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ABSTRACT

Credit Risk management are ways of mitigating losses by considering the

Bank’s capital adequacy and reserves for loan losses and it is a challenging

process for most banking institutions. In many inputs of Risk management,

Credit Migration matrices or Transition Matrices are the main inputs. In

this Thesis, conditions for existence of a true generator in instances where

the transition matrix is unbounded is identified for a Markov transition ma-

trix empirically observed. The Thesis comes up with generators which are

valid and singles out the correct one compatible with the Credit rating be-

haviours and demonstrates how to obtain a generator which is approximate

when a true generator is non existence especially in unbounded transitional

matrices. Illustrations are given using secondary data gotten the standard

and Poors website. The main challenge in transition matrices is in obtain-

ing the generator matrix Q̂ for P̂ such that the exponential of Q̂ will yield

P̂ . This challenge is known as embedding problem and is mostly experienced

in Matrices higher than 3 by 3 square matrix. This problem is addressed

where four statistical methods that use generator matrices to generate tran-

sitional matrices are proposed. They are the Diagonal and Weighted adjust-

ment method, the Generator Quasi-Optimization method, the EM algorithm

method and finally the Gibbs sampler also known as the Markov Chain Monte

Carlo method. The Credit data is analysed using the four methods and the

best perfoming method gotten from comparison using the L-norm.

xiv



Chapter One

Introduction

Credit Risk is a very Critical area in Financial Institutions. Stakeholders,

regulators, consumers and institutions have a lot of concern in Credit Risk

and it is a subject of research interest not limited to statistical research.

Wikipedia defines Credit risk as, “A credit risk is risk of default on a debt

that may arise from a borrower failing to make required payments. In the

first resort, the risk is that of the lender and includes lost principal and

interest, disruption to cash flows, and increased collection costs. The loss

may be complete or partial.” (Al-Zahrani & Tayachi, 2021). Default event

is the main concern of Credit Risk and mostly occurs when a debtor fails to

meet its financial obligation as stipilated in the Credit Contract. Some of the

examples of Credit default events are bond default, Credit Card Charge off,

corporate bankruptcy, personal loans default and mortgage foreclosure. This

chapter will discuss the background of the study, statement of the problem,

objectives of the study, justification of the study, scope of the study and and
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organization of the thesis.

1.1 Background of the study

Credit risk management is a method of mitigating losses adopted by banks

by taking into consideration their Capital at any given time as well as their

corresponding loan reserves (Trueck & Rachev, 2009). Transitional matri-

ces are characterized by changes in the quality of credit and are the major

inputs found in most of Risk Management applications, assessment of Risk

Management portfolio, Credit structuring and pricing. For instance, Credit

Migration or transition matrices are the main inputs of the New Basel Accord

(BIS(2001)) and therefore the estimation of transitional Matrices are very

critical(Wright, Sheedy, & Magee, 2018). Conditions for which a true gener-

ator exists or not are outlined and a model which explores the non negativity

condition in cases where the generator matrix is unbounded is explored in this

study. Banks worldwide have adopted what is known as Credit Risk strat-

egy which is basically a process which adopts the development of a score card

(Bülbül, Hakenes, & Lambert, 2019). Before implementation of a Credit Risk

policy, the Credit Risk strategy informs the Bank’s Credit personell on how

to interpret the score and what are the adequate actions to be taken following

the interpretation. In addition to Credit Risk strategy, Banks nowadays use

Credit ratings obtained from Credit rating agencies. Globally, the big three

agencies are Moody’s, Standard and Poor’s and Fitch (Brusov, Filatova, &

Orekhova, 2021). The role of these agencies is to provide an assessment of the
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relative Credit risk of debt securities or financial instruments which are struc-

tured. They also assess in some cases goverment’s Creditworthiness as well as

their securities. In order to evaluate borrower’s insolvency, Credit ratings are

issued by the rating agencies which corresponds to the borrower’s Credit Risk

which is the risk that the borrower will default. The Credit agency’s final rat-

ing represents the evaluation of the Credit risk of a borrower at a given time.

In Kenya, Credit information is collected and kept by two consumer reporting

agencies namely Transunion and Metropol(Mokaya, 2019). Transition Matri-

ces rating are receiving increased attention in the financial sector and the two

main rating services i.e Moody’s and Standard and Poor’s publish annually

on the Credit ratings using transition Matrices as well as other information

related. One year is the shortest time interval in which one can estimate a

transition matrix. A shorter period than 1 year will be too small for one

to make a reliable estimation of transitional Matrix except in cases where

valuation needs to be done for example valuation of a default swap. This

research will propose a model whereby one can be able to estimate a Credit

transition matrix given any period. If a generator can be obtained from a

transitional matrix P , i.e a Matrix Q whose sums of row add to 0 and the off

diagonal entries are non negative such that exp (Q) = P , then P (t) = exp (tQ)

and the matrices can be obtained for any particular time t ≥ 0. However, the

major problem is to find out whether generator Q exists or not and how to ob-

tain generator Q in situations where the transitional matrices is unbounded.

The issue of identification and existence of transitional matrix generators has

3



not been addressed in Financial literature. Historically, to default in Credit

was treated as a crime and in various times and places, the punishment was

through torture, imprisonment, mutilation or death (Wikipedia contributors,

2021a). The next subsection will discuss briefly the definition and history of

Credit Risk.

1.1.1 Credit Risk History and Definition

Credit is more ancient than writing. A code known as Hammurabi’s code

(Wikipedia contributors, 2021a) had the legal thinking codified in Mesopotamic

4000 years ago but the basic rules of borrowing were not captured or outlined

in the code. Aspects such as collateral, default and interest rate were not

addressed in the code but the code emphasized that failure to honour a debt

repayment was to be treated as a crime and was categorized together with

theft and fraud. The code also had limits to penalties e.g Creditors could

seize a defaulter and sell him into slavery but the wife and children could

be sold to only a three year term. The Bible also has records of debt en-

slavement without disapproval where for instance in the story of Elisha and

the widow https://www.biblegateway.com/passage/?search=2+Kings+4&version=

NIV whereby she faced enslavement of her two children because the husband

had died before paying his debts. The Bible even goes further in providing a

limit for the Creditor’s collection rights which is mercy aspect unlike Ham-

murabi’s code. In modern world, protection aspects of bankruptcy and from

the Creditors are absent entirely from both the Bible and Hammurabi. In
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most cases from history, any default of Credit was treated as a crime and at

some places, default was punishable by imprisonment or enslavement, torture

or even death and sometimes the punishment could be meted on the debtors

as well as their dependants. Financial Institutions have been facing difficulties

every year for a number of reasons (DeHaan, 2017). The main cause of major

Banking problems is related directly to weak Credit Standards for counter-

parties and borrowers, weak portfolio risk management or lax in attending to

economic changes or circumstances leading to deteriorating in Credit stan-

dards of bank counterparties. Credit risk is a key concern in Kenyan Market

(2021, Mutua, Munda, Mutai, & Omulo, 2021) as experienced from the recent

closure of major retail stores chains due to debt. Credit Risk is defined as the

potential a borrower or counterparty borrowing from a bank fails to honour

their obligations according to the agreed terms. Credit Risk Modelling is

very important in Banking. Any Loan facility requested from a Bank or a

Credit Institution has to be decided by a Credit analyst whose job is to either

approve or decline. For example if a Bank receives a Mortgage Loan applica-

tion from a building company whose directors are well known to the Bank’s

Credit Analyst. If there has been a slump in the buiding industry in recent

times and a lot of default has been accrued from Mortgage Loan facilities

held by the Bank. Despite the Company’s directors being well known by the

Credit Analyst, he will naturally decline the loan basing from the historical

default data of similar Loan facilities. Another option the Credit Analyst will

do is to approve the Mortgage facility on condition that it is insured so as
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to protect the Bank against any potential loss. Since any Customer applying

for a Credit facility in a financial institution is a potential defaulter, there

is a need for a robust Credit Risk management and many approaches have

been fronted by various scholars. The Basel accord was introduced by the

Bank of International settlement (BIS) in the year 2001 whose purpose was

to improve the overall stability of the Banking sector by enabling them to

absorb shocks arising from stress related to financial and economic conditions

from any source as well as improving governance and risk management. The

next subsection will discuss in detail the Basel Accord.

1.1.2 Basel Accord

The Basel accords are Banking regulations categorized into three series and

are set by the Basel Committee of Banking Supervision(BCBS) (Goodhart,

2011). The Accords designs are to ensure that enough Capital is provided by

banking institutions in order for them to meet the obligations and to ensure

that unexpected losses are absorbed. Basel III (Fidrmuc & Lind, 2020) is the

latest accord that was set in November 2010. BCBS consists of a supervisory

committee established by governors of Central bank in ten Countries in the

year 1974. The membership of the committee was expanded in 2009 and in

2014. BCBS provides an avenue of Banking supervisory cooperation and in-

teraction on various matters. The main objective of BCBS is to ensure that

supervisory issues which are key are understood and to ensure that Banking

quality is improved worldwide. The Basel III guidelines have three major as-
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pects also known as the three pillars namely Minimum Capital requirement,

Supervisory review process and Market discipline. Basel Accord developed

a model where a Corporate Credit Hazard model was utilized to figure the

administrative capital for a wide range of advances(Basel Advisory group of

2005 on banking Supervision) despite the fact that the fundamental thought of

such a model, that default happens when obligations surpass resources is not

the motivation behind why consumers default. Collateral Debt Obligations

(CDO’s) comprise loans and debt instruments which have different Credit

Ratings. Each firm is believed to migrate between Credit ratings according to

a Markovian Transition Matrix, an example is the Standard and Poor’s One-

Year Transition Matrix. Credit Transition (Migration) Matrices portray the

past changes in Credit nature of obligors (commonly, firms in customary Cor-

porate Finance or pools of benefits, in organized Finance). Such frameworks

are cardinal contributions to many hazard risk management applications, in-

cluding portfolio risk appraisal, displaying the term structure of Credit risk

premia, and the valuing of Credit subsidiaries. Additionally, in the New Basel

Accord capital necessities are driven partially by rating relocation. In such

applications their precise evaluations are critical. There are several methods

of estimating migration matrices and the widely used frequency methods are

directly based on historical perfomance. The next subsection will introduce

the Markov Chain which forms the basis of Transitional matrices.
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Table 1.1: Types of Markov Chains

Countable state space Continuous/General state
space

Discrete time Discrete time markov
Chain(DTMC) on finite or
countable state space

Markov chain is on a state
space which is measurable

1.1.3 Markov Chain

A markov chain is a type of stochastic model which describes a sequence of

events which have the probability of each event depending on the state which

was attained in the previous event(Wikipedia contributors, 2021c). In time

which is continuous, it is also called a Markov process named after a Russian

Mathematician known as Andrey Markov. Markov processes are also the

basis for methods of stochastic simulation called Markov chain Monte carlo

and is commonly used for simulation of samples from probability distributions

which are complex. It is also applied in Bayesian statistics as well as artificial

intelligence. A markov process is defined as a stochastic process which satisfies

or fullfills the Markov property. In other terms, a Markov process is a process

in which can be used to make predictions basing on only its present state and

knowing the full history of the process. In other words, the present state

condition, the future and past states of a process are independent.

There is need for specification of the state space of the system and the index

of the time parameter. The table below outlines a summary of the two types

of markov chains i.e discrete time and continuous time markov chain (Hanks,

2017). A state space is a set of all configurations possible in a system. The
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next section will briefly provide an overview of the rating agencies, rating

process and categories. It will provide a rough overview of procedures of

rating as implemented by standard & Poor’s(S&P), one of the most used

Credit rating agency.

1.1.4 Credit Rating

Rating agencies have a long tradition and started in the United States of

America.(Kerwer, 2002) S&P history is traced back to the year 1860 and it

began rating of corporate and government issuers more than 80 years ago.

S&P ratings are input data of several Credit risk softwares eg Credit Metrics

and they generally provide two different types of ratings; Issue-Specific Credit

ratings and Issuer Credit ratings. Obligors are divided into categories ranging

from AAA which reflects the strongest quality of Credit to D which reflects

default occurence(Omstedt, 2020). The four highest categories AAA, AA, A

and BBB are recognized as investment grades while BB and below ratings are

regarded to be speculative grades or non investment grades. The table K.1

in appendix shows a summary of how the different categories of rating ought

to be interpreted.

1.2 Statement of the Problem

Over a decade ago, guidelines for Bank regulatory Capital were provided by

the Basel committee. The objective for these guidelines was to provide pro-

tection to all financial system risks and to level the playing field globally for
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all financial institutions. The Capital Accord of 1988 provided regulations

regarding the Capital amount that should be held by Banks against the risk

of Credit or Credit risk. The final Capital Accord was published and imple-

mented in 2006. Statistically, there has been a significant Credit Risk increase

in countries like United States of America, Korea, Japan and not limited to

Kenya . The committee approach in the past was a ”one size for all” but

now it provides an allowance for all Banks to use internal models for their

Credit Risks assessment. As a result, there has been an emergence of new

technologies and models for analysing Credit Risk but the unbounded gener-

ator matrices in analysing Credit risks is not being utilized. Today, Credit

risk analysis which is accurate is very important considering the volatility

of the market and fluctuating economies. Although there has been a devel-

opment of Credit risk models, no consideration was made as regarding to

Bank Loans Credit Risks. In the Banking industry, Credit risk is associated

with the Loans quality and likelihood or probability of default. Potentially,

Credit risk is a variation in market value and net income of loans or assets

resulting from delayed payment or non payment. On the other hand, Cash

flow of the bank assets which are mainly loans may be altered by changes in

Bank’s operating environment or changes in economic conditions for example

the recent bill on capping of interest in Kenya. The purpose of this thesis is

to provide a model which is very effective to measure Credit risk by use of

transitional matrices especially in cases where the transitional matrices are

unbounded. Most studies ignored the time varying risk premium and Credit
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cycle. A square matrix A is called a transitional Matrix if all the entries of

A are non-negative and the sum of the entries in any given row is 1. In all

instances, the transitional Matrix must be unbounded. This thesis aims to

bring in the aspect of using statistical analysis in Credit assessment especially

in Kenyan banks since the current methods employed are not statistical based

but rather employ assessment using historical data which may at times due

to lack of borrower’s trends. This study proposes the Gibbs sampler method

for generator matrix. This method is compared with three other methods;

the diagonal and weighted adjustment method, the generator quasi optimiza-

tion method and the Expectation-Maximization algorithm as would be seen

in chapter four.

1.3 Objectives of the study

1.3.1 General Objective

To Model Credit Risks using Unbounded Transitional Matrices.

1.3.2 Specific Objectives

1. To develop an unbounded transitional matrix from a Credit ratings data.

2. To derive the risk premium properties from the developed transitional

matrix.

3. To convert the Discrete Time Transitional Matrix obtained into Contin-

uous Time transitional matrix in order to get a generator Matrix.
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4. To get the most suitable generator matrix for the developed Continu-

ous Time Transitional Matrix especially in cases where the matrix is

embeddable.

1.4 Research Questions

This thesis sought to answer the following research questions.

1. How do we develop an unbounded transitional matrix from a Credit

ratings data?

2. How do we derive the risk premium properties from the developed tran-

sitional matrix?

3. How do we convert the Discrete Time Transitional Matrix developed

into Continuous Time transitional matrix in order to get a generator

Matrix?

4. How do we get the most suitable generator matrix for the developed

Continuous Time Transitional Matrix especially in cases where the ma-

trix is embeddable?

1.5 Justification of the study

In the new Basel Capital Accord(Basel II) (Goodhart, 2011), the Internal

Ratings Based (IRB) approach provides an allowance for banks to make use

of internal Credit rating developed on their own. Banks need to provide an
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estimation of the matrix entirely of transition probabilities between classes of

rating and the Accord empasizes that the role of these probabilities should

be essential in regulatory capital calculation, approval of Credit, allocation

of internal capital, risk management and bank functions in Corporate finance

(Merikas, Merika, Penikas, & Surkov, 2020). For the purposes of regulation,

the Accord provides a requirement that Financial Institutions should estab-

lish procedures which are rigorous for statistical models validation to be used

in internal ratings. This requirement is in Basel committee on Banking 2005.

These procedures include tests which are out of sample and historical data

over a long period of time is used. Technically, these procedures are a chal-

lenge to many Financial Institutions globally not limited to Kenyan Banks

especially to those that have a large number of business lines that are of high

quality and of whose default data are unavailable. Regulators expect that

portfolios which have low default rates should also follow the minimum Inter-

nal ratings based (IRB) standards for probability conservation and accuracy

of estimates of default despite them having data limitations. There are two

technical challenges which are related to portfolios with low default rates.

The first technical challenge is the default probability estimation where no

history has been recorded as default. According to Hamilton et al (2007),

(Cantor & Hamilton, 2007) report, there were sixteen years with no issues of

default over the period of years 1980-2006. However none of the portfolios

or assets sampled over the years were default free completely hence the need

for a model which should assign a probability default which is positive.
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The second technical challenge is the assessment of the low default portfolios

predictive perfomances. The procedures of testing the samples (Shumway

2001) (Shumway, 2001) cannot be applied in such cases because the zero de-

fault frequencies do not have a benchmark reasonable for comparison with the

predictions of the models. Several models have been reviewed in this thesis

and three contributions have been made. The first contribution is to develop

a model that provides a description which Kenyan banks employ. A Credit

rating is assigned to a Credit facility based on the Credit worthiness current

assessment. The assessment depends on specific and systematic firm’s vari-

ables. The model has macroeconomic unobserved effects which transitional

probabilities depend on for different classes of Credit in any given period. The

specification of the model provides an allowance of auto-correlation across

transition time probabilities from any class of Credit.

Lastly, the heterogeneity of the model is taken into account of its Credit

worthiness of Credit class which are the same and can have effects which are

significant on diversification of Credit risk. The second contribution addresses

the difficulty in predictive perfomance difficulty of a model with sparse data

like in low default portfolios. Bayesian technique of predictive power was used

in the first approach. The second approach in analysing the model predictive

performance is a variant of out of sample testing which takes into account the

transition probabilities estimates with their credible intervals corresponding

at 95 percent.

The third contribution applies the methodology to the secondary data set
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of Standard and Poor’s between 2010-2018 and contributing to the Basel

II policy. Different specifications are calibrated of the Credit rating model

and estimated transtion matrices are shown to exhibit a behaviour which

is non-Markovian. The macroeconomic shock randomly observed improves

significantly the predictive power of the model and also accounts for the de-

pendence observed on the probabilities of transition for Credit classes which

are different in any given period.

Credit Risk is normally assessed in two different ways; qualitative or quan-

titative methods. However, in some cases, information may not be available

for the Bank to apply the two ways to assess Credit Risk. In this Thesis, the

main focus will be on the probability of Credit Rating Transition from one

level to another using unbounded Transitional Matrix Models.

1.6 Scope of the Study

In this Thesis, the existence of a true generator conditions are identified for an

empirically observed Markov transition matrix. This Thesis identifies condi-

tions for a true generator matrix to exist in case where the Candidate matrix

is unbounded. This Thesis analyses various models proposed by various schol-

ars on how transition matrices can be used to manage Credit Risks in banks.

The Thesis sought to identify the best model of deriving a generator matrix

which can be used in predicting Credit Transition matrices that can be ap-

plied in Kenya in order to reduce non-performing loans in situations where

the transition matrix is unbounded i.e matrix which is not a scalar of multi-
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ple identity matrix and does not obey the properties of a Hilbert Matrix as

explained later in section 3.8.

Migration or transition matrices are major inputs for risk management in

Credit Risk Management, Credit Value-at-Risk or pricing using derivatives.

This Thesis investigates migration in Credit ratings in structured finance and

compare ratings mobility across different sectors/products and traditional

corporate finance, utilizing the ratings data available in Standard and Poor’s

website. Credit migration or transition matrices are characterized by the past

changes in Credit quality of obligors (typically firms), are cardinal inputs to

many risk management applications, not limited to portfolio risk assessment,

modelling the term structure of Credit risk premia, and pricing of Credit

derivatives. Credit Transition Matrix has received attention since the sem-

inal work done by Jarrow, lando and Turnbull (1997). Examples include

Kijima and Komoribayashi (1998) who improved on the procedure of estima-

tion proposed by Jarrow et al (1997), a Markov process using one factor to

model Credit transitions was also proposed by Belkin Suchower and Forest Jr

(1998). In the New Basel Accord BIS (2001), capital requirements are driven

in part by migration ratings. Accurate estimation of the same is therefore

critical. The simplest use of a transition or migration matrix is for the bond

valuation or loan portfolio which may be used by a portfolio or risk manager.

Given a Credit Grade today, say BBB, the value of that Credit Asset for

One Year hence will depend on the probability that it will be BBB, migrate

to a better or worse Credit grade, or default by the time year ends. This
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can range from an increase in value of 1-2%. In case of upgrade to a decline

in value of 30-50% in case of default. Sophisticated examples of risky bond

pricing methods outlined by Jarrow and Turnbull (1995), Jarrow, Lando and

Turnbull, (1997), require these matrices as a cardinal input, as do Credit

derivatives such as the model by Kijima and Komoribayashi (1998). Credit

portfolio models such as Credit Metrics (JP Morgan (1997)) used in risk man-

agement make use of this matrix for simulation of the value distribution of

a portfolio of Credit assets. Credit Risk Models are used for justification of

spreads in interest rates and to quantify the inherent risk in Credit contracts

and Credit portfolios. Rating institutions have huge data bases for calibration

of their statistical models. The behaviour of one single debtor is more or less

easy to model and the more challenging problem is to find appropriate models

for the joint behaviour of many debtors in a Credit portfolio.

Credit ratings assess relative expected loss. they don’t intend to have par-

ticular probability default captured over a particular horizon. Data inspected

simply indicates that within a rating category, default rates may rise or fall

over time and sometimes significantly. Ratings have been proved to be effec-

tive when used as ordinal measure of Credit risk. Sometimes, default is not

the only interest of a Credit event, upgrades and downgrades can occur in an

investment. Moody’s Credit transitional model allows expected default rate

to be assigned to a rated Credit and generates transition forecasts for Credits

which can be extended over from one quarter to 5 years or more. Credit

ratings are intended as relative assessments of expected loss and they are not
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intended to capture a particular default probability over a horizon which is

particular . Doing Simple inspection of the data indicates that within a cat-

egory rating, there is rise and fall of default rates over time, and sometimes

quite significantly. Furthermore, their cycle again, conditional on rating is

strongly correlated with the economic cycle. Credit risk remains the domi-

nant problem confronting banks. Nevertheless, there is a need for banks to

identify, monitor and control Credit risk and ensuring capital adequacy to an-

ticipate the risk (Basel Committee on Banking Supervision (1999)). Basel II

confirmed that financial institutions must have the ability to analyse Credit

models and Internal Ratings to ensure the model is calibrated to measure

Credit Risk consistently and meaningfully. Furthermore, Credit Risk is the

main risk faced by Financial Institutions. Van Deventer and Imai (2003)

specifically mentioned that Credit Risk is the major reason for bank default.

BIS (2005) confirmed that the main reason for bank failure is low Credit

quality and poor Credit Risk evaluation. Credit risk evaluation which is done

poorly tends to neglect the use of capital requirements to expedite an ac-

curate valuation and tight control of Credit risk exposure to a bank. Credit

ratings created or produced by agencies and offices like Moodys, Standard and

Poors and Fitch furnish or provide financial market members with educated

and well informed feelings or opinions, of a standardized or institutionalized

nature, on the likelihood or probability that Credit issues will be adjusted

in a precised manner. The significance of ratings or appraisals as a source

of information or wellspring of data to investors or financial specialists has
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increased and expanded in recent years, as Credit Markets have developed

and grown more Global and come to include and incorporate a wider and

extensive range/scope of obligors, items and structures. After some time,

Credit products are at risk to move starting from one rating category or class

to another. Accordingly, more emphasis has been put under or placed on un-

derstanding not just default hazard as well as rating progress transition risk,

for example the adjustments in Credit quality surveyed by rating offices when

news affecting an obligors Credit quality is uncovered or revealed; this is also

alluded to as Credit Rating Migration. Ratings or evaluations, volatility or

unpredictability and default risk chance are probably going to change over the

appraisal range or ratings spectrum, for example increasing or expanding with

each consecutive or back to back movement or development down the ratings

scale especially when moving from venture evaluation or investment grade to

theoretical evaluation or speculative grade. The need and requirements for

powerful and robust models of the Credit risk of portfolios of Customer or

Consumer Loans has been brought into sharp focus and concentration by the

failure and disappointment of the ratings evaluation agencies/organisations

to accurately and precisely survey the Credit risks and dangers of Mortgage

or Home loan Backed Securities (MBS) and collateralized debt obligations

(CDO) which are based or in the light of such portfolios. There are numerous

reasons advanced and put forward for the subprime home loan or Mortgage

crisis and the subsequent or ensuing Credit crunch ( Hull 2009, Demyanyk and

van Hemert 2008) however plainly and clearly one reason that the previous
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prompted to the latter was the absence of an easily and effectively updatable

model of the Credit danger or risk of portfolios of Customer loans.

1.7 Organization of the Thesis

The first chapter of this Thesis gives a prologue or introduction to the Credit

hazard or Risk Models in the Banking industry. The statement of the problem

describes the probability of a Transitional Matrix moving from one state to

another and sought to define what an unbounded matrix is. It also describes

General objectives, Specific objectives, Research Questions and outlines Justi-

fication of the study where the traditional banking methods of assesing Credit

Risk are explained i.e internal ratings based models. The chapter also de-

scribes the main focus of the thesis which is the probability of Credit Rating

transition moving from one level to another in cases where the transition

Matrix models are unbounded.

The second Chapter provides the Literature Review where the existing

models for analysing Credit risks are outlined together with their weaknesses.

The Chapter defines Credit risks and describes the importance of Credit

Risk Modelling to Banking. The chapter reviews previous studies done in

modelling credit risks using migration matrices and their contributions. The

Key objectives of this Thesis is to identify the most appropriate generator

matrix for a Markov Transition Matrix which is unbounded.

In the third Chapter, Methodology is described where techniques on identi-

fying a Matrix generator is well outlined. Bounded matrices, Markov chains,
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Generator Matrices and their estimation, ways of estimating CTMC from

DTMC and embeddable Markov chains are well analysed and defined. The

problem of embeddability in 2 × 2 and 3 × 3 Transition Matrices is discussed

and various ways of correcting the Matrix Q is well outlined.

The fourth Chapter outlines the results and discussion . The Data is

based on some empirical observation from Standard and Poors data got from

its website. Incase the transition matrix P is not embeddable, four methods

namely the Diagonal adjustment, the Weighted adjustment, the EM algorithm

and the Markov Chain Monte Carlo Method also known as the Gibbs sampler

are studied and the best method proposed.

The Fifth Chapter which is the last chapter provides a summary of all the

objectives and contributions of the Thesis and considers possible extensions

to this Thesis. The main feature of this PHD thesis which is original involves

application to Data which is real and covers details to a maximum level. The

same model presented is innovative and the level of the detail of the Data

Analysis is rare and unique. Even though the equations are not detailed due

to confidentiality reasons, they provide a sufficient insight and appreciation

of all the concepts outlined. The equations and the analysis described are

not the pillar elements of this thesis since they depend on the secondary

Standard and Poors Data from the website and their Credit products. The

Key elements are the concepts behind them which are the pillar assets of this

Thesis.
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Chapter Two

Literature Review

2.1 Introduction

About two decades ago, guidelines were provided by the Basel committee

on Banking Supervision and Capital regulatory on Banks. The objective

of this was to level the playing field globally for all financial institution

and provide a protection from all financial system risks. Though models

of Credit Risks and dangers have been created and developed by researchers

and scholars such as Wei(2003), Lando and Turnbull(1997) and Kijima and

Komoribayashi(1998)(Kijima & Komoribayashi, 1998), none has considered

Bank Loans Credit Risks. This chapter will review the models advanced by

various scholars.
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2.2 Conceptual Review

2.2.1 Credit Risk

Credit Risk is a loss possibility resulting from a failure on the part of a bor-

rower to make a loan repayment or to meet his or her contractual obligation.

It is also a risk on the part of a lender incase they do not receive their prin-

cipal and interest due to them which may result in cash flow interuption as

well as debt collection increase costs.

2.2.2 Transition Matrix

A matrix(plural matrices) is an array of rectangular numbers or a table of

numbers, expressions or symbols arranged in rows and columns (Wikipedia

contributors, 2021d). Matrices are majorly applied in linear transformations

for example in vector rotation where the three dimensional space is a linear

transformation. They can also be applied in most scientific fields like physics,

computer graphics, calculus just to mention a few. In business field like

economics, they are used to describe economic relationships.

A transition matrix may refer to a matrix associated with basis change or

a stochastic matrix or a state transition matrix. A stochastic matrix is a

square matrix describing a Markov chain with non negative entries which are

probabilities (Wikipedia contributors, 2021e).
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2.3 Theoretical Review

2.3.1 Estimation of transition matrices for sovereign Credit rat-

ings

(Hu, Kiesel, & Perraudin, 2002) studied the estimation of transition matri-

ces for sovereign Credit ratings. In their paper, they showed how one may

combine sovereign default information studied over a longer period from a

number of countries in order to derive estimates of the credit transition ma-

trices. Their approach consisted mostly of modelling sovereign defaults using

a common maximum likelihood.

2.3.2 One parameter presentation of Credit risk

(Belkin, Suchower, & Forest Jr, 1998) in their paper, presented a one param-

eter presentation of Credit risk and transitional matrices. They started with

the credit metrics perception that transition matrices rating are as a result of

”binning” of a standard normal variable X which provides a measure of credit

worthiness changes. They assumed that X splits into two parts namely; First,

a component Y which is idiosyncratic and unique to each borrower. then sec-

ondly, a component Z of the system which is shared by all borrowers. Z

provides a measure of credit cycle which means that the default rates valued

at the end of period risk rating are not predicted using the average historical

transition rates by the credit grade initial matrix. In good credit years, Z will

be positive meaning that for each initial credit rating, a default rate which is
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a ratio of lower than average and higher than average upgrades to downgrade.

the reverse will be true in bad years. (Belkin et al., 1998) described a method

of getting an estimate of Z from the tabulated TM got from Standard and

Poor’s (SP) and Moody’s. He described a method of evaluating a TM using

an assumed value of Z.

2.3.3 Cross Sector volatility

(Collet & Ielpo, 2018) studied cross sector volatility which they found could

threaten the financial muscle of credit markets and the portfolio of credit

bond. In their study, they measured spill overs of cross sector volatilities

focusing mainly on the US investment grade bonds. They found out that

the volatility spill overs were high in the US investment Credit market and

the net contributors were goods, insurance and energy sectors in the shock

experienced over the 1996 − 2017 period. They applied structural analysis of

the spill over history using multivariate VAR Markov switching model over a

three regime and found out that having the three different regimes will result

in different structures of volatility spill over. They concluded that goods and

insurance sectors are the sources of volatility spill overs during crisis periods

and their estimates formed a large spill over portion difficult to anticipate.

2.3.4 Mover-Stayers approach

(Ferretti, Gabbi, Ganugi, Sist, & Vozzella, 2019) in their paper proposed that

the banks may misestimate transition probability and as a result may lend
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money incoherently with borrowers default trajectory hence causing system

distress and asset quality deterioration. They applied a Mover-stayer model

to estimate the risk of migration of SMEs and found that banks were overesti-

mating their credit risk hence resulting in excessive regulating capital. Their

study has vital macroeconomic implication since holding a big capital buffer

is expensive for banks and this affects their lending ability in the economy at

large. Their conclusion is valid especially during economic downturns with the

results exacerbating the risk capital cyclicaly hence worsening the economic

condition. In their study, they also explained the misevaluation of borrowers

and the true relevant weight of non performing loans in banking portfolios.

The mover-stayers approach assists in reducing calculation inaccuracy when

especially analysing the historical migrations of borrowers’ ratings hence im-

proving the resource efficacy allocation process and stability of the banking

industry. (Landini, Uberti, & Casellina, 2018) proposed a not-standard ap-

proach which considered a portfolio on an open sample which allows entries,

stayers migrations and exits. While it is consistent with observations, the

open sample approach contrasted with the method of standard closed sam-

ple. In their paper, they proposed a methodology for integrating the outcome

of the standard closed method from the open-sample perspective while siev-

ing out some of the standard method assumption. They concluded by basing

on the Markovian hypothesis that with a priori absorbing default state, the

method of standard closed sample is supposed to be dropped for not being

able to predict the lender’s bankruptcy. Secondly, in order to satisfy many re-
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liable approximation of new regulatory standards, the portion to approximate

migration rates matrices for Credit risks should incorporate either entries or

exits. Lastly, the static eigen-decomposition required procedure to forecast

rates of migration should be substituted with a stochastic process method-

ology while at the same time conditioning the forecasts to macroeconomic

scenarios.

2.3.5 Novel substitute of Credit Transitional Matrices Study

(Štěpánková, 2021) in their study analysed a novel substitute of CTMs got

from Bank sourced CTMs. They provided an insight into approximation of

bank sourced CTMs by analysing the extent to which the dependency of

CTms are on the credit risks datasets and the aggregation method outlines

that inform its choice. They showed that bank sourced CTMs are more

viable than those got from Credit rating agencies with larger off-diagonal

rates of transition and higher upgrade propensity. Finally, they created a

set of particular CTMs for the industry which previously were impossible to

obtain due to the sparsity of data suffered by credit agencies and showed the

consequences of their differences, signalling the emerging of business cycles

which are specific to the industry. They proposed that their approach using

large scale Monte Carlo simulation be implemented by the regulators and

financial organizations interested to improve their models of Credit risk.
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2.3.6 Study on estimates of Banks credit risk

(Máková, 2019) studied banks’ credit risk models by investigating features

estimates of their credit risk and evaluating uses of transition matrix esti-

mates as well as related assumptions. They used a specific dataset of internal

credit risk estimates got from global A-IRB banks, exploring monthly ob-

servations of EU large corporates and 20, 000 North American Corporates

over the 2015− 2018 time period. Their study empirically tests the most used

Markovian property assumptions and time homogeneity at a larger scale than

most previous studies. The results showed that estimates of internal credit

risk do not fullfill these assumptions as they demonstrated evidence of both

time heterogeneity and path-dependency. Lastly, their findings contradicted

previous findings on data from credit rating agency and banks are prone to

revert to actioning their rating.

(Kreps, 2019) in their paper titled The Black-Scholes-Merton Model as an Ide-

alization of Discrete-time Economies came up with assumptions that Credit

Risk models are categorized into two classes; Structural or asset value models

and Reduced form or default rate models. Structural models have origins

with the famous Merton Model (Bharath & Shumway, 2004) where the firm’s

default is modelled as per its assets and liabilities relationship at the end of

the given period. The value of the debt of a firm at maturity will equal the

liabilities nominal value minus the European pay-off put option of the value of

the firm. The asset value is processed as a geometric Brownian motion model

and default occurs when the maturity level asset value is lower than the li-
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abilities. In such cases, the debtor exercises the put option and hands over

the firm. The Merton’s model assumption are in tandem with Black Scholes

model hence the pricing of a risky Credit can be done with the pricing theory

option of the Black-scholes. The Merton’s model has further been developed

by various authors to have a bankruptcy inclusion possibility before maturity

or the evolution of stochastic of the risk free rate. These structural mod-

els are referred to as the latent variable or threshold models. The Reduced

form model also known as the Jarrow turnbull model was published in the

year 1995 by Robert A. Jarrow and Stuart Turnbull (Wikipedia contributors,

2021b). However most approaches reviewed do not investigate whether the

Matrices are unbounded and how best to get the generator matrices for the

transitional matrices.

2.3.7 Markov Generator Matrices Estimation

The problem commonly encountered in Credit Risk management is how to

estimate the probabilities of default (PD) in the high investment grades when

given insufficient data. To address this issue, there is need to model the tran-

sition matrices using Continuous Time markov Chain(CTMC). The approach

of CTMC uses the probability of successive downgrades which leads to de-

fault in a manner that very small PD can be captured. In most Banking

applications, the method faces a data limitation problem since it makes use

of data which is continuously observed in order to estimate the transition ma-

trices intensities. In reality, the internal rating systems data in all individual
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banks are annual or biannual. In order to apply this method, the methods

of estimating basing on discretely observed rating data from Banks need to

be analysed for practical purposes hence there is need to estimate CTMC

from DTMC. This research will define and discuss Bounded matrices in de-

tail with relevant examples, it will compare the functions for estimating the

Markov generator matrices from discrete time observations, the discrete time

log likelihood function, the generator matrix exponential function, the gen-

erator matrix estimation and its confidence interval in a bid to model Credit

riks using unbounded transition Matrices.

2.3.8 The Credit Risk+ approach

The Credit Risk+ model was developed by Credit Swiss Financial Prod-

ucts(CSFP) and is currently one of the benchmark models of the financial

industry in Credit Risk management area(Gundlach & Lehrbass, 2013). It is

also used widely in the community of supervisory since it uses the same data

as the basic input which is a requirement of Basel II Internal Ratings Based

(IRB) approach. The CreditRisk+ model is a reduced form model for Credit

Risk portfolio. In comparison to the asset value models, it processes Credit

defaults by modelling it directly instead of having a stochastic process defini-

tion of the asset value of the firm which will indirectly lead to defaults. The

default probabilities can vary depending on factors underlying hence rates

of default are not constant like the case of Credit Metrics or KMV models
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but rather are stochastic variables model. It has an important property that

instead of portfolio loss distribution property, an analytical solution can be

derived for the loss distribution of a Credit portfolio given by approximation

means of the portfolio loss probability generating function. It also seems eas-

ier for data calibration to the model than for multifactor asset value models

case and very importantly, concentration risk driver is revealed in the Credit

risk.

A private company named after its founders namely Kealhofer, McQuown and

Vacisek came up with the KMV model in 1989 and is presently maintained

by Moody’s KMV(Valášková, Gavláková, & Dengov, 2014). It is based on

Merton’s approach but in a slightly varied manner in order to gauge a Credit

portfolio risk. The KMV model main contribution is in its calibration which

makes it to achieve the correspondence of default probabilities to the empiri-

cally observed one and not its theoretical model. The calibration makes use of

a huge data base. The Expected Default Frequency (EDF) is computed within

the KMV model and is the Capital structure of the firm based together with

its asset volatility and asset current value of the firm. This is done in three

stages; First, iterative procedure for asset value estimation is used by the

KMV and asset returns volatility analysed. This method is Merton’s model

based in modelling equity as the firm’s underlying assets call option with the

liabilities of the firm as the strike price. In Merton’s model, the probability

of default of a given firm is evaluated by the asset value probabulity V1 in one

year which is lying below the threshold value B, a representation of the debt
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of the firm. Hence the default probability PDMerton in Merton’s model is a cur-

rent asset value V0, the asset value annual mean µv and volatility δv together

with the threshold B function. An estimated probability is represented by the

EDF that a given firm within one year will default. In the model of KMV, the

EDF is different slightly but has astructure which is similar to the Merton’s

Model probability of default. The 1 − φ function above is replaced by some

function which is decreasing and is empirically estimated in the KMV model.

The firms are assumed to be homogeneous in the KMV model in probability

of defaults for equal DDs. The mapping between EDF and DD is empirically

determined basing on a database of events of historical default.

2.3.9 The CreditMetrics Model

The Creditmetrics approach departs from the assumption that the Bond mar-

ket value or its default probability is derived by using the firm’s assets value as

its main input variable. As a tool for managing risk, the model ought to be ap-

plicable to all types of financial instruments having inherent Credit risk. Also

the procedure of valuation must be consistent with the market prices.(Guptin

et al 1994). Hence the Credit metrics utilizes for the valuation the Company’s

rating, historical transition matrices and bond prices which are empirically

derived. The assumption is that all variables other than the current issuer

rating over time behave deterministically. Hence the bond or loan valueat

the risk time horizon T is dependent essentially on the state of rating of the

issuer at this time i. CreditMetrics makes the assumption that if the issuer
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is not in default state at the risk time horizon, the bond or loan value is

determined by outstanding cash flow discounting by making use of Credit

spreads over the interest rate r which are riskless. The spread correspond

with the rating state i of the T issuer. Hence the bond distribution or loan

values in T are given by the probabilities P (X = i) of the rating states which

are different in T together with the values corresponding to the bond Vi,T . In

the CreditMetrics model, for one to obtain the possible ratings distribution

at t, the initial vector is multiplied with a t-step transition matrix. If the risk

horizon is greater than one year, the suggestion is to compute the transition

probabilities required vector pi · (t) either with a multiple of transition matrix

P which is one year, pi · (t) = δi · pt or with direct estimates t-year transition

matrix pi · (t) = δi ·p (t). Hence all possible future ratings at time t are obtained

with the corresponding transition probabilities;

Rating at t 1 2 . . . k-1 k

Migration probability pi1 (t) pi2 (t) . . . pi(k−1) (t) pik (t)
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2.4 Theoretical Framework

Figure 2.1: Theoretical framework
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2.5 Summary

The reviewed studies explore the estimation of transition matrices for sovereign

Credit ratings, One parameter presentation of Credit risk, Cross Sector volatil-

ity, Mover-Stayers approach, Novel substitute of Credit Transitional Matri-

ces, estimates of Banks credit risk, Credit Risk+ approach and CreditMetrics

Model. While studies have been done extensively on Credit risks, none so far

has been done on cases of unbounded matrices and embeddability problem.

Credit risk models have the assumption that over a period of time, there is

a migration between different Credit states in a counterparties Credit rat-

ing (Ferretti et al., 2019). This process can be viewed as a mathematically

finite Markov chain and has the assumption that the Credit rating succes-

sively changes under time intervals given from one state to another with a

specific probability. These probabilities of the Credit migration are what

forms a Credit migration or transition matrix. The yearly transition matrices

specifying the probability of state changes over a period of one year can be

obtained from agencies specializing in the Credit data. The risk management

practises and pricing of instruments which are in reduced form are modelled

on the finite markov chain model. For instance, Jarrow et al (Jarrow, Lando,

& Turnbull, 1997) and Das and Tufano(1996) (Tufano, 1996) did some dis-

cussion on the prices and hedging of counter party risk and corporate debt

with some embedded options making use of Markov chain model of Credit

risk migration. In both discrete and continuous time process models, the

knowledge of the yearly transition matrices is not sufficient for pricing since
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many instruments mature or have cash flows occuring on a non yearly basis.

For instance, pricing a risky instrument of Credit maturing in six months will

require a transition matrix which is six months. In general, there is need to

get transition matrices over time horizon which are imaginary. If the process

of transition is time homogeneous, then the transition matrix obtained in n-

period can be evaluated by raising the transition matrix of the single period to

power n. Although the model feature is very appealing, it has some problems

which can be conceptual. For instance a six-months transition matrix ought

to be a square root of the yearly transition matrix but this is not possible

since it raises the yearly transition matrix to a less than one power hence re-

sulting in a matrix having elements which are negative.This negative elements

matrix is not a transition matrix. Moreover, even when it is non existent, a

transition matrix which is six months may not be unique (Pfeuffer, Möstel, &

Fischer, 2019). When one is confronted with this problem, one of the possible

solution is to reconstruct it in a way that allows it to be solved easily. This

research will attempt to use the regularization process in order to obtain time

horizons which are arbitrary and approximate the roots of a yearly transition

matrix. One way that transition matrix are obtained for periods that have

arbitrary length is to use embedding of the DTMC into CTMC (Pfeuffer et

al., 2019). For a CTMC, any transition matrix of any period length can be

evaluated as the exponential of the generator matrix. Hence solving and eval-

uating the embedding problem allows one essentially to compute a generator

consistent with the yearly transition matrix of the DTMC. But the generator
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computing of a transition matrix in existence using its logarithms has issues

of uniqueness and existence. As we’ll note in this thesis, transition matrices

which are empirically observed have typical properties precluding the gener-

ator existence (Israel, Rosenthal, & Wei, 2001). Conversely, more than one

generator gives rise to transition matrix which is the same (Pfeuffer et al.,

2019). To evade these difficulties, the suitable approach is to directly estimate

the generator and then put it into use by constructing the necessary transi-

tion matrices. Unfortunately, data provided by agencies on Credit migration

only deal with yearly transition matrices leaving out their generators.
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Chapter Three

Methodology

3.1 Introduction

Markov chain is a stochastic process named after Andrey Markov and is

based on a memoryless property also called the Markov property(Houag,

2016). This property means that the past and future are independent of the

present provided the present is known. Markov chain is used in modelling

many processes by making the analysis of the processes easy. There are

two types of Markov Chains; Discrete and Continous Markov chain. The

Continuous Time Markov Chain (CTMC) having finite states is applied in

many real life situations. In finance, it is used to analyze the time series hence

assisting in understanding the prices change and predict financial market

trends. The estimation of the CTMC parameters when this process has been

continuously observed in some specific interval is simple and known. But the

estimation of these parameters from Discrete Time Markov Chain (DTMC)
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observations closely related to the embedding problem is not an easy process.

This latter estimation problem was considered as an important statistical

problem in modeling credit risk using transitional matrices with the main

problem being getting the best and unique generator matrix estimator. This

chapter provides a description of the research design and methodology used

in the study. It covers Data Source, Modelling Transition Matrix, Model

derivation, Default Probability and Risk Premium Properties, Discrete Time

Markov Chain, Continuous Time Markov Chain, Bounded Matrices, Markov

chain model, Generator Matrices, Embeddable Markov Chain Matrices, the

2 × 2 TM embedding problem, the 3 × 3 TM embedding problem and lastly

the Complex Eigen Values.

39



3.2 Data Source

The data used in the study was got from Standard and Poors website https://

cerep.esma.europa.eu/cerep-web/statistics/transitionMatrice.xhtml

AAA AA A BBB BB B CCC D



AAA 52 30 1 0 0 0 0 0

AA 5 76 31 3 0 0 0 0

A 0 21 28 19 6 3 0 0

BBB 0 0 5 26 8 2 0 1

BB 0 0 2 13 21 13 3 0

B 0 0 0 0 11 46 0 0

C 0 0 0 0 0 3 0 0

D 0 0 0 0 0 0 0 0

(3.1)

3.3 Developing an unbounded transitional matrix from

a Credit ratings data

3.3.1 Modelling Transition Matrix

Rating agencies such as Standard and Poor’s or Moody’s normally publish

the Credit ratings of firms periodically. With the introduction of Basell II

accord, the Credit rating importance have increased significantly and infor-

mation used to assess abilities of firms is provided to investors. Ratings are

increased or lowered depending on the improvement or decline of the firms
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or Company’s Credit quality. The present obligor rating provides a predic-

tion for its future which is the main feature of any Credit ratings i.e the past

ratings and the present ratings determine the evolution. The use of Markov

Chains Model is commonly used to describe the Credit ratings dynamics as

illustrated by Jarrow and Turnbull(1995).

Specifically let x, represent at time t, the rating evaluation of a Borrower or

Loanee from a bank or Financial institution at time t. Assuming

x = {xt, t = 0, 1, 2, . . .}

is a Markov Chain of time homogeneous nature and space

S = {1, 2, . . . , C, C + 1}

state 1 is the highest class of Credit, state 2 the second highest,..., and state

C represents the lowest class of Credit. The default state is represented by

state C + 1 and is the absorbing state. Let

fij = P (xt+1 = j|xt = i) , i, jεS, t = 0, 1, 2, . . .

represent the probability state i transists to state j. fij and P is the one-

step probability of transition and measure of probability respectively. The

transition class of Credit i to class of Credit j is represented by a transition
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matrix which is time homogeneous F where;

F =



f11 f12 ... f1c f1,c+1

f21 f22 ... f2c f2,c+1

...
...

. . .
...

...

fc1 fc2 ... fcc fc,c+1

0 0 ... 0 1


=


A

(c× c)
D

(c× 1)

0

(1× c)
1

(1× 1)

 (3.2)

where

fij > 0 for all i, j and
c∑
j=1

fij = 1 for all i

Submatrix A(c×c) is defined on S = {1, 2, ..., C} where S is a non absorbing

state.

Submatrix A components indicate the switching of classes of Credit of the

Bank’s borrower but excludes default state c+ 1. Components of the column

vector D(c×1) which are f1,c+1 are the probability of transitions of borrowers

from banks from any Credit class i = 1, 2, ..., C switching to class of default

j = c + 1. For sampling sake, it is assumed that bankruptcy given by state

C + 1 is the absorbing state. After the process enters default state, there will

be no return to Credit class state hence

fc+1,c+1 = 1

Therefore it is said that the default state C + 1 is also an absorbing state.
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3.3.2 Model Derivation

Taking into consideration the Cycle of Credit, there are steps to derive the

transition matrix. The first step is to develop a mapping devise through

which the probability of transition can be transformed into Credit scores. In

this research, normal distribution is used since it is easy to calculate. The

sum of row matrix in a transition matrix is 1 hence the cumulative normal

distribution function is inverted by beginning from the default function as seen

in Belkin, Suchower and Forest(1998), Wei(2003) and Kim(1999). Hence the

Transition matrix 3.2 observed above is

Y =



y12 y13 y14 . . . yic

y22 y23 y24 . . . y2c

...
...

...
. . .

...

yc2 yc3 yc4 . . . ycc


(3.3)

The Matrix 3.3 above is C × C since there is no need for the rows to be

converted into an absorbing state. If Matrix 3.3 is converted into a probability

transition matrix, then it results into Matrix 3.2 which is a Transition Matrix.

From Belkin, Suchower and Forest(1998), Matrix Y is decomposed into 2

factors of time t as;

Yt = αLt +
√

1− α2εt (3.4)

43



where Lt is the Credit Cycle. In a good year, the Credit cycle will be positive

implying that for the first Credit rating, a lower rate than default average and

higher than upgrades average downgrades. On the other hand, a bad Year

results to the Credit cycle being negative. The observed transition matrix at

any year will have a normal deviation i.e;

Lt = 0

εt is non-systematic and every borrower has a unique idiosyncratic factor. Lt

and εt are assumed to be Unit normal variables which are mutually indepen-

dent. Unknown coefficient α represents the correlation between Credit Cycle

Lt and Yt. In order to minimize the weight, the coefficient of the rows of

Matrix 3.3 is found together with the fitted transition probabilities and the

discrepancies which are mean squared.

Pi,j = Φ (yi,j+1)− Φ (yi,j) (3.5)

P (yi,j+1, yi,j|Lt) = Φ

(
yi,j+1 − αLt√

1− α2

)
− Φ

(
yi,j − αLt√

1− α2

)
(3.6)

Φ (.) represents the function of distribution which is standard normal and

equation 3.5 and 3.6 represents the fitted and observed transition probability

of i state to j state in time t. The least square problem just as Belkan,
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Suchower and Forest(1998) takes the form,

minL
∑∑ nt,1 [Pt (i, j)− Pt (yi,j+1, yi,j)]

P
(3.7)

nt,i represents the borrower’s number moving to state j from state i. The

weighting factor is also given as;

ni,j
Pt (yi,j+1, yi,jLt) [1− Pt (yi,j+1, yi,j, Lt)]

hence the fitted transition matrix can be constructed as;

M =



m11 m12 · · · m1c m1,c+1

m21 m22 · · · m2c m2,c+1

...
...

. . .
...

...

0 0 · · · 0 1


(3.8)

3.4 Default probability and Risk Premium proper-

ties

The approach of risk-neutral probability is explored to assess the Bank Loans

Credit Risk. Default probability tends to zero for higher Credit ratings but

in a risk-neutral world, loan rates observed imply a default probability of

non-zero. By risk premium estimation, the framework of risk neutral can be

controlled. In an ideal situation, loan rates should be matched with the tran-
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sition matrices observed so that risk premium will be obtained. A borrower

who is likely to default is matched with the stochastic process;

X̃ =
{
X̃t, t = 0, 1, 2, . . .

}
(3.9)

Credit rating. The Credit falls under the measure or proportion of risk-

unbiased probability or likelihood. The fitted change on transition matrix

for the reasons or purposes of valuation is changed and transformed into a

transition matrix which is risk-neutral under the measure which is equivalent

to martiangle where the matrix is denoted as m̃. Under the new measure,

the transition matrix does not need to be Markovian if it is a Markov chain

which is an absorbing Markov chain. Hence the fitted transition matrix falling

under the measure of risk neutral probability is;

m̃ (t, t+ 1) =



m11 (t, t+ 1) · · · m1c (t, t+ 1) m1,c+1 (t, t+ 1)

m21 (t, t+ 1) · · · m2c (t, t+ 1) m2,c+1 (t, t+ 1)

...
. . .

...
...

0
. . . 0 1


=

A (t, t+ 1) D (t, t+ 1)

0 1



(3.10)

where mij (t, t+ 1) = P̃ {Xt+1 = j|Xt = 1} , i, jεS

mij and P denote the probability of risk-neutral transition and the measure

of probability of risk-neutral respectively. Equation 3.10 conditions must be
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met here together with the condition of equivalence that;

mij (t, t+ 1) > 0

if and only if mij > 0.

It is noted that for Credit Risk assessment, the risk premium plays a vital

role. The bank Loans Credit Risk can be captured using the risky rate i.e

loan’s rate and the zero risk rate i.e risk-free rates for every class of rating

with the measure of risk-neutral probability. Letting V0 (t, T ) be the risk-free

Credit price at time t and maturing at time T and its risk which is higher will

be V1 (t, T ). However not all Interest and Principal of a Loan is lost when a

borrower defaults. In reality, a bank will receive some partial repayment even

for a borrower who goes bankrupt. Letting the loan’s principal and default

to be δ collectable when the borrower defaults. It is also known as recovery

rate. In situations where the loan is unsecured i.e has no asset backing or

collateral, then δ = 0 and the rate of recovery is 0 < δ ≤ 1 on the contrary.

Jarrow, Lando and Turnbull(1997) showed that an assumption can be made

that

mi,j (t, t+ 1) = λij (t) .mij, i, jεS

and

λij (t) = λi (t)

for j 6= i

and the risk premium procedure is given as;
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λi (0) =
V0 (0, 1)− Vi (0, 1)

(1− δ)V0 (0, 1)mi,c+1

(3.11)

Near zeros or zero probability of default i.e mi,c+1 ≈ o from equation 3.10

causes an explosion of the estimate of risk premium and also an implication

that the process of Credit rating and the state of default is independent for

every borrower which for bank loans, is irrational and inappropriate. The

future default probability is not estimated once a borrower defaults. The

assumption of the Credit Class rating of every borrower is modified on the

pretext that the Credit class rating is independent. The Risk Premium is

redefined as;

ρ (t) =
1

1−mi,c+1

c∑
j=1

m−1ij (0, t)
Vi (0, t)− δV0 (o, t)

(1− δ)V0 (0, t)
i = 1, 2, . . . c and t = 1 . . . T (3.12)

Ã (0, t+ 1) = Ã (0, 1) Ã (t, t+ 1) (3.13)

where m−1ij (0, t) is the inverse components of the inverse matrix Ã−1 (0, t) and

A (0, t) is invertible. Equation 3.11 denominator is (1−mi,c+1) and not mi,c+1 and

the problem in equation 3.12 will be amended. A (t, t+ 1) = A (t) .A for equa-

tion 3.22 and A (t) is the (C × C) matrix which is diagonal with risk premium

diagonal components modified to ρj (t) , jεS. Particularly, t = 0 risk premium

is;

ρi (0) =
1

1−mi,i+1

× V0 (0, 1)− δVi (0, 1)

(1− δ)V0 (0, 1)
i = 1, 2 . . . , C (3.14)

The risk premium can be estimated by a recursive method for all loans with
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periods t = 0, 1 . . . T . The transition matrix which is risk neutral will vary

over time in order of equation 3.12 and 3.14 accompanying the risk premium

changes. The indicator function is assumed to be;

1(I) = {1, ifIε {τ > T} (3.15)

Since the interest rate and Markov processes are independent under the mea-

sure of equivalent Martiangle, the loan value is equal to;

Vi (t, T ) = V0 (t, T )
{
Ẽt [1τ>T ] + Ẽt [δτ≤T ]

}

= V0 (t, T )
{
Q̃i
t (τ > T ) + δ

[
1− Q̃i

t (τ > T )
]}

= V0 (t, T )
{
δ + (1− δ) Q̃i

t (τ > T )
}

(3.16)

where Q̃i
t (τ > T ) is the loan measure probability that loan rating i will not

before time T be in default. Clearly;

Q̃i
t (τ > T ) =

Vi (t, T )− δV0 (t, T )

(1− δ)V0 (t, T )

=
c∑
j=1

m̃ij (t = T ) = 1− m̃i,C+1 (t, T ) (3.17)

where time t ≤ T is held including the current t = 0.

Before time T , there is an occurence of default probability as;

Q̃i
t (τ ≤ T ) =

V0 (t, T )− Vi (t, T )

(1− δ)V0 (t, T )
(3.18)
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for i = 1, . . . , C and T = 1, 2, . . .

There are four steps in assessing a Bank loan Credit risk;

1. Construct Transition Matrices observed basing on the rating agencies

reports.

2. Using equation 3.5, obtain the fitted transition probabilities and con-

struct the fitted transition matrix.

3. Using equation 3.13 and 3.14, obtain the risk premium.

4. Finally, construct the transition matrix 3.8 and condition on risk pre-

mium which is time varying and Credit cycle.

Bank loans default probability is estimated by Markov Chain model which

incorporates time-varying risk cycle.

3.5 Converting the Discrete Time Transitional Ma-

trix into Continuous Time Transitional matrix

3.5.1 Discrete Time Markov Chain

Each n stage corresponds with time points given with time constant step be-

tween them. For instance between time points which are say two can be 1

year hence pij (1) is the probability in one year to migrate to state or condition

j from state i. Hence pij (t) during time t, is the likelihood or probability of

moving from stage i to stage j.
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The discrete time stochastic process {X(n), nεN0} over space S = {1, 2, , `}

is a DTMC if conditional probability distribution of X(n + 1) when given

X(n), . . . , X(n) relies only on X(n).

3.5.2 Continuous Markov Chain

There is need for additional theoretical framework for a continuous non stop

time Markov chain. Unlike in discrete framework where transitional probabil-

ities were considered at fixed time points, a stochastic variable T is considered

instead which is time spent at each state. Transition rates are also considered

instead of fixed time step. If the transition rate is large, the transition takes

place sooner hence the time spent T in a continuous Markov chain follows an

exponential distribution in each state with the risk parameter as the transi-

tion rate. Each possible state will be having a transition rate which is certain.

Time T1, . . . , TN is obtained for each possible state 1, . . . , N and the shortest

time min {T1, . . . , TN} will determine the Markov chain state at transitions and

how long the transition will take.

Hence discrete Markov chain in certain state and time will be fixed time points

whereas continuous time Markov chain moves at irregular times between the

states. The continuous stage transitions are given by;

P (t+ s) = e(t+s)Q = P (t)P (s) (3.19)

where Q is the generator Matrix.
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3.5.3 Bounded Matrices

A matrix A is referred to as absolutely bounded universally if U∗AU is abso-

lutely bounded for every Unitary matrix U to as A. A Unitary matrix is a

complex square matrix which has its conjugate transpose as its inverse. This

means that a matrix along its diagonal row is flipped over and its inverse con-

jugate calculated. An infinite matrix (αij) is said to be bounded if the matrix

(αij) induces a bounded operator on l2. An example of a bounded matrix is

the Hilbert Matrix. A matrix is absolutely bounded universally if and only if

it is the summation of Hilbert-Schmidit matrix and a scalar multiple of the

identity matrix. A Hilbert Matrix (named after Hilbert 1894) is a square

matrix whose entries are fractions and is given by;

Hij =
1

i+ j − 1
(3.20)

The Hilbert matrix can also be derived using the integral;

Hij =

∫ 1

0

xi+j−2dx (3.21)
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An example of a 5× 5 Hilbert Matrix is given by;



1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9


The matrices used in data analysis are transition matrices which are not unitary and do

not satisfy the Hilbert equation 3.20 hence they are unbounded.

3.5.4 Markov Chain Method

Jarrow et al (1997) (Jarrow et al., 1997) also referred to as JLT was the pioneer in

modelling default and transition or migration probabilities using a markov chain on a

state space given as S = {1, . . . , k}. This section will look into this model and its use

in evaluating the risk neutral transition matrices. Discrete and continuous properties of

transition matrices will be discussed.

The different rating classes are represented by the state space S where S = 1 is the

best rating and S = k is the default state. Thus in discrete cases, the k × k transition
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matrix which is one period will look like;

P =



p11 p12 . . . p1k

p21 p22 . . . p2k

· · · · · · · · · · · ·

0 0 . . . 1


(3.22)

where pij ≥ 0 for all i, j, i 6= j

pii = 1−
∑k

j=1 pij for all i

pij variable represents the probability of migrating to state j from initial state rating i

in a one time step. Hence models which are ratings based can also be seen as a special

type of intensity model framework from Deffie and Singleton 1999 where they proposed

that Markov Chain can model randomness in default. Alternatively, a Continuous time

Markov Chain (CTMC) can be used to model a Credit Migration. The concept of gener-

ator matrices and modelling of CTMC of rating transitions will be discussed in the next

section.

3.5.5 Homogeneous Continuous Time Markov Chain

A CTMC which is homogeneous is given by a k × k generator matrix as follows;

Λ =



λ11 λ12 . . . λ1k

λ21 λ22 . . . λ2k

· · · · · · · · · · · ·

0 0 . . . 0


(3.23)
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where λij ≥ 0 for all i, j andλii = −
∑k

j=1 λij for i = 1, . . . , k. The elements which are off

diagonal represent the probability of migrating from rating i to rating j and absorbing

state is represented by default k.

3.6 Generator matrix

3.6.1 Generator matrix estimation

The generator matrix usually denoted by G provides an alternative method of analysing

or evaluating continuous time Markov chains. Given a continuous time Markov Xt and

assuming X0 = i, the chain will transit to the next state at time Ti, where Ti is given as

Ti ≈ Exponential (λi). Hence for a very small δ > 0, we have;

p (Ti < δ) = i− e−λiδ

≈ 1− (1− λiδ)

= λiδ

(3.24)

hence in a short interval of length δ, the probability of leaving state i is given as λiδ. this

λi is usually referred to as transition rate out of state i and is denoted as;

λi = lim
δ→0+

[
p (X (δ) 6= i|X (0) = i)

δ

]
(3.25)

Since probability pij denotes the probability of going from state i to state j, the quantity

is referred to as gij = λipij i.e the transition rate from state i to state j. The diagonal
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elements (gii) of G are chosen in such a way that the rows of G add to 0 i.e

gii = −
∑
j 6=i

gii

= −
∑
j 6=i

λipij

= −λi
∑
j 6=i

pij

= −λi

(3.26)

The last equality in equation 3.27 is as a result of; If λi = 0, then,

λi
∑
j 6=i

pij = λi = 0 (3.27)

If λi 6= 0, then pii = 0 i.e no there are no transitions hence;

∑
j 6=i

pij = 1 (3.28)

3.6.2 Generator Matrix Properties

The properties below should be satisfied by the Generator Matrix Q.

1. 0 ≤ −qii ≤ ∞

2. qij ≥ 0 for all i 6= j

3.
∑

i qij = 0 for all i⇐⇒ qii = −
∑

j qij for all i 6= j

56



3.6.3 Transition matrix and Markov Chains

A Markov chain which is finite in discrete time S (t) , t = 0, 1, 2, . . . has the elements

below;

1. A set of states which are finite i.e S = {1, 2, . . . n}

2. A primary probability distribution q (0) = (p {S (0) = 1} , p {S (0) = 2} , . . . , p {S (0) = n})

fulfilling p {S (n)} ≥ 0, i = 1, 2, . . . , n and
n∑
i=1

P {S (0) = i} = 1

3. A line of transition matrices A (t, t+ 1) = ‖aij (t, t+ 1) ‖, where ai (t, t+ 1) =

P {S (t+ 1) = j|S (t) = i}

The transition matrices will satisfy;

n∑
j=1

aij (t, t+ 1) = 1 for i = 1, 2, . . . , n

aij (t, t+ 1) ≥ 0 for i = 1, 2, . . . , n

(3.29)

The Markov chain S (t) is said to be time homogeneous if the transition probabilities are

independent on t, i.e

aij (t, t+ 1) = aij (0, 1) = aij (3.30)

In modelling Credit risk, a transition matrix which is one year is the sole information

source for transition probabilities. Rating agencies also do not provide transition matrices

forecasts which are time dependent. For this reason, it is useful for a Markov chain which

is time homogeneous in simulation of Credit events (Evans, 2019). Note that the notation

above can be simplified by denoting a single period transition matrix by A = ‖aij‖ and
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a t−period generally (for the interval of time [0, t] transition matrix);

A (t) = ‖aij (t) ‖ (3.31)

The probabilities of transition aij (t) will satisfy the expression;

aij (t) =
n∑
k=1

aik (m) akj (t−m) , m = 1, 2, . . . , t (3.32)

or alternatively in the form of matrix

A (t) = A (m)A (t−m) (3.33)

Equation 3.32 is also called the semi group property and it implies;

A (t) = At (3.34)

It is easily proved that a transition matrix integer power is a transition matrix too. From

equation 3.33, the Markov chain probability of distribution at time t will satisfy;

q (t) = q (0)At.

where

q (t) = (P {S (t) = 0} , P {S (t) = 1} , . . . , P {S (t) = n})

(3.35)
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3.6.4 Regularization of Credit Migration Model

Markov Chains which are finite currently in use in modes of Credit risk have a state

known as arbitrary state which marks a default event. This absorbing state once arrived

at, the Markov chain will indefinitely remain there. Assuming that n represents the

default state;

ann (t) = 1 and anj (t) = 0 for allj̇ 6= n, t = 1, 2, . . . (3.36)

To provide a distinction with other general Markov Chains, a Regular Credit Migration

Model (RCMM) is a Markov Chain having the properties below;

1. It has only a single absorbing state.

2. It has tp ≥ 1 in that ain (tp) > 0 for all i = 1, 2, . . . , n.

3. The determinant of the yearly transition matrix A is not equal to 0 and has distinct

eigen values which alow the computation of logarithm of A.

The vaues of 2 ≤ tp ≤ 5 empirically are common thus a portfolio having the highest

Credit rating possesses a positive probability of default in a period of two to five years.

Also for RCMM, he migration Matrix At satisfies (Snell-Hornby, 1988);

A (t) −→ D as t −→∞ (3.37)
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where;

D =



0 0 . . . 0 1

0 0 . . . 0 1

. . . . . . . . . . . . . . .

0 0 . . . 0 1


Equation 3.36 shows that default will occur eventually irrespective of the initial rating of

Credit. However, the default average time can be very large for particular initial state of

Credit.

3.7 Embeddable Markov Chain Matrices

A CTMC having a finite number of l states is given by {p(t), t > 0} given by the relation;

p(t) = eQt (3.38)

given by its generator matrix. Observing the process at discreet time points t1 = 0, t1 =

1, . . . , tn = T having differences between consecutive two discreet time points as 1, a

DTMC is obtained giving into consideration homogeneity (Pfeuffer et al., 2019) with

time unit 1 given by TM p such that p(1) = p. The main problem here is getting an

estimator Q̂ of the generator matrix Q given this CTMC such that p̂ = eQ̂, a problem

known as embedding problem. To date, only partial results of this embedding problem are

in existence and none has been applied in Credit Migration Matrices. The definitions that

follow will look on some of the results which are in existence for finite and homogeneous

transition matrix p. The next chapter of data analysis will attempt to apply the most
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suitable model which will solve this embedding problem in unbounded Credit Migration

Matrices.

Definition 1 A TM P is said to be embeddable if it has a generator matrix Q such that;

p = exp(Q) (3.39)

Remark 1 Q is not necessarily unique.

Definition 2 A square matrix P is said to be diagonizable if it has an invertible matrix

B with a diagonal matrix D such that;

B−1PB = D or

P = BDB−1

(3.40)

Remark 2 Given any matrix A,

1. tr(A) ≡ sum of diagonal entries.

2. det(A) ≡ determinant of A.

3. If A is given by l × l diagonal matrix (DM) with its diagonal entries given by

a1, a2, . . . , al, it is given by diag(a1, a2, . . . , al)

4. The square matrix P diagonalisation is given by getting B and D which satisfy P .

Proposition 1 Given an l× l matrix D whic is diagonal having γi,∀i = 1, 2, . . . , l which
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are the diagonal entries, then there is;



eD = diag(eγ1 , eγ2 , . . . , eγl)

and

logD = diag(logγ1 , logγ2 , . . . , logγl)

(3.41)

Proposition 2 Given l × l matrix P which is diagonizable, then;



eP = BeDB−1

and

log P = B log DB−1

(3.42)

3.8 The 2× 2 TM embedding problem

A 2× 2 TM P is embeddable iff;



det(P ) > 0

or

tr(P ) > 1

(3.43)

Proof is given in (Guerry, 2013)
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3.9 The 3× 3 TM embedding problem

Letting P be a 3× 3 TM and given Q as a 3× 3 GM. Given P = eQ having γ ∈ R will

imply that γ is an eigen value of P , λ1 = eγ and λ2 = eγ are also eigen values of P .

It is seen that that if there is negative eigen value of P , then it has some multiplicity

(Johansen, 1974). Since any TM has one eigen value at least equalling to 1, then given

the P eigen values as (1, λ1, λ2), the problem can be segmented into 3 cases;

1. −λ1 6= λ2 with 0 < λ1 < 1, 0 < λ2 < 1 or λ1 = eα+iβ, λ2 = eα−iβ, 0 < β < π.

2. −λ1 = λ2 = λ, 0 < λ < 1

3. −λ1 = λ2 = λ, −1 < λ < 0

3.10 The Complex Eigen Values

The case is given by;

Corollary 1 Given a 3×3 matrix P which is a TM having eigen values (1, λ1, λ2) where

λ1 6= λ2. If 0 < λ1 < 1 and 0 < λ2 < 1, then P will be embeddable iff;

P 2
ij ≤

(λ22 − 1)logλ1 − (λ21 − 1)logλ2
(λ2 − 1)logλ1 − (λ1 − 1)logλ2

, i 6= j (3.44)
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If λ1 = eα+iβ, λ2 = eα−iβ, 0 < β < π, then P will be embeddable iff either;

P 2
ij(β(eαcosβ − 1)− αeαsinβ) ≥ P 2

ij(e
2αcos2β − 1)− αecαsin2β), i 6= j

or

¶2ij((β − 2π)(eαcosβ − 1)− αeαsinβ) ≥ ¶2ij((β − 2π)(e2αcos2β − 1)− αe2αsin2β), i 6= j

(3.45)
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Chapter Four

Results and Discussion

4.1 Introduction

In the previous chapter, if the approximated transition matrix P̂ is embeddable, then

the estimator Q̂ can be gotten from the generator matrix Q. What of cases when P̂

is not embeddable? This chapter will show how to evaluate P̂ and find estimator P̂ in

cases where P̂ is embeddable (Pfeuffer et al., 2019). Other methods of estimating Q̂ from

discrete time data without involving P̂ will also be discussed in this chapter.

4.2 The Maximum Likelihood Estimator

Given any observations set, the maximum likelihood estimator is one of the methods

for estimating statistical model parameters. It does this by getting the values of the

parameter which maximize the likelihood function. The estimates are referred to as

Maximum Likehoood function (MLE). The parameter Q = [qij]i,j∈S is the generator
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matrix. The likelihood function of Q is given by;

L(C) (Q, Y ) =
l∏

i=1

∏
j 6=i

q
Nij(T )
ij

qijRi(T ) (4.1)

where;

1. (C) indicates the continuous time observations.

2. Nij (T ) is the translation number from state i to state j in [0, T ] time interval.

3. Ri (t) =
∫ t
0

1 {Y (s) = i} ds is the process time in state t after state i.

Taking the logarithm of equation 4.1 above and then its partial derivative with respect

to qij and equating it to 0 gives the MLE of Q as;

q̂ij =
Nij (T )

Ri (T )
(4.2)

The MLE of parameter P̂ is given as P̂ = (p̂ij)ij∈S such that;

P̂ij =
Kij (n)

Ki (n)

where Ki (n) =
l∑

j=1

Kij (n)

(4.3)

If the P̂ shown by equation 4.3 is embeddable, then the MLE Q̂ of the generator matrix

exists and is obtained by Q̂ = log P̂ . If P̂ is not embeddable, then there is either existence

of Q and other methods of obtaining Q̂ using the transition estimator P̂ or else there is

no existence of MLE Q̂.
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4.3 The Diagonal and Weighted adjustment

Assuming l× l transition matrix estimator P̂ given by equation 4.3 above is not embed-

dable. The next step is to obtain a matrix Q̂ such that P̂ = exp
(
Q̂
)

which is equivalent

to as satisfying Q̂ = log P̂ . The first thing to do is to be sure that the log function exists

for Q̂ using the theorem below.

Theorem

Let P be l×l TM and let F = max
{

(a− 1)2 + b2, a+ b is an eigen value ofP, a, b ∈ R
}

.

Assuming that F < 1, then series;

Q̃ = log P̂ =
(
P̂ − 1

)
−

(
P̂ − 1

)2
2

−

(
P̂ − 1

)3
3

− . . . (4.4)

will converge geometrically giving matrix Q̃ having row sums equal to 0 and exp
(
Q̃
)

= P̂ .

The condition F < 1 will not be needed if the series absolutely converges (Israel et al.,

2001). Due to embedding problem, it is not definite that the condition of generator matrix

Q̃ to have positive off-diagonal entries though it satisfies exp
(
Q̃
)

= P̂ . This problem

can be solved by using two adjustment methods known as the diagonal and Weighted

adjustments.

4.3.1 The Diagonal Adjustment

Let generator matrix QDA elements given as qDAij be obtained by method of Diagonal

Adjustment (DA). The negative value of Q̃ will be replaced by 0 since they are usually

very small and then the difference added to the diagonal entries so as to preserve the
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property of row sums totalling to 0. The DA method is given by;

qDAij = max (q̃ij, 0) , i 6= j

qDAii = −
l∑

j=1 j 6=i

qDAij

(4.5)

The Matrix plot of data 3.1 above is given as;

To

F
ro

m

AAA AA A BBB BB B C D

D

C

B

BB

BBB

A

AA

AAA 52 30 1 0 0 0 0 0

5 76 31 3 0 0 0 0

0 21 28 19 6 3 0 0

0 0 5 26 8 2 0 1

0 0 2 13 21 13 3 0

0 0 0 0 11 46 0 0

0 0 0 0 0 3 0 0

0 0 0 0 0 0 0 0

Figure 4.1: Matrix P plot

The transition matrix P for data 3.1 is given as;
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Figure 4.2: Transition matrix P plot

69



Using equation 4.5, the generator matrix qDA using Diagonal Adjusment method (DA)

will be given as;

To

F
ro

m

AAA AA A BBB BB B C D

C

B

BB

BBB

A

AA

AAA −0.686 0.631 0 0.041 0.007 0.007 0 0

0.077 −0.739 0.653 0 0 0 0.007 0.002

0 0.669 −1.408 0.587 0.092 0.06 0 0

0.004 0 0.296 −0.795 0.351 0.111 0 0.033

0 0 0.03 0.484 −0.975 0 0.461 0

0 0 0 0 0.327 −0.328 0 0.001

0 0.009 0 0.511 0 4.347 −4.867 0

0 0 0 0 0 0 0 0

Figure 4.3: Generator Matrix obtained using Dagonal Adjustment Method

4.3.2 The Weighted Adjustment

Let the generator matrix QWA elements be given as qWA
ij which will be obtained using

the Weighted Adjustment method. Let;

Gi = |q̃ii|+
∑
j 6=i

max (q̃ij, 0) , Bi =
∑
j 6=i

max
(
−̃qij, 0

)

qWA
ij =



0, if i 6= j and q̃ij ≤ 0

q̃ij −Bi|q̃ij|/Gi

q̃ij, otherwise if Gi = 0

(4.6)
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Since
l∑

j=1

q̃ij = 0, then Gi ≥ Bi, hence that qWA
i ≥ 0 ∀i 6= j. Running equation 4.7 for

Weighted Adjustment (WA) method using data 4.6 yields;

To

F
ro

m

AAA AA A BBB BB B C D

C

B

BB

BBB

A

AA

AAA −0.491 0.451 0 0.03 0.005 0.005 0 0

0.062 −0.598 0.528 0 0 0 0.006 0.002

0 0.646 −1.359 0.567 0.089 0.058 0 0

0.003 0 0.231 −0.619 0.274 0.086 0 0.025

0 0 0.029 0.457 −0.922 0 0.436 0

0 0 0 0 0.174 −0.174 0 0.001

0 0.006 0 0.35 0 2.973 −3.329 0

0 0 0 0 0 0 0 0

Figure 4.4: Generator Matrix obtained using Weighted Adjustment Method

4.4 Generator Quasi-Optimization method

Using transition matrix P given in figure 4.2 above, Q = [q̃ij]i,j∈S is set to be solution

of Q̃ = log P̃ . This Generator Quasi-Optimization method is used to get the generator

matrix approximation similarly to getting a maximization problem solution given as;

min
Q∈Q
‖Q− Q̃‖(4.7)

such that the set of all generator Matrices is given by Q and it is also the Eucledian

norm ‖.‖. This problem is solved row by row since the Q conditions () are closed on each

row(Carette, 1995). Next solve() which is equal to solving independent minimization
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problems of l given as;

min
q∈(l)

l∑
i

(pi − qi)2 (4.8)

such that Q̃ has row vector p = (p1, . . . , pl) also permuted as qiqi+1 meaning that the

diagonal element in this row is qi. Also;

ρ (l) =
{
q ∈ R|

∑
qi = 0, q1 ≤ 0, qi ≥ 0, for i ≥ 2

}
(4.9)

Evaluating equation 4.9 using R programming yield the data below;

To

F
ro

m

AAA AA A BBB BB B C D

C

B

BB

BBB

A

AA

AAA −0.561 0.561 0 0 0 0 0 0

0.033 −0.642 0.609 0 0 0 0 0

0 0.659 −1.369 0.577 0.082 0.05 0 0

0 0 0.262 −0.654 0.316 0.076 0 0

0 0 0.017 0.47 −0.935 0 0.447 0

0 0 0 0 0.25 −0.25 0 0

0 0 0 0.002 0 3.837 −3.839 0

0 0 0 0 0 0 0 0

Figure 4.5: Generator Matrix obtained using Quasi Optimization Method

4.5 The EM Logarithm

Let a data set which is complete be denoted by Y = (X,Z). The Expectation Maxi-

mization also known as EM is a method of obtaining the MLE when only X observation
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exists(Pfeuffer, Reis, et al., 2018). It comprises of two steps;

Step 1: The E-step

Involves evaluating the conditional expectation of log (L (θ, Y )) when given X and MLE

θ0 i.e computation of E [logL (θ, Y ) |X, θ0].

Step 2: The M-step

Involves obtaining the new MLE θ by getting the maximization of E [L (θ, Y ) |X, θ0] then

setting θ0 = θ and repeating the two steps till the sequence converges. The maximum

likelihood function of the data set Y which is continuous is given by equation 4.1.

The E-step: From equation 4.1 and given the initial generator matrix Q0;

EQ0 [logL(c) (Q, Y ) |X,Q0] =
l∑

i=1

∑
j 6=i

log (qij)EQ0 [Nij (T ) |X]−
l∑

i=1

∑
j 6=i

qijEQ0 [Ri (T ) |X]

(4.10)

Hence there is need to evaluate EQ0 [Nij (T ) |X] and EQ0 [Ri (T ) |X], and since there is;

EQ0 [Nij (T ) |X] =
n−1∑
k=0

F̃ ij
XkXk+1

(tk+1 − tk) (4.11)

such that

F̃ ij
kl (t) = E[Nij (t) |Y (t) = l, Y (0) = k] (4.12)

and

EQ0 [Ri (T ) |X] =
n−1∑
k=0

M̃XkXk+1
(tk+1 − tk) (4.13)
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such that;

M̃ i
kl = E[Ri(t)|Y (t) = l, Y (0) = k] (4.14)

is sufficient to evaluate M̃ i
kl and F ij

kl (t).

λ = max
i∈S

(−qii, 0) is chosen and B = I + λ−1Q0 defined. Letting ej, e
I
j to denote the unit

vector with jth coordinate equalling to 1 and getting its transpose, it is given that;

M̃ i
kl(t) =

M i
kl(t)

etke
Q0tel

(4.15)

such that;

M i(t) = [M i
kl(l)]k,l∈S = e−λtλ−1

∞∑
n=1

(λt)n+1

(n+ 1)!

n∑
s=0

Bs(eie
I
i )B

n−s (4.16)

and that

F̃ ij
kl (t) =

F ij
kl (t)

eIke
Q0tel

(4.17)

Such that;

F ij(t) = [F ij
kl (t)]k,l∈S = q0ije

−λtλ−1
∞∑
n=1

(λt)n+1

(n+ 1)!

n∑
s=0

Bs(eie
I
j )B

n−s (4.18)

The M-Step

It is seen that Q̂ = [q̂ij]i,j∈S where;

q̂ij =
EQ0 [Nij(T )|X]

EQ0 [Ri(T )|X]
, ∀i 6= j (4.19)
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maximizes EQ0 [logL(C)(Q, Y )|X,Q0] hence the new MLE is Q̃. Putting Q̂ = Q0 and

repeating this till there is convergence of sequence. Using data 3.1 above and running

equation 4.19 using R yields the generator matrix below;

Expectation−Maximization Algorithm

To

F
ro

m

AAA AA A BBB BB B C D

C

B

BB

BBB

A

AA

AAA −0.476 0.476 0 0 0 0 0 0

0.055 −0.412 0.358 0 0 0 0 0

0 0.451 −0.989 0.445 0.058 0.035 0 0

0 0 0.189 −0.568 0.346 0.012 0 0.022

0 0 0.021 0.433 −0.894 0.034 0.407 0

0 0 0 0 0.126 −0.126 0 0

0 0 0 0 0 5.787 −5.787 0

0 0 0 0 0 0 0 0

Figure 4.6: Generator Matrix obtained using Expectation-Maximization Algorithm
Method

The series of generator matrices {Qk}Kk=1, obtained will depend on the initial matrix

generator Q0 choice hence it is prudent to select it in a way that the det(eQk) is greater

than 0.

4.6 The Gibbs sampler (Markov Chain Monte Carlo

Method)

This section will demonstrate how to make use of Monte Carlo Chain estimation methods.

There are various Monte Carlo Markov Chain methods and the Gibbs Sampler is one of
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them which will be employed here. The Gibbs Sampler method avoids the non-existence

problem of MLE and also makes it very easy to compute. The Gibbs sampler is a method

that makes use of samples from joint distribution of some conditional distribution . To

understand how this algorithm works its steps are outlined as; Suppose K samples are

obtained of X = (x1, . . . , xn) from the joint distribution p(x1, . . . , xn). Let the ith sample

be given as X i = (x
(0)
1 , . . . , x

(0)
n ) then the algorithm is:

1. Initialize x(0) = (x
(0)
1 , . . . , x

(0)
n ) for t = 0

2. For i = 0, . . . , k, sample x(i+1) by sampling each componet of x
(i+1)
j , j = 1, . . . , n

and evaluating it using the probability distribution,

p(x
(i+1)
j |x(i+1)

1 , . . . , x
(i+1)
j−1 , x

(i+1)
j+1 , . . . , x

(i)
n )

Bayes Theorem

Given equation;

p(φ|Y ) =
p(Y |φ)p(φ)

p(Y )
(4.20)

ignoring the constant p(Y ) and utilizing (Israel et al., 2001);

p(φ|Y ) ∝ p(Y |φ)p(φ) (4.21)

where ∝ denotes the proportion, p(φ) te prior distribution and p(φ|Y ) the posterior distri-

bution which is the conditional distribution of parameter φ when given data Y . Consider

taking a complete data as having discreet time observations X = {Y (t1), . . . , Y (tn)} ob-

served at time (t1 = 0, . . . , tn = T ). An application of Q and J Gibbs sample will be done
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by drawing J from (Q,X) and Q from (J,X) hence {Q(k), J (k)}kk=1 will be obtained where

Qs denote the generator matrices and Js denote the simulated Markov Chain samples.

Given the prior distribution of Q, the gamma distribution proposed is;

p(Q) =
l∏

i=1

∏
j 6=i

q
αij−1
ij eqij−βi (4.22)

where αij > 0, i, j ∈ S and βi > 0, i ∈ S. Using the likelihood function, given the

complete data in eqaution 1, the posterior of Q is given as;

p(Q|J,X) = p(Q|J) ∝ p(Q)L(c)(Q, Y ) =
l∏

i=1

∏
j 6=i

q
Nij(T )+αij−1
ij e−qij(Ri(T )+βi) (4.23)

Using data 3.1 above and running equation 4.24 using R yields the generator matrix using

Gibbs Sample3 method s given below;

To

F
ro

m

0.0000000 0.1428571 0.2857143 0.4285714 0.5714286 0.7142857 0.8571429 1.0000000

0.0000000

0.1428571

0.2857143

0.4285714

0.5714286

0.7142857

0.8571429

1.0000000 −0.382 0.339 0.003 0 0.01 0.019 0.008 0.003

0.078 −0.465 0.328 0.001 0.026 0.019 0.012 0.001

0.001 0.429 −0.954 0.339 0.074 0.084 0.021 0.006

0.05 0.013 0.129 −0.523 0.258 0.047 0.008 0.018

0.006 0.009 0.069 0.346 −0.942 0.408 0.067 0.038

0.023 0.009 0.027 0.005 0.231 −0.376 0.056 0.025

0.048 0.026 0.013 0.027 0.688 0.307 −1.232 0.123

0 0 0 0 0 0 0 0

Figure 4.7: Generator Matrix obtained using Gibbs Sampler Method
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The Gibbs sampler algorithm is summarized as below;

i) Begin by constructing the initial generator matrix Q0 be getting qji,0 from the prior

distribution having j 6= i(Hanks, 2016)

ii) Perform the steps below K times;

(a) Perform a simulation of continuous Markov Chain sample J having generator

matrix Q so that a realization of all observations is achieved.

(b) Evaluate Nij(T ) and Ri(T ) from the Markov chain simulated.

(c) Evaluate a new Q by getting qij from the posterior distribution Γ(+αij, 1/(+βi))

(d) This new Q is saved and is used in the next simulation.

iii) Let Q1, . . . , Qk be genarator matrices got using Gibbs sampler algorithm and take

the mean of N proportions. Hence the estimator Q̂ of the generator matrix Q will

be given by;

Q̂ =
1

K −N

K∑
i=N+1

Qi (4.24)

4.7 L Norm comparison between Diagonal Adjust-

ment, Weighted Adjustment, Quasi Optimiza-

tion, EM Algorithm and Gibbs Sampler Monte

Carlo Methods

In order for one to know which Generator approximaton is more suitable or accurate for

an 8× 8 Credit Generator Matrix, there is need to measure the distance and magnitude
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between the generator entries. This can be done by using the L norm where it is computed

for each Generator matrix obtained by the four methods above. The method with the

least distance between the vectors is deemed the best and using R software, it is computed

as follows;

norm[P − exp(QWA)] = 24.40658

norm[P − exp(QDA)] = 82.1496

norm[P − exp(QQO)] = 51.21381

norm[P − exp(QGS)] = 8.207688

(4.25)

Hence from norm results 4.25 above, the norm of Gibbs Sampler method given by 8.207688

is the least hence the most suitable for computing the generator for embeddable 8 × 8

Credit transition Matrix and this thesis proposes the Gibbs sampler method as the most

accurate for generator matrix approximation for a Credit Transition Matrix.
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Chapter Five

Conclusions and Recommendations

5.1 Introduction

This study aimed at modelling Credit Risks using unbounded transitional matrices. The

following objectives guided the study; to develop an unbounded transitional matrix from a

Credit ratings data, to derive the risk premium properties from the developed transitional

matrix, to derive the risk premium properties from the developed transitional matrix and

lastly To get the most suitable generator matrix for the developed Continuous Time

Transitional Matrix especially in cases where the matrix is embeddable. Secondary data

from standard and poors website was used. This chapter will present a summary of major

findings, conclusions and recommendations.Areas for further research are also pointed

out.
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5.2 Summary

5.2.1 Developing an unbounded transitional matrix from a Credit

ratings data

A continuous Time Markov chain (CTMC) is given by its transition rates which also

serve as the generator matrix entries. This thesis started with the introduction and

application of the Markov Chains in analysing Credit. Various models which apply the

Markov chain which are currently in use were reviwed in Chapter 2. None of the four

employs the use of unbounded Transition matrices and their Generator matrices. The

study converted Credit ratings data 3.1 obtained from Standard and poors website into

a transition matrix as seen in fig 4.2 , The thesis has brought out the relation between

the transition matrix and the generator matrix outlining both of which are unbounded

matrices since the defination and conditions for a Bounded matrix is explained very well

in chapter 3 section 3.8.

5.2.2 Deriving the risk premium properties from the developed

transitional matrix

The risk properties was explained in section 3.4 in order to assess the Credit riak. The

study was guided by the fact that the probability of default tends to zero for higher

level Credit ratings in risk neutral world. The credit ratings observed implied a non zero

probability of default and by estimation, the risk neutral framework can be controlled.

A borrower likely to default was matched with a stochastic process given by equation

3.9 and the rating falls within the proportion or risk unbiased likelihood. This change
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is then transformed in a risk-neutral transition matrix with a martiangle measure m.

The transition matrix falling in the new measure m does not need the requirement to be

Markovian and if Markovian, then it exhibits properties of a Markov chain. Lastly, using

3.10, the transition Matrix is fitted in the risk neutral probability.

5.2.3 Converting the Discrete Time Transitional Matrix ob-

tained into Continuous Time transitional matrix in order

to get a generator Matrix

The thesis also presents ways of estimating a generator matrix from a continuous time

markov chain. As illustrated in chapter four, in cases where we have embeddable matrix

P̂ , it is easy to obtain its generator matrix Q̂. In cases where P̂ is not embeddable, then

obtaining P̂ is a complex since there is need to convert the DTMC into CTMC especially

in 4×4 matrices and above. This is done by using the four models described; the Diagonal

and Weighted adjustment method, the Generator Quasi-optimization method, the EM

algorithm method and lastly the Markov chain Monte Carlo method also called the Gibbs

sampler method. Using L-norm, Gibbs sampler emerges as the best model for obtaining

a generator matrix for non embeddable unbounded transition Matrix. All the models are

analysed using R project whose codes are given in the appendix.
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5.2.4 Obtaining most ideal Generator matrix from an embed-

dable Transition Matrix

The embedding problem is discussed for several cases and it’s found out that only 2× 2

and 3×3 matrices are embeddable. Any higher matrices have to employ various methods

to solve the embedding problem in order to get the most suitable Generator matrix. The

Credit data got from standard and poors website is an 8× 8 transition matrix hence four

methods being the Diagonal and Weighted adjustment method, the Generator Quasi-

optimization method, the EM algorithm method and lastly the Markov chain Monte

Carlo method are applied and compared in order to come up with the most suitable

method for deriving the Generator matrix for the data.

5.3 Conclusion

The following conclusions below can be derived from this research; The TM is embed-

dable under 2× 2, 3× 3 square matrices which are reversible in necessary and sufficient

conditions. The TM P is not embeddable in some other conditions and given a TM P

which is embeddable, then the GM Q will satisfy P = eQ. From CTMC having a TM

{P (t), t > 1}, a homogeneous Markov Chain can be obtained having TM P such that

P = P (1). An estimation of MLE of P̂ can be made from TM P and given P̂ which

is embeddable, then MLE of Q̂ can be evaluated from GM Q using P̂ = eQ̂. If the

case given is not unique, then there is a way of choosing the best one. Given P which

is not embeddable, then Q does not exist or it exists by use of Diagonal Adjustment,

Weighted Adjustment, Quasi Optimization, EM algorithm and Gibbs Sampler (Markov
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Chain Monte Carlo) methods. The four methods also convert DTMC to CTMC. By use

of Gibbs Sampler (MCMC) methods which emerged as the best model, the problem of

non existence of Q can be dealt with. All the four models were run using R software and

the codes given in the appendix.

5.4 Recommendations

Credit risk modelling and pricing of Credit derivatives of late are the main subjects

researched in finance. Transitional matrix rating of late have become a building block in

Credit risk research. This Thesis sought to find conditions which a true generator exists

for conditions where the transition matrices is unbounded. Most of transitional Matrices

observed do not have a valid generator hence a researcher has to either get a generator

approximate to the transitional matrix observed or modify the transition Matrix in order

to make it to be compatible with Markov process and then seek for true generators.

This Thesis recommends deriving a Generator matrix from embeddable transition matrix

rather than estimating it using the Gibbs sampler method. The embedding problem is

wide and can be applied in many areas hence it is a worthy case to study since this

research has applied to only one case of an 8× 8 transition matrix.
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Štěpánková, B. (2021). Bank-sourced credit transition matrices: Estimation and charac-

teristics. European Journal of Operational Research, 288 (3), 992–1005.

Trueck, S., & Rachev, S. T. (2009). Rating based modeling of credit risk: theory and

application of migration matrices. Academic press.

Tufano, P. (1996). Who manages risk? an empirical examination of risk management

practices in the gold mining industry. the Journal of Finance, 51 (4), 1097–1137.

88
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Appendix A1

{}

#Let P denote the S\&P matrix

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

plotM(P)
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Appendix A2

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

P=rbind((Y3/rowSums(Y3))[1:7,],c(rep(0,7),1))

plotM(P)
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Appendix A3

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

P=rbind((Y3/rowSums(Y3))[1:7,],c(rep(0,7),1))

gmda=gmDA(P,1)

plotM(gmda)
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Appendix A4

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

P=rbind((Y3/rowSums(Y3))[1:7,],c(rep(0,7),1))

gmwa=gmWA(P,1)

QWA=gmWA(P,1)

plotM(QWA)
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Appendix A5

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

P=rbind((Y3/rowSums(Y3))[1:7,],c(rep(0,7),1))

gmqo=gmQO(P,1)

plotM(gmqo)
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Appendix A6

install.packages(ctmcd)

install.packages(markovchain)

library(ctmcd)

library(markovchain)

library{’plot.matrix’}

P=c(52,5,0,0,0,0,0,0,30,76,21,0,0,0,0,0,1,31,28,5,2,0,0,0,0,3,19,26,13,0,0,0,0,0,6,8,21,11,0,0,0,0,3,2,13,46,3,0,0,0,0,0,3,0,0,0,0,0,0,1,0,0,0,0)

P=matrix(P,8)

P[8,]=0

colnames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

rownames(P)<-c(’AAA’,’AA’,’A’,’BBB’,’BB’,’B’,’C’,’D’)

P=rbind((Y3/rowSums(Y3))[1:7,],c(rep(0,7),1))

gmem=gm(P,te=1,method="EM",gmguess=gm0)

plot(gmem)
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Appendix A7

pr=list()

pr[[1]]=matrix(1,8,8)

pr[[1]][8,]=0

pr[[2]]=c(rep(5,7),Inf)

gmgs=gmGS(P,te=1,sampl_method="Unif",prior=pr,burnin=10,niter=100,verbose=TRUE)

gmgs

96



Table 1: Summary of different categories of Ratings

Rating Description
AAA Extremely strong obligor: Has Capacity to meet its financial obligations.
AA Very strong obligor: Has Capacity too to meet its financial obligation
A Obligor is more susceptible to the circumstances changes and economic conditions

than the higher rated obligors.
BBB Obligor exhibits protection parameters which are adequate but changing circum-

stances or adverse economic conditions will lead to obligor weakened capacity.
BB Obligor is less vulnerable to speculative issues or non payment but faces major

business exposure to adverse economic, financial or business conditions which can
lead to the obligor’s inadequate ability to meet its financial obligations.

B Obligor currently has capacity to meet its financial commitments but adverse eco-
nomic, financial or economic conditions will impair its capacity to meet financial
commitments.

CCC Obligor is vulnerable to nonpayment. It depends on favourable economic, financial
or business conditions in order for the obligor to meet its financial commitment.

CC Obligor is highly vulnerable to non payment.
C The C rating can be used in situations where bankruptcy petitions have been filed

and can be used to cover the situation but payments of the obligor are being hon-
oured.

D Unlike other ratings, the D rating is not prospective. It is used where a default has
occured and not where there is expectation of default.
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