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ABSTRACT 

Malaria remains a global public health problem as the current lines of treatment and 
control are becoming increasingly less effective or under threat of decreased efficacy. 
While much progress has been made towards malaria vaccine development, the 
enormous diversity of the parasite antigens, and redundancy in their interaction with 
humans pose a great challenge to the current vaccine candidates, particularly in regions 
with high malaria transmission. In Cameroon, malaria contributes significantly to 
mortality reported at healthcare facilities; a large proportion of which are children 
below 5 years old. Evidence for the involvement of host (human) genetic factors in 
increased or decreased malaria susceptibility has mounted for over the years. Large 
scale multi-site genome-wide association studies (GWAS) have now revealed multiple 
human genetic factors associated with malaria susceptibility. Yet, due to the high 
genetic diversity (population structure) among African populations, these methods 
have been limited in multi-site studies. In this study, a country-specific GWAS for 
malaria case and control participants from the South West, Littorale, and Centre 
regions in Cameroon was performed in order to uncover genetic variants that may not 
have been found by previous studies. First, population structure analysis was 
performed on 1073 samples to ascertaining whether there was significant genetic 
differentiation within the regions that could reduce the power of the GWAS. The study 
confirmed significant genetic diversity among Cameroon’s major ethnic groups; 
Bantu, Semi-Bantu, and Fulani. Association analysis confirmed attenuation of GWAS 
signals due to this population structure. In addition, markers in potentially novel 
malaria protective loci were uncovered; SOD2 specific to Cameroon’s Semi-Bantu 
ethnic group and CHST15 in Cameroon’s Bantu and Semi-Bantu ethnic groups. 
Furthermore, heterogeneity within the beta-like globin (HBB) gene cluster was 
revealed among the Bantu and Semi-Bantu ethnic groups that underscores age old fine-
scale structure within the country. The findings of this study highlight population-
specific variants and disparate genetic association patterns among Cameroon’s major 
ethnic groups that should be important for future genetic association studies in the 
Country. The findings also further the understanding of the evolutionary course of 
Cameroon’s major ethnic populations under malaria pressure 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background Information 

Host genetic factors play a major role in malaria phenotypic variance, contributing 

up to 25% of the inter-individual differences of severe malaria (SM) expression 

(Mackinnon et al., 2005). Although the sickle-cell mutation (HbS) affords the strongest 

protection (in its heterozygous state [HbAS]) against severe malaria across sub-

Saharan Africa (sSA), it only explains 2% of the total SM variance (Mackinnon et al., 

2005). Current data further show that only a small fraction of malaria phenotypic 

variance is explained by the totality of genetic markers discovered so far. Hence, many 

more variants remain to be discovered (Malaria Genomic Epidemiology Network, 

2019). 

The establishment of the Malaria Genomic Epidemiology Network (MalariaGEN) 

in 2005 brought together researchers from multiple countries with the goal of 

leveraging large-scale genomic variation studies to uncover malaria-associated 

variants (Malaria Genomic Epidemiology Network, 2008b). By pooling human 

genetic data in targeted genotyping and consortium-based genome-wide association 

studies (GWASs), multiple resistance/susceptibility loci in African genomes were 

replicated (HBB, ABO, and G6PD for example), while others, novel, were uncovered 

(ATP2B4, FREM3-GYP, and EPHA7 for example) (Malaria Genomic Epidemiology 

Network, 2019). Although a majority of these loci are shared across sSA (HbS, G6PD 

deficiency, ABO), others have evolved disparately and restricted to specific geographic 

regions; for instance, the HbC in West Africa with an epicenter around Burkina Faso, 

and the Dantu (GYPA-B) in East Africa (Kariuki et al., 2020). 

Meanwhile, the two targeted genotyping studies conducted in Cameroon between 

2013 and 2014 in the early stages of the MalariaGEN collaboration found 

polymorphisms in several loci associated with malaria resistance (HBB, IL10, IL17RE, 

NOS2, and ADCY9) and malaria susceptibility (G6PD, IL17RD, EMR1, and RTN3) in 

two major ethnic groups in the country; Bantu and Semi-Bantu (Apinjoh et al., 2013, 

2014). These remain the only Cameroon-specific large-scale human genetic studies of 
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malaria reported to date. The contribution of Cameroonian genomes to malaria 

phenotypic variance has been further elucidated by MalariaGEN’s multi-site studies 

(Malaria Genomic Epidemiology Network, 2019). These studies, though largely 

successful, have often met specific challenges dealing with ethnically diverse 

populations that prompted the authors to recommend country-specific analyses which 

have thus far been conducted with success in Tanzania (Ravenhall et al., 2018), Kenya 

(Ndila et al., 2018), the Gambia (Jallow et al., 2009), and Ghana (Timmann et al., 

2012), uncovering novel loci in the populations. This remains to be performed in 

Cameroon. 

A peculiar observation was made with Cameroonian participants in a 

MalariaGEN’s 2019 study where, while the HbAS was found to be most strongly 

protective in The Gambia, its weakest effect was observed in Cameroon (Malaria 

Genomic Epidemiology Network, 2019). Ironically, the HbS gene is believed to have 

originated from around Cameroon and is still highly prevalent in Cameroon, and would 

have been expected to be most protective in this region (Esoh & Wonkam, 2021). Also, 

the HbC variant, which tends to ‘compete’ with the HbS, is almost completely absent 

in Cameroon (Malaria Genomic Epidemiology Network, 2019). In addition, variants 

in other known malaria protective loci (FREM3, ATP2B4, GYPA-B) have not been 

independently replicated in Cameroon. 

Considering that Cameroonian ancestral populations are among the earliest to have 

walked the continent (Lipson et al., 2020), and considering data that suggest the 

virulent P. falciparum malaria and the HbS mutation may have been around Cameroon 

perhaps earlier than anywhere else (Otto et al., 2018), it is therefore likely that the 

genomes of Cameroonians are enriched with population-specific variants that are 

nearly—if not equally or more strongly—as protective as the HbAS. Therefore, an 

analysis focusing on Cameroonian samples only could shed some light on these grey 

areas. 

In this project, I used a genome-wide association approach (GWAS) to investigate 

the genomes of samples of malaria cases and controls belonging to three ethnic groups 

(Bantu, Semi-Bantu, and Foulbe or Fulani) from three regions in Cameroon (South 
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West, Littorale, and Centre) where malaria is endemic. First, I ascertaining whether 

there was significant population genetic structure that may negatively impact the 

association signals by computing several measures of genetic distance. I then Scan the 

genomes of the case-control participants for genetic markers of 

resistance/susceptibility to malaria. To the best of my knowledge, this study is the first 

of its kind in Cameroon. It has confirmed the presence of fine-scale population genetic 

structure within Cameroon and uncovered malaria protective loci that have not be 

reported by previous studies. This study is fundamentally a hypothesis generating 

study that adds to the global body of knowledge of malaria protection, furthers the 

understanding of the impact of age-old malaria pressure on Cameroonian genomes, 

and importantly, will direct future human genetic studies of malaria in the country.  

1.2. Statement of Problem 

Malaria continues to kill almost half a million people every year globally. To date, 

no approved vaccine against malaria exists, and resistance to the drugs at the first-line 

of action, the artemisinin derivatives such as in South East Asia continues to threaten 

the global fight against malaria give they spread to Africa. In addition, the mosquitoes 

that transmit malaria (female Anopheles mosquitoes) are becoming resistant to the 

insecticides that are used to control them (Etang et al., 2016; Hien et al., 2017). As a 

result, the world has seen a slowdown in the progress against the disease for the past 

three years (WHO, 2020). Without an effective vaccine or a more effective drug, 

malaria will persist in the most endemic areas particularly in Africa, and the world may 

see a roll back in the gains made in prevention and treatment of malaria. Should 

resistance to artemisinin-derived drugs spread throughout Africa, malaria would be 

expected to continue to claim many lives. 

Severe malaria is the preponderant cause of malaria morbidity and mortality in 

sub-Saharan Africa (WHO, 2020). The magnitude of the burden of the disease is 

reflected in its impact on the long-term economic growth and development of countries 

affected including Cameroon (Malaney et al., 2004). The large economic cost of 

prevention, treatment and loss of productivity due to disease-related morbidity and 

mortality play significant roles in reducing the gross domestic product (GDP) of these 

highly burdened countries (Malaney et al., 2004). 
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In Cameroon, where the entire population of ~23 million individuals is at risk of 

malaria and the virulent Plasmodium falciparum is the most prevalent, intermittent 

preventive treatment in pregnancy (IPTp3), and the number of children under 5 years 

with fever who visit hospitals for treatment are usually low (≤30%). Cameroon has 

therefore contributed 3% of the global malaria deaths over the past 3 decades. 

According to the most recent estimates, this accounted for ~22% of all deaths reported 

in health care facilities in 2017 (Severe Malaria Observatory, 2018) in the country.  

Although there has been progress in reducing the prevalence of malaria in 

Cameroon from 41% since the year 2000 to 24% in 2017, the disease is yet to be 

controlled in the country (Antonio-Nkondjio et al., 2019). In addition, a recent review 

found that there has been a 7% decline in the efficacy of artemisinin-based 

combination therapies in the country from 97% in 2006 to 90% in 2016, with P. 

falciparum chloroquine resistance (Pfcrt) and P. falciparum multidrug resistance 1 

(Pfmdr1) gene resistant mutations predominantly circulating among the parasite 

populations in the country (Antonio-Nkondjio et al., 2019). Meanwhile, the circulation 

of An. gambiae, An. coluzzii, An. arabiensis and An. funestus (the predominant 

Anopheles species in the country) resistant mutations in the country threaten the use 

of long-lasting insecticide nets (LLINs) (Antonio-Nkondjio et al., 2019). 

Therefore, if progress against malaria is to be maintained towards reduction in 

deaths, cases and consequently elimination and eradication, continued research into 

more effective strategies to combat the disease is imperative. 

1.3. Rationale 

Genomic and epidemiologic studies have shown that host genetic factors play a 

major role in the inter-individual expression of severe malaria. Over the past decade, 

genetic studies such as candidate gene association analyses have proven valuable in 

probing mechanisms by which the malaria parasite, Plasmodium spp., evade drugs and 

vaccines. However, such studies have been less powerful in and narrow in scope as 

only a few genes and variants can be studied each time. The development of genome-

wide association studies (GWASs) ushered in a new era of disease variant discovery 

with significant power (Spencer et al., 2009). Thousands of disease associated 

polymorphisms have been discovered; 5687 GWASs comprising 71,673 variant-trait 

associations as of September 2018 (Buniello et al., 2019). While population-specific 



5 
 

GWAS studies have been conducted with arguable success in some African 

populations, this has not been performed in Cameroon. The availability of genome-

wide data of Cameroonian malaria case and control participants offers a unique 

opportunity to explore the power of the method and unravel novel—perhaps 

“medically actionable”—gene variants in the population. 

Although GWA studies have led to the discovery of important molecules in human 

populations, heterogeneity in study populations—characterized by genetic diversity—

have often hampered the association analyses, particularly in sub-Saharan Africa. 

Genetic diversity in Africa is the greatest in the world, posing a particular challenge to 

GWASs. The genetic diversity of specific African populations has been largely 

understudied; with the exception being the Southern African population where 

extensive fine-scale population structure has been studied (Uren et al., 2016). 

Cameroon, the world’s most culturally diverse population (J. D. Fearon, 2003) may 

have significant genomic differences among its ethnic groups that may be biasing 

genetic studies. These studies usually involve sampling large numbers of unrelated 

individuals, usually from two groups in the general population; a group with the 

condition or disease (called the case group) and another without the condition (called 

the control group). 

Despite attempts to address heterogeneity in multi-site cohort genetic studies on 

the continent, these studies continue to underperform in Africa due to genetic diversity 

that is usually not fully accounted for by existing models—this prompted the 

MalariaGEN to recommend country-specific analyses (Malaria Genomic 

Epidemiology Network, 2015, 2019). Even in a highly structure population, country-

specific association studies would require careful analysis design. Therefore, 

understanding the specific genetic structure of Cameroonian populations will be 

essential to inform sampling and analysis designs that are necessary to increase the 

power of current methods of association study. This would be expected to reduce the 

false positive rate, and increase the signals of disease association. 

1.4. Research Questions 

i. Is there significant genetic population structure in Cameroon that may bias 

association analysis of severe malaria and other genomic studies in the country? 
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ii. Are there novel genetic polymorphisms in Cameroonian populations and specific 

ethnic groups that are significantly associated with malaria and malaria sub-

phenotypes? 

1.5. Hypothesis 

i. There is no significant population structure in Cameroon that may bias genomic 

studies. 

ii. There are no novel genetic variants that are associated with malaria and malaria 

sub-phenotypes in malaria patients from the South West, Littoral, and Centre 

regions of Cameroon. 

1.6. Objectives  

1.6.1. General Objective 

To investigate genetic diversity and markers of symptomatic malaria 

susceptibility in three malaria-endemic regions of Cameroon . 

1.6.2. Specific Objectives 

i. To perform population structure analysis of Cameroonians living in the 

Southwest, Littorale, and Centre region using measures of genetic proximity. 

ii. To investigate the genomes of Cameroonians from the Southwest, Littorale, and 

Centre regions for markers that may be associated with symptomatic malaria 

susceptibility via genome-wide association analyses. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1.  Introduction 

Malaria is caused by apicomplexan parasites of the genus Plasmodium of which 

four species predominantly infect humans: Plasmodium falciparum (P. falciparum), 

Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Another type called 

Plasmodium knowlesi fround in Southeast Asia is closely linked to human malaria and 

infect monkeys (CDC, 2020). P. falciparum is the most predominant species in Africa, 

making over 95% of Plasmodium species in most African countries. The next most 

prevalent species in Africa is usually P. vivax which accounts for less than 5% of 

malaria infections in most populations, but up to 58% of infections in some regions of 

Ethiopia (Deress & Girma, 2019). Mosquitoes of the genus Anopheles are responsible 

for malaria transmission. 

Malaria’s devastating toll on the humankind is best captured by the opening 

statement of Livingstone’s 1971 review, “Malaria has probably killed more human 

beings than any single disease” (Livingstone, 1971). Malaria has afflicted humans for 

much of the last 5,000 years following the adoption and spread of agriculture almost 

10,000 years ago from around the fertile crescent, the region spanning modern-day 

Iraq, Syria, Lebanon, Palestine, Israel, Jordan, and Egypt, together with the south-

eastern region of Turkey and the western fringes of Iran (Phillipson, 2006). While 

malaria is believed to have existed up to 100,000 years ago (Kwiatkowski, 2005), the 

virulent Plasmodium falciparum malaria is known to have diverged from gorillas about 

40,000 – 60,000 years ago (Otto et al., 2018). A population bottleneck in the parasite 

population almost 5,000 – 6,000 years ago followed by rapid population expansions 

leading to the emergence of the P. falciparum-specific erythrocyte invasion protein 

EBA-175 ~4000 years ago then led to even more virulent strains (Otto et al., 2018). 

Today, malaria remains a global public health concern. It still kills nearly half a 

million people each year; 409,000 in 2019 according to recent World Health 

Organization (WHO) reports, despite the gains made in prevention, control, and 

treatment (WHO, 2020). Sub-Saharan Africa accounts for a majority of malaria cases: 

215 million (94%) of the 229 million cases reported in 2019, and the most malaria 
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deaths: 95% of the 409,000 deaths reported worldwide in 2019. Children below five 

years of age are the most vulnerable, and they accounted for 67% of all malaria deaths 

in 2019 (WHO, 2020). 

2.2. Malaria transmission and Plasmodium parasite life cycle 

Generally, malaria transmission is seasonal and closely linked to climatic 

conditions: precipitation, temperature, and humidity. In areas where all these 

conditions are favorable for the breeding and growth of the vectors, and consequently 

transmission, malaria, is usually endemic—transmitted throughout the year. However, 

in regions where at least one of these conditions is absent, malaria transmission may 

be sporadic (epidemics) or endemic in a sub-set of vulnerable immunologically naïve 

population. 

The life cycle of malaria parasites is complex, requiring two hosts; the Anopheles 

mosquito and the human host (Figure 2.1) (Meibalan & Marti, 2017). Human malaria 

infection is established after the bite of a female Anopheles mosquito carrying 

Plasmodium sporozoites. Within 30 minutes of injection, the parasite sporozoites 

migrate through the lymphatic system and eventually get presented to the host immune 

system in the lymph nodes where some of them get eliminated by host innate immunity 

(Acharya et al., 2017), and some of them make their way to the liver through liver 

sinusoids (Langhorne & Duffy, 2016).  

The sporozoites infect liver cells (hepatocytes) using specialized receptors, and 

remain shielded from the host immune system in parasitophorous vacuole (Cowman 

et al., 2016). Some of the sporozoites are however eliminated by cytotoxic T cells (Tc) 

and interferon gamma (INF-gamma) producing cells. The sporozoites that make it to 

the liver undergo exo-erythrocytic schizogony by differentiating into schizonts which 

divide into thousands of merozoites after about 2 – 10 days (Cowman et al., 2016; 

Soulard et al., 2015). Five to six days after the hepatic phase, schizonts rupture to 

release merozoites which invade red blood cells in a multi-step process that last only 

about 2 minutes (Cowman et al., 2016). This presents a short transit and exposure time 

of parasite antigens to the host immune system and this has been regarded as a 

mechanism of evading the host immune system.  
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In the erythrocytes, the merozoites differentiate into trophozoites that further 

differentiate into schizonts. The schizonts undergo repeated mitotic division into 

merozoites that rupture the erythrocyte after about 48 hours and infect other red blood 

cells. Each burst releases about 20 – 30 new merozoites. This erythrocytic schizogony 

of the parasite life cycle involves the repeated division of schizonts into ring stage 

trophozoites, which in turn mature into schizonts again that burst to release merozoites. 

Some trophozoites differentiate and commit to gametocytes (sexual gametes: male or 

micro-gametocyte and female or acro-gametocyte) which are important for the 

continuation of the parasite life cycle. During another blood meal, the female 

Anopheles mosquito ingests the gametes. The sexual stage of the parasite life cycle 

occurs in the mosquito, wherein, the gametes fuse to form a zygote which develops 

into a motile, elongated ookinete. The ookinete migrates to the midgut of the mosquito 

and develops into Oocysts which later raptures to release sporozoites, ready to be 

injected into another human host. In the human host, the parasite interacts with many 

cell surface ligands and receptors to make its way into host cells. 
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Figure 01: Life cycle of malaria parasite. (Source: Life cycle of the malaria 

parasite" from Epidemiology of Infectious Diseases. Retrieved from: 

http://ocw.jhsph.edu. Copyright © Johns Hopkins Bloomberg School of Public 

Health. Creative Commons BY-NC-SA) 

2.3. Host-parasite interactions in the establishment of a malaria infection 

After an infection is successfully established, parasites migrate in the blood vessels 

via interaction of their thrombospondin-related adhesive proteins (TRAP) with CD36 

receptors on human endothelial cells (CD36 is receptor for several molecules like 

thrombospondin and short chain fatty acids) (Dundas et al., 2018). The sporozoites 

contain circomsporozoite proteins (CSP) on their surface which interact with heparan 

sulphate proteoglycans (HSPG - which are crucial in the uptake of chylomicron 

remnants by liver cells) on the surface of hepatocytes to penetrate liver cells 

(Langhorne & Duffy, 2016). The absence of HSPG on the skin cells is probably the 
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reason why the cells are not infected upon inoculation of sporozoites after a mosquito 

bite (Acharya et al., 2017). 

After the hepatic cycle, the schizonts release merozoites in to the blood. Merozoites 

are characterized by small, polarized pear-shaped structures with multiple antigens on 

their surfaces (Wright & Rayner, 2014). They also contain specialized subcellular 

structures known as rhoptries and micronemes which are essential for erythrocyte 

invasion (Cowman et al., 2016). Merozoites use one of either two ways to invade 

erythrocytes: sialic acid (SA)-dependent pathway and SA-independent pathway 

(Acharya et al., 2017). The P. falciparum erythrocyte binding ligands (EBL) utilize 

the SA-dependent pathway which involves erythrocyte surface receptors bearing SA 

residues. Erythrocyte receptors implicated in this pathway include the glycophorins A 

(GYPA), B (GYPB) and C (GYPC) (Kwiatkowski, 2005). It has been shown that the 

P. falciparum EBL-175, EBL-1 and EBL-140 interact with glycophorins A, B and C 

respectively during parasite invasion (Wright & Rayner, 2014).  

Merozoite surface proteins (MSP) are merozoite antigens that utilize the SA-

independent pathway to invade the erythrocytes (Acharya et al., 2017). They possess 

an extracellular Duffy binding-like (MSPDBL) domain which binds Duffy binding-

like receptors on erythrocyte surface (Jespersen et al., 2016; Kwiatkowski, 2005). 

Duffy-binding receptors (DBR) are erythrocyte surface receptors for binding of 

chemokines. They are also used as the principal pathway by P. vivax to invade RBCs 

(Langhorne & Duffy, 2016). An absence of these receptors on erythrocytes prevent P. 

vivax invasion, hence the reason for the almost complete absence of P. vivax infections 

in African populations which are largely Duffy negative (Kwiatkowski, 2005). MSPs 

are also very highly polymorphic and use several Duffy binding-like receptors on 

erythrocytes for invasion. This makes their invasive mechanism highly complex and 

redundant, hence effectively evading host immune system. Apical membrane protein-

1 (AMA-1) is a merozoite surface antigen secreted from merozoite microneme that is 

also essential for red cell invasion. Its interaction with rhoptry neck protein (RON) 

forms a complex that triggers junction formation and hence invasion (Wright & 

Rayner, 2014).  
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Plasmodium vivax interacts with the Duffer-binding proteins on erythrocyte 

(preferably reticulocytes) surface of Duffy positive individuals and is therefore rare 

among Africans who are mostly Duffy negative (Howes et al., 2011). However, P. 

falciparum, which is the most virulent species, infects reticulocytes and mature 

erythrocytes via interaction with several Duffy binding-like receptors (Kwiatkowski, 

2005). The reticulocyte binding-like homologous proteins of P. falciparum recognize 

other erythrocyte receptors different from Duffy binding-like receptors on erythrocytes 

and reticulocytes. This gives rise to several alternate and redundant pathways of 

parasite erythrocyte invasion (Wright & Rayner, 2014).  

During the erythrocytic stage of its life cycle, the P. falciparum parasite expresses 

many proteins on the surface of erythrocytes. The var gene family of these proteins are 

one of the most characterized. They encode about 60 hypervariable antigens known as 

P. falciparum erythrocyte membrane proteins (PfEMP) which bind a variety of human 

host receptors (Dara et al., 2017). The N-terminal region consist of hypervariable 

Cysteine-rich interdomain region (CIDR) and extracellular Duffy binding-like (DBL) 

domain (Jespersen et al., 2016). PfEMP-1 binds CD36 on the surface of endothelial 

cells, dendritic cells, chondroitin sulfate A (CSA) in the placenta and other receptors 

to cause parasitized erythrocytes to sequester in deep vascular beds and placenta 

(Smith et al., 2013). This keeps infected cells away from general circulation hence 

promoting parasite growth and re-invasion, while shielding parasite from the immune 

system. PfEMP-1-mediated clustering of infected erythrocytes with uninfected 

erythrocytes (rosetting) promotes re-invasion (Saiwaew et al., 2017). VAR2CSA is the 

most conserved PfEMP-1 variant and is under investigation for possible malaria 

vaccine application (Kwiatkowski, 2005). 

2.4. Leveraging host-parasite interactions for malaria vaccine development 

Although the highly polymorphic nature of CSP limit its use as vaccine candidates, 

the most advanced pre-erythrocytic malaria vaccine candidate today, RTS,S/AS01E 

(brand name MosquirixTM), is based on the CSP protein (Duffy & Patrick Gorres, 

2020). It comprises a central repeat (hence “R”) and C-terminal regions (containing T 

cell epitopes, hence “T”) which are fused to hepatitis B surface antigen (hence “S”), 

and expressed in yeast cells that also carry the hepatitis B surface antigen expression 
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cassette, hence the name “RTS,S” (Duffy & Patrick Gorres, 2020). Its formulation 

with the AS01 adjuvant completed Phase III clinical trials in sub-Sharan Africa by 

2012 sponsored by the biotech company GlaxoSmithKline (GSK, hence RTS,S/AS01) 

(RTS, 2012). The vaccine candidate received favorable safety and efficacy measures 

in African children in 2015 (RTS, 2015). A larger 3-year trial in a real clinical setting 

was launched in 2019 in Malawi, Kenya, and Ghana and it was slated to involve over 

1 million children. However, a major question surrounding the vaccine candidate and 

currently investigated by some researchers is how its efficacy might potentially change 

over time in regions of high malaria transmission that may drive genetic diversity of 

in the parasite (Amegashie et al., 2020). 

PfSPZ on the other hand is a whole sporozoite vaccine that confers sterilizing 

immunity against Plasmodium sporozoites. In the PfSPZ-based vaccine, the 

attenuation of the sporozoites is either radiation attenuation, chemoattenuation 

(PfSPZ-CVac), or genetic (PfSPZ-GA) (Lyke et al., 2017; Mordmüller et al., 2017; 

Mueller et al., 2005). However, logistical challenges of this vaccine candidate include 

liquid nitrogen cold chain and intravenous inoculation (Seder et al., 2013). The 

efficacy of PfSPZ in humans is dose-dependent, while trials are underway to assess its 

safety (Duffy & Patrick Gorres, 2020). 

Another category of malaria vaccines are the blood stage vaccine candidates which 

target the asexual parasite forms. Recall that merozoites are the blood stage form of 

the parasite that are transiently exposed to the immunity after their release from the 

liver and infection of RBCs. The transient nature of merozoites in blood therefore 

makes it challenging to develop anti-merozoite vaccines. In addition, the proteins 

expressed on merozoite surfaces (MSP and AMA) are highly polymorphic, hence 

serving as an effective vaccine escape measure. Furthermore, the pathway of 

erythrocyte invasion by merozoites is redundant, meaning that they can get into red 

blood cells using more than one means, and targeting only one route will make 

virtually no difference. Although blood stage vaccines have been developed mainly 

targeting MSP1and AMA1, and MSP3 and EBA-175 to some extent, their responses 

have not been encouraging; for instance, although the AMA-1 based vaccine 

candidates FMP2.1/AS01, AMA-1/AS01B, and AMA-1/AS02A were shown to 



14 
 

induce strong protective responses in vitro, they failed to elicit a similar response in 

controlled human infections (Payne et al., 2016; Spring et al., 2009). Other blood stage 

vaccine candidates include PfRH5 and AMA1-RON2. However, their efficacy 

demonstrated in monkeys is yet to be replicated in human infections (Duffy & Patrick 

Gorres, 2020). 

Perhaps, one of them most exciting developments in the malaria vaccine pursuit is 

the recognition of the PfEMP1 as an immunodominant protein with vaccine potentials. 

Although the enormous polymorphic nature of the protein has largely impeded vaccine 

design, the VAR2CSA provides an exception with specific conserved domains and is 

thus an attractive target for placental malaria vaccines. Over the past five years, 

VAR2CSA-based vaccine trials have been conducted based on specific domains or 

combinations of domains (Duffy & Patrick Gorres, 2020). The transmission-blocking 

vaccine candidates Pfs230, Pfs48/45, Pfs25, and Pfs28 have also been tested, but 

however show poor immunogenicity as monomers. Therefore, protein-protein 

conjugates are being prepared for delivery by nanoparticles. The Pfs25-EPA conjugate 

was shown to elicit favorable immune response and well-tolerated in 2016 (Duffy & 

Patrick Gorres, 2020). 

While much progress has been made towards malaria vaccine development, the 

enormous diversity of the parasite antigens, and redundancy in their interaction with 

the human host pose a great challenge to the current vaccine candidates, particularly 

in regions with high transmission such as in much of sub-Saharan Africa where the 

most variable clinical forms of malaria are observed. 

2.5. Clinical presentations of malaria 

Malaria infection can be either asymptomatic or symptomatic. Asymptomatic 

malaria is characterized by the presence of asexual parasites I the blood without 

symptoms of illness. Symptomatic malaria is characterized by high fever, excessive 

sweating and yellow coloration of the urine, and it can be either uncomplicated malaria 

(UM) or severe malaria (SM). The characteristic signs and symptoms of symptomatic 

malaria result from feeding of the parasites on human hemoglobin, detoxifying it to 

heme. Polymerization of heme into hemozoin initiates some of the pathophysiological 
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effects of malaria by eliciting proinflammatory molecules such as glycosyl-

phosphoinositol (GPI). The secretion of proinflammatory cytokines in addition to 

cytoadherence and rosetting elicited by host-parasite interaction results in the variable 

disease severity. 

Severe malaria is the life-threatening form caused predominantly by P. falciparum 

(WHO, 2014). Several sub-types exist including: severe malaria anemia (SMA – 

characterized by hemoglobin level <5 g/dl and parasitemia > 10,000/μl in children <12 

years old, and hematocrit < 15%), cerebral malaria (CM – characterized by impaired 

consciousness, Glasgow coma scale < 11, and Blantyre coma scale < 3, coma 

persistent for more than 30 minutes after a seizure, and no record of recent severe head 

trauma, neurological disease or any other cause of coma), respiratory distress (RD), 

acidosis (characterized by a plasma bicarbonate of <15mM or venous plasma lactate 

>5mM), hypoglycemia (characterized by blood glucose level < 40mg/dl), renal 

impairment (characterized by plasma or serum creatinine > 3mg/dl or blood urea 

>20mM), jaundice (characterized by plasma or serum creatinine > 3mg/dl and 

parasitemia > 100,000/μl), pulmonary oedema (oxygen saturation <92% on room air 

with respiratory rate >30/min), hyperparasitemia (P. falciparum parasitemia >10%), 

as well as significant bleeding (WHO, 2014). 

Although malaria control measures have helped to curb malaria mortality, almost 

half a million people still die each year. And these are only the cases that are reported 

in healthcare settings. In sub-Saharan Africa for instance, the epidemiological survey 

of severe malaria is hampered by poverty which affects the reporting and 

documentation of the cases, as well as the ability of patients to seek medical care. A 

large proportion of cases and deaths usually occur in homes without the knowledge of 

healthcare professionals (WHO, 2014). Therefore, it is conceivable that the mortality 

rate of malaria is even higher than current estimates. Yet, epidemiological studies have 

shown that of the people who get infected with malaria, a small proportion (about 2%) 

never come down with severe malaria (Kwiatkowski, 2005). Among the reasons 

advanced to explain this observation, human genetic factors are the subject of my 

research. 
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2.6. Host malaria resistance/susceptibility factors 

The contribution of human genetic factors to the variable phenotypic expression of 

malaria is now well established. The first observation was made by the British-Indian 

population geneticist, J.B.S. Haldane in 1949 (HALDANE, 1949). Based on 

epidemiological data, Haldane observed increased frequency of the beta-thalassemia 

in regions with high malaria prevalence and hypothesized that beta-thalassemia affords 

protection against malaria. He went on to hypothesize based on mathematical 

calculations of allele frequencies that a slight gain in fitness conferred by the sickle 

cell trait should protect individuals in malaria-endemic regions from severe malaria. 

Haldane’s hypothesis became known as the ‘malaria hypothesis’. 

In 1954, A.C. Allison, a South African geneticist observed epidemiological data 

and carried out experiments in Kenya and Uganda and observed increased frequency 

in malaria patients who carried the sickle cell trait but did not suffer from severe 

malaria (Allison, 1954). He concluded, unequivocally, that the sickle cell trait 

conferred resistance against Plasmodium falciparum malaria in particular. Further 

clinical and epidemiological data have largely confirmed these findings (Mackinnon 

et al., 2005). Today, the sickle cell mutation is most prevalent in regions where malaria 

was once endemic or remains endemic: in sub-Saharan Africa, the Indian-

subcontinent, the Mediterranean, South East Asia, the Middle East, Oceania (Papua 

New Guinea), and South America. Due to its ancestral origin (from Africa), the sickle 

cell gene has become prevalent in countries with historical malaria endemicity. In such 

populations, the gene is predominantly contributed by individuals of African ancestry 

(Esoh & Wonkam, 2021).  

The beta- and alpha-thalassemia, encoded by the HBB and HBA gene clusters 

respectively, also afford protection against severe malaria and are thus highly prevalent 

in many countries where malaria is also prevalent (Frédéric B Piel & Weatherall, 

2014). The Mediterranean and Middle East harbor the largest frequencies of the beta-

thalassemia (the so called thalassemia belt), while Oceania (Papua New Guinea) 

harbors the highest frequencies of alpha-thalassemia (F B Piel et al., 2013; Frédéric B 

Piel & Weatherall, 2014). Interestingly, the sickle cell mutation is almost absent from 

Papua New Guinea even though malaria is present throughout the country. A possible 

explanation to the observation came in 2005 when Williams et al., observed in Kenyan 
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children that the protection afforded by both the sickle cell trait and alpha-thalassemia 

against malaria is lost when the two genotypes occur in the same individual (Williams 

et al., 2005). This negative epistatic interaction was proposed to explain the opposing 

frequencies of the genotypes in Oceania. In sub-Saharan Africa, the most common 

alpha-thalassemia mutation is a 3.7 kb deletion that is highly prevalent; 8.5%, 10.0%, 

15.0%, 16.7%, 17.1%, 19.1%, 30.7%, 27.4%, 31.5% in Gambia, Mali, Burkina Faso, 

Ghana, Nigeria, Cameroon, Malawi, Tanzania and Kenya respectively (Malaria 

Genomic Epidemiology Network, 2019). 

While the sickle cell mutation of the HBB gene is the most characterized malaria 

resistance variant, other gene variants have been discovered. Glucose-6-phosphate 

dehydrogenase (G6PD) is an enzyme in the pentose phosphate pathway encoded on 

the X chromosome and involved in the control of oxidative damage. Mutations that 

lead to a reduction in G6PD gene expression and cause a deficiency in the enzyme 

have been reported to protect against severe malaria forms in sub-Saharan Africa 

(Kariuki & Williams, 2020). However, results have been contradictory; while 

protection was observed against cerebral malaria in heterozygote females and 

hemizygote males, increased susceptibility to severe malaria anemia was observed in 

hemizygote males and homozygote females (Clarke et al., 2017).  

Blood group antigens including of the ABO and MN/S group systems are also 

known to offer protection against severe malaria, notably the Dantu variant (GYPA-

B) of the MN/S blood group system prevalent in East Africa (Kariuki & Williams, 

2020). Encoded on chromosome 4 in a region of ancient balancing selection, the 

variant is a rearrangement of the glycophorin genes A (GYPA) and B (GYPB), which 

increases tension in the membrane of red blood cells, making it hard for P. falciparum 

parasites to invade the blood cells (Kariuki et al., 2020). These earlier malaria-

associated gene variants were uncovered by candidate (single) gene approaches. 

However, following the observation that these gene variants jointly explain only a 

small proportion of malaria phenotypic expression, it was suggested that many more 

variants that act in a polygenic manner contributing small effects may have been 

unaccounted for. 
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2.7. Methods used to study host genetic susceptibility factors to malaria 

For many years, candidate gene studies were at the forefront of genetic association 

studies for identifying malaria risk variants (Patnala et al., 2013). In these studies, 

genes that had been previously linked to malaria [especially genes involved in immune 

responses such as toll-like receptor genes (Mockenhaupt et al., 2006)] were 

preselected, and genetic polymorphisms in the genes were determined (genotyped) in 

hundreds to thousands of individuals using custom-made genotyping assays such as 

the Sequenome MassArray® (Bradić et al., 2012). Since candidate or targeted gene 

association studies depend on the prior knowledge of possible disease-associated 

genes, they are considered to be hypothesis-driven. In candidate gene association 

studies, two groups of individuals are usually sampled randomly: a case group 

comprising of individuals with the disease, and a control group comprising of 

individuals from the same population as the case group, but without the disease. Two 

candidate gene malaria association studies were conducted in Cameroon in the early 

stages of the MalariaGEN collaboration and multiple markers that were associated 

with decreased susceptibility to malaria phenotypes were uncovered in HBB, IL10, 

IL17RE, NOS2, and ADCY9 genes, while markers that were associated with increased 

susceptibility to malaria phenotypes were uncovered in G6PD, IL17RD, EMR1, and 

RTN3 genes in two major ethnic groups in the country, namely the Bantu and Semi-

Bantu (Apinjoh et al., 2013, 2014). Another design of candidate gene association study 

used to discover malaria risk variants involves the sampling of family members—so 

called pedigree analysis. In 2005, a pedigree-based study in Kenya was the first to 

estimate the relative contributions of genetic and other factors to the variability in 

malaria incidence—so called heritability of malaria (Mackinnon et al., 2005). 

Candidate gene studies are cheap, and involve only a few hundred polymorphisms that 

make them quick to perform and tractable to computational tools. The major limitation 

of candidate gene studies is that they require pre-knowledge of genes involved or 

suspected to be involved in malaria pathology. Therefore, polymorphisms in multiple 

unknown genes that play significant roles in malaria pathology remain hidden (so 

called missing/hidden heritability) (Manolio et al., 2009). In addition, candidate gene 

association studies are low resolution, meaning that only a handful of variants can be 

studied. 
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Genome-wide association study (GWAS) is now one of the most powerful tools 

for assessing a wider range of host malarial risk variants. GWAS requires no pre-

knowledge of related genes (hence not hypothesis-driven), but rather screens the entire 

genome for any risk variants in the case and control groups (hence GWAS is inherently 

designed as a hypothesis-generating case-control study). In principle, millions of 

polymorphisms are genotyped in large samples in order to achieve appreciable power 

as defined below: 

𝑃 = 𝑁𝛽 𝑓(1 − 𝑓)𝑟  

 

where P = power; N = sample size (cases + controls); β = variant effective size; f 

= minor allele frequency (MAF); r2 = Pearson correlation coefficient (or linkage 

disequilibrium – LD between markers) 

 

In GWAS, SNPs are genotyped in larger platforms of several hundred thousands 

to millions of polymorphisms including the Affymetrix 100k, 500k, (consisting of 

100,000 and 500,000 SNPs respectively) and Illumina 300k, 650k, 2.5M (consisting 

up to 2,000,000 SNPs). In addition, SNPs from public databases obtained via whole-

genome sequencing of multiple populations are routinely added to study data by 

imputation (statistical inference using patterns of LD) to increase the power of the 

studies. The databases commonly used include those from the 1000 Genomes Project 

(Altshuler et al., 2010), the HapMap (Belmont et al., 2003), Human Reference 

Consortium, and the National Heart Lung and Blood Institute (NHLBI)’s Trans-omics 

for Precision Medicine (TOPMed) program (Taliun et al., 2019). Due to the sheer 

number of SNPs tested for association, the threshold for statistical significance has 

been estimated to be at least 5x10-7 or 5x10-8 (usually estimated per study by dividing 

the nominal p-value of 0.05 by the total number of SNPs used for association testing 

in the study) (Spencer et al., 2009). The tools that are commonly used to test for 

association in candidate gene association studies or GWAS implement basic Chi-

Square or linear regression for test of association such as PLINK, Haploview, etc. 

However, because multiple factors can influence the association of variants with a 

disease (including age, sex, and ethnicity), more complex models that account for 

population structure and cryptic relatedness are often needed. In such cases, logistic 
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regression or linear mixed models are often implemented, for instance in PLINK, 

EMMAX, BOLT-LMM, and GCTA. 

2.8.  Methodological challenges to large-scale malaria genetic association studies 

in Africa 

Although GWASs offer a powerful avenue for uncovering disease risk loci, the 

major methodological challenge faced in such studies in Africa is population genetic 

structure which is characterized by low linkage disequilibrium (LD) and extensive 

genetic variation among and within African populations (Teo et al., 2010). Due to low 

LD between markers in African populations, GWAS on the continent usually requires larger 

sample sizes to achieve as much power as GWAS in European and Asian populations. The 

extensive genetic heterogeneity in Africa which is usually accompanied by language, 

cultural, and religious disparities, usually leads to high false discovery rates (FDRs) 

and deficiency of significant SNPs in GWAS (Teo et al., 2010).  

Human genetic diversity in Africa is complex, with roots from ancient and recent 

migration events giving rise to enormous genetic mixture (admixture) amidst 

numerous eco-geographic barriers to gene flow (Busby et al., 2016; Uren et al., 2016). 

The genomes of African populations have also been shaped by evolutionary and 

selection pressures from infectious diseases and the environment; this is evident from 

the relatively high frequency of the Sickle cell trait and the G6PD deficiency (Leffler 

et al., 2017; Medicine et al., 2004). The extent of the heterogeneity in the continent is 

perhaps captured by the existence of thousands of local ethnicities. 

In Cameroon for instance, there are over 250 tribes distributed within 3 broad 

ethnic groups; Bantu (BA), Semi-Bantu (SB), and Sudanese (which includes the 

Foulbe). Previous genetic studies revealed that chunks of the genome of individuals of 

the BA and SB ethnicities are shared with their African counterparts (an expected 

finding) (Busby et al., 2016). Yet, the ancestral relationship and extent of genetic 

differentiation between individuals of different ethnicities in Cameroon have not been 

explored. Cameroon is considered the World’s most culturally diverse nation (J. D. 

Fearon, 2003; Gardinier et al., 2001), meaning that Cameroon’s populations may have 

been subject to extensive genetic admixture and numerous barriers to gene flow, 
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leading to differences in allele frequency and haplotype structure (such as in the HBB 

gene cluster) between ethnic populations.  

Previous genetic association analyses in Africa have relied upon principal 

component analysis (PCA) to correct for population structure (Patterson et al., 2006). 

The top (five to ten) principal components (PCs) are us included as covariates in the 

association analyses (Malaria Genomic Epidemiology Network, 2019; Ojewunmi et 

al., 2019). More recently, approaches like mixed models (MM) (Kang et al., 2010; Loh 

et al., 2015; Yang et al., 2011) and Bayesian statistics (Marchini et al., 2007) have 

proven particularly effective, in accounting for genetic structure among and within 

populations in GWASs. Yet, scars of genetic structure remain visible in large-scale 

genetic studies on the continent given the extensive genetic diversity. Therefore, 

characterizing the genetic structure of specific populations in Africa will be crucial to 

the design, analysis, and interpretation of genetic association studies in the continent. 

2.9. Treatment and control of malaria 

Uncomplicated malaria can rapidly progress to severe malaria which is almost 

always fatal if not treated. Therefore, treatment of malaria is recommended within 24-

48 h of the onset of malaria symptoms. However, due to the risk of antimalarial 

resistance, treatment is often recommended only to patients who truly have malaria. 

Effective treatment of malaria is based on rational use of antimalarial agents after a 

parasitological confirmation of a suspected malaria case, or through a rapid diagnostic 

test (RDT) (WHO, 2015). The artemisinin-based combination therapies (ACTs) are 

the first line of action against malaria. Treatment of uncomplicated malaria in children 

and adults is by any of the following combination therapies for 3 days: artemether + 

lumefantrine, artesunate + amodiaquine, artesunate + mefloquine, dihydroartemisinin 

+ piperaquine, artesunate + sulfadoxine-pyrimethamine (SP). In special risk groups, 

however, modifications in treatment regimens are required. For instance, in pregnant 

women during the first trimester, quinine + clindamycin is recommended for 7 days. 

In HIV/AIDS patients who are on co-trimoxazole treatment, artesunate + SP is not 

recommended. For the treatment of uncomplicated P. vivax, (or P. ovale, P. malariae, 

and P. knowlesi) malaria in chloroquine-susceptible areas, chloroquine could be used 

or the ACTs (WHO, 2015). However, chloroquine must be avoided in chloroquine-
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resistant areas. Severe malaria is treated by intravenous or intramuscular injection of 

artesunate for at least 24 hours and until the patients can tolerate oral medication 

(WHO, 2015). After parental treatment of severe malaria, treatment is then completed 

with 3 days of ACT. Control of malaria is by chemoprevention via the use of seasonal 

malaria chemotherapy (SMC) plus intermittent preventive treatment in pregnancy by 

sulfadoxine-pyrimethamine (SP), or by vector control using insecticide-treated nets 

(ITNs) and indoor residual spray (IRS) (WHO, 2015). Primaquine is usually used to 

prevent the relapse of P. vivax or P. ovale infections. Interestingly however, 

primaquine is often toxic to patients with G6PD deficiency as it can induce hemolysis. 

Therefore, close monitoring of such patients under primaquine treatment is 

recommended (WHO, 2015). 

2.10. Malaria in Cameroon: the case of the Southwest, Littorale, and Centre 

regions 

Cameroon is usually referred to as a west-central African nation, bothered by 

Nigeria in the West, Central African Republic in the East, Chad in the North, and 

Equatorial Guinea, Gabon, and Congo in the South, and situated within the Gulf of 

Guinea (latitude: 2–13°N, longitude: 9–16°E). With a surface area of approximately 

475,000 km2, the country is home to an estimated 24 million indigens who are all at 

risk of malaria (Figure 2.2) (Antonio-Nkondjio et al., 2019). The Atlantic Ocean forms 

an approximately 400m coastal border South West of the Country. Ten administrative 

regions make up the country with different ecological domains. Demographic and 

health survey (DHS) data, along with data from the malaria indicator survey (MIS) 

have indicated that vegetation and altitude are important predictors of the geographical 

distribution of malaria in Cameroon (Massoda Tonye et al., 2018). 
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Figure 02: Map of Cameroon showing risk of malaria in the country: This is the 

most recent catalogue. Retrieved from: Malaria Atlas Project (Welcome to the Malaria 

Atlas Project - MAP) 

In Cameroon, P. falciparum makes up about 95% of the parasite populations. P. 

vivax, P. malariae and P. ovale have also been reported to be circulating in the country 

(Tabue et al., 2019) with P. vivax only recently reported in the population (Fru-Cho et 

al., 2014; Russo et al., 2017). Six species are considered as mainly responsible for 
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malaria transmission in Cameroon: An. gambiae, An. coluzzii, An. arabiensis, An. 

funestus, An. nili and An. Moucheti (Antonio-Nkondjio et al., 2019). Anopheles 

gambiae is the most effective and wide-spread vector (Mbacham et al., 2019). Other 

secondary vectors, which are involved in either occasional or temporary malaria 

transmission have been reported including An. ovengensis, An. paludis, An. ziemanni, 

An. coustani, An. pharoensis, An. marshallii, An. rufipes, An. carnevalei, An. hancocki, 

An. leesoni and An. Wellcomei (Awono-Ambene et al., 2018). The increased use of 

LLINs and pesticides in agriculture have been associated with expansion of vector 

resistance to these interventions (Müller et al., 2008). Cameroon is made up of 

different epidemiologic strata such that transmission varies by stratum. Malaria 

transmission in Cameroon is intense in the rainy season (peak period) and continues 

throughout the year with low to moderate transmission in the Central, Littoral 

(Coastal) and South Western regions (Figure 2.3) (Eric A. Achidi et al., 2012). 

The central region (Yaounde) has an equatorial climate characterized by constant 

temperatures between 17-30oC with a mean of 23.1oC, and is located within the 

rainforest belt of central Africa (Manga et al., 1997). Rainfall is usually abundant 

(1,500–2,000 mm), humidity usually ranges from 85% to 90%. Two rainy seasons 

ranging from March to May or June and September to November, and two dry seasons 

ranging from December to February and June or July to August make up four distinct 

seasons in the region. Malaria transmission in the region is maximal during and 

immediately following the two rainy seasons (Quakyi et al., 2000). 

The South West and Littoral regions also have equatorial climates characterized 

by constant temperatures between 18-35oC. Unlike the Centre region, the South West 

and Littorale regions have two seasons, a short dry season that runs from November 

to March, and a long rainy season that typically runs from March to November. 

Rainfall is usually abundant (2,000–10,000 mm) (Manga et al., 1997). The South West 

region harbours the tallest peak in West Africa, the Mt Cameroon, which endows the 

region with some peculiar climatic conditions in its high and low altitudes towns. Mean 

annual rainfall is usually 2625 mm with a relatively constant humidity of 75%–80% 

(Wanji et al., 2003). Malaria transmission is hyper-endemic in the rainy season, with 

peak incidence between July and October (E A Achidi et al., 2008).  
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The Bantu ethnic tribes are the indigenous occupants of all the three regions. 

However, the Semi-Bantu from the North West and West regions have migrated in 

huge numbers over the past century into the Littorale and South West for economic 

reasons (J. Fearon & Laitin, 2005). The Littorale is Cameroon’s economic capital with 

the largest share of industries. The South West host lucrative plantations like tea, palm 

oil, rubber, cocoa among others which attract workers from other regions. In general, 

population movements have seen a fair mixture of the ethnic groups in all the regions, 

with the Centre hosting a larger share of individuals from the North, i.e. the Foulbe. 
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Figure 03: Map of Cameroon showing the three regions of study (Produced using 

the QGIS version 3.8 software). The colored regions represent the regions from 

where data for this study was sampled. 

2.11. Conclusion 

Large scale multi-site genome-wide association studies have proven powerful in 

revealing human genetic resistant/susceptibility factors to diseases that should be 

important in future vaccine development strategies. Yet, these methods continue to be 

N 

200km 
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plagued by several challenges in the African setting; of which genetic diversity among 

African populations is the greatest. Even though more robust methods have been 

developed to account for genetic diversity among African populations, diversity within 

the populations still continue to reduce the robustness of these tools in the continent. 

Therefore, population-specific large-scale genomic analysis that start by first explicitly 

characterizing the genetic diversity or structure within the population are highly 

imperative. 
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1.  Research Design 

The current study was an unmatched case-control secondary analysis of human 

genetic data that was generated between 2003/2005 and 2007/2008 by Achidi et al., as 

part of a malaria cross-sectional study in three malaria-endemic regions of Cameroon: 

South West, Littorale and Centre (Eric A. Achidi et al., 2012). In the primary study, 

DNA samples were extracted in the Malaria Research Unit at the University of Buea 

in Cameroon and the samples were shipped to the MalariaGEN Oxford Resource 

Centre in the United Kingdom for genotyping and further processing (Eric A. Achidi 

et al., 2012). The genotype data contributed to the MalariaGEN Consortial Project 1 

(CP1) which was a large-scale multi-site malaria case-control analysis (Malaria 

Genomic Epidemiology Network, 2005). In addition, two candidate gene association 

analysis were performed based on pre-selected malaria-associated genes (Apinjoh et al., 

2013, 2014). 

3.2. Study Area 

Samples were collected from four towns across the three regions including Buea 

and Limbe in the South West Region, Douala in the Littoral Region and Yaounde in 

the Central Region (Eric A. Achidi et al., 2012). The study sites included hospitals or 

health centres (where cases were recruited), and primary schools and blood banks 

(where controls were recruited). Hospitals and health centres included Bota District 

Hospital and Regional Hospital in Limbe, Laquintinie Hospital (Douala), Mother and 

Child Hospital (Yaounde), Regional Hospital Annex (Buea), Bokova Health Centre, 

Mount Mary Health Centre (Buea) and PMI Down Beach (Limbe). All but one (Mount 

Mary Health Centre) of the health facilities were government institutions which also 

received patients from neighbouring towns and villages. Primary schools included: 

Catholic School (CS) Buea Station, CS Great Soppo, CS Muea, Government School 

(GS) Bolifamba, GS Bonduma, Government Practising School (GPS) Molyko I and 

II, GPS Muea I and II, HOTPEC Primary School Mile 15 Buea, Oxford Primary 

School Muea and Government Bilingual Primary School Muea (Eric A. Achidi et al., 

2012). 
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3.3. Ethical Approval 

Ethical clearance for the study was obtained from the Institutional Review Board 

of the Faculty of Health Sciences, University of Buea (proposal number: ID 

D7.1.A/MPH/SWP/PDPH/PS.CH/2340/811) while administrative authorization was 

sought from the South West Regional Delegation of Public Health. Authorization to 

conduct the surveys in primary schools was obtained from the Regional Delegation of 

Basic Education or the Catholic Education Secretariat. Informed consent was obtained 

from each participant or their caregiver following a clear explanation of the content of 

the information sheet for the cases and blood bank donors. Authorization to enroll 

participants from health facilities or schools was obtained from the Director or Head 

teacher and only subjects/caregivers who volunteered to participate by signing a 

written informed consent were enrolled. Access and analysis of the data was done in 

strict adherence to the MalariaGEN Data Access Policies (Malaria Genomic 

Epidemiology Network, 2008a, 2009). 

3.4. Case definition: inclusion and exclusion criteria  

Cases consisted unrelated children with severe malaria (SM) or uncomplicated 

malaria (UM), aged 1 month to 13 years (See section on Literature Review for 

definition of UM and SM). Controls were apparently healthy (afebrile) children (aged 

1-14 years) and asymptomatic adults (aged 17-52 years) of the Bantu and Semi-Bantu 

ethnic groups.  

3.5. Data retrieval and quality processing  

Genotype data was retrieved from MalariaGEN server using secure file transfer 

protocols (sftp) on approval by site principal investors (PIs) and according to 

MalariaGEN data access policies (Malaria Genomic Epidemiology Network, 2009). 

The data consisted per-chromosome VCF files alongside a sample file with case-

control information. Sample and SNPs process report files were also retrieved for 

initial quality information. Briefly, genotyping was performed on the Illumina 

Omni2.5M array and alignment against the GRCh37 reference genome and genotype 

calling was performed according to the MalariaGEN three-way genotype calling 
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algorithm. We carried into our analysis on 2.3 million SNPs from 1471 individuals 

(693 cases, 778 controls). 

3.5.1. Quality control (QC) 

The strength of population genetic and association analyses depend on rigorous 

quality control of the genotype data. Sample QC was performed on the autosomes and 

the X chromosome using PLINK (Chang et al., 2015). Individuals whose reported 

nationality was “Non-Cameroonian” or “Missing” and individuals with inconsistent 

sex information were removed. One individual from each pair of related individuals 

(2nd, FS, PO, MZ; see appendix 1) was excluded by computing an identity by descent 

(IBD) report using the KING v2.2.4 software (Appendix 1) (Manichaikul et al., 2010). 

Individuals with outlying heterozygosity (out of the range 0.180 - 0.230) and 

individuals with >10% missing genotype count were excluded (Appendix 1).Using 

smartpca of the EIGENSOFT package (Patterson et al., 2006) samples with outlying 

ancestries were removed by projecting the dataset against the African populations from 

the 1000 Genomes phase three version 5 (1KGP3) reference panel (Altshuler et al., 

2010). SNP QC involved removing SNPs with minor allele frequency (MAF) < 1%, 

genotype quality < 95%, SNPs whose genotype quality was significantly (P < 1x10-8) 

different among cases and controls that may indicate a batch effect, and SNPs that 

failed the Hardy-Weinberg (HWE) equilibrium test at P < 1x10 -20 were removed. A 

total of 1,863,254 SNPs of 2,261,351 were left following SNP QC. 

3.5.2. Haplotype estimation (phasing) and genotype imputation 

Palindromic A/T and C/G SNPs were removed prior to phasing. The remaining 

SNPs were checked and validated against the 1KGP3 reference panel using the 

conform-gt v24May2016 program (Browning, 2016). Phasing and genotype 

imputation were performed using three strategies; In-house imputation pipeline using 

EAGLE v2.4 (Loh et al., 2016) for phasing and IMPUTE2 (Marchini & Howie, 2010) 

for imputation, and web-based strategies using the TOPMed and Michigan Imputation 

servers (TIS and MIS) using EAGLE v2.4 for phasing and Minimac v4 for imputation 

(Das et al., 2016; Fuchsberger et al., 2015; Taliun et al., 2019). For downstream 

analyses, only biallelic SNPs with imputation accuracy (R2 or IMPUTE info score) ≥ 

0.65, MAF > 0.01, and genotype probability ≥ 95% were used. 
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3.6. Determination of fine scale population structure:  

3.6.1. Allele frequency 

To generate allele frequency (AF) data, a cluster-stratified AF analysis (bin size = 

0.05) was performed among randomly selected Cameroonian individuals (BA=50, 

SB=50, FO=25) using Plink1.9. 

3.6.2. Estimation of measures of genetic proximity 

Linkage disequilibrium-pruning of SNPs was performed prior to estimation of FST, 

PCA, and model-based clustering. In addition, only SNPs with MAF > 0.05 were used. 

Pairwise FST estimates among the three ethnic groups within the current data and 

among the current data and the 1KGP3 reference populations were computed using 

smartpca. Ten (10) axes of genetic variation (principal components - PCs) were 

computed using smartpca. PC plots and FST heatmaps showing the clustering of the 

populations into subgroups were generated using R (R Core team, 2016). Model-based 

clustering was performed using the Admixture algorithm (Alexander et al., 2009). The 

analysis was done with 5 cross-validation runs (K=1-5) and 300 bootstrap runs. Co-

ancestry analysis was performed using ChromoPainter in the linked (LD) mode to 

summarize the genomic proportions shared among each donor and recipient individual 

(“Coancestry matrix”). FineStructure was then used to assign individuals into clusters. 

3.6.3. Genome scan for signatures of selection 

Signatures of selection were investigated to gain insight into the roots of fine-scale 

population structure by computing the integrated extended haplotype homozygosity 

(EHH) score (iHS) and cross-population locus-specific integrated (EHH) score (Rsb) 

using the REHHv3.01 (rehh) package in R (Gautier et al., 2017). Both iHS and Rsb 

statistics were computed using phased haplotypes with MAF ≥ 0.05. First, iHS was 

computed on the pooled data set (with all the ethnicities), then Rsb was computed with 

separate pairs of the different ethnicities (SBvsBA, SBvsFO, and BAvsFO). To assess 

the significance of selection signatures, rehh computes a two-sided p-value from the 

Gaussian cumulative distribution function of iHS estimates. The p-values were 

adjusted by the Benjamin-Hockerberg (BH) and Bonferroni (BF) methods (Benjamini 

& Hochberg, 1995). The extended Lewontin-Krakauer Fst outlier test (FLK) was also 

computed (Bonhomme et al., 2010) on a dataset of unlinked loci using hapFLKv1.40 
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(Fariello et al., 2013). The haplotype variant of FLK test, hapFLK (Fariello et al., 

2013) was performed per chromosome using linked loci with MAF ≥ 0.05. HapFLK 

estimates p-values using a rlm function in R which were adjusted by dividing 0.05 by 

the total number of SNPs used. The result were visualized using the qqman package 

in R (D. Turner, 2018). 

3.6.4. Investigate of population structure due to malaria pressure: HBB gene 

cluster haplotypes 

Bcftools v1.9 of the SAMTools package (Li et al., 2009) was used to extract 

haplotype data for HbAA, HbAS, and HbSS chromosomes from the imputed dataset. 

One hundred and forty six (146) samples with HbS-positive chromosomes were 

predicted in the phased imputed dataset (Bantu = 79; Semi-Bantu = 67) (Shaikho et 

al., 2017). Haplotypes were also predicted in the HbS-negative chromosomes and 

classified them into the classical groups on the basis of four previously described SNPs 

(n = 883; Bantu = 486; Semi-Bantu = 397)—hereafter referred to as ‘base’ 

population—in order to gain insight into haplotype conservation in this population. 

3.7. Heritability estimation and association analysis:  

The relative contributions of genetic and other factors to the variability in malaria 

incidence in the data (heritability) was performed using EMMAX (Kang et al., 2010), 

BOLT-LMM v2.3.4 (Loh et al., 2015), and GCTA v1.93.2 (Yang et al., 2011), while 

association analysis was performed using EMMAX (Kang et al., 2010), BOLT-LMM 

v2.3.4 (Loh et al., 2015), GCTA v1.93.2 (Yang et al., 2011), and PLINK2 (Chang et 

al., 2015). Twenty (20) principal components were used for the analyses. For BOLT-

LMM, variance component was first estimated using ~500,000 in near linkage 

equilibrium. For GCTA, a phenotype file with GCTA case-control encoding (1, 0), 

was first used this to generate a genetic related matrix (grm). The --reml function was 

then used to estimate heritability, and the –mlma function was used for mixed linear 

model association analysis. Using EMMAX, a covariates file and a kinship matrix 

were first generated and used for association analysis. Used the PLINK2 --glm 

function, different models of association were tested: additive [default], genotypic, 

hethom, dominant, and recessive. All association analyses were adjusted for sex 
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differences. Association analyses were run on the in-house imputed set and the 

TOPMed imputed set for the pooled dataset, and the ethnic groups separately. 

3.7.1. Annotation of top association signals 

The top association signals were annotated using ENSEMBL’s variant effect 

predictor (VEP) (McLaren et al., 2016). Pathway enrichment was done using the 

STRING server (https://string-db.org). 
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CHAPTER FOUR 

RESULTS 

4.1.  Characteristics of the study participants 

After sample and SNP quality control, the remaining 1073 samples were used for 

population structure analysis. After population structure analysis, a total of 1029 

samples were retained for association analysis. The characteristics of the 1029 

participants for whom association analysis was performed are described in Figure 4.1. 

The analysis was based on all malaria cases versus controls for Bantu and Semi-Bantu 

individuals (Foulbe individuals were excluded due to low sample size). Stratification 

of cases into sub-phenotypes was deemed to yield insufficient power for GWAS due 

to low sample sizes after exclusion of low quality samples. Since the most prevalent 

phenotype was severe malaria (Eric A. Achidi et al., 2012), I did not expect the analysis 

to be significantly under-powered as a result of pooling the sub-phenotypes together. 

 

Figure 01. Demographic characteristics of the case-control participants 
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4.2. Determination of fine scale population structure:  

4.2.1. Allele frequency 

The FO exhibited a substantial difference in low frequency alleles from the BA 

and SB populations. The SB and BA had similar AF spectra (Figure 4.2). In addition, 

the BA and SB had a higher proportion of rare alleles than the FO. 

 

Figure 02. Allele Frequency Spectrum: a) Allele frequency spectrum among 

Cameroonian ethnic groups. The blue line (SB) and green line (BA) are perfectly 

overlayed such that the blue line is broken to reveal the green. 

4.2.2. Genetic distance (Fst) 

Estimates for within- and among-continent population comparisons were similar 

to those previously reported. Here, Cameroonian populations generally clustered with 

other African populations (Figure 4.3). The SB clustered closer to the Yuroba of 

Nigeria (YRI) (FST SB vs YRI = 0.002) than did the BA (FST BA vs YRI = 0.003) 

contrary to previous estimates (Busby et al., 2016). The FO ethnicity was found to be 

relatively less genetically related to the YRI (FST = 0.004) compared to Cameroonian 

SB and BA populations. Interestingly, the FO, like the LWK population appeared to 

be more genetically close to populations of European and Asian ancestries when 

compared to the BA and SB. 
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Figure 03. Pairwise Fst and PCA analysis of Cameroonian and world 

populations: Clustered heatmap showing genetic distance by pairwise population FST 

(Hudson) estimation. AFR=African, EAS=East Asian, EUR=European, 

AMR=American and SAS=South Asian ancestry. The red color denotes closely related 

population, hence low FST while the decrease in redness to yellow represents 

increasing genetic distance (high FST). Five clusters are apparently corresponding to 

the five continental proxy ancestry (distinguished broadly by five colors) in the 1,000 

Genomes project 

4.2.3. Principal component analysis 

PCA generally showed positive concordance with FST results. PCA revealed three 

clusters in the dataset. Running PCA with “ancestry informative markers” saw an 

increased resolution of the clusters, clearly separating the FO from the BA and SB 
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based on PC2 (Figure 4.4a). Furthermore, substructures within the FO population and 

BA population were resolved (Figure 4.4b). 

 

Figure 0.4: PCA of Cameroonian populations: (a) PCA for Cameroonian ethnicities 

only. PC1 and PC2 separate the three ethnicities, (b) PC1 and PC3 separate the Bantu 

and Semi-Bantu 

4.2.4. Model-based clustering and co-ancestry estimation 

At K=2, model-based clustering differentiated the three ethnicities albeit with low 

resolution. However, at K=3 where the lowest cross-validation error was recorded 

(Figure 4.5a), the three ethnicities were clearly differentiated (Figure 4.5b). Ancestral 

proportions (Q) estimated [green predominant in the BA (~45%), red in the FO (~75%) 

and blue in the SB (~45%)] (Figure 4.5c) show that the different ethnic groups differ 

by allele frequencies or haplotype structure. Co-ancestry estimation revealed isolation 

of a subgroup of FO individuals from the BA and SB by PC1 (Figure 4.5d). PC2 

separated the Bantu and Semi-Bantu, with significant numbers of BA individuals 

clustering with SB. Generally, all the ethnicities showed a cline into a central cluster 

that appeared to be a set of admixed individuals, consistent with their longstanding 

cohabitation while their separation suggests some evidence of ancient genetic isolation 

and/or gene flow from other populations. The three extreme clusters may represent 

individuals with the basal ancestry for each respective ethnicity 
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Figure 05: Model-based clustering and Co-ancestry estimation: a) Model-based 

clustering cross-validation (CV) error. Lowest CV error recorded at k=3 indicating 

three clusters. (b) and (c) show ancestral proportions Q, for each ethnicity colored 

using the RGB color scheme. (d) Co-ancestry estimation by FineStructure show fine-

scale resolution of the clusters according to the ethnic groups. A substructure within 

the FO ethnic group is apparent. 

4.2.5. Genome scan for signatures of selection 

Genome-wide scan for signatures of selection by the standardized integrated 

haplotype score (iHS) which measures the EHH identified strong signatures on 

multiple chromosomes. This included missense and regulatory region variants in genes 

overwhelmingly associated with response to infections. The scan identified a total of 

133 SNPs within 57 overlapped genes and 173 overlapped transcripts across 

chromosomes 1 to 12, 14, 16, 17, 19, and 20 with significant signatures of selection at 

iHS threshold of ±4 (Figure 4.6). Table 4.1 shows the variants with strong signatures 

of selection that occurred in coding regions. Although the strongest signature occurred 

on chromosome 1 around the REG4 gene (iHS = -7.23, p-value = 4.67x10-13), the most 
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consistent signatures were recorded on chromosome 6 spanning the HLA region which 

has been reported in several previous studies of selection (Bhatia et al., 2011; dos 

Santos Francisco et al., 2015; Gineau et al., 2015; Nielsen, 2005). The SNP 

rs10947368, a missense variant on HLA-DOA emerged with the strongest signal within 

the HLA region (iHS = -6.42, p-value = 1.38x10-10) (Table 4.1). In addition, 

suggestive signatures of selection were recorded in the hemoglobin-beta (HBB) gene 

cluster of chromosome 11, a region with longstanding knowledge of balancing 

selection under the influence of malaria (Nielsen, 2005). However, the strongest signal 

on chromosome 11 was a relatively uncommon missense variant (rs7943508) in the 

APLNR gene, implicated in hypertension and some cancers (Lee et al., 2019; Wu et 

al., 2018). The iHS values obtained were generally normally distributed as expected 

under neutral evolution with a slight deviation from the expected distribution. 

 

Figure 06: iHS and corresponding –log10(p-values) Manhattan plots: a) iHS plot 

for the autosomes. Negative values signify selection on derived alleles while positive 

values are associated with selection on ancestral alleles. (b) Distribution of iHS values 

as observed in the populations (blue) and as expected under neutral evolution (red). 

Lower plot represents quantile-quantile (Q-Q) plot of iHS p-values. The plot shows 

that the test statistics are not inflated. 
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Table 01: Variants with strong signatures of selection in coding genomic regions 

rsid chr:pos ref alt alt.AF ihs p-value (bh) a.a change gene 

rs10947368 6:32975341 C T 0.1076 -6.422 5.73e-05 K120N HLA-DOA 

rs8192564 6:32191822 G A 0.06011 -5.494 0.0024 - NOTCH4 

rs115261305 6:32793668 C A 0.1319 -5.385 0.0030 - TAP2 

rs1126544 6:33037061 G C 0.1281 -5.133 0.0085 T121T  HLA-DPA1 

rs3800326 6:28264717 C T 0.1039 -5.111 0.0089 P256L PGBD1 

rs61737338 6:28227217 C T 0.08388 -4.922 0.0154 S23F NKAPL 

rs7943508 11:57003581 C T 0.0657 -4.861 0.0176 V300I APLNR 

rs6582601 12:38716034 C T 0.1253 -4.850 0.0183 - ALG10B 

rs2233954 6:31105672 G A 0.08854 -4.802 0.0207 - PSORS1C2 

rs34304311 6:28093263 G A 0.07549 -4.657 0.0298 L14L ZSCAN16 

rs6115256 20:25666642 C T 0.1771 -4.600 0.0348 L48L ZNF337 

rs17190762 6:31126992 G A 0.06291 -4.528 0.0429 - TCF19 

rs10896290 11:56128081 A G 0.2679 -4.524 0.0429 Y120C OR8J1 

rs61729683 6:32185818 C T 0.06337 -4.522 0.0430 A526A NOTCH4 

rs78133850 11:57004659 G A 0.06897 -4.508 0.0442 - APLNR 

rs73468666 11:56958933 G A 0.1761 -4.493 0.0462 - LRRC55 

rs75301276 11:55944198 C T 0.06058 -4.491 0.0462 Y35Y OR5J2 

rs58567530 16:48172185 C A 0.06943 -4.489 0.0464 L311L ABCC12 

rs3013106 1:13802437 G A 0.4455 4.995 0.0116 S254S LRRC38 

rsid = Reference SNP ID, chr:pos = Chromosome number and position, ref = 

Reference allele, alt = Alternate allele, alt.AF = Alternate allele frequency, ihs = 

Integrated haplotype score, p-value (bh) = Benjamin-Hochberg adjusted p-value, a.a 

change = Amino acid change 

Cross-population selection scan using the Rsb statistic found chromosome 6 to be 

strongly selected in the BA and SB and only subtly selected in the FO. The BA 

population showed additional signatures on chromosome 6 involving the missense 

variant rs9276 on the HLA-DPB1 and the variant rs1419638 on the OR5V1 gene, as 

well as on chromosome 7 not present in the other ethnicities. Likewise, the SB showed 

specific signatures on chromosomes 16 and 20, while strong signatures specific to the 

FO population were recorded on chromosomes 1, 7, 9, 10, 16, and 19 (Appendix 2). 

Again, these selection signatures primarily implicated genes involved in disease 

response. 



41 
 

The extended Lewontin-Krakauer FST outlier statistic (FLK) for positive selection 

revealed several genomic regions with subtle allele frequency differences between the 

ethnicities although none of these regions remained significant after correction for 

multiple testing by the Benjamin-Hochberg method (Benjamini & Hochberg, 1995; 

Chen et al., 2017). However, evidence of positive selection remained apparent in the 

HLA region on chromosome 6. Specifically, positions on chromosomes 2, 6, 8, 10, 17, 

18, and 22 were subtly differentiated among the ethnicities. The haplotype variant of 

the FLK test (hapFLK) revealed strong signature on chromosome 6 as was recorded 

by iHS, while several other regions on multiple chromosomes showed suggestive 

signals (Figure 4.7). Of note were signatures on chromosomes 10, 16, 17, and 22 

occurring in genes associated with food/drug metabolism. We observed signals on 

chromosome 10 associated with missense variants on the ACSM6 gene associated with 

acetyl coenzyme-A production (p = 1.62 x 10-06), and on the CYP2C8 gene, a 

cytochrome P450 superfamily enzyme member associated with drug metabolism (p = 

6.09 x 10-06). Multiple missense variant signals were also observed in the ABCC11/12 

gene on chromosome 16 (p = 5.39 x 10-07), an ATP binding cassette subfamily member 

involved in multi-drug resistance. In addition, signals were observed on the MTTP 

gene on chromosome 4 (p = 3.73 x 10-06) involved in triglyceride transfer and 

lipoprotein assembly, the TMEM199 gene on chromosome 17 (p = 5.35 x 10-06) whose 

deficiency is associated with abnormal glycosylation (Jansen et al., 2016), and the 

TCN2 gene on chromosome 22 (p = 6.76 x 10-06) involved in the absorption of vitamin 

B12 (cobalamin). The genome-wide significance threshold was estimated at 6.02 x 10-

08
. 
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Figure 07: Manahattan plot of hapFLK results: Genome-wide significance 

threshold (red line), suggestive threshold (blue line). 

4.2.6. HBB haplotypes among Cameroonian ethnic groups 

The high alternate allele frequencies of the SNPs meant that they were imputed 

with high accuracy (average r2 = 0.97) (Table 4.2). Generally, the ‘base’ population 

harbored a higher haplotypic diversity than the HbS chromosome-bearing population 

(Figure 4.8a-f). There was a substantial decrease in haplotype diversity in the HbS 

chromosome-bearing populations, confirming longstanding knowledge that malaria 

has been a major force on the human genome. The haplotype frequencies were also 

largely expected; the BEN is the most prevalent worldwide, the AI was only recently 

reported in Cameroon (Ngo Bitoungui et al., 2015), and has only been reported again 

in Egypt (Abou-Elew et al., 2018) and Mauritania (Veten et al., 2012), and predicted 

in a single chromosome in Kenya (Shriner & Rotimi, 2018). An interesting observation 

was the absence of OT3 haplotype in the haplotypic background of the HbS 

chromosome-bearing Semi-Bantu population (Figure 4.8f). Two non-classical 

haplotypes (OT1 and OT2) persisted in the background of all HbS chromosome-

bearing populations. 
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Table 02. HBB gene cluster haplotypes in Cameroonians 

Haplotype Name rs3834466 

(HBE1 - HincII) 

rs28440105 

(HBG1 - HindIII) 

rs10128556 

(HBBP1 - HincII) 

rs968857 

(HBBP1 - HincII) 

Haplotype 

SNP (aaf/R2) 0.20/0.99 0.87/0.96 0.12/0.94 0.20/0.99 - 

AI GT (1) C (1) T (1) T (0) 1 1 1 0 

SEN G (0) C (1) T (1) T (0) 0 1 1 0 

BEN G (0) C (1) C (0) T (0) 0 1 0 0 

CAR G (0) C (1) C (0) C (1) 0 1 0 1 

CAM G (0) A (0) C (0) T (0) 0 0 0 0 

OT1 GT (1) C (1) C (0) T (0) 1 1 0 0 

OT2 GT (1) C (1) C (0) C (1) 1 1 0 1 

OT3 G (0) C (1) T (1) C (1) 0 1 1 1 

OT4 GT (1) A (0) C (0) T (0) 1 0 0 0 

OT5 G (0) A (0) T (1) T (0) 0 0 1 0 

OT6 G (0) A (0) T (1) C (1) 0 0 1 1 

OT7 GT (1) A (0) C (0) C (1) 1 0 0 1 

OT8 G (0) A (0) C (0) C (1) 0 0 0 1 

OT9 GT (1) C (1) T (1) C (1) 1 1 1 1 
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Figure 08: HBB gene cluster haplotype distribution in Cameroonians: The 

haplotypes are reported for the Bantu and Semi-Bantu only. Left Panel represents 

haplotype frequencies from individuals carrying no HbS-chromosomes. Right panel 

represents haplotype frequencies from individuals carrying at least one HbS-bearing 

chromosome. N = number of chromosomes analyzed for each set. 

4.3. Association analysis:  

4.3.1. Genotype Imputation performance 

Upon alignment of the data to the 1KGP3, ~2% of the SNPs were absent from the 

1KGP3 reference panel. A similar observation was made with the Michigan 

Imputation (MI) server, while the TOPMed Imputation (TI) panel lacked ~4% of the 

SNPs. The disparate reference allele overlap was reflected by the low squared 

correlation (r2) between reference allele frequencies for the TI panel as compared to 

the 1KGP3 panel. Interestingly, the low reference allele overlap of the TI panel did not 

appear to hinder its performance as it outperformed the MI and my in-house imputation 
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strategy, and particularly so at low frequency variants (Figure 4.9). TI imputation 

accuracy was notably better than the recently published MalariaGEN performance. A 

slightly better imputation performance for the in-house strategy as compared to the MI 

and MalariaGEN imputation strategies was also observed. 

 

Figure 09: Imputation accuracy: Per-chromosome imputation accuracy of our in-

house, TOPMed, and Michigan imputation strategies. P3v5 = phase three version 

5 

4.3.2. Heritability estimation 

Narrow sense heritability/pseudo-heritability (heritability contributed by additive 

genetic variance component) was estimated in the pooled dataset at h2 (Vg/Vp) ~23% 

using EMMAX (22.2%), GCTA (21.9%), and BOLT-LMM (23.6%) in the imputed 

dataset, and at h2 ~22% using EMMAX in the pre-imputation dataset, consistent with 

previous estimates (~23%) of severe malaria heritability (Damena & Chimusa, 2020; 

Malaria Genomic Epidemiology Network, 2019). It thus served as another layer of 

quality check for the data with respect to case-control ascertainment. The total genetic 

variants were predicted to explain not more than 9% of the heritability. 



46 
 

4.3.3. Pre-imputation association analysis 

Table 4.3 shows candidate loci for which significant and/or marginally significant 

variants for the pre-imputation set were observed. A single significant variant, 

rs113508623 in the intergenic region of CHST15 (distance = 6,400) and OAX (distance 

= 226,266) was observed in the pooled population (P = 1.04e-08; OR = 0.42; 95%CI 

= 0.31 – 0.56; false discovery rate [FDR] = 0.002; genomic control inflation factor 

[λGC] = 1.02). This variant was the most significant in the Bantu population (cases = 

204, controls = 272, males = 299, females = 177) (Table 4.3), while the chromosome 

6 variant, rs2842958, on the SOD2 gene was the most significant in the Semi-Bantu 

(cases = 262, controls = 291, males = 311, females = 242). No X chromosome 

associations were observed. 

  



47 
 

Table 03: Candidate associated loci before imputation 

rsid chr:pos ref/alt aaf p-value 

(PLINK2) 

(PBH) 

OR 

(95%CI) 

Nearest 

gene 

mode EMMAX BOLT-

LMM 

GCTA 

BSB 

rs113508623 10:125859606 T/C 0.18 2.19e-08 

(0.03) 

0.48 

(0.37 – 0.62) 

CHST15 add/het/ 

dom 

3.79e-08 

(0.06) 

2.2e-08 

(0.014) 

9.82e-

08 

(0.16) 

rs73547455 11:90154919 A/G 0.04 4.90e-06 

(0.98) 

0.28 

(0.16 – 0.48) 

DISC1FP1 add/dom 1.35e-06 

(0.80) 

6.2e-07 

(0.52) 

9.68e-

06 

(0.99) 

rs7333739 13:71546558 G/A 0.07 2.43e-06 

(0.98) 

2.26 

(1.61 – 3.17) 

LINC00348 add 2.38e-06 

(0.81) 

4e-07 

(0.36) 

4.74e-

06 

(0.99) 

SB 

rs1172909754 6:160133957 A/G 0.33 1.15e-07 

(0.20) 

0.36 

(0.25 - 0.53) 

SOD2 dom/het - - - 

rs2758352 6:160122921 G/A 0.33 1.22e-07 

(0.20) 

0.36 

(0.25 - 0.53) 

SOD2 dom/het - - - 

rs4902123 14:62746807 A/G 0.41 4.19e-07 

(0.79) 

2.12 

(1.58 - 2.83) 

LOC105370529 add 4.59e-06 

(0.62) 

0.01 

(0.95) 

2.89e-

04 

(0.99) 

BA 

rs113508623 10:125859606 T/C 0.18 1.64e-06 

(0.98) 

0.32 

(0.20 - 0.51) 

CHST15 dom 3.44e-06 

(0.65) 

1.9e-06 

(0.56) 

3.54e-

05 

(0.99) 

rs73351115 14:96920573 T/G 0.11 2.14e-05 

(0.98) 

2.69 

(1.71 - 4.25) 

AK7 add 6.13e-07 

(0.51) 

1.3e-06 

(0.56) 

4.85e-

05 

(0.99) 

rs13355489 5:156664822 T/C 0.35 8.59e-07 

(0.99) 

0.32 

(0.20 - 0.50) 

ITK dom - - - 

rs507723 15:46943055 C/T 0.45 6.20e-08 

(0.99) 

0.32 

(0.21 - 0.48) 

LOC105370803 dom - - - 

 

4.3.4. Post-imputation association testing 

In the imputed set filtered to exclude variants with imputation accuracy r2 < 0.65, 

MAF < 1%, and genotype probability < 90%, Phwe = 1e-20, the most significant 

variants (with genome-wide significance) occurred on the SOD2 gene in Semi-Bantu 
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individuals and the variants associated with apparently strong malaria protection 

(Figure 4.10 & Table 4.4); rs2842958 being the most significant (P = 3.85e-09; OR 

= 0.31; 95%CI = 0.21 – 0.45; [FDR] = 0.011; λGC = 0.99). In the Bantu, the 

chromosome 14 locus AK7 harbored the most significant signals while several other 

intergenic and non-genic regions harbored suggestive signals. Multiple loci with 

significant and/or marginally significant signals were observed in the pooled dataset. 

The loci observed in the pre-imputation set (notably CHST17) were also observed in 

the imputed set. Of note was the absence of association at the HbS locus in all the 

analysis sets. Multiple marginally significant variants were identified from the 

TOPMed imputed set. 

 

Figure 010: Manhattan plot of association signal in Semi-Bantu individuals: This 

result was obtained under a dominant model of inheritance at the SOD2 locus. Red 

line = genome-wide significance (5e-08); blue line = suggestive line (1e-05). Small 

insert QQ plot shows genomic control inflation factor indicating that test statistics are 

not inflated. 
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Table 04: Candidate associated loci after imputation 

rsid chr:pos ref/

alt 

aaf p-value 

(PLINK2) 

(PBH) 

OR 

(95%CI) 

gene(s) mode EMMAX BOLT-LMM GCTA 

BSB 

rs514788 11:90065530 T/G 0.04 7.18e-07 

(0.98) 

0.39 

(0.27 – 0.56) 

DISC1FP1 add/

dom 

1.78e-07 

(0.60) 

1.7e-07 

(0.61) 

4.01e-06 

(0.99) 

rs112400941 9:18702156 G/A 0.05 1.20e-06 

(0.98) 

0.28 

(0.16 – 0.46) 

ADAMTSL1 add 2.85e-07 

(0.60) 

2.6e-07 

(0.61) 

6.53e-06 

(0.99) 

rs113508623 10:125859606 T/C 0.19 1.06e-06 

(0.98) 

0.54 

(0.42 – 0.69) 

CHST15 add/

het/d

om 

9.07e-07 

(0.60) 

9.2e-07 

(0.61) 

4.18e-06 

(0.99) 

rs7333739 13:71546558 G/A 0.09 2.43e-06 

(0.98) 

2.26 

(1.61 – 3.17) 

LINC00348 add/

dom 

6.80e-06 

(0.96) 

7.4e-06 

(0.95) 

7.02e-06 

(0.99) 

rs114296724 10:54501974 C/G 0.10 3.52e-07 

(0.97) 

0.39 

(0.27 – 0.56) 

LOC105378305 add/

dom 

2.26e-07 

(0.60) 

2.7e-07 

(0.61) 

5.66e-06 

(0.99) 

rs8083681 18:46218584 A/G 0.77 1.14e-06 

(0.98) 

1.80 

(1.41 – 2.26) 

CTIF add 1.28e-06 

(0.76) 

1.7e-06 

(0.95) 

5.05e-06 

(0.99) 

rs529559040 3:34040515 A/G 0.02 2.48e-06 

(0.98) 

8.05 

(3.38 – 19.2) 

LINC01811 add 3.97e-07 

(0.60) 

4.2e-07 

(0.61) 

1.29e-06 

(0.99) 

rs116089757 8:70562161 T/C 0.04 5.21e-06 

(0.98) 

3.49 

(2.04 - 5.98) 

SULF-1 add 1.91e-06 

(0.89) 

2.2e-06 

(0.95) 

9.43e-07 

(0.99) 

rs776128 3:77683213 C/T 0.85 4.13e-08 

(0.33) 

0.39 

(0.28 - 0.55) 

ROBO2 dom/

het 

- - - 

SB 

rs2842958 6:160108425 A/G 0.68 3.85e-09 

(0.01) 

0.31 

(0.21 - 0.45) 

SOD2 dom - - - 

rs9456440 6:160074463 G/A 0.67 8.045e-08  

(0.42) 

0.44 

(0.32 - 0.59) 

SOD2 het/a

dd 

3.45e-08 

(0.25) 

6.4e-08 

(0.33) 

3.69e-07 

(0.99) 

rs1801253 10:115805056 G/C 0.58 5.72e-07 

(0.43) 

0.47 

(0.35 - 0.63) 

ADRB1 add 3.52e-07 

(0.27) 

3.1e-07 

(0.33) 

9.69e-06 

(0.99) 

rs80178114 11:36394268 C/T 0.19 6.19e-07 

(0.43) 

2.55 

(1.76 - 3.67) 

PRR5L add 2.71e-07 

(0.26) 

3.3e-07 

(0.33) 

4.81e-06 

(0.99) 

rs4902123 14:62746807 C/A 0.40 7.55e-07 

(0.43) 

2.12 

(1.57 - 2.85) 

SYT16 add 1.31e-06 

(0.41) 

1.4e-06 

(0.52) 

1.50e-05 

(0.99) 

BA 

rs111614250 14:96930036 G/A 0.10 7.89e-07 

(0.95) 

0.32 

(0.20 - 0.51) 

AK7 add - - - 
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4.3.5. Annotation of top signals of association 

Annotation revealed that the most significantly enriched pathway was the 

interleukin 12- (IL12) signaling pathway (FDR = 0.0069) involving two genes 

(EPB41L4A and CCDC144NL) in the Semi-Bantu only. No hits were observed for the 

Bantu only or Semi-Bantu+Bantu joint set. 
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CHAPTER FIVE 

DISCUSSION 

This current study explored population structure in three ethnic populations within 

three regions in Cameroon and genetic polymorphisms that may be associated with 

symptomatic malaria. The study showed that there is significant genetic structure 

within Cameroon characterized by allele frequency differences among the ethnic 

groups, distinct clustering patterns, and significant signatures of selection, and by 

utilizing this information, the study revealed novel malaria resistance loci in the 

genomes of Cameroonian Semi-Bantu individuals. The meaning of these findings and 

implication for future genetic studies in Cameroon and Africa are herein discussed. 

Population structure analysis revealed extensive genetic structure among the 

studied ethnicities that has not been previously captured. The mild differences that 

were observed in pairwise genetic distance (FST) among Cameroonian ethnicities 

indicate that the populations have been extensively mixed. Their differences support 

the existence of distinct ancestral proportions. The FO population belongs to the 

Sudanese ethnic division with northern African lineage dating back to the ancient Sao 

civilization that flourished around the shores of Lake Chad around 9th-15th century AD, 

and a Hausa-Fulani land invasion from Nigeria by the 1800s that led to the 

establishment of a large Islamic empire involving much of the northern regions of 

Cameroon related (J. Fearon & Laitin, 2005). The BA, are thought to have been the 

earliest inhabitants of Cameroon, with traces of their ancient civilization still 

prominent in the pigmies of the South and East. Some studies have associated the 

spread of the BA ancestral proportions found in Central, South and East Africa to a 

Bantu expansion that originated somewhere around South Western Cameroon (Busby 

et al., 2016; Grollemund et al., 2015; Lipson et al., 2020). The SB individuals mainly 

inhabit the Western highlands and grass fields of the West and North West of 

Cameroon. Together with the BA of the South West, the SB of the North West also 

appear to have endured a four-decade complex cohabitation with Eastern Nigerian 

populations during colonial era (Gardinier et al., 2001). Therefore, the ancient 

interactions, and interactions of the recent past of Cameroonian populations with other 

populations may have paved the way for substantial genetic admixture and drift. 
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The close similarity in ancestral proportions among the BA and SB was expected. 

The dissimilarities may be attributable to many factors including varying degrees of 

contact with different external populations with subsequent genetic drift as could have 

been possible during their pre-colonial and colonial era as well as following different 

selective pressures. The considerable dissimilarity in the ancestral proportion of the 

FO ethnicity from the others is not surprising. However, their splitting into two distinct 

clusters may provide evidence of genetic heterogeneity within the ethnic group. The 

separation of the FO ethnicity into two distinct clusters by chromosome painting, one 

close to the BA and SB and the other quite apart, further indicate that the FO is not 

homogeneous. 

Considering that the genetic differences among the ethnicities would characterize 

different axes of genetic variation in an association study, one would expect a 

significant dose of false positive results when all the ethnicities are analyzed together. 

Therefore, larger sample sizes would be required for association studies in such a 

highly structured population to be sufficiently powered to identify markers associated 

with specific phenotypes. Hence, association analysis performed on each ethnicity 

separately would be more profitable given that ethnic information is accurately 

captured. 

Population genetic approaches that measure genetic distance and quantify shared 

ancestry are more robust when SNPs are ascertained to be polymorphic in an out-group 

(Skoglund et al., 2017). However, out-group ascertainment in African populations 

remains a challenge as the “most recent common ancestor” (MRCA) of African 

populations remains to be established. Although the roots of anatomically modern 

humans have recently been traced to Botswana (Chan et al., 2019), the Mende 

population from Sierra Leone (MSL), shown to harbor the largest proportion of 

ancestry from a basal West African lineage (Skoglund et al., 2017) fitted well as an 

out-group in this analysis. A couple of test analyses supported this observation; i) 

pairwise FST estimates with the 1000 Genomes populations without SNP ascertainment 

required either over a million SNPs or > 50,000 SNPs with MAF > 0.35 to observe 

estimates similar to those previous reported, ii) SNP ascertainment with all African 

populations except the MSL did not result in FST estimates as have been previously 
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reported iii) Finally, SNP ascertainment in the MSL population resulted in similar FST 

estimates as have been previously reported using less than a million SNPs with MAF 

as low as 0.05. Moreover, the MSL population has been previously estimated to have 

differentiated ~ 300 thousand years ago (ka)  – 200ka (Skoglund et al., 2017), about 

the same time modern humans are thought to have originated from Shum Laka 

(modern day Cameroon) and Botswana (Southern Africa) (Chan et al., 2019). Hence, 

in the absence of a publicly available and well-established out-group for African 

populations, the usage of the MSL population may serve such a purpose.  

Signatures of selection observed in this analysis suggest that Cameroonian 

populations have come under strong disease pressure. The strong signatures targeted 

primarily immune response and food/drug metabolism genes, suggestive of polygenic 

adaptation of the population to diseases and changes in diet. Selection, therefore, acts 

on multiple loci across multiple genes to simultaneously drive phenotypic adaptation 

(Skoglund et al., 2017), although one would expect, in principle, the core locus 

affecting a particular trait to be under a selective sweep. Indeed, African populations 

have had to endure immense pressure from infectious diseases being the oldest 

populations of anatomically modern humans (formerly hunter-gatherers) (Busby et al., 

2016). The effect of the sickle disease on malaria has been well established. Both 

conditions are thought to have emerged around the same time (4000 - 5000 years ago) 

coinciding with the adoption of agriculture in Central Africa (Phillipson, 2006). Recent 

studies however suggest that both malaria emerged earlier ~40,000 – 60,000 years ago, 

while the sickle cell mutation emerged around 22,000 years ago (Esoh & Wonkam, 

2021). 

However, such retrospective assessments of the genetic differences among 

Cameroonian ethnicities and other populations with respect to their demographic 

histories has limitations; First, the analysis relied on self-reported ethnicity of the 

father and mother of each participant which may not have been accurate. Nevertheless, 

these results highlight key differences in the genetic architecture of Cameroonian 

ethnicities that may have significant bearing on genetic association studies for this 

population. Informed by population structure analysis, the association strategy herein 

employed has uncovered potentially novel malaria-associated loci in Cameroonian 
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individuals. At first glance, the loci, particularly CHST15 and SOD2 seem appealing 

as plausible associations given their biological implication.  

CHST15 (carbohydrate sulfotransferase 15; 10q26.13) also known as B-cell Rag-

associated gene (BRAG) for its co-expression with RAG1 (recombination-activating 

gene 1) in B-cells is a type II trans-membrane glycoprotein that plays the following 

roles; i) induces RAG1 expressions in B-cell lines (Verkoczy et al., 1998), ii) serves as 

signaling receptor on the surface of unstimulated mature B-cells (Verkoczy et al., 

2000), and iii) possesses sulfotransferase enzymatic activity whereby it catalyzes the 

transfer of sulfate residues to chondroitin sulfate A (CSA) and dermatan sulfate (DS) 

(Ohtake et al., 2001). When it transfers sulfates to the C-4 and C-6 hydroxyl groups of 

CSA, it forms CSE. Recall that CSA is the receptor of choice in the placenta for the P. 

falciparum erythrocyte membrane protein-1 (PfEMP-1) encoded by the VAR2CSA 

gene (Salanti et al., 2004).  

Interestingly, CHST15 is highly expressed in fetal and adult spleen, peripheral 

blood leukocytes, and lymph node, with modest expression in the heart, ovary, 

stomach, and brain (Verkoczy et al., 2000). Therefore, given malaria pressure, one can 

imagine a model in which the gene expression is augmented in one of such tissues as 

the spleen or ovary with a corresponding increase in sulfotransferase activity, and a 

concomitant reduction in CSA molecules, thus effectively protecting against 

pregnancy-associated malaria (PAM). Furthermore, its ability to induce RAG1 

expression may be a means to equip the fetus (and adults perhaps) with the ability to 

utilize the enormous repertoire of antibody specificities that come with V(D)J 

recombination (Yu et al., 1999) in order to mount effective defense mechanisms 

against the malaria parasite. The variant was observed outside of the major CHST15 

gene structure (6492 bp upstream), its derived allele (T) is fixed in most populations 

outside of Africa, while the ancestral allele (C) is most common in the Esan population 

of Nigeria (http://www.ensembl.org). There could well be other tag SNPs nearer, or 

even within the gene that could be uncovered by larger sample sizes. Besides, gene 

expression under stringent conditions showed that CHST15 is only expressed in human 

and baboon DNA, highlighting its high conservation and potential importance 
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(Verkoczy et al., 2000). Expression studies with further genetic investigations may 

shed some light. 

The role of reactive oxygen and nitrogen species (ROS and RNS respectively) in 

malaria has been extensively documented and reviewed in (Kavishe et al., 2017). Host 

defense mechanisms mounted against Plasmodium parasites usually result in the 

generation of ROS and RNS via the stimulation of inflammatory responses and 

oxidative stress by pro-inflammatory cytokines as tumor necrosis factor alpha (TNF-

alpha) to eliminate the parasites. Antimalarial drugs are also thought to act by eliciting 

oxidative stress. However, this mechanism is only active in the acute phase of infection 

as excess and prolonged oxidative stress is toxic to host cells and can exacerbate 

malaria pathology. Interestingly, a suggestive signal was observed at a TNF variant 

(rs1800750) in this same population which apparently increased susceptibility to 

malaria (Apinjoh et al., 2014), suggestive of inflammatory responses and prolonged 

oxidative stress. Superoxide dismutase 2 (SOD2), a mitochondrial matrix enzyme 

encoded in nuclear DNA (6q25.3) and highly expressed in many organs including the 

liver where Plasmodium parasites base a significant portion of their cycle, is an 

effective scavenger of ROS, preventing excess oxidative stress. A great majority of the 

signals observed in this locus were protective. It would therefore be interesting to 

investigate further its role in modulating malaria phenotypes in this population. 

Although further analysis involving larger sample sizes would generally be 

required to confirm the contribution of these loci to malaria phenotypic variance in 

Cameroonians, this analysis serves as a pointer to such studies. Association at the HbS 

(rs334) locus could not be successfully replicated. This could be due, in part, to pooling 

the sub-phenotypes together as the variant is known to be most protective against 

severe malaria. Because the variant was not genotyped in this dataset, and this study 

depended upon imputation to access it, failure to observe its association may also have 

been due to the post-imputation filtering schemes wherein it was observed that 

applying a threshold for genotype probability at 95% excluded the HbS allele. 

Subsequent Cameroon-specific GWASs that directly type the variant may be 

profitable. However, substantial differences in the haplotypic backgrounds of the 

ethnic groups at the HBB gene cluster due to the malaria pressure was observed. The 

OT3 haplotype was visibly absent from the haplotypic background of HbS-carrying 
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Semi-Bantu individuals. Because this observation indicates differential evolutionary 

course of the ethnic groups under malaria pressure, it may serve as a prototype to the 

genetic architecture at other loci, or perhaps genome-wide. Indeed, population 

structure analysis showed that the Bantu harbored strong signatures of positive 

selection at specific loci in the HLA region (HLA-DPB1) not present in the Semi-Bantu 

(Patin et al., 2017). Even the haplotypic backgrounds of the ‘base’ populations were 

not entirely identical (OT9 in Bantu and not in Semi-Bantu, while OT7 in Semi-Bantu 

and not in Bantu). This furthers the knowledge of age old fine-scale genetic structure 

within Cameroon. 

Although the discussion of the specific prevalence and importance of the classical 

HBB gene cluster haplotypes in the various populations in this study falls out of the 

scope of the current analysis, it must be noted that they can be particular applicable to 

sickle-cell disease research. For instance, the presence of the AI haplotype in all our 

‘base’ populations and its absence from HbS-carrying populations is particularly 

interesting given that the haplotype is associated with the most favorable SCD clinical 

outcomes and would be expected to be prevalent in HbS-carrying chromosomes. 

Finally, apart from low sample size, another potential confounding factor in 

the analysis that could not be controlled with the current data was age. Hence, a larger 

study that takes into account all these variable would shed more light. The observations 

herein presented remain useful in informing such future human genetic studies of 

malaria in Cameroon. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1. Conclusion 

This study sought to determine genetic diversity among Cameroonians in three 

regions and three ethnic groups, and use this information to uncover variants that may 

be associated with symptomatic malaria susceptibility in Cameroonians, and thus 

foster the understanding of the disease pathobiology. This in turn is an important first 

step in identifying novel drug and vaccine targets. The study achieved the underlying 

objectives by showing that: 1) indeed, fine-scale genetic structure exists within the 

three regions, and that it affects genetic association signals. Therefore, smarter 

sampling strategies and analysis designs are needed to effectively detect and 

significantly minimize/correct population structure effects in Cameroonian, and 

African populations, 2) potentially novel symptomatic malaria genetic association 

signals exist in Cameroon that could be uncovered by larger studies, and must therefore 

be confirmed by future studies. The importance of these findings is that the two 

significant genes identified open a new door into the investigation of causal SNPs that 

may explain decreased susceptibility to symptomatic malaria. Subsequent studies 

should focus on these genes, using candidate gene association techniques and deep 

sequencing to investigate all variants in these genes, including insertions and deletions 

(INDELS), structural variants (SVs), and copy number variants (CNVs). This study 

has thus generated hypotheses for future studies. An important area in which this study 

has made a significant discovery is in pregnancy associated malaria (PAM) which is 

most prevalent in central Africa including in Cameroon according to recent WHO 

reports (WHO, 2020). It is known that the PfEMP1-based recombinant VAR2CSA 

vaccine candidate against P. falciparum targets placental malaria (Duffy & Patrick 

Gorres, 2020). If the CHST15 enzyme protects against placental malaria by reducing 

CSA and maintains the normal physiology of the placenta, then it could be an attractive 

therapeutic target for PAM, for instance by therapeutics that increase its activity. 

6.2.  Recommendation 

Recommendations for future studies in Cameroonian populations 
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 More samples should be collected and the hypothesis that variants in SOD2 

and CHST15 confer malaria resistance should be investigated. 

 These studies should be candidate gene association and fine-mapping analysis 

using whole genome sequencing. 

 If the samples are collected from different ethnic groups, then genetic 

associations should be performed on the ethnic groups separately. 

 When collecting samples, participant demographic information (ethnicity – 

mother and father, age, sex, and region) should be accurately captured as much 

as possible. 

Recommendations for similar studies in Africa. 

 By comparing different imputation strategies on the new data set informed by 

population structure, this study confirmed data that showed the superiority of 

the NHLBI’s TOPMed imputation panel over the famed 1000 Genomes 

reference panel for African populations (Taliun et al., 2019). Also, by 

observing that our in-house imputation strategy performed slightly better than 

the MI service and MalariaGEN’s large-scale imputation strategy, this study 

has shown that there are specific benefits to population-specific analysis that 

are easily lost in multi-site studies. Therefore this study highly recommends 

that multi-site GWASs be complemented by population-specific analyses. 

 The publicly available population of the Mende tribe in Sierra Leone may be 

used as out-group for human genetic differentiation analysis in Africa while 

the most recent common ancestor of anatomically modern humans remains to 

be established 

 Heritability estimation could be employed as a method of ascertaining data 

quality where empirical estimates would suggest accurate case ascertainment 

while estimates that deviate significantly from empirical values would mean 

that there is a problem with case definition. 
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APPENDICES 

Appendix I: Quality Control 

 

Sample Quality Control: a) Exclusion of related individuals. MZ = monozygotic twins, 

PO = parent-offspring, FS = full sibship, 2nd = second degree relation, 3rd = third 

degree relation, 4th = fourth degree relation, UN = unrelated. One individual from each 

pair of MZ, PO, FS, and 2nd was excluded. b) Proportion of missing genotype against 

individual heterozygosity (missingness). Individuals with missing genotype > 10% 

and heterozygosity out of the range of 0.18 – 0.23 were excluded. 
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Appendix II: Cross population genome scan for selection and hapFLK results 
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Appendix III: Imputed Allele frequency at known malaria-associated loci 

Table S1 shows the allele frequencies of variants in key malaria-associated loci in 

our data. The Bantu ethnic group apparently contributed a slightly greater proportion 

of the alleles in the pooled dataset. Importantly, the general population allele 

frequencies did not reflect the true allele frequencies per ethnic group. Although not 

particularly consequential at very common (high frequency) SNPs, this effect can lead 

to loss of power at less common sites that may appear as rare variants as a result of 

pooling the ethnic groups together. These rare variants would be filtered out during 

QC procedures. The Semi-Bantu ethnic group was predicted to have lower HbS and 

HbC frequencies as compared to the Bantu. This is consistent with a previous finding 

in various Cameroonian ethnic populations, finding the most predominant Semi-Bantu 

tribe to have HbS gene frequency of 8.5%, significantly lower than other ethnic groups 

(Engle-Stone et al., 2017). 
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Table S1: Allele frequency and imputation performance at key malaria-associated 

loci in Cameroonians 

SNP (Gene; 

Variant) 

GRCh37 

Coordinate 

(chr:position) 

Strategy Pooled Bantu Semi-Bantu 

AAF R2 AAF R2 AAF R2 

rs334 (HBB; HbS) 11:5248232 In-house 

Imputation 

0.09 0.9 0.102 0.91 0.08 0.89 

Michigan 0.086 0.88 - - - - 

BEAGLEv5.1 0.083 0.91 0.098 0.9 0.073 0.93 

rs33930165 (HBB; 

HbC) 

11:5248233 In-house 

Imputation 

0.002 0.53 0.002 0.42 0.002 0.61 

Michigan 0.0044 0.45 - - - - 

BEAGLEv5.1 0.0029 0.52 0.0052 0.51 0.0015 0.36 

rs8176746 (ABO) 9:136131322 In-house 

Imputation 

0.17 0.99 - - - - 

TOPMed 0.17 0.99 - - - - 

rs10751451 

(ATB2B4) 

1:203650978 In-house 

Imputation 

0.66 1 - - - - 

TOPMed 0.66 0.98 - - - - 

rs4951377 (ATB2B4) 1:203658471 In-house 

Imputation 

0.66 0.99 - - - - 

TOPMed 0.66 0.98 - - - - 

rs62418762 (EPHA7) 6:93218698 In-house 

Imputation 

0.049 0.98 - - - - 

TOPMed 0.048 0.99 - - - - 

rs184895969 

(FREM3) 

4:144698528 In-house 

Imputation 

0.006 0.87 - - - - 

TOPMed 0.012 0.99 - - - - 

rs1050829 (G6PD) X:153763492 Michigan 0.34 0.92 - - - - 

rs1050828 (G6PD) X:153764217 Michigan 0.12 0.87 - - - - 
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Appendix IV: Assessment of power of imputation 

Importantly, we observed that BOLT-LMM and EMMAX achieved the greatest 

power for our data and population. This is consistent with the heritability estimates in 

which BOLT-LMM and EMMAX had better estimates respectively. We assessed 

power by the FDR of our association signals (the ability to filter in true signals while 

minimizing false signals), in which EMMAX and BOLT-LMM consistently had the 

lowest FDRs. We specifically used the --lmm function of BOLT-LMM which fails 

with low sample size or incorrect case ascertainment, or when it projects no gain in 

power. Meanwhile, it is expected that EMMAX achieved its power in our analysis on 

the basis of its structure-correcting ability as in the highly structured 1966 Northern 

Finland Birth Cohort (NFBC66) (Kang et al., 2010). In general, the association pattern 

was different for the pooled data set and the ethnic groups analyzed separately. This 

may be attributable to different haplotypic backgrounds of the ethnic populations as a 

result of differential evolutionary paths under differential selection pressures. 


