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ABSTRACT

As electricity markets undergo deregulation all over the world, the approach

to generation scheduling or unit commitment (UC) changes significantly. In tra-

ditional electricity markets with electricity utilities which act as system opera-

tors and also own generation units, UC is done based on a cost minimization

objective. However, in deregulated markets, individual generation companies

(GENCOs) have to carry out UC independently based on forecasts of energy and

reserve prices for the scheduling period. The Generation Company (GENCO)’s

UC strategies are developed with the aim of maximizing expected profit in what

is known as Profit Based Unit Commitment (PBUC). Such profits are not only

dependent on revenues from sale of energy and ancillary services such as reserve,

but also on the cost characteristics of the generating units owned by the GENCO.

This research develops a tool for carrying out PBUC for GENCOs in deregulated

electricity markets. The tool is presented as a collection of MATLAB m-files

that can be easily applied to any test system with the data stored in a specified

format in an excel file. The MATLAB code is an implementation of solution

algorithms that are developed and tested using simulations carried out for typ-

ical test systems. First, a solution methodology for the PBUC problem using

a hybrid of the Lagrangian Relaxation (LR) and Particle Swarm Optimization

(PSO) algorithms is implemented in MATLAB software. The PSO algorithm is

used to update the Lagrange multipliers resulting in an optimal solution. It is

found that the final solution is dependent on the values of the PSO algorithm

parameters that have to be specified before running the algorithm. An analysis

of the solution quality for various PSO algorithm parameters is carried out to

determine the parameters that give the best solution. The algorithm is tested for

a GENCO with 54 thermal units adapted from the standard IEEE 118-bus test

xiii



system. To tackle the challenge of the solution quality being dependent on the

algorithm parameters, the Evolutionary Particle Swarm Optimization (EPSO)

algorithm is explored. EPSO is chosen based on previous research which showed

that it generally results in better solutions than PSO because of a “self-tuning”

characteristic of the parameters. Simulation results for a test GENCO show that

the EPSO algorithm provides better solutions and has better convergence charac-

teristics than the classic PSO algorithm. A second important consideration in the

solution of the PBUC problem is the GENCO’s market power i.e. it’s influence

on the market prices and/or demand. While a GENCO’s bilateral demand is

previously agreed on and therefore well known, allocations from the spot energy

market depend largely on the GENCO’s bidding strategy which is dependent

on the GENCO’s market power. A GENCO thus requires an optimal bidding

strategy (OBS) which when combined with a PBUC approach would maximize

its profits. A solution of the combined OBS-PBUC problem is therefore devel-

oped. Simulation results carried out for a test power system with GENCOs of

differing market strengths show that the OBS depends largely on a GENCO’s

market power. Larger GENCOs with significant market power would typically

bid higher to raise prices, while smaller GENCOs would typically bid lower to

capture a larger portion of the spot market demand.

xiv



INTRODUCTION

CHAPTER ONE

1.1 Background

Over the last two-to-three decades, all over the world, the electric energy sub-

sector has been undergoing significant changes that have necessitated a re-look

into the various operation procedures. Probably the biggest change has been

deregulation of many power systems, especially in the developed world; though

aspects of deregulation are also beginning to take root in developing nations.

Deregulation is the unbundling of vertically integrated power systems into GEN-

COs, Transmission Companies (TRANSCOs) and Distribution Companies (DIS-

COs) [2].

In Kenya, the electric energy sub-sector has been deregulated to a level where

generation has been liberalized with a number of licensed generation companies

known as Independent Power Producers (IPPs). These IPPs complement the

main generation company, (Kenya Generation Company (KENGEN)), and con-

trol about 10% of the market share. Though the ideal market environment has

not been set up, there is significant movement in this direction. There is also a

single entity managing the transmission system and the traditional utility, Kenya

Power Company manages the distribution and supply of electrical energy.

The main aim of deregulation is to create competition among GENCOs and

hence provide different choices of generation options at lower prices to con-

sumers [3, 4]. Other reasons driving deregulation include the positive experience

of privatization in other industries, expected drop in electricity prices, improve-

ment in customer focus, encouragement of innovation in the electricity sector

among others. With deregulation, one of the main differences is the approach to

what is traditionally known as the Unit Commitment (UC) problem.
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Traditionally, solution of the UC problem can be defined as the problem of

determining the turn-on and turn-off schedule of a set of electrical power gen-

erating units to give the minimum operating costs. This is done to meet the

load demand while satisfying a set of operational constraints. The production

costs include fuel, start-up, shut-down, and no-load costs. Constraints include

capacity reserve, minimum generator up/down time, maximum power flow in the

transmission lines and technical operating limits etc. The UC problem is a mixed

combinatorial and continuous optimization problem, which is very complex to

solve because of its enormous dimensions, a non-linear objective function, and a

large number of constraints.

As electricity markets undergo deregulation all over the world, the approach to

the unit commitment problem changes significantly. In the deregulated environ-

ment, generation units are not owned by a single company. There are a number

of GENCOs who bid for a share of the market through an Independent System

Operator (ISO). The ISO has the role of matching the load to the generation at

all times. This is done simply by picking the generation with the least price suc-

cessively until the allocated generation equals the load demand at a given time.

The ISO relies on the bid prices to determine which units to use at what time. In

such an environment, individual GENCOs carry out independent unit commit-

ment. They determine schedules for their generators based on forecasts of energy

prices at different times. Being privately owned entities, the main aim of these

GENCOs is the maximization of their profits in the competitive environment.

In this sense, the UC problem has been coined slightly differently in deregulated

markets as the Profit Based Unit Commitment (PBUC) problem [3,5].

Unit commitment decisions in deregulated markets are significantly different

from regulated environments and it is important to determine the best approach.
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Firstly, in the case of the traditional utility, UC decisions are cost based requiring

the full cost-power characteristics of the various generation units. However, in

PBUC, commitment decisions are price based for GENCOs. All that a GENCO

needs is a forecast of the electricity price at a given time to decide whether or not

to turn on a generator and how much output to schedule. Note that depending

on bid decisions from competitors, a GENCO’s schedule may be interfered with.

Secondly, in the traditional unit commitment environment, spinning reserve is

usually treated as an operational constraint. However, GENCOs in deregulated

environments need not worry about reserve. This is the ISO’s concern and in fact

the GENCO would be compensated for providing spinning reserve. This then

becomes a source of revenue. Therefore, in PBUC, spinning reserve is modeled

as an income to the GENCO than as an operational constraint.

Numerous methodologies for solving the PBUC problem have been proposed

in literature. These methodologies can be classified as classical methods and non-

classical methods. Classical methods include Priority Listing (PL), Dynamic Pro-

gramming (DP), Branch and Bound (B&B), Mixed Integer Programming (MIP),

and Lagrangian Relaxation (Lagrangian Relaxation (LR)) [5, 6]. Non-classical

methods include Genetic Algorithms (GA), Particle Swarm Optimization (Par-

ticle Swarm Optimization (PSO)), Artificial Bee Colony (ABC), Muller method

among others [7, 8]. There have also been proposals for hybridization of some

of these methods taking advantage of the strengths of two or more methods to

provide a more effective solution algorithm [9–11]. A comprehensive review of

these methods can be found in [12–14]

A third difference is that the size of the GENCO in the market place will

significantly affect the adopted unit commitment strategy. An important deter-

minant of a GENCO’s bidding strategy in the spot market is its market power
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i.e. the GENCO’s ability to alter the market price and allocations in the mar-

ket. A GENCO whose actions cannot affect the market equilibrium is referred

to a price taker and conversely, a GENCO whose actions significantly affect the

market is referred to as a price maker. Electricity markets usually assume an

oligopolistic structure characterized by several price takers and one or two price

makers; usually large companies that are offshoots of the previous regional or na-

tional utilities prior to deregulation [4,15]. Since the GENCO’s market power can

influence the market price, it is a significant consideration in the determination

of an optimal bidding strategy (Optimal Bidding Strategy (OBS)) and hence the

solution of the PBUC problem.

1.2 Problem Statement

As introduced in section 1.1, UC in a deregulated environment is fundamentally

different from UC in a regulated environment. Each GENCO proposes their gen-

eration schedule based on expected energy and reserve prices in a bid to maximize

their profit. This is definitely a significant operational problem for GENCOs since

it may mean large differences in company profits or losses. In the recent past,

there has been extensive research on the topic of the PBUC problem with most

papers focusing on the solution methodology as this is the main challenge for

what can be described as a very complex mathematical optimization problem.

This research focuses on a tool for the solution of the PBUC problem that

combines traditional optimization techniques with heuristic methods. The main

problems studied in this research include:

• How to formulate the optimization problem to capture the deregulated mar-

ket characteristics including reserve as an income to the GENCO and in-

corporating bilateral markets agreements.
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• How to incorporate heuristic algorithms (specifically PSO and Evolutionary

Particle Swarm Optimization (EPSO)) in developing more effective PBUC

solution methodologies.

• How does UC decisions change depending on the size of the GENCO.

1.3 Justification

Electricity market deregulation is a relatively new concept. While it has been in

place in various forms in different countries and to differing degrees, there still re-

mains a lot of unanswered questions and lots of room for improvement. This can

only be achieved through scientific research. More so, different regions and coun-

tries take different approaches based on their market needs. For these reasons,

researchers have to learn from past experiences and also predict possible future

trends and areas that will require improvements. Adequate tools for operation in

deregulated markets should be developed and tested.

As for the GENCOs operating in such an environment, it is very important to

be competitive and the business must be viable. The dynamic electrical market

will significantly alter the practices of the traditional electric utilities as they

no longer have a monopoly and cannot unilaterally set prices so as to cover

their operational costs. For these companies to maintain profitability, they’ll

have to find ways to be more efficient both technically and financially. The

newer IPPs also have to develop business strategies that will enable them capture

significant portions of the market share so as to recover the huge capital costs

usually associated with putting up new power plants and also be profitable in the

long run. The determination of the best Unit Commitment strategy to maximize

profits is therefore very important and a software tool for this is also imperative.

In the past decade or so, a number of academic papers have been written
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on the solution of the PBUC problem [7, 9, 10, 16–27] which shows the need for

these tools. However, in most cases, the proposals still remain at the conceptual

stage. This research advances some of these ideas by improving the mathematical

representation of the problem and giving a more effective method for solving what

is a complex mathematical problem.

Currently, even in the more advanced electric markets, many GENCOs still

operate using strategies similar to the traditional utilities. This is because most

electric markets still operate with only one or two large companies and a few IPPs

who usually have some form of government rebates to encourage their participa-

tion in the electric market with the long term goal of having a truly competitive

market. GENCOs therefore usually still approach the UC problem in a similar

way to the traditional unit commitment with the objective of minimizing opera-

tional costs. The solution methodologies are still largely based on classical math-

ematical optimization techniques such as dynamic programming or Lagrangian

relaxation.

1.4 Objectives

1.4.1 Main Objective

To develop a tool for the optimal solution of the Profit Based Unit Commitment

(PBUC) problem in a deregulated environment by the use of a hybrid optimiza-

tion approach and incorporating market characteristics including expected energy

prices, reserve payments and GENCO size.

1.4.2 Specific Objectives

1. Mathematical formulation of the PBUC problem in a deregulated electricity

market incorporating expected energy and reserve prices.
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2. Developing a solution algorithm and an accompanying software tool for the

solution of the PBUC problem using a hybrid of the LR and PSO methods.

3. Analysis of the effects of GENCO market power in the solution of the PBUC

problem whereby market power refers to the GENCO’s installed capacity.

1.5 Scope

This research covered the following:

• The development of an algorithm for the solution of the PBUC problem us-

ing a hybrid LR-PSO method. The methodology is implemented in MAT-

LAB software. The solution quality is found to be dependent on the PSO

parameters. Hence, a selection of the best PSO parameters is carried out.

• In order to overcome the challenge of parameter tuning with the PSO al-

gorithm, the a hybrid LR-EPSO method is then developed. The LR-EPSO

method is compared to the LR-PSO methods in terms of solution quality

and convergence characteristics.

• Investigation of the effect of GENCO size in the solution of the PBUC prob-

lem. A methodology for determining optimal bidding strategies depending

on individual GENCO market power is developed.

1.6 Publications

1. Bikeri, A.K., Maina, C.M. and Kihato, P.K., “GENCO Optimal Bidding

Strategy and Profit Based Unit Commitment using Evolutionary Particle

Swarm Optimization illustrating the effect of GENCO Market Power,” In-

ternational Journal of Electrical and Computer Engineering (IJECE), (in

press).

2. Bikeri, A.K., Maina, C.M. and Kihato, P.K., “Profit Based Unit Com-

mitment Using Evolutionary Particle Swarm Optimization,” in proceedings
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of the 2017 IEEE Africon Conference, Cape Town, South Africa, 18-20

September 2017, pp. 1180–1185.

3. Bikeri, A.K., Maina, C.M. and Kihato, P.K., “Profit Based Unit Com-

mitment in Deregulated Electricity Markets Using A Hybrid Lagrangian

Relaxation - Particle Swarm Optimization Approach,” in proceedings of

the 2017 Sustainable Research and Innovation (SRI) Conference, Nairobi,

Kenya, 3-5 May 2017, pp. 1–6.

4. Bikeri, A.K., Maina, C.M and Kihato, P.K., “A Review of Unit Com-

mitment in Deregulated Electricity Markets,” in proceedings of the 2015

Sustainable Research and Innovation (SRI) Conference, Nairobi, Kenya,

6-8 May 2015, pp. 9–13.

1.7 Thesis organization

This thesis is organized as follows:

Chapter 1

This chapter presents an overview of the thesis.

Chapter 2

This chapter reviews various literature related to the research concepts. These

include:

– Deregulation in electric power systems

– Unit commitment in deregulated electricity markets

– GENCO bidding strategies

– Mathematical optimization methods including LR, DP, PSO, and EPSO.

Chapter 3

This chapter presents the methodologies used in the research:

– PBUC problem formulation and solution using LR-PSO and LR-EPSO
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methods

– Optimal bidding strategy and PBUC solution considering the GENCO

market power.

Chapter 4

This chapter discusses the results obtained from the numerical simulations and

describes the developed software tool.

Chapter 5

This chapter summarizes the conclusions of the research.
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LITERATURE REVIEW

CHAPTER TWO

This chapter reviews various concepts regarding the solution of the PBUC

problem in deregulated electricity markets. In section 2.1, the concept of dereg-

ulation in electric power systems is described. Here, the differences between reg-

ulated and deregulated electricity market structures are highlighted. In section

2.2, the approach to Unit Commitment in deregulated markets is explained. This

includes formulation of the PBUC problem and the different solution methodolo-

gies including classical and non-classical methods. An important consideration

in the solution of the PBUC problem is the GENCO bidding strategy that is

dependent on GENCO market power. This is described in section 2.3 illustrated

with a simple example. Finally, the main mathematical optimization concepts

used in the research are described in section 2.4. These include: LR, DP, PSO,

and EPSO.

2.1 Deregulation in Electric Power Systems

For decades, electric power systems operated under the vertically integrated

model where all functions of the system - generation, transmission, and distri-

bution - were under a single utility usually operated by a national or regional

government (see Figure 2.1) [1]. However, from the mid 1980’s, electricity mar-

kets all over the world have been undergoing restructuring or what is referred to

as deregulation [1, 28].

Deregulation involves breaking up of the traditional monopolies into smaller

entities each dealing with a section of the electric power supply chain i.e. either

generation, transmission, or distribution [3]. It has also introduced competition

allowing a number of GENCOs, TRANSCOs and DISCOs into the industry to
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compete with the traditional monopolies. Competition can be introduced at the

wholesale level to give the wholesale competition model of Figure 2.2 or the retail

competition level of Figure 2.3 [1].

Figure 2.1: Vertically integrated model of electricity markets [1]
.

Deregulation mainly begun in the UK and US and also quickly took root in

other western countries such as the Scandinavian countries, Western European

countries and Australia. There are many reasons that led to deregulation of

the electric power industry. One of the biggest forces was the change in gen-

eration economies of scale that occurred throughout the 1980’s [4, 29]. Tradi-

tionally, electric utility systems evolved with the centralized generation concept

because of significant economies of scale in power generation. However, during

the 1980’s/1990’s, a change in the economies of scale was observed mainly because

of the following reasons [29]:
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Figure 2.2: Wholesale competition model of electricity market [1]
.

Figure 2.3: Retail competition model of electricity market [1]
.
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1. Technological innovations improved the efficiency of small units for gas tur-

bines, combined cycle, hydro and fuel cells over that of large ones.

2. Improvements in materials, including new high temperature metals, special

lubricants, ceramics, and carbon fiber, permitted vastly stronger and less

expensive small machinery to be built.

3. Computerized control systems were developed that often significantly re-

duced the number of required on-site personnel.

4. Data communications and off-site monitoring systems can control the units

from remote operations centers, where one central operator can monitor a

dozen units at various sites, as if present at each.

Thus in many instances, it was possible to build new power plants that could

provide energy at a lower price than what customers were paying the existing old,

giant power plants. It became possible for the industrial and commercial users of

electricity to build and operate their own plants to produce power cheaper than

that of utility and also sell the excess power to small customers.

Once the idea of deregulation took root, the following reasons were used to

push for restructuring [4]:

1. The need for regulation changed. - More fundamental than any other

reasons for change was the fact that the basic needs for regulation of electric

industry had died away before the end of 20th century. First, the original

need for regulation, which was to provide risk free finance to build the

infrastructure, did not exist any more. Second, the omnipresent electric

system created was already paid for. The revenues gained by the electric

utilities was invested to renew their system and the level of risk in doing so

was less as compared to that which existed in the initial era. Being a proven

technology, the risk involved in investing money in such a technology was

nullified. Electricity could be thought of an essential commodity, which can
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be bought and sold in the marketplace in a competitive manner, just like

other commodities.

2. Privatization - There is always the conviction that a private industry could

do a better job of running the power industry than a government owned

company. This belief came from better privatization experiences of the

other industries. Deregulation does not necessarily have to be a part of

privatization efforts but deregulation to free up the rules nearly always

accompanies privatization.

3. Expected drop in electricity costs - Competition brings innovation, efficiency,

and lower costs. The rate of cost decline is different in different areas and

there are many reasons for this. However, the overall experience all over

the world where deregulation has been implemented is that the electricity

prices have declined.

4. Improvement in customer focus - Although monopoly utilities have an obli-

gation to serve all customers, it does not promote the pro-active attention

to customer needs. A monopoly utility listens to its customers when they

explain their needs, and then responds. A competitive electric service com-

pany anticipates customer’s needs and responds in advance. The techno-

logical advances that will be applied under deregulation, address customer

service. One of the most important gains of competition in the electricity

market is the increase in customer value.

5. Encouraging innovation - The regulatory process and the lack of compe-

tition gave electric utilities no incentive to improve on yesterday’s perfor-

mance or to take risks on new ideas that might increase customer value. If a

new idea succeeded in cutting costs, the utility still made only its regulated

rate of return on investment; if it didn’t work, the utility would usually

have to ’eat’ a good deal of the failed attempt, as imprudent expenses. Fur-
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thermore, why would a regulated utility want to use new ideas to lower its

costs under a regulated rate of return framework? Under deregulated envi-

ronment, the electric utility will always try to innovate something for the

betterment of service and in turn save its costs and maximize the profit. By

means of this, the utility will try to ensure that it will maintain its customer

base in spite of competition.

Other forces supporting the main reasons for motivating deregulation include [4]:

• Overstaffing in the regulated electric industry

• Global economic crisis of the 1970’s

• Political and ideological changes

• Managerial inefficiency in regulated companies

• Lack of public resources for the further development

• More demanding environment issues

• Pressure of financial institutions

As deregulation begun to take root, different countries took different approaches

in their systems. Generally, two main models of deregulation appeared: - the

Poolco model adopted primarily in the UK, and the ISO model adopted in Califor-

nia, US and in the Nordic pool [29]. Other countries like Australia, New Zealand

and European Union countries are employing one of the two models with some

changes to meet their specialized demands. Table 2.1 gives comparisons between

the two market structures.
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Table 2.1: Comparisons of the Open Access and Poolco electricity market
structures

Open Access Poolco

• Bulk of the energy transactions are car-
ried out as bilateral trades while there may
also exist a day ahead spot market.

• All energy transactions are carried out
through the pool, which may be organized
through a day ahead trading mechanism.

• The ISO is responsible for market ad-
ministration, generation scheduling or dis-
patch functions.

• The Poolco Operator is responsible for
the market settlements, unit commitment
and determination of pool price.

• Participation in the market by GENCOs
is not mandatory.

• Participation by GENCOs is mandatory.

• The ISO is responsible for system secu-
rity and control, procuring necessary an-
cillary services.

• The Poolco operator is responsible for
system security and control, procuring
necessary ancillary services.

1. Poolco model

In this model there is only one single buyer for all the energy generated by

GENCOs [29]. The buyer here is a Pool Company (Poolco) which is a gov-

ernmental or quasi-governmental agency that buys on behalf of all consumers,

taking bids from all sellers and buying enough power to meet the total need,

taking the lowest cost bidders. The Poolco operator also has responsibility for

running the power system, and is thus a combined buyer-system operator.

Therefore, the Poolco is responsible for inviting bids for energy and deciding

the energy price for a particular period in the future markets like the day-

ahead market. It is also responsible for real time operation of the system.

This market works in a way quite similar to centralized unit commitment and

economic dispatch. The difference is that in traditional unit commitment and

economic dispatch the actual cost of the energy generations are considered

but in deregulated environment, the GENCOs place price curves of each of its
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generators and the actual cost is hidden from general knowledge.

The Poolco being the system operator and auctioneer as well, takes care of net-

work congestion at the auction level itself in a manner similar to the economic

dispatch. Participation in the auction conducted by Poolco is a must for all

GENCOs. As the Poolco is the only buyer, there are no bids from buyer’s side;

the auction is a single sided auction.

2. Open access model

The models used in Nordic Pool and California are examples of this model

[29]. The energy auction and future markets are conducted by an independent

entity called a Power Exchange (PX) and the system is operated by another

independent body called the ISO, who assures equal opportunities to all sellers

and buyers through open access to the grid. The buyers and sellers have an

option of entering in bilateral transactions or be participants in the energy

auction conducted by the PX. The auction conducted by PX is double sided

auction as sellers as well as buyers place the bids. The sellers and buyers are

allowed to place a portfolio bid, i.e. a combined bid for many generators.

2.2 Unit Commitment in Deregulated Markets

The approach to Unit Commitment in the deregulated environment is signifi-

cantly different from that in the regulated environment. Here, the GENCO is

not the system operator. This means that, unlike the regulated market where

the objective of the utility in unit commitment is the minimization of operat-

ing cost, in the deregulated environment, the objective of the GENCO is the

maximization of profit. This has led to what is now referred to as PBUC in

deregulated markets [3,17,18]. From the GENCOs point of view, an optimal so-

lution to the PBUC problem is very important because of the potential economic
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consequences. Reducing the fuel cost by as little as 0.5 percent can result in

savings of millions of dollars per year for large GENCOs which would translate

to significant gains in profit [30]. Because of the potential economic benefits, one

of the biggest needs for GENCOs in deregulated markets is an effective tool for

making unit commitment decisions and developing bidding strategies [30].

2.2.1 PBUC Problem Formulation

The PBUC in deregulated power systems determines the generating unit sched-

ules for maximizing the profit of GENCOs subject to operational constraints such

as load demand, spinning reserve and ramp rate limits. Profit (PF ) is defined as

the difference between revenue (RV ) obtained from sale of energy and in some

cases reserve; minus the total operating cost (TC) of the GENCO. The objective

function of the PBUC problem is then given as [6]:

Maximize PF = RV − TC (2.1)

GENCO revenue is from selling power to both the energy and reserve markets.

The objective function given in (2.1) is formulated subject to the constraints

[6]:

1. Power Balance Constraints: In PBUC, power generation by a single GENCO

may be less than the demand and reserve at a given time. This is because

a number of GENCOs are available to serve the system load and a single

generator may not be able to meet the load anyway. This is fundamentally

different from the “generation equals demand” constraint of the traditional

UC problem. The relaxed power balance constraint allows for more flexibility

in the unit commitment schedule.

2. Unit Generation Limits: Generation units usually have operational maximum
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and minimum power output limits within which the unit output must be main-

tained.

3. Minimum Up/Down Time Constraints: A thermal unit can only undergo grad-

ual temperature changes. Hence, there is a minimum up-time once the unit is

running and; for a de-committed unit, a minimum down time before it can be

recommitted.

4. Ramp Rate Limits: The ramp rate limits confine the power output increase or

decrease between adjacent hours for certain units.

5. Crew Constraints: To cater for limitations in the number of operational per-

sonnel, restrictions on the number of units to be turned ON at the same time

may be included.

2.2.2 Solution Methodologies

Once the optimization problem has been formulated, a methodology for solving

the highly nonlinear optimization problem is usually proposed. In fact, most

researches in literature focus on the methodology for solving the PBUC problem.

The UC problem is a mixed combinatorial and continuous optimization problem,

which is very complex to solve because of its enormous dimension, a non-linear

objective function, and a large number of constraints [31]. Solution methodologies

for the traditional UC problem can be found in [30–36].

In the deregulated environment, an efficient solution methodology is key to

the success of the operations of an individual GENCO. Numerous methodologies

for solving the PBUC problem have been proposed in literature. These method-

ologies can be classified as classical methods and non-classical methods. Classical

methods include Priority Listing (PL), Dynamic Programming (DP), Branch and

Bound (B&B), Mixed Integer Programming (MIP), and Lagrangian Relaxation

(LR) [5, 6, 37–39]. Non-classical methods include GA, Memetic Algorithm, Ant
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Colony Optimization (ACO), PSO, ABC, Imperialistic Competitive Algorithm

(ICA), Muller method among others [7, 16–22]. There have also been proposals

for hybridization of some of these methods taking advantage of the strengths of

two or more methods to provide a more effective solution algorithm [9,10,23–27].

2.2.2.1 Classical Methods

Falling under the category of classical methods for solving the PBUC problem are

PL, DP, B&B, MIP, and LR. In the PL method, plants are activated according to

a pre-prepared list while schedules are adapted to respect technical restrictions

such as minimum up and down times, and minimum and maximum operating

points [38]. The PL method is a simple, almost rule of thumb method hence the

solution is only an estimate of the actual optimal unit allocations [38]. In fact

using PL almost never results in an optimal solution. Reference [20] gives an Im-

proved Pre-prepared Power Demand (IPPD) table for solving the PBUC problem

in a deregulated environment. The method, quite similar to the traditional PL

method gives a solution that is closer to the optimal solution and in significantly

less computation time.

DP is one of the earliest optimization based techniques to be applied to the

UC problem and is still used extensively all over the world especially in regulated

markets [34]. The DP technique employs a systematic searching algorithm that

tries to achieve an optimal solution without having to access all possible combina-

tions. Generating units are classified into related groups from which the optimal

path is searched with a reduced number of possible combinations as a result of

the classification. The method however suffers from the problem of huge compu-

tational time as the number of units being considered grows and hence for large

systems with hundreds of units, DP as a solution algorithm for the PBUC prob-
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lem becomes impractical. In [6], a DP approach is used to obtain a near-optimal

unit commitment in a competitive power market. More significantly though, the

problem formulation is incorporated into a Multi-area unit commitment with im-

port/export and tie-line constraints. The method therefore illustrates the process

of maximization of GENCO profit in a multi-area system.

Reference [37] uses the classical MILP to solve the PBUC problem. The main

contribution of the paper is however not the solution methodology but rather a

quantification of the sub-optimality of profit that can be expected in a PBUC

when incorrect price forecasts are used. The results show how crucial an accurate

price forecasting regime is for the realization of expected profits. In [5], the MIP

and LR methods are compared and the authors note that though the MIP method

produces more optimal results, the computation time and memory requirements

would be a major obstacle when applying MIP to large UC problems.

LR is one of the most popular of the classical methods. The main advantage

of the method is the speed with which the algorithm converges to a solution [5].

It has however been pointed out that the method suffers from often being stuck at

local optima. This is because the quality of the solution strongly depends on the

algorithm used to update the Lagrangian multipliers. For this reason, a number

of the more recent papers combine LR with one or more of the non-classical

methods so as to improve the quality of the solution [9, 27].

2.2.2.2 Non-Classical Methods

Non-classical methods for solving the PBUC problem include GA, PSO, Muller

Method, Shuffled Frog Leaping Algorithm (SFLA), ICA, ACO, ABC, Simulated

Annealing (SA), Tabu Search (TS), among others. These heuristic algorithms

have the advantage that they do not require derivative information to solve the
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optimization problem [18]. It is actually possible to encode the variables so that

the optimization is done with the encoded variables with little attention to the

systematic movement towards an optimal solution. The second major advantage

is that these methods are better capable of searching through the entire solution

space for the global optimal solution. Because of these advantages, they are more

capable of dealing with the complex nonlinear constraints related to the PBUC

problem and thus heuristic methods have received much more attention from

researchers over the last few years.

Reference [16] uses genetic algorithms to solve the PBUC problem. The au-

thors show the improved solution quality of the GA method compared to classical

methods. The algorithm is tested with the two interconnected regions of the Na-

tional Electricity Market in Australia and hence illustrates the practicality on an

actual power market. An earlier example of the implementation of GA to solve

the PBUC problem is given in [17].

In [18], an improved discrete binary PSO and a standard value PSO are used

iteratively to solve the PBUC problem. The effectiveness of the solution method-

ology is illustrated for a GENCO with ten units in a competitive market. The

PSO technique is also used to solve the GENCOs PBUC problem in a day ahead

competitive electricity market in [7]. Apart from the traditional PSO technique,

the authors also test three other PSO techniques: Chaotic PSO (CPSO), New

PSO (NPSO) and Dispersed PSO (DPSO) and compare the results. Generation,

spinning reserve, non-spinning reserve, and system constraints are considered in

proposed formulation. To tackle the problem of long computation time that is

usually associated with heuristic methods, [19] proposes a Parallel Particle Swarm

Optimization (PPSO) solution to the PBUC problem. The method uses a clus-

ter of computers performing parallel operations in a distributed environment and
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the results show the effectiveness of parallel computing in handling the huge di-

mensions of the PBUC problem. The authors report significant reductions in

algorithm computation time. The time complexity and the solution quality with

respect to the number of processors in the cluster are also investigated.

The Muller method is used for solving the PBUC problem in [20]. The

methodology is implemented in two stages. Initially, the determination of units

to be committed is obtained by a simple approach and then a non-linear pro-

gramming sub problem of economic dispatch is solved by the Muller method.

The biggest promise with this method is reduced computational time though the

initial allocation generally results in a sub-optimal solution.

Reference [21], uses the Shuffled Frog Leaping Algorithm (SFLA) to solve the

Profit Based Unit Commitment problem under deregulated environment with

emission constraints. The bi-objective function optimization problem is formu-

lated as a maximization of the Generation Companies profit and a minimization

of the emission output of the thermal units.

A relatively newer heuristic method known as the Imperialistic Competitive

Algorithm (ICA) is used in [22] to solve the PBUC problem in a competitive

environment. The algorithm is presented as a tool to be used by GENCOs in

making commitment decisions for maximum profit in the day-ahead energy mar-

ket. The method is validated on a typical 10 generating unit system available in

the literature.

The main challenge with heuristic methods is that the computation process

is usually rather time consuming especially as the number of generating units

increases. However, these algorithms can be easily implemented in high-speed

parallel computing techniques with which the challenge of long computational

time can be overcome [20], [25].
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2.2.2.3 Hybrid Methods

The classical, gradient based search algorithms tend to be faster in convergence

but suffer from getting stuck in local optima. The non-classical heuristic methods

on the other hand are better at searching through the solution space but are more

time consuming. Because of these characteristics a number of researchers have

proposed hybrid methods which combine two or more of the above techniques for

better solution quality in terms of computation time and solution quality.

Reference [23] was one of the first papers on hybrid methods for the PBUC

problem. The paper presented a hybrid model between LR and GA to solve

the unit commitment problem with the GA being used to update the Lagrangian

multipliers. Better results than those obtained from traditional unit commitment

are reported. Reference [10] proposes a hybrid Artificial Immune System (AIS)

based GA method to solve the PBUC problem. The authors report that the

incorporation of the AIS into the GA algorithm results in increased diversity in

the initial strings to ensure that the GA searches the entire problem space hence

resulting in better solutions.

A hybrid model between LR and Quantum-inspired Particle Swarm Optimiza-

tion (QPSO) is used to solve the PBUC problem in [26]. Constraints including

load demand, spinning reserve, generation limits and minimum up and down time

constraints are included and the method is tested on two different size systems.

The authors report higher quality solutions compared to other methods in liter-

ature. A second example of the hybrid LR-PSO algorithm can be found in [27].

Again the authors highlight the improvement in solution quality by updating the

Lagrangian multipliers using the PSO technique.

Reference [9] uses a hybrid LR - Evolutionary Programming (EP) model to

solve the PBUC problem in a deregulated electricity market. Here, significantly,
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a consideration of the losses in the transmission system is included resulting in

higher profits for the GENCO as they supply not only system load but also

network losses. A hybrid LR-EP method is also used in [40] with an important

consideration of both the power and reserve prices.

2.3 GENCO Bidding Strategies

In deregulated electricity markets, electric energy is sold either through bilateral

agreements between GENCOs and consumers or through an electricity pool op-

erated by an independent system operator i.e. the electricity spot market [3].

In the case of the bilateral market, the buyer and seller agree on a transaction

price from which the GENCO meets all costs for transmission, distribution, and

other ancillary services. The electricity pool is however operated by an indepen-

dent system operator ISO who receives and aggregates hourly energy supply bids

from GENCOs and hourly demand bids from consumers after which a Market

Clearing Price (MCP) is determined [4]. The GENCOs are allocated portions of

the demand based on a cheapest-bid first while ensuring system reliability and

security. The MCP is defined as the cost of supplying the last MW of demand

and all GENCOs who receive load allocations for the given hour are paid at this

price irrespective of their bids.

Each GENCO will combine the bilateral demand with the allocation from

the spot market as its own demand and from this data draw up a UC schedule

based on a profit maximization objective. Since the spot market allocation is

based largely on the GENCO’s bid and those of its competitors, the GENCO bid

decisions significantly affect its allocation and hence its profits. Should a GENCO

have enough influence, it could affect the MCP and consequently its profits. The

magnitude of this influence defines the GENCO’s market power. Under perfect
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competition, so as to maximize its profits, a GENCO should bid at its marginal

cost (cost of supplying an extra MW of electricity) [41]. However, depending

on the market environment, the GENCO could increase its profits in one of two

ways:

• The GENCO could lower its bid (bid low) thereby potentially increasing its

allocation in the spot market though this could reduce the MCP. Bidding

low is justified if the reduced revenue due to the lower prices is covered by

the increased revenue due to a larger allocation.

• The GENCO could raise its bid (bid high) thereby potentially reducing its

allocation in the spot market but increasing the MCP. This is justified if

the increased revenue due to the higher prices cover the revenue lost due to

a smaller allocation.

A minimal example to illustrate the spot market dynamics follows next.

The GENCO marginal cost curve forms the basis of its bidding strategy. The

marginal cost curve is a plot of the incremental cost of power generation against

the total power output for a GENCO. Mathematically, MCi – the marginal cost

curve for GENCO i is given by:

MCi =
∂CT i
∂PT i

, (2.2)

where CT i is the total operating cost of GENCO i when supplying a total of PT i

MW. Assuming a quadratic cost curve (as typically used in literature [7, 8]) for

GENCO costs, CT i is given by:

CT i =
N∑
j=1

(
aij + bijPij + cijP

2
ij

)
, (2.3)

and

PT i =
N∑
j=1

Pij. (2.4)
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In (2.3) and (2.4) aij, bij, and cij are the coefficients of the quadratic cost curves

for unit j operated by GENCO i while Pij is the output of unit j operated by

GENCO i.

Consider two GENCOs each owning one generating unit with cost character-

istics shown in Table 2.2. The marginal cost curves for the two GENCOs are

plotted in Figure 2.4(a) showing that GENCO G1 has the cheaper generating

unit of the two GENCOs. If each GENCO submits its marginal cost curve as

its supply curve, the combined system supply curve will be as shown in Figure

2.4(b). Assuming a nominal system demand of 200 MW with a linear demand

curve as shown in Figure 2.4(b), the market equilibrium will then be the point

at which the two curves intersect. When read from Figure 2.4(b) this point is

(Pd = 200MW, MCP = $30.78/MWh). When extrapolated to the supply curves

of the two GENCOs, G1 and G2 will supply 144.4 MW and 55.6 MW respectively.

Table 2.2: Example GENCO cost characteristics

GENCO
Pmin
i1 Pmax

i1

Cost Equation
CT i(Pij)

G1 0 300 25P11 + 0.020P 2
11

G2 0 150 28P21 + 0.025P 2
21

Now, consider a case where GENCO G1 submits bids where the gradient of

its marginal cost curve is multiplied by a factor µ1. Its bid curve, BC1 is then

given by:

BC1 = b11 + µ1 · 2c11P11 = 25 + 0.04µ1P11 (2.5)

A value of µ1 > 1 raises the bid curve above the nominal meaning that the

GENCO bids high while a value of µ1 < 1 means that the GENCO bids low.

The effect of µ1 on the MCP and the GENCO allocations is illustrated in Figure
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Figure 2.4: (a) Marginal cost curves for two GENCOs and (b) market
equilibrium obtained from the intersection of the aggregated supply curve and

the system demand curve.
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Figure 2.5: Illustration of the effect of GENCO G1’s bid strategy on (a) the
demand allocations and (b) the MCP.

2.5 for values of µ1 = 0.8, and µ1 = 1.2. The results are summarized in Table

2.3 showing that as µ1 increases, the MCP increases, GENCO G1’s allocation

reduces (as does its revenue and costs) but its profit increases.

A plot of the GENCO profit against the value of µi for the two GENCOs

acting individually is illustrated in Figure 2.6 which shows that the two GENCOs

achieve maximum profits at different values of µi (µ1 = 1.9 and µ2 = 0.6). These

results show that the larger GENCO G1 should bid high to increase its profits

while conversely, the smaller GENCO G2 should bid low to increase its profits.
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Table 2.3: Effect of GENCO bidding strategy on spot market prices,
allocations, revenues, costs, and profits

µ1 MCP P1 Revenue Cost Profit

[$/MWh] [MW] [$/h] [$/h] [$/h]

0.8 30.15 161.01 4, 854.98 4, 543.87 311.11

1.0 30.78 144.44 4, 445.68 4, 028.40 417.28

1.2 31.29 130.97 4, 097.48 3, 617.21 480.27
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Figure 2.6: Illustration of the effect of the bid factor µi on GENCO profits.

2.4 Mathematical Optimization Methods

2.4.1 Lagrangian Relaxation

The Lagrangian relaxation (LR) method for solving an optimization problem

works by incorporating some of the constraints of the problem into the objective

function using a penalty term known as the Lagrangian multiplier. LR is a tech-

nique well suited for problems where the constraints can be divided into two sets:

“good” constraints, with which the problem is solvable very easily, and “bad”

constraints which make the problem harder to solve.

The main idea is to “relax” the problem by removing the “bad” constraints
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and putting them into the objective function, assigned with weights (the La-

grangian multiplier). Each weight represents a penalty which is added to a so-

lution that does not satisfy the particular constraint. The relaxed problem is

usually simpler to solve and through a systematic method of updating the mul-

tipliers an optimal solution to the original problem can be obtained.

Consider the following optimization problem:

Minimize f(x)

Subject to h1(x) ≤ 0 (2.6)

h2(x) ≤ 0

x ≥ 0

If the set of constraints h1(x) ≤ 0 represents the “bad” constraints, we can

formulate a Lagrangian relaxation problem as:

Minimize L(x, λ) = f(x) + λh1(x)

Subject to h2(x) ≤ 0 (2.7)

x ≥ 0; λ ≥ 0

where λ is the Lagrangian multiplier. L(x, λ) is referred to as the Lagrangian

function. If the constraints are chosen correctly, the minimization of L(x, λ) is

much simpler than the solution of the original problem.

In equation 2.7, for a feasible solution of the original problem, h1(x) is less

than or equal to zero. Hence, if λ is positive (λ > 0), the value of λh1(x) will

always be less than zero and the value of the Lagrangian will be smaller than the

value of the original problem (f(x)). It is therefore said that a solution of the

relaxed problem (also known as the dual problem) forms a lower bound to the
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solution of the original problem (also known as the primal problem).

A determination of the value of λ that maximizes the Lagrangian for feasible

values of x therefore gives a solution to the original problem. A duality gap is

defined as the difference between the optimal solution to the original (primal)

problem (2.7) and the optimal solution of the dual problem (2.7). The solution

procedure is then to iteratively update the Lagrange multipliers until the du-

ality gap is within a given tolerance or after a set number of iterations. The

main challenge is then to determine an efficient method of tuning the Lagrange

multipliers.

There are two important points to note here:

• LR is not in itself an optimization method. It is just a concept of penalizing

certain constraints in the objective function to form an “easier” problem.

An actual optimization technique such as dynamic programming is required

to solve the relaxed optimization problem.

• The Lagrangian multiplier usually has a physical meaning of the cost of

satisfying a given constraint. If at the end of the optimization algorithm,

λi = 0, then the corresponding constraint has no effect on the optimal

solution of the original problem and could as well be ignored in the problem

formulation. Otherwise, the value of λ indicates the cost of ensuring that

the corresponding constraint is met and usually forms a basis for pricing

such constraints. A good example is the use of the Locational Marginal

Price (LMP) in deregulated power systems where a Lagrange multiplier

corresponding to enforcing the power balance constraint at a given bus

(location) is used to set the price of electricity at the stated bus.
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2.4.2 Dynamic Programming

Dynamic programming (DP) is one of the optimization methods commonly used

to solve the relaxed optimization problem that results after Lagrangian relaxation.

DP works by transforming a complex problem into a sequence of simpler problems

and finding a solution to the more complex problem by successively solving the

simpler problems. The most important characteristic of DP is the multistage

nature of the optimization procedure.

The basic idea behind DP is to take an optimization problem and somehow

break it down into a reasonable number of subproblems in such a way that the

optimal solutions to the smaller subproblems can be used to give the optimal

solution to the main problem. The idea is illustrated here using a simple example.

Figure 2.7: Multi-Stage Network Example

Figure 2.7 represents possible routes between Nairobi and Cape Town with

eight possible stopover cities between the start and end. The numbers attached

to the lines connecting two cities is the distance between the cities in km. The

optimization problem is then to find the shortest path between the start and end

cities. In this case, there are 36 possible routes (2× 3× 3× 2) between Nairobi

and Cape Town and it is possible to list all 36 routes and determine the shortest.

Of course, the number of possible routes increases significantly as the number of
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possible stopover cities increases or as the connections become more complex.

This problem could also be solved using Dynamic Programming as follows:

1. Determining the Shortest Paths to Stage 2

There is only one route to each of the three cities at stage 2 (Dar es Salaam,

Dodoma, and Kigali). Hence, the shortest paths to the three are obvious as

850 km to Dar, 680 km to Dodoma, and 1150 km to Kigali.

2. Determining the Shortest Paths to Stage 3

Lets consider the possible paths to Lusaka. There are three possibilities:

Nairobi-Dar-Lusaka for 2750 km; Nairobi-Dodoma-Lusaka for 2380 km; and

Nairobi-Kigali-Lusaka for 3150 km. Here, the shortest path to Lusaka is

through Dodoma for 2380 km. It means that as long as the path to Cape Town

goes through Lusaka, it is always shorter to pass through Dodoma. Hence,

we can discard considering the paths Nairobi-Dar-Lusaka and Nairobi-Kigali-

Lusaka in the future. Similarly, it is found that the shortest path to Lilongwe

is Nairobi-Dodoma-Lilongwe for 1980 km and the shortest path to Harare is

Nairobi-Dodoma-Harare for 2580 km.

3. Determining the Shortest Paths to Stage 4

Next, we consider the possible paths to Johannesburg considering the shortest

paths to the towns at stage 3. There are three possibilities: Nairobi-Dodoma-

Lusaka-Johannesburg for 3880 km; Nairobi-Dodoma-Lilongwe-Johannesburg

for 3980 km; and Nairobi-Dodoma-Harare-Johannesburg for 3680 km. Hence,

the shortest path to Johannesburg is through Dodoma and Harare for 3680

km. We discard all other possible routes to Johannesburg. Similarly, it is

found that the shortest path to Maputo is Nairobi-Dodoma-Lilongwe-Maputo

for 3780 km.

4. Determining the Shortest Paths to Stage 5 (Destination)
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Finally, we consider the possible paths to Cape Town considering the shortest

paths to the towns at stage 4. There are two possibilities: Nairobi-Dodoma-

Harare-Johannesburg-Cape Town for 5080 km or Nairobi-Dodoma-Lilongwe-

Maputo-Cape Town for 5680 km. Clearly the former route is 600 km shorter

and is hence the shortest path. This is stored as the solution to this optimiza-

tion problem. The shortest paths to the various cities and the final optimal

solution are highlighted in Figure 2.8.

Figure 2.8: Multi-Stage Network Example Solution

In the above example, the shortest path problem has been solved sequentially

using DP. The number of required path computations is significantly reduced

when compared to enumerating all possible paths.

In DP terminology, each point where decisions are made is usually called

a stage of the decision-making process and each stage has a number of states

which define the decision made. The solution of the optimization problem using

DP involves the following intuitive idea usually referred to as the principle of

optimality [34].

Any optimal policy has the property that, whatever the current state and de-

cision, the remaining decisions must constitute an optimal policy with regard to

the state resulting from the current decision. [34]

34



In other words, given the current state, the optimal decision for the remaining

stages is independent of decisions made in previous states. For a problem with

the state-stage structure – especially where the number of states at each stage

are few – DP can be a very efficient method of solving an optimization problem.

The Unit Commitment problem in power systems is one such problem where

the stage is each hour of the commitment schedule while the state is whether a

unit is ON or OFF. The decision is therefore whether to turn a generator ON

or OFF at a given hour to minimize the generation costs. DP has been applied

severally in the solution of the UC problem in power systems especially when

dealing with a few generating units.

2.4.3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a population based stochastic optimization

technique for simulating the natural animal’s behavior to adapt to the best of the

characters among the entire populations like bird flocking and fish schooling [42].

Since its inception in the mid 90’s, PSO has been widely applied by researchers

in various optimization applications including the solution of the UC problem [7].

In simple terms, a population (swarm) of processing elements called particles,

each of which representing a candidate solution forms the basis of computation

in the PSO algorithm. A possible solution to the existing optimization problem

is represented by each particle in the swarm. A population of random solutions

is used to initialize the PSO algorithm and optima are searched by updating the

solution in each iteration (epoch).

During a PSO iteration, every particle moves towards its own personal best

solution that it achieved so far (pBest), as well as towards the global best (gBest)

solution which is best among the best solutions achieved so far by all particles

35



present in the population. This is done in a random manner ensuring that the

algorithm searches the solution space as much as possible. After a certain pre-

set number of iterations (generations), the particle with the global best solution

is stored as the optimal solution to the optimization problem. A typical PSO

algorithm flowchart is given in Fig. 2.9.

In the classical form of the PSO algorithm, sets of possible solutions to an op-

timization problem (particles) are moved around the solution space iteratively. At

every iteration k, each particle Xj moves according to a simple “move equation”

written as:

Xk
j = Xk−1

j + V k
j (2.8)

where V k
j is the velocity of particle j at the kth iteration defined by:

V k
j = wj0V

k−1
j + r1wj1(pBestj −Xk−1

j ) + r2wj2(gBest−Xk−1
j ) (2.9)

In (2.9), wj0, wj1, and wj2 are weighting factors while r1 and r2 are uniformly

distributed random numbers between 0 and 1. pBestj is the best solution (posi-

tion) found by the particle in its past life while gBest is the global best solution

found by the swarm of particles in their past lives.

Equation (2.9) shows that the motion of each particle is dependent on three

factors. The first term of (2.9) represents motion in the direction the particle is

already moving in (the inertia habit); the second term represents motion towards

the best solution the particle has found so far (the memory habit); and the third

term represents motion towards the best solution found by all particles so far (the

information exchange or co-operation habit).

The biggest challenge with the classical PSO algorithm lies on the choice of

the weight parameters (w0, w1, and w2) at the beginning of the solution algo-
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Figure 2.9: PSO algorithm Flowchart

rithm. It has been shown by many researchers that a parameter tuning method is

imperative to obtain both a good solution and good convergence characteristics.
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2.4.4 Evolutionary Particle Swarm Optimization

Evolutionary Particle Swarm Optimization (EPSO) is an optimization algorithm

based on a combination of the evolutionary programming (EP) and Particle

Swarm Optimization (PSO) concepts and works to handle the parameter tuning

challenge of the classical PSO algorithm by progressively “mutating” the weight

parameters with successive iterations.

The basic structure of EPSO as originally explained in [43] carries out the

following processes at each iteration:

• REPLICATION - each particle is replicated r times.

• MUTATION - each particle has its weights wj0, wj1, and wj2 mutated.

• REPRODUCTION - each mutated particle generates an offspring according

to the particle movement rule.

• EVALUATION - each offspring has its fitness evaluated.

• SELECTION - the best particles between the original set and the mutated

set survive based on a stochastic tournament to form a new generation.

In EPSO, at the reproduction stage, new particles (offspring) are generated

using a particle movement rule given by:

Xk∗
j = Xk−1

j + V k∗
j (2.10)

where V k∗
j is a mutated version of the velocity of particle j at the kth iteration

defined by:

V k∗
j = w∗

j0V
k−1
j + w∗

j1(pBestj −Xk−1
j ) + w∗

j2(gBest
∗ −Xk−1

j ) (2.11)

The EPSO particle movement rule is similar to the classical PSO move equa-

tion with the following alterations:
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• The model weights undergo mutation according to:

w∗
jp = wjp + τwN(0, 1) p = 0, 1, 2. (2.12)

where N(0, 1) is a random variable normally distributed with a mean of zero

and a variance of 1.

• The global best gBest is randomly disturbed as:

gBest∗ = gBest+ τgN(0, 1) (2.13)

The parameters τw and τg are learning parameters that define the width within

which the weights and the global best values are defined.

By disturbing the position of the global best in (2.13), it is possible to search

the area around the global best where the global optimum may lie rather than

just the current global best and hence increase the chances of finding a better

solution especially when the area defining the best solution is small.

Incorporation of the Darwinistic characteristics of mutation and selection al-

lows the EPSO algorithm to take advantage of the faster convergence charac-

teristics of Evolutionary Programming (EP) strategies. The EPSO flowchart is

shown in Fig. 2.10 and can be contrasted with the classical algorithm of Fig.

2.9 to show the incorporation of the Darwinistic characteristics of mutation and

selection.
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Figure 2.10: EPSO algorithm Flowchart
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METHODOLOGY

CHAPTER THREE

In this section, the methodologies used in the research are explained. First,

in section 3.1 the PBUC problem is formulated. The formulation in section

3.1.1 explains both the objective function of maximizing GENCO profit and the

operational constraints to the mathematical problem. Then, in section 3.1.2, a

solution algorithm using the hybrid LR-PSO method is explained. This is given

in a step-by-step format. To overcome the difficulty of parameter selection, a

hybrid LR-EPSO algorithm was also implemented as explained in section 3.1.3.

As an extension to the PBUC problem formulation of section 3.1, and to study

the effect of GENCO market power in the PBUC solution, an algorithm that

also determines an optimal bidding strategy is implemented. The step-by-step

methodology is explained in section 3.2. However, first Table 3.1 lists definitions

of various variables used in the equations in this chapter.

Table 3.1: Nomenclature of indices, parameters, and variables

Indices

h hour index

i generator index

j PSO/EPSO particle index

k algorithm iteration number index

r EPSO replicated particle index

Algorithm Parameters

H number of scheduling hours

J number of PSO/EPSO particles

K maximum number of PSO/EPSO algorithm generations

N total number of generating units owned by a GENCO
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Algorithm Parameters (Specific to EPSO Algorithm)

R number of replications of an EPSO particle

τλ standard deviation of the random initial value of Lagrange multipliers

τg standard deviation of the random disturbance of the value of gBest

τw standard deviation of the random mutation of a weight parameter

pluck probability of the best offspring of a particle surviving after an iteration

Test System Parameters

ai, bi, ci fuel cost curve constants for generator i

CSCi cold start-up cost of generator i

HSCi hot start-up cost of generator i

CShri Number of hours after which generator i is considered cold

αhs unit price for spot market energy sales at hour h

αhb unit price for bilateral contracts energy sales at hour h

αhr unit price for reserve capacity sales at hour h

κ factor for contract of differences

P hb scheduled power generation for bilateral contracts at hour h

Pmini , Pmaxi minimum and maximum outputs of generator i respectively

RUi, RDi ramp up and ramp down limits of generator i respectively

MUTi,MDTi minimum up time and minimum down time limits of generator i

respectively

Variables (Common to both PSO and EPSO algorithms)

PF GENCO Profit

RV, TC GENCO revenue and costs respectively

RV ph revenue from energy (MWh) sales at hour h

RV rh revenue from reserve capacity (MW) sales at hour h

FChi fuel cost of generator i at hour h

SChi start up cost of generator i at hour h

P hi power output from generator i at hour h

Uhi state of generator i at hour h

pBestj,k personal best solution of particle j at iteration k

gBestk global best solution for all particles at iteration k
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Variables (Specific to PSO Algorithm)

λhj,k Lagrange Multiplier for particle j at hour h for iteration k

vhj,k velocity of particle j at hour h for iteration k

w1, w2, w3
weighting factors corresponding to the particle’s previous
velocity,

personal best position and global best position respectively

r1, r2 random numbers in [0 1]

Variables (Specific to EPSO Algorithm)

λh,rj,k Lagrange Multiplier for the rth replica of particle j at hour h and

iteration k

vh,rj,k velocity of the rth replica of particle j for hour h and iteration k

w0,r
j,k , w

1,r
j,k , w

2,r
j,k weighting factors corresponding to the rth replica of particle j at

iteration k

3.1 Profit Based Unit Commitment Problem

3.1.1 Problem Formulation

As explained in section 2.2, the profit based unit commitment (PBUC) problem

is formulated as as a maximization of a GENCO’s profit. Mathematically, we

seek to determine a GENCO’s optimal unit commitment schedule i.e. generation

units turn ON - turn OFF and power output schedule based on predicted energy

and reserve prices. The GENCO’s bilateral contract commitments are also con-

sidered. The objective function and the operational constraints are explained in

the following subsections. There are numerous indices and variables used in the

equations – all of which are summarized in Table 3.1.
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3.1.1.1 Objective Function

Profit (PF ) is defined as the difference between revenue (RV ) obtained from

sale of energy and reserve1 and the total operating cost (TC) of the GENCO.

Mathematically, the PBUC problem objective function is given as:

Maximize PF = RV − TC (3.1)

3.1.1.2 GENCO Revenue

In (3.1), GENCO Revenue RV is given by:

RV =
H∑
h=1

(
RV h

p +RV h
r

)
(3.2)

Revenue from the energy market at a given hour RV h
p is calculated as:

RV h
p = αhbP

h
b + αh

(
N∑
i=1

P h
i − P h

b

)
+ κ

(
αh − αhb

)
P h
b (3.3)

The first term in (3.3) represents revenue from bilateral contracts, the second

term represents revenue from the energy sold at the spot market, while the third

term represents revenue from contracts of differences (cfds) [44].

Contracts of differences cfd’s are usually included in bilateral contracts to

compensate suppliers and consumers for differences between the bilaterally agreed

prices and the prevailing market price. A cfd factor of κ = 0 would mean that the

GENCO sells power in the bilateral market at the bilaterally agreed price even if

the market price is higher (no compensation) while a cfd factor of κ = 1 means

that the GENCO sells power in the bilateral market at the prevailing market

price (full compensation). A value of κ = 0.5 is adopted in this research as this

implies that both the GENCO and the consumer are compensated equally when

1Revenue from other ancillary services could be included in a similar manner.
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there is a difference in prices.

Revenue from sale of reserve power at hour h is given by:

RV h
r = αhr

N∑
i=1

(
Pmax
i − P h

i

)
(3.4)

In (3.4), it is assumed that both spinning and standing reserve are paid at the

same rate. If the pricing is different, the equation could be split to have two

terms accounting for each type of reserve.

3.1.1.3 GENCO Costs

In (3.1), the total costs TC is a sum of fuel costs2 (FC) and start up costs3 (SC)

for all generators over the entire scheduling period. This is given as:

TC =
H∑
h=1

N∑
i=1

(
FCh

i + SCh
i

)
(3.5)

where

FCh
i = ai + biP

h
i + ci

(
P h
i

)2
(3.6)

SCh
i =


CSCi ·

(
1− Uh−1

i

)
Uh
i if

∑h
t=h−CShr U

t
i ≥ CShr

HSCi ·
(
1− Uh−1

i

)
Uh
i if

∑h
t=h−CShr U

t
i < CShr

(3.7)

3.1.1.4 Operational Constraints

The GENCO operational constraints are given as:

2Equation (3.6) assumes the typical thermal generator cost equations. Costs for other types
of generators could be included using appropriate models.

3Only the start up costs are considered in this research. If applicable, shut down costs could
be included in a similar manner.
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(a) Power balance for bilateral contracts

N∑
i=1

P h
i ≥ P h

b ∀h (3.8)

(b) Generation limit constraints

Pmin
i ≤ P h

i ≤ Pmax
i ∀i, ∀h (3.9)

(c) Generator ramp up constraints

P h
i − P h−1

i ≤ RUi ∀i, ∀h (3.10)

(d) Generator ramp down constraints

P h−1
i − P h

i ≤ RDi ∀i,∀h (3.11)

(e) Generator minimum up time

Uh
i = 1 if U t

i − U t−1
i = 1, for h = t, ..., t+MUT − 1 (3.12)

(f) Generator minimum down time

Uh
i = 0 if U t−1

i − U t
i = 1, for h = t, ..., t+MDT − 1 (3.13)

Constraints (3.9)−(3.13) are similar to the traditional UC formulation [12].

However, constraint (3.8) indicates that the GENCO’s total generation must be

greater than its bilateral contracts commitments. This is in contrast with the

traditional case where generation must equal total system demand and losses.

Also, unlike the traditional UC formulation, there is no spinning reserve constraint

as this is not the GENCO’s responsibility. The GENCO only gets payments for

supplying part of the reserve. Revenue from reserve sales is therefore added to

the objective function as given by (3.2).
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3.1.2 Solution Algorithm Using LR-PSO

The basic structure of the solution algorithm for solving the PBUC problem using

LR and PSO is shown in Fig. 3.1. Basically, a Lagrangian function is formed

by relaxing constraint (3.8) into the objective function. This is because it is the

only constraint that couples the units. Possible solutions to the relaxed problem

are then randomly generated and iteratively solved using a two-step process.

Figure 3.1: PBUC solution algorithm using LR-PSO

The first step involves solving the relaxed problem for each possible solution
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(sets of Lagrange multipliers). With the relaxation, optimal schedules of indi-

vidual generation units can be easily determined by breaking down the relaxed

function into subproblems for each unit. A 2-state dynamic programming code is

implemented to find an optimal UC schedule for each unit given a set of Lagrange

multipliers.

The second step involves updating of the possible solutions (particles) using

the PSO algorithm. This is done iteratively for a number of pre-set iterations

(maximum number of PSO generations). The two steps are outlined in the fol-

lowing subsections.

3.1.2.1 Solution of the Relaxed Problem

Constraint (3.8) – the power balance for bilateral contracts – is the only constraint

that couples the generating units and is therefore relaxed by being included in

the objective function to form the Lagrangian function L as:

L = RV − TC −
H∑
h=1

λh

(
P h
b −

N∑
i=1

P h
i

)
(3.14)

The relaxed problem is therefore the maximization of L subject to constraints

(3.9) to (3.13).

To maximize L with respect to P h
i in (3.20):

∂L

∂P h
i

= 0 ∀i, h (3.15)

i.e.

∂L

∂P h
i

=
(
αhs − αhr

)
−
(
bi + 2ciP

h
i

)
+ λh = 0 (3.16)
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hence

P h
i =

αhs − αhr + λh − bi
2ci

(3.17)

The following procedure is thus used to solve the relaxed PBUC problem for

a set of Lagrange multipliers: Λ = {λ1, λ2, . . . , λH}.

Step 1: Get input data (generator cost data, hourly price data, Lagrangian mul-

tipliers)

Step 2: Set i = 1

Step 3: Set h = 1

Step 4: calculate P hi from (3.23)

Step 5: check for generator limit constraints

if P hi > Pmaxi set P hi = Pmaxi

if P hi < Pmini set P hi = Pmini

Step 6: check the ramp up and ramp down constraints and change P hi accordingly

Step 7: check the minimum up time and minimum down time constraints and

change P hi accordingly

Step 8: determine the optimal UC schedule using 2-state dynamic programming

Step 9: h = h+ 1. If h ≤ H go to Step 4. Else go to Step 10

Step 10: i = i+ 1. If i ≤ N go to Step 3. Else go to Step 11

Step 11: Calculate total revenue, costs and profits

Step 12: Store the results (UC status for all generators, scheduled power, profit)

3.1.2.2 Lagrange Multipliers Update via Particle Swarm Optimiza-

tion

The PSO algorithm is used to update the Lagrange Multipliers to determine the

set that provides the best results. A particle represents a candidate solution

which is a set of Lagrange Multipliers – one for each hour of the scheduling
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horizon. For a scheduling period of H hours, the jth particle after k iterations

Λj,k = {λ1j,k, λ2j,k, λ3j,k, . . . , λHj,k} represents a position in the H-dimension solution

space. The particle also has an associated velocity Vj,k = {v1j,k, v2j,k, v3j,k, . . . , vHj,k}

which represents a direction in which the particle is moving in the solution space.

The PSO algorithm moves the particles around the solution space after each

iteration in a search for the best possible solution. The particle position update

follows two “best” positions: pBest and gBest. pBestj is the jth particle’s per-

sonal best solution found so far while gBest is the entire population’s global best

solution (the best amongst the various pBests).

At each iteration, the velocity of each particle is updated using:4

Vj,k+1 = w1Vj,k + w2r1 (pBestj − Λj,k) + w3r2 (gBest− Λj,k) (3.18)

The position is then updated using the move equation:

Λj,k+1 = Λj,k + Vj,k+1 (3.19)

The following procedure is used to solve the PBUC problem updating candi-

date solutions (sets of Lagrange Multipliers) using the PSO algorithm:

Step 1: Randomly initialize J particles (candidate solutions)

Step 2: set k = 1

Step 3: set j = 1

Step 4: Solve the relaxed PBUC problem for the jth particle and determine the

corresponding GENCO profit PFj,k

Step 5: If k = 1, set pBestj = PFj,k

else if PFj,k > pBestj ; set pBestj = PFj,k

Step 6: j = j + 1.

If j < J go to Step 4. Else go to Step 7

4see variable definitions on the nomenclature list in Table 3.1.
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Step 7: Determine gBest as:

gbest = max{pBest1, pBest2, . . . , pBestJ}

Step 8: set j = 1

Step 9: Update the velocity of particle j using (3.18)

Step 10: Update the position of particle j using (3.19)

Step 11: j = j + 1.

If j < J go to Step 9. Else go to Step 12

Step 12: k = k + 1

If k ≤ K go to Step 3. Else STOP

3.1.3 Solution Algorithm Using LR-EPSO

The proposed solution methodology involves the solution of a relaxed form (La-

grangian) of the PBUC problem. The Lagrangian function is formed by relaxing

constraint (3.8) into the objective function. Possible solutions to the relaxed

problem are then initialized and the solutions are iteratively updated using a

two-step process.

The first step involves solving the relaxed problem for each possible solution

(sets of Lagrange multipliers). With the relaxation, optimal schedules of individ-

ual generation units are determined by breaking down the relaxed function into

subproblems for each unit. A 2-state dynamic programming code is implemented

to find an optimal UC schedule for each unit given a set of Lagrange multipliers.

The second step involves updating of the possible solutions (particles) using the

EPSO algorithm.

The subsequent subsections outline: (A) formation of the Lagrangian function;

(B) initialization of possible solutions; (C) solution of the relaxed problem and

(D) updating of Lagrange multipliers using EPSO.
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3.1.3.1 Formation of Lagrangian Function

Constraint (3.8) – the power balance for bilateral contracts – is a unit coupling

constraint meaning that a decision taken on one generator will affect decisions

taken for the other generators. This makes it a difficult constraint to handle and

it is therefore chosen to be relaxed using a set of Lagrange multipliers. Con-

straints (3.9) to (3.13) are not coupling constraints as they affect individual units

independently.

A Lagrangian function L is formed as:

L = RV − TC −
H∑
h=1

λh

(
P h
b −

N∑
i=1

P h
i

)
(3.20)

The relaxed PBUC problem is then the maximization of L subject to constraints

(3.9) to (3.13). For a given set of Lagrange multipliers: Λ =
{
λ1, λ2, . . . , λH

}
, it

is possible to determine a UC schedule that maximizes the Lagrangian function.

The Lagrange multiplier set – and its corresponding UC schedule – that maxi-

mizes the Lagrangian function while meeting all operational constraints is then

the optimal solution to the PBUC problem.

To maximize L with respect to P h
i in (3.20):

∂L
∂P h

i

∣∣∣∣∣
Ph∗
i

=
(
αhs − αhr

)
−
(
bi + 2ciP

h∗
i

)
+ λh = 0 (3.21)

or

λh =
(
bi + 2ciP

h∗
i

)
− (αhs − αhr ) (3.22)

The term bi + 2ciP
h∗
i in (3.22) is the unit marginal cost when generating P h∗

i

MW. Hence, (3.22) states that, at the optimal generation level, the value of

the Lagrange multiplier equals the difference between the marginal cost and the
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difference between the energy price and reserve price. This conclusion is used in

section 3.1.3.2 to determine a suitable initial values of the Lagrange multipliers.

Making P h∗
i the subject of the formula in (3.22):

P h∗
i =

αhs − αhr + λh − bi
2ci

(3.23)

P h∗
i is the optimal output of unit i at hour h corresponding to Lagrange multiplier

λh before considering the unit generation limits, minimum up time, minimum

down time and ramp rate constraints. This conclusion is used in section 3.1.3.3

in the procedure for solving the relaxed PBUC problem.

3.1.3.2 Initialization of Lagrange Multipliers

The solution space of the PBUC problem is large. For example, if the scheduling

period is 24 hours, the solution will have 24 Lagrange multipliers hence the so-

lution is defined in a 24-dimensional space. For such a large solution space, the

chances of finding a good solution is reduced if the initial solution is not carefully

chosen.

An initial “rough” solution is determined by solving the relaxed PBUC prob-

lem while disregarding the unit minimum up time, minimum down time and ramp

rate constraints using the GENCO marginal cost curve as follows:

• For each hour, determine the marginal cost corresponding to the bilateral

power commitment MC(P h
b ) from the marginal cost curve.

• From (3.22), the initial value of the Lagrangian multiplier at hour h: λh,0

is given by:

λh,0 = MC(P h
b )−

(
αhs − αhr

)
(3.24)

The Lagrange multipliers set: Λ0 =
{
λ1,0, λ2,0, . . . , λH,0

}
is used as an initial
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solution to the PBUC problem.

The EPSO algorithm is initialized using random possible solutions (particles).

Since the optimal solution when all constraints are considered will be close to Λh,0,

the initial value of a Lagrange Multiplier (LM) corresponding to particle k for

hour h is given by:

λhk = max
{

0, λh,0 + τλN(0, 1)
}

(3.25)

where τλ is the standard deviation of initial randomly generated values of LM’s

and N(0, 1) is a normally distributed random number with a mean of zero and

variance of 1.

3.1.3.3 Solution of Relaxed Problem

The following procedure is used to solve the relaxed PBUC problem for a set of

Lagrange multipliers: Λ = {λ1, λ2, . . . , λH}.

Step 1 : Get the price data for both the energy and reserve markets and values

of Lagrange multipliers for each scheduling hour.

Step 2 : set i = 1.

Step 3 : Get the input data for unit i: Pmax
i , Pmin

i etc.

Step 4 : Set h = 1.

Step 5 : Calculate P h∗
i from (3.23).

Step 6 : Check and correct for generator limit constraints:

if P h∗
i > Pmax

i , set P h∗
i = Pmax

i

if P h∗
i < Pmin

i , set P h∗
i = Pmin

i

Step 7 : Check and correct for unit ramp up and ramp down constraints:

if P h∗
i > P h−1

i +RUi, set P h∗
i = P h−1

i +RUi

if P h∗
i < P h−1

i −RDi, set P h∗
i = P h−1

i −RDi
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Step 8 : Compute the unit profits corresponding to various state transitions

considering the minimum up time and minimum down time constraints and

pick the optimal (more profitable) options.

Step 9 : set h = h + 1. If all hours have been covered, go to Step 10 else, go

back to Step 5.

Step 10 : Pick the option that results in higher profits and return the corre-

sponding UC schedule as optimal solution.

Step 11 : set i = i+ 1. If all generators have been covered, go to Step 12 else,

go back to Step 3.

Step 12 : Return the optimal UC schedule.

3.1.3.4 Lagrange Multipliers Update Using Evolutionary Particle Swarm

Optimization

The EPSO algorithm is used to update the Lagrange Multipliers to determine

the set that provides the best results. In the solution of the PBUC problem,

a particle represents a candidate solution to the problem i.e. a set of Lagrange

Multipliers with one Lagrange multiplier for each hour of the scheduling horizon.

Given a scheduling period of H hours, the jth particle after k iterations Λj,k =

{λ1j,k, λ2j,k, λ3j,k, . . . , λHj,k} represents a position in the H-dimension solution space.

The particle also has an associated velocity Vj,k = {v1j,k, v2j,k, v3j,k, . . . , vHj,k} which

represents a direction in which the particle is moving in the solution space. The

particle also has an associated set of weights Wj,k = {w0
j,k, w

1
j,k, w

2
j,k} which govern

the direction of particle movement. w0
j,k governs the particle’s inertia habit, w1

j,k

governs its memory habit, while w2
j,k governs its cooperation habit [43].

The following procedure is used to solve the PBUC problem while updating

particles (candidate solutions) using the EPSO algorithm:
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Step 1 : Initialization:

Initialize J particles Λj,0 j = 1, 2, . . . , J . Each particle is a set of H Lagrange

multipliers whereby the Lagrange multiplier corresponding to the jth particle

and hour h is obtained from (3.25). Store each initialized particle as pBestj; the

fitness of each initialized particle as the best fitness value for the corresponding

particle; and the fittest particle of all initialized particles as initial gBest.

Step 2 : set k = 1.

Step 3 : Replication

Each particle is replicated R times i.e. R new particles are created as:

Λr
j,k = Λj,k r = 1, 2, . . . R (3.26)

Step 4 : Mutation

Each particle has its weights mutated as:

wl,rj,k+1 = wl,0j,k + τw,lN(0, 1) l = 0, 1, 2; r = 1, 2, . . . R (3.27)

Step 5 : Reproduction

Each particle and its replicas generate an offspring according to the particle

movement rule5.

Λr
j,k+1 = Λr

j,k + V r
j,k+1 r = 0, 1, 2, . . . R (3.28)

where

V r
j,k+1 = w0,r

j,k · V
r
j,k+1 + w1,r

j,k ·
(
pBestj,k − Λr

j,k

)
+ w2,r

j,k ·
(
gBest∗k − Λr

j,k

)
(3.29)

In (3.29), the gBestk value is disturbed to give gBest∗k using:

gBest∗k = gBestk + τgN(0, 1) (3.30)

5Λ0
j,k refers to the original particle while Λ1

j,k, Λ2
j,k, . . . refer to the replica particles
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Step 6 : Evaluation

For each offspring, an optimal UC schedule is obtained by solving the relaxed

PBUC problem as described by the procedure in section 3.1.3.3. The obtained

UC schedule is used to calculate the offspring’s fitness.

Step 7 : Updating pBest and gBest

The fitness value of each offspring is used to update the pBestj,k and gBestk

values.

Step 8 : Selection

For each set of offspring, one is chosen to survive to the next generation through

a stochastic tournament. The stochastic tournament is carried out as follows:

• The best particle between the offspring of each particle is determined.

• This particle survives to the next generation with a probability pluck while

the other particles survive with a probability (1− pluck) /R.

• If pluck is set to 1 then the best particle will always be chosen (pure elitism

selection) while if pluck is set to 1/(R+ 1), there will pure random selection.

Step 9 : Convergence test

k = k + 1. If k = K go to Step 10. Else go to Step 3.

Step 10 : Store gBestK and its corresponding UC schedule as the optimal solu-

tion and STOP.

3.2 OBS-PBUC Solution Methodology

Section 3.2.1 explains the procedure adopted to determine the profit correspond-

ing to a given bidding strategy while section 3.2.2 details the step-by-step pro-

cedure implemented to select an optimal bidding strategy using the EPSO algo-

rithm.

57



3.2.1 Profit Maximization Procedure

As illustrated in section 2.3, a GENCO can opt to bid high or bid low with

respect to its marginal cost curve aiming to maximize its profits. Assume a linear

reference marginal cost curve given by6:

MCref = ρ+ βP h
T , (3.31)

where ρ and β are the marginal cost curve coefficients for the GENCO and P h
T

is its total output at hour h. Then, let µh be the bid curve multiplying factor at

hour h so that the GENCO bid curve at hour h is given by:

BCh = ρ+ µhβP h
T . (3.32)

The value of µh then defines the GENCO’s bidding strategy at hour h. For a

scheduling period ofH time periods, the set of bid factors U =
{
µ1, µ2, µ3, . . . , µH

}
constitutes the GENCO’s bidding strategy.

Figure 3.2: Profit Maximization procedure for a given bidding strategy.

For a given bidding strategy, the procedure used to determine a profit maxi-

6the subscript i indicating the GENCO number is dropped to improve readability of the
equations.
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mization schedule is shown in Figure 3.2. Given a particular bidding strategy, the

reference marginal cost curve, forecasted competitor bid curves, and the hourly

demand curves, the GENCO can forecast the market’s supply and demand curves

and hence the market equilibrium point as illustrated in section 2.3. As seen from

Figure 3.2, this gives the GENCO’s spot market allocations and the MCPs (spot

market prices). The spot market data is then combined with the bilateral mar-

ket data (demand and prices) which is fed to a profit maximization algorithm

to determine the optimal UC schedules and hence the profit associated with the

bidding strategy U .

3.2.2 EPSO Algorithm

Different bidding strategies give different spot market allocations and hence dif-

ferent optimal UC schedules. Thus, an algorithm that determines the optimal

bidding strategy is implemented in this paper using the EPSO algorithm [43].

In the solution of the OBS-PBUC problem, a particle represents a candidate

solution to the problem which in this case is a set of bid factors with one bid

factor for each time period of the scheduling horizon. Given a scheduling period

of H hours, the jth particle after k iterations Uj,k = {µ1
j,k, µ

2
j,k, µ

3
j,k, . . . , µ

H
j,k} rep-

resents a position in the H-dimension solution space. The particle also has an

associated velocity Vj,k = {v1j,k, v2j,k, v3j,k, . . . , vHj,k} and an associated set of weights

Wj,k = {w0
j,k, w

1
j,k, w

2
j,k}. The velocity represents a direction in which the particle

is moving in the solution space while the weights govern the direction of parti-

cle movement. w0
j,k governs the particle’s inertia habit, w1

j,k governs its memory

habit, while w2
j,k governs its cooperation habit [43].

A step by step outline of the procedure used to solve the OBS-PBUC problem

using the EPSO algorithm follows.
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Step 1 : Initialization:

Randomly initialize J particles Uj,0 j = 1, 2, . . . , J . Each particle is a set of H

bid factors defining a particular bidding strategy. For each particle, an optimal

unit commitment schedule is obtained using the profit maximization procedure

shown in Figure 3.2. The obtained profit PFj,0 is the particle’s initial fitness

value. Each initialized particle is stored as pBestj; the corresponding fitness

values as the best fitness values; and the fittest particle of all initialized particles

as initial gBest.

Step 2 : Set the algorithm generation counter k = 1.

Step 3 : Set the particles counter j = 1.

Step 4 : Replication

Each particle is replicated R times i.e. R new particles are created as:

U rj,k = Uj,k, r = 1, 2, . . . R. (3.33)

Step 5 : Set the particles replica counter r = 0.

Step 6 : Mutation

The weights for replica r of particle j are mutated as:

wl,rj,k+1 = wl,0j,k + τwlN(0, 1), l = 0, 1, 2; (3.34)

where τwl is the standard deviation of the random mutation of weight parameter

wl.

Step 7 : Reproduction

A new offspring is generated according to the particle movement rule7:

U rj,k+1 = U rj,k + V r
j,k+1, r = 0, 1, 2, . . . R, (3.35)

7U0
j,k refers to the original particle while U1

j,k, U2
j,k, . . . refer to the replica particles.
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where

V r
j,k+1 = w0,r

j,k · V
r
j,k + w1,r

j,k ·
(
pBestj,k − U rj,k

)
+ w2,r

j,k ·
(
gBest∗k − U rj,k

)
. (3.36)

In (3.36), the gBestk value is disturbed to give gBest∗k using:

gBest∗k = gBestk + τgN(0, 1) (3.37)

where τg is the standard deviation of the random disturbance of the gBest value.

Step 8 : Fitness Evaluation

An optimal UC schedule is obtained using the procedure described by Figure 3.2.

The profit obtained from the optimal UC schedule is is the offspring’s fitness.

Step 9 : Increase the replica counter by 1. If all replicas have been evaluated, go

to Step 10 , else go back to Step 6.

Step 10 : Updating pBest

The fitness values of particle j’s offspring are used to update the pBestj,k.

Step 11 : Selection

One offspring is chosen to survive to the next generation through a stochastic

tournament. The stochastic tournament is carried out as follows:

• The fittest between the particle’s offspring is determined.

• This particle survives to the next generation with a probability pluck while

the other particles survive with a probability (1− pluck) /R.

• If pluck is set to 1 then the best particle will always be chosen (pure elitism

selection) while if pluck is set to 1/(R+ 1), there will pure random selection.

Step 12 : Increase the particle counter by 1. If all particles have been evaluated,

go to Step 13, else go back to Step 4.

Step 13 : Updating gBest

The original gBestk−1 value and the highest profit from the pBestj,k values are
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used to update the gBestk value.

Step 14 : Increase the algorithm generations counter by 1. If K generations have

been exhausted, go to Step 15, else go back to Step 3.

Step 15 : Store gBestK and its corresponding UC schedule as the optimal solu-

tion and STOP.
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RESULTS AND DISCUSSION

CHAPTER FOUR

This section presents simulation results from the various algorithms described

in Chapter 3 and the final software tool developed for PBUC problem solution.

Section 4.1 gives results of the PBUC solution using LR-PSO, section 4.2 gives

results of PBUC solution using LR-EPSO, while section 4.3 gives results of the

OBS-PBUC solution using LR-EPSO illustrating the effect of GENCO market

power. Finally, section 4.4 describes the software tool developed for solution of

the PBUC problem using LR-PSO or LR-EPSO algorithms. The tool is given as

a MATLAB toolbox i.e. a collection of MATLAB m-files which can be run for a

set of input data given in an excel file. Screenshots of inputs and outputs of the

software tool are also given.

4.1 PBUC Solution Using LR-PSO

4.1.1 Test System

The algorithm described in section 3.1.2 is tested for a GENCO with 54 thermal

units. The generator data is adapted from the IEEE 118-bus test system and

obtained from [47]. The GENCO’s own load (bilateral market commitment) is

assumed to be constant at 3,500 MW with PEAK and OFF-PEAK prices as

shown in Table 4.1 [47].

4.1.2 Selection of PSO Parameters

The quality of the solution obtained from the PSO algorithm is largely dependent

on the values of the parameters used. Parameter selection is done in this research

by trying various combinations of the weighting factors w1, w2, and w3 in equation

(3.18). w1 was varied from 0.25 to 1.0 in steps of 0.25, while w2 was varied
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Table 4.1: Electricity Market Price Data

Hour Energy Reserve Bilateral Hour Energy Reserve Bilateral

Price Price Price Price Price Price

1 29.23 2.00 30.00 13 57.01 2.77 56.00

2 26.40 1.70 30.00 14 54.42 2.87 56.00

3 22.47 1.27 30.00 15 63.12 2.92 56.00

4 21.07 1.12 30.00 16 65.59 3.32 56.00

5 23.16 1.35 30.00 17 67.24 3.23 56.00

6 30.86 2.18 30.00 18 63.87 2.97 56.00

7 31.56 2.17 30.00 19 55.61 2.96 56.00

8 47.39 2.34 56.00 20 52.55 2.73 56.00

9 49.70 2.51 56.00 21 47.55 2.35 30.00

10 52.10 2.69 56.00 22 39.69 1.76 30.00

11 55.35 2.94 56.00 23 37.00 1.57 30.00

12 55.50 2.95 56.00 24 30.51 1.16 30.00

Table 4.2: PSO Parameter Sets

Set No. w1 w2 w3 Set No. w1 w2 w3

1 0.25 1.00 3.00 11 0.75 1.00 3.00

2 0.25 1.50 2.50 12 0.75 1.50 2.50

3 0.25 2.00 2.00 13 0.75 2.00 2.00

4 0.25 2.50 1.50 14 0.75 2.50 1.50

5 0.25 3.00 1.00 15 0.75 3.00 1.00

6 0.50 1.00 3.00 16 1.00 1.00 3.00

7 0.50 1.50 2.50 17 1.00 1.50 2.50

8 0.50 2.00 2.00 18 1.00 2.00 2.00

9 0.50 2.50 1.50 19 1.00 2.50 1.50

10 0.50 3.00 1.00 20 1.00 3.00 1.00
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from 1.0 to 3.0 in steps of 0.5. w3 was set using the formula: w2 + w3 = 4 as

suggested in literature [42]. These settings give 20 different combinations of the

PSO parameters as shown in Table 4.2. In each case, the number of particles

was set to J = 20 and the number of PSO iterations was set to K = 500. The

Lagrange multipliers were initialized to take random values ranging from 0 to 50.

The velocity was however not restricted so that the final value of the Lagrange

multipliers could be any positive real number. For each combination of PSO

parameters, 10 different trials of the PSO algorithm were run and the solutions

analyzed.

The maximum profit, average profit, and minimum profit from each combi-

nation of PSO parameters was determined and the results are shown in Fig. 4.1.

From Fig. 4.1, it is seen that the 12th combination of PSO parameters (w1 = 0.75;

w2 = 1.5; and w3 = 2.5) provides the best results in terms of obtained values of

GENCO profit. Hence, for the subsequent simulations these values are chosen as

the PSO parameters.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2.15
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Figure 4.1: PSO Parameter Sets Performance
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4.1.3 Optimal Solution

4.1.3.1 Unit Commitment

The Unit Commitment schedule for the best solution amongst all the trials carried

out is shown in Fig. 4.2. The horizontal axis represents the scheduling hour, while

the vertical axis refers to the unit number. A single box in the grid therefore,

indicates whether a unit is ON (shown in red) or OFF (shown in white). The

results show that some of the units e.g. 27 and 45 are ON throughout the day,

while others such as 33 and 46 are OFF throughout the day. Most of the units

are ON or OFF depending on the market price at a given hour.

4.1.3.2 Optimal Power Schedule

Fig. 4.3 shows the total committed generation for the 24 hours and the GENCO’s

own load from the UC schedule of Fig. 4.2. It also indicates the day’s total

profit as $2,355,259. From Fig. 4.3, the total scheduled power from the LR-

PSO algorithm is always greater than the GENCO’s load. There is no deficiency

in meeting the bilateral contract agreements hence the value of the Energy Not

Served (ENS) is indicated as zero. Should there be a deficiency in meeting

the total committed schedule, the value of ENS will be greater than zero. The

value of ENS = 0 is ensured by penalizing a result in which ENS > 0 when

determining the pBest and gBest value in the PSO algorithm.
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Figure 4.2: Unit Commitment Schedule Corresponding to the Optimal Solution
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Figure 4.3: Optimal GENCO Total Power Generation Schedule

4.1.3.3 Optimal Values of Lagrange Multipliers

Fig. 4.4 shows the resulting values of the Lagrange Multipliers corresponding

to the schedule shown in Fig. 4.2. It is observed that the LMs are larger for

durations of low market price (hrs 0 to 8) and when the market price is lower

than the bilateral contract price (hr 14, 20, 21). In these cases, it is relatively

expensive to participate in the spot market but it is necessary to generate power

to meet bilateral contract commitments. During the periods of relatively high

spot market price and when the spot market price is higher than the bilaterally

agreed price, constraint (3.8) is met and there is no need to add a penalty factor

hence the value LM = 0.
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Figure 4.4: Lagrange Multipliers Corresponding to the Optimal Solution
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4.1.3.4 Solution Convergence and Computation Time Analysis

Fig. 4.5 shows the evolution of the best solution (value of gBest) as well as

the computation time against the algorithm iteration number. It is seen that

after about 300 iterations, the optimal solution does not change much hence

it is sufficient to say that 500 iterations are enough for the current problem

size. The solution time increases linearly with the number of iterations hence

increasing the number of iterations would only increase the computation time

without significantly improving the best solution.
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Figure 4.5: Analysis of solution convergence and computation time

4.2 PBUC Solution Using LR-EPSO

4.2.1 Test System

The methodology described in section 3.1.3 is implemented in MATLAB and

tested for a GENCO with 10 thermal units whose data is shown in Table 4.3.

The data is adapted from the IEEE 118-bus test system which has 54 thermal

units. Other unit data such as ramp rate limits and minimum up and down times

can be found from http://motor.ece.iit.edu/data/ PBUCData.pdf [46]. The total

installed capacity for the GENCO is 830 MW, about 10% of the system installed
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capacity of 8270 MW. In this case, because of the size of the GENCO it can be

assumed to be a price taker (negligible market power) and hence it can be assumed

that there is no relationship between its power output and the electricity market

price.
Table 4.3: Generating Units Data

Unit No. Pmin
i Pmax

i P 0
i a b c

[MW] [MW] [MW] [$] [$/MW] [$/MW2]

1 8 20 0 35.90 75.39 0.05660

2 8 20 0 35.90 75.39 0.05660

3 5 30 0 63.34 52.49 0.13932

4 5 30 0 63.34 52.49 0.13932

5 20 50 0 117.62 45.88 0.01954

6 25 50 0 117.62 45.88 0.01954

7 30 80 40 148.66 30.94 0.09184

8 25 100 100 20.30 35.64 0.02560

9 50 200 100 78.00 26.58 0.00880

10 50 250 250 56.00 24.66 0.00480

Fig. 4.6 shows the GENCO’s marginal cost curve obtained from the unit

characteristics of Table 4.3. The marginal cost curve is used to determine the

initial values of the Lagrange multipliers as explained in Section 3.1.3.2. The

hourly price of energy and reserve is shown in Table 4.4. It is assumed that reserve

price is the same for both standing and spinning reserve. The hourly bilateral
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Figure 4.6: GENCO Marginal cost curve
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market commitment and price is shown in Table 4.5. The hourly bilateral market

price is assumed to be 10% higher than the marginal cost corresponding to the

bilaterally committed load as can be read from Fig.4.6.

Table 4.4: Energy and Reserve Price Data

Hour Energy Reserve Hour Energy Reserve

Price Price Price Price

[$/MWh] [$/MWh] [$/MWh] [$/MWh]

1 29.23 2.00 13 57.01 2.77

2 26.40 1.70 14 54.42 2.87

3 22.47 1.27 15 63.12 2.92

4 21.07 1.12 16 65.59 3.32

5 23.16 1.35 17 67.24 3.23

6 30.86 2.18 18 63.87 2.97

7 31.56 2.17 19 55.61 2.96

8 47.39 2.34 20 52.55 2.73

9 49.70 2.51 21 47.55 2.35

10 52.10 2.69 22 39.69 1.76

11 55.35 2.94 23 37.00 1.57

12 55.50 2.95 24 30.51 1.16

Table 4.5: Bilateral Market Data

Hour Bilateral Bilateral Hour Bilateral Bilateral

Load Price Load Price

[MW] [$/MWh] [MW] [$/MWh]

1 397 32.09 13 422 32.57

2 387 31.89 14 412 32.37

3 371 31.58 15 417 32.47

4 360 31.37 16 422 32.57

5 347 31.12 17 435 32.82

6 380 31.75 18 445 33.21

7 397 32.08 19 457 39.91

8 417 32.47 20 467 40.10

9 427 32.66 21 472 40.19

10 442 33.08 22 447 33.30

11 445 33.21 23 440 33.00

12 432 32.76 24 427 32.66
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4.2.2 Comparison of Solution Quality

The PBUC problem was solved using EPSO for the GENCO described in Section

4.2.1. For the purpose of solution quality and convergence characteristics compar-

ison, an equivalent methodology based on the classic PSO algorithm [45] was also

tested. Both algorithms were run thirty times. In each case, the initial weights

were randomly generated from uniform distributions. w0
j was drawn from the

range [0 1], while both w1
j and w2

j were drawn from the range [0 2]. In each trial

the same values of the weights were used for both the EPSO and PSO algorithms.

The other EPSO parameters are set as: J = 20, K = 500, R = 1, pluck = 0.8,

τλ = 1, τw = 0.5, and τg = 0.05. For both algorithms, the best solution, average

solution, and worst solutions were determined and are reported in Table 4.6. It

is clearly seen that the proposed EPSO algorithm produces better solutions than

the classic PSO algorithm in terms of the final value of the GENCO profit.

Table 4.6: Comparison of Solution Quality obtained by PSO and EPSO

Algorithm Best Solution Average Solution Worst Solution

PSO $178, 069 $177, 591 $172, 685

EPSO $178, 911 $178, 317 $177, 408

The GENCO’s total committed generation from the best run of the EPSO

and PSO algorithms are shown in Fig. 4.7. The slight differences in the two

curves result in the differences in the values of profit shown in Table 4.6.

4.2.3 Comparison of Convergence Characteristics

The convergence characteristics of the average value of the objective function at

each iteration is shown in Fig. 4.8 It is seen that the proposed EPSO algorithm

converges faster and generally to a higher value of profit than the PSO algorithm.

On average, it takes about less than 6 iterations for the EPSO algorithm to reach
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Figure 4.7: Comparison of best generation schedule produced by the EPSO
and PSO algorithms

the average final objective function value reached by the PSO algorithm. The

better performance of the EPSO algorithm confirmed by Table 4.6 and Fig. 4.8

is due to the inherent parameter tuning characteristic due to the mutation step

of the algorithm.
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4.3 OBS-PBUC Solution Illustrating GENCO Market Power

4.3.1 Test System

The IEEE 118-bus system data [46, 47] was used to simulate a deregulated elec-

tricity market environment with three GENCOs of different sizes in terms of

installed capacity of generators. The three GENCOs operate several of the 54

thermal units in the IEEE 118-bus test system and the generating units data are

given in Tables 4.7, 4.8, and 4.9 for GENCOs A, B, and C respectively.

The generator cost coefficients are scaled up from the values given in [47] so as

to give more realistic energy prices. Based on the installed capacity, GENCO A

controls about 60% (4340 MW out of 7220 MW) of the system capacity; GENCO

B controls about 30% (2140 MW out of 7220 MW); while GENCO C controls

about 10% (740 MW out of 7220 MW) of the system capacity. The reference

linear marginal cost curves for each of the three GENCOs and the aggregated

system marginal cost curve are shown in Figure 4.9. The marginal cost curves

show that GENCO A operates the cheaper units while GENCO C operates the

most expensive units.
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Figure 4.9: (a) Individual marginal cost curves for the three GENCOs and (b)
aggregated system marginal cost curve.
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Table 4.7: GENCO A’s Generator Data

Unit No. of Pmin
i Pmax

i Capacity a b c MUT MDT RU RD HSC CSC CShr

Code Units [MW] [MW] [MW] [$/h] [$/MWh] [$/MWh2] [hrs] [hrs] [MW] [MW] [$/h] [$/h] [hrs]

A1 2 100 420 840 128.32 16.68 0.0212 10 10 210 210 250 500 20

A2 8 100 300 2400 13.56 25.78 0.0218 8 8 150 150 110 220 16

A3 2 50 250 500 56.00 24.66 0.0048 8 8 125 125 100 200 16

A4 1 50 200 200 13.56 25.78 0.0218 8 8 100 100 400 800 16

A5 3 25 100 300 20.30 35.64 0.0256 5 5 50 50 50 100 10

A6 2 25 50 100 117.62 45.88 0.0195 2 2 25 25 45 90 4

Total 18 4340

Table 4.8: GENCO B’s Generator Data

Unit No. of Pmin
i Pmax

i Capacity a b c MUT MDT RU RD HSC CSC CShr

Code Units [MW] [MW] [MW] [$/h] [$/MWh] [$/MWh2] [hrs] [hrs] [MW] [MW] [$/h] [$/h] [hrs]

B1 1 100 350 350 65.92 21.50 0.0060 8 8 175 175 100 200 16

B2 1 100 300 300 65.92 21.50 0.0060 8 8 150 150 440 880 16

B3 2 50 200 400 78.00 26.58 0.0088 8 8 100 100 100 200 16

B4 8 25 100 800 20.30 35.64 0.0256 5 5 50 50 50 100 10

B5 1 20 50 50 117.62 45.88 0.0195 2 2 25 25 45 90 4

B6 8 5 30 240 63.34 52.49 0.1393 1 1 15 15 40 80 2

Total 21 2140
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Table 4.9: GENCO C’s Generator Data

Unit No. of Pmin
i Pmax

i Capacity a b c MUT MDT RU RD HSC CSC CShr

Code Units [MW] [MW] [MW] [$/h] [$/MWh] [$/MWh2] [hrs] [hrs] [MW] [MW] [$/h] [$/h] [hrs]

C1 4 25 100 400 20.30 35.64 0.0256 5 5 50 50 50 100 10

C2 1 30 80 80 48.66 30.94 0.0918 3 3 40 40 45 90 6

C3 6 5 30 180 63.34 52.49 0.1393 1 1 15 15 40 80 2

C4 4 5 20 80 35.90 75.39 0.0566 1 1 10 10 30 60 2

Total 15 740
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Nominal market clearing prices αhs corresponding to a spot market demand

P h
D can be read off from the aggregated reference marginal cost curve of Figure

4.9(b). Additionally, linear demand curves are assumed for various load levels

with a per-unit gradient of −5 i.e.

∆αhs/α
h
s

∆P h
T /P

h
T

= −5. (4.1)

Equation (4.1) means that a 100% increase in the spot market price would result

in a 20% reduction in the spot market demand. A 24-hour (day ahead) scheduling

period is applied and the load level is shown in Figure 4.10.
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Figure 4.10: Spot market demand curve.

Apart from the allocations in the spot market, GENCO A is assumed to have

a bilateral load demand equivalent to 10% of of the system spot market demand

(Figure 4.10) at a constant price of $45/MWh. A contract of differences factor (κ

in equation (3.3)) is set at 0.5. GENCOs B and C are assumed to have no bilateral

commitments. The price of reserve power (both spinning and non-spinning) is

set at a constant $4.50/MW.

First, in section 4.3.2 a discussion of the nominal system equilibrium is pre-

sented i.e. the market prices, spot market load allocations, and expected GENCO

profits (results of the PBUC) if each GENCO were to bid its nominal bid curve as
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shown in Figure 4.9(a). Then, the solution to the OBS-PBUC problem for each

of the three GENCOs using the proposed EPSO algorithm is presented in section

4.3.3. Finally, in section 4.3.4, a comparison of the simulations results using the

proposed EPSO algorithm and the classical PSO algorithm is presented.

4.3.2 Nominal System Equilibrium

The spot market demand curve plotted in Figure 4.10 shows the load varying

from a low of 2900 MW at midnight to a maximum of 6100 MW at 10 am. If

all three GENCOs bid their reference marginal cost curves, the hourly market

clearing prices (MCPs) will be as shown in Figure 4.11(a). As expected, the
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Figure 4.11: (a) Hourly MCPs corresponding to the nominal marginal cost
curves and (b) spot market allocations for each individual GENCO.
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MCP curve follows the spot market load with a minimum value of $34.17/MWh

at midnight and a peak of $57.82/MWh 10 am. Also shown in Figure 4.11(b)

is the hourly allocation of the spot market load to the three GENCOs. Figure

4.11(b) shows that GENCO A gets most of the load and is actually limited during

the peak hours of 8 am to 4 pm by its capacity less the bilateral market demand.

GENCO B supplies mainly the intermediate load with the allocation of 1978 MW

at 10 am almost equaling its capacity of 2140 MW. GENCO C primarily acts as

a peak load generator only supplying energy during the peak hours. During the

low peak hours before 5 am, GENCO C receives no allocation thus only receiving

payments from sale of reserve power.

Also shown in Figure 4.11(b) is the total daily energy to be supplied by the

three GENCOs in the spot market. It is observed that GENCO A is allocated

70.2% of the spot market demand during the day while GENCOs B and C are

allocated only 26.6% and 3.2% respectively. While GENCO B’s allocation com-

pares relatively well to its installed capacity (30% relative to the system capacity)

GENCO A’s allocation is significantly higher than its relative installed capacity

while GENCO C’s allocation is significantly lower than its relative installed ca-

pacity. Again, this is because GENCO A has cheaper units hence is usually

allocated first while GENCO C has more expensive units and is allocated last. A

Profit Based Unit Commitment algorithm was run for each of the three GENCOs

with the base case spot market allocations shown in Figure 4.11(b) and the the

expected values of daily revenue, operating costs, and profits for each GENCO

are shown in Table 4.10.
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Table 4.10: Revenues, costs, and profits for nominal bidding strategies.

GENCO A GENCO B GENCO C

REVENUES

Spot Market 3, 523, 184 1, 369, 344 177, 640

Reserve Sales 59, 434 86, 817 56, 838

Bilateral Market 501, 075 − −

CFDs 2, 922 − −

TOTAL REVENUE 4, 086, 615 1, 456, 161 234, 479

TOTAL COST 2, 620, 007 914, 826 148, 268

PROFIT 1, 466, 608 541, 335 86, 211

4.3.3 Optimal Bidding Strategy

The OBS-PBUC problem was solved using the EPSO algorithm described in

section 3.2.2 for each of the three GENCOs assuming that each is acting inde-

pendently and using the competing GENCO’s nominal marginal cost curves as

the expected competitor bidding curves in each case. Values for the various pa-

rameters used in the EPSO algorithm are given in Table 4.11. Simulation results

including the optimal values of the hourly bid factors, the expected MCPs, spot

market allocations, revenues, costs, and profits are discussed next.

Table 4.11: Parameter values for EPSO algorithm.

Parameter Value

no. of particles 20

no. of iterations 500

initial value of weight w0 0.4

initial value of weight w1 1.0

initial value of weight w2 2.0

standard deviation of weights, τwl 0.1

standard deviation of gBest, τg 0.01

no. of replica particles 1

probability of best particle surviving, pluck 0.8
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Figure 4.12: Optimal hourly bid factors.
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Figure 4.13: Effect of individual GENCO optimal bidding strategies on the
MCPs and the spot market allocations.
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The hourly values of the bid factors that give the maximum profits defines

a GENCO’s optimal bidding strategy. Figure 4.12 shows the obtained values of

the optimal bid strategies for the three GENCOs. As seen from Figure 4.12,

the optimal values of the hourly bidding factors are in the range of 2.0 to 4.3

for GENCO A, 0.9 to 1.8 for GENCO B, and 0.5 to 1.3 for GENCO C. The

interpretation here is that GENCO A should generally bid higher than its nominal

bidding curve, GENCO B should bid just slightly higher than its nominal bidding

curve while GENCO C should bid lower than its nominal bidding curve in order

to maximize their respective profits.

Figures 4.13 (a), (b), and (c) show how the optimal bidding strategy for each

GENCO would alter the hourly spot market clearing prices. GENCO A’s high

bidding factors significantly raise the MCPs; GENCO B’s strategy would slightly

raise the MCPs while GENCO C’s strategy has almost no effect on the MCPs.

These results confirm that GENCO C is in fact a price taker while GENCO A is

a price maker with significant market power to alter the MCPs. The effect of the

optimal bidding strategies on the spot market allocations are shown in Figures

4.13 (d), (e), and (f). GENCO A’s optimal bidding strategy would significantly

reduce its allocation in the spot market; GENCO B’s optimal bidding strategy

would slightly reduce its allocation in the spot market; while GENCO C’s optimal

bidding strategy would significantly increase its allocation in the spot market

during peak hours.

Comparisons of the revenues, costs, and profits for each of the three GENCO’s

are given in Tables 4.12, 4.13, and 4.14. Table 4.12 — corresponding to GENCO

A — shows a reduction in the revenues from the spot market resulting from the

reduced allocations due to the optimal bidding strategy. However the reduction in

operating costs coupled with revenues from the increased reserve sales and CFDs
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Table 4.12: GENCO A revenues, costs, and profits for optimal bidding strategy.

Nominal Optimal Difference

REVENUES

Spot Market 3, 523, 184 2, 768, 844 −754, 340

Reserve Sales 59, 434 189, 213 +129, 779

Bilateral Market 501, 075 501, 075 0

CFDs 2, 922 85, 562 +82, 640

Total Revenues 4, 086, 615 3, 544, 694 −541, 921

Total Costs 2, 620, 007 1, 518, 954 −1, 101, 053

Profits [$/day] 1, 466, 608 2, 025, 739 +559, 131

(+38.1%)

gives an overall increase in profits. These results show that it is more beneficial

for GENCO A to bid high to increase the MCPs even though this may reduce its

spot market allocations and its spot market revenues as a result.

Table 4.13 — corresponding to GENCO B — shows similar results to those of

GENCO A though to a lesser extent. The reduction in operating costs coupled

with revenues from the increased reserve sales outweighs reduction in spot market

revenues resulting from the reduced allocations due to the optimal bidding strat-

Table 4.13: GENCO B revenues, costs, and profits for optimal bidding strategy.

Nominal Optimal Difference

REVENUES

Spot Market 1, 369, 344 1, 221, 779 −147, 565

Reserve Sales 86, 817 108, 219 +21, 402

Bilateral Market − − −

CFDs − − −

Total Revenues 1, 456, 161 1, 329, 998 −126, 163

Total Costs 914, 826 716, 916 −197, 910

Profits [$/day] 541, 335 613, 082 71, 747

(+13.3%)
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egy. However, GENCO B achieves only a 13.3% increase in profits compared to a

38.1% increase for GENCO A. This is a consequence of the GENCO A’s market

power enabling it to have a greater influence on the MCPs a result that is also

deduced from Figures 4.13 (a) and (b).

Table 4.14 — corresponding to GENCO C — shows that for the smallest

GENCO the optimal bidding strategy is to bid low in order to capture slightly

more of the spot market demand. As seen from Table 4.14, the net increase

in revenues (increase in spot market revenues less reductions in reserve sales) is

greater than the increase in operating costs for supplying more energy. However,

the final increase in profits (+3.7%) is relatively small when compared to the profit

increases realized by GENCOs A and B. Again this is attributed to GENCO C’s

relative weakness in the electricity market.

Table 4.14: GENCO C revenues, costs, and profits for optimal bidding strategy.

Nominal Optimal Difference

REVENUES

Spot Market 177, 640 228, 785 51, 145

Reserve Sales 56, 838 52, 467 −4, 371

Bilateral Market − − −

CFDs − − −

Total Revenues 234, 479 281, 252 46, 773

Total Costs 148, 268 191, 856 43, 588

Profits [$/day] 86, 211 89, 396 3, 185

(+3.7%)

The relationship between the GENCO market power (measured by the GENCO’s

relative size in the market) and the effect of their optimal bidding strategies on

the market dynamics are summarized in Table 4.15. Note that if the three GEN-

COs had equal market power, GENCO A would have less effect on market price

and allocations while GENCO C would have a larger effect on the same. The
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effect of GENCO B would be somewhat similar to the results given in Table 4.15

since it controls about one third of the market share. The imbalance observed in

the percentage change in expected profits would not be observed.

Table 4.15: Effect of GENCO market power on market prices, allocations, and individual
profits.

GENCO A GENCO B GENCO C

% installed capacity
(market power)

60% 30% 10%

Average % change in spot energy market
prices

+31.4% +7.2% −0.8%

Average % change in spot energy market
allocations

−41.5% −18.1% +30.8%

% change in expected profits +38.1% +13.3% +3.7%

4.3.4 Comparison of EPSO and PSO algorithms

The performance of the implemented EPSO algorithm was compared to the per-

formance of a similar implementation using the classical PSO algorithm. The

problem was solved for the three GENCOs 20 times using both algorithms start-

ing from the same initial particles in each trial. The same parameter values (i.e.

number of particles, number of iterations, and weight values) given in Table 4.16

for the EPSO algorithm were used for the implemented PSO algorithm. The per-

formance of the two algorithms was measured in terms of the objective function

values from the 20 runs. Table 4.16 gives the best, average, and worst solutions

obtained for both algorithms for each of the three GENCOs. Also given in Ta-

ble 4.16 is the standard deviation for the solutions. The table shows that the

proposed EPSO algorithm outperforms the classical PSO algorithm in all cases.

The superior performance of the EPSO algorithm is attributed to the mutation

characteristics embedded in the algorithm which tunes the algorithm parameters

in subsequent generations hence resulting in a better search of the solution space.
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Table 4.16: Comparison of solution quality using PSO and EPSO algorithms.

GENCO A GENCO B GENCO C

PSO EPSO PSO EPSO PSO EPSO

Best solution
[$/day]

1, 954, 488 2, 025, 739 610, 497 613, 082 88, 703 89, 396

Average
solution [$/day]

1, 903, 261 1, 967, 363 598, 663 600, 745 87, 987 88, 982

Worst solution
[$/day]

1, 850, 798 1, 931, 389 584, 485 585, 105 87, 293 88, 482

Standard dev.
[$/day]

40, 644 31, 811 7, 348 6, 365 348 262

4.4 PBUC Solution Tool

The algorithms presented in this thesis are put together as a package in MAT-

LAB software. The package is a collection of MATLAB m-files that can be used

to solve the Profit Based Unit Commitment problem using either the PSO or

EPSO algorithms. The PSO and EPSO code can, however, be used to solve any

other optimization problem as long as the data is presented in the right format.

This section gives a discussion of the Toolbox organization and simulation in

MATLAB.

4.4.1 MATLAB Toolbox Organization

The tool is a set of MATLAB m-files for solving the PBUC problem. Generally,

the m-files can be grouped into four categories as shown in Figure 4.14. The

application of the four sets of scripts is described in the subsequent sub-sections:

4.4.1.1 PBUC m-files

The m-files under PBUC are used to solve the PBUC problem as described in

section 3.1.2. Either the PSO or EPSO algorithms is used to update the values
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Figure 4.14: MATLAB toolbox organization.

of Lagrange multipliers. The algorithm to be applied must be defined in the

inputs to the main code. The main code is PBUC which is complemented by 9 sub

routines. The details of the MATLAB scripts are summarized in Table 4.17.

4.4.1.2 OBS-PBUC m-files

The m-files under OBS PBUC are used to solve the OBS-PBUC problem as de-

scribed in section 3.2. Again, either the PSO or EPSO algorithms is used to

update the values of the optimal bid factors. The algorithm to be applied must

be defined in the inputs to the main code which is OBS PBUC. The main code is

complemented by 10 sub routines – the details of which are summarized in Table

4.18.

87



Table 4.17: PBUC functions

Function name Description

PBUC Runs the main PBUC code. Inputs include the name
of the excel file holding the data and the solution
algorithm i.e. PSO/EPSO.

PBUC get data Fetches the system data and algorithm data from the
specified excel sheet.

PBUC initialize Randomly generates initial values of possible
solutions (PSO or EPSO particles).

PBUC marginal cost calc Calculates the marginal cost. Used to give initial
approximate values of Lagrange multipliers (see
section 3.1.3.2).

PBUC obj fcn calc Calculates the objective function value (particle
fitness) for a given possible solution.

PBUC relaxed problem soln Solves the relaxed PBUC problem (see section
3.1.2.1).

PBUC dynamic program Implements the hour-by-hour dynamic programming
code for solving the relaxed PBUC problem.

PBUC profit calc Calculates the profit given a UC and power
generation schedule.

PBUC format results Formats the results from the PSO/EPSO code.

PBUC store display results Used to store and display results after a successful
run of the algorithm.

4.4.1.3 PSO m-files

The m-files under PSO implement the PSO algorithm described in section 2.4.3

to solve a mathematical optimization problem. Any optimization problem set

up in the specified format can be solved using the PSO m-files. In this research,

the optimization problems are the PBUC and OBS-PBUC problems. The main

code is PSO and is complemented by 5 sub routines – the details of which are

summarized in Table 4.19.
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Table 4.18: OBS-PBUC functions

Function name Description

OBS PBUC Runs the main OBS-PBUC code. Inputs include the
name of the excel file holding the data and the
solution algorithm i.e. PSO/EPSO.

OBS PBUC get data Fetches the system data and algorithm data from the
specified excel sheet.

OBS PBUC initialize Randomly generates initial values of possible
solutions (PSO or EPSO particles).

OBS PBUC marginal cost calc Calculates the marginal cost. Used to give initial
approximate values of Lagrange multipliers (see
section 3.1.3.2).

OBS PBUC obj fcn calc Calculates the objective function value (particle
fitness) for a given possible solution.

OBS PBUC relaxed problem soln Solves the relaxed OBS-PBUC problem (see section
3.1.2.1).

OBS PBUC dynamic program Implements the hour-by-hour dynamic programming
code for solving the relaxed OBS-PBUC problem.

OBS PBUC profit calc Calculates the profit given a UC and power
generation schedule.

OBS PBUC format results Formats the results from the PSO/EPSO code.

OBS PBUC store display results Stores and displays results after a successful run of
the algorithm.

Table 4.19: PSO functions

Function name Description

PSO Runs the PSO algorithm for a given objective
function returning the results as a MATLAB struct
variable.

PSO parameters Extracts PSO algorithm parameters.

PSO evaluation Evaluates objective function values for a given set of
PSO particles.

PSO pBest gBest update Updates the pBest and gBest values after a PSO
iteration.

PSO particle update Updates the PSO particles using the PSO particle
update equation.

PSO display results Displays results after a successful run of the
algorithm.
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4.4.1.4 EPSO m-files

The m-files under EPSO implement the EPSO algorithm described in section 2.4.4

to solve a mathematical optimization problem. Similar to the PSO set of m-files,

any mathematical optimization problem set up in the specified format can be

solved using the EPSO m-files. In this research, the optimization problems are the

PBUC and OBS-PBUC problems. The main code is EPSO and is complemented

by 8 sub routines – the details of which are summarized in Table 4.20.

Table 4.20: EPSO functions

Function name Description

EPSO Runs the EPSO algorithm for a given objective
function returning the results as a MATLAB struct
variable

EPSO parameters Extracts EPSO algorithm parameters.

EPSO evaluation Evaluates objective function values for a given set of
EPSO particles

EPSO pBest gBest update Updates the pBest and gBest values after an EPSO
iteration

EPSO replication Replicates a set of EPSO particles

EPSO mutation Mutates weights for the EPSO particles

EPSO reproduction Reproduces EPSO particles using the EPSO particle
movement rule

EPSO selection Selects EPSO particles surviving to the next
generation through a stochastic tournament

EPSO display results Displays results after a successful run of the
algorithm.

4.4.2 Simulation Details

The developed tool is used to solve the PBUC problem with the option of includ-

ing an Optimal Bidding Strategy in the simulation results as described in section

3.2. A simulation will involve the following three main steps:

1. Preparing the required data (system data, algorithm parameters, other re-

quired options)
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2. Running the simulation (using the appropriate MATLAB function)

3. Viewing / storing the results. The results can be viewed on the screen

and/or saved in an excel file.

Details of the above three steps are given in the following sub sections.

4.4.2.1 Preparing required data

The required data includes the generator data, price and demand data, other

constants, and solution algorithm parameters. The sets of data have to be stored

in an excel file (.xls or .xlsx format) as shown in Figures 4.15 and 4.16.

Figure 4.15: Generator data stored in an excel sheet.

Generator data

The data detailing the generator characteristics are stored in columns A to P of

the excel sheet as shown in Figure 4.15. The data in each column of the excel

sheet is as detailed in Table 4.21.

Price and Demand data

The data detailing the expected system demand, expected hourly prices, bilateral

demand, and bilateral prices are stored in columns R to W of the excel sheet as
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Table 4.21: Generator data as stored in input excel sheet.

Column Data Details

A Unit number a numerical value for identifying each generator

B Pmax maximum generator output in MW

C Pmin minimum generator output in MW

D P-initial initial generator output in MW

E a constant term of the generator cost curve equation in $/h

F b linear term of the generator cost curve equation in $/MWh

G c quadratic term of the generator cost curve equation in
$/(MWh)2

H MUT generator minimum up time in hrs

I MDT generator minimum down time in hrs

J Ramp Up generator ramp up limit in MW/hr

K Ramp Down generator ramp down limit in MW/hr

L HSCost generator hot start cost coefficient in $/hr

M CSCost generator cold start cost coefficient in $/hr

N CSHour duration of time after which a generator is considered cold in
hrs

O Initial Hr duration of time for which a generator has been ON/OFF at
the beginning of the simulation in hrs. Important for
enforcing the MUT and MDT constraints at the initial hours.

P GENCO a numerical value denoting to which GENCO a generator
belongs to. Important in the optimal bidding strategy
simulations

Table 4.22: Price and demand data as stored in input excel sheet.

Column Data Details

R Hour a numerical value for identifying each hour of the
scheduling period

S System Demand expected spot market demand at each hour in MW

T Energy Price expected energy price at each hour in $/MWh

U Reserve Price expected reserve price at each hour in $/MWh

V Bilateral Demand a GENCO’s bilateral demand commitment at each hour
in MW

W Bilateral Price bilateral contract price at each hour in $/MWh
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Table 4.23: Other System Constants as stored in input excel sheet.

Cell Data Details

Z3 τ LM standard deviation of initial randomly generated values of
Lagrange multipliers – see equation (3.25)

Z4 k cfd contract of differences factor – see equation (3.3)

Z5 k dem gradient of linear demand curve – see equation (4.1)

Z6 genco a numerical value identifying the GENCO whose simulation is
being run

Table 4.24: Algorithm parameters as stored in input excel sheet.

Cell Data Details

PSO

AC3 No particles number of PSO particles

AC4 No iterations number of PSO iterations

AC5 w0 PSO weighting factor corresponding to particle inertia

AC6 w1 PSO weighting factor corresponding to particle pBest

AC7 w2 PSO weighting factor corresponding to overall gBest

EPSO

AD3 No particles number of EPSO particles

AD4 No iterations number of EPSO iterations

AD5 w0 initial value of EPSO weighting factor corresponding to
particle inertia

AD6 w1 initial value of EPSO weighting factor corresponding to
particle pBest

AD7 w2 initial value of EPSO weighting factor corresponding to
overall gBest

AD8 τ w0 standard deviation of mutation of weighting factor w0

AD9 τ w1 standard deviation of mutation of weighting factor w1

AD10 τ w2 standard deviation of mutation of weighting factor w2

AD11 τ gBest standard deviation of random disturbance of gBest

AD12 R number of EPSO particle replications

AD13 pluck probability of best particle offspring surviving after an
iteration
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Figure 4.16: Price and demand data, system constants, and algorithm
parameters stored in an excel sheet.

shown in Figure 4.16. The data in each column of the excel sheet is as described

in Table 4.22.

Other Constants

Other necessary constants are stored in rows 3 to 5 of column Z of the excel sheet

as shown in Figure 4.16. The data in each cell is as described in Table 4.23.

Algorithm parameters

The data detailing the PSO algorithm parameters are stored in rows 3 to 7 of

column AC while the data detailing the EPSO algorithm parameters are stored in

rows 3 to 13 of column AD of the excel sheet as shown in Figure 4.16. The data

in each cell is as described in Table 4.24.

4.4.2.2 Running Simulations

A simulation is run by calling one of the main simulation functions i.e. PBUC or

OBS PBUC with two inputs: filename and algname. The input filename should
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hold the name of the excel file in which the simulation data is stored and the

input algname should define the algorithm being used in the simulation i.e. PSO

or EPSO. A simulation is therefore run by typing into the MATLAB command

window as shown in Fig. 4.17.

Figure 4.17: Running a PBUC simulation in the MATLAB command window.

In Fig. 4.17 a PBUC simulation is run for data in a file: SystemData 10gen.xlsx

using the EPSO algorithm. The results are stored in a MATLAB struct Results

from which the simulation results can be accessed.

4.4.2.3 Displaying Results

After running a simulation, the results can be stored and displayed by calling the

PBUC store display results or OBS PBUC store display results functions as

shown in Fig. 4.18. The input to the function is the result struct obtained from

the simulation shown in Fig. 4.17.

Figure 4.18: Storing and displaying the results of a simulation.

While the results can be displayed explicitly as shown in Fig. 4.18, the main codes

PBUC and OBS PBUC run the display results algorithm as an internal subroutine.

Figures 4.19 and 4.20 show a typical output on the computer screen for a solution

of the PBUC problem.
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Figure 4.19: PBUC Solution results printed on the screen - page 1.
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Figure 4.20: PBUC Solution results printed on the screen - page 2.
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CONCLUSION AND RECOMMENDATIONS

CHAPTER FIVE

5.1 Conclusion

1. PBUC solution using LR-PSO

An algorithm that combines the Lagrangian relaxation technique with the

heuristic particle swarm optimization techniques is used to solve the profit

based unity commitment problem for GENCOs in deregulated electricity

markets. The problem is formulated to include a constraint setting the

minimum GENCO output at a given hour as the bilaterally committed

generation for the hour. Based on an implementation for a GENCO with

54 thermal units, the research concluded that:

• The proposed methodology is effective in solving the PBUC problem.

• The performance of the methodology in the solution of the PBUC

problem strongly depends on the PSO parameters. In particular, an

assessment of various combinations of PSO parameters results in the

choice of w1 = 0.75, w2 = 1.5, and w3 = 0.25 as best weight parameters

for the test system.

Because the choice of PSO parameters has a significant effect on the so-

lution quality, the EPSO algorithm was explored since research showed

that EPSO has better performance.

2. PBUC solution using LR-EPSO

An algorithm based on the evolutionary particle swarm optimization tech-

nique is used to solve the profit based unit commitment problem for GEN-

COs in deregulated markets. The algorithm was implemented for a GENCO

with 10 thermal units and an analysis of the results led to the following con-
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clusions:

• The proposed LR-EPSO methodology has a better performance than

the classic PSO algorithm both in terms of solution quality and con-

vergence characteristics.

• However, the profitability of the GENCO depends on its market power.

Hence, the algorithm was extended not only to determine the optimal

unit commitment schedule, but to also establish an optimal bidding

strategy that depends on the GENCO market power.

3. OBS-PBUC solution using LR-EPSO considering GENCO market

power

An algorithm based on the evolutionary particle swarm optimization tech-

nique is used to determine an optimal bidding strategy and unit commit-

ment for a GENCO operating in a competitive electricity market. The

procedure determines how a GENCO should structure its hourly bid curves

so as to maximize expected profits from both the spot and bilateral energy

markets. Numerical results from simulations of a typical system with three

GENCOs of different sizes led to the following conclusions:

• GENCO market power has a significant effect on the optimal solution

of the PBUC problem.

– Generally, large GENCOs with significant market power could

raise their bids thereby significantly raising electricity prices and

hence increasing their profits, though the higher bids could reduce

their allocations in the spot market.

– On the other hand, smaller GENCOs with less market power are

generally price takers and have relatively less influence on the
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market equilibrium. The optimization algorithm results in only

slight increases in expected profits for these GENCOs.

• The proposed EPSO algorithm gives better solutions (in terms of the

final optimal values) when compared to the classic PSO algorithm.

4. PBUC and OBS-PBUC solution Tool in MATLAB

• The MATLAB scripts used to solve the PBUC and OBS-PBUC prob-

lems are aggregated in a MATLAB toolbox. The toolbox has four sets

of MATLAB m-files under the titles: PBUC, OBS-PBUC, PSO, and

EPSO.

• The toolbox can be used to solve the optimization problems with data

presented in a specified format in an excel sheet.

5.2 Recommendations

Some of the feasible advancements and further research work are suggested below:

1. The only ancillary service provided by the GENCO that is considered in this

study is spinning reserve. The researched could be advanced by providing a

solution of the PBUC problem considering other ancillary services such as

reactive power and voltage support; active power loss compensation; and

load following.

2. The problem formulation could be also be extended by considering the effect

of actions by the system regulator including price caps and the enforcement

of renewable energy targets. This line of research could reveal the strate-

gies that GENCOs could adopt to take advantage of the renewable energy

market which should form a larger part of electricity supply in the future.

3. This study provides solution algorithms based on the PSO and EPSO algo-
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rithms. Other heuristic based optimization methods such as Artificial Neu-

ral Networks and Fuzzy Optimization could be explored especially when

considering factors such as fuel prices and uncertainty in renewable energy

sources.
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APPENDICES

Appendix 1: PBUC Code

1/4/18 10:40 AM C:\Users\User\Desktop\[2] KERI MASTERS\[4] MATLAB\[4]...\PBUC.m 1 of 3

function Results = PBUC(filename,alg)
% PBUC profit based unit commitment solution.
% 
% Solves the PBUC problem for a test system whose data is stored in an 
%   input filename using the PSO/EPSO algorithms returning the results as 
%   a MATLAB struct variable
%
% Inputs
%   filename : a MATLAB string specifying the name of the excel file in 
%      the system data is stored (must have the extension .xls or .xlsx). 
%   alg : a MATLAB string specifying the optimization algorithm to be used
%      in solving the problem (options are 'PSO' and 'EPSO').
%
% Output
%   Results : solution results. This is a MATLAB struct with the fields:
%       et : problem solution time in seconds
%       UC : optimal unit commitment schedule
%       LM : optimal values of Lagrange multipliers
%       P_sched : optimal power generation schedule
%       PF : total profit for scheduling period 
%       RV : total revenue for scheduling period
%       TC : total costs for scheduling period
%       RV_m : total revenue from spot energy market
%       RV_b : total revenue from bilateral energy market
%       RV_r : total revenue from power reserve sales
%       RV_cfd : total revenue from contracts of differences
%       RV_hr : hourly total revenue
%       RV_m_hr : hourly revenue from spot energy market
%       RV_b_hr : hourly revenue from bilateral energy market
%       RV_r_hr : hourly revenue from power reserve sales
%       RV_cfd_hr : hourly revenue from contracts of differences
%       TC_hr : hourly total costs
%       FC : hourly fuel costs for each generating unit
%       SUC : hourly startup costs for each generating unit
%       TC_gen_hr : hourly total costs for each generating unit
%       ENS_hr : hourly energy not served
%       ENS : total energy not served
%       gBest_final : final global best solution from PSO/EPSO algorithm 
%           (same as RV)
%       f_gBest_final : final values of the PSO/EPSO objective function 
%           (same as LM)
%       gBest : gBest values after each PSO/EPSO iteration
%       pBest : pBest values after each PSO/EPSO iteration
%       f_gBest : values of the objective function corresponding to the 
%           gBest values after each PSO/EPSO iteration
%       f_pBest : values of the objective function corresponding to the 
%           pBest values after each PSO/EPSO iteration
 
%%
tic
fprintf('\n Profit Based Unit Commitment (PBUC) problem solution  \n')
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%% Get data: system data and PSO/EPSO parameters
[syst_data,alg_data] = PBUC_getdata(filename,alg);
 
fprintf(' PBUC problem solution for a GENCO with %d generating units\n'...
    ,size(syst_data.gen,1))
fprintf(' \n ================================================================== \n')
 
%% Initialize particles (possible solutions) and velocities
[X0,V0] = PBUC_initialize(syst_data,alg_data);
 
%% run PSO/EPSO algorithm
obj_fcn = @(x)PBUC_obj_fcn_calc(x,syst_data);
xmin = zeros(length(X0(:,1)),1);
xmax = 10^5*ones(length(X0(:,1)),1);
 
alg = upper(alg);
if strcmp(alg,'PSO')
    param = struct('n_iter',alg_data(2),...
                   'w0',alg_data(3),...
                   'w1',alg_data(4),...
                   'w2',alg_data(5));
               
    Results_alg = PSO(obj_fcn,X0,V0,param,xmin,xmax);
    Results_alg.alg = 'PSO';
elseif strcmp(alg,'EPSO')
    param = struct('n_iter',alg_data(2),...
                   'w0',alg_data(3),...
                   'w1',alg_data(4),...
                   'w2',alg_data(5),...
                   't_w0',alg_data(6),...
                   't_w1',alg_data(7),...
                   't_w2',alg_data(8),...
                   't_g',alg_data(9),...
                   'r',alg_data(10),...
                   'pluck',alg_data(11));
               
    Results_alg = EPSO(obj_fcn,X0,V0,param,xmin,xmax);
    Results_alg.alg = 'EPSO';
else
    error('Please specify solution algorithm as PSO or EPSO!')
end
fprintf(' \n ================================================================== \n')
 
Results_alg.et = toc;
%% format and display results
Results = PBUC_format_results(Results_alg,syst_data);
PBUC_store_display_results(Results,filename)
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function Results = OBS_PBUC(filename,alg)
% OBS_PBUC optimal bidding strategy / profit based unit commitment solution
% 
% Solves the OBS-PBUC problem for a test system whose data is stored in an 
%   input filename using the PSO/EPSO algorithms returning the results as 
%   a MATLAB struct variable
%
% Inputs
%   filename : a MATLAB string specifying the name of the excel file in 
%      the system data is stored (must have the extension .xls or .xlsx). 
%   alg : a MATLAB string specifying the optimization algorithm to be used
%      in solving the problem (options are 'PSO' and 'EPSO').
%
% Output
%   Results : solution results. This is a MATLAB struct with the fields:
%       et : problem solution time in seconds
%       UC : optimal unit commitment schedule
%       BF : optimal values of hourly bid factors
%       P_sched : optimal power generation schedule
%       PF : expected total profit for scheduling period 
%       RV : expected total revenue for scheduling period
%       TC : expected total costs for scheduling period
%       RV_m : expected total revenue from spot energy market
%       RV_b : total revenue from bilateral energy market
%       RV_r : expected total revenue from power reserve sales
%       RV_cfd : expected total revenue from contracts of differences
%       RV_hr : expected hourly total revenue
%       RV_m_hr : expected hourly revenue from spot energy market
%       RV_b_hr : hourly revenue from bilateral energy market
%       RV_r_hr : expected hourly revenue from power reserve sales
%       RV_cfd_hr : expected hourly revenue from contracts of differences
%       TC_hr : expected hourly total costs
%       FC : expected hourly fuel costs for each generating unit
%       SUC : expected hourly startup costs for each generating unit
%       TC_gen_hr : expected hourly total costs for each generating unit
%       ENS_hr : expected hourly energy not served (bilateral load not met)
%       ENS : expected total energy not served (bilateral load not met)
%       gBest_final : final global best solution from PSO/EPSO algorithm 
%           (same as RV)
%       f_gBest_final : final values of the PSO/EPSO objective function 
%           (same as BF)
%       gBest : gBest values after each PSO/EPSO iteration
%       pBest : pBest values after each PSO/EPSO iteration
%       f_gBest : values of the objective function corresponding to the 
%           gBest values after each PSO/EPSO iteration
%       f_pBest : values of the objective function corresponding to the 
%           pBest values after each PSO/EPSO iteration
 
%%
tic
fprintf('\n Optimal Bidding Strategy - Profit Based Unit Commitment') 
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fprintf('(OBS-PBUC) problem solution  \n')
 
%% Get data: system data and PSO/EPSO parameters
[syst_data,alg_data] = OBS_PBUC_getdata(filename,alg);
 
fprintf(' OBS-PBUC problem solution for a GENCO with %d generating units\n'...
    ,size(syst_data.gen,1))
fprintf(' \n ================================================================== \n')
 
%% Initialize particles (possible solutions) and velocities
[X0,V0] = OBS_PBUC_initialize(syst_data,alg_data);
 
%% run PSO/EPSO algorithm
obj_fcn = @(x)OBS_PBUC_obj_fcn_calc(x,syst_data);
xmin = zeros(length(X0(:,1)),1);
xmax = 10*ones(length(X0(:,1)),1);
 
alg = upper(alg);
if strcmp(alg,'PSO')
    param = struct('n_iter',alg_data(2),...
                   'w0',alg_data(3),...
                   'w1',alg_data(4),...
                   'w2',alg_data(5));
               
    Results_alg = PSO(obj_fcn,X0,V0,param,xmin,xmax);
    Results_alg.alg = 'PSO';
elseif strcmp(alg,'EPSO')
    param = struct('n_iter',alg_data(2),...
                   'w0',alg_data(3),...
                   'w1',alg_data(4),...
                   'w2',alg_data(5),...
                   't_w0',alg_data(6),...
                   't_w1',alg_data(7),...
                   't_w2',alg_data(8),...
                   't_g',alg_data(9),...
                   'r',alg_data(10),...
                   'pluck',alg_data(11));
               
    Results_alg = EPSO(obj_fcn,X0,V0,param,xmin,xmax);
    Results_alg.alg = 'EPSO';
else
    error('Please specify solution algorithm as PSO or EPSO!')
end
fprintf(' \n ================================================================== \n')
 
Results_alg.et = toc;
%% format and display results
Results = OBS_PBUC_format_results(Results_alg);
OBS_PBUC_store_display_results(Results,filename,alg)
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function Results = PSO(obj_fcn,X0,V0,param,xmin,xmax)
 
% PSO particle swarm optimization algorithm.
% 
% Runs the PSO algorithm for a given objective function returning the 
%   results as a MATLAB struct variable
%
% Inputs
%   obj_fcn : a handle to the function that evaluates the objective 
%       function. 
%   X0 : initial values of PSO particles (possible solutions)
%   V0 : initial values of the velocities of PSO particles
%   param : PSO parameters. This is a MATLAB struct with the fields: 
%       n_iter : number of iterations; 
%       w0 : weighting factor corresponding to the inertia habit; 
%       w1 : weighting factor corresponding to the memory habit; 
%       w2 : weighting factor corresponding to the cooperation habit; 
%   xmin : minimum allowed values of the components of the PSO particles
%   xmax : maximum allowed values of the components of the PSO particles
%
% Outputs
%   Results : algorithm results. This is a MATLAB struct with the fields:
%       gBest_final : final global best solution after all iterations are
%           done. This is the identified optimal solution
%       f_gBest_final : final values of the objective function after all 
%           iterations are done. This is the identified optimal solution
%           value
%       gBest : gBest values after each iteration (holds all gBest values)
%       pBest : pBest values after each iteration (holds all pBest values)
%       f_gBest : values of the objective function corresponding to the 
%           gBest values after each iteration
%       f_pBest : values of the objective function corresponding to the 
%           pBest values after each iteration
 
%%
fprintf('\n Running Particle Swarm Optimization (PSO) Algorithm! \n')
 
%% extract model parameters 
[n_iter,w0,w1,w2,xmin,xmax] = PSO_parameters(X0,param,xmin,xmax);
 
%% determine initial pBest and gBest
f_X0 = PSO_evaluation(X0,obj_fcn);
[pBest,f_pBest,gBest] = PSO_pBest_gBest_update(X0,f_X0);
 
%%
fprintf('\n Performing Iterations:... ')
 
%%
X = X0; V = V0;
 
%% PSO iterations
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for iter = 1:n_iter
    if rem(iter,10) == 0 
        fprintf(' %03d ',iter)
    end
    if rem(iter,100) == 0 && iter ~= n_iter
        fprintf('\n\n Performing Iterations:... ')
    end
 
    %% PARTICLE UPDATE
    [X,V] = PSO_particle_update(X,V,pBest,gBest,w0,w1,w2,xmin,xmax);
 
   
    %% EVALUATION
    f_X = PSO_evaluation(X,obj_fcn);
      
    %% Update Pbest & Gbest
    [pBest,f_pBest,gBest,f_gBest] = PSO_pBest_gBest_update(X,f_X,pBest,f_pBest);
    
    %% Store results for current iteration
    Results.pBest(:,:,iter) = pBest;
    Results.gBest(:,iter)   = gBest;
    Results.f_pBest(iter,:) = f_pBest;
    Results.f_gBest(iter,:) = f_gBest;
end
 
%% Store final results
Results.gBest_final   = gBest;
Results.f_gBest_final = f_gBest;
 
%%
fprintf('\n\n PSO algorithm done!!\n\n')
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function Results = EPSO(obj_fcn,X0,V0,param,xmin,xmax)
 
% EPSO evolutionary particle swarm optimization algorithm.
% 
% Runs the EPSO algorithm for a given objective function returning the 
%   results as a MATLAB struct variable
%
% Inputs
%   obj_fcn : a handle to the function that evaluates the objective 
%       function. 
%   X0 : initial values of EPSO particles (possible solutions)
%   V0 : initial values of the velocities of EPSO particles
%   param : EPSO parameters. This is a MATLAB struct with the fields: 
%       n_iter : number of iterations; 
%       w0 : initial values of the weighting factors corresponding to the 
%           inertia habit; 
%       w1 : initial values of the weighting factors corresponding to the 
%           memory habit; 
%       w2 : initial values of the weighting factors corresponding to the 
%           cooperation habit; 
%       t_w0 : standard deviation of the random mutation of weight w0;
%       t_w1 : standard deviation of the random mutation of weight w1;
%       t_w2 : standard deviation of the random mutation of weight w2;
%       t_g : standard deviation of the random mutation of the gBest value;
%       r : number of replications of an EPSO particle;
%       pluck : probability of the best offspring of a particle surviving 
%           after an iteration;
%   xmin : minimum allowed values of the components of the EPSO particles
%   xmax : maximum allowed values of the components of the EPSO particles
%
% Outputs
%   Results : algorithm results. This is a MATLAB struct with the fields:
%       gBest_final : final global best solution after all iterations are
%           done. This is the identified optimal solution
%       f_gBest_final : final values of the objective function after all 
%           iterations are done. This is the identified optimal solution
%           value
%       gBest : gBest values after each iteration (holds all gBest values)
%       pBest : pBest values after each iteration (holds all pBest values)
%       f_gBest : values of the objective function corresponding to the 
%           gBest values after each iteration
%       f_pBest : values of the objective function corresponding to the 
%           pBest values after each iteration
 
%%
fprintf('\n Running Evolutionary Particle Swarm Optimization (EPSO) Algorithm! \n')
 
%% extract model parameters 
[n_iter,w0,w1,w2,t_w0,t_w1,t_w2,t_g,r,pluck,xmin,xmax] = ...
    EPSO_parameters(X0,param,xmin,xmax);
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%% determine initial pBest and gBest
f_X0 = EPSO_evaluation(X0,obj_fcn);
[pBest,f_pBest,gBest] = EPSO_pBest_gBest_update(X0,f_X0);
 
%%
fprintf('\n Performing Iterations:... ')
 
%%
X = X0; V = V0;
w0 = w0*ones(size(X(1,:))); 
w1 = w1*ones(size(X(1,:))); 
w2 = w2*ones(size(X(1,:))); 
 
%% EPSO iterations
for iter = 1:n_iter
    if rem(iter,10) == 0 
        fprintf(' %03d ',iter)
    end
    if rem(iter,100) == 0 && iter ~= n_iter
        fprintf('\n Performing Iterations:... ')
    end
 
    %% REPLICATION  
    [X1,V1] = EPSO_replication(X,V,r);
 
    %% MUTATION
    [w0_1,w1_1,w2_1] = EPSO_mutation(w0,w1,w2,r,t_w0,t_w1,t_w2);
 
    %% REPRODUCTION
    [X1,V1] = ...
        EPSO_reproduction(X1,V1,pBest,gBest,t_g,w0_1,w1_1,w2_1,xmin,xmax);
 
    %% EVALUATION
    f_X1 = EPSO_evaluation(X1,obj_fcn);
 
    %% Update Pbest & Gbest
    [pBest,f_pBest,gBest,f_gBest] = ...
        EPSO_pBest_gBest_update(X1,f_X1,pBest,f_pBest);
 
    %% SELECTION
    [X,V,w0,w1,w2] = EPSO_selection(X1,V1,w0_1,w1_1,w2_1,f_X1,pluck);
 
    %% Store results for current iteration
    Results.pBest(:,:,iter) = pBest;
    Results.gBest(:,iter)   = gBest;
    Results.f_pBest(iter,:) = f_pBest;
    Results.f_gBest(iter,:) = f_gBest;
end
 
%% Store final results
Results.gBest_final   = gBest;
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Results.f_gBest_final = f_gBest;
 
%%
fprintf('\n\n EPSO algorithm done!!\n')
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