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NOTATION 

In this thesis: 

1. Lowercase Greek letters (𝛼, 𝛽, 𝑒𝑡𝑐) are used for scalars. 

2. Lowercase (Roman) letters (𝑎, 𝑏, 𝑒𝑡𝑐) are used for vectors 

3. Uppercase (Roman) letters (𝐴, 𝐵, 𝑒𝑡𝑐) are used to denote matrices 

Exceptions include the letters 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 and 𝑛 which are typically used to denote 

integers. Typically, if a given uppercase letter is used for a matrix, then its 

corresponding lowercase letter is used for its columns (which can be thought of as 

vectors), and the corresponding Greek letter for the elements of the matrix. In some 

cases the elements of a matrix or vector are denoted by roman lower case letter with 

subscripts such as 𝑎𝑖𝑗 where 𝑖 and 𝑗 represents the position of the element in rows and 

columns, respectively, within a matrix or a vector. 
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ABSTRACT 

In Blind Source Separation (BSS) the challenge is to recover the source signals from 

the observed mixed signals. Blindness means that neither the sources nor the mixing 

system are known. Separation can be based on the theoretically limiting but practically 

feasible assumption that the sources are statistically independent. The statistical 

independence of source signals assumption connects BSS and Independent 

Component Analysis (ICA). The main aim of this research is to solve the separation 

problem for source signals and mixing system that are not known by comparing two 

activation functions. The research uses the Natural Gradient Algorithm (NGA) to 

separate pairs of sub-Gaussian (music), super-Gaussian (speech) and sub-super-

Gaussian mixed signals into their original components using Independent Component 

Analysis (ICA) assumption of statistical independence of the source signals. Two 

activation functions are used within the NGA for each of the pairs before separation 

comparison is made. The NGA is formulated using instantaneous Blind Signal 

Processing where time delay is not factored in the computation of the independent 

signals. The design uses a 2 x 2 Multiple Input Multiple Output (MIMO) system to 

accept the pairs of blind audio signals, mix them and separate them to retain their 

original form or their filtered version. The Fibonacci activation function and the 

Sigmoid activation functions are used in iterating the coefficients of the NGA up to a 

hundrend iterations where convergence is realized. Comparing the output (estimated) 

to the input signals is by waveforms, frequency spectra, and the measure of the 

Magnitude-Squared Coherence. The results show that the NGA algorithm with 

Fibonacci and Sigmoid activation function for speech signals pairs yield high 

performance when compared to other pairs.   
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CHAPTER ONE 

INTRODUCTION 

1.1  Background  

In the field of signal processing, multiple signals are often mixed and later separated 

in various applications. In most of these applications that include multiple biomedical, 

multiple antennas, multiple microphones, sensors have to be used to get the correct 

data (Amari & Cichocki, 1998). Such systems are best described using Multiple-Input 

Multiple-Output (MIMO) system models. In a number of MIMO cases, several signals 

from the source are present at the same time but there is difficulty in knowing their 

properties and how they contribute to each sensor output. In cases where source signals 

and the properties of the system are not known but only the sensor outputs are 

observed, the methods used in signal processing to recover the original signals are 

termed as blind. 

In Blind Source Separation (BSS) the challenge is to recover the source signals from 

the observed mixed signals (Lecumberri, Gómez & Carlosena, 2005). Blindness means 

that neither the sources nor the mixing system are known. Separation can be based on 

the theoretically limiting but practically feasible assumption that the sources are 

statistically independent. The statistical independence of source signals assumption 

connects BSS and Independent Component Analysis (ICA).  

The main aim of this research is to solve the separation problem for source signals and 

mixing system that are not known by comparing two activation functions. There exist 

several methods to separate sources without knowing the source distributions or even 

the characteristics of source distributions. The natural gradient algorithm is chosen to 

model the problem and provide a solution to the ICA assumptions of input-output 

MIMO system.  



2 

 

 

 Figure 1.1 General Set up for MIMO Signal Processing System 

1.2  Problem Statement  

An archtypical problem in engineering and science starts with a vector function 𝑓 that 

goes from ℝ𝑛 to ℝ𝑚 (Myers, van de Geijn, & van de Geijn, 2015). In other words, in 

goes one vector, out comes another vector. 

𝑓: ℝ𝑛 → ℝ𝑚                                                                             (1.1) 

There are three possible category problems that may be asked regarding the linear 

transformation by the function depicted in equation (1.1) (Myers, van de Geijn, & van 

de Geijn, 2015): 

1. One action that may be done is to take a vector plug it into𝑓 and evaluate it. 

This is relatively straightforward. 

2. A slightly more complex problem is when given a vector 𝑦 ∈ ℝ𝑛 , you are asked 

to figure out what 𝑥 you can plug into 𝑓 so that  

  𝑓(𝑥) = 𝑦                                                                                                   (1.2) 

In this set of problems, 𝑓 and 𝑦 are given and the problem is actually in finding 

out the value of 𝑥. 
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3. Another very important problem, which is known as an eigen-value problem, 

is where you are given a function 𝑓, and the problem is knowing when 

𝑓(𝑥) = 𝜆𝑥                                                                            (1.3) 

where 𝜆 is some scalar quantity. 

The problems are actually very difficult for general vector function 𝑓. However, it 

turns out that these set of problems can be solved easily if 𝑓 is a linear transformation. 

So the linear transformation is a subset of vector functions for which these problems 

are simpler to solve (Myers, van de Geijn, & van de Geijn, 2015). Moreover, the 

general 𝑓, which is often called a non-linear problem, is often solved by actually 

making it into a linear function (Myers, van de Geijn, & van de Geijn, 2015). In other 

words, 𝑓 function is a transformation and in this thesis it is a matrix.  

The thesis’ problem is more complex that the three equations – Equations (1.1), (1.2) 

and (1.3) depicted above. In this research, 𝑓 and 𝑥 are not known, only the output y is 

known. The main parameters used to describe the problem are: 

𝑠: unknown input signals. 

𝐴: unknown mixing matrix 

𝑥: is a vector realized after mixing the unknown input signals 𝑠 with the mixing 

matrix W: demixing matrix 

y: known output signals 

f: transformation that does the mixing and demixing processes 

Two unknown independent input signals are mixed with an unknown 2 𝑥 2 mixing 

matrix. The mixture is passed through an unknown demixing matrix to get back the 

original signals. 

                            s→ 𝐴 = 𝑥 → 𝑊⏟      
𝑓

= 𝑦                                                     (1.4) 
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Equation (1.4) can be read as 𝑠 is passed through 𝐴 to get 𝑥, in turn 𝑥 is passed through 

𝑊 to get 𝑦. In an ideal situation, 𝐴 should be the inverse of 𝑊 if 𝑠 =  𝑦. Unfortunately 

𝐴 and 𝑊 are unknown neither is 𝑠, which falls under blind signal processing (BSS) 

and the basis of this research problem. It turns out that the problem can be solved if 

the input signals 𝑠 are independent of each other, bringing in the concept of 

Independent Component Analysis (ICA). The ICA requirement for the input signals 

means that the signals must be non-Gaussian.  

Most researches that have taken up the problem of BSS-ICA handle the comparison of 

different algorithms to know which performs better. Rarely is there a comparison of 

activation function for the BSS-ICA problem using a single algorithm. In most 

literature non-Gausianity is treated as a single entity yet in reality there are two forms 

of non-Gaussian signals; super-Gaussian and sub-Gaussian signals, an aspect that is 

handled in this research. The problem of this research can be summed up as the use of 

natural gradient algorithm (NGA) to compare two activations functions, Fibonacci and 

Sigmoid, in separating a pair of super-Gaussian (speech) signals, sub-Gaussian 

(music) signals and a mixture of super- sub – Gaussian (speech - music) signals. 

1.3 Justification of the Study 

Signal separation that utilize few components is an active area of research and continue 

to receive increased attention (Saduf, 2013). This, coupled with the desire to separate 

blind signals remains a challenge in engineering and other applicable fields. In an 

increasing number of applications, the separation of signals using signal properties like 

frequency is not attainable. Not only are the sources unknown in a number of cases, 

there are inherent problems associated with signals that have almost common 

characteristics and where separation is not attainable using the known filtering 

methods. Independent Component Analysis has proved effective in blind source 

separation and where the only known characteristic of the signal is that they are non-

Gaussian in nature. The Natural Gradient Algorithm is used because its slope of the 

cost function varies from small changes in the parameters. NGA modifies the slope by 

taking into considerations the real structure of the optimization space and thus provides 



5 

 

better approximations to the steepest descent direction (Amari & Cichocki, 1998). The 

choice of a good algorithm is not enough. A good algorithm must be accompanied by 

a good activation function. While the theory and literature supports the choice of NGA 

algorithms, it is important to compare the working of this algorithm by various 

activation functions. The choices of activation functions for this research are the 

Fibonacci and Sigmoid.  

The use of ICA means the sources must be non-Gaussian. Although a number of 

publications have exhaustively handled this problem, their solutions have only dealt 

with either sub-Gaussian signals or super-Gaussian signals, with no attempt to offer 

solutions for a mixture that contains both sub-Gaussian and super-Gaussian signals. 

As we shall see from the literature, there are indeed those that have attempted to 

separate a mixture of sub-Gaussian and super-Gaussian mixtures to satisfactory 

results. However, they have increased another complexity of adapting the activation 

function first before carrying out the separation itself. The increased computations 

takes further the ICA from real-time applications. Some publications simply combine 

various activations functions, such as periodic polynomial, Gaussian and sigmoid 

(Saduf, 2013). This research intends to use two activation functions with the chosen 

algorithm to separate super-Gaussian and sub-Gaussian signals.    

1.4 Objectives 

1.4.1  Main Objective 

To design a system for separating two blind audio signals that conform to the ICA 

assumptions using the Natural Gradient Algorithm.  

1.4.2 Specific Objectives 

1. To formulate the NGA algorithm for mixing and separating blind audio signals. 

2. To determine the effectiveness of the Fibonacci and Sigmoid activation 

functions for the algorithm on super-Gaussian, sub-Gaussian and super-sub-

Gaussian pairs of audio signals.   
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3. To compare the performance of Fibonacci activation function and the Sigmoid 

activation function with NGA in separating non-Gaussian signals.  

1.5 Overview of the Chapters 

Chapter One provides the fundamental principles underlying BSS and an overview 

of MIMO systems in a broader perspective. Abbreviations, justification of the 

research, the problem statement, together with research objectives are formulated in 

this chapter. Chapter Two centers on literature review on works done in BSS, ICA, 

the link between BSS and ICA, formulation of the NGA, super-Gaussian and sub-

Gaussian signals characteristics. Further, the chapter looks at the activations functions, 

and the measure of magnitude squared coherence. Chapter Three handles the 

methodology of the thesis. This chapter gives the systematic process used in 

formulating the experimental setup and procedures. It further gives the details of the 

data preparation and the inherent assumption on the input signals. The waveforms and 

frequency spectra figures of the input and mixed signals, respectively, are displayed in 

this chapter. In Chapter Four, the objective is to output the results and offer a 

discussion. Three forms of outputs are displayed here and include waveforms, 

frequency spectra and the measure of the magnitude squared coherence. A discussion 

on the results is then made. Chapter Five gives the results’ conclusions, linking the 

objectives to the outcomes of the research. Limitations, as well as, future research that 

may be linked to this thesis are then given. The last sections cover REFERENCES in 

IEEE citation style and the APPENDIX. Finally, a journal publication from this thesis 

is:  

CHIBOLE, James; HEYWOOD, A.; NDUNGU, Edward. Performance Analysis of 

 the  Sigmoid and Fibonacci Activation Functions in NGA Architecture for 

 a Generalized  Independent Component Analysis. IOSR Journal of VLSI and 

 Signal Processing (IOSR- JVSP) Volume 7, Issue 1, Ver. I (Jan. - Feb. 

 2017), PP 00-00 e-ISSN: 2319 – 4200,  p-ISSN No.: 2319 – 4197 

 www.iosrjournals.org     
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Background 

Blind Signal Processing (BSP) has become one of the exciting and hot topics in the 

field of signal processing, advanced statistics and neural computation with strong 

theoretical foundations and with many potential applications. In fact, BSP has 

developed to become an important topic for development with intensive research in a 

number of areas including speech enhancing, medical imaging, remote sensing, 

biomedical engineering, data mining, communication systems, geophysics and 

exploration seismology (Cichocki & Amari, 2002). The three main areas of BSP are 

Multichannel Blind Deconvolution (MBD) and Equalization, Independent Component 

Analysis (ICA), and Blind Signal Separation and Extraction (BSS/E) (Cichocki & 

Amari, 2002).  

2.2 Blind Source Separation 

Blind Source Separation is a problem that deals with the separation of blind signals. It 

is a simple specialty of the general BSP concept. Blind Source Separation (BSS) has 

received a lot of research attention in communication, neural networks, and signal 

processing in the recent years. Wireless communication systems have come of age in 

the use of blind signal processing in combating frequency-selective fading and Inter-

Symbol Interference (ISI), Blind channel estimation, blind equalization and blind 

detections are widely used for communication applications (Lecumberri, Gómez, & 

Carlosena, 2005). Blind channel estimation can be based on very little or no training 

information to acquire the channel state information from received signal. On the other 

hand, blind deconvolution can serve as a means to extract the continuously transmitted 

signal directly from the received signal. Blind detection can recover the transmitted 

information symbol without the explicit a priori knowledge of the received data. While 

classical estimation/equalization/detection methods for communication systems 
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require the transmission of known signals (training sequences), untrained or blind 

approaches reach beyond this severe limitation and are, therefore, preferred from an 

efficiency (throughput) point of view. In addition, Independent Component Analysis 

(ICA), Blind Source Separation, Constant Modules Algorithm (CMA) and Higher – 

Order Statistics (HOS) are some of the promising tools for the blind signal processing 

which can be applied for antenna arrays, beam former and MIMO systems (Amari & 

Cichocki, 1998).  

Blind Signal Separation (BSS) is a very promising direction of signal processing. This 

technique was first applied to the solution of the well-known “cocktail party problem”, 

where the problem is related with the extraction of one human voice from the recorded 

mixture of voices (Lecumberri, Gómez, & Carlosena, 2005). However, it is worth 

emphasing that BSS is also often applied in various disciplines, such as medical signal 

processing, image denoising, face recognition, time series analysis, among others. In 

this research the focus is on audio signal processing. 

2.3 Background of BSS 

Suppose that there are N sources Ns ..1 and receivers, which get the mixed combination 

of the input signals. At first, it is assumed that each mixed signal 
jx is the linear 

combination of the inputs with unknown coefficients ijA : 





N

i

iijj sAx
1

       (2.1) 

Further discussion it is considered that the simplest situation for the problem is that 

formulated by 2 separate sources and 2 mixed outputs MIMO system, so that the 

problem of equation (2.1) simplifies to equation (2.2): 

2221212

2121111

sasax

sasax




      (2.2) 
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From equation (2.2), we can see that if the coefficients 𝑎 are known, then the problem 

is simplified to solving of linear algebraic equations. However, in our case, these 

coefficients are unknown. Further, to make matters complex, nothing is known about 

the input signals. Such unknown signals are called blind signals. For example, if there 

is any information about the spectra of two input signals and these spectra do not 

overlap, the separation is a trivial task, which may be performed via Fourier analysis. 

To find a solution to the foregoing problem, it is important to consider the formulation 

of BSS problem and analyze the main conditions that should hold in order to efficiently 

separate the two signals. Equation (2.2) can be written in the matrix/vector form 

𝑥 = 𝐴𝑠      (2.3) 

The mixing scheme is shown in Figure 2.1 

[
𝑠1
𝑠2
] → [

𝑎11 𝑎12
𝑎21 𝑎22

] → [
𝑥1
𝑥2
] 

Figure 2.1 Mixing of two input signals. 

In this problem, the first condition is that the signals are assumed to be statistically 

independent and mixing is instantaneous, so that the obtained mixtures are the 

weighted sums of the input signals without any time delays. 

The problem of two signals’ separation can be formulated as the estimation of the de-

mixing matrix. An unknown mixing matrix 𝐴 is applied to the input signal 𝑠 to obtain 

the matrix (actually a vector) of Equation (2.3). The aim is then to find the best 

estimates of 𝑦 which are as close as possible to the original signal 𝑠. In order to obtain 

the needed signals 𝑠, the de-mixing matrix 𝑊 is computed.  

𝑦 = 𝑊𝑥     (2.4) 

Theoretically, 𝑊𝑥 = 𝑊𝐴𝑠. What is means is that if 𝐴 is a transformation from point 

𝜃1to 𝜃2, then 𝑊 should be the reverse - a translation from 𝜃2 to 𝜃1. In other words, 
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𝑊 = 𝐴−1 for perfect separation to occur. Since 𝐴 is unknown in our case, the 

algorithm to be applied to approximate as closely as possible the inverse matrix 𝐴−1 . 

The scheme of the above described principle is shown in Figure 2.2.  

[
𝑥1
𝑥2
] → [

𝑤11 𝑤12
𝑤21 𝑤22

] → [
𝑦1
𝑦2
] 

Figure 2.2 Scheme of de-mixing 

2.4 BSS Methods and Approaches 

Although there are many BSS algorithms, their principle of operation can be classified 

into four approaches as shown in Figure 2.3.  

 

 

 Figure 2.3 Approaches used to solve the BSS problem 

BSS

Mutual

Independence,

ICA 

Temporal-
Structure, 

Linear 
Predicability 

Non-whiteness.

Time-Frequency 
Spectral and/or 

Spatial 
Diversities

Non-
Stationarity, 
Time-varying 

variance
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The most common approach uses the measure of cost function of signals’ 

independence, sparseness, or non-Gaussinaity. The original source signals are termed 

as statistically independent and have no temporal structures. Temporal structures are 

the filtered, delayed and reverberated versions of the individual signals because of 

multipath effects (Scott, 2002). Such problems are solved using ICA’s higher-order 

statistics (HOS) methods. A common consideration is that not more than one source 

signal should be Gaussian. Research articles that have utilized these methods include 

(Matteson & Tsay, 2016) (Lahat, Cardoso, & Messer, 2012) (Lee, Shen, Troung, 

Lewis, & Huang, 2011). 

If the sources contain temporal structures, then it is obvious that all the sources have 

non-vanishing temporal correlation. This means that much less restrictions than 

statistical independence methods can be employed to solve the problem. This case is 

solved using second-order statistics (SOS) methods for estimating the source and the 

mixing matrix. The SOS methods cannot separate sources signals that have identical 

power spectra shapes or independent and identically distributed (i.i.d) sources. Some 

journal articles in this area include (Lee, 2001) (Chan, Ma, Chi, & Wang, 2008). 

The third approach uses nonstationarity (NS) properties and SOS. The main concern 

of the second-order nonstationarity is that the variances of the source signals vary with 

time. Unlike other approaches, the nonstationarity information based methods make it 

possible for the separation of colored Gaussian signals that have identical power 

spectra shapes. However, the approach is not able to separate sources that have 

identical nonstationarity properties. Some journal articles that make use of signals that 

are nonstationarity include (de-Frein & Richard, 2011) (Choi, Cichocki, & 

Beloucharni, 2001) (Hosseini, Daville, & Saylani, 2009). 

The fourth approach relies on the various diversities of signals. The diversities include 

time, frequency (“time coherence” or spectra) and and/or frequency-time diversities, 

on more generally, joint space-time frequency (STF) diversity. Space-time-frequency 

concept is commonly used in wireless communication systems. Signals can be 

separated if they do not overlap in the frequency, time, or the time-frequency domain 
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(Cichocki & Amari, 2002). When the signals do not overlap in the time domain, it 

means one signal is silent (stops), before the other begins and are separated using Time 

Division Multiple Access (TDMA). If the source signals do not overlap in frequency 

domain, then they can be separated using band-pass filters in a method called 

Frequency Division Multiple Access (FDMA). Research articles in this category 

include (Barros & Cichocki, 2001) (Zhang, Cai, & Ding, 2014) (Moon & Hong, 2014). 

The meaning of temporal structures and their importance is well outlined in Moon and 

Hong (2014). 

2.5 BSS Models 

Three applications of BSS include array processing in wireless communication, signal 

enhancement in medicine and speech separation in acoustics (Scott, 2002). In the 

present wireless networks, a number of wireless devices attempt to communicate 

through a base station. The base station uses multiple antennas for receiving and 

directing the various users’ signals within the spectral bandwidth of the 

communication channel. When the device’s transmitted signals overlap in frequency 

and time, FDMA and TDMA respectively, separation is no longer possible. BSS can 

be applied to the antenna measurements to separate and enhance the various 

transmitted signals without knowing the devices’ positions relative to the base station 

and without knowing the exact forms of the transmitted signals (Paulraj & Papadias, 

1997). In the second application, a number of noninvasive medical technologies such 

as MRI and ElectroEncephaloGram (EEG) are able to characterize body processes 

through multichannel recording (Scott, 2002). Because of the complex propagation 

properties of human tissues, these multichannel recordings are often difficult to 

understand. However, through BSS, there is potential of extraction of identifiable and 

coherent signal features that can be more easily tired to specific body ailments or 

functions (McKeown, et al., 1998). In speech separation, speech signals collected by 

distant microphones in room environments can be difficult to understand especially if 

there are multiple conversations (Scott, 2002). However, BSS provides a hand in 
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separating individual speech signals from the microphone’s signals, making them 

more listenable and intelligible (Torkkola, 2000).  

The above three applications of BSS differ in the model of mixing generated by the 

measurement process. Two types of mixing models in BSS are possible: (1) 

instantaneous or spatial mixing and (2) convolutive or spatio-temporal mixing.  

2.5.1 Instantaneous BSS Model 

In instantaneous or spatial mixing, the mixtures are weighted sum of the individual 

source signals without dispersion or time delay. The example on narrowband array 

processing in wireless networks involves spatial mixing conditions (Scott, 2002). 

Figure 2.6 shows the structure of BSS for instantaneously mixed sources.  

 

Figure 2.4 Instantaneous BSS task 

At the left is the unknown source signal vector at time 𝑘 given by 

𝒔(𝑘) = [𝑠1(𝑘) 𝑠2(𝑘)… 𝑠𝑚(𝑘)]
𝑇                                                    (2.5) 

where  𝑠𝑖(𝑘) is the ith source signal. The 𝑚 source signals are linearly mixed by 

(𝑛 𝑥 𝑚) unknown mixing matrix 𝐴 with entries 𝑎𝑖𝑗, yielding the n-dimensional 

measured or observed signal vector 𝑥(𝑘) as 

𝒙(𝑘) = 𝐴𝑠(𝑘) + 𝑣(𝑘)                                                         (2.6) 

where 𝑣(𝑘) is an n-dimensional noise vector sequence that is unrelated to the source 

signal sequence 𝒔(𝑘) (Scott, 2002). In typical applications, the source signal contains 
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useful but unknown information and the mixing model describes the undesirable 

smoothing and propagating effect inherent on some physical measurement process 

(Scott, 2002). For this discussion, the assumption that 𝒗(𝑘) is made up of uncorrelated 

and jointly Gaussian-distributed elements which are independent of the elements of 

𝒔(𝑘), a common assumption in many signal processing formulations (Scott, 2002). In 

this case, 𝑚 = 𝑛, the number of independent sources is equals the number of 

measurement sensors. In practical applications, however, it is unreasonable to assume 

that the number of sources is always equal to the number of sensors. In array 

processing for wireless communications, for example, sources can “come and go” 

depending on the current network state and transmitter use (Scott, 2002). 

Application of instantaneous mixtures model include the study of brain science. BSS 

plays a great role in the identification of underlying components of brain activity from 

recording of brain activity as given by an EEG (Cichocki & Amari, 2002). In image 

processing, BSS instantaneous mixture model is used in quality improvement and 

extraction of independent features in images. Music and speech signals can also be 

separated using instantaneous BSS so long as the signals are not in real time and time 

delay is not a factor of consideration. BSS using the instantaneous mixtures of m binary 

antipodal sources, which are linearly combined by an unknown system, is used in 

(Kofidisa, Margarisa, Diamantarasb, & Roumeliotis, 2008). Unfortunately, BSS 

instantaneous mixtures cannot handle the delay aspects of the signals, often occurring 

in real-time situations. 

2.5.2 Convolutive BSS Model 

In convolutive or spatio-temporal mixing, the mixtures contain filtered, delayed and 

reverberated versions of the individual signals because of multipath effects. The multi-

microphone speech separation involves spatio-temporal (Scott, 2002). The 

instantaneous mixture can be extended by putting into consideration the time delay 

that results from sound propagation over space and in some instances, the multipath 

generated by reflected sound off different objects, mostly in large rooms and enclosed 
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settings. The convolutive mixing system is implemented in finite impulse response 

filters. 

 

Figure 2.5 Convolutive BSS task 

Figure 2.5 shows the structure of blind deconvolution task. An unknown signal given 

by 𝑠(𝑘) passes through an unknown linear time-invariant filter with impulse 

response 𝑎𝑖, −∞ < 𝑖 <  ∞. The resulting noisy received signal 𝑥(𝑘) is given by  

𝑥(𝑘) =  ∑ 𝑎𝑖𝑠(𝑘 − 𝑖) +  𝑣(𝑘)                                                        (2.7)

∞

𝑖=∞

 

where 𝑣(𝑘) is a zero-mean Gaussian random process that is independent of the source 

signal 𝑠(𝑘). In typical applications, the source signal contains useful but unknown 

information and the unknown filter describes the smoothing effect of the physical 

system. The measurement noise 𝑣(𝑘) models any sensor and channel noise inherent 

in the measurement process. 

The goal of blind deconvolution task is to extract an estimate of the source signal 

sequence 𝑠(𝑘) from the measured sequence 𝑥(𝑘) using a linear filter of the form 

𝑦(𝑘) =  ∑𝑤𝑙(𝑘)𝑥(𝑘 − 𝑙)

𝐿

𝑙=0

                                                        (2.8) 

where 𝑤(𝑘) for 0 ≤ 𝑙 ≤ 𝐿 are the coefficients of the system and 𝐿 is a filter length 

parameter. In this case, the assumption of a causal finite-impulse-response (FIR) filter 
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is made for the deconvolution model. FIR models are best suited for adaptive filters 

because they are bounded-input-bounded-output stable for bounded coefficients and 

are computationally simple (Scott, 2002). The above problem formulation is for a 

single channel blind deconvolution and can easily be extended to multi-channel blind 

deconvolution. Non-Gaussianity and convolution BSS model is used in the measure 

of blind image deconvolution of ICA using genetic algorithm with robust results 

realized (Hujun & Hussain, 2008). 

Interestingly, some authors in their publications such as Scott (Scott, 2002) and 

Douglas and Haykin (2000), synonymously use the words blind signal separation to 

mean instantaneous blind separation. Comparing Figure 2.4 and Figure 2.5 show that 

blind signal separation (instantaneous models) and blind deconvolution entail similar 

tasks. Both revolve around blindly estimating the inverse of the linear system from the 

measurement of the system’s output. It means that blind signal separation methods can 

be converted to handle blind deconvolution problems (Matteson & Tsay, 2016). The 

technique is beyond the scope of this research and will not be considered. However, 

the technique for performing this conversion can be found in (Douglas & Haykin, 

2000). From here henceforth, the thesis will dwell in handling instantaneous model 

techniques and algorithms. 

2.6 Independent Component Analysis 

Independent component analysis (ICA) is a set of methods that use the assumption of 

the statistical independence of the input signals. In simple words, two variables 21, yy

are statistically independent when the value of 1y  does not depend on 2y  and vice-

versa. An example of joint PDF from two uniform distributions is shown in Figure 2.6 

(a) (Aapo & Erkki, 2000). This joint PDF is uniformly distributed to form a square, 

which follows the basic definition of the independency. The joint PDF after application 

of the mixing matrix 𝐴 with elements 𝑎11 = 2, 𝑎12 = 3, 𝑎21 = 4, 𝑎22 = 2, in Figure 

2.6 (b) (Aapo & Erkki, 2000). The matrix A is 
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𝐴 = [
2 3
4 2

]                                                                                (2.9) 

 

(a)        (b)                     (c) 

 Figure 2.6 Joint density probabilities 

Figure 2.6(a) shows the densities before mixing for uniform distributions, Figure 

2.6(b), shows the densities after mixing for uniform distribution, while Figure 2.6(c) 

(Aapo & Erkki, 2000) shows a normal distribution before mixing. It can be seen from 

Figure 2.6(b) that the values of 2x  and 1x  depend on each other. The goal of the ICA 

is to attain the independence, which means the transformation from joint PDF on 

Figure 2.6(b) to joint PDF on Figure 2.6(a). We can see that such transformation can 

be observed as scaling and rotation of joint distribution.  

2.6.1 Why Gaussian variables are forbidden 

The fundamental requirement in ICA is that the independent components must be non-

Gaussian. To understand why Gaussian signals do not work with ICA is to assume that 

input signals 𝒔𝒊 are Gaussian and the mixing matrix is orthogonal. Then 𝒙𝟏 and 𝒙𝟐 are 

equally Gaussian based on the central limit theorem, they are also of unit variance and 

are uncorrelated. The joint distribution of these mixed Gaussian variables is given by: 

𝑝(𝑥1, 𝑥2) =
1

2𝜋
𝑒
𝑥1
2+𝑥2

2

2                                                               (2.10) 
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The simulated Figure 2.6(c) shows that the joint density has a symmetric shape, 

revealing that ICA does not hold for Gaussian signals. Mathematically, as Equation 

2.10 reveals, the joint PDF of multivariate normal distribution is circular, thus the 

rotation of the joint PDF cannot be estimated. Meaning that it does not contain any 

information on the direction of the columns of the mixing matrix A. It is the reason 

why Gaussian signals do not work based on the fact that it is not possible to estimate 

A. In addition, the distribution of any orthogonal transformation of the Gaussian 

(𝒙𝟏,𝒙𝟐) has the same distribution as (𝒙𝟏,𝒙𝟐). Therefore, for Gaussian variables, it is 

only possible to estimate the model of ICA up to an orthogonal transform. Hence, the 

ICA model cannot estimate Gaussian independent components (Tharwat, 2018). 

2.6.2 Preprocessing: Centering and whitening (sphering) 

Before the application of the ICA some preprocessing steps need to be performed to 

ease the separation. These steps include centering and whitening (sphering) of the data. 

Such data manipulations make two mixed signals uncorrelated, that is, the covariance 

matrix is made diagonal. In addition, the whitening step includes the normalization of 

the variances to one. This explains why this step is called “whitening”, because the 

covariance matrix of white noise is diagonal with unit variances. In most cases, the 

mixture to be separated contains a combination of the input signals with unit variance 

(Vrins & Verleysen, 2005). 

Centering and whitening are described by Equations (2.11) and (2.12) respectively 

              )( iii xExx                                                               (2.11)                                      

2/1)(  TXXXEX                             (2.12) 

The preprocessing steps simplify the ICA problem to the estimation of a single 

parameter –rotation angle of the joint PDF. The joint PDF of the uniform distributed 

data before and after preprocessing is shown in Figure 2.7 (Aapo & Erkki, 2000). 
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 Figure 2.7 Illustration of centering and whitening steps 

The aim of ICA techniques is to estimate the unknown rotation angle of the joint 

distribution. There are several criteria used for such estimation. Two main criteria, 

which are often used independently, are minimization of the mutual information and 

maximization on non-Gaussianity. Both general groups of methods use some objective 

function and evaluate its values that are to the extreme, which corresponds to the 

minimization of the mutual information or maximization of non-Gaussianity 

respectively, which are enough conditions for independence to be realised. 

ICA has two important components; the objective function and the optimization 

algorithm. The objective function is responsible for determining the statistical 

independency of y. The robustness and effectiveness of ICA depends on the selection 

of the objective function. The purpose of the optimization algorithm is to control the 

objective function until it attains stability. The speed of convergence and stability of 

ICA depends on the algorithm. 
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2.6.3  ICA Assumptions 

One of the advantages of ICA over other approaches in signal separation is its 

requirement of relatively few assumptions on the mixing matrix and the source signals.  

Assumption I: The source signals are statistically independent 

This assumption is considered critical and fundamental to ICA. Statistical 

independence is an important consideration that makes it possible for the estimation 

of independent components 𝑠̂𝑗(𝑡) from the observed mixtures 𝑥𝑖(𝑡). 

Assumption II: The independent components have non-Gaussian distribution 

This is another important assumption because of the connection between independence 

and Gaussianity.  It is not possible to separate Gaussian source signals using the 

framework of ICA because the sum of variables that are Gaussian is itself Gaussian 

(see Equation 2.10, and Figure 2.6(c), above). It means that the sum of signals that are 

Gaussian is the same as that of a single Gaussian in the framework of ICA. It is for 

this reason that source signals that are Gaussian cannot be separated using ICA and its 

algorithms. 

Assumption III: The mixing matrix is invertible 

If the mixing matrix is not invertible then clearly the de-mixing matrix to be estimated 

is not even available. It is only after the three assumptions are satisfied that the 

independent components can be estimated. It is important to note that the three 

assumptions are not restrictive and, therefore, extremely little information about the 

mixing matrix and the source signals is required. 

2.6.4  ICA Ambiguity 

There are two major ICA ambiguities: (i) magnitude and scaling and (ii) permutation.  
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Magnitude and Scaling ambiguity : The correct variance of independent components 

cannot be determined (Tharwat, 2018). This can be illustrated mathematically as: 

                                           𝑥 = ∑ 𝑎𝑗𝑠𝑗
𝑁
𝑗=1                                                         (2.13) 

where 𝑎𝑗 represents the jth column of the mixing matrix 𝐴. Both the coefficients 𝑎𝑗 of 

mixing matrix and independent components 𝑠𝑗 are unknown. Equation (2.13) can be 

transformed into: 

                                     𝑥 = ∑ (1 ∝𝑗 𝑠𝑗⁄ )𝑁
𝑗=1 (∝𝑗 𝑠𝑗)                                         (2.14) 

In most applications, however, this ambiguity is insignificant. The known means to 

overcome this ambiguity has been the use of the assumptions that each of the sources 

has unit variance.  Further still, the signs of the sources can also not be determined. 

Permutation ambiguity: The order of the estimated independent components is 

unspecified.  During the rotation, the update of the demixing matrix is done iteratively, 

therefore the source signals are extracted, but in no specific order (Tharwat, 2018). By 

introducing a permutation matrix P and its inverse into the mixing process of equation 

(2.1), we get: 

                                                      𝑥 = 𝐴𝑃−1𝑃𝑠 

  = 𝐴′𝑠′                                 (2.15) 

The elements of 𝑃𝑠 are actually the original sources, only that they follow a totally 

different order and 𝐴′ = 𝐴𝑃−1 is another unknown mixing matrix. In ICA, Equation  

(2.15) is the same as Equation (2.1) or its vector form Equation (2.3) and only conveys 

the information that permutation is a common feature of BSS. In separating signals, 

however, the aim is not always to have restrictions on the order of separated signals, 

but to simply separate them. This makes the permutation of source signals irrelevant. 
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2.7 Comparison of BSS and ICA 

In a number of literatures, the terms ICA and BSS are interchanged bringing confusion. 

It is true that ICA and BSS refer to the same models and their problems are solved by 

almost the same algorithms with the assumption of the mutual independence of the 

source signals holding. However, from the operational point of view, the aim of BSS 

is quite different from that of ICA. The purpose of BSS is to estimate the original 

source signals even if the assumption of mutually independence of the source signals 

is not completely attainable. On the other hand, ICA’s key purpose is to determine a 

transformation and the assumptions of the mutually independent source signals hold 

all the time.  

While ICA methods depend on high-order statistics (HOS) for many of their 

applications, BSS methods use only the second-order statistics (SOS). Higher order 

methods assumptions is on their mutual independence, while second order methods 

assumptions is on the sources having some form of temporal structure (Cichocki & 

Amari, 2002). A key observation to note is that second order statistics methods cannot 

perform independent component analysis tasks. Another difference is that higher-order 

statistics methods cannot work with signals that are Gaussian, while second order 

methods have no problem with Gaussian signals. BSS research using Gaussian signals 

have been used in a number of applications. A model using Gaussian signals has been 

used to yield robust and satisfactory results on high-resolution satellite data 

(Jalobeanu, Feraud, & Zerubia, 2004). The same results cannot be realized using ICA 

because the mutual independence is not observed by Gaussian signals. Therefore, BSS 

methods do not in any way replace ICA and vice versa, for the simple fact that each 

approach uses different assumptions, criteria and have different objectives (Cichocki 

& Amari, 2002). 

2.7.1 Instantaneous BSS and ICA 

Here we expand the single equation model of instantaneous model of section 2.5.1, by 

looking at it from the multiple signal points of view and which helps in connecting 



23 

 

BSS to ICA. This is important because the research deals with multiple input and 

output signals – two to be specific.  

Assume that the source signals are stationary zero-mean processes and are mutually 

statistically independent. Let 𝑠(𝑘) = (𝑠1(𝑘),… 𝑠𝑚(𝑘) )
𝑇 be the unknown independent 

source vector and 𝑥(𝑘) = (𝑥1(𝑘),… 𝑥𝑛(𝑘) )
𝑇 be a sensor vector, which is a linear 

instantaneous mixture source by 

𝑥(𝑘) = 𝐴𝑠(𝑘) + ⋯𝑣(𝑘)                                                   (2.16) 

where 𝐴 ∈ 𝑅𝑛𝑥𝑚is unknown mixing matrix of full rank and 𝑣(𝑘) is the vector of 

Gaussian noises (Zhang, Cichocki, & Amari, 2004). The BSS problem is to recover 

original source signals from observations 𝒙(𝑘) without prior knowledge on the source 

signals and the mixing matrix. The demixing model used here is a linear transformation 

of the form 

𝑦(𝑘) = 𝑊𝑥(𝑘)                                                               (2.17) 

where 𝒚(𝑘) = (𝑦1(𝑘),… 𝑦𝑚(𝑘) )
𝑇, 𝑊 ∈ 𝑅𝑛𝑥𝑛 is a demixing matrix to be determined 

during training. The assumption of 𝑚 = 𝑛 is maintained that the source signals equals 

the sensor signals. The general solution to the BSS problem is to find a matrix 𝑊 such 

that 

𝑊𝐴 =  Λ𝑃                                                                     (2.18) 

where Λ = [
Ao
0
], Ao is a diagonal matrix and 𝑃 is a permutation (Zhang, Cichocki, & 

Amari, 2004). The algorithm applied trains the de-mixing model 𝑊 such as 𝑚 

components are designed to recover 𝑚 source signals. 

The aim of BSS is to adapt the de-mixing model such that its output signals are 

mutually independent. Remember that ICA main operational point is the independence 

of signal providing a link between BSS and ICA. Two things are unknown in this 
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problem: one is the number of active sources and, two, is the probability density 

functions (pdfs) in the BSS framework. The traditional approach is to estimate the 

number of active sources before training the de-mixing matrix model, which may fail 

if the sensor signals are noisy or the source signals are very weak (Zhang, Cichocki, 

& Amari, 2004). This research does not intent to estimate the number of active sources 

before training the de-mixing matrix. The estimation of pdfs is computationally 

demanding and its convergence is extremely slow for ordinary gradient- descent 

methods (Zhang, Cichocki, & Amari, 2004). This research uses the natural gradient 

algorithm that shows improved results. The pdfs are not directly estimated in natural 

gradient algorithm (NGA), which is used to train the parameters of the activation 

function and which shorten the convergence rate. The pdf determines whether the 

signal is sub-Gaussian, Gaussian or super-Gaussian for appropriate activation function 

to be used. 

This independence of the components is measured using criteria such as smoothness, 

sparseness, linear predictability or by an information-theoretic cost function such as 

the Kullback-Leibler (KL) divergence (Cichocki & Amari, 2002). The optimal 

generated weight then corresponds to the statistical independence of the output signals. 

The KL divergence plays the all-important role in estimating the pdfs of the signals in 

NGA.  

2.8 ICA Algorithms 

ICA has many methods that use both Second order and Higher order statistics for 

separating sources. The most common ICA algorithms are FastICA, Second Order 

Blind Identification (SOBI), Joint Approximate Diagnalization of Eigen-matrices 

(JADE) and the Second Order Non-stationary source Separation (SONS) (Naik, 2012). 

These algorithms have been successfully applied in ICA for various applications in 

different fields of data mining mostly in audio signal processing (Dubnov, Tabrikian, 

& Targan, 2006). However, in most of the applications of these ICA algorithms, the 

application has been on signals that are super-Gaussian in nature. This thesis 

introduces the NGA and analyzes its working on both sub- and super-Gaussian signals. 
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Unlike the other ICA algorithms mentioned, NGA can work for both instantaneous 

and convolutive models. However, in this research handles and derives the NGA 

applicable in spatial models only. 

2.8.1 Natural Gradient Algorithm 

One disadvantage of stochastic gradient optimization methods is that they suffer from 

slow convergence because of the inherent statistical correlation found in most real-

world signals in the parameter updates. This traditional natural gradient algorithm 

adopts fixed-step-size; the choice of step size directly affects the convergence speed 

and steady state performance (Peng & Yang, 2010). Gauss-Newton methods can be 

used to counter the performance drawbacks of these schemes (Amari, Douglas, 

Cichocki, & Howard, 1997), but they are expensive when it comes to computation and 

they often suffer from numerical problems if their implementation is poorly done. It is 

important to have an algorithm that is not only simply and robust of the stochastic 

gradient but which achieves convergence performance independent of any statistical 

dependencies (Amari, Douglas, Cichocki, & Howard, 1997). To elaborate and as we 

shall see, the NGA does not necessarily depend on the mixing matrix, other than the 

initial conditions.   

The non-Gaussianity of the sources is because of certain identifiability conditions that 

need to be satisfied for any BSS-ICA formulation to work properly. BSS methods that 

use this formulation depend on some knowledge of the lower-order or higher-order 

amplitude statistics of the source signal to perform the separation (Scott, 2002). 

Algorithms for BSS-ICA that use spatial independence are classified into two: (i) those 

that use density matching of the sources, and (ii) those that use contrast function 

optimization. This thesis explores the Natural Gradient Algorithm that uses density 

matching of the sources. 
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2.8.2 Density Matching BSS-ICA using Natural Gradient Adaptation 

Density matching BSS-ICA methods rely heavily on the concept of information 

theory. Information theory has applications in a number of fields including economics, 

communication, physics and neuroscience (Cover & Thomas, 1991). In BSS and ICA 

information theory is useful because it helps in characterising the amount of shared 

information in a set of signals. In fact, the concept of information theory is the basis 

for the use of the word “blindness” in signal processing. The concept makes it possible 

to separate signals when no common information can be found between any two-

output signal sets. 

The natural gradient algorithm (NGA) is an improvement on the shortcoming of the 

stochastic gradient algorithm (SGA), which demands the specifying of the initial 

condition. In both SGA and the modified NGA, the aim is to adjust the coefficient of 

the demixing matrix. Adjusting 𝑊(𝑘) means that the joint Probability Density 

Function (jPDF) of the separated signal 𝑦(𝑘) is made as close as possible to the 

assumed distribution 𝑝̅𝑦(𝑦) (Scott, 2002) in each iteration of the algorithm. The 

measure has been successfully done by Cardoso using the divergence measure of 

Kullback-Leibler (Cardoso, 1998). 

𝐾𝐿(𝑝𝑦 ∥ 𝑝̅𝑦) = ∫𝑝𝑦(𝑦) log (
𝑝𝑦(𝑦)

𝑝̅𝑦(𝑦)
)dy                                    (2.19) 

where 𝑝𝑦(𝑦) is the actual distribution and 𝑝̅𝑦(𝑦) is the assumed distribution of the 

estimated signal vector. In an ideal situation 𝑝𝑦 =  𝑝̅𝑦 giving a 𝐾𝐿 of zero. In fact, 

Equation 2.19 can correctly be referred to as the objective function (Chibole, 2014). 

The tricky part is in choosing 𝑝̅𝑦(𝑦), which makes Equation (2.19) unreliable in many 

applications. A cost function that is instantaneous and which has the same expected 

value as that of the 𝐾𝐿(𝑝𝑦 ∥ 𝑝̅𝑦) is given by 
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𝐽(𝑊) = −𝑙𝑜𝑔(∏𝑝𝑠(𝑦𝑖(𝑘))

𝑚

𝑖=1

|𝑑𝑒𝑡𝑊|)                                   (2.20) 

where 𝑑𝑒𝑡𝑊 indicates the determinant 𝑊. The cost function (Equation 2.20) can be 

computed further to yield the stochastic gradient descent given as  

𝑊(𝑘 + 1) =  𝑊(𝑘) +  𝜇(𝑘)[𝑊−𝑇(𝑘) − 𝜑(𝑦(𝑘)𝑥𝑇(𝑘))]          (2.21) 

here 𝜑(𝑦) = [𝜑(𝑦1),… , 𝜑(𝑦𝑚)]
𝑇 ,  𝜑(𝑦) =  −𝛿𝑙𝑜𝑔𝑝𝑠(𝑦/𝑑𝑦), is the cdf or 

algorithmically the activation function. 𝜇(𝑘) is the step size used by the algorithm to 

move from one iteration to the next. According to Scott (2002), Equation (2.21) is able 

to perform Blind Signal Processing (BSS) for any simple choice of 𝜑(𝑦). The 

Stochastic gradient descent of Equation (2.21) is limited in terms of application 

because of its slow convergence. A modification to the stochastic gradient descent to 

remove the mixing matrix 𝐴’s ill-condition is the natural gradient algorithm by Amari 

(Amari S. , 1998) or the relative gradient by Gardoso (Cardoso, 1998). In NGA, the 

initial condition is not put into consideration because the algorithm aims at the overall 

system matrix 𝐶(𝑘). The full derivation of the NGA is found in (Scott, 2002) with its 

final equation given as:  

𝐶(𝑘 + 1) = 𝐶(𝑘) +  𝜇(𝑘)[𝐼 − 𝜑(𝐶(𝑘)𝑠(𝑘))𝑠𝑇(𝑘)𝐶𝑇(𝑘)]𝐶(𝑘)                 (2.22) 

From Equation (2.22) it is evident that the mixing matrix A does not play any role in 

the separation process as it only used in the initial condition C(0)  =  W(0)A. 

Therefore even if the mixing matrix is poorly chosen, it will not affect the quality of 

separated signal. The NGA works even better if the inputs s(k) adhere to the ICA’s 

independence requirement. Despite the modifications, both SGA and NGA require a 

good choice of the activation function φ(. ) as shown in Equation (2.22).  
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2.9 Activation Functions  

Input signals are often non-linear in nature. However, during the mixing process, such 

inputs are combined linearly. In fact, inputs to algorithms are simply a linear 

transformation of the 𝒙 vector of mixed signals. 𝒙 on the other hand is combination of 

the 𝑨 mixing matrix and 𝒔 the vector of the input signals. To retain back the original 

signals s, a reverse transformation through a de-mixing matrix 𝑾 is necessary but often 

not sufficient. The de-mixing process will have to be guided by an activation function 

even if the inputs are linear. Because the input signals are non-linear in most cases, for 

𝒚 to resemble 𝒔, the transformation process will have to be passed through a non-linear 

activation function. Otherwise, it is not possible to retain the non-linearity of the input 

signals. Non-linearity means that it is not possible to reproduce the output when the 

inputs are combined linearly. 

While the input takes values in the range [-∞,∞], the output controlled by the 

activation function gives bounded values within the intervals [1, 0] or [-1, 1]. Without 

an activation function, it is not possible to map the wide inputs to relatively small 

output parameters. One essential characteristic of an activation function is that it must 

be differentiable within its bounded interval. Differentiation helps to give the direction 

of adjusting the weights. When the derivative value is significant, it means the 

corresponding weights will equally have large weight adjustments. Calculus rules are 

that a significant derivative value indicates the minima is still far. For each iteration, 

the weights of the algorithm are adjusted to correspond to the direction of the steepest 

descent on the surface of the cost function defined by the total error. Computing the 

error is by subtracting the expected from the observed values. Then each weight within 

the matrices of weights is adjusted according to the gradient error calculated. In a more 

general sense, the derivation is done along the activation function curve as the expected 

value using optimization techniques such as the natural gradient in finding the minima 

of the objective function. 

The first derivative determines the first point on the curve by ensuring that there is a 

tangent with a slope of zero on the line tangent. A slope of zero suggests the location 
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of the minima and it can be local or global for the function. However, the first 

derivative also suggests something significant: it informs the algorithm if it is headed 

in the correct direction that will take it to the minimum of the function. The derivative 

value, that is, the slope at that point decreases gradually. What this means is that for a 

minimized function, its derivative must be calculated and that the value must be 

decreasing if the algorithm is following the correct direction. It is for this reason that 

the activation function must be differentiable within its range, revealing it critical role 

in algorithms. The better the choice of the activation function, the better the algorithm.  

 2.9.1 Sigmoid and Fibonacci Activation Functions 

The research will compare the commonly used activation function - the Sigmoid - to 

the less explored in the literature - the Fibonacci. In fact, the SAF is so common that 

there is an Artificial Neural Network (ANN) named after it, the Sigmoid Neurones. 

Sigmoid neurones are modified version of the perceptions where small changes in the 

bias and weights are reflected as small variations in the output (Nielsen, 2015). 

Equation (2.23) shows the FAF 

𝜑(𝑦) =  
√5−1

2
𝑦3 +

3−√5

2
𝑦5                                                (2.23) 

while the SAF has the Equation (2.24) 

𝜑(𝑦) =  
1

1+ 𝑒−𝑦
                                                                 (2.24) 

 Activation functions are simply the cumulative density functions (cdf) and they 

have a relation to Gaussian functions as explained below. Assuming there is a random 

variable s, having probability density 𝑃𝑠(𝑆). The cumulative density function (cdf) is 

given as: 

𝐹(𝑠) =  𝑃(𝑆 ≤ 𝑠)                                                                   (2.25) 

Suppose, this is the Gaussian density then 
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Figure 2.8 Density function (a) and its cdf (b) 

The height of the function 𝑠 (Figure 2.8 (b)) is equal to the area of the Gaussian density 

(Figure 2.8 (a)), up to the period 𝑠. Going further (Figure 2.8 (b)) the function (Figure 

2.8 (a)) becomes Gaussian. Equation 2.26 is another form of writing the cdf of 

Equation 2.25. 

𝐹(𝑠) = ∫ 𝑃𝑠

𝑠

−∞

(𝑡)𝑑𝑡                                                              (2.26) 

Suppose there is a random variable 𝑠 and the aim is to model the distribution of this 

variable. Two option exist: the first option is by specifying the density 𝑃𝑠(s) or the 

second option is to specify the cdf 𝐹(𝑆). Equation (2.26) is used to relate the two 

options. Most literature prefers the cdf option because of the easy in the calculation 

and because it is continuous over the specified space. Continuous here means it is 

differentiable over its range. In signal processing and other applications, the cdf is truly 

referred to as the activation function.  It is, therefore, easy to recovery the density 𝑃𝑠(s) 

by taking the cdf and computing its derivative 
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𝑃𝑠(𝑆) =  𝐹
′(𝑆)                                                                (2.27) 

There is always a step in algorithms when the random variable for 𝑠 is assumed by 

either specifying the density 𝑃𝑠 or the cdf. In the real sense, the assumptions involve 

the choice of an activation function that can model the output of the signals to be 

separated. The cdf or the activation function has to be some function increasing from 

0 to 1 or some other specified range.  

The ideal form for 𝜑(𝑦) is the commulative density function (cdf) of the distribution 

of the independent sources. In practice, however, if 𝜑(𝑦) is a sigmoid function, the 

learning rule reduces to that proposed in (Bell & Sejnowski, 1995). The algorithm is 

then limited to separating sources with super-Gaussian distribution. For a mixture of 

sub- super-Gaussian mixtures, Zhang, Cichoki and Amari (2004) and Zhang, Amari, 

and Cichocki (2001) proposed the idea of AFs adaptations, in steady of estimating the 

pdfs of the sources. This is motivated by the idea that there is need for the exact score 

functions for successful separation to be achieved by ICA. However, the method 

greatly slows down the convergence process of the algorithm. Super-Gaussianity and 

Sub-Gaussianity is handled next. 

2.10  Super- and Sub-Gaussian Signals 

There are two types of non-Gaussian signals. These are super-Gaussian and sub-

Gaussian or “planty kurtotic” and “lepto kurtotic” respectively (Naik, 2012).  

2.10.1 Sub-Gaussian Sources 

For sub-Gaussian density, a symmetrical form is adopted as follows 

𝑝(𝑥) =
1

2
(𝑁(𝑥, 𝜎2) + 𝑁(−𝑥, 𝜎2))                                                 (2.28) 

where 𝑁(𝑥, 𝜎2) is the normal density with mean 𝑥 and variance 𝜎2 (Naik, 2012) 

𝑁(𝑥,𝜎2) = 𝑝(𝑥) =
1

𝜎√2𝜋
𝑒
−
(𝑥−𝑥)2

2𝜎2                                                   (2.29) 
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Note that the normal distribution is associated with the Gaussian distribution. Signals 

with sub-Gaussian PDF have a wide distributed function as illustrated in Figure 2.9 

(Naik, 2012).   

 

Figure 2.9 PDF of a sub-Gaussian signal 

A saw-tooth signal, music signal and white noise signal are typically sub-Gaussian 

sources (Cristescu, Ristaniemi, Joutsensalo, & Karhunem, 2000). The sub-Gaussian 

signals have PDF that are not as peaky when compared to Gaussian signals. 

2.10.2 Super-Gaussian Sources 

For a super-Gaussian density of speech signal, the Laplacian density is used and 

represented as:  

                        𝑝(𝑥) =
1

𝜎√2
𝑒−

√2|𝑥−𝑥|

𝜎                                                                (2.30) 

 The values of PDF for a super-Gaussian signal are clustered around zero. A speech 

signal is a typical example for a super-Gaussian source (Naik, 2012). Figure 2.10 is a 

representation of a typical super-Gaussian (speech) signal (Naik, 2012).  
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Figure 2.10 PDF of a super-Gaussian (speech) signal 

From Figure 2.10, it is also clear that the super-Gaussian signals contain PDFs that are 

peakier than that of Gaussian signals. Kurtosis and Entropy are two measures used to 

calculate whether the signal is super-Gaussian or sub-Gaussian. Intensive research has 

shown that speech signals are super-Gaussian. Research dedicated to testing whether 

the non-Gaussian signals are super- or sub-Gaussian can be found at (Naik, 2012) (Rai 

& Yogesh, 2004). 

2.11 Frequency Spectra of Signals 

Fourier analysis has application for the synthesis and reproduction of sound. Most 

musical instruments contain the fundamental and subsequent harmonics, as 

superposition of pure waves. Fourier analysis is the decomposition of musical 

instrument’s sound into its individual components used to form it (Daqarta for DOS, 

n.d.). Sound waves can best be characterized into amplitudes of the component sine-

sound waves summed to produce it. It is this set of numbers that give information 

regarding the harmonic content of sound produced and it is often termed as the 

harmonic spectrum of such a sound wave. The quality or timbre of a musical note is 

determined by its harmonic content.  

After gathering the harmonic content of a musical sound note from Fourier analysis, it 

is possible to synthesize the specific sound from a number of pure tone producers by 
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simply changing their phases and amplitudes and then summing them together. This 

process is the Fourier synthesis. Fourier transform can be easily used to show that a 

square wave has harmonics that are odd numbered with decreasing values as 

amplitudes. The 𝑛𝑡ℎ harmonic has 1 𝑛⁄  times the fundamental amplitude. This is 

shown in Figure 2.11 (Daqarta for DOS, n.d.). 

 

Figure 2.11 Fourier Transform 

2.12  Measure of Signal Separation Quality 

In most ICA methods, the quality of source separation is measured using the well-

known traditional methods that include Signal to Noise Ratio (SNR), Signal to 

Distortion Ratio (SDR), Signal to Artifacts Ratio (SAR) and Signal to Interference 

Ratio (SIR) (Naik, 2012). In a number of audio applications and bio signals, SIR is the 

most popular measure of the quality of separation (Cichocki & Amari, 2002). Signal 

to Interference Ratio is the ratio of the power of the wanted signal to the total residue 

power of the unwanted signal (Naik, 2012). However, the mentioned methods to 
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measure the separation quality gives a general summary figure of the separation. Each 

audio signal is made up of several frequencies. It is important to know at which 

frequency is the separation effective and at which it is not. The thesis seeks an 

alternative method that measures the separation of signal at each frequency. The 

solution is the measure of the signal coherence at each frequency. The method gives 

the output that spans the entire waveform revealing where there is complete separation, 

partial separation or no separation. Further investigation can be done to understand 

why the separation is not achieved at specific frequencies, a realization that cannot be 

achieved using the traditional methods mentioned in (Naik, 2012). This research 

introduces the magnitude-squared coherence in MATLAB in comparing the estimated 

signals to their corresponding original input signals after the separation is complete. 

2.12.1 Magnitude-Squared Coherence  

The magnitude-squared coherence between two signals 𝑠(𝑛) and 𝑦(𝑛) is measured 

using Welch’s averaged modified periodogram method. According to Mathsworks ( 

2014), the magnitude-squared coherence estimate is a function of the frequency and 

the quotient output is a real value between 0 and 1, which indicate how close 𝑦 

resembles 𝑠 at each frequency 𝜔. The magnitude-squared coherence is a function of 

the power spectral densities 𝑃𝑠𝑠(𝜔) and 𝑃𝑦𝑦(𝜔), of 𝑠 and 𝑦, and the cross power 

spectral density 𝑃𝑠𝑦(𝜔) of 𝑠 and 𝑦. The magnitude-squared coherence equation is 

shown in Equation (2.31). 

𝐶𝑠𝑦𝜔 =
|𝑃𝑠𝑦(𝜔)|

2

𝑃𝑠𝑠(𝜔)𝑃𝑦𝑦(𝜔)
                                                             (2.31) 

where 𝑠  and 𝑦 must be of the same length (Mathsworks, 2014). For real 𝑠 and 𝑦, the 

MATLAB function for measuring magnitude-squared coherence, mscohere returns a 

one-sided coherence estimate. For complex 𝑠 and 𝑦, it returns a two-sided estimate. 

An example of a MATLAB generated magnitude-squared coherence between an input 

signal 𝑠 and and its corresponding output 𝑦 is shown in Figure 2.11 (Mathsworks, 

2014): 
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Figure 2.12 Measure of magnitude-squared coherence 

Full coherence is realized when the same signal is used for both inputs results in a 

straight line graph revealing that the signals are similar. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Background 

The problem of separating audio mixtures with varying time series is predominant in 

many applications of signal processing; a common example is the well-known cocktail 

party problem. In the cocktail party problem, the objective is to recover the speech 

signals of multiple speakers who are talking simultaneously in the room (Figure 3.1). 

In a normal situation, the room is reverberant because of the reflection on the walls of 

the signals. What this means is that the original source signals in the separation 

problem are filtered by an input and output system before the sensors pick them up. In 

the problem of Blind Source Separation (BSS), the interest is in finding the 

corresponding demixing system. Two speakers are used as sensors in the simulated 

experiment. 

 

Figure 3.1 A 2 by 2 system used for mixing and separating a pair of signals 

3.2 Method Employed 

In practice, the experiment is set up to reflect what is depicted in Figure  3.1. The 

experimental setup tries to emulate the famous "the cocktail party problem" discussed 

𝑤11(𝑘) 

𝑤12(𝑘) 

𝑤21(𝑘) 

𝑤22(𝑘) 

𝑥1(𝑘) 

𝑥2(𝑘) 

𝑠1(𝑘)       𝑎11(𝑘) 

𝑠2(𝑘)       𝑎22(𝑘) 

𝑎12(𝑘) 

𝑎21(𝑘) 

𝑦1(𝑘) = 𝑠1(𝑘) 

𝑦2(𝑘) = 𝑠2(𝑘) 

Female 

Male 
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in (Douglas & Gupta, 2007). The research implemented the setup with some 

modifications. First, the input signals are recorded and stored in the computer system, 

instead of generating them in real time. Second, time delay and echoes, as would 

happen in cocktail party procedures are not factored, therefore, there is no filtering 

done on the input signals before receiving them by the sensors. This is deviation from 

the real life situation of a reverberant room; however, the results obtained prove that 

the NGA improves the output signals when applied to ICA, and can be extended to 

real experiment without loss of their effectiveness. The procedure involve the use of 

music and human signals with the intention of understanding how effective the 

algorithm works with the two activation functions - Sigmoid and Fibonacci.   

There are two key assumptions made on the input signals. The assumptions are 

confirmed on the input signals giving way for them to be mixed using the ICA-NGA 

algorithm in MATLAB. The mixture is then preprocessed before separation is done. 

The experiment is carried out to evaluate the performance of NGA on two pairs of sub-

Gaussian, super-Gaussian and sub-super-Gaussian signals. The procedure entails 

recording and storing of waveforms, frequency spectra and sounds.    

3.3 The Input Stage  

The input signals used in the research are sub-Gaussian and super-Gaussian signals. 

The sub-Gaussian signals are all music instrument of a saxophone and violin sounds. 

For this purpose, the music (sub-Gaussian) signals were downloaded and stored as 

.wav files. On the other hand, the speech (super-Gaussian) are human speeches 

recorded using the internal microphones of a computer. The first speech recordings 

were a male voice speaking the words I study MATLAB. The second recording is of a 

12-year-old female speaking the words I am Junior. The distance between the speaker 

and the computer microphone was kept close enough to prevent multi-paths for each 

emitted source signal. The recordings used in this research are summarized in Table 

3.1.  
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Table 3.1 The input signals used in the experiment. 

Non-Gaussian Signal Audio Signal 

Sub-Gaussian Saxophone  

Violin-2 

Super-Gaussian Male Speech 

Female Speech 

The input signals are then displayed in MATLAB as seen in Figure 3.2.  

 

Saxophone 

 

Violin-2 

 

Male Speech 
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Female Speech 

Figure 3.2 Waveforms of the input signals 

 Notice that from Figure 3.2 the input signals are of different lengths and 

amplitudes. Before the input signals shown in Figure 3.2 were used, they were equated 

to the shortest length in each pair to enable mixing and later separation. The amplitudes 

in each pair were also normalized. Table 3.2 shows the pairing done. 

Table 3.2 The input signals in their pairs. 

 Input-1 Input-2 

Pair-1 Saxophone Violin-2 

Pair-2 Male Female 

Pair-3 Female Violin-2 

Table 3.3 is information generated in MATLAB showing the characteristics of each of 

the input signals before pairing and after pairing and equating. 
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Table 3.3 The input signals in their pairs before and after equating 

 Before Pairing After Pairing and Equating 

Pair-1 Information on the Saxophone 

sound file before equating 

Duration = 125632 in samples 

Duration = 2.8488 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

 

Information on the Saxophone 

sound file after equating 

Duration = 125632 in samples 

Duration = 2.8488 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

Information on the Violin-2 sound 

file before equating 

Duration = 295470 samples 

Duration = 6.7 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

Information on the Violin-2 sound 

file after equating 

Duration = 125632 samples 

Duration = 2.8488 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

 

Pair-2 Information on the Male sound file  

before equating 

Duration = 77824 in samples 

Duration = 1.76472 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

Information on the Male sound file  

after equating 

Duration = 51200 in samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 
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Information on the Female sound 

file before equating 

"Duration = 51200 samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

Information on the Female sound 

file after equating 

"Duration = 51200 samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

 

Pair-3 Information on the Female sound 

file before equating 

Duration = 51200 in samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

 

Information on the Female sound 

file after equating 

Duration = 51200 in samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

 

Information on the Violin-2 sound 

file before equating 

Duration = 295470 samples 

Duration = 6.7 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

Information on the Violin-2 sound 

file after equating 

Duration = 51200 samples 

Duration = 1.161 in seconds 

Bit resolution = 16 bits/sample 

Sampling rate = 44100 

Samples/second 

The paired inputs are represented as 𝑠1 and 𝑠2 and their waveforms are shown in Figure 

3.3. 
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(a) Pair-I 

 

(b) Pair-II 



44 

 

 

(c) Pair-III 

Figure 3.3 Waveforms of input signals 

The frequency spectra of the input signals for each pair were generated and shown in 

Figure 3.4.  

 

(a) Pair-I 
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(b) Pair-II 

 

(c) Pair-III 

Figure 3.4 Frequency spectra of the input signals 

3.3.1 Signal Preparation at the Input Stage 

In order to perform efficient separation of two source signals, it is important that some 

preparations are performed on the input signals. These include checking to confirm 

that the two source signals are independent and they exhibit non-Gaussianity 

characteristics. These conditions on the input sources must be fulfilled for the signal 

to be separated using any ICA algorithm.  
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i. Independence 

Statistical independence is a fundamental concept in the separation of signals using 

ICA algorithms, including NGA. Consider two unique random signals as 𝑠1 and 𝑠2. 

For the separation to work well, the random signal 𝑠1 must be independent of 𝑠2. 

Independence here means that any information on 𝑠1 cannot be used to get information 

on 𝑠2 and vice versa. In this case, 𝑠1 and 𝑠2 are assumed to be random variables 

originating from two unique physical processes, which have no relationship to each 

other.  

Many researchers have exhaustively dealt with the independence of signals and the 

literature review has also shown that the input signals are independent. Therefore, the 

methodology of this research will not concern itself with proving the independence of 

the input signals. A number of publications on speech signals and independence 

include (Naik, 2012) (Kumar & Naik, 2011) (Aapo & Erkki, 2000) (Parameswaran, 

Finitha, & Sama, 2010). On the same note, publications done on music instruments to 

show that they are independent exist at (Naik, 2012) (Kumar & Naik, 2011) (Aapo & 

Erkki, 2000).  

ii. Non Gaussianity 

A second and equally important condition to be fulfilled by the input signals for them 

to work with ICA is that they must be non-Gaussian. The literature review in Chapter 

Two has exhaustively looked at this ICA condition. Again, this section will not 

endeavor itself to prove that the input signals fulfill this condition as part of its 

experimental procedure. From the existing theory, the input signals used in this 

research have overwhelming literature to support that they exhibit the condition of 

non-Gaussianity. Publications and research on non-Gaussianity of speech signals 

include (Naik, 2012) (Kumar & Naik, 2011) (Aapo & Erkki, 2000) (Parameswaran, 

Finitha, & Sama, 2010). While those on music signals include (Naik, 2012) (Cristescu, 

Ristaniemi, Joutsensalo, & Karhunem, 2000) and (Aapo & Erkki, 2000). The research 
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will also not concern itself in proving that all the input signals exhibit non-Gaussianity 

but the requirement is assumed. 

3.4 The Mixing Stage 

The input signal are mixed by applying the “unknown” mixing matrix in each case. 

The mixing matrix 𝐴 is: 

                                                                𝐴 = [
2 3
2 1

]                                                           (3.1) 

The input mixing matrix of equation (3.1) is same as used in (Aapo & Erkki, 2000). 

Since there are two input signals, the mixing process is designed to use sensors to take 

up the two signals. Each of the pairs of the input signal is fed into the input as shown 

Figure 3.1. The outputs of the mixed signals are represented as 𝑥1and 𝑥2. 𝑥1and 𝑥2 are 

dependent on each other unlike 𝑠1and 𝑠2 which are independent (see Appendix I). The 

outputs are then stored in three formats – the waveform, frequency spectrum and 

sound. The mixed signal waveforms and frequency spectra are displayed in Figure 3.5 

and Figure 3.6, respectively. The sound from these waveforms are stored as .wav files. 

 

(a) Pair-I 
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(b) Pair-II 

 

(c) Pair-III 

Figure 3.5 Waveforms of mixtures of input signals 

while Figure 3.6 displays their frequency spectra. 
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(a) Pair-I 

 

(b) Pair-II 

 

(c) Pair-III 

Figure 3.6 Frequency spectra of mixtures of input signals 
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3.4.1 Preparation of Mixed Signals before Separating 

Pre-processing for separation involves whitening and centering. Most ICA algorithms 

work better when whitening and centering is done on the single mixtures (Kumar & 

Naik, 2011). In this research, the preprocessing stage of the mixtures was done for 

NGA in MATLAB code. First, the centering procedure was done before carrying the 

whitening procedure. The mathematical concept of whitening and centering is given 

in Appendix II. The whitening procedure helps to reduce the number of elements need 

to reach optimization level for the algorithm.  

3.5 Separating Stage 

A key issue at this stage is that the separating system is only aware that there is a two 

signal mixture to be separated, but it does not know how the signals were mixed, the 

original signals nor the ratio of their mixtures. In other words, the separating system 

only knows that it needs to separate the mixtures into two by way of grouping 

components that resemble each other. Noise in the mixture is Gaussian and is evenly 

distributed. Another important consideration is that separation of the mixtures 𝑥1 and 

𝑥2 depends on the assumption that the signals are independent and non-Gaussian in 

nature.  

The separation process uses the Fibonacci Activation Function (FAF) and Sigmoid 

Activation Function (SAF) that continuously changes the entropy of each of the 

mixtures. Equation (2.23) for the Fibonacci activation functions used in the separation 

is indicated below:   

𝜑(𝑦) =  
√5 − 1

2
𝑦3 +

3 − √5

2
𝑦5 

while Equation (2.24) of the Sigmoid activation function is shown as and is also used 

in the separation:  
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𝜑(𝑦) =  
1

1 + 𝑒−𝑦
 

The MATLAB generated cdf plots for the two activation functions are shown in Figure 

3.7: 

 

Figure 3.7 Cdf plots for the two activation function 

A hundred iterations were used to attain the separation because higher numbers 

resulted in the same output and were rather too slow for the algorithm to converge. 

The learning rate was set at 0.001. The outputs y1 and y2 do not necessarily mean that 

the signals correspond to their s1 and s2, respectively, because of the ambiguity 

constraint in ICA. It can be the other way round, where y1 corresponds to s2 and y2 

corresponds to s1. By listening to the separated signals and the input signals, and 

comparing their waveforms, it is only when it was possible to link the separated signal 

to its corresponding input counterpart. After the comparison is confirmed, the input 

and its corresponding output signals are quantified using the measure of Magnitude 

Squared Coherence. The convergence rates for the two activation functions were also 

compared with the results displayed in graphs. The outputs of this section form part of 

the results and are displayed in the next chapter. 
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3.6 Implementation methodology 

1.  A pair of input signals were prepared and stored in computer memory. 

2. The two input signals were applied to the mixing matrix A . The mixing and 

separation was a 2𝑥2 MIMO system and the task was to recover the individual 

sources having only the record of their mixtures (the mixing process of the 

source is unknown).  

3. To recover the original signals, the NGA code was first used to normalize and 

then the mixtures were whitened to make the separation easier. This was 

followed by applying the mixtures to a separating matrix. The separation was 

carried out to one hundred iterations using both the Fibonacci and Sigmoid 

activation function at learning rate of 0.001. The estimated signals were then 

stored for analysis. 

4. The final stage was the comparison of the input signal and the estimated signal 

using Magnitude Squared Coherence function and the convergence rate 

elements in MATLAB. The methodology is summarized in Figure 3.8. 

 



53 

 

 

Figure 3.8 Schematic Flow Diagram of the Methodology 
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CHAPTER FOUR 

RESULTS AND DATA ANALYSIS  

4.1 Results   

The results displayed here are for waveforms, frequency spectra and measure of 

magnitude-squared coherence. The estimated waveforms are displayed for each of the 

pairs of the input signals. Just like the waveforms of the inputs signals, the waveforms 

of the estimated signals are displayed with Amplitude in the y-axis and Time in 

seconds in the x-axis for easy comparison.  

4.1.1 Results for waveforms and frequency spectra using Fibonacci AF 

The estimated (output) signal waveforms and frequency spectra are displayed in red 

color in Figure 4.1, Figure 4.2, Figure 4.3 and Figure 4.4, Figure 4.5, Figure 4.6, 

respectively, for each of the three pairs using Fibonacci activation function. 

 

Figure 4.1 Waveforms of estimated signals from Pair-I using FAF 
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Figure.4.2 Waveforms of estimated signals from Pair-II using FAF 

 

 Figure 4.3 Waveforms of estimated signals from Pair-III using FAF 

 

Figure 4.4 Frequency spectra of estimated signals from Pair-I using FAF 
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Figure 4.5 Frequency spectra of estimated signals from Pair-II using FAF 

 

Figure 4.6 Frequency spectra of the estimated signals from Pair-III using FAF 

4.1.2 Results for waveforms and frequency spectra using Sigmoid AF 

The estimated (output) signal waveforms and frequency spectra are displayed in Figure 

4.7, Figure 4.8, Figure 4.9 and Figure 4.10, Figure 4.11, Figure 4.12, respectively, for 

each of the three pairs using Sigmoid activation function. 
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Figure 4.7 Waveforms of estimated signals from Pair-I using SAF 

 

Figure 4.8 Waveforms of estimated signals from Pair-II using SAF 

 

Figure 4.9 Waveforms of estimated signals from Pair-III using SAF 
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Figure 4.10 Frequency spectra of the estimated signals from Pair-I using SAF 

 

Figure 4.11 Frequency spectra of the estimated signals from Pair-II using SAF 

 

Figure 4.12 Frequency spectra of the estimated signals from Pair-III using SAF 
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4.2 Comparison of Input-Output Waveforms and Frequency Spectra  

For easy comparison, analysis and discussion, the input and output waveforms and 

frequency spectra are placed side by side. First, the thesis compares the waveforms 

and then the frequency spectra.  

4.2.1 Waveform Comparison using Fibonacci AF 

 

Figure 4.13 Waveform Input-Output comparison from Pair-I 
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Figure 4.14 Waveform Input-Output comparison from Pair-II 
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Figure 4.15 Waveform Input-Output comparison from Pair-III 
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4.2.2 Waveform Comparison using Sigmoid AF 

 

Figure 4.16 Waveform Input-Output comparison from Pair-I 
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Figure 4.17 Waveform Input-Output comparison from Pair-II 
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Figure 4.18 Waveform Input-Output comparison from Pair-III 

As can be observed from the comparisons for the waveforms using both FAF and SAF, 

the separated signals resemble their input counterparts. However, a closer observation 

show that the output signals have more sparks, unlike their input counterparts that have 

smooth edges, explaining why the output signals are only the filtered versions of their 

original counterparts. 

From the observation of the waveforms, it is not easy to distinguish the effectiveness 

of the chosen algorithm and the activation actions. The shapes of the waveforms show 

that FAF works in a similar manner just like the well-known SAF.  

4.2.3 Frequency Spectrum comparison using FAF 

Further comparison is extended to compare the frequency spectra shown in Figure 

4.19, Figure 4.20 and Figure 4.21. 
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Figure 4.19 Input-Output frequency spectra comparison from Pair-I using FAF 
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Figure 4.20 Input-Output frequency-spectra comparison (Pair-II) using FAF 

 

Figure 4.21 Input-Output frequency spectra comparison (Pair-III) using FAF 
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As can be observed from Figure 4.19, Figure 4.20 and Figure 4.21., most of the 

frequencies from the input signals are retained in the output signals. However, the 

corresponding frequency spectra in the Pair-II shows the closest resemblance to their 

input signals, followed by Pair-II signal frequencies then Pair-I come last. It can be 

said that the super-Gaussian signals are the most efficiently separated and their 

frequencies are the most retained, followed by a pair containing the sub-Gaussian 

signal and super-Gaussian signal. The least separated are those with both inputs as sub-

Gaussian signals.  

4.2.4 Frequency Spectrum comparison using SAF 

Further comparison is extended to compare the frequency spectra shown in Figure 

4.22, Figure 4.23 and Figure 4.24. 

 

Figure 4.22 Input-Output frequency spectra comparison (Pair-I) using SAF 
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Figure 4.23 Input-Output frequency spectra comparison (Pair-II) using SAF 
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Figure 4.24 Input-Output frequency spectra comparison (Pair-III) using SAF 

4.3 Analysis of the Results 

We first look at the performance of input signals that are sub-Gaussian. The Pair-I 

represents all input signals as sub-Gaussian (Saxophone and Violin). The results 

obtained from this pair reveal a relatively poor resemblance of their original signals on 

listening to their audio files. From the comparisons of the waveforms, frequency 

spectra, the working of the NGA algorithm and the FAF show the poorest separation 

when compared to other pairs. The second least performance was on Pair-III, which is 

made up of a super-Gaussian and sub-Gaussian signals (Female and Violin). Violin 

sound is sub-Gaussian signal while the Female speech is a super-Gaussian signal and 

the purpose was to find out how the two activations functions fair with this kind of 

mixed signals. In both FAF and SAF, the waveform and frequency spectra of the 

separated Female voice had the closed resemblance to the original signals when 
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compared to the Violin sound. Pair-II shows the best separation among the three pairs 

used. It, therefore, means that the two activation functions are meant for signals that 

are super-Gaussian in nature when used inside the NGA algorithm. The findings show 

that the Fibonacci and Sigmoid activation functions works best for speech signals than 

for music signals. 

4.3.1 Magnitude Squared Coherence Measure 

With the exception of listening to the sounds of input and output signals and making a 

comparison, the waveforms and frequency spectrum do not prove clearly the analysis 

that FAF and SAF work effectively for super-Gaussian signals. The results on 

waveforms and frequency spectra help in comparison through observation, which is 

often biased as a result of different interpretations. It is important to quantify the 

quality of separation in order to understand how the algorithm performs the separation 

at specific point in time on the entire signal. In most cases, the comparison is done 

using Signal-to-Noise Ratio by showing the percentage or ratio of separation for the 

entire audio signal. However, it is important to understand how the comparison works 

at each frequency making the use of MATLAB’s mscoherence measure an ideal choice 

for this situation. The inputs to the mscoherence functions are the input signal and its 

corresponding output signal in each pair.  

Because of the permutation ambiguity of ICA, the signals are simply separated in two 

groups, without knowing which one corresponds to which input signals. That means 

that the output signals 𝑦1 and 𝑦2 do not necessarily correspond to input signals 𝑠1 

and 𝑠2, respectively. To know which output corresponds to which input, we had to 

listen to the outputs first and then observe the waveforms and frequency spectra. The 

Magnitude Squared Coherence was computed using Equation (2.31) indicated below: 

𝐶𝑠𝑦𝜔 =
|𝑃𝑠𝑦(𝜔)|

2

𝑃𝑠𝑠(𝜔)𝑃𝑦𝑦(𝜔)
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and it was used to display the comparison over a range of frequencies. First, a 

comparison of the same signal as input-one and input-two is used without mixing and 

separating it to show an ideal situation for the male speech as shown in Figure 4.25. 

 

Figure 4.25 Input-Output frequency spectra comparison from Pair-III 

The research’s measure of Magnitude Squared Coherence is shown in Figure 4.26 and 

Figure 4.27 for Fibonacci and Sigmoid AF, respectively. 

(i) MSC Measure using Fibonacci Activation Function 

 

(a) Saxophone from Pair-I 

 

(b) Violin-2 from Pair-I 
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(c) Male from Pair-II 

 

(d) Female from Pair-II 

 

(e) Female from Pair-III 

 

(f) Violin-2 from Pair-III 

Figure 4.26 Results of the measure of magnitude squared coherence using FAF 
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(ii) MSC Measure using Sigmoid Activation Function 

 

(a) Saxo from Pair-I 

 

(b) Violin-2 from Pair-I 

 

(c) Male from Pair-II 

 

(d) Female from Pair-II 
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(e) Female from Pair-III 

 

(f) Violin-2 from Pair-III 

Figure 4.27 The measure of magnitude squared coherence using SAF 

From Figure 4.26, and Figure 4.27, the magnitude squared coherence measure of the 

male and female signals in Pair-II give the best performance of all the pairs under 

investigations. This is followed by the Pair-III, containing the human (female) and 

music signal in both Figure 4.26 and Figure 4.27, and within this pair, the human 

separation (Figure 4.26(e) and Figure 4.27(e)) is much better than that its music 

counterpart of (Figure 4.26(f) and Figure 4.27(e)). The Pair-I represents the least 

separation and it contains all music signals (Figure 4.26(a) and (b) and Figure 4.27(a) 

and (b)).  

4.3.2 Quantitative Comparison of Corresponding Input-Output Signals on the 

Activation Functions  

Here, the Magnitude Squared Coherence (MSC) at each frequency is compared for 

both Sigmoid and Fibonacci Activation Functions on the same graph. In the first graph 

(a), the corresponding input and output signal are placed side by side. To get an average 

of the comparisons, the coherence measure of (a) in each pair is passed through a 

moving average filter of size 50 to generate a smoothened version of the MSC measure 
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shown in (b) for each comparison of the two activation functions. Further (b) is plotted 

for its semi-log likelihood and the results shown in (c). The results of the graphs are 

shown in Figures 4.28 to Figure 4.33, below:  

 

Figure 4.28 Saxophone coherence measure comparison of separated signals 

using Sigmoid and Fibonacci AFs from Pair-I: (a) coherence; (b) moving 

average coherence; (c) semi-log moving average coherence. 
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Figure 4.29 Violin coherence measure comparison of separated signals using 

Sigmoid and Fibonacci AFs from Pair-I: (a) coherence; (b) moving average 

coherence; (c) semi-log moving average coherence. 

 

Figure 4.30 Male coherence measure comparison of separated signals using 

Sigmoid and Fibonacci AFs from Pair-II: (a) coherence; (b) moving average 

coherence; (c) semi-log moving average coherence. 
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Figure 4.31 Female coherence measure comparison of separated signals using 

Sigmoid and Fibonacci AFs from Pair-II: (a) coherence; (b) moving average 

coherence; (c) semi-log moving average coherence. 

 

Figure 4.32 Violin coherence measure comparison of separated signals using 

Sigmoid and Fibonacci AFs from Pair-III: (a) coherence; (b) moving average 

coherence; (c) semi-log moving average coherence. 
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Figure 4.33 Violin coherence measure comparison of separated signals using 

Sigmoid and Fibonacci AFs from Pair-III: (a) coherence; (b) moving average 

coherence; (c) semi-log moving average coherence. 

It is evident that Fibonacci and Sigmoid Activation Functions are meant for speech 

signals because the best separation is from Pair II, that is, speech signals. Further that 

Fibonacci AF works better than Sigmoid AF because it has a higher Magnitude 

Coherence Measure.  

4.3.3 Correlation Coefficient Analysis 

The analysis of the two activation functions is further quantified through the measure 

of correlation-coefficient. Correlation coefficient is calculated using Equation 4.1: 

𝐶𝑜𝑟𝑟𝑒𝑐𝑜𝑒𝑓(𝑆, 𝑌) =
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑆,𝑌)

√𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑆,𝑆)𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑌,𝑌)
                                       (4.1) 

where S is the input signal, and Y is the estimated/output signal. 

The result for the correlation coefficient are shown in Table 4.1 below: 
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Table 4.1 Correlation coefficient of input to its corresponding output signal 

 Input-Output 

Signals 

Correlation Coefficient 

using Sigmoid AF 

Correlation 

Coefficient using 

Fibonacci AF 

Pair-I Saxophone 0.7132 0.7327 

Violin 0.7237 0.7581 

Pair-II Male 0.8156 0.8584 

Female 0.8103 0.8512 

Pair-III Violin 0.7541 0.7556 

Female 0.7924 0.8013 

It is evident from the correlation coefficients that the signals separated with Fibonacci 

Activation Functions had higher values in each pair when compared to the pairs 

separated with Sigmoid Activation Functions. Further that both Sigmoid and Fibonacci 

are good for super-Gaussian Signals (speech signals of Pair II had the highest 

correlation coefficients) with Fibonacci showing slightly better result than Sigmoid. 
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CHAPTER FIVE 

CONCLUSION 

The residing theme here is to relate the results obtained to the objectives of the thesis 

and explain any justifications for the outcomes. In addition, the chapter looks at the 

achievements of the research, limitations and recommendation for future research 

areas that may be pursued.  

5.1 Attainment of Objectives 

5.1.1 Main Objective 

The thesis’ main aim was to create a system for separating two input audio signals that 

obey the assumptions of ICA for separating two pairs of audio signal. The objective 

has been achieved as all the three pairs of signals could be separated using the NGA 

modeled in MATLAB for non-Gaussian signals. The fact that the NGA algorithm was 

able to take two input audio signals, mix them, and separate them into two output just 

like the inputs, reveals the design of the system to accomplish this main objective has 

been accomplished.      

5.1.2 Specific Objective One 

The specific objective one aims of formulating NGA algorithms for mixing and 

separating blind signals formulated using ICA was also achieved. However, it was not 

just about separating non-Gaussian signals, the specific objectives three and four were 

to understand the effectiveness of the designed system in terms of quality with a key 

focus on two activation functions – the Sigmoid and the Fibonacci activation functions.  

5.1.3 Specific Objective Two 

For specific objective two, the waveforms, frequency spectrums and the coherence 

measure all showed that Fibonacci and Sigmoid are classified not just as non-Gaussian 

activation function, but as super-Gaussian activation functions. This is because the two 
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activation functions showed the highest level of similarity between input and output 

signals when the speech signals are used. From theory, speech signals are classified as 

super-Gaussian signals. 

The research realized that FAF and SAF are super-Gaussian activation functions and 

affirmed the conclusion that it is not simple enough to classify an algorithm but its 

effectiveness is determined by the choice of the AF. The effectiveness of the algorithm 

is shown in Table 5.1 below with the top pair as the best separation realized and the 

bottom the least realized for both FAF and SAF. 

Table 5.1 Performance of NGA and FAF and SAF on the three pairs 

Pair Signals 

Pair-II Male, Female 

Pair-III Female, Violin-2 

Pair-I Saxo, Violin-2 

From Table 5.1, the top pair realized the best results while the bottom pair was the 

least. As evidenced from the separation of Table 5.1, the algorithm works better for a 

pair of super-Gaussian signals, and least for a pair of sub-Gaussian signals when both 

Fibonacci and Sigmoid Activation functions are used. 

5.1.4 Specific Objective Three 

The objective was achieved because the correlation coefficients of the two activation 

functions in separating the pairs show that the Fibonacci Activation function is better 

than Sigmoid Activation Function (Table 4.1). The table shows that the quality of 

separation was high in super-Gaussian (speech) signals when compared to the pairs 

from sub-Gaussian (music) signals, and super-sub-Gaussian signal mixture separation. 

However, algorithms and by extension, activation function are measured on two fronts: 

quality and speed. While the quality is achieved through magnitude squared coherence 

(Figures 4.28 - 4.33) and correlation coefficient (Table 4.1) measures, the speed and 
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specifically, the convergence rate was not effectively achieved for the reasons outlined 

below. 

Next is to analyze the speed, through the measure of convergence rates. Knowing that 

the two activation functions are good for speech signals (Pair-II) and that Fibonacci 

realizes better quality results than Sigmoid, the measure of convergence rate was also 

performed. The title of this thesis looks at linear systems for separating audio signals. 

Speech signals are non-stationary in nature; bring in the element of nonlinearity. In 

fact, from theory speech signals are only stationary in the range of 20ms to 35ms. 

Convergence measure of the two activation functions on speech signals would be the 

measure of convergence rates of the algorithm. Unfortunately, this measure is not 

possible for speech signals with the current title in mind. Linear transforms, as in this 

research use First Fourier Transforms and eigenvalues to approximate linearity. For 

nonlinear transforms and non-stationarity in speech signals, this will mean the use of 

wavelets in place of First Fourier Transforms and lyapunov exponents in place of 

eigenvalues. In mathematics, the Lyapunov exponets often within a dynamical system 

are the quantities that determine the separation rate characteristic of infinitesimally 

close trajectories. Lyaponuv exponents can be used to analyze the stability of any 

steady state behavior (Übeyl & Guler, 2007). The title would have to be changed to a 

nonlinear system, which is beyond the scope of this research if this is to be achieved.  

To illustrate this, comparison of the two activation functions on simple artificially-

generated stationary sine, cosine, square and saw tooth input wave signals on 

convergence and number of elements needed to reach optimization is shown below.  
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Figure 5.1 Comparison of convergence and maximal elements for 

stationary signals 

Figure 5.1 is a plot of maximal element of matrix 𝑃, calculated as 𝑃 = 𝑊𝑘 ∗ 𝐴 (from 

the algorithm). In optimal case, 𝑃 =  𝑒𝑦𝑒(4)  for four input signals and 𝑃 =  𝑒𝑦𝑒(2) 

for two input signals and maximal element is 1. Figure 5.1 is used here to see the ideal 

situation of the convergence rates of the two activation functions on stationary signals. 

However, this is not possible from the current setup because of the use of speech 

signals that do not exhibit characteristics of stationarity. An attempt to use it directly 

in this research achieves the following:  

 

Figure 5.2 Convergence and maximal elements for non-stationary signals 

It is clear from Figure 5.2 that the desired output is not achieved. This is attributed to 

the non-stationary of the speech signals that will require advanced concepts that are, 
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unfortunately, beyond the scope of this research, and is therefore considered as a future 

research consideration.  

5.2 Thesis Contribution 

5.2.1 Summary of the Contribution 

Algorithms are made up of three main components: the algorithm itself at the top; the 

cost functions within the algorithm used to achieve convergence and optimization, at 

the middle; and the adjusting parameters within the cost function at the bottom.  Most 

studies compare performance of different algorithms: this research uses a single 

algorithm. ICA algorithms work with non-Gaussian signals, and algorithms are 

compared at this levels. In reality, however, non-Gaussian signals are further divided 

into super-Gaussian and sub-Gaussian signals. Hardly are there studies dedicted to 

understanding the performance of non-Gaussian ICA algorithm at the much lower 

levels of super-Gaussian and sub-Gaussian levels and this study offers an insight in 

the performance of the algorithm at this deeper level. Therefore, the research goes 

deeper in non-Gaussian signals to understanding the working of the algorithm as the 

specified parameters on super-Gaussian and sub-Gaussian signals, that it, the thesis 

compares the performance of the NGA at these inner levels, and by analyizing the 

performance of two activation functions: Singmoid Activation Functions, which is 

commonly used, and the new and rarely used Fibonacci Activation Function. 

Therefore, while most studies are concerned with algorithm performance, the thesis is 

concerned with activation function within algorithms. The study offers insights of the 

performance of the NGA with the conclusion that the two activation functions are best 

classified as super-Gaussian activation functions , because the best seperation is of 

speech signals. In literature, the algorithm alongside activation function is simply 

classified as a non-Gaussian algorithm, yet this thesis has proved that the agorithm 

when used with the two activation functions should be classifies as a super-Gaussian 

algorithm.  
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5.2.2 Detailed Contribution 

The ICA concept used in BSS problems has been used in research extensively. The 

outcome has been the coming up of many algorithms in trying to solve the different 

variant of the problem. Because of the many algorithms in place, recent studies have 

focused on finding out which among the existing algorithms is best for problems such 

as speech signals, biological/brain signals, music signals, among others. Studies that 

compare different algorithms include (Jianying, Cheng, Tianshu, & Bineng, 2016) 

(Mohanaprasad & Arulmozhivarman, 2013). In an effort to find the best algorithms, 

the studies have found out that beneath an algorithm there are cost functions that play 

a critical role in optimization and convergence for any given problem. 

The well-known activation functions include maximum mutual information, 

maximum kurtosis, maximum negentropy, and maximum likelihood. For example, 

(Jianying, Cheng, Tianshu, & Bineng, 2016) compared cost functions including 

maximum mutual information, maximum kurtosis, maximum negentropy, and 

maximum likelihood with various algorithms to find out which of these cost functions 

combines well with which algorithm for which  particular set of problem. In a 2018 

thesis (Zhenyi , 2018), the researcher reviewed the best cost function for efficient 

estimation using Fast Fixed-Point Independent Component Analysis (FastICA) 

algorithm. While many studies compare algorithms, others are the middle level by 

comparing cost functions, this study goes deeper at the third layer to compare the 

activation function parameters. The efficiency of cost functions to optimize and 

converge properly depends, among other things,  the following system parameters: the 

initial condition, the step-size value, and the estimation function, better known as the 

activation functions. So far among all the algorithms proposed for BSS-ICA problem, 

the one that does not bother or put into consideration the initial condition is the Natural 

Gradient Algorithm (NGA) (Amari, 1998). NGA is therefore chosen for this research 

because its cost function is not be affected with the initial condition. 

 Activations functions work beneath cost functions, and their analysis and performance 

has not been extensively studied as compared to algorithms. One critical, but often 
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ignored system parameter is the selection of a proper activation function (Basirat & 

Roth, 2018). A number of studies compare activations functions (Karlik & Olgac, 

2011) (Dushkoff & Ptucha, 2016) (Hou, et al., 2016). For this study, the chosen 

activation function is Sigmoid Activation function, because it is widely used and most 

common in research (Ide & Saito, 2006) (Zhang L. , 2017), and specifically the use of 

sigmoid activation function in neural networks (Guliyev & Isailov, 2016) (Costarelli 

& Vinti, 2016) (Costarelli & Spigler, 2016)  Then the sigmoid is compared to the new 

and promising Fibonacci Activation Function (Kyurkchiev & Iliev , 2017).   

Therefore, the main aim of the research was to compare two activation functions: 

Sigmoid and Fibonacci within the natural gradient. The closest paper to this research 

uses Independent Component Analysis to separate three speech signals using fastICA 

algorithm and the activation function used is tanh (Parameswaran, Finitha, & Sama, 

2010). Yet NGA is a supervisor algorithms for speech separation than fastICA, and 

sigmoid and Fibonacci are better activation functions for speech separation than tanh 

activation functions. Although the waveform output results from (Parameswaran, 

Finitha, & Sama, 2010), are of same quality as those realized from this research, this 

thesis goes further by comparing the frequency spectra, measuring the magnitude-

squared coherence, and the correlation coefficient, besides comparing two activation 

functions pair of six signals that are both speech and music instrument signals. The 

conclusion from (Parameswaran, Finitha, & Sama, 2010) is that the algorithm works 

better for non-Gaussian signals, without elaborating further that the algorithms is 

actually meant for super-Gaussian signald; this research handles this shortcoming. alf 

as well. It is also clear from the research that the comparison of algorithms is not 

enough, because activation functions play a key role in algorithm. That the 

classification of signals should not be left at Gaussian and non-Gaussian level, rather 

non-Gaussianity should go farther to include super-Gaussian and sub-Gaussian signals 

in classifying activation functions and algorithms.  
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5.3 Limitations to the Research 

Noise was a major limitation for this research. Throughout the research, it was 

assumed that noise was negligible. This is a wrong assumption as the noise may have 

entered the system during the recording stage of the speech signals. The already 

recorded signals may perhaps also have noise. The noise may have contributed to the 

inefficiencies of the quality of the separated signals when compared to the original 

signals. Although the quality of separation increases with the number of iterations 

used, the result of such higher number of iterations required to separate limits the 

application of Natural Gradient Algorithm in real life situations. The reason why the 

iterations were pegged at 100 is because 1000 or even 10,000 was too slow and in 

cases developing infinite numbers after the huge multiplied numbers during an iterate 

bring a number larger than what MATLAB can store. Further, the results after the 

hundredth iteration were the same, meaning convergence had been realized. The 

outcome of this is that its application in real time application still requires further 

research.  

5.3.1 Recommendations for Future Research  

Filtering of the noise to reduce or eliminate its presence in the generated outputs is an 

area for future research. Unlike the present research, that uses one level separation 

scheme, future research may need to incorporate two levels of signal separations. The 

first level will need to incorporate a filter to eliminate noise in the separated signals or 

just after recording them. The second level will do what this research has done in the 

blind source separation. The expanding use of genetic algorithm with a less complex 

activation function than Fibonacci are promising areas in Independent Component 

Analysis to cater for the real-time application bottlenecks exhibited in Natural 

Gradient Algorithm and the employed activation functions. Real-time processing of 

the signals using microphones and the use of convolved mixtures as opposed to 

instantaneous mixtures where time delay is not a factor are important future options 

for this research. For effective comparison of Fibonacci and Sigmoid activation 

functions for speech signals, the use of advanced concepts like wavelets and lyapunov 
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exponents is required. The future is towards having adaptive activations functions that 

will work for any type of signals (Dushkoff & Ptucha, 2016). 
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APPENDICES 

7.1 Appendix I: Independence and Non-Gaussianity 

Mathematically, independence is a statistical concept that has direct bearing on 

probability density functions of the two signals. Joint probability density function (pdf) 

of the two signals 𝑠1 and 𝑠2 is defined mathematically as 𝑝(𝑠1, 𝑠2). On the other hand, 

the marginal pdf of the same signals 𝑠1 and 𝑠2 are defined as 𝑝1(𝑠1) and 𝑝2(𝑠2) 

respectively. Therefore, 𝑠1 and 𝑠2 can only qualify to be independent if and only if 

their joint and marginal pdfs are expressed as:  

                             𝑝(𝑠1, 𝑠2) =  𝑝1(𝑠1) 𝑝2(𝑠2)      (7.1) 

It is important to note that the same independence can be defined in terms of respective 

cumulative distributive function by substituting the cumulative distributive function in 

place of pdfs as: 

                      𝐸{𝑝(𝑠1)𝑝(𝑠2)} = 𝐸{𝑔1(𝑠1)}𝐸{𝑔1(𝑠2)}    (7.2) 

where 𝐸{. } is the expectation operator (Kumar & Naik, 2011). 

Signal independence can be measured using the mathematical properties of indices. 

Using matrices, it is possible to check for the linear independency and dependency of 

signals using global matrices (Permutation matrix 𝑃) (Kumar & Naik, 2011). 

Rank of the Matrix 

For linear dependency, the rank of the matrix is usually less than the size of the matrix, 

while for linear independency, the rank is the size of the matrix (Meyer, 2000). 

However, this could not be assured because of the involved noise in the signal. This 

means that in order to determine the original number of sources, we only need to 

compute the determinant of the matrix. 

Determinant of the Matrix 
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In many applications, the value of Determinant is always more than zero (and always 

close to one) for linear independency and its value should be zero for linear 

dependency (Meyer, 2000). 

Cross-correlation and Independence 

The two signal variables 𝑠1 and 𝑠2 are termed as uncorrelated if they have a covariance 

𝐶(𝑠1, 𝑠1) equal to zero. 

𝐶(𝑠1, 𝑠1) = 𝐸{(𝑠1 −𝑚𝑠1)(𝑠2 −𝑚22)} 

                                                     = 𝐸{(𝑠1𝑠2 − 𝑠1𝑚𝑠2 − 𝑠2𝑚𝑠1 + 𝑚𝑠1𝑚𝑠2 )} 

                                 = 𝐸{𝑠1𝑠2} −  𝐸{𝑠1}𝐸{𝑠2}            (7.3) 

in this case 𝑚𝑠1 and 𝑚𝑠2 represent the mean of 𝑠1 and𝑠2 signals, respectively. From 

Equations (7.2) and (7.3), it is clearly shown that the signals are identical for 

independent variables taking 𝑔1(𝑠1) =  𝑠1. This mathematical test shows that 

independent signals are always uncorrelated. However, it is also important to mention 

that the opposite of the above statement is not always correct. At the preprocessing 

stage of signals, and as evidenced from the above analysis, signal independence is of 

much stronger and of more value than uncorrelatedness in the separation process of 

two or more signals. This is clearly the reason why independence is given more 

predominance in ICA source estimation techniques than correlation. However, it 

should be noted that uncorrelatedness plays a crucial role in computing the mixing 

matrix in ICA. 

7.1.1 Non-Gaussianity and Independence 

According to the mathematical theory of central limit theory, under some conditions, 

the distribution of a sum of independent signals and those of arbitrary distribution are 

always inclined towards a Gaussian distribution. What this means is that given, for 

example, two independent signals, their distribution is towards Gaussian than the two 
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original signal distributions. This analysis leads to the conclusion that a Gaussian 

signal can be considered as a linear combination of several independent signals 

(Kumar & Naik, 2011). This statement is the basis of separation possibilities of 

independent signals from a Gaussian mixture. It simply means that the separation of 

independent signals from their mixtures can be accomplished through transformation 

of the linear signals to make them non-Gaussian, as much as possible.  

ICA estimation and separation algorithms including NGA depend entirely on non-

Gaussianity as a key principle. In order to use non-Gaussianity in ICA estimation, it is 

important that quantitative measure of non-Gaussianity of a signal be achieved. 

However, before employing any measure of non-Gaussianity, the signal must be 

normalized. Normalization is a preprocessing technique that will be discussed later in 

this section. Non-Gaussianity of a signal is determined in two ways; through the 

measure of kurtosis or through entropy measure. 

Kurtosis 

For many years, non-Gaussianity of signals was measured using Kurtosis. In the 

preprocessing procedure, data is made to have unit variance, and then kurtosis, which 

is usually equivalent to the fourth moment of the data, is done. Signal(s) Kurtosis, 

denoted as kurt(s), is defined as: 

                                  𝑘𝑢𝑟𝑡(𝑠) = 𝐸{𝑠4} −  3(𝐸{𝑠4})2   (7.4) 

Equation (7.4) is the most basic definition of kurtosis using higher order (fourth order) 

cumulant. The above simplification of kurtosis is based on the assumption that the 

signal has zero mean. To make equation (3.6) simpler, it can further be assumed that 

(𝑠) has been normalized so that its variance is equal to one, that is: 𝐸{𝑠2} = 1. 

Therefore, equation (7.4) can be simplified to: 

   𝑘𝑢𝑟𝑡(𝑠) = 𝐸{𝑠4} −  3    (7.5) 
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Equation (7.5) shows that kurtosis is a normalized form of the fourth moment  𝐸{𝑠4} =

1. For signals that are Gaussian, 𝐸{𝑠4} −  3(𝐸{𝑠4})2 and hence its kurtosis is zero. For 

signals that are non-Gaussian, the kurtosis is always nonzero. There is positive kurtosis 

or negative kurtosis. Random variables having positive kurtosis are termed as super 

Gaussian or platykurtotic (Kumar & Naik, 2011). Therefore, non-Gaussianity is 

measured using the absolute values of kurtosis or the square of kurtosis. Kurtosis has 

been extensively used to measure Non-Gaussianity in ICA and other fields of science 

and engineering because it is a simple theory to compute. Mathematically, it has a 

linearity property such that: 

              𝑘𝑢𝑟𝑡(𝑠1 ± 𝑠2) = 𝑘𝑢𝑟𝑡(𝑠1) ± 𝑘𝑢𝑟𝑡(𝑠2)   (7.6) 

and 

                                        𝑘𝑢𝑟𝑡(𝛼𝑠1) = 𝛼
4𝑘𝑢𝑟𝑡(𝑠1)    (7.7) 

where 𝛼 is a constant. Kurtosis can be computed using the fourth moment of the sample 

data by ensuring that the variance of the signal is constant.  

In simpler terms, kurtosis measures the “spikiness” of a distribution or in other words, 

the size of the tails. Kurtosis is simple to calculate, however, its key disadvantage is 

that it is extremely sensitive to outliers in the data set (Kumar & Naik, 2011). It is 

regarded as having poor statistical significance, because its calculated outcomes may 

be based on a few values in the tails. Kurtosis is, therefore, not robust enough for ICA. 

A better measure of non-Gaussianity than kurtosis in ICA algorithms is entropy. 

Entropy 

Entropy is used to measure the uniformity of a distribution of a bounded set of values 

(Kumar & Naik, 2011). This means that when a distribution has complete uniformity, 

then it is regarded as having maximum entropy. From the information theory point of 

view, entropy is taken to mean the measure of signal randomness. Entropy H of 

discrete-valued signal S is defined as 
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                           𝐻(𝑆) = −∑𝑃(𝑠 = 𝑎𝑖) 𝑙𝑜𝑔𝑃(𝑠 = 𝑎𝑖)   (7.8) 

This definition of entropy can be generalized for a continuous-valued signal (s) called 

differential entropy, and is defined as: 

                     𝐻(𝑆) = −∫𝑝(𝑠)𝑙𝑜𝑔𝑝(𝑠)𝑑𝑠     (7.9) 

Among all types of signals that have unit variance, it is the Gaussian signals that have 

the largest entropy. Entropy is usually small among signals that have a distribution 

associated to certain values, or those with extremely “spiky” pdf (Kumar & Naik, 

2011). This is the main reason why entropy stands out to be a good measure of non-

Gaussianity. 

In order to make the computation of separating relatively simply, non-Gaussian and 

Gaussian signals must have a measure of nonzero and zero respectively. Random 

vector’s code length has a close link to entropy (Kumar & Naik, 2011). Normalization 

of entropy is also possible and is done using a new measure called Negentropy  𝐽, 

expressed mathematically as: 

                                             𝐽(𝑆) = 𝐻(𝑠𝑔𝑎𝑢𝑠𝑠) − 𝐻(𝑠)         (7.10) 

Where 𝑠𝑔𝑎𝑢𝑠𝑠 is the Gaussian signal with an equivalent covariance matrix as 𝑠. From 

equation (7.10), Negentropy takes a positive value and it is only zero in case of a signal 

that is purely Gaussian. Although Negentropy is always stable, it is actually extremely 

difficult to calculate. This is the reason why entropy is only computed using 

approximated values. 
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7.2  Appendix II: Centering and Whitening 

7.2.1 Centering 

The preprocessing step carried out to “centre” the observation signal vector 𝑥 is 

accomplished by simply subtracting its mean vector 𝑚 = 𝐸{𝑥}. The observed and 

centered vector 𝑥𝑐 is shown as: 

𝑥𝑐 = 𝑥 −𝑚      (7.11) 

The purpose of centering is to ensure that the ICA algorithm work is simplified by 

assuming a zero mean (Kumar & Naik, 2011). After the de-mixing matrix is estimated 

using the centered values, it is possible to get back to the actual estimates of the 

independent components in the following manner: 

𝑠̂(𝑡) = 𝐴−1(𝑥𝑐 +𝑚)      (7.12) 

From this point onwards, all observed vectors are assumed to be centered. However, 

the mixing matrix remains the same before and after the preprocessing stage as 

centering of the observations does not affect the estimated mixing matrix (Kumar & 

Naik, 2011). 

7.2.2 Whitening 

Another preprocessing step done on the mixture is to whiten the observed vector 𝑥. 

This process entails transforming the observation vector linearly to make sure that each 

component does not correlate to each other by having a unit variance (Meyer, 2000). 

Let 𝑥𝑤 denote the whitened observed vector, then it will satisfy the equation: 

𝐸{𝑥𝑤𝑥𝑤
𝑇 } = 𝐼       (7.13) 

where 𝐸{𝑥𝑤𝑥𝑤
𝑇 }  is the covariance matrix of 𝑥𝑤. Since the ICA framework is not 

affected by the variances of the independent components, it is possible to assume 

without loss of generality that the source vector, 𝑠 is white, that is 𝐸{𝑠𝑠𝑇} = 𝐼. The 
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simplest way to carry out the whitening transformation is to use of eigenvalue 

decomposition (EVD) (Meyer, 2000) of x. This is done by the decomposition of the 

covariance matrix of 𝑥 as follows: 

𝐸{𝑥𝑥𝑇} = VDVT       (7.14) 

where 𝑉 is the matrix of the eigenvector of 𝐸{𝑥𝑥𝑇}, and 𝐷 is the diagonal matrix of 

the eigenvalues, that is, 𝐷 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑛}. The observed vector can, therefore, 

be whitened by the following transformation: 

𝑥𝑤 = 𝑉𝐷
−1/2𝑉𝑇𝑥      (7.15) 

where the matrix 𝐷−1/2 is obtained by a simple component wise operation as 𝐷−1/2 =

𝑑𝑖𝑎𝑔{𝜆1
−1/2

, 𝜆2
−1/2

, … , 𝜆𝑛
−1/2

} . Whitening transforms the mixing matrix into a new one, 

which is orthogonal 

𝑥𝑤 = 𝑉𝐷
−1/2𝑉𝑇𝐴𝑠 = 𝐴𝑤𝑠      (7.16) 

hence, 

                                                  𝐸{𝑥𝑤𝑥𝑤
𝑇 }   = 𝐴𝑤𝐸{𝑠𝑠

𝑇}𝐴𝑤
𝑇  

              = 𝐴𝑤𝐴𝑤
𝑇  

                      = 𝐼     (7.17) 

The purpose of whitening is to reduce the number of parameters to be estimated. 

Instead of having to estimate the 𝑛2 elements of the original matrix, 𝐴, whitening 

reduces it to only the estimation of the new orthogonal mixing matrix. An orthogonal 

matrix has 𝑛(𝑛 − 1)/2 degree freedom. Through whitening, half of the ICA problem 

is solved as it greatly reduces the complex computations within ICA (Kumar & Naik, 

2011). MATLAB has functions that carry out whitening and centering of mixtures. 


