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ABSTRACT
Traffic breakdown is the main cause of vehicle traffic congestion in multi-lane
roads due to highway bottlenecks such as lane-drops, on and off-ramps. In this
study, the nature of traffic congestion and phase transition at the highway
bottlenecks is explained. A multi-lane macroscopic traffic flow model of
Aw-Rascle type is derived from the kinetic traffic flow model in which the
lane-change terms are expressed explicitly. This is achieved by first developing
the Kinetic traffic flow interaction operators and then applying the method of
moments to get the corresponding macroscopic equations. For simulation of the
traffic congestion, we consider a highway with three traffic lanes that have
stationary bottlenecks. The macroscopic model equations for each lane are
solved numerically using finite volume method (Godunov scheme), whereby the
Euler’s method is used for the source term. The results of the simulations of the
congestion near and within the bottlenecks are presented in form of graphs and
space-time plots. These results show that vehicle lane-change manoeuvre near
the bottlenecks lead to traffic breakdown and congestion on the lane adjacent to
the bottlenecks compared to the other express lanes in the highway. This
prompts the following vehicles moving in the outermost lane to either slow
down upon reaching the disturbance region or change to the other lanes before
they reach the merging region. The model results provide important insight into
improving the road network design and safety management strategies especially
when new roads are constructed.
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CHAPTER ONE

INTRODUCTION

1.1 Background Information

Vehicular traffic congestion is a condition on transport networks that occurs
when a volume of traffic generates demand for space greater than the available
road capacity and is one of the major problems experienced in most of the roads
within urban areas. It exhibits a spatiotemporal traffic pattern which is a
distribution of traffic flow variables in space and time. One way of solving this
problem is to add more lanes on the existing roadways to increase the road
capacity. Sometimes, this remedy is restricted by lack of spaces, resources,
environments, politics and poor governance. Therefore, a proper understanding
of empirical traffic congestion for effective traffic management, control and
organization is necessary. Traffic flow theories and models which describe in a
precise mathematical way the vehicle to vehicle and vehicle to infrastructure
interactions are required to explain the real cause of traffic congestion.
One of the main causes of traffic congestion in road networks is traffic
breakdown in an initially free flowing traffic, (Kerner, 2010). The traffic
breakdown is described as the abrupt decrease in average vehicle speed in a free
flow to a lower speed in congested traffic and usually occurs at highway
bottlenecks such as lane-drops, road construction areas, accident areas, weaving
section, on-ramps and off-ramps. This traffic breakdown is due to dynamic
competition of the ’speed adaptation effect’ which describes a tendency of traffic
towards synchronized flow and the ’over-acceleration effect’ describing a
tendency of traffic towards free flow. Traffic congestion may also lead to various
negative effects to motorists such as; delays in arrivals to various destinations,
fuel wastage, wear and tear. However, traffic congestion has the advantage of
encouraging travelers to re-time their trips early enough so that valuable road
space is in full use for the most number of hours per day. Thus, there is a need
to develop macroscopic traffic flow models which describe the traffic flow
dynamics by averaging vehicles’ density, velocity and flow rate.

1.2 The Three-Phase Traffic Flow Theory

The three-phase traffic flow theory is a qualitative flow introduced by Kerner
(2010) based on common spatiotemporal features of measured congested traffic
patterns. Traffic flow is a complex dynamics behavior of spatiotemporal traffic
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pattern which occurs in space and time. This implies that traffic variables such
as flow rate(q), vehicles density(ρ) and vehicle speeds are measured in real
traffic flow in space and time. According to Kerner (2010), a traffic phase is a
traffic state in space and time that possesses some unique empirical
spatiotemporal features of traffic flow. Normally, traffic flow is considered to be
either in free flow (F ) or in congested state. However, in the congested state
there exist two different phases namely synchronized flow (S) and wide moving
jams (J). Thus there are three traffic phases in the three-phase traffic theory
namely: free flow (F ), synchronized flow (S) and wide moving jam (J)
described henceforth.
The free traffic flow phase is normally observed when the vehicles’ density in
traffic stream is small and the vehicles are able to move freely with negligible
vehicle to vehicle interactions. Therefore, the vehicles have an opportunity to
move with their desired maximum speeds if not restricted by the traffic
regulations or road conditions. When the vehicle density increases in free flow,
an increase in flow rate follows and a limit for this phase is reached since the
vehicle interactions can no longer be neglected, leading to a decrease in the
vehicle speeds. At this limit point of free flow, the flow rate and density attain
their maximum values at which the probability of a phase transition to a
congested traffic phase is one.
A congested traffic state is the one in which the average speed of the vehicles is
lower than the minimum average speed that is possible in free flow state. To
distinguish between synchronized flow (S) and wide moving jam (J) in the
congested state, we start by defining the later.
A wide moving jam is a localized congested traffic pattern with a low average
vehicle speed and a high vehicle density spatially restricted by two jam fronts
i.e. downstream and upstream jam fronts. Within the downstream jam front,
vehicles accelerate from low speed states inside the jam to higher speeds in
traffic flow downstream of the jam while within the upstream jam front, vehicles
slow down to the speed within the jam. These two jam fronts move upstream
which gives the wide moving jam a special feature of propagating through any
other traffic states and through highway bottlenecks while maintaining the
mean speed of the downstream jam front.
Synchronized flow (S) is any congested traffic with no significant stoppage that
does not exhibit the characteristic feature of wide moving jam phase. Unlike in
the later phase, the downstream front of the synchronized flow phase does not
maintain the mean velocity of the downstream front. In particular the
downstream jam front is often fixed at bottlenecks such as lane-drops, on and
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off ramps. Moreover within the downstream front of synchronized flow, vehicles
accelerate from lower speeds in synchronized flow upstream of the front to
higher speeds in free flow downstream of the front. Therefore if a congested
traffic state is not associated with the wide moving jam phase then the
remaining states are related to the synchronized flow phase.

1.3 Traffic Breakdown at the Bottlenecks

Traffic bottlenecks are disruptions of free traffic flow on a highway caused by either
roadway design, traffic lights or accidents. There are two types of bottlenecks
namely stationary and moving bottlenecks. Stationary bottlenecks are caused
by lane drops which occur when a multi-lane road loses one or more lanes due
to accidents or highway repairs. Consequently, the vehicular traffic are forced
to merge on or diverge to the remaining lanes causing traffic breakdown around
these areas. On the other hand moving bottlenecks result from slow moving
vehicles such as heavy trucks and tractors which cause disruptions in free traffic
flow. Thus, there is a permanent speed disturbance in free flow around these
bottlenecks where the speed is lower and vehicles’ density is greater than the other
part of the highway. Traffic breakdown is a term associated with the nature of
traffic congestion where ramps are regarded as a major source of traffic turbulence
and congestion on highways. Generally traffic congestion occurs mostly in the
vicinity of highway bottlenecks such as lane-drops, on and off ramps, accident
areas, weaving sections and work zones.

1.4 Statement of the Problem

In the last decades and of late, traffic congestion has been a major problem in
roads and is frequently experienced at the highway bottlenecks. Traffic congestion
in real traffic network is caused by traffic breakdown at the highway bottlenecks
where vehicles interact by changing their current lanes to their target lanes where
possible. However, the earlier developed traffic flow models did not account for the
discontinuous character of over-acceleration and failed to explain the coexistence
of the three traffic phases as observed in real measured traffic data. Since the
experimental approach is too expensive compared to numerical models which
are cheaper and flexible, then the study of such macroscopic traffic flow models
which exhibit the coexistence of free flow, synchronized flow and wide moving
jam is necessary. This calls for development of macroscopic traffic flow model
that adequately describes the vehicles interaction due to lane-change manoeuvres,
acceleration and deceleration which are likely to happen at highway bottlenecks.
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1.5 Objectives of the Study

1.5.1 General Objective

To determine the effects of lane-change manoeuvre due to ramps and weaving
sections in a multi-lane road using macroscopic traffic flow models.

1.5.2 Specific Objectives

1. To derive macroscopic lane-change terms from the kinetic model equations.

2. To determine numerically the macroscopic lane-change terms near ramps
and weaving sections in multi-lane roads.

3. To determine the effects of vehicles’ lane-change manoeuvre due to an on-
ramp in a 3-lanes highway.

4. To determine the effects of vehicles’ lane-change manoeuvre due to an off-
ramp in a 3-lanes highway.

5. To determine the effects of vehicles’ lane-change manoeuvre due to a
weaving section in a 3-lanes highway.

1.6 Justification of the Study

Vehicular traffic congestion on highways and within urban areas is a major
problem experienced worldwide in roads networks. It is one of the drawback on
peoples’ quality way of life causing delays, accidents and environmental
pollutions. Thus, a proper understanding of traffic congestion in the roads is
necessary for effective traffic flow management and control. The major cause of
traffic congestion is traffic breakdown which normally occurs at highway
bottlenecks, such as roadworks, lane-drops, weaving areas, on and off-ramps.
Research on macroscopic traffic flow models of multi-lane freeways have proved
to be more suitable for applications in predicting traffic state and optimizing
traffic control. This is because of their ability to describe the dynamics of traffic
flow at bottlenecks without requiring as many parameters and variables as is
the case in the microscopic models. The derived macroscopic traffic flow model
is able to reproduce the real traffic conditions at the bottlenecks and therefore
innovative traffic control measures can be developed to mitigate the traffic
congestion in the highway.
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Literature review of various researchers on traffic flow models and theories is
devoted to the next chapter.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

In this chapter, literature review of various researchers contribution towards
development of the traffic flow models is presented. Generally, traffic flow
models are classified as: macroscopic, kinetic and microscopic. The macroscopic
models describe the traffic flow dynamics by averaging the traffic characteristics
such as density, velocity and flow rate while microscopic models describe the
traffic flow in terms of individual vehicles interaction. For the Kinetic models,
they characterize the traffic flow in less aggregate manner than macroscopic
models and describe the traffic flow by use of probability distribution functions.
The main advantage of using macroscopic traffic flow models over the kinetic
models is that they are simple and have low computational complex.

2.2 Literature Review

According to Kerner (2010), vehicular traffic flow is a complex dynamic process
associated with the spatiotemporal behavior of many particles systems. This is
mainly due to nonlinear interactions between travel decision behavior, routing of
vehicles in traffic network and traffic congestion occurrence within the network.
The word spatiotemporal suggests that empirical traffic congestion occurs in real
space and time. Normally, traffic flow is considered to be either in free flow F or
congested state but the later exists in two different phases known as synchronized
flow S and wide moving jam J . Investigations on traffic flow models from several
researchers have revealed that traffic congestion in traffic network results from
traffic breakdown in an initially traffic free flow state. Thus traffic congestion
can be viewed as a form of vehicular queuing system categorized into stop-and-go
waves and standing queues.

Whitham (1974) started the macroscopic modeling of vehicular traffic flow by
considering the equation of continuity for traffic density ρ and closed the
equation by an equilibrium assumption on the mean velocity u. Later Payne
(1979) introduced an additional momentum equation for the mean velocity to
the Whitham model in analogy to fluid dynamics. The Payne-Whitman models
predicted that if in front of a driver traveling at a certain speed and the
vehicles’ density is increasing but the vehicles ahead are faster, then the driver
will slow down. This showed that the models produced unrealistic traffic
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behavior especially when the density changes abruptly. However, a common
observation is that a reasonable driver will obviously accelerate when the traffic
in front is moving at speed higher than he is. This inconsistency was pointed
out by Daganzo (1995) and was resolved by Aw & Rascle (2000) who developed
a new heuristic macroscopic traffic flow model from kinetic equations describing
all situation correctly. In the recent past, the Payne-Whitman model has been
improved by Khan (2016) using the fact that driver anticipation is based on the
velocity of the forward traffic and therefore the traffic behavior depends on the
velocity during transition. The new model results provided a more realistic
traffic flow pattern than the Pane-Whitman model. Klar & Wegener (2000)
derived macroscopic traffic flow equations from the underlying kinetic models by
considering a highway with N lanes involving the vehicle interactions when
changing lanes to either left or right. They obtained a general framework for the
macroscopic traffic flow equations which exhibit the desired features like stop
and go behavior.
Ahmed (1999) found that mandatory lane-change (MLC) exhibits different
behavior compared to the immediate lane-changing models (ILC) of
Hoogendoorn & Bovy (1998) who included driver behavior. That is, vehicle lane
change can be classified as either mandatory or discretionary according to
driving incentives. The mandatory lane-change is mostly performed at
bottlenecks where vehicles are forced to change to a fixed target lane and lead
to traffic breakdown due to the increased traffic demand on this road sections,
Ngoduy (2006a). On the other hand discretionary lane-change is conducted
when the drivers perceive that driving conditions in the target lane are better.
However, both lane-change sometime can be performed one after the other,
especially when an aggressive driver decide to overtake a heavy vehicle in front
first before performing mandatory lane-change to the off-ramp. Ahmed (1999)
used a random utility theory in lane changing behavior modeling and defined a
lane changing choice as a sequence of decision to make lane change, choice of
the lane and then look for an acceptable space gap to decide the way forward.
Otherwise, for a vehicle to attempt any lane change under the condition of
traffic congestion, it requires the co-operation from at least one of the following
vehicle in the target lane.
Another researcher Ngoduy (2006b) developed the gas-kinetic equations for
interrupted traffic stream at weaving sections and used the method of moments
to derive the corresponding macroscopic model. He modeled the lane-change
manoeuvre terms using the renewal theory to calculate the lane-changing
probabilities which depend on traffic density, speed, speed variance and vehicles
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composition on the target lane. Steenberghen et al. (2012) noted that these
models could not accurately show acceleration and deceleration traffic flow
characters such as stop and start traffic, capacity drop and instantaneous
changes. Kondyli & Elefteriadou (2012) found that, at off-ramps the exiting
vehicles must change lanes to the outside lane of the highway to access the
shoulder lane. This increased traffic density on the outside lane and possible
deceleration of exiting traffic is likely to force the express motorway vehicles in
the outer lane to change lanes to the inner lanes to avoid exiting traffic.
Interaction of vehicles while making these lanes change causes traffic congestion
upstream of the off-ramps and adversely affect the available road capacity of
expressways at these sections. Thus, even those vehicles on expressway
experience long delays due to this congestion. Studies on traffic management by
Wei (2001) revealed that lane-changing manoeuvres contribute to traffic flow
disturbance on multi-lane freeways especially near the off-ramps. Amin &
Banks (2005) showed that, just upstream of an off-ramp, the fraction of flow on
the outside lane is expected to be higher compared to an outside lane on a
normal continuous stretch of motor way.
Kimathi (2012) derived macroscopic 3-phase traffic models of Aw-Rascle type
from the kinetic traffic flow models based on integro-differential equations by
specifying the relaxation term differently. He obtained three kinds of traffic flow
models namely macroscopic speed adaptation, switching curve and modified
switching curve traffic flow models. When the simulated results of the three
models were compared, the macroscopic Speed Adaptation and modified
Switching Curve model gave a better prediction of 3-phase traffic flow theory
principle than the Switching Curve model. Marczak et al. (2014) analyzed
detailed microscopic trajectory data collected on a weaving section in France
and was able to show that lane changing behavior depends strongly on the
prevailing traffic conditions. That is, when the traffic is heavy the lane changes
occur at the beginning of the weaving section independently of their direction
but when the traffic conditions are conducive, the lane changing positions are
more distributed along the weaving area.
Tiaprasert et al. (2017) did simulations on urban roads using cell transmission
model (CTM) where the results showed that CTM could accurately predict the
occurrence time and spreading range of traffic congestion. Zhong et al. (2016)
and Xu & Wang (2016) in their studies on traffic flow in highway concluded
that traffic congestion on expressway usually occurs in merging and weaving
areas. Further more unreasonable lane changing behavior, forced lane change
and abrupt deceleration behavior are the main reasons for traffic congestion on
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highway. Knoop & Daamen (2017) on Dutch legal traffic regulations which
states that; ’a lane changing vehicle has to give priority to vehicles in the target
lane’ noted that vehicles on the target lane sometimes show courtesy to the
entering vehicle by either changing lane towards the middle lane or by reducing
speed to create a larger gap for the entering vehicle to merge. However, Long
et al. (2018) found that the spacing of successive ramps is determined by the
length of motorway over which the level of turbulence is raised. Mohan &
Ramadurai (2017) showed that the capacity of heterogeneous traffic is higher
than homogeneous traffic due to the gap filling behavior but the former may not
follow lanes and parameters such as velocity distribution and time. Moreover
entering vehicles are sometimes willing to accept very short gaps as they join
the highway but relax to more comfortable values shortly thereafter, Marczak
et al. (2015).
A new macroscopic traffic flow model was proposed by H Khan et al. (2019)
which considered the driver presumption based on driver reaction and traffic
stimuli. The model results showed that drivers react to frontal stimuli which
results in changes in vehicle density and speed unlike in Pane-Whitman model
which showed unrealistic driver behavior due to the use of a constant speed.
van Beinum et al. (2018) introduced a new method for detecting the start and
end distances of traffic turbulence. They compared the traffic operations near
the ramps to those on regular highway section and were able to estimate the
turbulence influence area from the model results. Earlier traffic flow theories
and models missed the discontinuous character of probability of passing
introduced in the three-phase traffic theory of Kerner (2010). Thus they could
not explain the traffic breakdown at the highway bottleneck as observed in real
traffic data.
In this research the kinetic traffic flow model of Klar & Wegener (1998) which
expresses the lane-change term explicitly from pure anticipation term is used to
establish macroscopic traffic flow model equations. Moreover lane changes can
produce acceleration and deceleration resulting in stop-and-go traffic flow
behavior Stern et al. (2017). According to Helbing (2001), a well-defined criteria
for a good traffic flow model should contain only a few parameters and variables
which are easy to observe, and the measured values are realistic to suit the
macroscopic traffic flow model. Zhang et al. (2020) showed that most of the
macroscopic fundamental diagram (MFD) traffic models are more suitable in
estimation, prediction and development of control algorithms for macroscopic
traffic flow on large scale networks in real time applications. This is why the
study of MFD has received a lot of interest in recent traffic flow studies. Tilg

9



et al. (2018) studied a multi-class hybrid model which included lane change
positions as exogenous input and the simulated results showed that by
optimizing the distribution of the desired lane change positions, the capacity of
the weaving increased by a significant number. They concluded that there is
great potential of automated vehicle technology for increasing the capacity of
weaving sections. Furthermore a good traffic model should reproduce all known
features of traffic flow like localized jams and all transition states of traffic
congestion. Thus vehicle lane-change manoeuvres can either maintain free
traffic flow or lead to traffic breakdown at the bottlenecks and this is what our
research is based on. This study provides an insight into real traffic lane change
behaviors at the bottlenecks and contributes to a better understanding of the
nature of traffic phase processes during congestion near the ramps.

In the next chapter the general equations governing the kinetic and macroscopic
traffic flow models are established.
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CHAPTER THREE

DERIVATION OF THE MACROSCOPIC TRAFFIC MODEL OF
AW-RASCLE TYPE

3.1 Introduction

In this chapter kinetic traffic flow interaction operators (gain and loss terms)
equations are obtained. These kinetic traffic flow model equations describe the
traffic in a cummulative way averaging over all lanes and are the basis of the
development of the macroscopic traffic flow models in this study. To derive the
corresponding macroscopic model equations from the kinetic equations, we apply
the method of moments to obtain the equations for the dynamics of density and
flow rate.

3.2 Assumptions to the Study

The following assumptions are made when deriving the traffic flow model
equations:

1. All vehicles are classified the same and therefore their length are neglected
i.e. vehicles are considered to be points.

2. Motorcycles and bicycles have their special lane to use and do not interfere
or interact with traffic flow in the highway.

3. Pedestrians use designated foot bridges and paths for either crossing or
movement along the highway respectively.

3.3 The Kinetic Traffic Flow Model

The kinetic traffic flow model is described by use of the distribution functions of
velocity of vehicles in traffic flow. We consider a highway with N lanes
numbered by α = 1, ...,N . Letting fα (x,v) denote a single car distribution
function which describes the number of cars at location x with velocity v on
lane α, and f

(2)
α (x,v,h,v+) denote the leading vehicle distribution function

which describes the number of pairs of cars at x with velocity v and leading cars
at x + h with velocity v+, where h > 0 is the distance headway between the two
considered locations of vehicles. According to Klar & Wegener (1998), we
approximate the leading vehicle distribution f

(2)
α (x,v,h,v+) by using fα (x,v)
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and a correlation function to obtain a closed equation which describe the
influence of the vehicle interactions. If Fα (x,v) denotes the probability
distribution function in speed v of vehicles at x, F +

α (v+;h,v,x) denotes the
probability distribution in v+ of the leading vehicless at distance h for cars at x

with speed v, and Qα (h;v,x) denotes the probability distribution of leading
cars in h for a car at x with velocity v, then;

fα (x,v) = ρα (x)Fα (x,v) (3.1)

f (2)
α (x,v,h,v+) = F +

α (v+;h,v,x)Qα (h;v,x)fα (x,v) (3.2)

Assuming the leading vehicles are distributed according to the probability
Fα (x,v) at x + h, i.e F +

α (v+;h,v,x) = Fα (x+h,v+) and
Qα (h;v,x) = qα (h;v,fα (x,v)) then

f (2)
α (x,v,h,v+) ∼ qα (h;v,fα (x,v))Fα (x+h,v+)fα (x,v) (3.3)

Here the kinetic equation for the distribution functions (f1, ...,fN ) on N lanes is
obtained by finding the kinetic interaction operators i.e the Gain (G) and Loss
(L) operators. The gain terms or loss terms account for the increase (decrease) of
fα (x,v) respectively when a vehicle interacts with a leading vehicle and emerges
with a certain speed as a result of the interaction. Therefore,

∂tfα +v∂xfα = C+
α (f1, ...,fN ) =

(
G+

B −L+
B

)
(fα−1,fα,fα+1)

+
(
G+

A −L+
A

)
(fα)+

[
G+

R (fα,fα+1,fα+2)−L+
R (fα,fα+1)

]
+
[
G+

L (fα−1,fα)−L+
L (fα−1,fα,fα+1)

]
(3.4)

Taking ρα =
´ w

0 fα (x,v)dv , fα = ραFα and qX (v,fα) = q (HX (v) ,v,fα) where
HX (v); X = B,A is the threshold for braking and acceleration respectively.
The LHS of the kinetic equation (3.4) describes the continuous dynamics of the
phase-space density (PSD) due to the motions of traffic flow while the RHS
describes the discontinuous changes of this function due to lane-changing,
acceleration and deceleration. It is assumed that when a driver intends to
change lane, he first select the target lane. The probability that a lane is
selected depends on many factors such as speed of the concerned vehicle, traffic
conditions in the current lane and the target lanes. However if either the left
lane or the right lane is selected, then the vehicle seeks for an acceptable space
gap (distance between the front ends of two successive vehicles in the same
lane) in the selected lane, which depends on the traffic regulations.
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In this study, lane α is taken as the considered lane and the traffic flow
regulation is based on keep left lane rule for slow moving vehicles unless
overtaking.
Figure (3.1) shows the multi-lane highway under consideration in the traffic flow
modeling. The arrows indicate the gain and loss interaction terms due to vehicle
changing lanes to their target lanes.

Figure 3.1: Section of the multi-lane highway showing the kinetic traffic
interaction operators due to lane-changing manoeuvres.

If PL and PR denote the probability of a vehicle lane change to either left or right
respectively and using the convention PR (v,fN+1) = PL (v,f0) = 0, then the gain
and loss terms in equation (3.4) are approximated using (3.3).

In the following subsections we focus on derivation of gain and loss interaction
terms due to vehicle’s lane changing manoeuvre.

3.3.1 Gain and Loss Terms Due to Lane Changing to the
Right

A vehicle will change lane to the right if the braking line is reached and a lane
change is possible with a (probability PR), resulting to the following vehicles
interaction:

(a) Gain term from the right ( G+
R) is given by;

G+
R

(
fα,f

(2)
α+1,fα+2

)

=
ˆ

v̂−>v
PL (v,fα (x)) |v − v̂−| [1−PR (v̂−,fα+2 (x−HB (v̂+)))]
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×f
(2)
α+1 (x−HB (v̂−) , v̂−,HB (v̂−) ,v)dv̂− (3.5)

But using the equation (3.3), we have:

f
(2)
α+1 (x−HB (v̂−) , v̂−,HB (v̂−) ,v)

≈ qB (v̂−,fα+1 (x−HB (v̂−)))fα+1 (x−HB (v̂−) , v̂−)Fα+1 (x,v) (3.6)

such that (3.5) reduces to:

G+
R

(
fα,f

(2)
α+1,fα+2

)
≃ G+

R (fα,fα+1,fα+2)

=
ˆ

v̂−>v
PL (v,fα (x)) [1−PR (v̂−,fα+2 (x−HB (v̂−)))] |v − v̂−|

× qB (v̂−,fα+1 (x−HB (v̂−)))fα+1 (x−HB (v̂−) , v̂−)Fα+1 (x,v)dv̂− (3.7)

Setting fα+1 (x−HB (v̂−) , v̂−) = ρα+1Fα+1 (x−HB (v̂−) , v̂−) = ρα+1δu−
α+1

(v̂−)
and Fα+1 (x,v) = δuα+1 (v) then equation (3.7) becomes;

G+
R (fα,fα+1,fα+2)

=
ˆ

v̂−>v
PL (v,ρα) [1−PR (v̂−,ρα+2)] |v − v̂−|qB (v̂−,ρα+1)

×ρα+1δu−
α+1

(v̂−)δuα+1 (v)dv̂− (3.8)

(b) Loss term to the right
(
L+

R

)
is given by:

L+
R

(
f (2)

α ,fα+1
)

=
ˆ

v>v̂+

PR (v,fα+1 (x)) |v − v̂+|f (2)
α (x,v,HB (v) , v̂+)dv̂+ (3.9)

since f
(2)
α (x,v,HB (v) , v̂+) ≃ qB (HB (v) ,fα (x,v))fα (x,v)Fα (x+HB (v) , v̂+)

then,
L+

R

(
f (2)

α ,fα+1
)

≃ L+
R (fα,fα+1)

=
ˆ

v>v̂+

PR (v,fα+1 (x,v)) |v− v̂+|qB (HB (v) ,fα (x,v))fα (x,v)Fα (x+HB (v) , v̂+)dv̂+

(3.10)
setting fα (x,v) = ραFα (x,v) = ραδuα (v) and Fα (x+HB (v) , v̂+) = δu+

α
(v̂+) then

equation (3.10) reduces to,
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L+
R (fα,fα+1)

=
ˆ

v>v̂+

PR (v,fα+1 (x,v)) |v − v̂+|qB (HB (v) ,fα (x,v))ραδuα (v)δu+
α

(v̂+)dv̂+

=
ˆ

v>v̂+

PR (v,ρα+1) |v − v̂+|qB (HB (v) ,ρα)ραδuα (v)δu+
α

(v̂+)dv̂+ (3.11)

3.3.2 Gain and Loss Terms Due to Lane Changing to the
Left

A vehicle will change lane to the left if it reaches the braking line and is not able
to overtake using the right lane. This yields the following vehicle interactions:

(a) Gain term from the left lane (G+
L) is given by:

G+
L

(
f

(2)
α−1,fα

)
=
ˆ

v>v̂+

PR (v,fα (x,v)) |v − v̂+|f (2)
α−1 (x,v,HB (v) , v̂+)dv̂+ (3.12)

since
f

(2)
α−1 (x,v,HB (v) , v̂+) ≃ qB (HB (v) ,fα−1 (x,v))fα−1 (x,v)Fα−1 (x+HB (v) , v̂+)

then equation (3.12) reduces to;

G+
L

(
f

(2)
α−1,fα

)
≃ G+

L (fα−1,fα)

=
ˆ

v>v̂+

PR (v,fα (x,v)) |v− v̂+|qB (HB (v) ,fα−1 (x,v))fα−1 (x,v)Fα−1 (x+HB, v̂+)dv̂+

(3.13)
using fα−1 (x,v) = ρα−1Fα−1 (x,v) and Fα−1 (x+HB, v̂+) = δu+

α−1
(v̂+) equation

(3.13) reduces to;
G+

L (fα−1,fα)

=
ˆ

v>v̂+

PR (v,fα (x,v)) |v− v̂+|qB (HB (v) ,fα−1 (x,v))ρα−1δuα−1 (v)δu+
α−1

(v̂+)dv̂+

=
ˆ

v>v̂+

PR (v,ρα) |v − v̂+|qB (HB (v) ,ρα−1)ρα−1δuα−1 (v)δu+
α−1

(v̂+)dv̂+ (3.14)

(b) Loss term to the left (L+
L) is given by:
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L+
L

(
fα−1,f (2)

α ,fα+1
)

=
ˆ

v̂−>v
PL (v,fα−1 (x)) [1−PR (v̂−,fα+1 (x−HB (v̂−)))] |v − v̂−|

×f (2)
α (x−HB (v̂−) , v̂−,HB (v̂−) ,v)dv̂− (3.15)

Since
f (2)

α (x−HB (v̂−, v̂−,HB (v̂−) ,v))

≃ qB (v̂−,fα (x−HB (v̂−)))fα (x−HB ((v̂−) , v̂−))Fα (x,v)

then equation (3.15) becomes;

L+
L

(
fα−1,f (2)

α ,fα+1
)

= L+
L (fα−1,fα,fα+1)

=
ˆ

v̂−>v
PL (v,fα−1 (x)) [1−PR (v̂−,fα+1 (x−HB (v̂−)))] |v − v̂−|

× qB (v̂−,fα (x−HB (v̂−)))fα (x−HB (v̂−) , v̂−)Fα (x,v)dv̂− (3.16)

Setting fα (x−HB (v̂−) , v̂−) = ραFα (x−HB (v̂−) , v̂−) = ραδu−
α

(v̂−) and
Fα (x,v) = δuα (v) equation (3.16) reduces to,

L+
L (fα−1,fα,fα+1)

=
ˆ

v̂−>v
PL (v,ρα−1) [1−PR (v̂−,ρα+1)] |v − v̂−|

× qB (v̂−,ρα)ραδu−
α

(v̂−)δuα (v)dv̂− (3.17)

3.3.3 Gain and Loss terms Due to Acceleration

A car will accelerate if the acceleration line is reached. Therefore:

(a) Gain term from acceleration (G+
A) is given by:

G+
A

(
f (2)

α

)
=
¨

v̂<v̂+

|v̂ − v̂+|σA (v, v̂)f (2)
α

(
x, ˆv,HA (v̂) , v̂+

)
dv̂dv̂+ (3.18)

since f
(2)
α (x, v̂,HA (v̂) , v̂+) ≃ qA (HA (v̂) ,fα (x,v))fα (x, v̂)Fα (x+HA (v̂) , v̂+)

then equation (3.18) becomes,
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G+
A

(
f (2)

α

)
≃ G+

A (fα)

=
¨

v̂<v̂+

|v̂ − v̂+|σA (v, v̂)qA (HA (v̂) ,fα (x, v̂))fα (x, v̂)Fα (x+HA (v̂) , v̂+)dv̂dv̂+

(3.19)
Setting fα (x, v̂) = ραFα (x, v̂) = ραδuα (v̂) and Fα (x+HA (v̂) , v̂+) = δu+

α
(v̂+)

equation (3.19) reduces to;

G+
A (fα) =

¨
v̂<v̂+

|v̂ − v̂+|σA (v, v̂)qA (HA (v̂) ,fα (x, v̂))ραδuα (v̂)δu+
α

(v̂+)dv̂dv̂+

=
¨

v̂<v̂+

|v̂ − v̂+|σA (v, v̂+)qA (HA (v̂) ,ρα)ραδuα (v̂)δu+
α

(v̂+)dv̂dv̂+‘ (3.20)

(b) Loss term from acceleration (L+
A) is given by:

L+
A

(
f (2)

α

)
=
ˆ

v<v̂+

|v − v̂+|f (2)
α (x,v,HA (v) , v̂+)dv̂+ (3.21)

since f
(2)
α (x,v,HA (v) , v̂+) ≃ qA (HA (v) ,fα (x,v))fα (x,v)Fα (x+HA (v) , v̂+)

then equation (3.21) becomes,

L+
A

(
f (2)

α

)
≃ L+

A (fα)

=
ˆ

v<v̂+

|v − v̂+|qA (HA (v) ,fα (x,v))fα (x,v)Fα (x+HA (v) , v̂+)dv̂+ (3.22)

Setting fα (x,v) = ραFα (x,v) = ραδuα (v) and Fα (x+HA (v) , v̂+) = δu+
α

(v̂+)
equation (3.22) reduces to,

L+
A (fα) =

ˆ
v<v̂+

|v − v̂+|qA (HA (v) ,fα (x,v))ραδuα (v)δu+
α

(v̂+)dv̂+

=
ˆ

v<v̂+

|v − v̂+|qA (HA (v) ,fα (x,v))ραδuα (v)δu+
α

(v̂+)dv̂+ (3.23)

3.3.4 Gain and Loss Terms Due to Deceleration

A vehicle will brake if it reaches the braking line and the driver is not able to
change to the right or left lane. Thus;
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(a) Gain term from braking interaction (G+
B) is given by:

G+
B

(
fα−1,f (2)

α ,fα+1
)

=

¨
v̂>v̂+

PB (v̂, v̂+,fα−1 (x+HB (v)) ,fα+1 (x)) |v̂− v̂+|σB (v, v̂)f (2)
α (x, v̂,HB (v̂) , v̂+)dv̂dv̂+

(3.24)
where the probability of braking (PB) on lane α is given by the equation:

PB (v,v+,fα−1 (x+HB (v)) ,fα+1 (x))

= [1−PL (v,fα+1 (x))] [1−PR (v+,fα−1 (x+HB (v)))] (3.25)

using the convention
PR (v,fN+1) = PL (v,f0) = 0 (3.26)

and

f (2)
α (x, v̂,HB (v̂) , v̂+) = qB (HB (v̂) ,fα (x, v̂))fα (x, v̂)Fα (x+HB (v̂)) (3.27)

Then equation (3.24) becomes,

G+
B

(
fα−1,f (2)

α ,fα+1
)

≃ G+
B (fα−1,fα,fα+1)

=
¨

v̂>v̂+

PB (v̂, v̂+,fα−1 (x+HB (v)) ,fα+1 (x)) |v̂ − v̂+|σB (v, v̂)

× qB (HB (v̂) ,fα (x, v̂))fα (x, v̂)Fα (x+HB (v̂) , v̂+)dv̂dv̂+ (3.28)

With fα (x, v̂) = ραFα (x, v̂) = ραδuα (v̂) and Fα (x+HB (v̂) , v̂+) = δu+
α

(v̂+)
equation (3.28) reduces to

G+
B (fα−1,fα,fα+1)

=
¨

v̂>v̂+

PB (v̂, v̂+,ρα−1,ρα+1) |v̂ − v̂+|σB (v, v̂)

× qB (HB (v̂) ,ρα)ραδuα (v̂)δu+
α

(v̂+)dv̂dv̂+ (3.29)

(b) Loss term from braking interaction (L+
B) is given as:

L+
B

(
fα−1,f (2)

α ,fα+1
)

≃ L+
B (fα−1,fα,fα+1)
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=
ˆ

v>v̂+

PB (v, v̂+,fα−1 (x+HB (v) ,fα+1 (x))) |v − v̂+|f (2)
α (x,v,HB (v) , v̂+)dv̂+

(3.30)
But f

(2)
α (x,v,HB (v) , v̂+) ≃ qB (HB (v) ,fα (x,v))fα (x,v)Fα (x+HB (v) , v̂+)

therefore equation (3.30) becomes,

L+
B (fα−1,fα,fα+1)

=
ˆ

v>v̂+

PB (v, v̂+,fα−1 (x+HB (v)) ,fα+1 (x)) |v − v̂+|qB (HB (v) ,fα (x,v))

×fα (x,v)Fα (x+HB (v) , v̂+)dv̂+ (3.31)

With fα (x,v) = ραFα (x,v) = ραδuα (v) and Fα (x+HB (v) , v̂+) = δu+
α

(v̂+)
equation (3.31) reduces to;

L+
B (fα−1,fα,fα+1)

=
ˆ

v>v̂+

PB (v, v̂+,ρα−1,ρα+1) |v − v̂+|qB (HB (v) ,ρα)ραδuα (v)δu+
α

(v̂+)dv̂+

(3.32)

3.4 The Macroscopic Traffic Flow Model Equations

The method of moments is applied to the kinetic model equations to obtain the
corresponding macroscopic equations of kth order. This is achieved by expressing
the macroscopic traffic flow variables in terms of the phase-space density. First,
the intrinsic macroscopic variables are defined using moments of the distribution
functions fα (x,v, t) as;
density:

ρα (x,t) =
ˆ vmax

0
fα (x,v, t)dv (3.33)

mean velocity:

uα (x,t) = (ρα (x,t))−1
ˆ vmax

0
vfα (x,v, t)dv (3.34)

The macroscopic equations are of certain infinitely order, that is; the macroscopic
density equation depends on the mean velocity while the macroscopic equation
for the mean velocity depends on the velocity variance given by;

θα (x,t) = (ρα (x,t))−1
ˆ vmax

0
(v −uα)2 fα (x,v, t)dv (3.35)
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However, Ngoduy (2006b) were able to show that the second order macroscopic
equations of density and velocity dynamics are sufficient to describe the flow of
traffic. Therefore we focus on the second order macroscopic traffic flow equations
and close this system of equations by assuming that the speed variance is a
function of the first two moments. In this study, we approximate the distribution
function using the one-node ansatz, (Kimathi, 2012) as;

fα (x,v, t) ≃ ρα (x,t)δ (v −uα (x,t)) (3.36)

where δ (.) is the Dirac delta in the sense of distribution and is a linear function
that maps every function to its value at zero.
According to Aw & Rascle (2000), equation (3.36) represent a situation whereby
all the vehicles present at location x at instantaneous time t move at the same
average speed uα. The advantage of using (3.36) is that, it readily gives an Aw-
Rascle type macroscopic traffic flow model and approximates the traffic pressure
to zero, that is;

ραθα =
ˆ vmax

0
(v −uα)2 fα (x,v, t)dv ≃

ˆ vmax

0
ρα (v −uα)2 δ (v −uα)dv = 0

(3.37)
To this end, we multiply the inhomogeneous kinetic equation (3.4) by vk for
k = 0,1 and integrate it with respect to v in the range of [0,vmax] to get the
following set of macroscopic balance equations;

∂t

ˆ vmax

0
vkfα (x,v, t)dv +∂x

ˆ vmax

0
vk+1fα (x,v, t)dv

=
ˆ vmax

0
vkC+

α

(
f

(2)
1 , ....,f

(2)
N ,f1, ....,fN

)
(x,v, t)dv (3.38)

Using the Gain and Loss terms interactions due to lane changing, acceleration
and braking, on substitution equation (3.38) reduces to:

∂t

ˆ vmax

0
vkfα (x,v, t)dv +∂x

ˆ vmax

0
vk+1fα (x,v, t)dv

=
ˆ vmax

0
vk{

(
G+

B −L+
B

)
(fα−1,fα,fα+1)+

(
G+

A −L+
A

)
fα

+
[
G+

R (fα,fα+1,fα+2)−L+
R (fα,fα+1)

]
+
[
G+

L (fα−1,fα)−L+
L (fα−1,fα,fα+1)

]
}dv (3.39)
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When k = 0, we obtain the conservation equation (equation of continuity) and for
k = 1 the momentum equation (equation for dynamics of mean speed) is obtained,
therefore:
(a) Multiplying equation (3.29) by vk, we have:

ˆ vmax

0
vkG+

B (fα−1,fα,fα+1)dv

=
ˆ vmax

0
vk

¨
v̂>v̂+

PB (v̂, v̂+,ρα−1,ρα+1) |v̂ − v̂+|σB (v, v̂)qB (HB (v̂) ,ρα)

×ραδuα (v̂)δu+
α

(v̂+)dv̂dv̂+dv (3.40)

As a consequence of Dirac delta δ (.) function equation (3.40) becomes:
ˆ vmax

0
vkG+

B (fα−1,fα,fα+1)dv =

ˆ vmax

0
vkPB

(
uα,u+

α ,ρα−1,ρα+1
)

|uα −u+
α |σB (v,uα)qB (HB (uα) ,ρα)ραdv

(3.41)
where σB (v,uα) = 1

uα(1−β)κ [βuα,uα] (v) is a probability distribution and
accounts for the imperfect adaptation of the faster vehicle with speed uα to the
speed u+

α of the slower vehicle ahead during interaction, κ is a characteristic
function denoting the effective cross section that cater for the increased number
of vehicle interactions in traffic congestion due to vehicular space requirements.
Thus equation (3.41) reduces to:

ˆ vmax

0
vkG+

B (fα−1,fα,fα+1)dv =

PB

(
uα,u+

α ,ρα−1,ρα+1
)

|uα −u+
α |qB (HB (uα) ,ρα)ρα

[
1

uα (1−β)

ˆ uα

βuα

vkdv

]
(3.42)

Similarly for equation (3.32)
ˆ vmax

0
vkL+

B (fα−1,fα,fα+1)dv

=
ˆ vmax

0
vk

ˆ
v>v̂−

PB (v, v̂+,ρα−1,ρα+1) |v − v̂+|qB (HB (v) ,ρα)

×ραδuα (v)δu+
α

(v̂+)dv̂+dv (3.43)

21



As a consequence of Dirac delta δ (.) function, equation (3.43) reduces to:
ˆ vmax

0
vkL+

B (fα−1,fα,fα+1)dv

=
[
PB

(
uα,u+

α ,ρα−1,ρα+1
)

|uα −u+
α |qB (HB (uα) ,ρα)ρα

]ˆ vmax

0
uk

αduα

= PB

(
uα,u+

α ,ρα−1,ρα+1
)

|uα −u+
α |qB (HB (uα) ,ρα)ραuk

α (3.44)

Combining equation (3.42) and (3.44) as in equation (3.4) to get;
ˆ vmax

0
vk
(
G+

B −L+
B

)
(fα−1,fα,fα+1)dv

= ρα|uα −u+
α |PB

(
uα,u+

α ,ρα−1,ρα+1
)

qB (HB (uα) ,ρα)
[

1
uα −uαβ

ˆ uα

βuα

vkdv −uk
α

]

= ρα|uα −u+
α |PB

(
uα,u+

α ,ρα−1,ρα+1
)

qB (HB (uα) ,ρα)

 uk+1
α − (βuα)k+1

(k +1)(uα −βuα)
−uk

α


(3.45)

But braking occurs when uα > u+
α , i.e |uα −u+

α | = −
(
u+

α −uα

)
Therefore for k = 0, equation (3.45) reduces to zero but for k = 1 it becomes;

ˆ vmax

0
vk
(
G+

B −L+
B

)
(fα−1,fα,fα+1)dv

= −ρα

(
u+

α −uα

)
PB

(
uα,u+

α ,ρα−1,ρα+1
)

qB (HB (uα) ,ρα)
[

uα (β −1)
2

]
(3.46)

Using the Taylor’s approximation, u+
α (x+h) − uα (x) ≃ h∂xuα, equation (3.46)

reduces to; ˆ vmax

0
vk
(
G+

B −L+
B

)
(fα−1,fα,fα+1)dv

≃ ραhBPB

(
uα,u+

α ,ρα−1,ρα+1
)

qB (HB (uα) ,ρα) 1−β

2
uα∂xuα (3.47)

(b) Multiplying equation (3.8) by vk to get,
ˆ vmax

0
vkG+

A (fα)dv

=
ˆ vmax

0
vk

¨
v̂<v̂+

|v̂ − v̂+|σA (v, v̂)qA (HA (v̂) ,ρα)ραδuα (v̂)δu+
α

(v̂+)dv̂dv̂+dv

(3.48)
As a consequence of Dirac delta δ (.) function, equation (3.48) reduces to:
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ˆ vmax

0
vkG+

A (fα)dv =

ρα|uα −u+
α |qA (HA (uα) ,ρα)

ˆ vmax

0
vkσA (v,uα)dv (3.49)

with σA (v,uα) = κ
min(vmax, uα)−uα

[uα,min(vmax, uα)]v = κ[uα−ûα]
ûα−uα

v , where
ûα = min(vmax,ηuα) and κ is the characteristics function, then equation (3.49)
reduces to:

ˆ vmax

0
vkG+

A (fα) = ρα|uα −u+
α |qA (HA (uα) ,ρα)

[
1

ûα −uα

ˆ ûα

uα

vkdv

]
(3.50)

Similarly for equation (3.23) we have:
ˆ vmax

0
vkL+

A (fα)dv

=
ˆ vmax

0
vk

ˆ
v<v̂+

|v − v̂+|qA (HA (v) ,ρα)ραδuα (v)δu+
α

(v̂+)dv̂+dv (3.51)

As a consequence of Dirac delta δ (.) function, equation (3.51) reduces to:
ˆ vmax

0
vkL+

A (fα)dv = ρα|uα −u+
α |qA (HA (uα) ,ρα)

ˆ vmax

0
uk

αduα

= ρα|uα −u+
α |qA (HA (uα) ,ρα)uk

α (3.52)

Combining equations (3.50) and (3.52) as stipulated in (3.4) we have,
ˆ vmax

0
vk
(
G+

A −L+
A

)
fαdv

= ρα|uα −u+
α |qA (HA (uα) ,ρα)

[
1

ûα −uα

ˆ ûα

uα

vkdv −uk
α

]

= ρα|uα −u+
α |qA (HA (uα) ,ρα)

[
ûk+1

α −uk+1
α

(k +1)(ûα −uα)
−uk

α

]
(3.53)

But acceleration occurs when uα < u+
α i.e, |uα −u+

α | =
(
u+

α −uα

)
therefore for k = 0, equation (3.53) vanishes but for k = 1 with ûα = ηuα it reduces
to: ˆ vmax

0
vk
(
G+

A −L+
A

)
fαdv

= ρα

(
u+

α −uα

)
qA (HA (uα) ,ρα) uα (η −1)

2
(3.54)
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Again using Taylor’s approximation, u+
α (x+h) − uα (x) ≃ h∂xuα on equation

(3.54) we get; ˆ vmax

0
vk
(
G+

A −L+
A

)
fαdv

≃ ραhAqA (HA (uα) ,ρα) η −1
2

uα∂xuα (3.55)

For equations (3.47) and (3.55), we assume that the leading vehicles are
distributed in such a way that;

hBqB (HB(uα),ρα) = hAqA (HA(uα),ρα) = db(ρα)
dρα

(3.56)

with b(ρα) being some increasing function of density ρα.
Therefore the anticipation term is deduced from (3.47) and (3.55) using (3.56) to
get;

a(ρα,uα) =


ρα

db(ρα)
dρα

φB

(
uα,u+

α ,ρα−1,ρα+1
)

, ∂xuα < 0

ρα
db(ρα)

dρα
φA (uα) , ∂xuα > 0

(3.57)

where
φA (uα) = (η −1)

2
uα (3.58)

and

φB

(
uα,u+

α ,ρα−1,ρα+1
)

= PB

(
uα,u+

α ,ρα−1,ρα+1
)(1−β

2

)
uα (3.59)

Since the probability of braking (PB

(
uα,u+

α ,ρα−1,ρα+1
)
) decreases from one to

zero, then PB

(
uα,u+

α ,ρα−1,ρα+1
)

= e−u+
α (k1ρα+1 +k2ρα−1) with k1 = 1 − k2,

φA (uα) > φB

(
uα,u+

α ,ρα−1,ρα+1
)

≡ PB

(
uα,u+

α ,ρα−1,ρα+1
)

φA (uα), and
suppose that φA (uα) ≃ constant(C), then equation (3.57) becomes;

a(ρα,uα) =


ρα

db(ρα)
dρα

CPB

(
uα,u+

α ,ρα−1,ρα+1
)

, ∂xuα < 0

ρα
db(ρα)

dρα
C, ∂xuα > 0

(3.60)

Assuming that when ∂xuα < 0 , braking is inevitable i.e. PB

(
uα,u+

α ,ρα−1,ρα+1
)

approaches one, then;
a(ρα,uα) = ρα

db(ρα)
dρα

C (3.61)
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where b(ρα) takes the form, (Kimathi, 2012) as;

b(ρα) = −ln(1−ρα) (3.62)

(c) For equation (3.8) we have,
ˆ vmax

0
vkG+

R (fα,fα+1,fα+2)dv

=
ˆ vmax

0
vk

ˆ
v̂−>v

PL (v,ρα) [1−PR (v̂−,ρα+2)] |v − v̂−|qB

(
HB (̂v−),ρα+1

)
×ρα+1δu−

α+1
(v̂−)δuα+1 (v)dv̂−dv (3.63)

As a consequence of Dirac delta δ (.) function, equation (3.63) reduces to;

ˆ vmax

0
vkG+

R (fα,fα+1,fα+2)dv

= PL (uα+1,ρα)
[
1−PR

(
u−

α+1,ρα+2
)]

|uα+1 −u−
α+1|

qB

(
HB(u−

α+1),ρα+1
)

ρα+1

ˆ vmax

0
uk

α+1duα+1

= ρα+1uk
α+1|uα+1 −u−

α+1|PL (uα+1,ρα)
[
1−PR

(
u−

α+1,ρα+2
)]

qB

(
HB(u−

α+1),ρα+1
)

(3.64)
Similarly for equation (3.11) we have,

ˆ vmax

0
vkL+

R (fα,fα+1)dv

=
ˆ vmax

0
vk

ˆ
v̂+>v

PR (v,ρα+1) |v − v̂+|qB (HB (v) ,ρα)ραδuα (v)δu+
α

(v̂+)dv̂+dv

(3.65)
As a consequence of Dirac delta δ (.) function, equation (3.65) reduces to:

ˆ vmax

0
vkL+

R (fα,fα+1)dv

= PR (uα,ρα+1) |uα −u+
α |qB (HB (uα) ,ρα)ρα

ˆ vmax

0
uk

αduα

= ραuk
α|uα −u+

α |PR (uα,ρα+1)qB (HB (uα) ,ρα) (3.66)
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Combining equation (3.64) and (3.66), to get:
ˆ vmax

0
vk
[
G+

R (fα,fα+1,fα+2)−L+
R (fα,fα+1)

]
dv

= ρα+1uk
α+1|uα+1 −u−

α+1|PL (uα+1,ρα)
[
1−PR

(
u−

α+1,ρα+2
)]

qB

(
HB(u−

α+1),ρα+1
)

−ραuk
α|uα −u+

α |PR (uα,ρα+1)qB (HB (uα) ,ρα) (3.67)

Since the probability of lane changing to either left or right can be described by
use of negative exponents which have values ranging from zero to one, then the
following probabilities are approximated by:

PR

(
u−

α+1,ρα+2
)

∼ exp
(
−ρα+2ϕ

(
u−

α+1

))
= e−ρα+2ϕ(u−

α+1)

PR (uα,ρα+1) ∼ exp(−ρα+1ϕ(uα)) = e−ρα+1ϕ(uα)

PL (uα+1,ρα) ∼ exp(−ραϕ(uα+1)) = e(−ραϕ(uα+1)) (3.68)

where ϕ
(
u−

α+1
)
, ϕ(uα) and ϕ(uα+1) are the rates at which the vehicles are

changing lanes. Equation (3.62) is differentiated with respect to ρα to
approximate the probability distribution function of the leading vehicles as;

qB

(
HB(u−

α+1),ρα+1
)

∼ 1
1−ρα+1

qB (HB (uα) ,ρα) ∼ 1
1−ρα

(3.69)

Letting ϕ
(
u−

α+1
)

= ϕ(uα) = ϕ(uα+1) = C0, equation (3.67) on substitution
reduces to: ˆ vmax

0
vk
[
G+

R (fα,fα+1,fα+2)−L+
R (fα,fα+1)

]
dv

= ρα+1uk
α+1|uα+1 −u−

α+1|(1− e−ρα+2C0)
(

1
1−ρα+1

)

×
(
e−ραC0

)
−ραuk

α|uα −u+
α |e−ρα+1C0

(
1

1−ρα

)
(3.70)

(d) For equation (3.14) we have:
ˆ vmax

0
vkG+

L (fα−1,fα)dv

=
ˆ vmax

0
vk

ˆ
v>v̂+

PR (v,ρα) |v− v̂+|qB (HB (v) ,ρα−1)ρα−1δuα−1 (v)δu+
α−1

(v̂+)dv̂+dv

(3.71)
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As a consequence of Dirac delta δ (.) function, equation (3.71) reduces to;
ˆ vmax

0
vkG+

L (fα−1,fα)dv

= |uα−1 −u+
α−1|PR (uα−1,ρα)qB (HB (uα−1) ,ρα−1)ρα−1

ˆ vmax

0
uk

α−1duα−1

= |uα−1 −u+
α−1|PR (uα−1,ρα)qB (HB (uα−1) ,ρα−1)ρα−1uk

α−1 (3.72)

Similarly equation (3.17) becomes;
ˆ vmax

0
vkL+

L (fα−1,fα,fα+1)dv

=
ˆ vmax

0
vk

ˆ
v̂−>v

PL (v,ρα−1) [1−PR (v̂−,ρα+1)] |v − v̂−|qB ((v̂−),ρα)

×ραδu−
α

(v̂−)δuα (v)dv̂−dv (3.73)

As a consequence of Dirac delta δ (.) function, equation (3.73) reduces to:
ˆ vmax

0
vkL+

L (fα−1,fα,fα+1)dv

= PL (uα,ρα−1)
[
1−PR

(
u−

α ,ρα+1
)]

|uα −u−
α |qB

(
HB(u−

α ),ρα

)
ραduα

ˆ vmax

0
uk

αduα

= ραuk
α|uα −u−

α |PL (uα,ρα−1)
(
1−PR

(
u−

α ,ρα+1
))

qB

(
HB(u−

α ),ρα

)
(3.74)

Combining equations (3.72) and (3.74) as stipulated in equation (3.4) to have:
ˆ vmax

0
vk
[
G+

L (fα−1,fα)−L+
L (fα−1,fα,fα+1)

]
dv

=
[
ρα−1uk

α−1|uα−1 −u+
α−1|PR (uα−1,ρα)qB (HB (uα−1) ,ρα−1)

]
−ραuk

α|uα −u−
α |PL (uα,ρα−1)

(
1−PR

(
u−

α ,ρα+1
))

qB

(
HB(u−

α ),ρα

)
(3.75)

The following approximations of the probabilities are taken as stipulated in (3.68):

PR (uα−1,ρα) ∼ exp(−ραϕ(uα−1)) = e(−ραϕ(uα−1))

PR

(
u−

α ,ρα+1
)

∼ exp
(
−ρα+1ϕ

(
u−

α

))
= e(−ρα+1ϕ(u−

α ))

PL (uα,ρα−1) ∼ exp(−ρα−1ϕ(uα)) = e(−ρα−1ϕ(uα)) (3.76)

Where ϕ(uα−1), ϕ
(
u−

α

)
and ϕ(uα) are the rates at which the vehicles are changing

lanes.
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Approximating the probability distribution function of the leading vehicles as in
equation (3.69) by;

qB (HB(uα−1),ρα−1) ∼ 1
1−ρα−1

qB

(
HB(u−

α ),ρα

)
∼ 1

1−ρα
(3.77)

Taking ϕ(uα−1) = ϕ
(
u−

α

)
= ϕ(uα) ∼ C0, a constant and on substitution, equation

(3.75) becomes:
ˆ vmax

0
vk
[
G+

L (fα−1,fα)−L+
L (fα−1,fα,fα+1)

]
dv

= ρα−1uk
α−1|uα−1 −u+

α−1|e−ραC0

(
1

1−ρα−1

)

−ραuk
α|uα −u−

α |e−ρα−1C0
(
1− e−ρα+1C0

)( 1
1−ρα

)
(3.78)

For k = 0 and k = 1, the RHS of equation (3.78) respectively is denoted by:

Φ0
L (α −1,α,α +1)

= ρα−1|uα−1 −u+
α−1|e−ραC0

(
1

1−ρα−1

)

−ρα|uα −u−
α |e−ρα−1C0

(
1− e−ρα+1C0

)( 1
1−ρα

)
(3.79)

Φ1
L (α −1,α,α +1)

= ρα−1uα−1|uα−1 −u+
α−1|e−ραC0

(
1

1−ρα−1

)

−ραuα|uα −u−
α |e−ρα−1C0

(
1− e−ρα+1C0

)( 1
1−ρα

)
(3.80)

Where Φ0
L (α −1,α,α +1) and Φ1

L (α −1,α,α +1) represent the vehicles
interaction terms due to lane changing to the left.
Similarly for k = 0 and k = 1 the RHS of equation (3.70) respectively is denoted
by:
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Φ0
R (α,α +1,α +2) = ρα+1|uα+1 −u−

α+1|e−ραC0

(
1

1−ρα+1

)

×
(
1− e−ρα+2C0

)
−ρα|uα −u+

α |e−ρα+1C0

(
1

1−ρα

)
(3.81)

Φ1
R (α,α +1,α +2) = ρα+1uα+1|uα+1 −u−

α+1|e−ραC0

(
1

1−ρα+1

)

×
(
1− e−ρα+2C0

)
−ραuα|uα −u+

α |e−ρα+1C0

(
1

1−ρα

)
(3.82)

where Φ0
R (α,α +1,α +2) and Φ1

R (α,α +1,α +2) represent the vehicles
interaction terms due to lane changing to the right.
Therefore equation (3.38) becomes:

∂t

ˆ vmax

0
vkfα (x,v, t)dv +∂x

ˆ vmax

0
vk+1fα (x,v, t)dv

= Φk
L (α −1,α,α +1)+Φk

R (α −1,α,α +1) (3.83)

Since fα (x,v, t) = ραδuα (v) from equation (3.1) then (3.83) reduces to:

∂t

ˆ vmax

0
vkραδuα (v)dv +∂x

ˆ vmax

0
vk+1ραδuα (v)dv

= Φk
L (α −1,α,α +1)+Φk

R (α −1,α,α +1) (3.84)

For k = 0, we obtain the conservation equation in terms of the numbers of vehicles
flowing in and out of a highway cell as:

∂tρα +∂x(ραuα) = Φ0
L (α −1,α,α +1)+Φ0

R (α,α +1,α +2) (3.85)

And for k = 1 we get the equation of momentum as;

∂t(ραuα)+∂x(ραu2
α)−a(ρα)∂xuα

= Φ1
L (α −1,α,α +1)+Φ1

R (α,α +1,α +2) (3.86)

Where a(ρα) is the anticipation term from drivers due to speed adaptation effect
given by (3.61) and deduced from (3.62) as;

a(ρα) = ρα

1−ρα
C (3.87)

Rewriting equations (3.85) and (3.86) in two forms based on how (3.86) is
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formulated, and first dealing with the homogeneous part of both equations
which represent the continuous flow of the traffic in the highway, thus;
1. None conservative form (primitive) in terms of primitive variables ρα and uα,
equation (3.85) and (3.86) becomes;

∂tρα +∂x(ραuα) = 0 (3.88)

∂tuα +
(

uα − a(ρα)
ρα

)
∂xuα = 0 (3.89)

Equation (3.89) describes the dynamics rate of velocity uα in space and time
while (3.88) is the equation of continuity.
2. Conservative form: To determine the conservative form of equations (3.88)
and (3.89), the following equation is introduced from (3.87):

a(ρα)
ρα

= ρα
C

ρα (1−ρα)
= ραp′(ρα) (3.90)

where p′(ρα) denotes differentiation with respect to ρα, see equation (3.61).
Multiplying (3.88) throughout by p′(ρα) to get;

p′(ρα)(∂tρα +uα∂xρα +ρα∂xuα) = 0 (3.91)

or
ραp′(ρα)∂xuα = −p′(ρα)(∂tρα +uα∂xρα) (3.92)

substituting equation (3.92) into (3.89) to get;

∂tuα +uα∂xuα +p′(ρα)(∂tρα +uα∂xρα) = 0 (3.93)

or
∂t (uα +p(ρα))+uα∂x (uα +p(ρα)) = 0 (3.94)

Multiplying (3.88) by the term uα + p(ρα), and (3.94) by ρα and adding the
resulting equations to get;

(uα +p(ρα))∂tρα +(uα +p(ρα))∂xραuα

+ρα∂t (uα +p(ρα))+ραuα∂x (uα +p(ρα)) = 0 (3.95)

Equation (3.95) on re-arranging and combining with (3.88) give the following
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conservative form of the system of equations;

∂tρα +∂x(ραuα) = 0 (3.96)

∂t [ρα (uα +p(ρα))]+∂x [ραuα (uα +p(ρα))] = 0 (3.97)

where the conservative variables are traffic density ρα which describe the number
of vehicles on a lane of a roadway segment and the traffic momentum is denoted
by γα which describe the aggregate momentum of all vehicles present given by;

γα = ραuα +ραp(ρα) (3.98)

3.5 Specification of the Relaxation Term

In order to show the appearance of the three traffic phase transitions
(F → S → J) that occur at the bottlenecks such as on-ramps, off-ramps and
weaving areas, a relaxation term is introduced to the velocity dynamics
equation (3.86) as specified in (Kimathi, 2012). It is through this relaxation
term which describes the tendency of drivers to relax to the equilibrium
situation that Kerner (2010) hypothesis of 3-phase traffic flow is incorporated
into our model for multi-lane traffic flow. In this study, the relaxation term
depends on the speed of the vehicles and traffic density on the particular lanes,
thus it is specified as:

R (ρα,uα) = 1
T

(Ue
α (ρα,uα)−uα) (3.99)

where T is the relaxation time and

Ue
α (ρα,uα) =

 ue
1 (ρα) , ρα < ρsyn

α,min, or uα > R(ρα), ρsyn
α,min < ρα < ρfree

α,max

ue
2 (ρα) , uα < R(ρα), ρsyn

α,min < ρα < ρfree
α,max, or ρα > ρfree

α,max

(3.100)
ue

1 (ρα) and ue
2 (ρα) are two optimal velocity curves defined in Kimathi (2012)

such that ue
2 (ρα) < ue

1 (ρα), 0 ≤ ρα < ρα,max with u1 (ρα,max ) = u2 (ρα,max ) = 0
The two optimal velocity are monotone decreasing functions of density satisfying
the property;
ue

1 (ρα) > R (ρα) > ue
2 (ρα), ρsyn

α,min < ρα < ρfree
α,max

with ue
2
(
ρsyn

α,min

)
= R

(
ρsyn

α,min

)
, ue

1
(
ρfree

α,max

)
= R

(
ρfree

α,max

)
.

Here ρsyn
α,min is the minimum density below which synchronized flow cannot occur,

ρfree
α,max is the limit density for free flow existence and R(ρα) is a switching curve
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viewing the traffic dynamics from the density perspective.
The curve ue

1 (ρα) characterize the fast mode where the traffic is less dense and
allow easy lane change and overtaking manoeuvres.
The curve ue

2 (ρα) characterize the slower mode, where the traffic is more dense
and give a lesser chance of lane change and overtaking manoeuvres.
Therefore equation (3.86) becomes;

∂t(ραuα)+∂x(ραu2
α)−a(ρα)∂xuα

= ραR (ρα,uα)+Φ1
L (α −1,α,α +1)+Φ1

R (α,α +1,α +2) (3.101)

In the next section, features of the macroscopic traffic flow model are presented.

3.6 The Features of the Derived Macroscopic Traffic
Flow Model

For a proper numerical approximation equations (3.85) and (3.86) can be cast
into:

∂tUα +∂xF (Uα) = S (Uα) (3.102)

where Uα = (ρα,γα)T , F (Uα) = (ραuα,γαuα)T and
S (Uα) = (ραuα,ραuα (uα +p(ρα)))T are vectors of conserved variables, fluxes
and the source term respectively.
To develop the numerical method, the source term S (Uα) is negleted because of
its discontinuous character and first deal with the homogeneous part of equation
(3.102) which represents a hyperbolic type of wave given as;

∂tUα +∂xF (Uα) = 0 (3.103)

Since the homogeneous part of the systems (3.85)-(3.86) and (3.88)- (3.89) are
identical for smooth solutions, then the later system is used to show the
hyperbolic features (wave form nature) of the derived macroscopic traffic flow
model equations by expressing (3.88)- (3.89) in vector form of primitive
variables ρα and uα. To approximate the flux in the road segment, we
decompose the Jacobian matrix into its eigen values and eigen vectors. Thus,
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the system of equations (3.103) is hyperbolic if the Jacobian matrix;

J (Uα) = ∂F (Uα)
∂Uα

=


∂f1
∂u1

∂f1
∂u2

∂f2
∂u1

∂f2
∂u2


has real eigenvalues λ1 (Uα) and λ2 (Uα), where λ1 (Uα) ≤ λ2 (Uα).
To compute the eigenvalues of J (Uα), equations (3.88) and (3.89) are expanded
to yield;

∂tρα +uα∂xρα +ρα∂xuα = 0 (3.104)

∂tuα +0∂xρα +
(

uα − a(ρα)
ρα

)
∂xuα = 0 (3.105)

therefore;

J (Uα) =

 uα ρα

0 uα −ραp′(ρα)

 (3.106)

and the eigenvalues λi corresponding to J (Uα) are computed as;

|J (Uα)−λiI| =

∣∣∣∣∣∣ uα −λi ρα

0 uα −ραp′(ρα)−λi

∣∣∣∣∣∣= 0 (3.107)

Solving the equation (3.107), to get λ1 = uα − ραp′(ρα) < uα, λ2 = uα which are
real and distinct. Therefore the system (3.102) and the macroscopic traffic flow
model equations (3.96) and (3.97) are strictly hyperbolic. These eigen values
represent the characteristics speed that govern the propagation of information in
the traffic stream. From Aw-Rascle model, λ2 being the largest eigen value equals
to the traffic flow velocity uα and is the contact wave (single jump discontinuity)
while λ1 is either a shock or a rarefaction wave. This implies that no traffic
information travels faster than the traffic and therefore the anisotropic character
of vehicular traffic flow is preserved. With reference to the waves associated with
λ1 as 1-waves and to those associated with λ2 as 2-waves, we determine the right
eigenvectors R1 and R2 of the matrix J (Uα) corresponding to the eigenvalues λi,
i = 1,2 respectively as follows:

R1 (Uα) =

 1
−p′(ρα)

 and R2 (Uα) =

 1
0


Letting ∇λi (Uα) to be the gradient of the eigenvalue λi (Uα), i = 1,2, we
determine the kind of waves associated with each eigenvalue by checking
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whether the dot product ∇λi (Uα) · Ri (Uα) is zero or not. That is for
λ1 (Uα) = uα −ραp′(ρα), we have;
 ∂ρα (uα −ραp′(ρα))

∂uα (uα −ραp′(ρα))

 ·

 1
−p′(ρα)

= −∂ρα (ραp′(ρα))−p′(ρα) ̸= 0 (3.108)

and for λ2 (Uα) = uα, we have;
 ∂ραuα

∂uαuα

 ·

 1
0

= 0 (3.109)

implying that 1st characteristics field is genuinely nonlinear and 2nd

characteristic field is linearly degenerate. Therefore the 1-waves are either a
rarefaction (smooth) or shock wave (jump discontinuity) and the 2-waves are
contact discontinuities.

In the next subsection, the schemetic diagram of the part of the highway under
study and the specific lanes model equations of the bottlenecks are presented.

3.6.1 Outline of the Lanes Specific Model Equations

We consider a three lanes highway with an on and off-ramp bottlenecks in the
traffic flow simulations. Figure 3.2 show part of the highway with the botllenecks
under consideration, the on-ramp merging and the off-ramp diverging zone are
as indicated.

Figure 3.2: On ramp and Off ramp interchange

3.6.1.1 On-ramp Scenario

(i) When α = 1, the vehicles on lane 1 can only change to lane 2 otherwise the
vehicles continue moving in lane 1.
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Since the probability of lane-change from lane 1 to lane 0 is zero, then equations
(3.79) to (3.82) respectively reduces to;

Φ0
L (0,1,2) = ρ0|u0 −u+

0 |e−ρ1C0

(
1

1−ρ0

)
(3.110)

Φ1
L (0,1,2) = ρ0u0|u0 −u+

0 |e−ρ1C0

(
1

1−ρ0

)
(3.111)

Φ0
R (1,2,3) = ρ2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.112)

Φ1
R (1,2,3) = ρ2u2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.113)

and equations (3.85) and (3.86) for lane 1 respectively reduce to;

∂tρ1 +∂x(ρ1u1) = Φ0
R (1,2,3)+Φ0

L (0,1,2) (3.114)

∂t (ρ1u1)+∂x

(
ρ1u2

1
)

−a(ρ1)∂xu1 = Φ1
R (1,2,3)+Φ1

L (0,1,2) (3.115)

(ii) When α = 2 , the vehicles on lane 2 can change lanes to right lane or left lane
otherwise vehicles stay in lane 2.
Therefore equations (3.79) to (3.82) respectively reduces to;

Φ0
L (1,2,3) = ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.116)

Φ1
L (1,2,3) = ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2u2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.117)

Φ0
R (2,3) = ρ3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.118)
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Φ1
R (2,3) = ρ3u3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2u2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.119)

Thus equations (3.85) and (3.86) is given by;

∂tρ2 +∂x(ρ2u2) = Φ0
R (2,3)+Φ0

L (1,2,3) (3.120)

∂t (ρ2u2)+∂x

(
ρ2u2

2
)

−a(ρ2)∂xu2 = Φ1
R (2,3)+Φ1

L (1,2,3) (3.121)

(iii) When α = 3 , the vehicles can only change lane to the left lane otherwise
vehicles remain in lane 3 and the probability of lane-change from lane 3 to lane
4 is zero, equations (3.79) to (3.82) respectively reduce to;

Φ0
L (2,3) = ρ2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.122)

Φ1
L (2,3) = ρ2u2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3u3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.123)

Therefore equations (3.85) and (3.86) becomes;

∂tρ3 +∂x(ρ3u3) = Φ0
L (2,3) (3.124)

∂t (ρ3u3)+∂x

(
ρ3u2

3
)

−a(ρ3)∂xu3 = Φ1
L (2,3) (3.125)

3.6.1.2 Off-ramp Scenario

(i) When α = 1, the vehicles on lane 1 can diverge to lane 0 or change to lane 2
otherwise the vehicles continue moving in lane 1.
Therefore equations (3.79) to (3.82) reduces to;

Φ0
L (0,1,2) = −ρ1|u1 −u−

1 |e−ρ0c0
(
1− e−ρ2c0

) 1
1−ρ1

(3.126)

Φ1
L (0,1,2) = −ρ1u1|u1 −u−

1 |e−ρ0c0
(
1− e−ρ2c0

) 1
1−ρ1

(3.127)

Φ0
R (1,2,3) = ρ2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.128)
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Φ1
R (1,2,3) = ρ2u2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.129)

Equations (3.85) and (3.86) for lane 1 respectively reduces to;

∂tρ1 +∂x(ρ1u1) = Φ0
R (1,2,3)+Φ0

L (0,1,2) (3.130)

∂t (ρ1u1)+∂x

(
ρ1u2

1
)

−a(ρ1)∂xu1 = Φ1
R (1,2,3)+Φ1

L (0,1,2) (3.131)

(ii) When α = 2, the vehicles on lane 2 can change lanes to right lane or left lane
otherwise vehicles stay in lane 2.
Therefore equations (3.79) to (3.82) respectively reduces to;

Φ0
L (1,2,3) = ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.132)

Φ1
L (1,2,3) = ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2u2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.133)

Φ0
R (2,3) = ρ3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.134)

Φ1
R (2,3) = ρ3u3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2u2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.135)

Thus equations (3.85) and (3.86) is given by;

∂tρ2 +∂x(ρ2u2) = Φ0
R (2,3)+Φ0

L (1,2,3) (3.136)

∂t (ρ2u2)+∂x

(
ρ2u2

2
)

−a(ρ2)∂xu2 = Φ1
R (2,3)+Φ1

L (1,2,3) (3.137)

(iii) When α = 3, the vehicles can only change lane to the left lane otherwise
vehicles remain in lane 3 and the probability of lane-change from lane 3 to lane
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4 is zero.
Therefore equations (3.79) to (3.82) respectively reduce to;

Φ0
L (2,3) = ρ2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.138)

Φ1
L (2,3) = ρ2u2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3u3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.139)

Thus equations (3.85) and (3.86) becomes;

∂tρ3 +∂x(ρ3u3) = Φ0
L (2,3) (3.140)

∂t (ρ3u3)+∂x

(
ρ3u2

3
)

−a(ρ3)∂xu3 = Φ1
L (2,3) (3.141)

3.6.1.3 Weaving Area Scenario

When the on-ramp and off-ramp are too close to one another on the highway,
they form a freeway weaving section. The two ramps are joined by an auxiliary
lane where two merges and two diverges are superposed. Thus traffic weaving is
the crossing of two or more traffic streams traveling in the same direction in a
limited segment length. Since the lane change interactions occur mainly
between auxiliary lane and lane 1 of the highway then all the weaving vehicles
must perform mandatory lane change (either merge to or diverge from the
highway) within the length of the auxiliary lane. Therefore;
(i) When α = 1, the vehicles on this lane can either join the auxiliary lane
targeting to exit the highway through the off-ramp or change to lane 2 to avoid
congestion in the current lane, otherwise the vehicles continue moving in lane 1.
At the same time the vehicles from the on-ramp are aiming to merge into the
highway as soon as a space gap is available.
Thus equations (3.110) and (3.126), (3.111) and (3.127), (3.112) and (3.128),
(3.113) and (3.129) are combined respectively to give;

Φ0
L (0,1,2) = ρ0|u0 −u+

0 |e−ρ1C0

(
1

1−ρ0

)
−ρ1|u1 −u−

1 |e−ρ0c0
(
1− e−ρ2c0

) 1
1−ρ1
(3.142)

Φ1
L (0,1,2) = ρ0u0|u0 −u+

0 |e−ρ1C0

(
1

1−ρ0

)

−ρ1u1|u1 −u−
1 |e−ρ0c0

(
1− e−ρ2c0

) 1
1−ρ1

(3.143)
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Φ0
R (1,2,3) = ρ2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.144)

Φ1
R (1,2,3) = ρ2u2|u2 −u−

2 |e−ρ1C0

(
1

1−ρ2

)

×
(
1− e−ρ3C0

)
−ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)
(3.145)

Therefore, equations (3.85) and (3.86) for lane 1 respectively reduce to;

∂tρ1 +∂x(ρ1u1) = Φ0
R (1,2,3)+Φ0

L (0,1,2) (3.146)

∂t (ρ1u1)+∂x

(
ρ1u2

1
)

−a(ρ1)∂xu1 = Φ1
R (1,2,3)+Φ1

L (0,1,2) (3.147)

(ii) When α = 2, the vehicles on this lane can change lanes to lane 1 or lane 3
otherwise the vehicles continue moving in lane 2.
Therefore, equations (3.79) to (3.82) respectively reduces to;

Φ0
L (1,2,3) = ρ1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.148)

Φ1
L (1,2,3) = ρ1u1|u1 −u+

1 |e−ρ2C0

(
1

1−ρ1

)

−ρ2u2|u2 −u−
2 |e−ρ1C0

(
1− e−ρ3C0

)( 1
1−ρ2

)
(3.149)

Φ0
R (2,3) = ρ3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.150)

Φ1
R (2,3) = ρ3u3|u3 −u+

3 |e−ρ2C0

(
1

1−ρ3

)

−ρ2u2|u2 −u−
2 |e−ρ3C0

(
1

1−ρ2

)
(3.151)
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Thus equations (3.85) and (3.86) is given by;

∂tρ2 +∂x(ρ2u2) = Φ0
R (2,3)+Φ0

L (1,2,3) (3.152)

∂t (ρ2u2)+∂x

(
ρ2u2

2
)

−a(ρ2)∂xu2 = Φ1
R (2,3)+Φ1

L (1,2,3) (3.153)

(iii) When α = 3, the vehicles can only change lane to the left lane otherwise
vehicles remain in lane 3 since the probability of lane-change from lane 3 to lane
4 is zero.
Thus equations (3.79) to (3.82) respectively reduce to;

Φ0
L (2,3) = ρ2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.154)

Φ1
L (2,3) = ρ2u2|u2 −u+

2 |e−ρ3C0

(
1

1−ρ2

)
−ρ3u3|u3 −u−

3 |e−ρ2C0

(
1

1−ρ3

)
(3.155)

Therefore equations (3.85) and (3.86) becomes;

∂tρ3 +∂x(ρ3u3) = Φ0
L (2,3) (3.156)

∂t (ρ3u3)+∂x

(
ρ3u2

3
)

−a(ρ3)∂xu3 = Φ1
L (2,3) (3.157)

It should be noted that the lane changing processes when α = 2 and α = 3 for
the three type of bottlenecks scenarios are similar as stipulated in subsections
(3.6.1.1), (3.6.1.2) and (3.6.1.2) respectively.

The discretization and numerical techniques for the solution of the derived
macroscopic traffic flow model equations (3.85) and (3.86) are presented in the
next chapter.
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CHAPTER FOUR

METHODS OF SOLUTION

Introduction

In this chapter we discretize the homogeneous part of the traffic flow model
equations (3.102) and the source term (4.18). Godunov scheme ( finite volume
method ) is used to solve the macroscopic traffic flow models equations (3.85)
and (3.86) via a computer algorithm. We prefer the integral form of
conservation laws to differential form because of the following two reasons:
(i) the governing equations are derived based on physical conservation principles
expressed as integral relations on control volumes.
(ii) the integral formulation requires less smoothness of the solution, which
paves the way to extend the class of admissible solutions to include
discontinuous characters (weak solutions), ?.
This method utilizes the Riemann problem which is basically a combination of
the governing conservation law, the initial and boundary conditions. We
simulate a multi-lane road that have stationary bottlenecks by obtaining a
numerical solution to the conservative system (4.19). First, the Riemann
problem is solved using the 1-and 2-waves and the jump discontinuities regarded
in the equations of conservative form (3.96) and (3.97).

4.1 The Riemann Problem and its Solution

To solve numerically the discontinuous (source term) part of the equation (3.102),
Riemann problem and its solution is introduced. The conservative law forms of
the derived macroscopic traffic flow model equations (3.96) and (3.97) of the Aw-
Rascle type is used to set up the Riemann problem with piecewise constant initial
data as follows; 

∂tUα +∂xF (Uα) = 0

Uα (x,0) =

 Uα,L if x < 0

Uα,R if x > 0

(4.1)

where Uα = (ρα,γα)T , F (Uα) = (ραuα,γαuα)T , Uα,L and Uα,R are the piecewise
constant traffic state on the left or right of the jump discontinuity at x = 0.
Since λ1 (ρα,uα) < λ2 (ρα,uα) for all Uα , then the general solution of the
Riemann problem will have 1- waves connecting the left state Uα,L to an
intermediate state Uα,M and a 2- waves connecting Uα,M to the right state
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Uα,R. The 1-waves will either be shock waves when Uα,L > Uα,R or rarefaction
waves when Uα,L < Uα,R. Therefore the following types of solutions exist;
(i) 1-shock wave connecting Uα,L to an intermediate state (Uα,M ) followed by a
2-contact wave discontinuity connecting Uα,M to Uα,R. In this case the shock
speed Sα,1 can either be a backward or a forward propagating wave, see Figure
4.1(a) and (b) respectively. It is noted that Sα,T = Sα,H = Sα,1 for a 1-shock.
(ii) 1-rarefaction wave connecting Uα,L to Uα,M followed by a 2-contact
discontinuity connecting Uα,M to Uα,R. The right edge of the rarefaction fan is
denoted by Sα,H (rarefaction head) and the left edge of the fan by Sα,T

(rarefaction tail) as shown in Figure 4.2.
Therefore the two constants states Uα,L and Uα,R are connected through a

(a)

(b)

Figure 4.1: (a and b) Possible shock solutions

single jump discontinuity in a genuinely non-linear field. To determine the
intermediate state Uα,M , we use i − Lax curves associated to the i − waves,
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Figure 4.2: Possible rarefaction fan solution

i = 1,2 and compute the Riemann invariants so as to represent the solution on
(ρα,ραuα) phase plane. Here the 1-Lax (2-Lax) is the set of points in the
(ρα,ραuα) phase plane, which can be connected to a given state by 1-wave or
2-wave. Phase transition is referred as the event of traffic changing from one
state to another. According to Aw & Rascle (2000), the shock and rarefaction
curves coincide for Aw-Rascle system. The 1-Lax curves are determined by a
situation where a given left state Uα,L is connected to an arbitrary state Uα,⋆ on
the right state by a 1-shock of speed Sα,1.
This is only possible if the following entropy condition is satisfied;

λα,1 (ρα,⋆,uα,⋆) < Sα,1 < λα,1
(
ρα,L,uα,L

)
Moreover any discontinuity propagating with speed Sα,1 must satisfy the Rankine-
Hugoniot condition, (?);

F (Uα,⋆)−F
(
Uα,L

)
= Sα,1

(
Uα,⋆ −Uα,L

)
(4.2)

Therefore equation (4.2) on substitution reduces to (4.3) and (4.4);

ρα,⋆uα,⋆ −ρα,Luα,L = Sα,1
(
ρα,⋆ −ρα,L

)
(4.3)

γα,⋆uα,⋆ −γα,Luα,L = Sα,1
(
γα,⋆ −γα,L

)
(4.4)

Eliminating Sα,1 from equations (4.3) and (4.4) gives;

γα,⋆uα,⋆ −γα,Luα,L

ρα,⋆uα,⋆ −ρα,Luα,L
= γα,⋆ −γα,L

ρα,⋆ −ρα,L
(4.5)
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on cross multiplication and simplifying equation (4.5) reduces to;

γα,⋆

ρα,⋆
= γα,L

ρα,L
(4.6)

Since the state Uα,⋆ is arbitrary, the 1-lax curves passing through Uα,L are derived
from equation (4.6) using equation (3.98) in terms of the primitive variables as;

γα,⋆

ρα,⋆
= uα,⋆ +p(ρα,⋆) = uα,L +p

(
ρα,L

)
(4.7)

or
Lα,1

(
ρα;ρα,L,uα,L

)
= uα,L +p

(
ρα,L

)
−p(ρα) (4.8)

with the 1-wave being a shock wave when ρα,L < ρα,⋆ and a rarefaction when
ρα,L > ρα,⋆.
The 2-lax curves are obtained from one of the Rankine-Hugoniot condition (4.3)
or (4.4) and imposing that an arbitrary left state Uα,⋆ can be connected to a
given right state Uα,R by a contact discontinuity of speed Sα,2 with the following
parallel characteristics condition, (?) satisfied;

λα,2 (ρα,⋆,uα,⋆) = λα,2
(
ρα,R,uα,R

)
= Sα,2

and using equation (3.105) we have;

ρα,⋆uα,⋆ −ρα,Ruα,R = uα,R

(
ρα,⋆ −ρα,R

)
(4.9)

which reduces to uα,⋆ = uα,R. With Uα,⋆ being arbitrary, then 2-lax curves pass
through Uα,R and are straight lines from origin in the (ρα,ραuα) plane given by;

Lα,2
(
ρα;ρα,R,uα,R

)
= uα,R (4.10)

Thus the Riemann invariants wα,1 and wα,2 associated with the characteristic are
stated as λα,1 and λα,2 respectively;

wα,1 = uα +p(ρα) ,wα = uα (4.11)

The solution to the Riemann problem (4.1), say Uα,G is given by the set at x = 0
as follows;

44



Uα,G =


Uα,M if Sα,1 < 0

Uα,L if Sα,1 > 0

Ũα if Sα,T < 0 < Sα.H

(4.12)

where Uα,M =
(
ρα,M ,γα,M

)T
is the intermediate state computed from the lax

curves given by;
uα,M +p

(
ρα,M

)
= uα,L +p

(
ρα,L

)
(4.13)

Since uα,M = uα,R and γα = ραuα + ραp(ρα) then from (4.13) the following
expressions are obtained;

ρα,M = p−1
(
uα,L +p

(
ρα,L

)
−uα,R

)
γα,M = ρα,M

γα,L

ρα,L
(4.14)

Therefore Uα,M is obtained explicitly in terms of Uα,L and Uα,R. Next we obtain
the solution Ũα = (ρ̃α, γ̃α)T inside the rarefaction fan by considering the speed of
the characteristic rays and the lax curves to get;

ũα +p(ρ̃α) = uα,L +p
(
ρα,L

)

ũα − ρ̃αp(ρ̃α) = 0 ∵ x

t
= 0 (4.15)

Solving the system of equations (4.15) simultaneously for ρ̃α and ũα gives the
desired form of the Riemann solution Ũα. For the speeds Sα,1 ,Sα,T and Sα,H

, we note that Uα,L and Uα,M can be connected by a 1-rarefaction as long as
they lie on the same integral curve and that they must satisfy the condition
λα,1

(
ρα,L,uα,L

)
< λα,1

(
ρα,M ,uα,M

)
, (?).

From the Rankine Hugonoit condition (4.2), the two states should be connected
by a 1-shock if λα,1

(
ρα,L,uα,L

)
> λα,1

(
ρα,M ,uα,M

)
to give;

Sα,1 = ρα,Luα,L −ρα,Muα,M

ρα,L −ρα,M
(4.16)

Also from (?), the right and left edge of the 1-rarefaction wave carry the value
Uα,M and Uα,L respectively. Using the λ1 = Uα −ραp′(ρα) to obtain;

Sα,T = uα,L −ρα,Lp′
(
ρα,L

)
Sα,H = uα,M −ρα,M p′

(
ρα,M

)
(4.17)
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With the aid of the above i-Lax curves ( for i = 1,2 ), the following two cases
illustrate how the derived Aw-Rascle type traffic flow model (3.96) and (3.97)
handle transitions from a left state UL to the right state UR on the (ρα,ραuα)
phase plane, (Kimathi, 2012).
Case 1: ρL = ρR , uL > uR. To reach UR from UL , the model predicts that
the traffic should first decelerate through 1-shock to state UM along the outer
1-Lax curve and then transit from UM to UR along the lower 2-Lax ray while
maintaining its average speed.
Case 2 : ρL > ρR , uL < uR. To reach UR from UL , the model predicts that traffic
first accelerates through 1-rarefaction fan to a new state U

M̃
situated along the

inner 1-Lax curve and on the upper 2-Lax curve (ray). Then transits from U
M̃

to UR along the upper 2-Lax curve (ray).
We conclude by defining the source term S (Uα) as the vector:

S (Uα) =

 Φ0
L (α −1,α,α +1)+Φ0

R (α,α +1,α +2)
Φ1

L (α −1,α,α +1)+Φ1
R (α,α +1,α +2)

 (4.18)

where Φ0
L (α −1,α,α), Φ1

L (α −1,α,α +1), Φ0
R (α,α +1,α +2) and

Φ1
R (α,α +1,α +2) are given by the equations (3.79) to (3.82) respectively.

Therefore writing the conservative system (3.96) and (3.97) in vector form as
earlier introduced when setting up the Riemann problem in (4.1) and using
(4.18), we obtain the following system;

∂tUα +∂xF (Uα) = S (Uα) (4.19)

which is the conservative form of the macroscopic traffic flow model.

In the next sections the finite volume method and discretized traffic flow model
equations of the source terms are presented.

4.2 The Godunov Scheme

This is a finite volume method (FVM) which allow a direct discretization of
variables in the physical space for arbitrary mesh configuration without necessary
an explicit computational of metric coefficient. That is, a discretization method
fitted for the numerical simulations of various types of conservation laws. The
scheme is proven to satisfy all the positivity constraints of conservative traffic
variables. Moreover, the proposed scheme is more robust, fast and reliable than
the others for accurate representation of shocks and able to incorporate the flow-
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density relations. The main advantage of the finite volume method (FVM) over
the finite difference method (FDM) is that the spatial discretization is carried
out directly in the physical space and does not need any transformation between
the physical and the computational co-ordinate system. Furthermore, the scheme
works with control volumes rather than the grid intersection points and therefore
has the capacity to accommodate any type of grid. The FVM is based on the
solution of the Riemann problem which is defined by an initial value problem
equation (4.1).
Given that the general data for the homogeneous system of equation:

∂tUα +∂xF (Uα) = 0 (4.20)

is Ũα (x,tn), the solution is evolved to a time step tn+1 = tn + △t by use of the
Godunov method in the following steps:
(i) At first the highway is divided into small cells i which have a fixed length
xi − xi+1 and assume a piecewise constant distribution of data by defining cell
averages as;

Un
α,i = 1

△x

ˆ x+ 1
2

x− 1
2

Ũα (x,tn)dx (4.21)

The spatial domain is discretized into M cells, Ci =
[
xi− 1

2
,xi+ 1

2

]
for i = 1....M of

the same size △x. These cell averages produce the required piecewise constant
distribution Uα (x,tn) = Un

α,i for all x ∈ Ci ,i = 1....M, n ∈ N. As such the data
now consist of the set of values

{
Un

α,i

}
.

(ii) For the rectangular control volume
[
xi− 1

2
,xi+ 1

2

]
×
[
tn, tn+1

]
shown in Figure

4.3, the integral form of the conservative law equation (3.102) can be expressed
as; ˆ x

i+ 1
2

x
i− 1

2

Ũα

(
x,tn+1

)
dx =

ˆ x
i+ 1

2

x
i− 1

2

Ũα (x,tn)dx

+
ˆ tn+1

tn
F
(

Ũα

(
xi− 1

2
, t
))

dt−
ˆ tn+1

tn
F
(

Ũα

(
xi+ 1

2
, t
))

dt (4.22)

Now for a time step size △t = tn+1 − tn that is sufficiently small (such that there
is no wave interaction in the cell Ci, see Figure 4.3), the solution Ũα (x,t) for
t ∈

[
tn, tn+1

]
and x ∈ [xi,xi+1] is defined as follows;

Ũα (x,t) = Uα,i+ 1
2

(x/t) (4.23)
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Figure 4.3: Typical rectangular control volume

where (x,t) are local co-ordinates given by;

x = x−xi+ 1
2
, t = t− tn,

x ∈ [xi,xi+1] , t ∈
[
tn, tn+1

]
,

x ∈
[
−△x

2 , △x
2

]
, t ∈ [0,△t]

} (4.24)

In terms of the solutions specified in equation (4.23), we have;

Ũα

(
xi− 1

2
, t
)

= Uα,i− 1
2

(0) (4.25)

Ũα

(
xi+ 1

2
, t
)

= Uα,i+ 1
2

(0) (4.26)

where Uα,i+ 1
2

(0) is a constant state and a solution of the Riemann problem
RP

(
Un

α,i,U
n
α,i+1

)
along a ray of constant slope, see Figure (4.3) and likewise

Uα,i− 1
2

(0) is the solution of RP
(
Un

α,i−1,Un
α,i

)
.

Dividing equation (4.22) by △x throughout yields;

1
△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα

(
x,tn+1

)
dx = 1

△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα (x,tn)dx+ 1
△x

ˆ tn+1

tn
F
(

Ũα

(
xi− 1

2
, t
))

dt

− 1
△x

ˆ tn+1

tn
F
(

Ũα

(
xi+ 1

2
, t
))

dt (4.27)

which reduces to;
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1
△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα

(
x,tn+1

)
dx = 1

△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα (x,tn)dx+ F

△x

(
Uα,i− 1

2
(0)
)[

tn+1 − tn
]

− F

△x

(
Uα,i+ 1

2
(0)
)[

tn+1 − tn
]

(4.28)

1
△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα

(
x,tn+1

)
dx = 1

△x

ˆ x
i+ 1

2

x
i− 1

2

Ũα (x,tn)dx+ △t

△x
F (Uα,i− 1

2
(0))

− △t

△x
F (Uα,i+ 1

2
(0)) (4.29)

Using the definition (4.21) in equation (4.29), gives the desired Godunov method
as:

Un+1
α,i = Un

α,i + △t

△x

[
F (Un

α,i− 1
2

(0))−F (Un
α,i+ 1

2
(0))

]
(4.30)

In order to contain the interactions of the waves within the cell Ci during the
calculations, Courant-Friedrichs-Lewy restriction is imposed(

CFL condition
)

on time step size;

△t ≤
Ccfl△x

Max
{

|λi (Uα) |, i = 1,2
} (4.31)

where Ccfl ≤ 1, a constant called the Courant number. This is a condition for
numerical stability where the numerical solution is unstable if the errors grow
exponentially, which in turn may lead to oscillation of traffic variables with very
short wave length.

4.3 The Discrete Form of the Source Term

In order to proceed with simulation of the traffic flow features, the source term
S(Uα) is introduced to the right hand side of the conservative system of equation
(4.20).
The following approximations are used to obtain the required discrete equations.
u+

α (x,t) ≃ uα (i+1,k) and u−
α (x,t) ≃ uα (i−1,k)

4.3.1 The Discrete Source Terms for an On-ramp

A highway with three lanes and an on-ramp is considered as the bottleneck for
the traffic simulations as shown in Figure 4.4. The on-ramp lane is denoted by
lane 0 while the other three lanes on the highway are labeled 1, 2 and 3 from the
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left most. The on-ramp merging zone is the region between the entrance into the
highway and the end of the acceleration lane.

Figure 4.4: Section of the highway with three lanes and an on-ramp.

(i) For lane 1, i.e when α = 1, equations (3.110), (3.111), (3.112) and (3.113)
respectively become;

Φ0
L (0,1,2) ≃ ρ0 (i,k) |u0 (i,k)−u0 (i+1,k) |e−ρ1(i,k)C0

(
1

1−ρ0 (i,k)

)
(4.32)

Φ1
L (0,1,2) ≃ ρ0 (i,k)u0 (i,k) |u0 (i,k)−u0 (i+1,k) |e−ρ1(i,k)C0

(
1

1−ρ0 (i,k)

)
(4.33)

Φ0
R (1,2,3) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)

×
(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.34)

Φ1
R (1,2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)
×

(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.35)

(ii) For lane 2, i.e when α = 2, equations (3.116) to (3.119) respectively becomes;
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Φ0
L (1,2,3) ≃ ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.36)

Φ1
L (1,2,3) ≃ ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.37)

Φ0
R (2,3) ≃ ρ3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.38)

Φ1
R (2,3) ≃ ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.39)

(iii) For lane 3, i.e when α = 3, equations (3.122) and (3.123) respectively
becomes;

Φ0
L (2,3) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.40)

Φ1
L (2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.41)

4.3.2 The Discrete Source Terms for an Off-ramp

Figure 4.3 shows part of the highway with three lanes and an off-ramp considered
for the traffic simulation. Lane 0 denotes the off-ramp lane while the lanes on
the highway are labeled as lanes 1, 2 and 3 respectively from left. The off-ramp
merging zone is part of the highway from the start of deceleration lane to the exit
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lane 0.

Figure 4.5: Section of the highway with three lanes and an off-ramp.

(i) For lane 1, i.e when α = 1, equations (3.126) to (3.129) respectively becomes;

Φ0
L (0,1,2) ≃ −ρ1 (i,k) |u1 (i,k)−u1 (i−1,k) |

×
(

e−ρ0(i,k)C0

(
1

1−ρ1 (i,k)

)(
1− e−ρ2(i,k)C0

))
(4.42)

Φ1
L (0,1,2) ≃ −ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i−1,k) |

×
(

e−ρ0(i,k)C0

(
1

1−ρ1 (i,k)

)(
1− e−ρ2(i,k)C0

))
(4.43)

Φ0
R (1,2,3) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)

×
(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.44)

Φ1
R (1,2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)
×

(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.45)

(ii) For lane 2, i.e when α = 2, equations (3.132) to (3.135) respectively becomes;
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Φ0
L (1,2,3) ≃ ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.46)

Φ1
L (1,2,3) ≃ ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.47)

Φ0
R (2,3) ≃ ρ3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.48)

Φ1
R (2,3) ≃ ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.49)

(iii) For lane 3, i.e when α = 3, equations (3.138) and (3.139) respectively
becomes;

Φ0
L (2,3) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.50)

Φ1
L (2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.51)

4.3.3 The Discrete Source Terms for weaving section

Figure 4.6 shows the section of the weaving area within the three lanes highway
where the vehicles diverge from or merge to the highway indicated by the merging-
diverging zone. The arrows indicate direction of the traffic flow.
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Figure 4.6: A typical weaving section of the highway showing the merging and
diverging traffic manoeuvres.

(i) For lane 1 i.e when α = 1, equations (3.142) to (3.145) respectively becomes;

Φ0
L (0,1,2) ≃ ρ0 (i,k) |u0 (i,k)−u0 (i+1,k) |e−ρ1(i,k)C0

(
1

1−ρ0 (i,k)

)

−ρ1 (i,k) |u1 (i,k)−u1 (i−1,k) |e−ρ0(i,k)C0

(
1

1−ρ1 (i,k)

)(
1− e−ρ2(i,k)C0

)
(4.52)

Φ1
L (0,1,2) ≃ ρ0 (i,k)u0 (i,k) |u0 (i,k)−u0 (i+1,k) |e−ρ1(i,k)C0

(
1

1−ρ0 (i,k)

)

−ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i−1,k) |e−ρ0(i,k)C0

(
1

1−ρ1 (i,k)

)(
1− e−ρ2(i,k)C0

)
(4.53)

Φ0
R (1,2,3) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)

×
(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.54)

Φ1
R (1,2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0

(
1

1−ρ2 (i,k)

)

×
(
1− e−ρ3(i,k)C0

)
−ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)
(4.55)

(ii) For lane 2, i.e when α = 2, equations (3.148) to (3.151) respectively becomes;
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Φ0
L (1,2,3) ≃ ρ1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.56)

Φ1
L (1,2,3) ≃ ρ1 (i,k)u1 (i,k) |u1 (i,k)−u1 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ1 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ1(i,k)C0
(
1− e−ρ3(i,k)C0

)( 1
1−ρ2 (i,k)

)
(4.57)

Φ0
R (2,3) ≃ ρ3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.58)

Φ1
R (2,3) ≃ ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i+1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)

−ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i−1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)
(4.59)

(iii) For lane 3, i.e when α = 3, equations (3.154) and (3.155) respectively
becomes;

Φ0
L (2,3,) ≃ ρ2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.60)

Φ1
L (2,3) ≃ ρ2 (i,k)u2 (i,k) |u2 (i,k)−u2 (i+1,k) |e−ρ3(i,k)C0

(
1

1−ρ2 (i,k)

)

−ρ3 (i,k)u3 (i,k) |u3 (i,k)−u3 (i−1,k) |e−ρ2(i,k)C0

(
1

1−ρ3 (i,k)

)
(4.61)

In the next section we simulate the traffic congestion near the bottlenecks on a
3-lanes highway using the discretized equations obtained.
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4.4 Numerical Simulations

In this study we simulate the macroscopic traffic flow model for a 3-lanes
highway with an on-ramp, off-ramp and a weaving section.
For simulations, the highway segment near each of the bottleneck is divided into
certain number of cells with a fixed length xi − xi+1 and time step
△t = tn+1 − tn.
Let the highway under consideration be along the x-axis; where x = −30 is the
distance upstream of the bottleneck, x = 0 is the location of the bottleneck and
x = 10 is the distance downstream of the bottleneck. Let the flow of traffic be in
the direction of increasing x along the axis and t ∈ [0,500] be the time interval
of the traffic simulation.
Table 4.1 shows the values of the various parameters used in the coded
algorithm.

Table 4.1: Model parameters used in simulations

Parameters Values Parameters Values

C = C0 0.45 ρsyn
α,min 0.5

Ccfl 0.5 ρfree
α,max 0.3

ρα,jam 0.9 uα,syn 0.28

In order to compute the solutions of the model equations, we use a
mathematical and graphical computer software package (MAT-LAB) which has
numerical, graphical and programming capabilities. The discretized macroscopic
model equations for the homogeneous part and the source terms of equation
(4.19) are coded in MAT-LAB software under the initial condition (4.1) and
boundary condition (3.26). These model equations are then solved through the
computer coded algorithm attached in appendix (7.2).

The results obtained are presented and discussed in the next chapter.
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CHAPTER FIVE

RESULTS AND DISCUSSIONS

5.1 Introduction

The discretized form of the model equations presented in chapter 4 which are
coded in MATLAB software package were run under the given initial and
boundary conditions. The results produced are presented in form of graphs and
space-time plots.
It is worth noting that in all the spatiotemporal traffic congestion patterns
produced at the bottlenecks, the velocity and density trajectories are observed
to lean towards left because the vehicles are moving downstream while the
congestion propagates upstream and this takes time to build up.

5.2 Traffic Breakdown at the On-ramp

At these locations, the deterministic disturbance of free flow at the bottleneck is
caused by merging of an on-ramp inflow rate (qon) and a flow rate (q1,in) on the
lane adjacent to the bottleneck.

5.2.1 Spatiotemporal Congested Traffic Patterns

Simulations of the observed features of spatiotemporal congested traffic patterns
that occur in the vicinity of the bottleneck are shown in the Figure 5.1
(a,b,...,f). When traffic breakdown is experienced at the on-ramp, various
congested patterns of synchronized flow are observed upstream and downstream
of the bottleneck, see Figure 5.1 (a,b,...,f).
From these patterns, it is observed that congestion in lane 1 starts immediately
the vehicles from the on-ramp merge on to the highway and propagates
upstream. The congestion is set into lane 1 because the drivers in this lane
sometimes show courtesy by slowing down to give way to those merging from
the on-ramp. Furthermore, numerous unreasonable forced traffic merging from
on-ramp to the highway by aggressive drivers are also in progress
simultaneously. This happens frequently during rush hours, causing traffic to
build up in lane 1 and spreads toward upstream of the on-ramp. Hence
stop-and-go traffic patterns are formed as depicted in Figure 5.1 (a) indicated
by the region of blue spikes (low velocity) intercepted by yellow spikes (high
velocity). This shows that a wide moving jam (J) occurs on the highway
upstream of the on-ramp as indicated by region of low velocity and average
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: (a) to (f), respective velocity and density space - time traffic patterns
of lanes 1, 2 and 3 near the on-ramp.

density (over-deceleration effect). This is because of the fact that, the first
vehicles to slow down are the ones traveling in the lane adjacent to the on-ramp.
After sometimes, the traffic flow in lanes 2 and 3 are also affected by the
aggressive drivers in lane 1 who upon experiencing or anticipating the
constrainedness opt to improve or maintain their driving conditions by changing
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lane to these inner lanes. Figure 5.1 (c to f) show that in lane 2 and 3, there is a
tendency towards synchronization of vehicles’ speeds on the highway at the
bottleneck indicated by region of fluctuating average low traffic velocities and
high densities upstream of the on-ramp. This is due to the traffic disturbance
caused by the on-ramp inflow rate (qon) and more vehicles in lane 1 tend to
change lanes to the inner lanes. This implies that a moving synchronized
pattern (MSP) indicated by region of decreasing velocity and increasing density
in (Figure 5.1, c to f) appears on the highway upstream of the on-ramp. Thus
the two lanes (2 and 3) experience traffic congestion upstream of the bottleneck
where the traffic queue grow at the tail while the vehicles at the head of the
queue accelerate to move out of the jam. However, in the three lanes
downstream of the on-ramp, there is an immediate decrease in both velocity
and density showing that few vehicles are able to manoeuvre through the traffic
merging region. Therefore, free flow is maintained downstream of the highway
after the merging zone in the three lanes where the vehicles have to
over-accelerate and move with their desired speed.

5.2.2 Flow-Density Plane of the Congested Traffic

Figure 5.2 (a) shows the flow-density relationship for lane 1, where there is a
decrease in flow rate within the deterministic disturbance as the vehicle density
increases at the on-ramp (x = 0). Initially, the disturbance occurs only in lane 1
when the vehicles from on-ramp lane 0 merge with the vehicles in that lane. This
disturbance grows and lead to free-synchronized flow (F → S) transition in lane
1 near the on-ramp.
Consequently, the aggressive drivers in lane 1 opt to change lane to the faster
ones immediately they experience the traffic turbulence.
The flow rate in lanes 2 and 3 is sustained at the bottleneck (x = 0), see Figure
5.3 (b) and 5.4 (b) implying that most vehicles on the highway prefer to move
in lanes 2 and 3 than in lane 1 as long as possible to avoid the vehicles merging
onto the highway from on-ramp. At location x = −10 upstream of the bottleneck,
there is a random fluctuation in flow rate with increase of traffic density as shown
in Figure 5.2 (a), 5.3 (a) and 5.4 (a). These show that maximum flow rate is
attained at low density and vice versa. However, this traffic flow situation is
short lived since vehicles are interacting by changing lanes from lane 1 to the
right lanes in the vicinity of the on-ramp. Therefore a transition of free flow to
synchronized flow (F → S) occurs (where the flow rate is high and the average
velocity is low). This (F → S) phase transition last for only a short period before
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a transition from synchronized to free flow (S → F ) occurs. This shows that the
traffic phases transition exchange are continuous near the on-ramp and complete
a traffic hysteresis loop, in which the lower part of the loop represents the vehicle’s
acceleration branch in F → S transition while the upper part of the loop is the
deceleration branch associated with S → F transition.

(a) (b)

Figure 5.2: Traffic flow rate-density relationship in lane 1 at location x is -10
and x is 0

(a) (b)

Figure 5.3: Traffic flow rate-density relationship in lane 2 at location x is -10
and x is 0
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(a) (b)

Figure 5.4: Traffic flow rate-density relationship in lane 3 at location x is -10
and x is 0

5.3 Traffic Breakdown at the Off-ramp

Here the deterministic disturbance is localized upstream of the off-ramp merging
zone where the vehicles exit from the main-road through the off-ramp.

5.3.1 Spatiotemporal Congested Traffic Patterns

Simulations of the observed features of spatiotemporal congested traffic patterns
that occur in the vicinity of the off-ramp are as shown in Figures 5.5 (a,b,...,f).
The various congested traffic patterns of synchronized flow in the upstream and
downstream of the off-ramp are also shown in the Figure 5.5. It is observed that
when the distance to the beginning of the off-ramp merging zone decreases,
more vehicles attempt to make lane-change to lane 1. This show that most
vehicles aiming to exit through the off-ramp try indeed to move in lane 2 and 3
as long as possible before changing to lane 1.
Thus, when vehicles on lane 1 approach the off-ramp, they decelerate and
perform mandatory lane-change if their target is to exit the highway or continue
moving in the same lane otherwise discretionary lane-change to the right lanes
are conducted. That is, a wide moving jam (J) appears on lane 1 upstream of
the off-ramp due to the vehicles changing lanes from lane 2 and 3 to lane 1
aiming to exit the highway. Therefore, traffic congestion is initially set on lane 1
upstream of the beginning of the off-ramp but later this disturbance affect the
traffic free flow in lane 2 and 3 near the bottleneck. This happens frequently
during rush hours and causes heavy traffic to build up on lane 1 upstream of the
off-ramp.

61



(a) (b)

(c) (d)

(e) (f)

Figure 5.5: (a) to (f), respective velocity and density space - time traffic patterns
of the lanes 1, 2 and 3 near the off-ramp.
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Hence a stop-and-go traffic pattern is formed near the off-ramp due to vehicles
braking as they enter the deceleration lane as depicted in Figure 5.5(a).
Due to the traffic disturbance caused by the off-ramp inflow rate (qin) and some
vehicles in lane 1 going through the highway opting to change lane to lanes 2
and 3, there is an increase in vehicles’ density and a decrease in vehicle velocity
in the three lanes upstream of the bottleneck as shown in Figure 5.5 (a and
b). Thus there is a tendency towards synchronization of vehicles speeds on the
highway upstream of the bottleneck indicated by region of fluctuating average low
velocities caused by lane changing behavior, see Figure 5.5 (c and e). This shows
that a moving synchronized pattern (MSP) appears on the highway upstream
of the off-ramp in lane 2 and 3. Therefore lane 1 experiences traffic congestion
upstream of the bottleneck where the traffic queue grow at the tail while the
vehicles at the head of the queue exit through the off-ramp. However, in the
three lanes downstream of the off-ramp, there is an immediate decrease in both
velocity and density showing that few vehicles are able to manoeuvre out of
the traffic merging region. The results show that the capacity of the local road
connecting to the highway through the off-ramp determine the congestion in the
diverging section.

5.3.2 Flow-Density Plane of the Congested Traffic

Figure 5.6, 5.7 and 5.8 show the results of the traffic flow-density relationship
in the three lanes at location x=-10 and x=0 of the ramp. In lane 1, there is a
decrease in flow rate within the deterministic disturbance as the vehicle density
increases at the off-ramp (x = 0). That is, the congestion in lane 1 occurs when
the vehicles in lane 2 and 3 change lanes to lane 1 upstream of the off-ramp
aiming to exit the highway and the congestion in the local road connected by
the off-ramp can also extend to the main-road through lane 1. Consequently, the
aggressive drivers in lane 1 going through the highway may opt to change lanes to
the faster ones immediately they approach the traffic merging region. Moreover,
the flow rate in lanes 2 and 3 is sustained at the bottleneck (x = 0), (see Figure
5.7 (b) and 5.8 (b)) implying that at the bottleneck, most vehicles on the highway
prefer to move in lanes 2 and 3 than in lane 1 as long as possible to avoid the
vehicles diverging from the highway to the off-ramp.
At location (x = −10) of the bottleneck, there is a random fluctuation in flow
rate with increase of traffic density as shown in Figure 5.6 (a), 5.7 (a) and 5.8
(a), thus maximum flow rate is attained at low density and vice versa.
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(a) (b)

Figure 5.6: Traffic flow rate-density relationship in lane 1 at location x is -10
and x is 0

(a) (b)

Figure 5.7: Traffic flow rate-density relationship in lane 2 at location x is -10
and x is 0

(a) (b)

Figure 5.8: Traffic flow rate-density relationship in lane 3 at location x is -10
and x is 0
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This traffic flow situation is short lived since vehicles are interacting by changing
lanes continuously in the vicinity of an off-ramp. Therefore, a phase transition
of free flow to synchronized flow (F → S) occurs (where the flow rate is high and
the average velocity is low). This (F → S) transition last for only a short period
and transition from synchronized to free flow (S → F ) appear.
Thus, the traffic phase transition exchange is continuous at this location and
complete a traffic hysteresis loop, in which the upper part of the loop represents
the vehicle deceleration branch in (F → S) transition while the lower part of the
loop is the acceleration branch associated with (S → F ).

5.4 Traffic Breakdown at the Weaving Section

This type of weaving is whereby the vehicles weave from on-ramp to the highway
and from freeway to off-ramp using a single lane. Therefore the deterministic
disturbance is localized within the given auxiliary lane segment.

5.4.1 Spatiotemporal Congested Traffic Patterns

Figure 5.9 (a to f) show the features of the simulated traffic congestion which
propagates upstream of the weaving section of the freeway. Once the highway
traffic free flow experience traffic breakdown, various synchronized patterns
(SP) are observed within and upstream of the weaving section as depicted in
figure 5.9. These patterns are classified as localized (LSP), moving (MSP) and
widening (WSP). Figure 5.9 (c to f) show moving synchronized traffic flow
patterns (MSP) observed in lanes 2 and 3 upstream of the weaving section.
These MSPs grow because of the velocity decrease and density increase within
them as they move upstream of the weaving area.
The patterns show that lane changes at these sections occur mainly between the
auxiliary lane and lane 1 of the highway.
It is observed that when the vehicles moving in lane 1 targeting to exit through
the off-ramp approach the weaving area, they decelerate and weave into the
auxiliary lane. On the other hand vehicles from the on-ramp aiming to merge
into the highway join the auxiliary lane and perform mandatory lane-changes by
weaving. Figure 5.9 (a and b) show a wide moving jam (J) appearing in lane 1
where the velocity fluctuate from minimum to maximum value while the traffic
is operating on average density. These changes in both velocity and density
indicate the braking processes within the vicinity of the weaving section.
Therefore lane 1 experiences most of the traffic congestion upstream of the
weaving region compared to the other two lanes especially during rush hours.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: (a) to (f), respective velocity and density space - time traffic patterns
of the lanes (1, 2, 3) within and near the weaving section.

This is due to aggressive drivers aiming to exit highway through the weaving
section opting to stay in the inner lanes as long as possible before making forced
lane-change to lane 1. This shows that most of the expressway vehicles prefer
to move in lane 2 and 3 to avoid the localized disturbance near the weaving
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section. However, there is free flow downstream of the weaving region since the
jam propagate upstream and the traffic disturbance is within the bottleneck.

5.4.2 Flow-Density Plane of the Congested Traffic

Figure 5.10, 5.11 and 5.12 show the traffic flow-density planes of the three lanes
where the flow rate decreases with an increase of density within the deterministic
disturbance. Since most of the lane-changes are performed at the weaving section
then lane 1 experiences wide moving jam (J) at x = 0, see Figure 5.10 (b). As
a result of these lane-changes, the increase in disturbance reaches a limit upon
which the traffic velocity decreases as the density increases abruptly and lead to
free-synchronized flow (F → S) transition upstream of the bottleneck. Therefore,
a moving synchronized pattern (MSP) emerges in lanes 2 and 3 as shown in
Figure 5.11 (b) and 5.12(b). This (F → S) transition last for only a short period
since vehicles are changing lanes continuously in the vicinity of the weaving area
and a transition from synchronized to free flow (S → F ) appears. Thus, the
traffic phase transition exchange is continuous at weaving sections and complete
a traffic hysteresis loop where the upper part of the loop represents the vehicle
deceleration branch in (F → S) transition while the lower part of the loop is the
acceleration branch associated with (S → F ).
At location (x = −10) of the bottleneck, there is a random fluctuation in flow
rate with increase of traffic density at location (x = −10) of the bottleneck as
shown in Figure 5.10 (a), 5.11 (a) and 5.12 (a). At these locations wide moving
jam (J) propagate through the free flow and maintain the mean velocity of the
downstream front. Furthermore when traffic is saturated, vehicles change lanes
at the start of the weaving section independently of their direction.
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(a) (b)

Figure 5.10: Traffic flow rate-density relationship in lane 1 at location x is -10
and x is 0

(a) (b)

Figure 5.11: Traffic flow rate-density relationship in lane 2 at location x is -10
and x is 0

(a) (b)

Figure 5.12: Traffic flow rate-density relationship in lane 3 at location x is -10
and x is 0
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5.5 Discussion of the results

The results show that lane-change manoeuvre is frequently performed near the
ramps and weaving areas. This indicate that traffic congestion is mostly
generated at ramps and weaving sections where it is propagated to the next
section of the highway upstream. High traffic density accompanied by low
velocity indicate phase transition from free flow to synchronized flow and vice
versa.
At the on-ramps, the lane-change process start at a relatively short distance
upstream of the ramp where there is slight movement of traffic from the left
lane towards the right lane. However, more vehicles are able to enter the
merging section when the merge rate increases and interact with the vehicles on
the highway. That is, more traffic breakdown is generated in the traffic flow due
to unreasonable driving behaviors such as forced merging and lane changing
from on-ramp. Thus there is frequent traffic congestion in the merging section
of the highway.
Elsewhere at off-ramps, the lane-change process start at a far distance upstream
of the ramp where there is slight movement of traffic from the right to the left
lane. The capacity of the local road connecting the highway determine the
traffic capacity of the off-ramp. Therefore traffic congestion occurring in the
local road can quickly spill to the highway main lanes and adversely affect
traffic flow in the designated express lanes.
It is noted that changes in vehicles speed is higher around off-ramps than
around on-ramps due to difference in the type of lane-change manouevres. That
is, when vehicles are entering the highway they require acceleration but when
exiting, they decelerate to a safe speed before turning to the off-ramp after the
deceleration lane. Therefore most traffic congestion originates at merge, diverge
and weaving areas where it propagates to the next section upstream. The
results produced by the model are consistent with the empirical data and shows
good agreement with the real life situation near the highway bottlenecks. Thus
lane-change manoeuvre is a macroscopic indicator for traffic congestion around
the bottlenecks.
The next chapter gives conclusions and recommendations for further studies.
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

A multi-lane macroscopic traffic flow model of Aw-Rascle type within the
framework of the 3-phase traffic flow theory of Kerner has been developed. This
was achieved by applying the method of moments on the kinetic traffic flow
model equations to obtain the corresponding macroscopic traffic flow model
equations.
The hyperbolic nature of the derived macroscopic model equations has been
discussed. A relaxation term was incorporated into the macroscopic equations
to constitute the three phase traffic theory. The specific lanes model equations
of an on-ramp, an off-ramp and a weaving section are obtained for a three-lanes
highway.
The numerical method (finite volume method) for solving the conservative form
of the discretized macroscopic model equations has been presented while the
Riemann problem and its solution was constructed to solve the source terms
using Euler’s method.
Simulations of the traffic congestions near the on-ramp, off-ramp and the
weaving section of a three-lanes highway were done through coding of the
discretized form of conservative equations in MATLAB software package. The
computer coded algorithm was run under the given boundary conditions and
the results were presented in form of graphs and space-time plots.
The simulations show that the initial traffic flow disturbance occurs first on the
lane adjacent to the bottleneck due to the merging of vehicles from on-ramp and
vehicles changing lanes from highway onto the off-ramp merging zone. However
the disturbance can grow and affect the traffic flow in the inner lanes leading to
a transition from free flow (F ) to synchronized (S), in particular when the lane
change leads to deceleration of the following vehicles in the target lanes.
With these simulations near the bottlenecks, the derived macroscopic traffic
flow model is able to reproduce the spatiotemporal features of real traffic flow
patterns observed at the bottlenecks.
Therefore the model can be used to:
(i) improve the optimal design of highways geometry and safety of roads by
identifying the effective location of the bottlenecks to evaluate the impact of
new road infrastructure.
(ii) solve road congestion problems by either erecting traffic control lights or
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develop an advanced multi-agent control strategies for training of the traffic
marshals and policemen.
(iii) evaluate and recommend the use of a new part of road infrastructure.
(iv) recommend the minimum length of auxiliary lanes for ramps and weaving
sections.
All these will improve the quality of travel by providing prior information about
traffic congestion to road users and develop the dynamic management strategies
in highways within the real traffic framework.

6.2 Recommendations for Further Research

In this work, a macroscopic traffic flow model has been developed with traffic
simulations done in the vicinity of an on-ramp, off-ramp and a weaving section
as the bottlenecks.
It is recommended that:

(i) further investigation on traffic breakdown and congestion due to weaving
section (where the merge and a diverge are in close proximity) with
consideration of various length of the auxiliary lanes to be carried out and a
comparison of these effects with those of the study be done.
(ii) simulation of traffic congestion in weaving sections with more than one lane
where the on-ramps and off-ramps are on opposite sides of the highway, to be
carried out.
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MATLAB Codes

function laneChanges_Ndungu()
clear all;clc;
tend=500.0;
plotting=1; plotFD=1; plotFD1=0; plotFD2=5; plotFD3=-10;

pausing=0;
storeFD1=1;
lanes1=1; lanes2=2; lanes3=3; Trelax=5; rhofree=0.3; rhojam=0.9;
rhosyn=0.5; Usyn=0.28; boundaryL=0;%0=Neumann,1=Dirichlet boundaryR=0;
boundaryRflux=0.01; boundaryLflux=0.25; contraction_x=0; contraction_flux=inf; contraction_x_smooth=1.0; lanefactor=1.5; clf;
solver=2;Ao=.75;Vmax=0;
AwRascle.name=’AwRascle’; AwRascle.FundamentalDiagram=0;
AwRascle.plotmarker=’k’; AwRascle.pausing=pausing;
AwRascle.Solver=solver; % AwRascle.Pressure=pressure;
AwRascle.nu=2; AwRascle.C=.45;% for Aggressive model
AwRascle.C1=.45;AwRascle.Co=0.45;AwRascle.Vref=.45;
AwRascle.Ao=Ao;AwRascle.Vmax=Vmax; AwRascle.h=1;
AwRascle.Lanes1=lanes1; AwRascle.Lanes2=lanes2;
AwRascle.Plot=plotting; AwRascle.plotvelocity=1;
AwRascle.boundaryR=boundaryR;
AwRascle.boundaryL=boundaryL;
AwRascle.boundaryRflux=boundaryRflux;
AwRascle.boundaryLflux=boundaryLflux;
AwRascle.contraction_flux=contraction_flux;
AwRascle.contraction_x=contraction_x;
AwRascle.contraction_x_smooth=contraction_x_smooth;
AwRascle.lanefactor=lanefactor;
AwRascle.plotFD=plotFD;
% KIN={};
KIN=AwRascle;
KIN.name=’AwRascle model’; KIN.FundamentalDiagram=1;
KIN.plotmarker=’m’; % [xKIN,t,uKIN,istoreUKIN,FD1KIN,UsurfKIN,tKIN]=Solve_Lanes(KIN,tend);
[xxKIN,t,xuKIN,yuKIN,zuKIN,istoreUKIN,xFD1KIN,xUsurfKIN,yFD1KIN,yUsurfKIN,zFD1KIN,zUsurfKIN,tKIN]= Solve_Lanes(KIN,tend);
xpos=KIN.plotFD3;

[dummy,ipos]=min(abs(xxKIN-xpos));
xrpos=xuKIN(ipos,1);
xvel=xuKIN(:,2)./xuKIN(:,1)-pressNL(KIN,xuKIN(:,1));
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xvpos=xvel(ipos);
[r V1 Rline Jline]=plotFundamentalDiagram(KIN,xpos,xrpos,xvpos);
%

save(’KIN.mat’,’xKIN’,’tKIN’,’uKIN’,’FD1KIN’,’UsurfKIN’,’tend’,’KIN’);
if(plotting==1)
print -depsc Kinetic

end
plotFD=0;
KIN.plotFD=plotFD;
clf;
% plotTraffic(KIN,xKIN,uKIN,tend,1,’m’);
%

% legend(KIN.name)
% legend(’location’,’SouthWest’)
print -depsc Compare
instant=min(istoreUKIN)
c1=2;%floor(instant)
c2=2;%floor(instant2)
figure(1)

B=1.5;
subplot(3,1,1)
RE= plot(xxKIN,xUsurfKIN(instant-c1,:,3)’,’r’);set(RE, ’LineWidth’, B);

title(’Velocity’);%%xlabel(’x’)
ylabel(’u_1’);axis([-30 10 0.0 0.7])
subplot(3,1,2)
RE= plot(xxKIN,yUsurfKIN(instant-c1,:,3)’,’r’);set(RE, ’LineWidth’, B);

%title(’Velocity’);%%xlabel(’x’)
ylabel(’u_2’);axis([-30 10 0.0 0.7])
subplot(3,1,3)
RE= plot(xxKIN,zUsurfKIN(instant-c1,:,3)’,’r’);set(RE, ’LineWidth’, B);
%title(’Velocity’);%%xlabel(’x’)
ylabel(’u_3’);axis([-30 10 0.0 0.7])
figure(2)

subplot(3,1,1)
RE= plot(xxKIN,xUsurfKIN(instant-c1,:,1)’,’r’);set(RE, ’LineWidth’, B);
title(’Density’);%%xlabel(’x’);
ylabel(’\rho_1’);axis([-30 10 0.0 0.7])
subplot(3,1,2)
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RE= plot(xxKIN,yUsurfKIN(instant-c1,:,1)’,’r’);set(RE, ’LineWidth’, B);
%title(’Density’);xlabel(’x’);
ylabel(’\rho_2’);axis([-30 10 0.0 0.7])
subplot(3,1,3)
RE= plot(xxKIN,zUsurfKIN(instant-c1,:,1)’,’r’);set(RE, ’LineWidth’, B); %title(’Density’);

xlabel(’x’);ylabel(’\rho_3’);axis([-30 10 0.0 0.7])
figure(3)
%%subplot(2,2,1)
%surf(tKIN,xxKIN,xUsurfKIN(:,:,3)’)
%title(’lane1 velocity’)
surf(tKIN,xxKIN,xUsurfKIN(:,:,1)’)
title(’lane1 density’)
xlabel(’time(t)’)
ylabel(’distance(x)’)
axis([0 tend -30 10])
colorbar;
colorbar(’location’,’EastOutside’)
caxis([0.23 0.58]);
view(2)
shading flat
figure(4)
%%subplot(2,2,2)
%surf(tKIN,xxKIN,yUsurfKIN(:,:,3)’)
%title(’lane2 velocity’)
surf(tKIN,xxKIN,yUsurfKIN(:,:,1)’)
title(’lane2 density’)
xlabel(’time(t)’)
ylabel(’distance(x)’)
axis([0 tend -30 10])
colorbar;
colorbar(’location’,’EastOutside’)
caxis([0.23 0.58]);
view(2)
shading flat
figure(5)
%%subplot(2,2,3)
%surf(tKIN,xxKIN,zUsurfKIN(:,:,3)’)
%title(’lane3 velocity’)
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surf(tKIN,xxKIN,zUsurfKIN(:,:,1)’)
title(’lane3 density’)
xlabel(’time(t)’)
ylabel(’distance(x)’)
axis([0 tend -30 10])
colorbar;
colorbar(’location’,’EastOutside’)
caxis([0.23 0.58]);
view(2)
shading flat
figure(6)
%%subplot(2,2,1)
lf=1;plot(lf*r,lf*(r.*V1),’-b’)
hold on;
plot(lf*r,lf*(r.*Rline),’-.m’,lf*r,lf*(r.*Jline),’--r’); [dummy,iFD1]=min(abs(xxKIN-KIN.plotFD1));%=xpos RE=plot(xUsurfKIN(:,iFD1,1),xUsurfKIN(:,iFD1,1).*xUsurfKIN(:,iFD1,3),’k’);
set(RE, ’LineWidth’, B);
legend(’Q_1^e(rho)’,’rho*R(rho)’,’Q_2^e(rho)’,’AwRascle’);legend(’location’,’NorthEast’) hold off;title(’lane1 phase transitions at x=0’); xlabel(’density’);ylabel(’flow rate’);axis([0 0.7 0 0.2])
figure(7)
%%subplot(2,2,3)
lf=1;plot(lf*r,lf*(r.*V1),’-b’)
hold on;
plot(lf*r,lf*(r.*Rline),’-.m’,lf*r,lf*(r.*Jline),’--r’);
[dummy,iFD1]=min(abs(xxKIN-KIN.plotFD1));%=xpos
aqqDensity=(xUsurfKIN(:,iFD1,1)+yUsurfKIN(:,iFD1,1)+zUsurfKIN(:,iFD1,1))/3;
aqqFlow=(xUsurfKIN(:,iFD1,1).*xUsurfKIN(:,iFD1,3)+yUsurfKIN(:,iFD1,1).*yUsurfKIN(:,iFD1,3)...

+zUsurfKIN(:,iFD1,1).*zUsurfKIN(:,iFD1,3))/3;
RE=plot(aqqDensity,aqqFlow,’k’);
set(RE, ’LineWidth’, B);
legend(’Q_1^e(rho)’,’rho*R(rho)’,’Q_2^e(rho)’,’AwRascle’);legend(’location’,’NorthEast’)
hold off;title(’lane-averaged phase transitions at x=0’)
xlabel(’density’);ylabel(’flow rate’);axis([0 0.7 0 0.2])
end

function
[xx,t,xu,yu,zu,istoreU,xFD1stored,xUsurf,yFD1stored,yUsurf,zFD1stored,zUsurf,tvector]=Solve_Lanes(Pro blem,tend)

display(Problem.name)
nbc=2;inx=250;nx=inx+2*nbc;nu=2;

xlow=-30.0;xup=10.0;dx=(xup-xlow)/(inx-1);
xx=xlow-nbc*dx:dx:xup+nbc*dx;

79



%
Inital Conditions Problem.Lanes=ones(nx,1)*Problem.Lanes1; xu=zeros(nx,nu);yu=zeros(nx,nu);zu=zeros(nx,nu); %RP in the middle of the tube

icont=find(xx>Problem.contraction_x); xr=0.3027*ones(nx,1);xr(icont)=0.27*ones(length(icont),1); yr=0.3027*ones(nx,1);%yr(icont)=0.2*ones(length(icont),1); zr=0.3027*ones(nx,1);%zr(icont)=0.2*ones(length(icont),1); V0=0.85;c=2.9;V1func=@(rho)V0*tanh((.45./rho-0.02)/(c*V0)) xv=V1func(xr);xv(icont)=V1func(xr(icont));
yv=V1func(yr);%yv(icont)=V1func(yr(icont));
zv=V1func(zr);%zv(icont)=V1func(zr(icont));
type=Problem.FundamentalDiagram;
if(type==-1)
xy=C*ones(size(xr));yy=C*ones(size(yr));zy=C*ones(size(zr));
elseif(type==1)%AW-RASCLE MODEL
xy=xr.*xv+xr.*press(Problem,xr,1:nx);yy=yr.*yv+yr.*press(Problem,yr,1:nx);zy=zr.*zv+zr.*press(Problem ,zr,1:nx);

end
xu(:,1)=xr;xu(:,2)=xy;yu(:,1)=yr;yu(:,2)=yy;zu(:,1)=zr;zu(:,2)=zy;
if(Problem.storeFD1==1)
[dummy,iFD1]=min(abs(xx-Problem.plotFD3));
istoreFD1=1;
xFD1stored(istoreFD1,1)=xu(iFD1,1);yFD1stored(istoreFD1,1)=yu(iFD1,1);zFD1stored(istoreFD1,1)=zu(iF D1,1);
xFD1stored(istoreFD1,2)=xu(iFD1,2);yFD1stored(istoreFD1,2)=yu(iFD1,2);zFD1stored(istoreFD1,2)=zu(iF D1,2);
istoreFD1=istoreFD1+1;
istoreU=1;
xUsurf(istoreU,1:nx,1)=xu(1:nx,1);yUsurf(istoreU,1:nx,1)=yu(1:nx,1);zUsurf(istoreU,1:nx,1)=zu(1:nx,1); if(type==-1)
xUsurf(istoreU,1:nx,3)=0*(xu(1:nx,2)./xu(1:nx,1)-press(Problem,xu(1:nx,1),1:nx)); yUsurf(istoreU,1:nx,3)=0*(yu(1:nx,2)./yu(1:nx,1)-press(Problem,yu(1:nx,1),1:nx)); zUsurf(istoreU,1:nx,3)=0*(zu(1:nx,2)./zu(1:nx,1)-press(Problem,zu(1:nx,1),1:nx));
elseif(type==1)%AW-RASCLE MODEL
xUsurf(istoreU,1:nx,3)=(xu(1:nx,2)./xu(1:nx,1))-press(Problem,xu(1:nx,1),1:nx);
yUsurf(istoreU,1:nx,3)=(yu(1:nx,2)./yu(1:nx,1))-press(Problem,yu(1:nx,1),1:nx);
zUsurf(istoreU,1:nx,3)=(zu(1:nx,2)./zu(1:nx,1))-press(Problem,zu(1:nx,1),1:nx);
end
istoreU=istoreU+1;
end
t=0.0;itvector=1;tvector(itvector)=t;itvector=itvector+1;
iteration=0;maxiteration=10000;dt=1.e-8;cfl=0.499;desiredcfl=0.49;
while ((t<tend)&&(iteration<maxiteration))
iteration=iteration+1;
dt=min(dt,tend-t);
xustore=xu;yustore=yu;zustore=zu;
%compute conservation law %LF
[xu,xspeed,yu,yspeed,zu,zspeed]=Lanes_LF_Step(Problem,nx,nbc,nu,dt,dx,xu,yu,zu); smax=max(max(xspeed,yspeed),zspeed);
%update boundary
[xu,yu,zu]=Lanes_boundary(Problem,nx,nbc,xu,yu,zu);
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%update source terms
[xu,xsourcedt,yu,ysourcedt,zu,zsourcedt]=source_step(Problem,xx,dt,xu,yu,zu,nx);
msourcedt=max(max(xsourcedt,ysourcedt),zsourcedt);
%timestep control
if(smax<=0)%set dt=0.1 if no speed available
smax=dx/0.1*desiredcfl;
end
if(((dt<(dx/smax*cfl)))&&(dt<msourcedt))%accepted timestep t=t+dt;tvector(itvector)=t;itvector=itvector+1; if(Problem.storeFD1==1)
xFD1stored(istoreFD1,1)=xu(iFD1,1);yFD1stored(istoreFD1,1)=yu(iFD1,1);zFD1stored(istoreFD1,1)=zu(iF D1,1);
xFD1stored(istoreFD1,2)=xu(iFD1,2);yFD1stored(istoreFD1,2)=yu(iFD1,2);zFD1stored(istoreFD1,2)=zu(iF D1,2);
istoreFD1=istoreFD1+1;
xUsurf(istoreU,1:nx,1)=xu(1:nx,1);yUsurf(istoreU,1:nx,1)=yu(1:nx,1);zUsurf(istoreU,1:nx,1)=zu(1:nx,1);
if(type==-1)

xUsurf(istoreU,1:nx,3)=0*(xu(1:nx,2)./xu(1:nx,1)-press(Problem,xu(1:nx,1),1:nx));
yUsurf(istoreU,1:nx,3)=0*(yu(1:nx,2)./yu(1:nx,1)-press(Problem,yu(1:nx,1),1:nx));
zUsurf(istoreU,1:nx,3)=0*(zu(1:nx,2)./zu(1:nx,1)-press(Problem,zu(1:nx,1),1:nx));
elseif(type==1)%AW-RASCLE MODEL
xUsurf(istoreU,1:nx,3)=(xu(1:nx,2)./xu(1:nx,1))-press(Problem,xu(1:nx,1),1:nx);
yUsurf(istoreU,1:nx,3)=(yu(1:nx,2)./yu(1:nx,1))-press(Problem,yu(1:nx,1),1:nx);
zUsurf(istoreU,1:nx,3)=(zu(1:nx,2)./zu(1:nx,1))-press(Problem,zu(1:nx,1),1:nx);
end
istoreU=istoreU+1;
end
else%restore
xu=xustore;yu=yustore;zu=zustore;

end
%set new timestep
dt=dx/smax*desiredcfl;
dt=min(dt,msourcedt);
if(Problem.Plot==1)
plotTraffic(Problem,xx,xu,yu,zu,t,0,Problem.plotmarker);
drawnow;
if(Problem.pausing==1)
pause();
end
end
end

plotTraffic(Problem,xx,xu,yu,zu,t,1,Problem.plotmarker);
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if(iteration>=maxiteration)
disp(’out of iterations’)
pause;
end
end
function
[xunew,xspeed,yunew,yspeed,zunew,zspeed]=Lanes_LF_Step(Problem,nx,nbc,nu,dt,dx,xu,yu,zu) %Glimm
%generate the random numbers

nrand=100;ran=randi([0 1],nx-1,nrand);k=1:nrand;an=ran*2.^(-k)’; type=Problem.FundamentalDiagram; if(type==-1)
xv=0*(xu(1:nx-1,2)./xu(1:nx-1,1)-press(Problem,xu(1:nx-1,1),1:nx-1));
yv=0*(yu(1:nx-1,2)./yu(1:nx-1,1)-press(Problem,yu(1:nx-1,1),1:nx-1));
zv=0*(zu(1:nx-1,2)./zu(1:nx-1,1)-press(Problem,zu(1:nx-1,1),1:nx-1));
elseif(type==1)%AW-RASCLE MODEL
xv=(xu(1:nx-1,2)./xu(1:nx-1,1))-press(Problem,xu(1:nx-1,1),1:nx-1);
yv=(yu(1:nx-1,2)./yu(1:nx-1,1))-press(Problem,yu(1:nx-1,1),1:nx-1);
zv=(zu(1:nx-1,2)./zu(1:nx-1,1))-press(Problem,zu(1:nx-1,1),1:nx-1);

end
xian=find(an<dt/dx*xv);yian=find(an<dt/dx*yv);zian=find(an<dt/dx*zv);
%

solution with only the 2 wave u12 xustar=zeros(size(xu));yustar=zeros(size(yu));zustar=zeros(size(zu));
[xustar(2:nx,:),yustar(2:nx,:),zustar(2:nx,:)]=starstate(Problem,xu(1:nx-1,:),xu(2:nx,:),...
yu(1:nx-1,:),yu(2:nx,:),zu(1:nx-1,:),zu(2:nx,:),1:nx-1,2:nx); xu12=zeros(size(xu));xu12(2:nx,:)=xu(2:nx,:);xu12(xian,:)=xustar(xian,:); yu12=zeros(size(yu));yu12(2:nx,:)=yu(2:nx,:);yu12(yian,:)=yustar(yian,:); zu12=zeros(size(zu));zu12(2:nx,:)=zu(2:nx,:);zu12(zian,:)=zustar(zian,:);
% adding the 1 wave

% solver=solverchoice(v,nx);
if(Problem.Solver==1)
xfluxm=zeros(size(xu));xfluxp=zeros(size(xu));yfluxm=zeros(size(yu));yfluxp=zeros(size(yu));zfluxm=zeros( size(zu));zfluxp=zeros(size(zu));
xfluxp2=zeros(size(xu));xfluxp1=zeros(size(xu));yfluxp2=zeros(size(yu));yfluxp1=zeros(size(yu));zfluxp2=z
eros(size(zu));zfluxp1=zeros(size(zu));
[xfluxm(2:nx-1,:),xs1,yfluxm(2:nx-1,:),ys1,zfluxm(2:nx-1,:),zs1]=Godunov_flux(Problem,xu12(2:nx-
1,:),xu(3:nx,:),...
yu12(2:nx-1,:),yu(3:nx,:),zu12(2:nx-1,:),zu(3:nx,:),2:nx-1,3:nx);
[xfluxp1(2:nx-1,:),xs21,yfluxp1(2:nx-1,:),ys21,zfluxp1(2:nx-1,:),zs21]=Godunov_flux(Problem,xu(1:nx-2,:),xu12(2:nx-1,:),...
yu(1:nx-2,:),yu12(2:nx-1,:),zu(1:nx-2,:),zu12(2:nx-1,:),1:nx-2,2:nx-1);
[xfluxp2(2:nx-1,:),xs22,yfluxp2(2:nx-1,:),ys22,zfluxp2(2:nx-1,:),zs22]=AwRascle_flux(Problem,xu12(2:nx-1,:),...
yu12(2:nx-1,:),zu12(2:nx-1,:),2:nx-1);
xs2=max(xs21,xs22);ys2=max(ys21,ys22);zs2=max(zs21,zs22);
[xieq,yieq,zieq]=uequal(xustar(2:nx-1,:),xu12(2:nx-1,:),yustar(2:nx-1,:),yu12(2:nx-1,:),zustar(2:nx-1,:),zu12(2:nx-1,:),1.e-12);
xfluxp(2:nx-1,:)=xfluxp1(2:nx-1,:);xfluxp(xieq,:)=xfluxp2(xieq,:);xfluxp(1:nx-2,:)=xfluxp(2:nx-1,:); yfluxp(2:nx-1,:)=yfluxp1(2:nx-1,:);yfluxp(yieq,:)=yfluxp2(yieq,:);yfluxp(1:nx-2,:)=yfluxp(2:nx-1,:); zfluxp(2:nx-1,:)=zfluxp1(2:nx-1,:);zfluxp(zieq,:)=zfluxp2(zieq,:);zfluxp(1:nx-2,:)=zfluxp(2:nx-1,:);
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xfluxm(2:nx-1,:)=xfluxm(2:nx-1,:)+dx/dt*(xu(2:nx-1,:)-xu12(2:nx-1,:));yfluxm(2:nx-1,:)=yfluxm(2:nx-1,:)+dx/dt*(yu(2:nx-1,:)-yu12(2:nx-1,:));
zfluxm(2:nx-1,:)=zfluxm(2:nx-1,:)+dx/dt*(zu(2:nx-1,:)-zu12(2:nx-1,:)); % cfl<1/2
xspeed=2*max(max(max(abs(xs1))),max(max(abs(xs2))));yspeed=2*max(max(max(abs(ys1))),max(max(a

bs(ys2))));
zspeed=2*max(max(max(abs(zs1))),max(max(abs(zs2))));
xunew=zeros(size(xu));yunew=zeros(size(yu));zunew=zeros(size(zu));
xin=nbc+1:nx-nbc;one=ones(size(xin));
xunew(xin,:)=xu(xin,:)-dt/dx*(xfluxm(xin,:)-xfluxp(xin-one,:));yunew(xin,:)=yu(xin,:)-
dt/dx*(yfluxm(xin,:)-yfluxp(xin-one,:)); zunew(xin,:)=zu(xin,:)-dt/dx*(zfluxm(xin,:)-zfluxp(xin-one,:));
else
disp(’No Solver specified’);
pause;
end
end
function [xunew,yunew,zunew]=Lanes_boundary(Problem,nx,nbc,xu,yu,zu)
xunew=xu;yunew=yu;zunew=zu;
%left
bcL=Problem.boundaryL;
if(bcL==1)
%Dirichlet
xubc=xu(nbc+1,:);yubc=yu(nbc+1,:);zubc=zu(nbc+1,:);
xflux=Problem.boundaryLflux;yflux=Problem.boundaryLflux;zflux=Problem.boundaryLflux;xubc(1,2)=xflux+xubc(1,1)*press(Problem,xubc(1,1),1);%VERIFY THIS!!!!!!!!!!
yubc(1,2)=yflux+yubc(1,1)*press(Problem,yubc(1,1),1);zubc(1,2)=zflux+zubc(1,1)*press(Problem,zubc(1, 1),1);
for ibc=1:nbc
xunew(ibc,:)=xubc;yunew(ibc,:)=yubc;zunew(ibc,:)=zubc;
end
else
%zero Neumann at the left end
xubc=xu(nbc+1,:);yubc=yu(nbc+1,:);zubc=zu(nbc+1,:);
for ibc=1:nbc
xunew(ibc,:)=xubc;yunew(ibc,:)=yubc;zunew(ibc,:)=zubc;
end
end
%right

bcR=Problem.boundaryR;
%zero Neumann at the right end
if(bcR==1)
%Dirichlet
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xubc=xu(nx-nbc,:);yubc=yu(nx-nbc,:);zubc=zu(nx-nbc,:);
xflux=Problem.boundaryRflux;yflux=Problem.boundaryRflux;zflux=Problem.boundaryRflux;
xubc(1,2)=xflux+xubc(1,1)*press(Problem,xubc(1,1),1);%VERIFY THIS!!!!!!!!!!
yubc(1,2)=yflux+yubc(1,1)*press(Problem,yubc(1,1),1);zubc(1,2)=zflux+zubc(1,1)*press(Problem,zubc(1, 1),1);
for ibc=nx-nbc+1:nx
xunew(ibc,:)=xubc;yunew(ibc,:)=yubc;zunew(ibc,:)=zubc;
end
else
xubc=xu(nx-nbc,:);yubc=yu(nx-nbc,:);zubc=zu(nx-nbc,:);
for ibc=nx-nbc+1:nx
xunew(ibc,:)=xubc;yunew(ibc,:)=yubc;zunew(ibc,:)=zubc; end
end
end
function plotTraffic(Problem,xx,xu,yu,zu,t,holdon,color)%visualization of traffic while computing is ongoing
type=Problem.FundamentalDiagram;
if(Problem.plotFD==1)
ncol=3;
else
ncol=2;
end
nline=3;icol=1;iline=1;subplot(nline,ncol,[(iline-1)*ncol+icol (iline-1)*ncol+icol+1]);icol=icol+2;
if(holdon==1)
hold on;
end
%

plot(xx,xu(:,1),color);ylabel(’rho’);ax=axis;axis([ax(1) ax(2) 0 max(xu(:,1))+0.1]) plot(xx,yu(:,1),color);ylabel(’rho’);ax=axis;axis([ax(1) ax(2) 0 max(yu(:,1))+0.1]) if(holdon==1)
hold off; end if(Problem.plotFD==1)
subplot(nline,ncol,(iline-1)*ncol+icol);xpos=Problem.plotFD1; [dummy,ipos]=min(abs(xx-xpos));xrpos=xu(ipos,1);[dummy,ipos]=min(abs(xx-xpos));yrpos=yu(ipos,1);
if(type==-1)
xvel=0*(xu(:,2)./xu(:,1)-pressNL(Problem,xu(:,1)));yvel=0*(yu(:,2)./yu(:,1)-pressNL(Problem,yu(:,1)));
elseif(type==1)%AW-RASCLE MODEL
xvel=(xu(:,2)./xu(:,1))-pressNL(Problem,xu(:,1));yvel=(yu(:,2)./yu(:,1))-pressNL(Problem,yu(:,1));
end
xvpos=xvel(ipos);plotFundamentalDiagram(Problem,xpos,xrpos,xvpos);
yvpos=yvel(ipos);plotFundamentalDiagram(Problem,xpos,yrpos,yvpos); end
iline=iline+1;icol=1;subplot(nline,ncol,[(iline-1)*ncol+icol (iline-1)*ncol+icol+1]);icol=icol+2; if(holdon==1)
hold on;
end
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if(Problem.plotvelocity==1)
if(type==-1)
xvel=0*(xu(:,2)./xu(:,1)-pressNL(Problem,xu(:,1)));yvel=0*(yu(:,2)./yu(:,1)-pressNL(Problem,yu(:,1)));
elseif(type==1)%AW-RASCLE MODEL
xvel=(xu(:,2)./xu(:,1))-pressNL(Problem,xu(:,1));yvel=(yu(:,2)./yu(:,1))-pressNL(Problem,yu(:,1));
end
%plot(xx,xvel,color);ylabel(’v’);ax=axis;axis([ax(1) ax(2) 0 max(xvel)+0.1]); plot(xx,yvel,color);ylabel(’v’);ax=axis;axis([ax(1) ax(2) 0 max(yvel)+0.1]); else
%plot(xx,xu(:,2),color);ylabel(’y’);
plot(xx,yu(:,2),color);ylabel(’y’);
end
title([’time= ’ num2str(t)]);
if(holdon==1)
hold off;
end
if(Problem.plotFD==1)
subplot(nline,ncol,(iline-1)*ncol+icol);xpos=Problem.plotFD2; [dummy,ipos]=min(abs(xx-xpos));xrpos=xu(ipos,1); [dummy,ipos]=min(abs(xx-
xpos));yrpos=yu(ipos,1);
if(type==-1)
xvel=0*(xu(:,2)./xu(:,1)-pressNL(Problem,xu(:,1)));yvel=0*(yu(:,2)./yu(:,1)-pressNL(Problem,yu(:,1))); elseif(type==1)%AW-RASCLE MODEL
xvel=(xu(:,2)./xu(:,1))-pressNL(Problem,xu(:,1));yvel=(yu(:,2)./yu(:,1))-pressNL(Problem,yu(:,1)); end
%xvpos=xvel(ipos);plotFundamentalDiagram(Problem,xpos,xrpos,xvpos);
yvpos=yvel(ipos);plotFundamentalDiagram(Problem,xpos,yrpos,yvpos); end
if(nline>2)
iline=iline+1;icol=1;subplot(nline,ncol,[(iline-1)*ncol+icol (iline-1)*ncol+icol+1]);icol=icol+2;
if(holdon==1)
hold on;
end
if(Problem.plotvelocity==1)
if(type==-1)
xvel=0*(xu(:,2)./xu(:,1)-pressNL(Problem,xu(:,1)));yvel=0*(yu(:,2)./yu(:,1)-pressNL(Problem,yu(:,1))); elseif(type==1)%AW-RASCLE MODEL
xvel=(xu(:,2)./xu(:,1))-pressNL(Problem,xu(:,1));yvel=(yu(:,2)./yu(:,1))-pressNL(Problem,yu(:,1)); end
%plot(xx,xvel.*xu(:,1),color);ylabel(’Q’);ax=axis;axis([ax(1) ax(2) 0 max(xvel.*xu(:,1))+0.1]); plot(xx,yvel.*yu(:,1),color);ylabel(’Q’);ax=axis;axis([ax(1) ax(2) 0 max(yvel.*yu(:,1))+0.1]);
end
if(holdon==1)
hold off;
end
if(Problem.plotFD==1)
subplot(nline,ncol,(iline-1)*ncol+icol);xpos=Problem.plotFD3; [dummy,ipos]=min(abs(xx-xpos));xrpos=xu(ipos,1);[dummy,ipos]=min(abs(xx-xpos));yrpos=yu(ipos,1);
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if(type==-1)
xvel=0*(xu(:,2)./xu(:,1)-pressNL(Problem,xu(:,1))); yvel=0*(yu(:,2)./yu(:,1)-pressNL(Problem,yu(:,1))); elseif(type==1)%AW-RASCLE MODEL
xvel=(xu(:,2)./xu(:,1))-pressNL(Problem,xu(:,1));yvel=(yu(:,2)./yu(:,1))-pressNL(Problem,yu(:,1)); end
%xvpos=xvel(ipos);plotFundamentalDiagram(Problem,xpos,xrpos,xvpos);
yvpos=yvel(ipos);plotFundamentalDiagram(Problem,xpos,yrpos,yvpos); end
end
drawnow;
end
function [r,V1,Rline,Jline]=plotFundamentalDiagram(Prob,xpos,rpos,vpos)
nr=500;r=0:1/(nr-1):1;
rhofree=Prob.rhofree;rhojam=Prob.rhojam;rhosyn=Prob.rhosyn;
irfree=find(r<rhofree);irsync=find((r>=rhofree)&(r<=rhosyn));
irsync2=find((r>rhosyn)&(r<=rhojam));irjam=find(r>rhojam);rsync=r(irsync);
% V1
V0=0.85;c=2.9;V1func=@(rho)V0*tanh((.45./rho-0.02)/(c*V0));V1=V1func(r);
%Jamline
V0s=0.5;cs=2.9;Jlinefunc=@(rho)V0s*tanh((.45*(1./rho-1.1))/(cs*V0s));Jline=Jlinefunc(r);
Jline(irfree)=V1(irfree);V1(irsync2)=Jline(irsync2);Jline(irjam)=max(zeros(size(irjam)),Jline(irjam));
V1(irjam)=max(zeros(size(irjam)),Jline(irjam));
%Rline
Rline=zeros(size(r));slope=(V1func(rhosyn)-Jlinefunc(rhofree))/(rhosyn-rhofree);
Rline(irsync)=(r(irsync)-rhofree*ones(size(r(irsync))))*slope+Jlinefunc(rhofree)*ones(size(r(irsync)));
Rline(irsync2)=ones(size(irsync2));Rline(irjam)=ones(size(irjam));
if(Prob.contraction_x<xpos)
lanefactor=Prob.lanefactor;r=r/lanefactor;
end
plot(r,1.*V1)
hold on;
plot(r,1.*Rline,’g’);plot(r,1.*Jline,’m’);plot(rpos,1.*vpos,’k*’,’Markersize’,5)
hold off;
xlabel([’rho at ’ num2str(xpos)]);ylabel(’v’);axis([0 1 0 0.995])
end
function [xieq,yieq,zieq]=uequal(xu1,xu2,yu1,yu2,zu1,zu2,diff) xieq=1:length(xu1(:,1));yieq=1:length(yu1(:,1));zieq=1:length(zu1(:,1)); for xiu=1:length(xu1(1,:))
xieq1=find(abs(xu1(:,xiu)-xu2(:,xiu))<diff);xieq=intersect(xieq,xieq1); end
for yiu=1:length(yu1(1,:))
yieq1=find(abs(yu1(:,yiu)-yu2(:,yiu))<diff);yieq=intersect(yieq,yieq1);
end
for ziu=1:length(zu1(1,:))
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zieq1=find(abs(zu1(:,ziu)-zu2(:,ziu))<diff);zieq=intersect(zieq,zieq1);
end
end
function [xfG,xs,yfG,ys,zfG,zs]=Godunov_flux(Problem,xul,xur,yul,yur,zul,zur,intervall,intervalr)
%find the new state
xspeed=zeros(length(xul),3);yspeed=zeros(length(yul),3);zspeed=zeros(length(zul),3);
[xustar,yustar,zustar]=starstate(Problem,xul,xur,yul,yur,zul,zur,intervall,intervalr);
intervalm=intervall;
xrr=xur(:,1);xrl=xul(:,1);xrm=xustar(:,1);xyr=xur(:,2);xyl=xul(:,2);xym=xustar(:,2);
yrr=yur(:,1);yrl=yul(:,1);yrm=yustar(:,1);yyr=yur(:,2);yyl=yul(:,2);yym=yustar(:,2);
zrr=zur(:,1);zrl=zul(:,1);zrm=zustar(:,1);zyr=zur(:,2);zyl=zul(:,2);zym=zustar(:,2);
type=Problem.FundamentalDiagram;
if(type==1)%AW-RASCLE MODEL
xvl=xyl./xrl-press(Problem,xrl,intervall);xvr=xyr./xrr-press(Problem,xrr,intervalr);xvm=xym./xrm-
press(Problem,xrm,intervalm);
yvl=yyl./yrl-press(Problem,yrl,intervall);yvr=yyr./yrr-press(Problem,yrr,intervalr);yvm=yym./yrm-
press(Problem,yrm,intervalm);
zvl=zyl./zrl-press(Problem,zrl,intervall);zvr=zyr./zrr-press(Problem,zrr,intervalr);zvm=zym./zrm-
press(Problem,zrm,intervalm);
xizerol=find(xrl<=0);xizeror=find(xrr<=0);xvl(xizerol)=zeros(length(xizerol),1);xvr(xizeror)=zeros(length(xi zeror),1);
yizerol=find(yrl<=0);yizeror=find(yrr<=0);yvl(yizerol)=zeros(length(yizerol),1);yvr(yizeror)=zeros(length(yi zeror),1);
zizerol=find(zrl<=0);zizeror=find(zrr<=0);zvl(zizerol)=zeros(length(zizerol),1);zvr(zizeror)=zeros(length(ziz eror),1);
xizerom=find(xrm<=0);xrm(xizerom)=zeros(length(xizerom),1);xvm(xizerom)=xvl(xizerom)+press(Proble m,xrl(xizerom),xizerom);
yizerom=find(yrm<=0);yrm(yizerom)=zeros(length(yizerom),1);yvm(yizerom)=yvl(yizerom)+press(Proble m,yrl(yizerom),yizerom);
zizerom=find(zrm<=0);zrm(zizerom)=zeros(length(zizerom),1);zvm(zizerom)=zvl(zizerom)+press(Problem ,zrl(zizerom),zizerom);
xspeed(:,3)=xvr;yspeed(:,3)=yvr;zspeed(:,3)=zvr;
xitype1=find((xvl-xvm-(xrl.*pressprime(Problem,xrl,intervall)-xrm.*pressprime(Problem,xrm,intervalm)))>0);
yitype1=find((yvl-yvm-(yrl.*pressprime(Problem,yrl,intervall)-yrm.*pressprime(Problem,yrm,intervalm)))>0);
zitype1=find((zvl-zvm-(zrl.*pressprime(Problem,zrl,intervall)-zrm.*pressprime(Problem,zrm,intervalm)))>0);
xitype2=setdiff((1:length(xul)),xitype1);yitype2=setdiff((1:length(yul)),yitype1);zitype2=setdiff((1:length( zul)),zitype1);
xspeed(xitype1,1)=(xvl(xitype1).*xrl(xitype1)-xvm(xitype1).*xrm(xitype1))./(xrl(xitype1)-xrm(xitype1)); xspeed(xitype1,2)=(xvl(xitype1).*xrl(xitype1)-xvm(xitype1).*xrm(xitype1))./(xrl(xitype1)-xrm(xitype1)); xspeed(xitype2,1)=xvl(xitype2)-xrl(xitype2).*pressprime(Problem,xrl(xitype2),xitype2); xspeed(xitype2,2)=xvm(xitype2)-xrm(xitype2).*pressprime(Problem,xrm(xitype2),xitype2);
yspeed(yitype1,1)=(yvl(yitype1).*yrl(yitype1)-yvm(yitype1).*yrm(yitype1))./(yrl(yitype1)-yrm(yitype1));

yspeed(yitype1,2)=(yvl(yitype1).*yrl(yitype1)-yvm(yitype1).*yrm(yitype1))./(yrl(yitype1)-yrm(yitype1));
yspeed(yitype2,1)=yvl(yitype2)-yrl(yitype2).*pressprime(Problem,yrl(yitype2),yitype2); yspeed(yitype2,2)=yvm(yitype2)-yrm(yitype2).*pressprime(Problem,yrm(yitype2),yitype2);
zspeed(zitype1,1)=(zvl(zitype1).*zrl(zitype1)-zvm(zitype1).*zrm(zitype1))./(zrl(zitype1)-zrm(zitype1)); zspeed(zitype1,2)=(zvl(zitype1).*zrl(zitype1)-zvm(zitype1).*zrm(zitype1))./(zrl(zitype1)-zrm(zitype1)); zspeed(zitype2,1)=zvl(zitype2)-zrl(zitype2).*pressprime(Problem,zrl(zitype2),zitype2); zspeed(zitype2,2)=zvm(zitype2)-zrm(zitype2).*pressprime(Problem,zrm(zitype2),zitype2);
%find correct ’Godunov’-states according to the speeds xil=find(xspeed(:,1)>0); yil=find(yspeed(:,1)>0); zil=find(zspeed(:,1)>0); xistar=find(xspeed(:,2)<=0);yistar=find(yspeed(:,2)<=0);zistar=find(zspeed(:,2)<=0);xirare=setdiff(setdiff(1:length(xul),xil),xistar); yirare=setdiff(setdiff(1:length(yul),yil),yistar); zirare=setdiff(setdiff(1:length(zul),zil),zistar);
xuG(xil,:)=xul(xil,:);yuG(yil,:)=yul(yil,:);zuG(zil,:)=zul(zil,:);
xuG(xistar,:)=xustar(xistar,:);yuG(yistar,:)=yustar(yistar,:);zuG(zistar,:)=zustar(zistar,:);
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xrhs=[0 0];yrhs=[0 0];zrhs=[0 0];
options=optimset(’Display’,’off’);
for xi=xirare
xqinit=[xrl(xi) xvl(xi)];xrhs(1)=xvl(xi)+press(Problem,xrl(xi),xi); xrare=fsolve(@(xq)xrarefactionshape(Problem,xq,xrhs,xi),xqinit,options); xuG(xi,1)=xrare(1);xuG(xi,2)=xrare(1)*xrare(2)+xrare(1)*press(Problem,xrare(1),xi); end
for yi=yirare
yqinit=[yrl(yi) yvl(yi)];yrhs(1)=yvl(yi)+press(Problem,yrl(yi),yi); yrare=fsolve(@(yq)yrarefactionshape(Problem,yq,yrhs,yi),yqinit,options);
yuG(yi,1)=yrare(1);yuG(yi,2)=yrare(1)*yrare(2)+yrare(1)*press(Problem,yrare(1),yi); end
for zi=zirare
zqinit=[zrl(zi) zvl(zi)];zrhs(1)=zvl(zi)+press(Problem,zrl(zi),zi);
zrare=fsolve(@(zq)zrarefactionshape(Problem,zq,zrhs,zi),zqinit,options);
zuG(zi,1)=zrare(1);zuG(zi,2)=zrare(1)*zrare(2)+zrare(1)*press(Problem,zrare(1),zi);
end
end
[xfG,xs,yfG,ys,zfG,zs]=AwRascle_flux(Problem,xuG,yuG,zuG,intervall); end
function xres=xrarefactionshape(Problem,xq,xrhs,interval) type=Problem.FundamentalDiagram; if(type==1)%AW-RASCLE MODEL
%riemann invariant

xres(1)=xq(2)+press(Problem,xq(1),interval)-xrhs(1);
%slope of the characteristic = first eigenvalue
xres(2)=xq(2)-xq(1)*pressprime(Problem,xq(1),interval)-xrhs(2);
else
%
end
end
function [xf,xs,yf,ys,zf,zs]=AwRascle_flux(Problem,xu,yu,zu,interval) xf=zeros(size(xu));yf=zeros(size(yu));zf=zeros(size(zu)); xr=xu(:,1);xy=xu(:,2);yr=yu(:,1);yy=yu(:,2);zr=zu(:,1);zy=zu(:,2); xp=press(Problem,xr,interval);yp=press(Problem,yr,interval);zp=press(Problem,zr,interval);
xpp=pressprime(Problem,xr,interval);ypp=pressprime(Problem,yr,interval);zpp=pressprime(Problem,zr,i nterval);
type=Problem.FundamentalDiagram;
if(type==-1)
xf=zeros(size(xu));xs=zeros(size(xu));yf=zeros(size(yu));ys=zeros(size(yu));zf=zeros(size(zu));zs=zeros(size(
zu));
elseif(type==1)%AW-RASCLE MODEL
xv=xy./xr-xp;yv=yy./yr-yp;zv=zy./zr-zp;
xf(:,1)=xv.*xr;xf(:,2)=xv.*xy;yf(:,1)=yv.*yr;yf(:,2)=yv.*yy;zf(:,1)=zv.*zr;zf(:,2)=zv.*zy;
xs=zeros(size(xu));ys=zeros(size(yu));zs=zeros(size(zu));
xs(:,1)=xv-xr.*xpp;ys(:,1)=yv-yr.*ypp;zs(:,1)=zv-zr.*zpp;
xs(:,2)=xv;ys(:,2)=yv;zs(:,2)=zv;
end
end
function p=pressNL(Problem,rho)
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C=Problem.C;
C1=Problem.C1;
type=Problem.FundamentalDiagram;
if(type==-1)
p=C*ones(size(rho));
elseif(type==1)%AW-RASCLE MODEL
p=C1*log(rho./(ones(size(rho))-rho));
end
end
function p=press(Problem,rho,interval)
C=Problem.C;
C1=Problem.C1;
type=Problem.FundamentalDiagram;
if(type==-1)
p=C*ones(size(rho));
elseif(type==1)%AW-RASCLE MODEL
p=C1*log(rho./(ones(size(rho))-rho));
end
end
function rho=invpress(Problem,p,Vel,interval)
C=Problem.C;
C1=Problem.C1;
lanes=Problem.Lanes(interval);
type=Problem.FundamentalDiagram;
if(type==-1)
rho=C*lanes.*ones(size(p));
elseif(type==1)%AW-RASCLE MODEL
rho=exp(p/C1)./(ones(size(p))+exp(p/C1));
end
end
function p=pressprime(Problem,rho,interval)
C=Problem.C;
C1=Problem.C1;
type=Problem.FundamentalDiagram;
if(type==-1)
p=C*ones(size(rho));
elseif(type==1)%AW-RASCLE MODEL
p=C1*ones(size(rho))./(rho.*(ones(size(rho))-rho));
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end
end
%the right hand side for the relaxation term and lane-change term
function [xunew,xmaxdt,yunew,ymaxdt,zunew,zmaxdt]=source_step(Problem,xx,dt,xu,yu,zu,nx) [xsource,xT,ysource,yT,zsource,zT]=righthandside(Problem,xx,xu,yu,zu,nx); [xPHI,yPHI,zPHI]=lanechanges(Problem,xx,xu,yu,zu,nx); L=1;%swith lane-change on/off %the update (explicit Euler)
xunew(:,1)=xu(:,1)+1*dt*(xsource(:,1)+L*xPHI(:,1));
xunew(:,2)=xu(:,2)+1*dt*(xsource(:,2)+L*xPHI(:,2));
yunew(:,1)=yu(:,1)+1*dt*(ysource(:,1)+L*yPHI(:,1));
yunew(:,2)=yu(:,2)+1*dt*(ysource(:,2)+L*yPHI(:,2));
zunew(:,1)=zu(:,1)+1*dt*(zsource(:,1)+L*zPHI(:,1));
zunew(:,2)=zu(:,2)+1*dt*(zsource(:,2)+L*zPHI(:,2));
xmaxdt=inf; ymaxdt=inf; zmaxdt=inf;
if(max(abs(xsource))>0)
xmaxdt=xT;
end
if(max(abs(ysource))>0)
ymaxdt=yT;
end
if(max(abs(zsource))>0)
zmaxdt=zT;
end
end
function [xsource,xT,ysource,yT,zsource,zT]=righthandside(Problem,xx,xu,yu,zu,nx)
%the fundamental diagram
type=Problem.FundamentalDiagram;
% T=Problem.Trelax;
xT=zeros(size(xu(:,1)));yT=zeros(size(yu(:,1)));zT=zeros(size(zu(:,1))); for ix=1:nx xT(ix,1)=5*ones(size(xu(ix,1)));yT(ix,1)=5*ones(size(yu(ix,1)));zT(ix,1)=5*ones(size(zu(ix,1))); end
rhofree=Problem.rhofree;

rhojam=Problem.rhojam;
rhosyn=Problem.rhosyn;
xsource=zeros(size(xu));ysource=zeros(size(yu));zsource=zeros(size(zu));
xr=xu(:,1);yr=yu(:,1);zr=zu(:,1);
if(type==-1)
xv=xu(:,2)./xr-press(Problem,xr,1:length(xu));yv=yu(:,2)./yr-press(Problem,yr,1:length(yu));
zv=zu(:,2)./zr-press(Problem,zr,1:length(zu));
elseif(type==1)%AW-RASCLE MODEL
xv=xu(:,2)./xr-press(Problem,xr,1:length(xu));yv=yu(:,2)./yr-press(Problem,yr,1:length(yu));
zv=zu(:,2)./zr-press(Problem,zr,1:length(zu));
end
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x_cont=Problem.contraction_x;
x_cont_dist=Problem.contraction_x_smooth;
lanefactor=Problem.lanefactor;
itrans=find((xx>=x_cont-x_cont_dist)&(xx<x_cont+x_cont_dist));
i_cont=find(xx>=x_cont+x_cont_dist);
xr(i_cont)=lanefactor*xr(i_cont);
% lanefactor if(abs(lanefactor-1)>1.e-5)
xa=1/((1-length(itrans)))*(1-1/lanefactor); xb=1-xa; rmaxtrans=xa*(1:length(itrans))+xb;
else rmaxtrans=ones(size(itrans));
end
xr(itrans)=xr(itrans)./rmaxtrans’;
irfree=find(xr<rhofree);
irsync=find((xr>=rhofree)&(xr<=rhosyn));
irsync2=find((xr>rhosyn)&(xr<=rhojam));
irjam=find(xr>rhojam);
V0=0.85;c=2.9;
V1func=@(rho)V0*tanh((.45./rho-0.02)/(c*V0));
xV1=V1func(xr);yV1=V1func(yr);zV1=V1func(zr);
%Jamline
V0s=0.5;cs=2.9;
Jlinefunc=@(rho)V0s*tanh((.45*(1./rho-1.1))/(cs*V0s));
xJline=Jlinefunc(xr);yJline=Jlinefunc(yr);zJline=Jlinefunc(zr);
xJline(irfree)=xV1(irfree);yJline(irfree)=yV1(irfree); zJline(irfree)=zV1(irfree); xV1(irsync2)=xJline(irsync2);yV1(irsync2)=yJline(irsync2);zV1(irsync2)=zJline(irsync2); xJline(irjam)=max(zeros(size(irjam)),xJline(irjam)); yJline(irjam)=max(zeros(size(irjam)),yJline(irjam)); zJline(irjam)=max(zeros(size(irjam)),zJline(irjam)); xV1(irjam)=max(zeros(size(irjam)),xJline(irjam)); yV1(irjam)=max(zeros(size(irjam)),yJline(irjam)); zV1(irjam)=max(zeros(size(irjam)),zJline(irjam));
%Rline
xRline=zeros(size(xr)); yRline=zeros(size(yr)); zRline=zeros(size(zr)); xslope=(V1func(rhosyn)-Jlinefunc(rhofree))/(rhosyn-rhofree); yslope=(V1func(rhosyn)-Jlinefunc(rhofree))/(rhosyn-rhofree); zslope=(V1func(rhosyn)-Jlinefunc(rhofree))/(rhosyn-rhofree); xRline(irsync)=(xr(irsync)-
rhofree*ones(size(xr(irsync))))*xslope+Jlinefunc(rhofree)*ones(size(xr(irsync))); yRline(irsync)=(yr(irsync)-
rhofree*ones(size(yr(irsync))))*yslope+Jlinefunc(rhofree)*ones(size(yr(irsync))); zRline(irsync)=(zr(irsync)-
rhofree*ones(size(zr(irsync))))*zslope+Jlinefunc(rhofree)*ones(size(zr(irsync)));
xRline(irsync2)=ones(size(irsync2));yRline(irsync2)=ones(size(irsync2));zRline(irsync2)=ones(size(irsync2)) ;
xRline(irjam)=ones(size(irjam));yRline(irjam)=ones(size(irjam));zRline(irjam)=ones(size(irjam));
if(type==-1)
xve=@(xr,xv)(1-xr)-xv;yve=@(yr,yv)(1-yr)-yv;zve=@(zr,zv)(1-zr)-zv;
xrel=xve(xu(:,1),xv);yrel=yve(yu(:,1),yv);zrel=zve(zu(:,1),zv);
xsource(:,2)=xu(:,1).*xrel./xT(:,1);ysource(:,2)=yu(:,1).*yrel./yT(:,1);zsource(:,2)=zu(:,1).*zrel./zT(:,1);
elseif(type==1)%AW RASCLE MODEL
xVe=zeros(length(xu),1);yVe=zeros(length(yu),1);zVe=zeros(length(zu),1);
xVe(irfree)=xV1(irfree);yVe(irfree)=yV1(irfree);zVe(irfree)=zV1(irfree);
%parameter for thr linear interpolation
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alpha=0.7;
alpha=min(alpha,alpha-1.e-2);
xkink1=xV1(irsync)+alpha*(xRline(irsync)-xV1(irsync)); ykink1=yV1(irsync)+alpha*(yRline(irsync)-yV1(irsync)); zkink1=zV1(irsync)+alpha*(zRline(irsync)-zV1(irsync));
xabove=find(xv(irsync)>xkink1);yabove=find(yv(irsync)>ykink1);zabove=find(zv(irsync)>zkink1);
xVe(irsync(xabove))=xV1(irsync(xabove));yVe(irsync(yabove))=yV1(irsync(yabove));zVe(irsync(zabove))=z V1(irsync(zabove));
xkink2=xJline(irsync)+alpha*(xRline(irsync)-xJline(irsync)); ykink2=yJline(irsync)+alpha*(yRline(irsync)-yJline(irsync)); zkink2=zJline(irsync)+alpha*(zRline(irsync)-zJline(irsync));
xbelow=find(xv(irsync)<=xkink2);ybelow=find(yv(irsync)<=ykink2);zbelow=find(zv(irsync)<=zkink2);
xVe(irsync(xbelow))=xJline(irsync(xbelow));yVe(irsync(ybelow))=yJline(irsync(ybelow));zVe(irsync(zbelow ))=zJline(irsync(zbelow));
xmiddle=find((xv(irsync)<=xkink1)&(xv(irsync)>xkink2));
ymiddle=find((yv(irsync)<=ykink1)&(yv(irsync)>ykink2));
zmiddle=find((zv(irsync)<=zkink1)&(zv(irsync)>zkink2));
xa=(xV1(irsync(xmiddle))-xkink1(xmiddle)-(xJline(irsync(xmiddle))-xkink2(xmiddle)))./(xkink1(xmiddle)-xkink2(xmiddle));
ya=(yV1(irsync(ymiddle))-ykink1(ymiddle)-(yJline(irsync(ymiddle))-ykink2(ymiddle)))./(ykink1(ymiddle)-ykink2(ymiddle));
za=(zV1(irsync(zmiddle))-zkink1(zmiddle)-(zJline(irsync(zmiddle))-zkink2(zmiddle)))./(zkink1(zmiddle)-zkink2(zmiddle));
xb=-xa.*xRline(irsync(xmiddle));yb=-ya.*yRline(irsync(ymiddle));zb=-za.*zRline(irsync(zmiddle));
xVe(irsync(xmiddle))=xa.*xv(irsync(xmiddle))+xb+xv(irsync(xmiddle)); yVe(irsync(ymiddle))=ya.*yv(irsync(ymiddle))+yb+yv(irsync(ymiddle)); zVe(irsync(zmiddle))=za.*zv(irsync(zmiddle))+zb+zv(irsync(zmiddle));
xVe(irsync2)=xJline(irsync2);yVe(irsync2)=yJline(irsync2);zVe(irsync2)=zJline(irsync2); xVe(irjam)=xJline(irjam); yVe(irjam)=yJline(irjam); zVe(irjam)=zJline(irjam);
xsource(:,2)=xu(:,1).*((xVe-xv)./xT(:,1));ysource(:,2)=yu(:,1).*((yVe-yv)./yT(:,1));zsource(:,2)=zu(:,1).*((zVe-zv)./zT(:,1));
end
end
function [xPHI,yPHI,zPHI]=lanechanges(Problem,xx,xu,yu,zu,nx)
xPHI1=zeros(size(xu));xPHI2=zeros(size(xu));yPHI1=zeros(size(yu));yPHI2=zeros(size(yu));zPHI1=zeros(siz
e(zu));zPHI2=zeros(size(zu));
xPHI=zeros(size(xu));yPHI=zeros(size(yu));zPHI=zeros(size(zu));
xr=xu(:,1);yr=yu(:,1);zr=zu(:,1);
wr=0.3*ones(size(xu(:,1))); V0=0.85;c=2.9;V1func=@(rho)V0*tanh((.45./rho-0.02)/(c*V0));wv=V1func(wr);%on-ramp density and velocity
type=Problem.FundamentalDiagram;

if(type==-1)
xv=xu(:,2)./xr-press(Problem,xr,1:length(xu));yv=yu(:,2)./yr-press(Problem,yr,1:length(yu));
zv=zu(:,2)./zr-press(Problem,zr,1:length(zu));
Co=Problem.Co;
else(type==1);%AW-RASCLE MODEL
xv=xu(:,2)./xr-press(Problem,xr,1:length(xu));yv=yu(:,2)./yr-press(Problem,yr,1:length(yu));
zv=zu(:,2)./zr-press(Problem,zr,1:length(zu));
Co=Problem.Co;
end
%expression for PHI^0_1(0,1,2) THE ON-RAMP SITUATION
xPHI1(2:nx-1,1)=wr(2:nx-1).*abs(wv(2:nx-1)-wv(3:nx)).*exp(-Co*xr(2:nx-1)).*(1./(1-wr(2:nx-1)));
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%expression for PHI^0_2(1,2,3) LANE 1
xPHI2(2:nx-1,1)=yr(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*xr(2:nx-1)).*(1./(1-yr(2:nx-1))).*(1-
exp(-Co*zr(2:nx-1)))...
-xr(2:nx-1).*abs(xv(2:nx-1)-xv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-xr(2:nx-1)));
xPHI(2:nx-1,1)=xPHI1(2:nx-1,1)+xPHI2(2:nx-1,1);
%expression for PHI^1_1(0,1,2) THE ON-RAMP SITUATION xPHI1(2:nx-1,2)=wr(2:nx-1).*wv(2:nx-1).*abs(wv(2:nx-1)-wv(3:nx)).*exp(-Co*xr(2:nx-1)).*(1./(1-wr(2:nx-1)));
%expression for PHI^1_2(1,2,3) LANE 1
xPHI2(2:nx-1,2)=yr(2:nx-1).*yv(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*xr(2:nx-1)).*(1./(1-yr(2:nx-
1))).*(1-exp(-Co*zr(2:nx-1)))...
-xr(2:nx-1).*xv(2:nx-1).*abs(xv(2:nx-1)-xv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-xr(2:nx-1)));
xPHI(2:nx-1,2)=xPHI1(2:nx-1,2)+xPHI2(2:nx-1,2);
%expression for PHI^0_1(1,2,3) LANE 2
yPHI1(2:nx-1,1)=xr(2:nx-1).*abs(xv(2:nx-1)-xv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-xr(2:nx-1)))...
-yr(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*xr(2:nx-1)).*(1./(1-yr(2:nx-1))).*(1-exp(-Co*zr(2:nx-1)));
%expression for PHI^0_2(2,3) LANE 2
yPHI2(2:nx-1,1)=zr(2:nx-1).*abs(zv(2:nx-1)-zv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-zr(2:nx-1)))...
-yr(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*zr(2:nx-1)).*(1./(1-yr(2:nx-1)));
yPHI(2:nx-1,1)=yPHI1(2:nx-1,1)+yPHI2(2:nx-1,1);
%expression for PHI^1_1(1,2,3) LANE 2

yPHI1(2:nx-1,2)=xr(2:nx-1).*xv(2:nx-1).*abs(xv(2:nx-1)-xv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-xr(2:nx-
1)))...
-yr(2:nx-1).*yv(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*xr(2:nx-1)).*(1./(1-yr(2:nx-1))).*(1-exp(-Co*zr(2:nx-1)));
%expression for PHI^1_2(2,3) LANE 2
yPHI2(2:nx-1,2)=zr(2:nx-1).*zv(2:nx-1).*abs(zv(2:nx-1)-zv(3:nx)).*exp(-Co*yr(2:nx-1)).*(1./(1-zr(2:nx-
1)))...
-yr(2:nx-1).*yv(2:nx-1).*abs(yv(2:nx-1)-yv(1:nx-2)).*exp(-Co*zr(2:nx-1)).*(1./(1-yr(2:nx-1)));
yPHI(2:nx-1,2)=yPHI1(2:nx-1,2)+yPHI2(2:nx-1,2);
%expression for PHI^0_1(2,3) LANE 3
zPHI1(2:nx-1,1)=yr(2:nx-1).*abs(yv(2:nx-1)-yv(3:nx)).*exp(-Co*zr(2:nx-1)).*(1./(1-yr(2:nx-1)))...
-zr(2:nx-1).*abs(zv(2:nx-1)-zv(1:nx-2)).*exp(-Co*yr(2:nx-1)).*(1./(1-zr(2:nx-1)));
%expression for PHI^1_1(2,3) LANE 3
zPHI1(2:nx-1,2)=yr(2:nx-1).*yv(2:nx-1).*abs(yv(2:nx-1)-yv(3:nx)).*exp(-Co*zr(2:nx-1)).*(1./(1-yr(2:nx-
1)))...
-zr(2:nx-1).*zv(2:nx-1).*abs(zv(2:nx-1)-zv(1:nx-2)).*exp(-Co*yr(2:nx-1)).*(1./(1-zr(2:nx-1)));
end
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