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ABSTRACT

Opinion poll plays a prominent role as a source of information in different societ-
ies of the world and are permanent feature of contemporary politics. Such election
surveys have several purposes, including forecasting elections outcomes and study-
ing the distribution of votes as they vary over geographic, demographic and political
variables. Most of the opinion polls data are analyzed superficially using discrete or
summary statistics. This work provides an in-depth statistical inference to these data.
The goal of this thesis is to formulate and apply Bayesian model for comparing the
two leading candidates in the presidential voting process. Although much of the media
attentions during presidential election years focuses on polls tracking popular support
for the major candidate, the vital role played by Bayesian statistical analysts in pre-
dicting elections incorporated in order to address forecasting election outcomes. We
considered a Bayesian hierarchical model in predicting Kenya’s presidential elections
outcomes based on pre-election polls collected at most four months prior to the 2007
and 2013 general elections taking into account the evolution of opinions during cam-
paigns Kenya’s presidential elections are predictable and we were able to come up
with a powerful methodological option for predicting the outcome of Kenya’s presid-
ential elections that uses Bayesian estimation approach and incorporates polling data
to account for the evolution of opinions during campaigns. The results show that the
leading candidate in the polls will win the election if the observed pattern does not
portray misclassification; otherwise, the race is too close to call if there is underlying
uncertainty. In conclusion, the research obtained predictions which suffices to prove
that the main novel points of the analysis - namely the use of representative areas, the
Bayesian analysis of an appropriately chosen hierarchical model and the probabilistic
classification of undecided vote in opinion polls – are certainly important points in the
right direction.

xiii



CHAPTER ONE

INTRODUCTION

1.1 Background

Understanding voter preferences and forecasting the final outcome of elections is of

critical importance to politicians, as they can use the insights gained from the exercise

to fine-tune their campaign strategies. Consequently a substantial literature on the pre-

diction of election is available Some authors like Campbell (2012, 2008) and Kennedy

et al. (2017) have used regression models for nationwide polling data to forecast the

outcome of the popular vote in the US elections while others use state-level polls to

make quantitative estimate of the proportion of votes for the two major party candid-

ates in each state (Abrams, 1970; Cohen, 1998; Holbrook and DeSart, 1999; Cohen

and Hamman, 2003; Cohen, 2015; Wang et al., 2015; Campbell et al., 2017; Jaidka

et al., 2019).

However, prediction of who will actually win the presidency, the issue of principal

interest, is not addressed by the analyses of popular opinion trends Gelman et al. (2004,

2016) employed a multilevel logistic regression model to generate estimates of state-

level vote shares in US. Their model employs national opinion data and state level

demographic covariates to obtain estimates in a manner that is related to the small-area

estimation problem.

Predicting election day voting outcomes based on early pre-election polling is a

very complicated problem because such a prediction would require a consideration of

opinion trends, future campaign spending, and historical voter behaviour. Further, the

actual election day results will be affected by many unpredictable factors arising in the

final days of the campaign, including world events and candidate mistakes. Effectively,

the majority will, is difficult to measure and fundamentally ambiguous (Gelman et al.,

2002; Feld and Grofman, 2010; Gayo-Avello, 2013). Consequently, we focus on the

simpler problem of estimating the probability that the incumbent president would win

the election if it were held on the day of the recent poll

Since the advent of scientific polling in the 1930s, most notable the successful pre-

diction of the re-election of Franklin Roosevelt by Gallup in the 1936 US presidential
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elections, there has been a growing interest by political pundits and scholars alike to

predict the winner of the presidential elections., This unquenchable urge of beeping

into the future of an election has become a vibrant discipline in political research. Re-

cently, extensive and statistically based polling procedures draws a lot from the work

of the Gallup Organization (Cameron and Crosby, 2000; Jackman, 2005; Wolfers and

Leigh, 2002; Wattenberg, 2003; Cuzán et al., 2005).

Technological advancement and availability of enormous credible data has made

the task of predicting election relatively easier in advanced democracies. Since 1970s

onward, a wide range of forecasting techniques have been developed. Several authors

have used structural models for countrywide polling data to forecast the outcome of

the presidential race. Others have employed the space state models while others used

the time series models. Although forecasting has now quite a history especially in

developed countries, analyses of popular opinion trends in sub–Saharan Africa has

numerous challenges the most predominant being limited and flawed polling data that

depicts marginal fluctuations among the pollsters.

Nevertheless, predicting the effectual winner of an election has not been a rosy

affair for political scientist even in developed economies. According to Biemer (2010)

and Groves and Lyberg (2010), polls are subject to various types of error and they are

far from being perfect predictors of election outcomes themselves. Buchanan (1986)

and Shirani-Mehr et al. (2018) found that the empirical error of polls is about twice as

large as the estimated sampling error. This has given critics room for discussion.

The dynamics of opinion poll data due to factors like change of campaign strategies

(such as the use of propagandas), demographic covariates, economic variables (such

as inflation and unemployment), abstract ideas (such as change of status quo) and the

effect of news is quite a puzzle to political science researchers. As such the question

of how to treat the previous and current pre-election polls data is inevitable. Some

researchers consider only the most recent poll others Combine all previous polls up

the present time and treat it as a single sample, weighting only by sample size, while

others Combine all previous polls but adjust the sample size according to a weight

function depending on the day the poll is taken. In predicting Kenya’s presidential

elections outcomes based on pre-election polls we will apply a sequential Bayesian

2



model.

In growing economies, ethnicity and the theory of mistrust are key drivers of polit-

ical activities. Nearly all trilling candidates doubt the poll and/or pops holes on the

credibility of the pollster/ institution. Luckily, the contemporary view of competitive

elections as the hallmark of modern democracy, evidenced by the media freedom and

freedom of expression, has recently helped to spur growth in forecasting research due

to the increase in the number of polls.

Historically, one of the main challenges associated with forecasting election out-

comes in sub Saharan Africa, and in particular Kenya, has been the lack of credible

pre-election poll data (Cohen, 1998). However, as the growing economies transit from

long historical experience of authoritarianism and dictatorship including a period of

“cultures of silence,” to freedom of expression, the growth of the opinion polls in-

dustry is phenomenal and their published results are now becoming easily accessible

through various platforms such as social media and Internet. For instance, the 2007

presidential election recorded the highest number of opinion polls ever conducted and

published in Kenya.

Although pre-election poll data is inevitably flawed, they can still provide much

insight about national and regional trends and the nontrivial biases inherent in such

data provides a vehicle for discussion about data validity and the associated validity of

statistical inferences.

Scholars have argued that presidential pre-election polling data may not be use-

ful until one year to the election to predict the winning president between any two

strong aspirants. Thus, this research describes a method used to predict the outcome

of presidential election by monitoring how people intend to vote throughout the elect-

oral campaign. The argument lies entirely within the Bayesian framework. We argue

that the closeness of recent Kenyan presidential opinion polls coupled with the wide

accessibility of data should change how presidential election forecasting is conducted.

We present a Bayesian forecasting model that concentrates on the national wide pre-

election polls prior to 2007 general elections and consider finer details such as third-

party candidates and self-proclaimed undecided voters. We incorporate our estimators

into WinBUGS to determine the probability that a candidate will win an election. The

3



model predicted the outright winner for the 2007 Kenyan election.

1.2 The 2007 and 2013 Elections in Kenya

Kenya become a multi-party democracy in 1992. There has been general multi-party

elections in 1992, 1997, 2002, 2007, 2013 and 2017. In this Section we show the res-

ults for the 2007 and 2013 elections only. Figure 1.1 in the left and right panel respect-

ively show the presidential results of the leading candidates per 8 former provinces and

47 counties. This election was won by Mr Kibaki at 46.4%

Figure 1.1: Distribution of the Kenya 2007 presidential election votes.

Figure 1.2 shows the 2013 election per county. The two-colour scheme shows the

intensity of the support for the CORD (Coalition for Reforms and Democracy) the

opposition party in shade of RED and JUBILEE in shade of BLUE. There was no

incumbent in this election. The election appears to have been evenly contested. In this

election the JUBILEE party won by 50.1%
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Figure 1.2: Distribution of the Kenya 2013 presidential election votes across counties.

1.3 Development of Opinion Polling in Kenya

Some democracies have discussed and/or regulated the publication of political opinion

polls fearing the undue influence on voters. In Kenya, the Statistics Act, 2006, that

became law in September 2006, mandated the Kenya National Bureau of Statistics to

regulate opinion polling but since 2006 was the eve of an election year, this move was

perceived as an effort to muzzle pollsters in order to keep politically-based opinion

polls which are not in the government’s favour away from the public. As such this Act

has never been invoked.

Opinion poll plays a prominent role as a source of information in different soci-

eties of the world. Basically, they have become a permanent feature of contemporary

politics, in fact, in the last few decades, the dependence on opinion polling in polit-

ics has increased in some liberal democracies that where the media is referred to as
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the “Fourth Estate,” opinion polling has been reckoned as the “Fifth Estate” in some

recent studies. Unfortunately, in sub-Saharan Africa little of such studies have been

happening.

Kenya particularly has never been adept at predicting election outcomes before

2002 few opinion polls were being done. Censorship during the KANU era caused

fear and many firms could not conduct opinion polls and media organizations could

not even publish the results. In 1997 and 2002, a few opinion polls were conducted,

which predicted that the then President Daniel Moi would win the election but none

were made public. After 2002 with the increased democratic space, opinion polls

have been regularly conducted with two target groups: the general public and business

leaders. General public opinion polls seek to provide systematic and representative

public perceptions on social, economic and cultural issues. Knowing how to evaluate

and place this type of information into context is very essential to any user.

In Kenya, pollsters began to openly conduct and release opinion polls to the media

after the 2002 elections. The results of these opinion poll have elicited mixed reactions.

As expected, opposing political parties make charges and counter charges on the effic-

acy and genuineness of various polls. This depicts the high level of competition and

dependence on the polls by various political parties, in using them as campaign inputs.

It is common for politicians to use favourable findings in their election speeches.

Since each election is fought on certain themes and issues which are propped up by

either the electorate, political parties, interest groups or media, opinion polls reflecting

the public opinions and expectations on various issues can bring about a meaningful

political debate, which undoubtedly will strengthen the political process.

Some people have argued that publishing opinion polls would impact the political

reality by causing a bandwagon effect, or provide an “underdog” effect, possibly re-

vealing sympathy and support for the apparent loser. These two possible effects have

received a fair amount of attention in literature. Although the polls themselves attract

attention over sample size and methodology, there has been no serious research con-

ducted in Kenya to gauge their impact on the election outcome. Such processes are of

theoretical interest as they affect stable prediction leading to compromised models of

the social sciences.
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Interestingly, a large majority of the Kenyan electorate have faith in the opinion

polls and their potential use in the process of Kenya’s emerging democracy. Sunday

Nation, December 9, 2007 pp 2. The highest number of opinion polls ever conducted

in Kenya, which elicited mixed reactions from the electorate and politicians alike, was

registered during the run up to the 2007 general election. This controversy raises two

scenarios: the manipulative power of the opinion polls on the psyche of the electorate,

and secondly, the genuineness and scientific basis of various polls.

1.4 Statement of the Problem

Several researchers in the field of political science focus their attention on the his-

toric problem of understanding and predicting election outcomes. Understanding voter

preferences and forecasting the final outcome of elections is of critical importance to

politicians, as they can use the insights gained from the exercise to fine-tune their cam-

paign strategies. Most studies have used regression models for nationwide polling data

to forecast the outcome of the popular vote. The prediction of who will actually win

the presidency, the issue of principal interest in many polls, is not addressed by the

analyses of popular opinion trends. Thus, showing a need for robust statistical method

for analysing opinion poll data.

The actual Election Day results will be affected by many unpredictable factors

arising in the final days of the campaign, including world events and candidate mis-

takes. Effectively the will of majority is difficult to measure and fundamentally am-

biguous. Consequently, we focus on the simpler problem of estimating the probability

that the incumbent president would win the election if it were held on the day of the

recent poll. A Bayesian approach present a powerful tool for overcoming this prob-

lem by combining prior information from various and repeated opinion polls as prior

distribution.
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1.5 Objectives of the Study

1.5.1 Main objective

The main aim of this research is to develop a Bayesian model for forecasting the choice

of candidates in a presidential election.

1.5.2 Specific objectives

The Specific objectives of this study are:

1. To formulate a Bayesian model for comparing two candidates in presidential

voting process

2. To formulate a multinomial Bayesian model for comparing three or more can-

didates in presidential voting process

3. To forecast presidential election performance using a simulation study

4. To apply the formulated Bayesian mode to real election data in Kenya

1.6 Significance of the Study

Currently in Kenya, very few people do understand the political voting process. In

addition, results from pollsters have been highly doubted due to lack of statistical based

approach and backing. This research therefore seeks to explore statistical approaches

that will enable Kenyans to appreciate and understand the voting process, determinants

of a vote as well as prediction of the future outcomes. Moreover this work will lay a

statistical bases for the contemporary pollsters in application of statistical tools for

analysing their results. This research is also geared towards helping policy makers to

change their views and approaches as they will better understand the political voting

system in Kenya.

1.7 Structure of the Thesis

This thesis has five chapters. Subsequent to this introductory chapter is the Chapter

2, which present literature review relevant to our study. Here a review is made of the

8



methods in use as well as some earlier studies. Chapter 3 consists of methodology used

in carrying out this study. In this chapter, Bayesian methods for analysing opinion

poll data are formulated. Chapter 4 presents simulated results as well as the results

and discussion of applying the methods to Kenyan situation. Finally, Chapter 5 gives

conclusion and recommendations.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Opinion poll plays a prominent role as a source of information in different societies of

the world. Basically they have become a permanent feature of contemporary politics,

in fact, so much has the dependence on opinion polling in politics increased in the

last few decades in some liberal democracies that where the media is referred to as

the “Fourth Estate,” then some recent studies reckon opinion polling to be the “Fifth

Estate.” Consequently, knowing how to evaluate and place this type of information

into context is very essential to any user.

Since the successful prediction of the re-election of Franklin Roosevelt by Gallup

in the 1936 US presidential elections, the unquenchable urge of beeping into the future

of an election has become a vibrant discipline in political research. Recently, extensive

and statistically based polling procedures draws a lot from the work of the Gallup

Organization (Cameron and Crosby, 2000; Wolfers and Leigh, 2002; Jackman, 2005;

Cuzán et al., 2005; Armstrong and Graefe, 2011).

Adoption of elections to recruit political leaders began in Western Europe in the

fourteenth and fifteenth centuries (Hogan and Hogan, 1987). Since then liberal demo-

cracies has institutionalized the method to legitimize leaders and governments (Lake-

man, 1974; Moyo, 1992). Wanyande (2006) argued that elections give the electorate

opportunities to indirectly participate in governance or influence the way they are gov-

erned. In growing democracies, state power confers many advantages orchestrating

hotly contested elections which are usually characterized by accusations of rigging

and unfairness in the electoral process.

Several theoretical and empirical researches which identifies functions performed

by elections in liberal democracies exist globally (Hogan and Hogan, 1987; Lakeman,

1974; Moyo, 1992; Ashworth, 2012; Hendrix, 2010; Mahler, 2017). However, studies

on elections in Africa pays scanty attention to the factors that influence voter behaviour

and turnout which is a core concept for understanding any election. Understanding

voter preferences and forecasting the final outcome of elections is of critical import-
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ance to politicians as they can use the insights gained from the exercise to fine-tune

their campaign strategies.

Forecasting election is a relatively recent and increasingly popular discipline in

political science. The local straw poll conducted by The Harrisburg Pennsylvanian in

1824 (Tankard Jr, 1972; Smith, 1990), showing Andrew Jackson leading John Quincy

Adams by 335 votes to 169 in the contest for the United States Presidency being the

earliest documented form of election predicting. The straw poll correctly predicted

Jackson popular vote win in that state. Consequently, such straw votes became gradu-

ally more popular, though they remained local. The 1916 Literary Digest national sur-

vey correctly predicted Woodrow Wilson’s election as president. They also correctly

predicted the victories of Warren Harding n 1920, Calvin Coolidge in 1924, Herbert

Hoover in 1928, and Franklin Roosevelt in 1932 (Campbell, 2020; Walton et al., 2017;

Lohr and Brick, 2017).

The Gallup successful prediction of Franklin Roosevelt overwhelming victory over

Alf Landon in the 1936 United States presidential race drew a surge of interest in

statistically based polling procedures (Venkataramani, 1960; Grant Jr, 1992). Since

that election over 80 years ago, most election surveys have invoked statistical sampling

methods and statistical data analysis techniques. Moreover, a wide range of statistical

forecasting techniques have been developed from 1970s onwards.

Election forecasting is becoming a more diverse and relevant as evidenced by the

growing interest by political pundits and scholars alike to predict the winner of the

presidential elections. This has been catalyzed by the ideology that competitive elec-

tions are the hallmark of modern democracy. The ability to foreshadow winner is a

tantalizing skill that has garnered significant scientific attention (Butler and Kavanagh,

1997; Walther, 2015; Gelman et al., 2004; Lewis-Beck and Dassonneville, 2015; Jack-

man, 2005). The goal of this delimited task to most researchers is not to explain elec-

tion outcomes but to describe and predict them.

Technological advancement and availability of enormous credible data has made

the task of predicting election relatively easier in advanced democracies (Mavragani

and Tsagarakis, 2016; Newman, 2017). Several authors have used regression models

for countrywide polling data to forecast the outcome of the presidential race and state-
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level polls to predict the outcome of the election in each state while others used the time

series models. Such election surveys, particularly those released in the election year,

appeals to a basic human urge to peek into the future and they stimulate considerable

debate and speculation amongst the media, the public and politicians.

Basically, predicting the effectual winner of an election has not been a rosy af-

fair for political scientist even in developed economies. Despite the many success-

ful forecasts and numerous scholarly works, historic election surveys records depict

mixed results. In the 1936 US presidential election for example, literacy digest pre-

dicting a comfortable win for Landon (57%) against incumbent Roosevelt’s (43%).

The actual elections results were 62% for Roosevelt against 38% for Landon. Their

19% sampling error was majorly attributed to sample bias (Katz, 1941; Venkataramani,

1960; Grant Jr, 1992). On contrary using Quota sampling George Gallup correctly pre-

dict a victory for Roosevelt using a sample of about 50,000 people. He also predicted

the winner of the 1940 and 1944 elections. To minimize nonresponse bias for the 1948

election between Thomas Dewey and Harry Truman, Gallup employed professionals

to conduct the interviews on each of the individuals in a fairly small sample of about

3250 respondents (Hogan, 1997; Sitkoff, 1971; McDonald et al., 2001; Topping, 2004)

. This notwithstanding election forecasting has garnered increasing attention in the re-

cent years. Biemer (2010); Groves and Lyberg (2010) argued that polls are subject to

various types of error implying they are far from being perfect predictors of election

outcomes. Buchanan (1986); Shirani-Mehr et al. (2018) found that the empirical error

of polls is about twice as large as the estimated sampling error. Even though the use of

expert judgment in forecasting elections dates back long before the emergence of sci-

entific polling (Kernell, 2000), we know surprisingly little about the relative accuracy

of experts and polls. Rampant forecast from betting markets is expected during the last

few days prior to the elections. Ideally experts are expected to make useful predictions

for problems for which they get good feedback about their prediction accuracy as they

know the situation well (Greene, 1993).

However, the outcomes of elections, the basis upon which the accuracy and bias

of forecasters is judged, can be used by political experts to draw on a vast amount of

theory and empirical evidence about electoral behavior which should help them to pro-
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gressively develop techniques that can also be used in many other related disciplines as

well. For instance, Erikson and Wlezien (2013) argued that polls tend to tighten. Re-

searchers have also shown that certain campaign events like party conventions (Camp-

bell et al., 1992) and candidate debates (Benoit et al., 2003) can yield predictable shifts

in the candidates’ polling numbers, not necessarily by affecting people’s vote prefer-

ence but rather their willingness to participate in a poll (Gelman et al., 2016)

Although forecasting has now quite a history especially in developed countries,

analyses of popular opinion trends has been highly doubted by majority of the con-

testants in sub Saharan Africa probably due to lack of credible pre-election data or

due to the tyrannical nature of the governing elites who have had little interest in such

externally-determined statements about their ability to deliver what the voters want

(Cheeseman, 2008; Muhati, 2014). In Kenya for instance, most books on politics and

even elections simply do not mention opinion polls. They were never carried out under

the single party state, either because they were logistically impossible, technically dif-

ficult (prior to personal compuerts (PCs) and statistical software packages), considered

pointless (rightly or wrongly) in a one-party state or inhibited or prevented by the gov-

ernment. There is therefore very little published history on this issue until the 1990s,

when the introduction of multi-party democracy was to result in a rapid expansion of

interest in and execution of opinion polls (Grignon et al., 2001).

Throughout the single-party era, the Kenyan government had little or no interest

in the public opinion on any policy issue, bar those considered ‘social’ rather than

political or economic (such as divorce law). Historically Kenya’s political culture has

been an undemocratic one, characterized by low political awareness and socialization,

intense ethnic antagonism, low political morality, routine electoral fraud, lack of ac-

countability, physical insecurity, corruption and apathy (Buglass, 1997; Ajulu, 1992).

This left little place for solicitation of public opinion in any form.

Election forecasting is highly data-driven, focused on a very concrete and delim-

ited task, and in most studies the goal is not to explain election outcomes but rather

to describe and predict them. Pre- election opinion polls that are conducted scientific-

ally and impartially, are essential in projecting voting intentions of the electorate in

a democratic polity (Brouwer, 1955; Webb, 2010). They measure not only support
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for political parties and candidates, but also public opinion on a wide range of so-

cial, economic and political issues. Public opinion is a critical force in shaping and

transforming the society.

Much of the extensive literature devoted to forecasting elections outcomes focuses

on using pre-election polls or prediction markets to predict election results. Schol-

ars like Rothschild (2009), Holbrook-Provow (1987), Kaplan and Barnett (2003) and

DeSart and Holbrook (2003) showed that fairly accurate forecasts can be made using

polls taken just before an election. Although reasonably accurate forecasts of election

results can be made just before an election using both polls and prediction markets,

reliability of these methods drops drasticaaly when used months before an election

(Arrow, 1971).

Nevertheless, some scholars have developed unique methods of forecasting elec-

tion results that may hold more promise than using polls or prediction markets months

before the election. Several techniques have been explored for forecasting the results

of elections For instance Armstrong and Graefe (2011) approach that used biographical

information, Graefe and Armstrong (2012) model that used measures of how well can-

didates would be expected to handle particular issues while Jones (2002) and Lewis-

Beck and Dassonneville (2015) surveyed experts and/or voters for their predictions.

A common and more viable election forecasting approach which is independent of

polls or prediction markets involves using econometric models. These methods use a

wide range of economic and political indicators such as economic growth rates, results

of previous elections, incumbency, and a variety of other possible considerations to

predict the likely outcome of an election. However, while there is an extensive literat-

ure on forecasting elections using econometric models, so far, the vast majority of this

literature has focused on forecasting nationwide results.

2.2 Fundamentals of Bayesian Inference

Bayesian inference is the process of fitting a probability model to a set of data and sum-

marizing the result by a probability distribution on the parameters of the model and on

unobserved quantities such as predictions for new observations (Gelman et al., 1992;

Geweke et al., 1991; Gelman et al., 2004, 2013). It uses the prior information or ex-
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pert opinion to augment the existing data of interest. As quantitative political research

becomes increasingly sophisticated, the more complex, but more capable, Bayesian

approach is likely to grow in popularity (Casella and George, 1992). The Bayesian

inferential engine is a coherent set of axioms that converts prior information to pos-

terior evidence by conditioning on observed data Thus, stipulating prior distributions

for unknown quantities is a requirement, and this requirement has been a long-standing

source of controversy.

Bayesian statistics provides a number of ways to define prior information, and the

strength of these prior assertions can vary considerably within the same inferential

framework. Recent Bayesian work in fields other than political science has exploited

the elicited prior as a means of drawing information from subject-area experts with the

goal of constructing a probability structure that reflects their specific qualitative know-

ledge, and perhaps experiential intuition, about the studied effects (Gelman et al., 2004,

2013). These informed priors derive their name from the way in which the information

is elicited from non-statisticians who have a great deal of information about the sub-

stantive question but are not involved in the model construction process. Such experts

can be physicians, policy-makers, theoretical economists, historians, previous study

participants, outside experts, politicians, community leaders, and others.

The promise of this approach that it has the potential to tie together the seemingly

antithetical research approaches of qualitative area studies with data-oriented work

based on statistical methods, Early critics of the Bayesian paradigm (Pearson, 1920)

focused on the almost exclusive use of uniform (flat) priors at the time as a method for

expressing prior ignorance or uncertainty. Their concern was the effect that this prior

has with small samples (since large enough samples produce standard likelihood ana-

lysis results), and the fact that uniformness does not represent a genuine lack of inform-

ation about a parameter. A great deal of Bayesian work in the middle of the twentieth

century dwelt on the quixotic goal of finding an “objective” alternative (Lindley, 1961)

to mitigate concern about arbitrarily interjecting subjective information through the

prior. This effort proved to be misguided since all statistical models are subjective and

a substantial advantage to the Bayesian choice is that previously known information

can be directly and transparently included in the model specification. The posterior

15



distribution of voter preference θ given some data y is (Gelman et al., 2013):

π(θ|y) =
f(y|θ)π(θ)∫

Θ
f(y|θ)π(θ) dθ

, (2.1)

∝ f(y|θ)π(θ) (2.2)

where π(θ) is the prior distribution and f(y|θ) is the likelihood function.

Recent efforts, which includes this article, focuses on applying simulation tools

from Bayesian statistics (i.e., Markov chain Monte Carlo) to solve previously intract-

able problems. This computational perspective mostly avoids the specification of

deeply informed priors in favour of diffuse (very spread-out) forms (Jac). The use-

ful purposes of such priors, particularly in dealing with so-called nuisance parameters,

greatly supersedes their limitation of fully exploit Bayesian capabilities.

Some mathematics arises in the analytical manipulation of the probability distribu-

tions, notably in transformation and integration in multi-parameter problems (Gelman

et al., 1992). In this research emphasize is put on stochastic simulation (Geweke et al.,

1991), and the combination of mathematical analysis and simulation, as general meth-

ods for summarizing distributions.

2.2.1 Sequential Bayesian model for Bernoulli opinion polls

The problem of understanding and predicting election outcomes has long been part

of political science research. However, lack of pre-election poll data especially in

developing countries is one of the main challenges associated with forecasting election

outcomes (Cohen, 1998). Nevertheless, in developed countries opinion polls are now

easily accessible through Online polling. The online polling is overhauling traditional

phone polls, for instance, the analysis of the 2016 US presidential election campaign

(Carr et al., 2018).

The seminal work of Goodhart and Bhansali (1970), spurred numerous studies

which examined the evolution of voting intentions, as measured by opinion polls, and

in particular the relationship between political popularity, ethnicity, youth factor and

economic variables such as inflation, gross domestic product, personal producer index
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and unemployment. See for example (Miller and Mackie, 1973; Powell Jr and Whitten,

1993; Rattinger, 1991). An empirical issue of particular relevance to the present study

is the degree of persistence in political popularity. Building on the rational expecta-

tions’ version of the permanent income hypothesis Sheffrin et al. (1996) argued that the

effect of news about the economy on voting intentions would be permanent (see also,

Byers et al. (1997); Sargent (2010)). The practical implication of their model is that the

time series of opinion data should behave like a random walk, with the Autoregressive-

Moving Average representation of the time series containing an autoregressive root of

unity. Such processes are nonstationary, and exhibit no mean-reversion tendencies.

Further analysis of the UK data in Byers et al. (1997) rejected the unit root hypo-

thesis in favour of stationary Autoregressive-Moving Average models, although with

autoregressive coefficients close to unity. Similar results are reported by Scott et al.

(1977). Such models would imply that the effect of news on voting intentions, although

it could be quite persistent in practice, is in principle transitory. As a consequence of

aggregating heterogeneous poll responses under certain assumptions about the evolu-

tion of individual opinion, Byers et al. (1997) concluded that the time series of poll

data should exhibit long memory characteristics. In an analysis of the monthly Gallup

data on party support in the UK, Byers et al. (1997) confirmed that the series are long

memory, and virtually pure ‘fractional noise’ processes. However, even though this

time series approach is appealing it requires data observed over a long period of time

which is a limitation to us. The alternative approach is the frequentist regression mod-

elling which does argument/ update opinion polls as series of observations. However,

holds our model to be updated once the data set is updated sequentially from time to

time. In other words, our expression must include the past information which serves

as a prior information. It follows therefore that a Sequential Bayesian Analysis is the

best candidate for this type of model. Basically, a simple model of political popular-

ity, as recorded by opinion polls of voting intentions, is proposed; in particular, the

Sequential Bayesian Analysis.

If the response y is a binary success (1) vversus failure (0) indicator, the canonical

17



family is the Bernoulli distribution with density

y ∼ Bernoulli(θ) = θy(1− θ)1−y,

where θ ∈ [0, 1] can be interpreted as the success probability. The sequential Bayesian

approach combines all previous polls up to the present, where the posterior distribution

for sample yt serves as the prior for the sample yt+1.

Bayesian estimation and inference has a number of advantages in statistical mod-

elling and data analysis. These includes:- (a) Provision of confidence intervals on

parameters and probability values on hypotheses that are more in line with common

sense interpretations; (b) provision of a way of formalizing the process of learning

from data to update beliefs in accordance with recent notions of knowledge synthesis;

(c) assessing the probabilities on both nested and non-nested models (unlike classical

approaches) and; (d) using modern sampling methods, is readily adapted to complex

random effects models that are more difficult to fit using classical methods (Gelman

et al., 1995).

Unlike in the past when statistical analysis based on the Bayes theorem was of-

ten daunting due to the numerical integrations needed. Recently developed computer-

intensive sampling methods of estimation have revolutionised the application of Bayesian

methods, and such methods now offer a comprehensive approach to complex model es-

timation, for instance in hierarchical models with nested random effects (Raftery et al.,

1996). They provide a way of improving estimation in sparse datasets by borrowing

strength (Stroud, 1994; Richardson and Best, 2003), and allow finite sample inferences

without appeal to large sample arguments as in maximum likelihood and other clas-

sical methods. Sampling-based methods of Bayesian estimation provide a full density

profile of a parameter so that any clear non-normality is apparent, and allow a range

of hypotheses about the parameters to be simply assessed using the collection of para-

meter samples from the posterior.

Bayesian methods may also improve on classical estimators in terms of the preci-

sion of estimates. This happens because specifying the prior brings extra information

or data based on accumulated knowledge, and the posterior estimate in being based on
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the combined sources of information (prior and likelihood) (Gelman et al., 2004, 1992,

2013). Indeed, a prior can often be expressed in terms of an equivalent ‘sample size’.

The relative influence of the prior and data on updated beliefs depends on how much

weight is given to the prior (how ‘informative’ the prior is) and the strength of the data.

For example, a large data sample would tend to have a predominant influence on up-

dated beliefs unless the prior was informative. If the sample was small and combined

with a prior that was informative, then the prior distribution would have a relatively

greater influence on the updated belief:

How to choose the prior density or information is an important issue in Bayesian

inference, together with the sensitivity or robustness of the inferences to the choice of

prior, and the possibility of conflict between prior and data (Andrade and O’Hagan,

2006; Berger et al., 1994). In some situations, it may be possible to base the prior

density for θ on cumulative evidence using a formal or informal meta-analysis of ex-

isting studies. A range of other methods exist to determine or elicit subjective priors

(Garthwaite et al., 2005; Moala and O’Hagan, 2010; Elfadaly and Garthwaite, 2013,

2017). A simple technique known as the histogram method divides the range of θ into

a set of intervals (or ‘bins’) and elicits prior probabilities that θ is located in each inter-

val; from this set of probabilities, may be represented as a discrete prior or converted

to a smooth density. Another technique uses prior estimates of moments along with

symmetry assumptions to derive a normal prior density including estimates and of the

mean and variance.

Other forms of prior can be re-parameterised in the form of a mean and variance (or

precision); for example beta priors for probabilities can be expressed as B(mτ, (1 −

m)τ) where m is an estimate of the mean probability and τ is the estimated precision

(degree of confidence in) that prior mean.

2.2.2 Bayesian multinomial polls

There has been a growing interest by political pundits and scholars alike to predict

the winner of the presidential elections. Although forecasting has now quite a history,

we argue that the closeness of recent Kenyan presidential opinion polls and the wide

accessibility of data should change how presidential election forecasting is conducted.
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We present a Bayesian forecasting model that concentrates on the national wide pre-

election polls prior to 2013 general elections and considers finer details such as third-

party candidates and self-proclaimed undecided voters. We incorporate our estimators

into WinBUGS to determine the probability that a candidate will win an election. The

model predicted the outright winner for the 2013 Kenyan election.

2.3 Forecasting from Opinion Polls

In most democratic countries, forecasting the outcome of voting events has long been

of great interest. Quite a good number of statistical models have been built, based

on pre-election opinion polls, to describe methods for predicting political parties and

presidential candidates share of votes in national elections (Campbell et al., 1992;

Jackman, 2005; Linzer, 2013). Some scholars have used exit polls in their models

for forecasting the outcome of an election (Brown and Payne, 1975; Curtice and Firth,

2008). Most of these models have been successful in predicting the outcome before the

final result is declared. Polls fluctuates with time thus they lose precision if they are

taken too early before the elections (Campbell, 2008, 2012). Nevertheless, they can be

useful in identifying trends in preferences of the electorate.

Several models used to predict the united states presidential election outcomes,

have employed fundamentals (or the covariate information such as economic growth,

unemployment rate and geographical variation) to create initial forecasts which are

in turn used as prior input into a binomial model (Campbell et al., 1992; Lock and

Gelman, 2010; Linzer, 2013). According to theories of retrospective voting, which are

the basis for fundamentals, voters tend to punish the incumbent or the incumbent party

for social or economic crises (Duch and Stevenson, 2008; Linzer, 2013; Lewis-Beck

and Dassonneville, 2015). In a Bayesian sense the data, here the opinion poll, can

be combined with prior distributions, which can be represented as follows (Lock and

Gelman, 2010)

Opinion Poll :

d̂s,t|ds,0 N
(
ds,0,

ps,0(1− ps,0)

ns,t
+ var(ds,t|ds,0)

)
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Prior:

d̂s,0|ds,2004 N (ds,2004, var(ds,0|ds,2004))

Here, ds,0 is equivalent to the notation ds,2008 referring to the relative position of state s

at the time of the 2008 election; ds,t is the polls data at time t and ps,0 is the probability

of winning the polls. The posterior will be the product of the two equations above.

Using a linear regression with 16 covariates measured at national, regional and state

levels, Campbell et al. (1992) predicted the outcome of a presidential election for each

state in the US. His covariates included, amongst others, macroeconomic variables,

opinion polls from early campaign, state’s voting record in the previous two elections,

incumbency of a candidate and measures of partisan shifts over time.

To analyse the deviations of opinion on the state level from the nationwide average

(Lock and Gelman, 2010), used a Bayesian forecasting model which was based on a

normal approximation to a binomial outcome. They integrated past election data to

form prior distributions for each state outcome, and combines them with information

from the state-level opinion polls to create posterior distributions of the shares of vote

before the election. This is to account for overdispersion due to survey issues, such as

weighting or clustering as well as uncertainty about opinion.

21



CHAPTER THREE

RESEARCH METHODOLOGY

3.1 Introduction

This study seeks to obtain a good prediction procedure, which should identify the key

factors influencing the voting process in Kenya and control for the possible account

for the cost of misclassification. In this chapter, we propose Bayesian approach to

analysing opinion polls data. We formulated models for both univariate, bivariate as

well as multivariate analysis where more than two candidate are compared.

3.2 Data Selection

Each province is divided into a large number of wards. The interest lies in identifying

which wards will return more representative results, in the sense of yielding estimates

of the percentage of votes for each candidate that would be similar to those that will be

obtained for the whole area. This would eliminate possibly atypical areas and would

reinforce the plausibility of the assumptions of a simple model. Thus, a need for an

appropriate distance among the corresponding probability distributions. A Bayesian

estimate of the probability θi,j that an elector with characteristic similar to those living

in the area covered by ward I, will vote for candidate j is

θi,j =
(ni,j + 1

2
)

ni + m
2

(3.1)

where ni =
m∑
i=1

ni,j

For each of the wards, the expected loss of will be computed using an approximate

distribution rather than the true distribution to predict the proportion θi of the vote that

the jth candidate. li =
∑m

i=1 log
θj
θi,j

(which is non negative). Where θj is the proportion

of votes obtained in the province by candidate j in the previous elections (Bernardo,

1984). According to this criterion, the smaller li is the more representative ward i is. It

will be assumed that this representability remains essentially unchanged, and accord-

ingly, limited sampling to the area covered by the more representative ward. Empirical
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evidence suggests that representative area remains representative thus allowing accur-

ate prediction based solely on them.

3.3 Overview of Bayes’ Theorem

3.3.1 Introduction to Bayes’ theorem

Thomas Bayes (1702 − 1761) studied conditional probability of the sort we are con-

fronted with daily, for example, when we read that youth drivers are more likely to

violate traffic rules than older people or religions tend to be politically conservative

or that better educated people live longer (we ignore whether the claim are true) The

original Bayes’ theorem applies to point probabilities. The basic theorem states:

p(A|B) =
p(B|A)p(A)

p(B)
=

p(B|A)p(A)∑
A p(B|A)p(A)

(3.2)

The basic process of concern in Bayesian statistics is re-computation of the probability

of interest using the updated prior. In other words, a Bayesian perspective, begins with

some prior probability for some event, and this prior is updated probability with new

information to obtain a posterior probability. The posterior probability can then be

used as a prior in subsequent analysis. This is an appropriate strategy for conducting

scientific research. In a layman language, Bayesian analysis is applicable in situations

where data d and hypothesis h are combined implying

p(h|d) =
p(d|h)p(h)

p(d)
(3.3)

Reasoning from data to hypothesis is the heart of scientific research and bayes insight

helps us operationalize some aspects of this in a useful fashion.

3.3.2 Bayes’ theorem and probability distribution

Bayesian statistics typically involves using probability distributions rather than point

probabilities for the quantities in the theorem. The inclusion of a prior probability

distribution ultimately produces a posterior probability that is also a probability dis-

tribution as well. Generally, the goal of Bayesian statistics is to represent prior un-
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certainty about model parameters with a probability distribution and to update this

prior uncertainty with current data to produce a posterior probability distribution for

the parameters that contains less uncertainty. This perspective implies a subjective

view of probability - probability represents uncertainty- and it contrasts with classical

perspective.

From a Bayesian approach any quantity for which the true value is uncertain, in-

cluding model parameters, can be represented by a probability distribution. However,

from a classical point of view, it is unacceptable to place a probability distribution on

parameters because parameters are assumed to be fixed quantities; only the data are

random and thus probability distribution can only be used to represent data. In terms

of probability distribution, Bayes’ theorem can be written as

p(θ|data) =
p(data|θ)p(θ)
p(data)

(3.4)

Where p(θ|data) is the posterior distribution for the parameter θ and p(data|θ) is the

sampling density for the data. p(θ) is the prior distribution for the parameter and

p(data) is the marginal probability of the data. If the sample space is continuous this

marginal probability can be computed as:

p(data) =

∫
p(data|θ)p(θ)dθ (3.5)

This quantity is sometimes called the marginal likelihood for the data and serves as a

normalizing constant to make the posterior density proper. Since the sampling density

is proportional to the likelihood function then Bayes theorem for probability

posterior ∝ Likelihood× prior (3.6)

Specification of an appropriate prior distribution for the parameters is the most sub-

stantial aspect of a Bayesian analysis that differentiates it from a classical analysis.

The prior distribution should represent the plausible values of the prior probabilities

and their relative merit (eg giving prior weight). An appropriate prior distribution for

unknown proportion is a beta distribution. The posterior distribution (3.4) is obtained
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via Markov chain Monte Carlo (MCMC) sampling. This is explained at the end of this

Chapter.

3.4 Sequential Bayesian Analysis of Bernoulli Opinion Polls

3.4.1 Binomial Data

Consider a binary outcome variable T defined as;

Zi =

 1 if the ith respondent voted for the incumbent

0 if the ith respondent voted for the Challenger
(3.7)

Therefore in an opinion poll of size nwhere x respondents voted for the incumbent and

n− x for the challenge, the random variable X =
∑n

i=1 Zi has a binomial distribution

with parameter (i.e. the probability that respondent i will vote for the incumbent) θ .

The probability density function of X given θ is as below

p(X|θ) =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, 2 . . . , n (3.8)

3.4.2 The sequential binomial model

We can use a distribution to represent our prior knowledge and uncertainty regarding

unknown parameter θ. An appropriate and a conjugate prior distribution for our un-

known parameter θ is a beta distribution denoted byBe(α, β) . The probability density

function of a beta distribution is:

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (3.9)

where Γ(α) is the gamma function applied to α and 0 < θ < 1 . The parameters α and

β can be thought of as prior “successes” and “failures,” respectively. This prior density

can also be expressed using the proportionality sign as;

π(θ) ∝ θα−1(1− θ)β−1
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The prior mean E(θ) = µ = α
α+β

and variance var(θ) = σ2 = αβ
(α+β)2(α+β+1)

The

posterior density of θ is a product of a prior and the likelihood. Implying a beta α− x

and β + n− x distribution with parameters , specifically:

π(θ|X) = p(X|θ)π(θ) = Be(α + x, β + n− x)

π(θ|X) ∝ θα+x−1(1− θ)β+n−x−1 (3.10)

Where Be(·, ·) denotes Beta(·, ·) density function. We shall denote this posterior by

p(θ|X(1)), Now, if we observe another sample X(2) then the posterior becomes

π(θ|X(2)) = p(X = x(2)|θ)p(θ|X(1)) = Be(α + x1 + x2, β + n1 + n2 − x1 − x2)

(3.11)

Recursively, for the kthsample we have the posterior for X(k) as

π(θ|X(k)) = p(X = x(k)|θ)p(θ|X(k−1)) = Be(α +
k∑
i=1

xi, β +
k∑
i=1

ni −
k∑
i=1

xi)

(3.12)

This gives a better estimate than the one obtained by just aggregating all the previous

pre-election polls in a single prior. The choice of α and β for our prior distribution

depends on at least two factors: (1) the amount of information about the parameter

available prior to this poll; (2) the amount of stock we want to put into this prior in-

formation. Contrary to the view that this is a limitation of Bayesian statistics, the

incorporation of prior information can actually be an advantage and provides us con-

siderable flexibility. If we have little or no prior information, or we want to put very

little stock in the information we have, we can choose values for α and β that reduce

the distribution to a uniform distribution. For instance, choosing α = 1 and β = 1 , we

get

π(θ|α, β) ∝ θ0(1− θ)0 = 1
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which is proportional to a uniform distribution on the allowable interval for θ . That

is, the prior distribution is flat, not producing greater a priori weight for any value of θ

over another. Thus, the prior distribution will have little effect on the posterior distri-

bution. For this reason, this type of prior is called “noninformative.” On the other hand,

if we have considerable prior information that we wish to weigh heavily relative to the

current data, large values of α and β are used. A little massage of the formula for the

variance reveals that, as α and β increase, the variance decreases, which makes sense,

because adding additional prior information ought to reduce our uncertainty about the

parameter. Thus, adding more prior successes and failures (increasing both paramet-

ers) reduces prior uncertainty about the parameter of interest θ. Lastly, if we have

considerable prior information that we do not wish to weigh heavily in the posterior

distribution, moderate values of α and β are chosen that yield a mean that is consistent

with the previous research but that also produce a variance around that mean that is

broad.

Figure 3.1: Various beta distributions with mean =0.5 for various choice of parameters

In order to clarify these ideas, we illustrate using beta distributions plots with dif-

ferent values of α and β . All the three beta distributions, displayed in Figure 1, have

a mean of 0.5; but different variances as a result of having α and β parameters of

different magnitude.

The most-peaked beta distribution has parameters α = β = 100 . The least-
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peaked distribution is almost flat—uniform—with parameters α = β = 2. As with the

binomial distribution, the beta distribution becomes skewed if α and β are unequal, but

the basic idea is the same: the larger the parameters, the more prior information and

the narrower the density

Throughout the fall of every general election year in Kenya, many pollsters conduct

a number of polls attempting to predict whether candidate A or candidate B would

win the presidential election. One of the hotly contested general election was the

2007 elections the battleground predominantly between the incumbent (here demoted

as K) and the challenger (here denoted as R). The polls leading up to the election

showed the two candidates claiming proportions of the votes that were statistically

indistinguishable in the nation.

Figure 2 shows the prior, likelihood, and posterior densities. The likelihood func-

tion has been normalized as a proper density for θ , rather than X . Clearly the pos-

terior density is a compromise between the prior distribution and the likelihood (cur-

rent data). The posterior is between the prior distribution and the likelihood, but closer

to the prior. The reason the posterior is closer to the prior is that the prior contained

more information than the likelihood: There were 1,950 previously sampled persons

and only 1,067 in the current sample.

Figure 3.2: Prior, likelihood, and posterior for 2007 polling data for Kenya

With the posterior density determined, we now can summarize our updated know-
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ledge about the proportion of voters who will vote for incumbent, and answer our ques-

tion of interest: What is the probability that the incumbent would win? A number of

summaries are possible, given that we have a posterior distribution with a known form

(a beta density). First, the mean of incumbent K is 1498/(1498 + 1519) = 0.497, and

the median is also 0.497. The variance of this beta distribution is .00008283 (standard

deviation=.0091). If we assume that this beta distribution is approximately normal,

then the approximate a 95%confidence interval of K is [0.479 – 0.515].

3.4.3 A Bayesian multinomial model

Consider a particular province and let i, j denote the unknown probability that an

elector from ward i will vote for candidate j and assume that a random sample of size

ni is taken from electors of ward i. Let nij denote those who will vote for candidate j.

So ni =
∑m

i=1 nij It will be assumed that nij is a random sample from a multinomial

distribution with parameters θij and
∑m

i=1 θij . From a Bayesian point of view, the in-

formation provided by nij about θij = 1, 2, .....m is encapsulated in the corresponding

posterior distribution of the θij . A Dirichlet prior is mathematically convenient and

not difficult to assess. The probability density function of a Dirichlet random vector is

given by

p(θ1, θ2, . . . , θm) = Γ

(
m∑
i=1

αj

)
m∏
i=1

θα−1
j

j

αj

 (3.13)

and it’s a conjugate prior for the multinomial distribution. Historically conjugacy has

been very important to Bayesian statistician in that using conjugate prior/likelihood

with known form ensured that the posterior would be a known distribution that could

be easily evaluated to answer the scientific question of interest. Combining a Dirichlet

distribution as a prior with multinomial distribution likelihood, the resulting posterior
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distribution is :

p(θ1, θ2, . . . , θm|x1, x2, . . . , xm) ∝ f(x1, x2, . . . , xm|θ1, θ2, . . . , θm)π(θ1, θ2, . . . , θm)

∝ multinomial(x|θ)dirichlet(θ,α)

∝ dirichlet(θ,α+ x)

∝
m∏
i=1

θ
xi+αj

ij (3.14)

In this research it is of interest to consider:

1. The n opinion poll data sets as separate samples from the same population each

one providing conditionally independent information regarding the prior para-

meters

2. Each poll results as the results of a poll specific parameter θij with θij being a

random realization from a Dirichlet distribution with hyper parameters α′Sj

His approach yields a hierarchical model with the following structure

pr(α,θ|x) ∝ pr(x|θ)pr(θ|α)pr(α) (3.15)

The likelihood part of the model is the product of the sampling density of the n Polls

pr(x|θ) ∝
n∏
i=1

m∏
j=1

θ
xi+αj

ij (3.16)

The prior density for θij is dirichlet, their product is the full prior density

p(θ|α) ∝
n∏
i=1

Γ

(
m∑
i=1

αj

)
m∏
i=1

θα−1
j

j

αj

 (3.17)

Effectively, this article considers previous polling data as a random process generated

by the hyper parameters α−1S
j .
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Our key interest centers particularly on α−1S
j which are thought to be the popu-

lation parameters governing the proportion of voters who would vote for candidate

j and which drives each individual poll results. Lastly the hyper prior for the hyper

parameters j need to be determined. Ideally we will prefer a t hyper prior that is relat-

ively noninformative to reduce the degree of subjectivity on the hyper prior. As such

standard reference uninformative hyper prior

pr(x|θ) ∝
n∏
i=1

m∏
j=1

θ
i
2
ij (3.18)

which ensures nonnegativity of the prior parameters αj (Tierney, 1994; Gelman et al.,

1995) are used. The corresponding posterior distribution

p(α,θ|x) ∝
n∏
i=1

m∏
j=1

θ
xi+αj

ij

n∏
i=1

Γ

(
m∑
i=1

αj

)
m∏
i=1

θα−1
j

j

αj

 n∏
i=1

m∏
j=1

θ
i
2
ij (3.19)

Using Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990; Gilks,1996),

the conditional posterior distribution for after eliminating terms that do not involve

them are easily seen to be Dirichlet with parameters xi + αj − 1
2
, i.e.:

p(α,θ|x) ∝
m∏
j=1

θ
xi− 3

2
ij (3.20)

The conditional posterior distribution for αjb is not simple. Consider a posterior for a

general αj by eliminating terms not involving αj the posterior for αj is

[
Γ(
∑m

i=1 αj)∏m
i=1 Γ(αj)

]n n∏
i=1

θ
xi− 3

2
ij (3.21)
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Equation (3.21) simplify to

[
Γ(
∑m

i=1 αj)∏m
i=1 Γ(αj)

]n
exp

[
ln

(
n∏
i=1

θ
xi− 3

2
ij

)]
(3.22)

=

[
Γ(
∑m

i=1 αj)∏m
i=1 Γ(αj)

]n
exp

[∑
i=1

n(xi −
3

2
) ln θij

]
(3.23)

∝
[

Γ(
∑m

i=1 αj)∏m
i=1 Γ(αj)

]n
exp

(∑
i=1

nαj ln θij

)
(3.24)

Although the θj parameters conditioned on the data and values for α′Sj can be drawn

directly from a Dirichlet distribution, the distribution of α′Sj are unknown forms and

must therefore be simulated using MH step.

3.4.4 Bayesian trivariate model description

More formally, define θi to be the true proportion of voters in a county who intend to

vote for candidate i in the election (for simplicity, let i = 1 correspond to the incum-

bent candidate, i = 2 correspond to the main opposition candidate, i = 3 collectively

correspond to all the other minor candidates (also called third force), and i = 4 corres-

pond to no candidate or voters who have declared that they are still undecided). These

proportions are assumed to be continuous (between 0 and 1) and sum to 1.

The joint prior distribution for θ = θ1, θ2, θ3 is assumed to be a conjugate prior

distribution (i.e., the resulting posterior belongs to the same distributional family as

the prior distribution). To satisfy this requirement, assume that θ follows a Dirichlet

distribution, θ ∼ Dirichlet(α1, α2, α3), which is a multivariate generalization of the

beta distribution and is often used as a prior for the probability of a success in Bernoulli

trials. Therefore, the joint probability density function of θ can be written as

π(θ1, θ2, θ3) ∝ θα1−1
1 θα2−1

2 θα3−1
3 , θi > 0, i = 1, 2, 3 and

∑
θi ≤ 1 (3.25)

The probability that a candidate wins a given county can be computed using the mar-
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ginal probability densities. To obtain these marginals, we sequentially integrated the

remaining variables out of the joint Dirichlet probability density function. We now

illustrate this process by first rewriting the joint Dirichlet probability density function

as

π(θ1, θ2) ∝ θα1−1
1 θα2−1

2 (1− θ1 − θ2) (3.26)

θ1, θ2 ≥ 0, i = 1, 2 and
∑

θi ≤ 1

Integrating overθ3 leads to an expression for the joint probability density of θ1 and θ2

π(θ1, θ2) =

∫ 1−θ1−θ2

0

cθα1−1
1 θα2−1

2 (1− θ1 − θ2)θ3−1dθ3 (3.27)

π(θ1, θ2) = cθα1−1
1 θα2−1

2

∫ 1−θ1−θ2

0

(1− θ1 − θ2)θ3−1dθ3 (3.28)

These results leads to the expression

π(θ1, θ2) ∝ θα1−1
1 θα2−1

2 (1− θ1 − θ2)θ3−1, θ1, θ2 ≥ 0, and θ1 + θ2 ≤ 1 (3.29)

Integrating over all possible values of θ2 gives the marginal density of θ1,

π(θ1) =

∫ 1−θ1−θ2

0

Kθα1−1
1 θα2−1

2 (1− θ1 − θ2)θ3−1dθ2 (3.30)

π(θ1) = Kθα1−1
1 θα2−1

2

∫ 1−θ1−θ2

0

(1− θ1 − θ2)θ3−1dθ2 (3.31)

The results leads to the expression

π(θ1) ∝ θα1−1
1 (1− θ1)θ2+θ3−1, 0 ≤ θ1 ≤ (3.32)

Therefore, by the form of f(θ1), θ1 is distributed as a beta random variable with para-

meters α2 + α3. Using the identical argument, θ2 and θ3 are also distributed as beta
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random variables; hence, θi ∼ Beta(αi,
∑
αi − αi), i = 1, 2, 3

3.4.5 Trivariate choice of prior parameters

The beta prior distribution is characterized by 2 shape parameters, here, α1 and α2 +α3

which must be chosen. Different choices can be incorporated, which would result

in quite varied substantive implications. For example, one possibility is to set these

values so that the expected value and the variance, or the first and second moments, for

θi, i = 1, 2, 3, closely match observed elections. However, there are an infinite number

of combinations of α1, α2 and α3 that result in the same values for the expectations

and the variances for θ1, θ2 and θ3. That is, if the expectation and variance of a beta

random variable are given by

E(θi) =
αi∑3
i=1

and (3.33)

var(θi) =
αi(
∑3

i=1 αi − αi)
(
∑3

i=1)2(
∑3

i=1 αi + 1)
(3.34)

The choice of the shape parameters is essentially arbitrary if we do not issue any con-

straints or do not use any substantive guidance. Fortunately, in presidential forecasting,

we have a great deal of substantive knowledge that can be integrated. One way to con-

strain our choices is to choose the α′si so that

1.
αi∑
αi

equals what θi is expected to be, prior to observing the polling data, and

2. The spread of the prior distribution for θi (determined by
∑
αi with larger values

indicating less uncertainty) reflects the perceived uncertainty in θi.

3.5 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) methods are a class of algorithms for sampling

from a probability distribution. By constructing a Markov chain one can obtain a

sample of the desired distribution as its limiting (stationary) distribution. The idea of

MCMC sampling is to simulate a random walk in the space of parameters of interest,
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θ = (θ1, · · · , θd)′, which converges to the joint posterior distribution p(θ|y). The

samples are drawn sequentially, with the distribution of the sampled draws depending

on the last value drawn; hence, the draws form a Markov chain. The states of the chain

after a large number of iterations is then used as a sample from the desired posterior

distribution.

3.5.1 The Metropolis algorithm

The Metropolis algorithm is a widely used procedure for sampling from a specified

distribution on a large finite set. Given a target posterior distribution p(θ|y), known

up to a normalizing constant, the Metropolis algorithm creates a sequence of random

vectors (θ(1), θ(2), · · · ) whose distribution converges to the target distribution. Each

sequence can be considered a random walk whose stationary distribution is p(θ|y).

The algorithm proceeds as follows (see, e.g.,Tierney, 1994; Gelman et al., 2004). Start

with some initial value θ0. For t = 1, 2, · · · , obtain θ(t) from θ(t−1) using the following

steps:

1. Sample a candidate point θ∗ from a proposal distribution at time t, q(θ∗|θ(t−1)).

The proposal distribution distribution must be symmetric; that is, q(θa|θb) =

q(θb|θa) for all θa and θb.

2. Calculate the ratio of the densities,

r =
p(θ∗|y)

p(θ(t−1)|y)
.

3. Set

θ(t) =

 θ∗ with probablity min(r, 1),

θ(t−1) otherwise.

The algorithm requires the ability to draw θ∗ from the proposal (jumping) distribution

q(θ∗|θ) for all θ.
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3.5.2 The Metropolis-Hastings algorithm

Metropolis–Hastings (M-H) algorithm is a Markov chain Monte Carlo (MCMC) method

for obtaining a sequence of random samples from a probability distribution from which

direct sampling is difficult. M-H algorithm generalizes the basic Metropolis algorithm,

described above, in two ways. First, the proposal distribution q needs no longer to be

symmetric. That is, there is no requirement that q(θa|θb) = q(θb|θa). Secondly, to cor-

rect for the asymmetry in the proposal density the acceptance ratio is now (see, e.g.,

Tierney, 1994; Gelfand and Smith, 1990; Gelman et al., 2004)

r =
p(θ∗|y)q(θ(t−1)|θ∗)

p(θ(t−1)|y)q(θ∗|θ(t−1))
.

Allowing an asymmetric proposal distribution can be useful in increasing the speed of

the random walk.

3.5.3 Gibbs sampler

Gibbs sampling or a Gibbs sampler is a Markov chain Monte Carlo (MCMC) algorithm

for obtaining a sequence of observations which are approximated from a specified mul-

tivariate probability distribution, when direct sampling is difficult. The Gibbs sampler

(Gelfand and Smith, 1990; Gelman et al., 2004) is a MCMC algorithm that has been

found very useful in multidimensional problems. Let Zi = (Xi, Yi)
′ be a Markov

chain. The Gibbs sampler can be used to generate specific multivariate distributions.

Let f(x, y) be a given joint density and f(x|y) and f(y|x) to be conditional densities.

The Gibbs sampling algorithm is given by

1. Generate Z0 = (X0, Y0)′. Set i = 1.

2. Generate Xi ∼ f(xi|Yi−1 = yi−1)

3. Generate Yi ∼ f(yi|Xi = xi)

4. Set i = i+ 1 and goto step 2.

In general, Gibbs sampling algorithm defined in terms of subvectors of θ. At each

iteration t, the Gibbs sampler cycles through the subvectors of θ, drawing θj from the
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conditional distribution given all the remaining components of θ:

pj(θj|θ(t−1)
(−j) , y),

where θ(−j) represents all the components of θ, except for θj , i.e. θ(−j) = (θ1, · · · , θj−1, θj+1, · · · , θd)′.

This suggests the following MCMC scheme.

1. Generate θ(t)
1 from p1(θ1|θ(t−1)

2 , θ
(t−1)
3 , · · · , θ(t−1)

d , y)

2. Generate θ(t)
2 from p2(θ2|θ(t)

1 , θ
(t−1)
3 , · · · , θ(t−1)

d , y)

...

d. Generate θ(t)
d from pd(θd|θ(t)

1 , θ
(t)
2 , · · · , θ(t)

d−1, y)

At the completion of these steps, the vector θ(t) = (θ
(t)
1 , · · · , θ(t)

d )′ provides the sim-

ulated value of θ at the tth iteration of sampling. The d steps of this Gibbs sampling

scheme completes one iteration of the simulation method.

After a large number, T , of iterations, we obtain θ(T ). Gelman et al. (1995) have

shown that under mild conditions, the joint distribution θ(T ) converges at an exponen-

tial rate to p(θ|y) as T → ∞. The desired joint posterior distribution, p(θ|y), can

be approximated by the empirical distribution of M values θ(t) for t = T + 1, T +

2, · · · , T + M , where T is large enough so that the Gibbs sampler has converged and

M is chosen to give sufficient precision to the empirical distribution of interest.

The WinBUGS software, described in the next section, uses Gibbs sampling and

a Metropolis-within-Gibbs routine to draw MCMC samples from complex statistical

models.

3.5.4 WinBUGS for Bayesian inference

WinBUGS (MS Windows operating system version of the BUGS: Bayes-ian analysis

Using Gibbs Sampling) is flexible software for the Bayes-ian analysis of complex stat-

istical models using MCMC methods. The software is currently distributed electronic-

ally from the BUGS project web site.

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml
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More details can be obtained from WinBUGS’ extensive user manual (Spiegelhalter et al.,

2003).

The versatility of the WinBUGS package allows for a wide variety of posterior models.

Firstly, it is possible to sample from a large number of statistical models including, for ex-

ample, the Bernoulli, Poisson, normal, multinomial and gamma distributions. Secondly, with

recent developments in the software, it is also possible to draw samples from non-standard

distributions using the “ones” trick (see WinBUGS’s manual). Thirdly, various sampling al-

gorithms are implemented including Gibbs sampler, Metropolis, slice sampler etc.

A Bayesian p-value can be obtained from the WinBUGS program by using the step( )

function. The function creates a Boolean variable that counts the number of simulations in

which, for example, βx > 0 is true. As a result, the 0/1 values from the step( ) function

can be used to compute left- or right-tail areas. For example, if we have M samples of pβx =

step(βx) after T burn-in samples, an equal-tail two-sided Bayesian p-value of βx is given by

2 min

(
1− 1

M

T+M∑
t=T+1

p
(t)
βx
,

1

M

T+M∑
t=T+1

p
(t)
βx

)
.

While the MCMC algorithms, e.g. using WinBUGS, have the potential to be quicker than

the numerical approximations, the convergence rate of any algorithm cannot be guaranteed. In

the next section we describe methods for assessing the rate of convergence of MCMC samples.

3.5.5 MCMC convergence

Convergence is diagnosed when the chains have ‘forgotten’ their initial values, and the output

from all chains is indistinguishable. Geweke et al. (1991) proposed a convergence diagnostic

for MCMC samples based on a test for equality of the means of the first and last part of a single

chain (by default the first 10% and the last 50%). Geweke’s approach involves calculation

of the sample mean and asymptotic variance in each window, the latter being determined by

spectral density estimation. His convergence diagnostic Z is the difference between these two

means divided by the asymptotic standard error of their difference. As the chain length→∞,

the sampling distribution of the chain has converged. Hence values of Z → N(0, 1) which fall

in the extreme tails of a standard normal distribution, ±2, suggest that the chain has not fully

converged.

Gelman et al. (1992) and Gelman et al. (2004) proposed a general approach to monitoring

convergence of MCMC output in which two or more parallel chains are run with starting values
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that are overdispersed relative to the posterior distribution. Convergence for multiple chains

may be assessed using Gelman-Rubin scale factor reduction factors that compare variation

of the samples parameter values within and between chains. It is based on a comparison of

within-chain and between-chain variances, and is similar to a classical analysis of variance. To

measure the variability of sample θ(t)
j within the chain (j = 1, · · · , J) define

Vj =

T+M∑
t=T+1

(
θ

(t)
j − θ̄j

)2
/(M − 1)

over M iterations after an initial burn-in of T iterations, where θ̄j is the average of θ(t)
j (t =

T + 1, · · · , T + M). Ideally, the burn-in period is the initial set of samples where the effect

of initial parameter values tails off. Convergence is therefore assessed from T + 1 to T + M .

Variability within chains VW is the average of Vjs. Between chain variance is measured by

VB =
M

J − 1

J∑
j=1

(
θ̄j − θ̄

)2
where θ̄ is the average of θ̄js. The scale factor reduction (SRF) compares a pooled estimator of

var(θ), given by VP = VB/M+MVW /(M−1), to VW . More specifically, SRF =
√
VP /VW

with values under 1.2 (Congdon, 2010, p. 19) indicating convergence.

More recently Brooks and Roberts (1998) proposed a convergence statistic known as Brooks-

Gelman-Rubin (BGR). This is a ratio of parameter interval lengths, where for chain j the length

of the 100(1−α)% interval for parameter θ is obtained, i.e. the gap between 0.5α and (1−0.5α)

points from M simulated values. This provides J within-chain interval lengths, with mean Iw.

For the pooled output ofMJ samples, the same 100(1−α)% interval IB is obtained. The ratio

IB/IW should converge to one if there is convergent mixing over different chains.

The above MCMC convergence diagnostics are implemented in two R-packages, namely

CODA (Convergence Diagnosis and Output Analysis) and BOA (Bayesian Output Analysis).

These packages are downloadable from http://cran.r-project.org/. The pack-

ages compute convergence diagnostics and statistical and graphical summaries for the MCMC

samples. Even though BOA is designed to be faster and more efficient than CODA, it is not

flexible in terms of data manipulation than CODA. That is, CODA offers more analysis options

and better graphical tools than BOA.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.1 Introduction

This study seeks to model the vote share for the incumbent and the closest challenger(s) in

Kenya’s general election. Previous elections in Kenya have shown that presidential election is

a two horse-race. There is evidence that presidential strongholds are based largely on ethnicity,

implying that a candidate is likely to garner more votes in region where he/she comes from

even without campaigning. The study also looked at DDP, inflation, PPI, time to election

and unemployment as import predictors to candidates vote share. However, PPI, GDP and

unemployment were insignificant and therefore were removed from the model.

4.2 Simulation Results for Comparison of Two Candidates

In order to understand the concept of sequential Bayesian analysis, we will consider a case

of two candidates (incumbent denoted by K and challenger denoted by R) with four different

scenarios forming our simulation set ups.

4.2.1 Simulations – scenario one

To begin with, let us consider the case where the two candidates have roughly equal popular-

ity proportions but with some observable fluctuations. The first 100 iterations yielded results

shown in Figure (4.1). Even after 20 iterations, the chain tends to the true value.
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Figure 4.1: History plot for the first 100 iterations to demonstrate initiation of the chain

Figure 4.2: Trace plot after burn-in of 10,000 iterations predicting the success rate of the
incumbent
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4.2.2 Simulations – scenario two

We now consider the case where the popularity of one candidate (say the challenger) is in-

creasing implying that the popularity of the other is decreasing over time. As shown in Figure

certainly the incumbent will win the presidential race as the posterior probability is well above

0.5.

Figure 4.3: Trace plot after 10,000 burn-in where the probability of the incumbent is assumed
over 0.5

4.2.3 Simulations – scenario three

Thirdly, we consider the case where the popularity of one candidate (say the challenger) being

constantly slightly higher but with misclassification in favour of the other (say the Incumbent).

The misclassification for this scenario is as follows:

• No misclassification

• Low misclassification: p01=.05 p10=.10

• Misclassification: p01=.05 p10=.15

• Misclassification: p01=.10 p10=.10
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Figure 4.4: History plot showing the effect of misclassification (panels a-d)

The simulations results show that without the misclassification, panel (a), the challenger

will win the election with a good margin. However, with misclassification, panels (b) to (d), the

challenger will narrowly lose the election as his popularity eventually stabilizes around 0.491.

4.3 Results from the Bayesian Model Fit

A Bayesian was fitted to the Kenyan 2013 opinion data comparing three candidates, the two

leading candidates and the other, which comprises of all the other remaining candidates. The

parameters of interest here are α1, α2, α3 and θ1, θ2, θ3 which predict the probability of each

of the three candidates. The model was fitted in WinBUGS with post-analysis in R.
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Figure 4.5: Trace plot of the θ1, the parameter for the leading candidate, from the trivariate
model of the 2013 Kenyan poll

From plots of the three chains, for each parameter, as can be seen in Figures (4.5) - (4.10)

, it is immediately clear that the posterior estimates of the parameters are converging because

the chain mix like spaghetti.

Figure 4.6: Trace plot of the θ2, the parameter for the second candidate, from the trivariate
model of the 2013 Kenyan poll
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Figure 4.7: Trace plot of the θ3, the parameter for the other candidates, from the trivariate
model of the 2013 Kenyan poll

Figure 4.8: Density plot of the θ1, the parameter for the leading candidate, from the trivariate
model of the 2013 Kenyan poll
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Figure 4.9: Density plot of the θ2, the parameter for the leading candidate, from the trivariate
model of the 2013 Kenyan poll

Figure 4.10: Density plot of the θ3, the parameter for the leading candidate, from the trivariate
model of the 2013 Kenyan poll

The density plots of the parameters of interested, shown in Figure (4.8) - (4.10), indicate

that the posterior distributions of (θ1, θ2, θ3) are symmetrical and take nearly a normal distri-
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bution shame. This implies that the posterior point estimates can estimated by posterior mean

or median as shown in Table 4.1.

Table 4.1: The posterior point estimates and 95% credible interval from the trivariate model
of the 2013 Kenyan poll

Parameters Estimates S.E 25% Credible Interval 95% Credible Interval
α∗1 0.000 - - -
α2 -0.198 0.0078 -0.213 -0.183
α3 -2.127 0.0166 -2.160 -2.095
θ1 0.515 0.0019 0.512 0.519
θ2 0.423 0.0019 0.419 0.427
θ3 0.0615 9.3E-04 6.0E-02 0.063

α∗1 is set to 0 as a baseline parameter. From these results the leading Candidate is projected

to win with 51.5% (95% CI 51.2-51.9) with the second candidate with 42.3% (95% CI 41.9-

42.7) and the other remaining candidate at 6.2% (95% CI 6.0-6.3). Since the 95% credibility

interval do not overlap, the model seems to predict incumbent as the outright winner.

4.4 Assessing Bayesian Convergence Diagnostics

Figure 4.11: Gelman convergence dignostic for θ1 and θ2

As can be seen in Figure 4.11, both with Gelman potential scale reduction equal 1.0. This is

a good indicator of convergence of the posterior draws. Furthermore, Figure 4.12, after lag of
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about 15 all parameters decayed well.

Figure 4.12: Auto-correlation function for θ1, θ2 and θ3
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusions

In this research, we have developed the basis of the Bayesian approach to statistical inference of

opinion poll data. Bayesian approach handles various scenario in the full projection including

the aspect of misclassification error. Further, even where polling data are scanty, it incorporates

prior distribution to express the model uncertainty.

Bayesian analysis provided a very powerful approach to modelling opinion poll data. The

posterior mode gives unbiased estimate of the parameter of interest. Furthermore, it averaged

over many data points, thus taking care of possible inconsistencies in some data points. Even

though in this case we considered three candidate, the model can be easily extend to more than

three candidates.

We have provided a flexible way of comparing the two leading candidates since in most

election there is always two candidates who lead the pack. Our approach, though applied

to Kenyan opinion polls, can be applied anyway in the world. The developed model can be

extended easily to multinomial or count outcomes since it is only the parent distribution (the

likelihood) that changes. Otherwise, the philosophy and the ideology remains the same.

5.2 Recommendations and Further Research

This work has demonstrated the importance of the opinion polls and the critical role it plays

in the presidential electioneering process. It is clear that in most election the incumbent will

have an upper hand primarily because of the prior experience and unequivocal support from the

current government. Opinion polls, however, may suffer from self-reporting bias. As part of the

further research, we recommend a model that adjust for the resulting bias. In addition, future

research work should look at the house effects, underdog and bandwagon effects as well as the

effect of news on voters choice. Still the assumption that the pollsters were independent and

that the publication of such polls had no impact on the voters choice of candidate is something

that need to be relaxed.
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APPENDICES

Appendix I: Beta distribution and Binomial profile plots

p = seq ( 0 , 1 , l e n g t h =100)
p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l a b =”” , y l a b =” Frequency ” , t y p e =” l ” ,
c o l =4 , lwd =4)
l i n e s ( p , d b e t a ( p , 10 , 1 0 ) , t y p e =” l ” , c o l =2 , lwd =4)
# l i n e s ( p , d b e t a ( p , 2 , 2 ) , c o l =1 , lwd =4)
l i n e s ( p , d b e t a ( p , 1 , 1 ) , c o l =1 , lwd =4)
# l e g e n d ( 0 . 7 , 8 , c ( ” Be ( 1 0 0 , 1 0 0 ) ” , ” Be ( 1 0 , 1 0 ) ” , ” Be ( 2 , 2 ) ” , ”Be ( 1 , 1 ) ” ) ,
l t y =c ( 1 , 1 , 1 , 1 ) , c o l =c ( 4 , 3 , 2 , 1 ) )

# l i b r a r y ( ar row )
a r r ow s ( 0 . 0 5 , 3 , x1 = 0 . 1 , y1 = 1 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
# a r ro ws ( 0 . 0 , 3 , x1 = 0 . 1 , #y1 = 1 , l e n g t h = 0 . 2 5 , a n g l e = 60 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = p a r ( ” lwd ” ) )
t e x t ( 0 . 0 5 , 3 . 5 , ” Beta ( 2 , 2 ) ” , f a m i l y = ” s e r i f ” , cex =2)
a r r ow s ( 0 . 2 , 6 , x1 = 0 . 3 5 , y1 = 1 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 2 , 6 . 5 , ” Beta ( 1 0 , 1 0 ) ” , f a m i l y = ” s e r i f ” , cex =2)
a r r ow s ( 0 . 3 , 9 , x1 = 0 . 4 5 , y1 = 4 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 3 , 9 . 5 , ” Beta ( 1 0 0 , 1 0 0 ) ” , f a m i l y = ” s e r i f ” , cex =2)

p = seq ( 0 , 1 , l e n g t h =100)
p l o t ( p , d b e t a ( p , 10 , 1 0 ) , x l im =c ( 0 , 1 ) , y l im =c ( 0 , 6 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
l i n e s ( p , d b e t a ( p , 120 , 1 0 0 ) , t y p e =” l ” , c o l =2 , lwd =3)
# l i n e s ( p , d b e t a ( p , 2 , 2 ) , c o l =1 , lwd =4)
l i n e s ( p , d b e t a ( p , 1 , 1 ) , c o l =1 , lwd =4)
# l e g e n d ( 0 . 7 , 8 , c ( ” Be ( 1 0 0 , 1 0 0 ) ” , ” Be ( 1 0 , 1 0 ) ” , ” Be ( 2 , 2 ) ” , ”Be ( 1 , 1 ) ” ) ,
l t y =c ( 1 , 1 , 1 , 1 ) , c o l =c ( 4 , 3 , 2 , 1 ) )

# l i b r a r y ( ar row )
a r r ow s ( 0 . 0 5 , 3 , x1 = 0 . 1 , y1 = 1 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
# a r ro ws ( 0 . 0 , 3 , x1 = 0 . 1 , #y1 = 1 , l e n g t h = 0 . 2 5 , a n g l e = 60 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = p a r ( ” lwd ” ) )
t e x t ( 0 . 0 5 , 3 . 5 , ” Beta ( 2 , 2 ) ” , cex =2)
a r r ow s ( 0 . 2 , 6 , x1 = 0 . 3 5 , y1 = 1 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 2 , 6 . 5 , ” Beta ( 1 0 , 1 0 ) ” , cex =2)
a r r ow s ( 0 . 3 , 9 , x1 = 0 . 4 5 , y1 = 4 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
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t e x t ( 0 . 3 , 9 . 5 , ” Beta ( 1 0 0 , 1 0 0 ) ” , cex =2)

# i n s t a l l . p a c k a g e s ( ” LearnBayes ” )
l i b r a r y ( LearnBayes )
p r i o r = c ( a= 3 , b = 27 ) # b e t a p r i o r
d a t a = c ( s = 3 , f = 9 ) # s e v e n t s o u t o f f t r i a l s
t r i p l o t ( p r i o r , d a t a )

p = seq ( 0 , 1 , l e n g t h =100)
p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l a b =”” , y l a b =” Frequency ” , t y p e =” l ” ,
c o l =4 , lwd =4)

# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
l i n e s ( p , d b e t a ( p , 160 , 1 4 0 ) , t y p e =” l ” , c o l =2 , lwd =4)
# l i n e s ( p , d b e t a ( p , 2 , 2 ) , c o l =1 , lwd =4)
l i n e s ( p , d b e t a ( p , 6 0 , 4 0 ) , c o l =1 , lwd =4)
# l e g e n d ( 0 . 7 , 8 , c ( ” Be ( 1 0 0 , 1 0 0 ) ” , ” Be ( 1 0 , 1 0 ) ” , ” Be ( 2 , 2 ) ” , ”Be ( 1 , 1 ) ” ) ,
l t y =c ( 1 , 1 , 1 , 1 ) , c o l =c ( 4 , 3 , 2 , 1 ) )

# l i b r a r y ( ar row )
a r r ow s ( 0 . 0 5 , 3 , x1 = 0 . 1 , y1 = 1 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
# a r ro ws ( 0 . 0 , 3 , x1 = 0 . 1 , #y1 = 1 , l e n g t h = 0 . 2 5 , a n g l e = 60 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = p a r ( ” lwd ” ) )
t e x t ( 0 . 0 5 , 3 . 5 , ” Beta ( 2 , 2 ) ” , cex =2)
a r r ow s ( 0 . 2 , 6 , x1 = 0 . 3 5 , y1 = 1 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 2 , 6 . 5 , ” Beta ( 1 0 , 1 0 ) ” , cex =2)
a r r ow s ( 0 . 3 , 9 , x1 = 0 . 4 5 , y1 = 4 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 3 , 9 . 5 , ” Beta ( 1 0 0 , 1 0 0 ) ” , cex =2)

# p l o t . new ( )
# p l o t . window ( xl im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 6 0 ) )
# a x i s ( 1 )
# a x i s ( 2 )
#box ( )
p = seq ( 0 , 1 , l e n g t h =100)
p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , y l im =c ( 0 , 1 4 ) , x l a b =”” , y l a b =” Frequency ” ,
t y p e =” l ” , c o l =4 , lwd =4)
# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
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# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
l i n e s ( p , d b e t a ( p , 160 , 1 4 0 ) , l t y =” dashed ” , c o l =2 , lwd =4)
# l i n e s ( p , d b e t a ( p , 2 , 2 ) , c o l =1 , lwd =4)
l i n e s ( p , d b e t a ( p , 6 0 , 4 0 ) , l t y =” d o t t e d ” , c o l =1 , lwd =4)
# l e g e n d ( ” t o p r i g h t ” , c ( ” Be ( 1 0 0 , 1 0 0 ) ” , ” Be ( 1 0 , 1 0 ) ” , ” Be ( 2 , 2 ) ” ,
”Be ( 1 , 1 ) ” ) , l t y =c ( 1 , 1 , 1 , 1 ) , c o l =c ( 4 , 3 , 2 , 1 ) )
a r r ow s ( 0 . 3 , 8 , x1 = 0 . 4 3 , y1 = 1 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 3 , 9 . 5 , ” Beta ( 1 0 0 , 1 0 0 ) ” , f a m i l y = ” s e r i f ” , cex =2)

p = seq ( 0 , 1 , l e n g t h =100)
p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 . 3 5 , 0 . 8 ) , y l im =c ( 0 , 1 4 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
# p l o t ( p , d b e t a ( p , 100 , 1 0 0 ) , x l im =c ( 0 , 0 . 6 ) , y l im =c ( 0 , 1 0 0 ) , x l a b =”” ,
y l a b =” Frequency ” , t y p e =” l ” , c o l =4 , lwd =4)
l i n e s ( p , d b e t a ( p , 160 , 1 4 0 ) , t y p e =” l ” , c o l =2 , lwd =4)
# l i n e s ( p , d b e t a ( p , 2 , 2 ) , c o l =1 , lwd =4)
l i n e s ( p , d b e t a ( p , 6 0 , 4 0 ) , t y p e =” l ” , c o l =1 , lwd =4)
# l e g e n d ( ” t o p r i g h t ” , c ( ” P r i o r ” , ” P o s t e r i o r ” , ” L i k e l i h o o d ” ) , l t y =c ( 1 , 1 , 1 ) ,
c o l =c ( ” Blue ” , ” Red ” , ” b l a c k ” ) )

a r r ow s ( 0 . 4 , 5 , x1 = 0 . 4 3 , y1 = 1 . 5 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )

t e x t ( 0 . 4 , 5 . 5 , ” P r i o r ” , f a m i l y = ” s e r i f ” , cex =2)
a r r ow s ( 0 . 4 2 5 , 1 2 . 5 , x1 = 0 . 5 2 , y1 = 12 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 4 , 1 2 . 5 , ” P o s t e r i o r ” , f a m i l y = ” s e r i f ” , cex =2)
a r r ow s ( 0 . 6 5 , 11 , x1 = 0 . 6 1 , y1 = 8 , l e n g t h = 0 . 3 5 , a n g l e = 20 ,
code = 2 , c o l = p a r ( ” fg ” ) , l t y = p a r ( ” l t y ” ) , lwd = 2 . 5 )
t e x t ( 0 . 6 5 , 1 1 . 5 , ” Normal ized ( l i k e l i h o o d ) ” , f a m i l y = ” s e r i f ” , cex =2)

# t e x t ( 0 . 2 , 0 . 2 , ” P r i o r ” , f a m i l y = ” Times New Roman ” )

a b l i n e ( a =6 , b =3)
t i t l e ( main =” The O v e r a l l T i t l e ” )
t i t l e ( x l a b =”An x− a x i s l a b e l ” )
t i t l e ( y l a b =”A y− a x i s l a b e l ” )
box ( )

p r i o r = c ( a= 100 , b = 100 ) # b e t a p r i o r
d a t a = c ( s = 40 , f = 60) # s e v e n t s o u t o f f t r i a l s
t r i p l o t ( p r i o r , d a t a )
t i t l e ( ”BNN” )
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Appendix II: Simulations using R2WinBUGS

# l o a d l i b r a r y
l i b r a r y (R2WinBUGS)

# change working d i r e c t o r y
se twd ( ”C:\\Work\\JKU\\phd\\ j k ” )
# look a t t h e d a t a
s o u r c e ( ” mul t . d a t ” )
# De f i ne o r g e n e r a t e t h e p a r a m e t e r i n t h e models o f WinBUGS
I <− m u l t $ I
J <− mul t$ J
X <− mult$X
d a t a <− l i s t ( ” I ” , ” J ” , ”X” )

# De f i ne t h e i n i t i a l v a l u e s by u s i n g a f u n c t i o n

i n i t s <− f u n c t i o n ( ) { # i t ’ s a r e a l l y we i rd way t o w r i t e f u n c t i o n
l i s t ( a l p h a = c (NA, rnorm ( 2 , 1 , 2 ) ) , b e t a = c (NA, rnorm ( 2 7 , 2 , 1 ) ) )

}

i n i t s ( )

# c a l l WinBUGS
# We f i r s t s t o p on t h e WinBUGS t o s e e what happened
mul t . sim <− bugs ( da t a , i n i t s ,
working . d i r e c t o r y =”C:\\Work\\JKU\\phd\\ j k ” ,
model . f i l e = ” mul t . bugs ” ,
# t r y i n i t s =NULL
p a r a m e t e r s . t o . s ave = c ( ” a l p h a ” , ” b e t a ” , ” p ” , ” p h a t ” ) , n . t h i n =1 ,
# d e f i n e t h e t h i n r a t e
# n . t h i n =1 , which means t h a t we keep t r a c k i n g t h e samples
# w i t h o u t d r o p p i n g any of them
# i f n o t s e t t i n g n . t h i n , i t w i l l d rop some t e r m s
n . c h a i n s = 3 , n . i t e r = 10000 , n . b u r n i n =5000 , debug=TRUE,
# b u r n i n g = 100 , n . i t e r = MCMCsamples ( each c h a i n )+ n . b u r i n
bugs . d i r e c t o r y = ” c : / WinBUGS14 / ” )
# debug=TRUE w i l l s t o p i n WinBUGS r a t h e r t h a n on ly
# shows t h e r e s u l t s

## How t o f i x m u l t i p l e i n i t i a l v a l u e s
# See what i s i n t h e mul t . sim
l s ( mul t . sim )

# r e s u l t s
p r i n t ( mul t . sim , d i g =3)
p l o t ( mul t . sim )

# MCMC samples
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l s ( mul t . s im$s ims . l i s t )

# mu . t h e t a a s example
h i s t ( mul t . s im$s ims . l i s t $ a l p h a [ , 1 ] , p rob =TRUE)
h i s t ( mul t . s im$s ims . l i s t $ a l p h a [ , 2 ] , p rob =TRUE)

op <− p a r ( )
p a r ( mfrow=c ( 1 , 3 ) )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 1 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 1 ] ) ,
main =”” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 2 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 2 ] ) ,
main =”” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 3 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 3 ] ) ,
main =”” )

# p l o t w i th t h e p r i o r d i s t r i b u t i o n as l i n e
p r i o r s a m p l e <− rnorm ( 1 0 0 0 , 0 , 1 0 )
l i n e s ( d e n s i t y ( p r i o r s a m p l e ) )

dim ( mul t . s im$s ims . l i s t $ a l p h a )
dim ( mul t . s im$s ims . l i s t $ b e t a )
dim ( mul t . s im$s ims . l i s t $ p h a t )

dim ( mul t . s im$s ims . l i s t $ p )

s a p p l y ( mul t . s im$s ims . l i s t $ p h a t , mean )

p a r ( mfrow=c ( 1 , 1 ) )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 1 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 2 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 3 ] )

p a r ( mfrow=c ( 1 , 3 ) )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 1 ] , 1 , mean ) , c o l =” r e d ” ,
lwd =2 , y l im =c ( 0 . 3 , . 6 ) , y l a b = e x p r e s s i o n ( p [ 1 ] ) )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 2 ] , 1 , mean ) , c o l =” b l u e ” ,
lwd =2 , y l im =c ( . 3 , . 6 ) , y l a b = e x p r e s s i o n ( p [ 2 ] ) )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 3 ] , 1 , mean ) , c o l =” g r e e n ” ,
lwd =2 , y l im =c ( 0 , . 2 ) , y l a b = e x p r e s s i o n ( p [ 3 ] ) )

pdf ( ” t h e t a 1 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 1 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 1 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 1 ] , t y p e =” l ” ,
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c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 2 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 3 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

mean ( mul t . s im$s ims . l i s t $ p [ , , 1 ] )
mean ( mul t . s im$s ims . l i s t $ p [ , , 2 ] )
mean ( mul t . s im$s ims . l i s t $ p [ , , 3 ] )

# d e n s i t y
d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] )
pdf ( ” t h e t a 1 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 1 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
dev . o f f ( )

d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] )
pdf ( ” t h e t a 2 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
dev . o f f ( )

d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] )
pdf ( ” t h e t a 3 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] , y l im =c ( 0 , 4 5 0 ) , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
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dev . o f f ( )

pdf ( ” t h e t a 1 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 2 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 3 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )
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Appendix III: Data fit using WinBUGS

# Model 1
model
{

f o r ( i i n 1 : 4 ) {
t h e t a [ i ] ˜ d b e t a ( a l p h a [ i ] , sum . a l p h a [ i ] )
sum . a l p h a [ i ] <− sum ( a l p h a [ 1 : 4 ] ) − a l p h a [ i ]
# p r i o r f o r a l p h a
a l p h a [ i ] ˜ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
t h e t a . h a t [ i ] <− a l p h a [ i ] / sum ( a l p h a [ 1 : 4 ] )

}
}

# Model 2
model
{

f o r ( j i n 1 : nT ) {
f o r ( i i n 1 : nC ) {

t h e t a [ i , j ] ˜ d b e t a ( a l p h a [ i , j ] , sum . a l p h a [ i , j ] )
sum . a l p h a [ i , j ] <− sum ( a l p h a [ 1 : 4 , j ] ) − a l p h a [ i , j ]
# p r i o r f o r a l p h a
a l p h a [ i , j ] ˜ dgamma ( 1 , 1 )
t h e t a . h a t [ i , j ] <− a l p h a [ i , j ] / sum ( a l p h a [ 1 : 4 , j ] )

}
}

}
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Appendix IV: R2WinBUGS Fitting and Graphics

# l o a d l i b r a r y
l i b r a r y (R2WinBUGS)

# change working d i r e c t o r y
se twd ( ”D:\\Work\\JKU\\Hold\\phd\\ j k ” )
# look a t t h e d a t a
s o u r c e ( ” mul t . d a t ” )
# De f i ne o r g e n e r a t e t h e p a r a m e t e r i n t h e models o f WinBUGS
I <− m u l t $ I
J <− mul t$ J
X <− mult$X
d a t a <− l i s t ( ” I ” , ” J ” , ”X” )

# De f i ne t h e i n i t i a l v a l u e s by u s i n g a f u n c t i o n

i n i t s <− f u n c t i o n ( ) {
# i t ’ s a r e a l l y we i rd way t o w r i t e f u n c t i o n
l i s t ( a l p h a = c (NA, rnorm ( 2 , 1 , 2 ) ) , b e t a = c (NA, rnorm ( 2 7 , 2 , 1 ) ) )
}

i n i t s ( )

# c a l l WinBUGS
# We f i r s t s t o p on t h e WinBUGS t o s e e what happened
mul t . sim <− bugs ( da t a , i n i t s ,
working . d i r e c t o r y =”D:\\Work\\JKU\\Hold\\phd\\ j k ” ,
model . f i l e = ” mul t . bugs ” ,
# t r y i n i t s =NULL
p a r a m e t e r s . t o . s ave = c ( ” a l p h a ” , ” b e t a ” , ” p ” , ” p h a t ” ) , n . t h i n =1 ,
# d e f i n e t h e t h i n r a t e
# n . t h i n =1 , which means t h a t we keep t r a c k i n g t h e samples w i t h o u t d r o p p i n g any of them
# i f n o t s e t t i n g n . t h i n , i t w i l l d rop some t e r m s
n . c h a i n s = 3 , n . i t e r = 10000 , n . b u r n i n =5000 , debug=TRUE,
# b u r n i n g = 100 , n . i t e r = MCMCsamples ( each c h a i n )+ n . b u r i n
bugs . d i r e c t o r y = ” c : / WinBUGS14 / ” ) # debug=TRUE w i l l s t o p i n WinBUGS
# r a t h e r t h a n on ly shows t h e r e s u l t s

## How t o f i x m u l t i p l e i n i t i a l v a l u e s
# See what i s i n t h e mul t . sim
l s ( mul t . sim )

# r e s u l t s
p r i n t ( mul t . sim , d i g =3)
p l o t ( mul t . sim )
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# MCMC samples
l s ( mul t . s im$s ims . l i s t )

# mu . t h e t a a s example
h i s t ( mul t . s im$s ims . l i s t $ a l p h a [ , 1 ] , p rob =TRUE)
h i s t ( mul t . s im$s ims . l i s t $ a l p h a [ , 2 ] , p rob =TRUE)

op <− p a r ( )
p a r ( mfrow=c ( 1 , 1 ) )

se twd ( ”D:\\Work\\JKU\\Hold\\phd\\ j k \\2020 − September ” )

pdf ( ” h i s t − p h a t 1 . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 1 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 1 ] )
, main =”” )
dev . o f f ( )

pdf ( ” h i s t − p h a t 2 . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 2 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 2 ] )
, main =”” )
dev . o f f ( )

pdf ( ” h i s t − p h a t 3 . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ , 3 ] , p rob =TRUE, x l a b = e x p r e s s i o n ( p [ 3 ] )
, main =”” )
dev . o f f ( )

# p l o t w i th t h e p r i o r d i s t r i b u t i o n as l i n e
# p r i o r s a m p l e <− rnorm ( 1 0 0 0 , 0 , 1 0 )
# l i n e s ( d e n s i t y ( p r i o r s a m p l e ) )

dim ( mul t . s im$s ims . l i s t $ a l p h a )
dim ( mul t . s im$s ims . l i s t $ b e t a )
dim ( mul t . s im$s ims . l i s t $ p h a t )

dim ( mul t . s im$s ims . l i s t $ p )

s a p p l y ( mul t . s im$s ims . l i s t $ p h a t , mean )

p a r ( mfrow=c ( 1 , 3 ) )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , 1 , 1 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , 1 , 2 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , 1 , 3 ] )

b o x p l o t ( c b i n d ( mul t . s im$s ims . l i s t $ p [ , 2 , 1 ] ,
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mul t . s im$s ims . l i s t $ p [ , 2 , 2 ] ) )

b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 1 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 2 ] )
b o x p l o t ( mul t . s im$s ims . l i s t $ p [ , , 3 ] )

# p a r ( mfrow=c ( 1 , 3 ) )
pdf ( ” t r a c e − p h a t 1 . pdf ” )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 1 ] , 1 , mean ) , c o l =” r e d ” ,
lwd =2 , y l im =c ( 0 . 5 0 5 , . 5 2 5 ) , y l a b = e x p r e s s i o n ( p [ 1 ] ) )
dev . o f f ( )

pdf ( ” t r a c e − p h a t 2 . pdf ” )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 2 ] , 1 , mean ) , c o l =” b l u e ” ,
lwd =2 , y l im =c ( . 4 1 2 5 , . 4 3 2 5 ) , y l a b = e x p r e s s i o n ( p [ 2 ] ) )
dev . o f f ( )

pdf ( ” t r a c e − p h a t 3 . pdf ” )
t s . p l o t ( a p p l y ( mul t . s im$s ims . l i s t $ p [ , , 3 ] , 1 , mean ) , c o l =” g r e e n ” ,
lwd =2 , y l im =c ( 0 . 0 5 7 5 , . 0 6 5 ) , y l a b = e x p r e s s i o n ( p [ 3 ] ) )
dev . o f f ( )

pdf ( ” t h e t a 1 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 1 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 1 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 1 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 2 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 3 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
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c o l =” g r e e n ” )
dev . o f f ( )

mean ( mul t . s im$s ims . l i s t $ p [ , , 1 ] )
mean ( mul t . s im$s ims . l i s t $ p [ , , 2 ] )
mean ( mul t . s im$s ims . l i s t $ p [ , , 3 ] )

#summary s t a t i s t c i c s

# d e n s i t y

d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] )
pdf ( ” t h e t a 1 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 1 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
dev . o f f ( )

d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] )
pdf ( ” t h e t a 2 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
dev . o f f ( )

d <− d e n s i t y ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] )
pdf ( ” t h e t a 3 − d e n s i t y . pdf ” )
h i s t ( mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] , y l im =c ( 0 , 4 5 0 ) , p rob =T ,
main =”” , x l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , c o l = g ray ( . 5 ) )
l i n e s ( d , lwd =2 , c o l =” b l u e ” )
dev . o f f ( )

pdf ( ” t h e t a 1 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 1 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 2 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 2 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 2 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” r e d ” )
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l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 2 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )

pdf ( ” t h e t a 3 − h i s t . pdf ” )
p a r ( mfrow=c ( 1 , 1 ) )
p l o t ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 1 : 5 0 0 0 , 3 ] ,
t y p e =” l ” , y l a b = e x p r e s s i o n ( t h e t a [ 3 ] ) , x l a b =” I t e r a t i o n ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” r e d ” )
l i n e s ( 1 : 5 0 0 0 , mul t . s im$s ims . l i s t $ p h a t [ 2 * 5 0 0 0 + ( 1 : 5 0 0 0 ) , 3 ] , t y p e =” l ” ,
c o l =” g r e e n ” )
dev . o f f ( )
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Appendix V: Diagnostic using CODA

l i b r a r y ( coda )
se twd (D : / Work / JKU / Hold / phd / j k / docs ” )
s o u r c e ( ” coda −add . r ” ) # l o a d t h e a d d i t i o n a l f u n c t i o n s
c h a i n 1 = r e a d . coda ( ” coda1 . o u t ” , ” coda1 . i n d ” , s t a r t =3001 , end =12000 ,
t h i n =1)
c h a i n 2 = r e a d . coda ( ” coda2 . o u t ” , ” coda1 . i n d ” , s t a r t =3001 , end =12000 ,

t h i n =1)

# Geweke Diag
geweke . d i a g ( c h a i n 1 )
geweke . d i a g ( c h a i n 2 )
geweke . p l o t ( c h a i n 1 )
geweke . p l o t ( c h a i n 2 )

# Gelman Diag
gelman . d i a g ( l i s t ( cha in1 , c h a i n 2 ) )
gelman . p l o t ( l i s t ( cha in1 , c h a i n 2 ) )

# d e n s i t y p l o t

p d e n s p l o t ( l i s t ( cha in1 , c h a i n 1 ) , ” mu” , main= e x p r e s s i o n (mu ) )
p d e n s p l o t ( l i s t ( cha in1 , c h a i n 1 ) , ” t h e t a [ 1 ] ” ,
main= e x p r e s s i o n ( t h e t a [ 1 ] ) )

# h i s t o g r a m of t h e h a l f o f t h e c h a i n
p a r ( mfrow=c ( 2 , 2 ) )
h i s t . c h a i n ( cha in1 , ” mu” , ” f i r s t ” , main= e x p r e s s i o n (mu*” ( Chain 1 ) ” ) )
h i s t . c h a i n ( cha in1 , ” mu” , ” second ” , main= e x p r e s s i o n (mu*” ( Chain 1 ) ” ) )

h i s t . c h a i n ( cha in2 , ” mu” , ” f i r s t ” , main= e x p r e s s i o n (mu*” ( Chain 2 ) ” ) )
h i s t . c h a i n ( cha in2 , ” mu” , ” second ” , main= e x p r e s s i o n (mu*” ( Chain 2 ) ” ) )

# q q p l o t o f t h e f i r s t and t h e second h a l f o f t h e c h a i n
p a r ( mfrow=c ( 1 , 1 ) )
qq . c h a i n ( cha in1 , ” mu” , main= e x p r e s s i o n (mu ) )
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