  | B6 |
|  | Choose accordingly $\mathrm{mg} / \mathrm{dl}$ or mmol/l | $\mathrm{mmol} / \mathrm{l}$ |  |  |
| 124 | HDL Cholesterol | $\mathrm{Mg} / \mathrm{dl}$ |  | B7 |
|  | Choose accordingly $\mathrm{mg} / \mathrm{dl}$ or $\mathrm{mmol} / \mathrm{l}$ | $\mathrm{mmol} / \mathrm{l}$ |  |  |
| 125 | Triglyceride | Mg/dl |  | B8 |
|  | Choose accordingly $\mathrm{mg} / \mathrm{dl}$ or $\mathrm{mmol} / \mathrm{l}$ | $\mathrm{Mmol} / \mathrm{l}$ |  |  |
| 126 | LDL Cholesterol | Mg/dl |  | B9 |
|  | Choose accordingly $\mathrm{mg} / \mathrm{dl}$ or $\mathrm{mmol} / \mathrm{l}$ | Mmol/dl |  |  |
| 127 | CRP(C Reactive <br> Protein  <br> Choose  <br> $m g$  <br>   | mg |  | B10 |
| 128 | Glycated <br> Hemoglobin(HB1AC) <br> Percentage | \% |  | B11 |
| 129 | Uric Acid | $\mathrm{Mg} / \mathrm{dl}$ |  | B12 |
| 130 | During the past two weeks, have you been treated for raised | Yes | 01 | B13 |


|  | cholesterol with drugs <br> (medication) | No |  |  |
| :--- | :--- | :--- | :--- | :--- |
| prescribed by a doctor |  |  |  |  |
| or other health |  |  |  |  |
| worker? |  |  |  |  |

## Amasezeran yo kubazwa ku bushakashatsi ku bushake

Numero y'ubushakashatsi. $\qquad$

Izina ry'ubushakashatsi: iteganya ry'ibyago byo gufatwa n'indwara z'umutima n'imitsi ndetse n'ibindi byatuma zifata bamwe mubakozi n'abafasha babo munganda ebyiri zenga ibyo kunywa mu Rwanda.

Bwana/madamu mukozi/ mufasha w'umukozi,

Mwatumiwe kugira uruhare mu bushakashatsi bwitwa: iteganya ry'ibyago byo gufatwa n'indwara z'umutima n'imitsi ndetse n'ibindi byatuma zifata bamwe mubakozi n'abafasha babo munganda ebyiri zenga ibyo kunywa mu Rwanda burimo gukorwa na NSANZABERA Charles, umunyeshuri muri Kaminuza ya Jomo Kenyatta.

Mbere yo kugira uruhare muri ubu bushakashatsi, ukeneye gusoma, Kumva no gusobanukirwa amakuru yagufasha gufata umwanzuro wo kugira uruhare mu bushakashatsi ku bushake kandi inyungu zawe zitabangamiwe. Turagusaba kubaza ibibazo byinshi uko ubishoboye, kugirango usobanukirwe uko ubushakashatsi buzagenda, ingaruka ndetse n'inyungu zizabuvamo. Niba ufite ibibazo cyangwa icyo utasobanikiwe kuri ubu bushakashatsi, ntugire impungenge zo kubaza abagize itsinda ry'ubushakashatsi kugirango usobanukirwe.

Ubushakashatsi bwemewe na komite ngengamahame ya ministere y'ubuzima mu Rwanda kuko yujuje amahame mpuzamahanga mu by'ubushakashatsi. Na none
kandi ubu bushakashatsi buzubahiriza amahame n'amabwiriza y'imigendekere myiza y'ubushakashatsi nkuko biteganywa na Helsinki.

Ushobora guhitamo kujya mu bushakashatsi cyangwa kutabujyamo ubimenyesheje umushakashatsi. Niba ufashe icyemezo cyo kutitabira ubushakashatsi cyangwa cyo guhagarika amasezerano yo kubazwa ku bushakashatsi ku bushake ntuzatakaza uburenganzira kubyo wemerewe.

Niba Umukozi Cyangwa umufasha w'umukozi yanze kubazwa, bigaragaze

Nasobanuriwe ibijyanye n'ubushakashatsi. Numvise neza impanvu nyamukuru y'ubu bushakashatsi kandi ko kubazwa nta gahato kandi ko ibisubizo bizagirwa ibanga ibizava mu bushakashatsi bizazamura ubuzima bw'abaturage. Kubera iyo mpanvu, nemeye kubazwa nta gahato

Umukono cyangwa igikumwe cy'ubazwa $\qquad$ Itariki $\qquad$ IBIBAZO

Ibibazo bignewe ubazwa

Amabwiriza y'ibaza:
i. Uru rutonde rw'ibibazo byuzuzwa nubaza
ii. Somera neza ibibazo byose ubazwa
iv. Uzuza ukurikije uruhererekane rw'ibibazo

| Q/N | Igihe abakora ubushakashatsi <br> naho buri kubera | IBIZUBIZO | Kode |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Numero iranga aho <br> ubushakashatsi buri kubera | $\boxed{y y y}$ | L1 |



Ibirango rusange by'Imiterere n'imiturire y'ababazwa

| Q/N | Ibibazo | Ibisubizo |  | Kode |
| :--- | :--- | :--- | :---: | :--- |
| 8 | Igitsina | Umuga | 01 | C1 |
|  |  | Umugore | 02 |  |
|  |  |  | 0 |  |


| 9 | Igihe yavukuye | Igihe yavukiye: ....../......./........ | C2 |
| :---: | :---: | :---: | :---: |
| 10 | Ufite imyaka ingahe? | Imyaka:...... | C3 |
| 11 | Aho yavukiye |  | C4 |
| 12 | Iranga mimerere | Ingaragu 01 <br> Afite Umufasha/Gushyingiry 02 <br> Baratandukanye 03 <br> Baribanira gusa 04 <br> Umupfakazi 05 | C5 |
| 13 | Idini | Roman Catholic/Gatolika 01 <br> Protestantanti 02 <br> Umusilamu 03 <br> Abandi 04 <br> Niba ari 04 havuge.............................  <br> Niba uri umufasha w'umukozi jya kuri C8  | C6 |
| 14 | Umurimo ukora | Ubucuruzi No kwamamaza 01 | C7 |


|  | ndetse nigice <br> ukoreramo  | Tekiniki <br> Urwego Rwabakozi <br> Abahahira Uruganda <br> Abashinzwe ibigega n'imari <br> Ukora akahe kazi: $\qquad$ C9 | 02 <br> 03 <br> 04 <br> 05 <br> ya kuri |  |
| :---: | :---: | :---: | :---: | :---: |
| 15 | Akazi <br> k'umufasha(umugore <br> cg umugabo) <br> w’umukozi | ukora iki ubu kuri C9 |  | C8 |
| 16 | imyaka umaze mukazi | 0-4years(Imyaka) <br> 5-9years(Imyaka) <br> 10-14years(Imyaka) <br> 15-19years(Imyaka) <br> 20-24years(Imyaka) <br> 25-29years(Imyaka) <br> Imyaka 30 nirenga | 01 <br> 02 <br> 03 <br> 04 <br>  <br> 05 <br> 06 <br> 07 | C9 |
| 17 | Amashuri nimpamya bumenyi ufite | Primary(Amashuri abanza) <br> A3 (Amashuri atatu y'isumbuye) <br> A2 (Amashuri 6 yisumbuye) <br> A1(Icyiciro cya mbere cya kaminuza) | 01 <br> 03 <br> 04 | C9 |
|  |  | 274 | 05 |  |

$\left.\begin{array}{|l|l|l|l|}\hline & \begin{array}{l}\text { A0(Icyiciro cya 2 cya Kaminuza) } \\ \text { Masters(Icyiciro cya 3 cya Kaminuza) } \\ \boxed{06}\end{array} & \\ \text { Ph.D.(Icyiciro cya Kane cya Kaminuza } 07 \\ \text { Niba uri umufasha w'umukozi jya kuri }\end{array}\right]$.

| Imiterere y'akazi kuba kozi b'uruganda |  |  |  |
| :---: | :---: | :---: | :---: |
| $\begin{array}{\|l} \hline \mathbf{N} / \\ \mathbf{Q} \end{array}$ | Ibibazo | Ibizubizo na kode | kode |
| 18 | Waba ukora izamu (nijoro) ndetse no kumanwa mukazi ukora ubu? | Yego 01 <br> Oya <br> 02 | W1 |
| 19 | Waba ukora izamu (Nijoro) buri gihe? | Yego 01 <br>   <br> Oya 02 | W2 |
| 20 | Waba ukorera mu cyumba gikonjesha burigihe? | Yego 01 <br> Oya <br> 02 | W3 |
| 21 | Niminsi ingahe mucyuimweru ukorera mucyumba gikonje cg gikonjesha? | Umunsi 1 mucyumweru <br> Iminsi 2 mucyumweru | W4 |


|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |


|  |  | Burigihe |  |
| :---: | :---: | :---: | :---: |
| 26 | Waba ukora cg uhumeka  <br> Ibinyabutabire   <br> (Uburozi),Umwaka, imyotsi,  <br> umukungugu cg ibindi <br> byangiza aho ukorera cg  <br> byahungabanya   <br> bwawe?   | Yego <br> Niba ari oya jya kuri W11 | W9 |
| 27 | Ese muribi nibihe uhura nabyo? | $\mathrm{CO} \quad 01$ <br> CO 2 <br> 02 <br> Nitrites <br> Cobalt <br> 04 <br> Other <br> 05 <br> Niba hari ibindi jya W10a | W10 |
| 28 | Niba hari ibindi Ibinyabutabire,umwuka wangiza,imyotsi,umukungugu, bivuge | Bivuge $\qquad$ $\qquad$ $\qquad$ | W10a |
| 29 | Ese wambara | Yego 01 | W11 |


|  | agahumekerwamo mugihe uri gukorera ahari ibinyabutabire,imyotsi,Umwuk a wangiza, n'umukungugu? | Oya <br> 02 <br> Niba ari oya jya S1 |  |
| :---: | :---: | :---: | :---: |
| 30 | Nikangahe wambara <br> agahumekerwamo?  | Ntanarimwe <br> Gake cyane <br> Rimwe narimwe <br> Kenshi | W12 |
| Ibibazo byo kunanirwa no guta umutwe bituruka kukazi(Stressi) |  |  |  |
| Ubu ngiye kukubaza ibirebana nibibazo ndetse no guta umutwe bituruka kumiterere yakazi kawe, birazwiko imiterere y'akazi yagira icyo yangiza kubuzima bw'umukozi, ningenzi ko usubiza uko byakugendekeye kuva mumezi atandatu ashize. |  |  |  |
| 31 | Ese waba wumva cg ujya wumva neza ibigukeneweho kukazi? | Ntanarimwe <br> Gake cyane <br>  <br> Rimwe narimwe | S1 |


|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |


|  |  | Burigihe |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  | Ese waba utarangiriza akazi <br> kugihe gitegetswe? | Ntanarimwe | 01 | S4 |
|  |  | Gakee cyane | 02 |  |


|  | byinshi byo gukora? | Gake cyane <br> Rimwe narimwe <br> Kenshi <br> Burigihe | 02 <br> 03 <br> 04 <br> 05 |  |
| :---: | :---: | :---: | :---: | :---: |
| 37 | Ese waba uhatirwa nakazi gukora amasaha menshi? | Ntanarimwe <br> Gake cyane <br> Rimwe Narimwe <br> Kenshi <br> Burigihe | 01 <br> 02 <br> 03 <br> 04 | S7 |
| 38 | Ese waba udashobora kubona ikiruhuko gihagije? | Ntanarimwe <br> Gake Cyane | 01 <br> 02 | S8 |


|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | Rimwe narimwe | 03 |


|  | ukwiriye mubo mukorana byahafi? | Simbyemera <br> Ndifashe <br> ndabyemera <br> Ndabyemera Cyane | 02 <br> 03 <br> 04 <br> 05 |  |
| :---: | :---: | :---: | :---: | :---: |
| 42 | Ushobora kubwira ugukuriye byahafi mukazi ikitagushimishije cg kigutesha umutwe mukazi? | Simbyemeye Nagato <br> Simbyemeye <br> Ndifashe <br> Ndabyemeye <br> Ndabyemeye Cyane | 01 <br> 02 <br> 03 <br> 04 <br> 05 | S12 |
| 43 | Ese umuyobozi wawe byahafi agutera ingabo mubitugu mukazi kawe? | Simbyemeye nagato <br> Simbyemeye | 01 <br>  <br> 02 | S13 |


|  |  | Ndifashe <br> Ndabyemeye <br> Ndabyemeye Cyane | 03 <br> 04 <br> 05 |  |
| :---: | :---: | :---: | :---: | :---: |
| Imibereho nimyitwarire by'ubazwa |  |  |  |  |
| Gukoresha cg kunywa Itabi |  |  |  |  |
| Ubu noneho Ngiye kukubaza ibibazo bitandukanye birebana nimyitwarire mubuzima. Mbese nko kunywa itabi, Kunywa inzoga, Kurya imbuto n'Imboga no gukora (Siporo)imyitozo ngorora mubiri. Reka dutangirire Kw'itabi. |  |  |  |  |
| 44 | Ese ubu unywa itabi iryariryo  <br> ryose $n k$ <br> isigara,Ikigoma,Inkono  <br> yitabi?(mwereke <br> bishushanyije)  <br>  aho | Yego <br> 01 <br> Oya <br> 02 <br> if no Go |  | T1 |
| 45 | Ese unywa itabi ry'umwotsi buri munsi? | Yego <br> 01 <br> Oya <br> 02 |  | T2 |
| 46 | Warufite imyaka ingahe igihe watangiraga kunywa itabi? | Imyaka |  | T3 |
| 49 | Muri rusange unywa itabi ringana iki | Manufactured cig ryomuruganda | rettes/Itabiri | T4a |


|  | (erekana ikarita ishushanyijeho ubwoko bwitabi) | Hand-rolled cigarettes/Itabi <br> bazinga mugipapuro cg <br> mw'ikoma  | T4b |
| :---: | :---: | :---: | :---: |
|  |  | Pipes full of tobacco/Inkono y'itabi | T4c |
|  |  | Cigars, cheroots,  <br> cigarillos/Ikigoma cg ibitabi <br> binini cyane   | T4d |
|  |  | Ubundi bwoko bw'itabi <br> Niba harubundi bwoko bwitabi jya T4others | T4e |
| 50 |  |  | T4othe r |
| 51 | Ese cyera wigeze unywa itabi? | Yego 01 | T5 |
|  |  | Oya <br> 02 <br> Niba ari oya jya |  |
| 52 | Warufite imyaka ingahe igihe warekaga itabi? | Imyaka | T6 |


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 53 | Hashize imyaka ingahe uretse kunywa itabi? | Imyaka ishize <br> Niba izwi, jya kuri T8 | T7a |
|  | Andika aho yibuka gusa singombwa hatatu | Cg amezi ashize <br> Niba igihe kizwi, jya kuri T8 | T7b |
|  |  | cg ibyumweru bishize | T7c |
| 54 | Ese waba unywa irindi tabi ritagira imyotsi nka(Itabi bashyira mumazuru,Ubugoro,cg betel cg irindi tabi bahekenya) erekana ikarita rishushanyijeho | Yego 01 <br>   <br> Oya 02 | T8 |
| 55 | Ese waba unywa itabi ritagira umwotsi burigihe? | Yego 01 <br>   <br> Oya 0 | T9 |
| 56 | Ducishirije waba urifata inshuro zingahe kumunsi? | Snuff, by mouth/Itabi ryo mukanwa cg ubugoro nibindi bias nkabwo | T10a |
|  | (andika inshuro imbere yitabi ukurikije iriri ku ishusho) | Snuff, by nose/Itabi ryo mumazuru cg ubugoro bwo muazuru nibindi bias nkabwo | T10b |
|  |  | Chewing tobacco/Itabi <br> bahekenya  | T10c |
|  |  | Betel, quid | T10d |


|  |  | Ubundi bwoko bwitabi | T10e |
| :---: | :---: | :---: | :---: |
|  |  | Irindi (rivuge) | $\begin{aligned} & \text { T10 } \\ & \text { other } \end{aligned}$ |
| 57 | Ese waba warigeze ukoresha itabi ritagira umwotsi nka( ivu ryo mumazuru, ubugoro cg betel ? mwereke ikarita) |  <br> Oya <br> 02 | T11 |
| 58 | Muminsi irindwi ishize haba hari umuntu wanywereye itabi murugo muhari? | Iminsi yarinyweye mucyumweru | T12 |
| 59 | Muminsi 7 ishize nikangahe umuntu yanywereye itabi ahegereye aho mukorera (Munzu imbere cg mubiro nahandi mukorera?) | Iminsi yarinyweye mucyumweru | T13 |
| Kunywa inzoga/Ibyo kunywa bisembuye |  |  |  |
| Ibibazo bikurikiyeho bibaza ibirebana no kunywa inzoga |  |  |  |
| 60 | Wigeze unywa ikinyobwa gisembuye nka byeri, divayi, Kanyanga cg urwagwa nizindi zisembye? | Yego <br>  <br> Oya | A1a |
| 61 | Waba waranyoye kubinyobwa bisembuye mumezi cumi nabiri ashize? | Yego 01 <br> Oya <br> 02 | A1b |
| 62 | Mumezi cumi nabiri ashize ninshuro zingahe waba waranyoye byibuze kuri kimwe muribi binyobwa? | Buri munsi <br> iminsi5-6 mucyumweru | A2 |


|  | mwereke ikarita | 1-4 mucyumweru <br> 03 <br> 1-3 Mucyumweru <br> 04 <br> Munsi ya Rimwe mukwezi |  |
| :---: | :---: | :---: | :---: |
| 63 | Waba waranyoye ibinyobwa bisembuye muminsi 30 ishize? | Yego 01 <br> Oya <br> 02 | A3 |
| 64 | Muminsi 30 ishize ni kangahe waba waranyoye byibura icupa rimwe? | umubare wiminsi $\square$ | A4 |
| 65 | Muminsi mirongo itatu ishize, ducishirij cg se tugereranije ninkamacupa <br> (Ibirahuri <br> Bingahe) angahe wanyoye buri uko wajyaga kunywa? | Umubare wamacupa cgw'ibirahuri (erekana ikigero) | A5 |
| 66 | Muminsi 30 ishize, nikihe <br> kigero kinini kikinyobwa  <br> gisembuye wafataga buri uko  <br> wajyaga kunywa, Ubariye  <br> hamwe buri bwoko  <br> bwibinyobwa bisembuye   <br> byose?    | Largest number/Umubare wamacupa cg Wibirahuri $\square$ | A6 |
| 67 | Muminsi 30 ishize, n’inshuro zingahe wafashe <br> Umugabo: $\begin{equation*} 5 \tag{cg} \end{equation*}$ | Umubare winshuro | A7 |


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 68 | Waba unywa ibinyobwa bisembuye uri kukazi? | Ntanarimwe <br> Gake cyane <br> Rimwe narimwe <br> Kenshi <br> Burigihe | 0 | A8 |
| Ibyo kurya ukunda kurya |  |  |  |  |
| Ibibazo bikurikiraho birabaza imbuto nimboga ukunda kurya. Hano Mfite ikarita ishushanyijeho ibyo kurya, yerekana ingero z'imbuto n'imboga ziboneka mukarere kanyu. Buri foto iri kw'ikarita yerekana imbuto zikwiriye kw'igaburo. Mugihe uri gusubiza ibi bibazo tekereza izo waryaga buri cyumweru mu mwaka ushize. |  |  |  |  |


| $\begin{aligned} & \hline \mathbf{Q /} \\ & \mathbf{N} \end{aligned}$ | Ibibazo | Ibisubizo | Kode |
| :---: | :---: | :---: | :---: |
| 69 | Mu cyumweru cyose, n'iminsi ingahe urya imbuto? <br> (use showcard/Erekana ikarita) | Umubare wiminsi <br> Niba ari zero jya D3 | D1 |
| 70 | Nikigero kingana iki cy'igaburo ry'imbuto ufungura buri munsi umwe muyo wavuze haruguru? <br> (Erekana ikarita) | umubare w'amagaburo | D2 |
| 71 | Mucyumweru cyose n'iminsi ingahe urya imboga? <br> (Erekana ikarita) | Umubare w'iminsi | D3 |
| 72 | Namagaburo angahe y'imboga urya buri munsi muyo wavuze haruguru ( erekana ikarita) | Umubare w'amagaburo | D4 |
| 73 | Nubuhe bwoko bw'amavuta cg ibinure ukoresha keshi utunganya igaburo murugo iwawe? | amavuta y'imboga 01 <br> Lard or suet/  <br>   <br> Amavuta y'inka 02 <br> Margarine/ 04 | D5 |
|  |  | 290 05 |  |



|  | biremereye,gucukura,kubaka guhera kuminota icumi kuzamura urimo gukoresha ingufu? <br> [Shyiramo izindi ngero] <br> Erekana ikarita) | Niba ari oya jya kuri P4 |  |
| :---: | :---: | :---: | :---: |
| 75 | Mucyumweru cyose n'iminsi ingahe ukora imirimo isaba ingufu nyinshi mukazi kawe? | Umubare w'iminsi $\square$ | P2 |
| 76 | Nigihe kingana iki umara ukora akazi gasaba ingufu nyinshi mumunsi wose? | Isaha: Iminota $\square$ | $\mathbf{P 3}$ (a-b) |
| 77 | Ese akazi ukora kaba kagusaba ingufu zigereraninyije zituma guhumeka byiyongera numutima ugatera ariko bitari cyane nko guterura ibintu bitaremereye cyane, kugenda genda mukazi wihuta ariko utarengeje intambwe ijana mumunota? <br> [shyira izindi ngero] (Erekana ikarita) | Yego 01 <br> Oya 02 <br>   <br> Niba ari oya jya kuri P7 | P4 |
| 78 | Mucyumweru cyose n'iminsi ingahe ukora imirimo isaba ingufu ziri murugero mukazi kawe ka buri munsi? | Umubare wiminsi | P5 |
| 79 | Nigihe kingana iki ukora imirimo isaba imbaraga zigereranije kumunsi wose? | Isaha: Iminota $\square \square$ | $\begin{aligned} & \text { P6 } \\ & (\mathbf{a - b}) \end{aligned}$ |


| Urugendo rwo kuva ahantu cg ujyayo |  |  |  |
| :---: | :---: | :---: | :---: |
| Ibibazo bikurikiyeho ntibirebana nimirimo isaba ingufu yo kukazi umaze kuvuga haruguru. <br> Noneho ndasha kukubaza uburyo ukoresha ujya cg Uva aho uba wagiye. Urugero kukazi,mumurima, Guhaha, kwisoko, ujya gusenga.(Cg ahandi) |  |  |  |
| 80 | Ese ugendesha amaguru cg ukoresha igare iminota irenze icumi iyo ujya cg uva iyo wagiye? | Yego 01  <br> Oya 02  <br>    <br>  Niba ari oya jya  <br> P10   | P7 |
| 81 | Mu cyumweru cyose, niminsi ingahe ugenda namaguru cg nigare birenze iminota icumi gukomeza, iyo ujya cg uva aho uba wagiye? | Umubare w'iminsi $\square$ | P8 |
| 82 | Nigihe kingana iki umara ugenda? | Isaha: iminota | P9 (a-b) |
| Imyidagaduro |  |  |  |
| Ibibazo bikurikiyeho bitandukanye nibirebana nakazi ndetse ningendo wavuze haruguru. Noneho Ndashaka kukubaza ibirebana na sporo, Imyidagaduro, kubyina, gukina umupira wamaguru cg uwintoki? |  |  |  |
| 83 | Waba ukora siporo igusaba ingufu nyinshi, guterura ibyuma, kubyina bituma umutima utera cyane ndetse uhumeka cyane (Gukina ruhago cg kwirukanka)? | Yego 01 <br> Oya 02 <br> Niba ari oya P13 | P10 |


| 84 | Mucyumweru cyose, niminsi ingahe wakoraga siporo isaba ingufu nyinshi, guterura ibyuma cg gukina umupira wamaguru cg indi myidagaduro? | Umubare w'iminsi | P11 |
| :---: | :---: | :---: | :---: |
| 85 | Nigihe kingana (Amasaha) iki  <br> Umara ukora siporor isaba <br> imbaraga nyinshi guterura  <br> ibyuma gukina umupira  <br> mumunsi wose?    | Isaha : Iminota | $\begin{aligned} & \mathbf{P 1 2} \\ & (\mathbf{a}-\mathrm{b}) \end{aligned}$ |
| 86 | Waba ukora sporo cg se imyidagaduro isaba imbaraga ziri murugero zituma guhumeka no gutera kumutima byiyongera gahoro nko kugenda wihuta ukora nkintambwe ijana mumunota, Koga cg gukina umupira wamaboko (nka volleyball) uhereye kuminota icumi kuzamura? |  | P13 |
| 87 | Mucyumweru cyose, niminsi ingahe ukora siporo isaba ingufu ziri murugero (Kubyina cg indi myidagaduro)? | Umubare wiminsi $\square$ | P14 |
| 88 | Nigihe cyingana iki umara ukora siporo cg indi myidagaduro isaba imbaraga zoroheje mumunsi wose? | amasaha : Iminota | $\begin{aligned} & \text { P15 } \\ & \text { (a-b) } \end{aligned}$ |
| Imyitwarire yo kumara igihe kirekire wicaye udakora siporo cg utagenda |  |  |  |
| Ibibazo bikurikiyeho birebana no kwicara umwanya munini kukazi cg murugo cg kugenda ugaruka wicaye, urikumwe ninshuti zawe harimo nigihe umara mubiro, wicaranye ninshuti,ugenda mumodoka, mumodoka zitwara abagenzi(Bus),Igare |  |  |  |




|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 103 | Haba harumuntu mumuryango wanyu wapfuye azize indwara y'umutima cg imitsi? | Yego 01 <br> Oya 02 <br>   <br>  Niba ari oya jya kuri M1 | H7 |
| 104 | Mupfana iki nuyumuntu? | Isano | H7a |


| IFISHI Y'IBIPIMO BY'INGANO NIMIKORERE | Y'UMUBIRI |
| :--- | :--- | :--- | :--- | :--- | W'UMUNTU


| Q/ <br> $\mathbf{N}$ | Ibipimo | ubwoko <br> bw'ibipimo | Ibisubiz <br> o | kod <br> e |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Anthropometric measurement/Ibipimo by'ingano y'umubiri w'umuntu |  |  |  |  |  |  |
| 105 | No y'ubaza |  |  | M1 |  |  |
| 106 | No y'igikoresho cya1 |  |  | M2a |  |  |
| 107 | No y'igikoresho cya 2 |  | In centimeters <br> (Cm) |  |  |  |
| 108 | Uburebure |  |  | M3 |  |  |
| 109 | Ibiro | In |  |  |  |  |


|  | (niba ibiro biruta umunzani andika) 777 | Kilograms(Kg) |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 110 | For women:are you pregnant? Kuba gore: ese waba utwite? | Yego 01 <br> Oya  <br>   | Niba ari yego jya | M5 |
| 111 | Umuzenguruko winda | In centimeters(Cm) |  | M6 |
| 112 | Umuzenguruko w'amatako | In Cm |  | M6a |
| Ibipimo b'umuvuduko w'amaraso |  |  |  |  |
| 113 | Igano yigitambaro gifata kukuboko | Nigito <br> Kiraringaniye <br> Nikinini | 01 <br> 02 <br> 03 | M7 |
| 114 | Gupima Inshuro ya 1 | Systolic (mmHg) |  | M8a |
|  |  | Diastolic(mmHg ) | $\underline{I}$ | M8b |
| 115 | Gupima Inshuro ya 2 | Systolic(mmHg) |  | M9a |
|  |  | Diastolic (mmHg ) |  | M9b |
| 116 | Gupima Inshuro ya 3 | Systolic(mmHg) |  | M10a |
|  |  | Diastolic(mmHg | $\square$ | $\begin{array}{\|l\|} \hline \text { M10 } \\ \text { b } \end{array}$ |
| 117 | Mubyumweru bibiri bishize waba warivuje umuvuduko | Yego | 01 | M11 |


|  | wamaraso bakaguha imiti yanditswe na muganga cg numuvuzi? | Oya | 02 |  |
| :---: | :---: | :---: | :---: | :---: |
| Ibipimo by'imikorere y'umubiri |  |  |  |  |
| 118 | Mumasaha cumi nabiri ashize haba harikindi kintu wanyoye uretse amazi? | Yego <br> Oya | 01 <br> 02 | B1 |
| 119 | Technician ID/No y'ufata amaraso |  |  | B2 |
| 120 | Device ID/No y'imashini |  |  | B3 |
| 121 | Time of day blood specimen taken(24 hour clock)/Igihe amaraso yafatiwe(Kukigero cy'Amasaha 24) | Isaha: Iminota | : |  |
| 122 | Fasting blood glucose/Isukari yo mumaraso utararya <br> Choose accordingly mg/dl or mmol/l/(Hitamo ukurikije niba ari mg/dl cg mmol/l) | $\mathrm{mg} / \mathrm{dl}$ <br> $\mathrm{mmol} / \mathrm{l}$ |  |  |
| 123 | Total Cholesterol/Ibinure bya kolesterol yose hamwe <br> Choose accordingly mg/dl or mmol/l(Hitamo ukurikije niba ari mg/dl cg mmol/l) | $\mathrm{Mg} / \mathrm{dl}$ <br> $\mathrm{mmol} / \mathrm{l}$ |  | B6 |
| 124 | HDL Cholesterol(Ibinure byo mubwoko bwa kolesterol bifite ireme ryinshi) <br> Choose accordingly mg/dl or mmoll/(Hitamo ukurikije | $\begin{array}{\|l\|} \hline \mathrm{Mg} / \mathrm{dl} \\ \hline \mathrm{mmol} / \mathrm{l} \end{array}$ |  | B7 |


|  | niba ari mg/dl cg niba ari mmoll $)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 125 | Triglyceride/Ibinure byo mubwoko bwa tiligiliseride) <br> Choose accordingly mg/dl or mmolll(Hitamo ulurikije niba ari $\mathrm{mg} / \mathrm{dl}$ cg ari mmol/l | Mg/dl <br> Mmol/l |  | B8 |
| 126 | LDL Cholesterol/Ibinure byo mbwoko bwa kolesterol ifite ireme rike <br> Choose accordingly mg/dl or mmolll(Hitamo ukurikije niba ari $\mathrm{mg} / \mathrm{dl}$ cg ari mmol/l) | $\mathrm{Mg} / \mathrm{dl}$ <br> Mmol/dl |  | B9 |
| 127 | CRP(C Reactive Protein/Poroteyine C Choose accordingly mg/Hitamo ukurikije niba ari $m g / d l$ | mg |  | B10 |
| 128 | Glycated <br> Hemoglobin(HB1AC)/Ikiger o cya HB1AC <br> Percentage/Ijanisha | \% |  | B11 |
| 129 | Uric Acid/Acide irike | Mg/dl |  | B12 |
| 130 | Mubyumweru bibiri bishize waba warigeze wivuza ibinure byinshi byo murwego rwa kolesterol, ukanywa imiti wandikiwe namuganga? | Yego <br> Oya | 01 <br> 02 | B13 |

## Appendix III: School Data collection authorization



JOMO KENYATTA UNIVERSITY OF AGRICULTURE ANI TECHNOLOGY
OFFICE OF THE DIRECTOR
KIGALI CAMPUS


#### Abstract

P.O.BOX 3373, KIGALI, RWANDA, Email: director kigalicampusajkuatac.ke

REF: JKU/13/05/460 $20^{\text {th }}$ November, 2017.

RECOMMENDATION LETTER FOR ETHICAL CLEARANCE

Dear Sir/Madam,

RECOMMENDATION LETTER FOR, NSANZABERA Charles Reg NO.PHD/TM4IO-C0IO 0013/2015.

This is to confirm that NSANZABERA Charles Reg N0.PHD/TM410-C010-0013/2015.is a bona tide student of JKUAT. Kigali Campus pursuing PhD in Public Health with the topic "Risk predretion and factors associated with cardiovascular discases among workors and their Spouse in two beverage processing industries in Rwanda" this was presented to the Institution research review panel with a pass at our Institution JKUNT. He has completed his course work and now working on His research.


Any assistance accorded to him shall be highly appreciated.

## Yours Faithfully.



PROF, CHERUIYOT W,K, PhD
DIRECTOR


JKUAT is ISO 90012008 Certifiod

Sothug trends in higher educason research and innoratoon

## Appendix IV: BPS Approval

JOMO KENYATTA UNIVERSITY OF

## AGRICULTURE AND TECHNOLOGY

 DIRECTOR, BOARD OF POSTGRADUATE STUDIESP.O. BOX 62000
NAIROBI - 00200
KENYA
TEL: 284-067-52711/52181-4
Emall: directorsbps.jkuatac.ke FAX: 254-067-52164/52030
REF: JKU/2/11/ TM410-C010-0013/2015
$21^{\text {ST }}$ JUNE, 2017
NSANZABERA CHARLES
C/oSPH
JKUAT
Dear Mr. Nsanzabera,
RE: APPROVAL OF PHD RESEARCH PROPOSAL AND SUPERVISORS
Kindly note that your research proposal entitled "Risk prediction and factors associated with cardiovascular diseases among workers and their spouses in two beverage processing industries in Rwanda" has been approved. The following are your approved supervisors:-

1. Dr. Daniel Nyamongo
2. Dr. Marcel Ndengu
Yours sincerely
Copy to: - Dean, SPH

## Appendix V: Field data collection authorization

BRALIRWA Ltd
HUMAN RESOURCES DIRECTION/COSH DEPARTMENT
B.P 131 Kigali
$N^{\circ}$ contact: Tél. 0788520297
21/03/2018


RE: ACCEPTANCY FOR RESEACH DATA COLLECTION.

I, Dr. Jean Pierre KABAREGA, Company Occupational health and safety
Manager of Bralinwa Ltd, Certify that Mr. NSANZABERA CHARLES, is authorized to carry out his study on cardiovascular diseases risk factors in our workplace organization and this with the aim of improving and promoting the health of employees in Bralirwa Workplace.

Sincerely


Bralirwa Itd trade Register G 001 | VAT No. 100004348 | www.bralirwa.com | bralirwa@heinekencon
Kigali (Head Office) | P.O. Box 131 |Tet: +250 252582993 |Fax: +250252585693
Giseny| |P.O. Box 180 |Teli: +250252540372 | Fax +250252540356

## Appendix VI: Introduction letter from Rwanda Ministry of Education

REPUBLIC OF RWANDA


MINISTRY OF EDUCATION P.O.BOX 622 KIGALI

Kigali,..30./. 11.1 .20 .17 $\mathrm{N}^{\circ} \ldots 2.235 . . . / 12.00 / 2017$

The Head of Rwanda National Ethics Committee Kigali.

## Dear Sir/Madam,

## RE: Research Project Proposal for Review

I wish to introduce Mr. Nsanzabera Charles, PhD student in Public Health, Jomo Kenyatta University of Agriculture and Technology to you. He is seeking Research Clearance Certificate to carry out research in Rwanda.

The Title of her research project is "Risk Prediction and Factors Associated with Cardiovascular Disease among Workers and their Spouses in two Beverage Processing Industries in Rwanda". As it is required by the research regulations, the project proposal should be reviewed by the Rwanda National Ethics Committee.

It is in this regard that I am requesting that this project be considered on your review schedule.
I take this opportunity to thank you for your continued eellaboration.
Yours sincerely,


## Maric-Christine GASINGIRWA, Ph.D

Director General of Science, Technology and Research?
Cc.

- Hon. Minister of Education
- Hon. Minister of State in Charge of TVET
- Hon Minister of State in charge of Primary and Secondary Education
- Permanent Secretary, Ministry of Education


RWANDA
BIOMEDICAL
CENTER

> Kigali, DAt.../. $2, . .2018$
> Ref: No A.2. 2 /RBC/2018

A Healthy People. A Wealthy Nation

Office of Director General
Chairman of the Rwanda National Health Research Committee (NHRC) Ministry of Health

## Re: COLLABORATION APPROVAL NOTE

Dear Chairman of NHRC,

I, Dr. Jeanine U. Condo, Director General of Rwanda Biomedical Centre confirm that I am aware of the study entitled "Risk prediction and factors associated with cardiovascular diseases among workers and their spouses in two beverage processing industries in Rwanda", A study whose specific objectives include the prediction of the 10 year cardiovascular diseases risk, determining the behavioural, biological and work condition factors associated with cardiovascular diseases as well as determining the proportion of people with Hypertension, Diabetes and Dyslipidemia, overweight and obesity and difference between two by two groups in risk factors, novel risk development and the level of cardiovascular disease risk among workers of Kicukiro soft drink plant and Rubavu brewery plant and their spouses

This cross-sectional quantitative study will use both stratified and simple Random sampling techniques to select participants (employees) from their departments and spouses or retirees at each site, respectively. The study population totalizes 822 participants aged $30-75$ composed by 299 workers and 187 spouses in Kicukiro and 204 workers and 132 spouses in Rubavu plant. The study tools include standardized questionnaire with Clinical and anthropometric measures form, laboratory form for biochemical samples; and cardiovascular risk assessment based on WHO/ISH risk prediction chart and FGRS. Data analysis will be performed in SPSS featuring inbuilt cox hazard regression model (Framingham general cardiovascular risk score) and WHO/ISH risk prediction chart to determine the 10 -year CVD risk in the population of the study, Cohen Kappa analysis to determine the level of risk prediction agreement between models, Bivariate and multivariate analysis to determine the factors associated with high risk categories and underlying risk factors correlated to predictor variables and finally Anova model to compare the group participants in two different area regarding cardiovascular risk factors differences. Findings from this study will provide a comprehensive understanding of the linkage of workplace, community and cardiovascular diseases, showing the riskier and unsafe working conditions and the strategy to address them, protecting and advising the workforce, employers, community and the policy makers to develop a safe environment as well as helping to reduce the cost spent to cardiovascular diseases and increase awareness and behaviour change toward CVDs Risk Factors in Rwanda.
The study PI is Mr NSANZABERA Charles, PhD Student at in Public Health programme at Jomo Kenyatta University of Agriculture and Technology and Co-PI is Dr Evariste NTAGANDA from Rwanda Biomedical Center, Non Communicable Disease Division/Cardiovascular Diseases Unit, supervised by Dr Daniel NYAMONGO SAGWE and Dr Marcel NDENGO. DG's office, through Medical Research Center and NCD Division is ready to collaborate with the study team to ensure effective implementation.

Sincerely,

Jeanine U. Condo, MD, PhD Associate Professor of Public Health Director General /RBC

Appendix VIII: Ethical Clearance

## REPUBLIC OF RWANDA/REPUBLIQUE DU RWANDA

## NATIONAL ETHICS COMMITTEE / COMITE NATIONAL D'ETHIQUE

Telephone: (250) 255107884
E-mail: info@rnecrwanda.org
Web site: www.rnecrwanda.org
FWA Assurance No. 00001973
IRB 00001497 of IORG0001100

Ministry of Health
P.O. Box. 84

Kigali, Rwanda.

May 11, 2018
No.121/RNEC/2018

## NSANZABERA CHARLES

Primary Investigator
(A student at Jomo Kenyatta University)
Your research project: "RISK PREDICTION AND FACTORS ASSOCIATED WITH CARDIOVASCULAR DISEASES AMONG WORKERS AND THEIR SPOUSES IN TWO BEVERAGE PROCESSING INDUSTRIES IN RWANDA " has been evaluated by the Rwanda
National Ethics committee.

|  |  | Involved in the decision |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  | No (Reason) |  |  |
|  |  | Yes | Absent | Withdrawn from <br> the proceeding |
| Dr.Jean-Baptiste MAZARATI | Biomedical Services <br> (BIOS) | X |  |  |
| Prof. Eugène RUTEMBESA | University of Rwanda | X |  |  |
| Dr.Laetitia NYIRAZINYOYE | University of Rwanda | X |  |  |
| Dr. Egide KAYITARE | University of Rwanda | X |  |  |
| Sr.Domitilla <br> MUKANTABANA | Kabgayi Nursing and <br> Midwife school | X |  |  |
| Dr. David K. TUMUSIIME | University of Rwanda | X |  |  |
| Dr. Lisine TUYISENGE | Kigali Teaching Hospital | X |  |  |
| Dr. Claude MUVUNYI | Biomedical Services <br> (BIOS) | X |  |  |

After reviewing your protocol during the RNEC meeting of March 10, 2018 where quorum was met, and revisions made on the advice of the RNEC submitted on 08 May 2018, we hereby provide approval for the above mentioned protocol.

Please note that approval of the protocol and consent form is valid for $\mathbf{1 2}$ months.
You are responsible for fulfilling the following requirements:

1. Changes, amendments, and addenda to the protocol or consent form must be submitted to the committee for review and approval, prior to activation of the changes.
2. Only approved consent forms are to be used in the enrollment of participants
3. All consent forms signed by subjects should be retained on file. The RNEC may conduct audits of all study records, and consent documentation may be part of such audits.
4. A continuing review application must be submitted to the RNEC in a timely fashion and before expiry of this approval.
5. Failure to submit a continuing review application will result in termination of the study.
6. Notify the Rwanda National Ethics committee once the study is finished.

Sincerely


Date of Approval: May 11, 2018
Expiration date: May 10, 2019

## Dr. Jean- Baptiste MAZARATI kic <br> Chairperson, Rwanda National Ethics Committee. <br> C.C.

- Hon. Minister of Health.
- The Permanent Secretary, Ministry of Heath

