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ABSTRACT

The chances of success of an investor in the stock market depends heavily on the decisions

he takes based on his knowledge of the behavior of the stock market. In this study, the

behavior of a stock on the Nigerian stock exchange market was studied. The Markov

Chain with a threshold to determine movement between states, was used to estimate

expected long and short-run returns, and the result was compared to the expected return

of the Capital Asset Pricing Model. It was observed that the mean return of the stock and

the expected return of the Capital Asset Pricing Model will not be realized in the long-

run regardless of the present state. The study indicates a way to forestall the problem of

overpricing or under-pricing returns when using the Capital Asset Pricing Model.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

A stock exchange is a well grounded legal framework which facilitates the trading of

shares of companies or organizations in a country (Davou et al., 2013). A stock market

which is on the rise is a good indicator of the country’s economic strengths. An increase

in share price is associated with increase in investments and a decrease in share price is

linked with decrease in investments.

The dream of every person investing in the stock market is to make profit, however the

stock market is a financial market with a high volatility, so the success or failure of the

investor heavily depends on the decisions taken which in turn depend on his knowledge

of the stock market and strategies or models to predict the movement of prices that could

arise as a result of many varying factors.

A number of studies showed that the stock market is affected by macroeconomic variables

of the economy with respect to their intensity in different markets. Hence, an investor

needs to always be up to date with the behavior of the stock market with the result

which is generated after the fluctuation of these variables; an investor needs to know the

actions which he has to take and the time he has to make them in order to give him the

maximum advantage in making profit while minimizing risks when its elimination is not

viable.

Over the years, many models like the Capital Asset Pricing Model(CAPM) by Sharpe

(1996) and Lintner (1996), the Geometric Brownian Motion(GBM),Markov chain model
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approach used by Zhang and Zhang (2009) to study on forecasting the China’s stock

market trend etc, have been used to try to predict the behavior of the movement of stock

prices, so as to reduce if not eliminate the risk of making losses in the stock market.

However there is still a lot of debate as to which model is the most reliable. For example

the GBM according to Abidin and Jaffar (2013) can be used to forecast a maximum of

two weeks prices, even though their research was carried out on small companies. Also,

the GBM fails to account for periods of constant values. The CAPM uses a risk-free rate

in determining expected return, but this risk free rate is also susceptible to volatility.

All of these shortfalls give fuel to the debate as to which model is the most reliable for

making decisions in the stock market.

Hence there is a continuous need to come up with new models or review and upgrade

existing models to try as much as is possible to reduce to the barest minimum the chances

of failure in a stock market investment.

1.2 Problem Statement

The importance of making well informed decisions that would enhance the chances of

success in the stock market can not be over-emphasized. One needs to observe the

trend and behaviour of an equity before purchasing stakes in it, as the size of loss which

may arise from poor decisions can’t be overlooked. Since the stock market is a volatile

market which has the random walk property, models which capture volatility would be

expected to inform good predictions, as daily stock price records do not conform to usual

requirements of constant variance in the common statistical time series.

The conventional CAPM which is used to calculate the expected return on an asset,

models either under-valuation or over-valuation of the asset as against the actual returns.
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Both cases are a challenge, since an investor might hold off from investing in an asset due

to the expectation of the CAPM while it was under-valued and vice-versa.

However the Markov chain unlike the CAPM only gives probabilities and not actual

prices of stock and might not be sufficient on its own as an indicator. Also recent study

of the stock market using a three-state Markov chain model fails to include a threshold

in determining when stock price can be said to have risen, fallen or remained static.

This research used the concept of a threshold to determine when the return of stocks

can be said to have risen, fallen, or remained static, which would lead to a change in the

transition probabilities, thereafter we analyzed the expected long and short-run return

from the Markov chain with the expected return of the conventional CAPM.

1.3 Justification of the Study

There’s still an ongoing debate among observers as to which model best covers the de-

scription of the stock market behavior . Many models over the years have been proposed,

but not without short comings.

For the conventional CAPM, a risk-free rate which is usually the government bonds is

needed to calculate the expected return of an asset, also recent study using the Markov

chain model have categorized the states into rise or increase, static, fall or decrease while

neglecting the use of a threshold to determine when a stock price can be said to have

fallen in each of the states mentioned, this will eventually have an effect on the transition

probabilities that will be obtained.

Hence there is a need to set a threshold as some movements up or down could actually

not reflect a fall in the real sense which will have an effect on the chances of success or

failure of investing in a particular asset.
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1.4 Objectives Of Study

1.4.1 General Objective

The general objective of this study is to determine asset prices for an emerging market

using the Markov chain model.

1.4.2 Specific Objectives

1. To determine a threshold in modeling movement of stock returns in the Markov

chain model.

2. To obtain the expected long and short-run returns of the stock Using a three state

Markov chain model.

3. To compare the expected long and short-run returns of the Markov chain model

with the expected return of the Capital asset pricing model.

1.5 Outline of the thesis

This work contains five chapters which are organized as follows. Chapter 1 gives an in-

troduction to the study, including the problem statement and objectives; Chapter 2 gives

the literature review of works on both the Markov chain model and the CAPM; Chapter 3

discusses the methodology used in carrying out the study; Chapter 4 presents the results

and discussions and finally, Chapter 5 gives summary, conclusion and recommendations.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

A lot of studies have been carried out to improve decision making in the stock market

using a lot of models. Davou et al. (2013); Eseoghene (2011); Maruf and Patrick (2016)

all made recent contributions into using the GBM, Markov chain model and CAPM to

predict stock price behaviour in the stock market.

2.2 Markov Chain Model

Abidin and Jaffar (2013) used the GBM to predict stock price behaviour and found that

one week’s data is enough to forecast share prices, this seems a positive, but it was also

found that the GBM can be used to forecast a maximum of two week closing prices,

which is a draw back since investors wont have long term prediction of a stocks price.

In the work of Mills and Jordanov (2003) the returns showed evidence of nonlinearity and

non-normality, so conventional auto-correlation analysis was supplemented by the use of

a Markov chain technique.

Davou et al. (2013) applied the Markov chain model to model share price movement in

the stock market. They discovered that for a company’s stock to remain in a static state

for long periods is not a good sign of performance. However they failed to consider the

long-run prospect of the stock prices as this is the essence of the Markov chain model,

its ability to consider volatility for long periods.
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Eseoghene (2011) used the Markov chain model to analyze the long-run prospect of stock

prices in the stock market, it was found that the model is useful in evaluating long range

projections on the future prospects of stock prices. However, the three states employed

in modeling the movement of prices were decided without the use of a threshold.

Kilic (2013) used Markov chain methodology to decide whether or not the daily returns

of the Istanbul stock exchange (ISE) 100 Indices followed a Martingale (random walk)

process. The result for study holds that at any given time, stock prices fully reflect all

the available historical information.

Mettle et al. (2014) used Markov chain with finite states for stochastic analysis of share

prices. They were able to establish that the states communicate, are aperiodic and ergodic

and hence possess limiting distributions. They developed a methodology to determine

the expected mean return time for increase in stock price, they posited that decision on

investment could be improved if based on high transition probabilities, low mean return

time and high limiting distribution. However, like Eseoghene (2011), they did not em-

ploy the use of a threshold to determine movement between states, the importance of the

threshold can be seen in an instance where(say) price moves from 199.01 to 200.00 and

then to 250.05 and then to 200.00, the first movement will be recorded as an increase,

even though clearly the second move which is still of higher value than the first will be

seen as decrease, and also if decision is based on high transition probabilities, but the

steady state distribution for the Fall state is high, it could still lead to a loss in invest-

ment.

Maruf and Patrick (2016) also employed a three-state Markov approach to predict asset

returns. They failed to assess the market using the probabilities of states (gain to gain

and stable to gain against loss to loss and stable to loss) to analyze the future behavior
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of the market.

Jasinthan et al. (2015) used the two and three state Markov chain models to analyze the

movement of vegetable prices in Jaffna. In the three state Markov chain employed, the

concept of a threshold was used, the threshold was determined by the absolute median

of the market daily changes in price. The study revealed that the Markov chain models

for the daily price movement pattern is same for each vegetable.

Davou et al. (2013) in their paper Markov chain model application on share price move-

ment in stock market used a three state Markov chain, with the state of each day’s price

depending on the day preceding it without recourse to a threshold.

Kilic (2013) in his work Estimating probability of session returns for Istanbul stock ex-

change 100 index as Markov chain process, classified returns into eight equal interval of

states from high loss (negative return) to positive high return.

Aparna and Sarat (2015) also classified prices into three states without using a threshold,

with states of prices depending on succesive day’s prices. Maruf and Patrick (2016) used

a three states Markov chain to predict asset returns and the returns were classified as

either positive, zero or negative return values.

Okonta et al. (2017) in their work A Markovian analysis of the Nigerian stock market

weekly index, used a two state markov chain, with returns place into states with regards

to it being positive or negative.

Jasinthan et al. (2015) used the absolute median of the market daily changes in price as

threshold to determine movement between states, stated that there is no unique way to

determine threshold in these manner of studies.
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2.3 Capital asset pricing model

Also for the CAPM which is commonly used to predict stock prices, several studies have

been undertaken to improve its result, or to establish its accuracy. It is a widely used

model despite its flaws, since it provides an expected value of return as against just

probabilities.

According to Graham (2013) CAPM faces three main empirical challenges:

1. The beta anomaly (portfolios of stocks with low beta tend to have higher average

returns than the CAPM predicts, while that of stocks with high beta value tend to

have lower average returns than the CAPM predicts)

2. the value anomaly (firms with high book-to-market equity [BE/ME] ratios tend to

have higher average returns than the firms with low book to market ratios), and

3. the momentum anomaly (stocks with relatively large recent six-month to 12-month

returns tend to have higher average returns over the following 12 months than the

stocks with relatively low recent six-month to 12-month returns).

Where the beta is a measure of the volatility or systematic risk, of a portfolio in compar-

ison to the market as a whole.

Oke (2013) states that the results of his work generally invalidates the CAPM’s predic-

tions that higher risk (beta) is associated with a higher level of return.

Prince and Evans (2013) used the CAPM to predict stock market returns in the Ghana

stock exchange, however a constant beta value was used which is not necessarily ideal

for best results. It was observed that the stock prices whose expected value was gotten

using the CAPM turned out to be either under-priced or over-priced.
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Malul et al. (2011) showed how the fundamentals of the CAPM can be utilized to for-

mulate a strategic risk management in a global economy, they considered each country’s

beta (β) seperately, and found that during a world economic crisis, the loss of growth

will be significantly higher in countries with higher betas, and lower in those with lower

betas.

2.4 Summary

Different studies have been carried out using the Markov chain model to predict movement

of prices, Kilic (2013) and Okonta et al. (2017) used the Markov chain model to calculate

expected long and short-run returns. Okonta et al. (2017) modeled weekly returns, and

found that the Nigerian stock market index will go into a stable state after eight weeks.

Prince and Evans (2013) used the CAPM to model expected return of selected stocks on

the Ghana stock exchange market, their study showed that all the stocks considered were

either over-valued or under-valued.

We compared the Markov chain model’s long and short-run expected returns with the

expected return of the CAPM over the same stock, to forestall the problem of over-

valuation posed by relying only upon the expected return of the CAPM.

9



CHAPTER 3

METHODOLOGY

3.1 Introduction

This chapter is in two parts, the first part presents the Markov chain model discussed

above, and the method of estimation of a fitting threshold. Modeling random movement

of events is a very important aspect of stochastic analysis. Random movement of events

if well studied can be beneficial to businesses, investors, among others.

The Markov chain model named after Andrey Markov, who produced the first theoret-

ical results in 1906. A generalization to countably infinite state spaces as produced by

Kolmogorov in 1936. The second part presents the Capital Asset Pricing Model.

3.2 Markov Process

A stochastic process X(t) is called a first order Markov process if for any t0 < t1 < . . . <

tn,

P [X(tn) ≤ xn|X(tn−1 = xn−1, X(tn−2 = xn−2, . . . , X(t0 = x0 = P [X(tn) ≤ xn|X(tn−1 = xn−1]

that is, given the present state of the process, the future state is independent of the past.

This property is known as the Markov property.

We note that for Second-order Markov process, the future state depends on both the

current state and the immediate past state, and so on for Markov processes of higher

order.
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Markov processes are classified according to the nature of the time parameter and the

nature of the state space. With regards to the state space, a Markov process can either be

a discrete-state Markov process or a continuous-state Markov process. A discrete-state

Markov process is called a Markov chain.

Similarly, with respect to time, a Markov process can be either a discrete-time Markov

process or a continuous-time Markov process. Thus, Markov processes are basically of

four types.

1. Discrete-time Markov chain (discrete-time discrete-state Markov process)

2. Continuous-time Markov chain (continuous-time discrete-state Markov process)

3. Discrete-time Markov process (discrete-time continuous-state Markov process)

4. Continuous-time Markov process (continuous-time continuous-state Markov pro-

cess)

This work is based on a discrete time and discrete state space (Discrete-time Markov

chain), and we refer to it as simply Markov chain.

3.3 Markov chain model

The discrete-time process Xk, k = 0, 1, 2, . . . is a Markov chain if ∀i, j, k, . . . ,m, we have

P [Xk = j|Xk−1 = i,Xk−2 = n, . . . , X0 = m] = P [Xk = j|P [Xk−1 = i] = pijk (3.1)

where pijk is called the state-transition probability, which is the conditional probability

that the process will be in state j at time k immediately after the next transition, given

that it is in state i at time k-1. A Markov chain that follows the preceding rule is called
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a nonhomogenous Markov chain. This work uses the homogenous Markov chain, that is

a Markov chain, that is independent of time. And we have

P [Xk = j|Xk−1 = i,Xk−2 = n, . . . , X0 = m] = P [Xk = j|P [Xk−1 = i] = pij (3.2)

Theorem 3.1. (Xn)0≤n≤N is Markov if and only if

P (X0 = i0, X1 = i1 . . . , XN = iN) = λi0pi0i1pi1i2 · · · piN−1iN . (3.3)

Proof. First, suppose (Xn)0≤n≤N is Markov, thus

P (X0 = i0, X1 = i1, . . . , XN = iN)

= P (X0 = i0)P (X1 = i1 |X0 = i0) · · ·P (XN = iN |X0 = i0, . . . , XN−1 = iN−1)

= P (X0 = i0)P (X1 = i1 |X0 = i0) · · ·P (XN = iN |XN−1 = iN−1)

= λi0pi0i1pi1i2 · · · piN−1iN

Now assume that (3.3) holds for N, thus

P (X0 = i0, X1 = i1 . . . , XN = iN) = λi0pi0i1pi1i2 · · · piN−1iN

∑
iN∈I

P (X0 = i0, X1 = i1 . . . , XN = iN) =
∑
iN∈I

λi0pi0i1pi1i2 · · · piN−1iN

P (X0 = i0, X1 = i1 . . . , XN−1 = iN−1) = λi0pi0i1pi1i2 · · · piN−2iN−1

And now by induction, (3.3) holds for all 0 ≤ n ≤ N . From the formula for conditional
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probability, namely that P (A |B) = P (A ∩B)/P (B), we can show that

P (XN+1 = iN+1 |X0 = i0, . . . , XN = iN) =
P (X0 = i0, . . . , XN = iN , XN+1 = iN+1)

P (X0 = i0, . . . , XN = iN)

=
λi0pi0i1 · · · piN−1iNpiN iN+1

λi0pi0i1 · · · piN−1iN

= piN iN+1

Thus, by definition, (Xn)0≤n≤N is Markov(λ, P ).

3.3.1 Classification of states

A state j is said to be accessible from state i, if starting from i, it is possible that the

process will ever enter state j, that is pij > 0.

Two states i and j are said to communicate, if i and j are accessible from each other,

and are said to be in the same class. A Markov chain in which all states communicate is

called irreducible.

3.3.2 Communication Classes and Recurrence

State j is accessible from state i, and we write i→ j if

Pi(Xn = j for some n ≥ 0) > 0.

Also i communicates with j, and we write i↔ j if both i→ j and j → i.

Theorem 3.2. For distinct states i, j ∈ I, i → j ⇐⇒ pii1pi1i2 · · · pin−1j > 0 for some

states i1, i2, . . . , in−1. Also, is an equivalence relation on I.
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Proof. (⇒)

0 < Pi(Xn = j for some n ≥ 0) ≤
∞∑
n=0

Pi(Xn = j) =
∞∑
n=0

∑
i1,...,in−1

pii1pi1i2 · · · pin−1j

Thus, for some pii1pi1i2 · · · pin−1j > 0 for some states i1, i2, . . . , in−1.

(⇐) Take some i1, i2, . . . , in−1 such that

0 < pii1pi1i2 · · · pin−1j ≤ Pi(Xn = j) ≤ Pi(Xn = j for some n ≥ 0).

Now it is clear from the proven inequality that i → j, j → k ⇒ i → k. Also, it is true

that i ↔ i for any state i and that i ↔ j ⇒ j ↔ i. Thus, ↔ is an equivalence relation

on I.

We say that ↔ partitions I into communication classes. Also, a Markov chain or transi-

tion matrix P where I is a single communication class is called irreducible.

Theorem 3.3. Let C be a communication class. Either all states in C are recurrent or

all are transient.

Proof. Take any distinct pair of states i, j ∈ C and suppose that i is transient. Then

there exist n,m ≥ 0 such that Pi(Xn = j) > 0 and Pj(Xm = i) > 0, and for all r ≥ 0

Pi(Xn+r+m = i) ≥ Pi(Xn = j)Pj(Xr = j)Pj(Xm = i).

This implies that

∞∑
r=0

Pj(Xr = j) ≤ 1

Pi(Xn = j)Pj(Xm = i)

∞∑
r=0

Pi(Xn+r+m = i) <∞
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So any arbitrary j is transient, so the whole of C is transient. The only way for this not

to be true is if all states in C are recurrent.

This theorem shows us that recurrence and transience is a class property.

Theorem 3.4. Suppose P is irreducible and recurrent. Then for all i ∈ I we have

P (Ti <∞) = 1.

Proof. By Theorem 3.2 we have

P (Ti <∞) =
∑
j∈I

Pj(Ti <∞)P (X0 = j)

so we only need to show Pj(Ti <∞) = 1 for all j ∈ I. By the irreducibility of P , we can

pick an m such that Pi(Xm = j) > 0. we have

1 = Pi(Xn = i for infinitely many n)

= Pi(Xn = i for some n ≥ m+ 1)

=
∑
k∈I

Pi(Xn = i for some n ≥ m+ 1 |Xm = k)Pi(Xm = k)

=
∑
k∈I

Pk(Ti <∞)Pi(Xm = k)

using Theorem 3.2 again. Since
∑

k∈I Pi(Xm = k) = 1 so we have that

Pj(Ti <∞) = 1.

3.3.3 Stopping Times and the Strong Markov Property

We start this section with the definition of a stopping time. A random variable T is

called a stopping time if the event {T = n} depends only on X0, . . . , Xn for n = 0, 1, 2, . . ..
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An example of a stopping time would be the first passage time

Ti = inf{n ≥ 1 |Xn = i}.

where we define inf ∅ =∞. This is a stopping time since {Ti = n} = {Xk 6= i,

Xn = i | 0 < k < n}. Now we will define an expansion of this idea that we will use later.

The rth passage time T
(r)
i to state i is defined recursively using the first passage time.

T
(0)
i = 0, T

(1)
i = Ti

and, for r = 1, 2, . . .,

T
(r+1)
i = inf{n ≥ T

(r)
i + 1 |Xn = i}.

This leads to the natural definition of the length of the rth excursion to i as

S
(r)
i =


T

(r)
i − T

(r−1)
i if T

(r−1)
i <∞

0 otherwise.

The following theorem shows how the Markov property holds at stopping times.

Theorem 3.5. Let T be a stopping time of (Xn)n≥0 which is Markov(, P ). Then given

T <∞ and XT = i, (Xl)l≥T is Markov(δi, P ) and independent of Xk,

0 ≤ k < T .

Proof. First, we already have that (Xl)l≥T is Markov(δi, P ) by Theorem 1.4, so we just

need to show the independence condition. Let the event A = {XT = i0, . . . , XT+n = in}

and the event B be any event determined by X0, . . . , XT . It is important to notice that
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the event B ∩ {T = m} is determined by X0, . . . , Xm. We get that

P (A∩B∩{T = m}∩{XT = i}) = Pi(X0 = i0, . . . , Xn = in)P (B∩{T = m}∩{XT = i})

If we now sum over m = 0, 1, 2, . . . and divide each side by P (T <∞, XT = i) using the

definition of conditional probability, we obtain

P (A ∩B |T <∞, XT = i) = Pi(X0 = i0, . . . , Xn = in)P (B |T <∞, XT = i)

which gives us the independence we desired.

3.3.4 Limiting-state probabilities

The n-step state-transition probability pij(n) is the conditional probability that the sys-

tem will be in state j after exactly n transitions, given that it is presently in state i.

The n-step transition probability can be obtained by multiplying the transition probabil-

ity matrix by itself n times.

For the class of Markov chains in which the limit exists, we define the limiting-state

probabilities as:

limn→∞P [X(n) = j] = πj;n = 1, 2, . . . , N

since the n-step transition probability can be written in the form

pij(n) =
∑
k

pik(n− 1)pkj
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So if the limiting-state probabilities exist and do not depend on the initial state, we have

limn→∞P [X(n) = j] = πj = lim
n→∞

∑
k

pik(n− 1)pkj =
∑
k

πkpj

defining the limiting state probability vector as π = [π1, π2, . . . , πn], then we have

πj =
∑
k

πkpj

π = πP

1 =
∑
j

πj

3.3.5 Assumptions of a Markov chain model

For any process to be modeled by the Markov chain model, the following assumptions

must hold:

1. The present state of the process will depend only on the immediate past state.

2. Transition probability matrices are the result of processes that are stationary in

time or space; the transition probability does not change with time or space

Definition 3.1.1 A Markov chain is collection of random variables Xt (where t =

0, 1, · · · ) having the property that, given the present, the future is conditionally inde-

pendent of the past. In other words,

P (Xi = j|X0 = i0, X1 = i1, · · · , Xt−1 = it−1) = P (Xt = j|Xt−1it−1) (3.4)

Definition 3.1.2 The one-step transition probability is the probability of transitioning
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from one state to another in a single step. The Markov chain is said to be time homo-

geneous if the transition probabilities from one state to another are independent of time

index.

Pij = Pr(Xn = j|Xn−1 = i) (3.5)

The transition probability matrix, P, is the matrix consisting of the one-step transition

probabilities.

The m-step transition probability is the probability of transitioning from state i to state

j in m steps.

P
(m)
ij = Pr(Xn+m = j|Xn = i) (3.6)

The m-step transition matrix whose elements are the m-step transition probabilities is

denoted by P (m)

Definition 3.1.3 If for any sequence of distribution πn where n = 0, 1, ..., limn−>∞ π
n = π

and
∑
π = 1 then π is called the limiting distribution of the chain.

Definition 3.1.4 If at any step n, P (n)∗π = pi then it implies that the chain has reached

the steady state or equilibrium and πis called the steady state distribution

3.3.6 Estimating Transition probabilities

The maximum likelihood method will be applied to estimate the transition probabilities

Consider

Pij = Pr(Xt+1 = j|Xt = i) (3.7)

Where xi ≤ x1, x2, . . . , xn is a realization of the random variable X1
n, and the probability

of this realization is
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Pr(X
n
1 = xn1 ) = Pr(X1 = x1)

n∏
t=2

Pr(Xt = xt|X t−1
1 = xt−11 )

= Pr(X1 = x1)
n∏

t=2

Pr(Xt = xt|X t−1
1 = xt−11 ) (3.8)

Which can be rewritten in terms of the transition probabilities Pij to get the likelihood

of a given transition matrix

L(p) = Pr(X1 = x1)
n∏

t=2

P(xt−1)(xt) (3.9)

Let nij ≡ number of times i is followed by j in Xn
1 and re-write the likelihood in terms

of them

L(p) = Pr(X1 = x1)
k∏

i=1

k∏
j=1

P nij
ij (3.10)

Maximizing the likelihood with respect to Pij, the logarithm of (3.7) is first taken. Hence,

ι(p) = logL(p) = logPr(X1 = x1) +
∑
i,j

nijlogPij

⇒ ∂ι

∂Pij

=
nij

Pij

(3.11)

Equating the first derivative of (3.8) with respect to Pij to zero yields

nij

Pij

= 0

Considering
∑

j Pij = 1 and picking one of the transition probabilities to express in terms

of the others, say it’s the probability of going to 1, so for each i, Pi1 = 1 −
∑n

j=2 Pij.
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Now, take derivatives of the likelihood and have ∂
∂Pi1

∂ι

∂Pij

=
nij

Pij

− ni1

Pi1

(3.12)

setting this equal to zero at the MLE P̂ ,

nij

P̂ij

=
ni1

P̂i1

(3.13)

nij

ni1

=
P̂ij

P̂i1

(3.14)

since this holds ∀j 6= 1, we conclude P̂ijαnij and infact

Pij =
nij∑
j nij

(3.15)

Proposition 3.1. Chapman-Kolmogorov equation ∀0 < r < n

pij(n) =
∑
k

pik(r)pkj(n− r)

That is, the probability that the process starts in a state i and goes to state j at the end

of the nth transition is the product of the probability that the process starts in state i

and goes to an intermediate state k after r transitions and the probability that it goes

from state k to state j after additional n-r transitions.
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Proof.

pij = P [Xn = j|X0 = i]

=
∑
k

P [Xn = j,Xr = k|X0 = i]

=
∑
k

P [Xn = j|Xr = k,X0 = i]P [Xr = k|X0 = i]

=
∑
k

P [Xn = j|Xr = k]P [Xr = k|X0 = i]

=
∑
k

pkj(n− r)pik(r) =
∑
k

pik(r)pkj(n− r) (3.16)

3.3.7 Estimating Threshold

This work uses the concept of quartiles as threshold to determine movement between the

states of the Markov chain. Quartiles (say; Q1, Q2, Q3,) are values that divide data into

four quarters, there are 25% of data both sides of Q1, Q2 represents the median of the

data, and Q3 is the third quartile value also having 25% of data both sides of it.

3.3.8 Estimating Expected Returns

The expected long and short-run returns were calculated using the formula given below

(Kilic 2013). With long-run as

ER = πjµi (3.17)

While that of short-run as

Er = P nµi (3.18)

where ER and Er are the expected long and short-run returns respectively, πj is the

steady-state probability, P n is the limiting probability and µi is the mean returns of
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state i.

3.3.9 Application to data

We intend to use data from the Nigerian stock exchange.

We classify each day’s return into three states depending on its place in the division of

the data using quartiles. Hence we have:

First state (rise): Here, the return is greater than the value of the third quartile Q3.

Second state (stable): Here today’s return is within or equal to the value of the first

and third quartiles Q1 and Q3.

Third State (fall): Here, the return is less than the value of the first quartile Q1.

Let Yn denote the closing day’s price of a stock in the stock market on the nth day, and

Yn−1 denote the closing day’s price of the previous day, then we define a random variable

Zn as

Zn =
Yn − Yn−1
Yn−1

(3.19)

The above states can be represented as a trinary random variable Xn denoted by

Xn =



1, if Zn > Q3

2, if Q1 ≤ Zn ≤ Q3

3, if Zn < Q1

(3.20)

Hence we say the random variable Xn is a Markov chain of three states with state space

1, 2, 3. Where Q1 and Q3 are the first and third quartiles of the data set. So we get a

transition frequency of the form where nij(i, j = 1, 2, 3) represents the number of times

transition is made from state i to state j, and Si(i = 1, 2, 3) represents the sum of values
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Table 3.1: Transition Frequency

State Rise Stable Fall Sum
Rise n11 n12 n13 S1

Stable n21 n22 n23 S2

Fall n31 n32 n33 S3

in each row i.

We get the transition matrix as shown in (3.1.4),

Pij =
nij∑
j nij

which is of the form

P =

Fall Rise Stable


P11 P12 P13

P21 P22 P23

P31 P32 P33

where Pij represents the probability of moving from state i to state j.

3.4 Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is a simple yet powerful tool used by investors

to determine the risk and reward of a stock, the model basically tells us how much

compensation is to be expected for taking risks.

The CAPM can be divided basically into two parts, the first part takes into consideration

the time value of money, this is represented in the formula by the risk-free rate, this is
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like a compensation for investing in a stock over a period of time, that is; the return

an investor is willing to accept on an investment without risk. The yield on government

bonds are usually used to depict the risk-free rate.

The second part of the CAPM formula considers risk and calculates the return an investor

is required to take as compensation for taking on additional risk, since there’s no reason

to carry more risks if returns remain the same as or lower than the risk-free rate.

The CAPM formula is given as follows

Er = rf + β(rm − rf ) (3.21)

where

Er is the expected return on the stock

rf is the risk-free rate

rm is the expected market return and

β is the beta of the stock.

The β (beta) serves as a risk measure, it reflects how risky an asset is compared to overall

risk of the market. So the higher the β of a stock, the riskier it is and hence the higher

the return the investor expects. The relation (rm − rf ) which is the difference between

the expected market return and the risk free rate is also referred to as the Market risk

premium.

3.4.1 Application of the CAPM

The risk premium of the CAPM was gotten from the relation (rm− rf ) where rm will be

the average return of the market for the year and rf the average risk-free rate of return of
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the year, which is the yield on the government treasury bill which is relatively risk-free.

The intention is to calculate the beta, which is a measure of the stock’s volatility over

time in relation to a market benchmark, using the Microsoft excel software, as against

using online calculators, this gives us full control and understanding of the stock.

So we calculate the β for our stock using the closing prices of the stock, and the chosen

benchmark. We first calculate the daily percentage change for the stock and the index,

using

D%C = ((Yn − Yn−1)/(Yn−1)) ∗ 100 (3.22)

where

Yn denotes today’s closing price, and

Yn−1 denotes yesterday’s closing price.

then, we compute the β using the formula

β =
Cov(stock′s%dailychange, index′s%dailychange)

V ar(index′s%dailychange)
(3.23)
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CHAPTER 4

DATA ANALYSIS AND RESULTS

The daily closing prices of Nestle Nigeria PLC from the Nigerian stock exchange was used

in this study. The data was obtained from Financial Times website www.ft.com

The daily returns were classified into three states depending on where its value falls in

the quartile division.

Let Yn denote the closing day’s price of the stock on the nth day, and Yn−1 denote the

closing day’s price of the previous day. The returns Zn were estimated using equation

(3.19).

The states were represented as a trinary random variable Xn as shown in equation (3.20)

Hence we say the random variable Xn is a Markov chain of three states with state space

1, 2, 3. Where Q1 and Q3 are the first and third quartiles of the data set. So we get

a transition frequency as shown in table (3.1). The transition matrix is obtained using

equation (3.15).

For the CAPM, the beta which is a measure of the stock’s volatility over time in relation

to a market benchmark was estimated using the Microsoft excel software, as against using

online calculators, this gives us full control and understanding of the stock. The β for

the stock was estimated using the closing prices of the stock, and the chosen benchmark.

The daily percentage change for the stock and the index was obtained using equation

(3.21), then we compute the β using equation (3.22).
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4.0.1 Markov Chain Model

The successive day’s prices where used to calculate the return, using Zn = Yn−Yn−1

Yn−1
where

Yn and Yn−1 represents today’s and yesterday’s closing price respectively, and Zn the

returns. The values of the quartiles Q1 and Q3 where gotten to be −0.0005168 and

0.0076744 respectively, the mean of the returns Zn was gotten as 0.0013074. Also, we get

µ the mean return of each state as µ = [−0.0317283, 0.0357917, 0.0003020] .

Table 4.1: Descriptive statistics of Returns
Sample size 237
Minimum -0.0973746

Q1 -0.0005168
Median -0.0000000

Q3 0.0076744
Mean 0.0013074

Maximum 0.0592789

So we got the transition frequency below.

Table 4.2: Transition Frequency

State Fall Rise Stable Sum
Fall 17 16 26 59
Rise 18 23 19 60

Stable 25 21 72 118

We get the transition matrix of the form
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P=

Fall Rise Stable


Fall 0.2881356 0.2711864 0.4406780

Rise 0.3000000 0.3833333 0.3166667

Stable 0.2118644 0.1779661 0.6101695

The matrix P above is a probability vector which specifies the value of proportion for

change in the stock’s return movement in two consecutive days. From the matrix, we see

that the first vector implies that if the return is in a fall state, the next day’s return will

fall or rise or be stable following the percentages 28.81%, 27.12%, 44.07%. The second

vector indicates that if the return today Rises, the probability of it falling or rising or

being stable is 30.00%, 38.33%, 31.67% respectively. The third vector indicates that if

the return today is stable with respect to yesterday’s price, the probability of it falling

or rising or being stable is given by 21.19%, 17.80%, 61.02% respectively.

From the matrix P, we also realize that it is an ergodic chain, since all of its states

communicate and are aperiodic. Therefore we get the steady state probability vector

π = [0.2535647, 0.2537065, 0.4927289] which implies that 25.36% of the time, the return

will move to a fall state, 25.37% of the time to a rise state, and 49.27% of the time to a

stable state.

The limiting probabilities of the daily returns were found to be
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P1 =

Fall Rise Stable


Fall 0.2881356 0.2711864 0.4406780

Rise 0.3000000 0.3833333 0.3166667

Stable 0.2118644 0.1779661 0.6101695

P2 =

Fall Rise Stable


0.2577420 0.2605190 0.4817390

0.2685311 0.2846563 0.4468127

0.2437087 0.2342646 0.5220267

P3 =

Fall Rise Stable


0.2544837 0.2554949 0.4900214

0.2574339 0.2614577 0.4811084

0.2510994 0.2487950 0.5001056

P4 =

Fall Rise Stable


0.2537924 0.2541594 0.4920482

0.2545429 0.2556590 0.4897981

0.2529437 0.2524680 0.4945883

...

P12 =

Fall Rise Stable


0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927288

0.2535646 0.2537064 0.4927289
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P13 =

Fall Rise Stable


0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927289

0.2535646 0.2537065 0.4927289

P14 =

Fall Rise Stable


0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927289

Figure 4.1 is the transition diagram, representing transition between the three states.

Figure 4.1: Transition diagram

4.0.2 Expected Returns

The expected long and short-run returns were calculated using equations (3.12) and (3.13)

respectively. For the expected long-run return we multiply the steady state probability
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vector with the mean returns of states, i.e

ER = πjµi

[
0.2535647 0.2537065 0.4927289

]

−0.0317283

0.0357917

0.0003020

 = 0.001184214

And for expected short-runs, we have

Er = P j ∗ µi

for j = 1, 2, 3, ...n

Now, for j = 1


0.2881356 0.2711864 0.4406780

0.3000000 0.3833333 0.3166667

0.2118644 0.1779661 0.6101695




−0.0317283

0.0357917

0.0003020

 =


0.0006972543

0.0042972938

−0.0001681168


for j = 2


0.2577420 0.2605190 0.4817390

0.2685311 0.2846563 0.4468127

0.2437087 0.2342646 0.5220267




−0.0317283

0.0357917

0.0003020

 =


0.0012921860

0.0018032351

0.0008099162


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for j = 3


0.2544837 0.2554949 0.4900214

0.2574339 0.2614577 0.4811084

0.2510994 0.2487950 0.5001056




−0.0317283

0.0357917

0.0003020

 =


0.001218250

0.001335369

0.001088869


...

for j = 14


0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927289

0.2535647 0.2537065 0.4927289




−0.0317283

0.0357917

0.0003020

 =


0.001184214

0.001184214

0.001184214


The expected short-runs are presented in the tables below
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From the table 4.3 and 4.4 above showing the expected short-run returns, we found the

expected short-run returns from the first day (t = 1) to the fourteenth day(t = 14)

when the returns become stable regardless of current state. It is seen that if the present

state is a rise state, it is expected that a return greater than the overall average return

(0.0013074) will be realized after only two days, but it will not be possible to realize a

return greater than the average return if in the fall or stable state. This means that if

an investor buys shares from Nestle Nigeria PLC, and it is in a rise state, he or she has

to wait for two days without selling in order to realize return which is above the overall

average daily return.

4.0.3 CAPM

The risk premium of the CAPM was gotten from the relation (rm − rf ) where rm is

the average return of the market for the year, estimated from daily closing prices of the

Nigerian stock exchange All-share index. And rf the average risk-free rate of return of

the year, which is the yield on the government treasury bill which is relatively risk-free.

Using equation (3.23), the β was found to be 0.1066, and using equation (3.21), the

expected return was found to be 0.000336.

4.0.4 Comparison of Expected return of the Markov Chain Model

and CAPM

The expected long-run return value of 0.001184214 was obtained from the Markov chain

model, the short-run returns for the three states are as shown in tables 4.3 and 4.4. The

expected return for the CAPM was obtained to be 0.000336.

The study shows that the overall average of returns of the stock (0.0013074) will not be
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realized in the long-run (i.e after 14 days regardless of present state). Also, depending

on if the return is in a Fall, Rise, or Stable state, an investor will realize a return that

is greater than the overall average return only if the returns are in a rise state after two

days.

We also discovered that the expected return obtained from the CAPM will be realized

in the short run after two days if the return is in the fall (0.0012921860) or stable state

(0.0008099162), and after one day if the return is in the rise state (0.0042972938). Also

regardless of present state of return the expected return of the CAPM will be realized

in the long-run. This indicates that the stock was not overpriced by the Capital asset

pricing model. Hence an investor will realize a positive return regardless of the present

state in the long run.

Table 4.5: Descriptive statistics of Returns
Sample size 237

Expected long-run 0.001184214
Expected return (CAPM) 0.000336000

Average return 0.001307400
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CHAPTER 5

CONCLUSION AND

RECOMMENDATIONS

This work presents an application of the Markov chain model and the Capital asset pricing

model on same data set of daily returns of Nestle Nigeria PLC listed on the Nigerian stock

exchange.

The Markov chain model was used to estimate long and short-run expected returns. We

find that regardless of present state of returns, the average returns will not be realized

in the long-run, that is after fourteen days. Also depending on the present state, the

average return will only be realized if the return is currently in a rise state after two days.

The expected return from the CAPM was computed and compared to the long and short-

run expected returns of the Markov chain model. The analysis suggests that the expected

return of the CAPM is not over priced, so an investor will be better off investing on the

stock.

For the first objective, the returns were arranged in order and divided into four parts.

the first quartile Q1 and the third quartile Q3 were used as the threshold to determine

movement between the states of the Markov chain. Returns less than Q1 represents

the lower 25% of the data and were classified as the fall state, returns higher than Q3

represents the higher 25 percent of the data and were classified as being in rise states,

while the returns between Q1 and Q3 inclusive represented the middle 50% of the data

and were classified as stable returns. So the rise and fall states capture extreme movement

of the returns to either side of the median.

Next, the successive days returns where categorized into three states (Fall, Rise, and
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Stable)and then modeled using a three state markov chain model, where a day’s return

being in any state depends only on the return of the previous day.

5.1 Conclusions

The result from the study shows that the overall average of returns of the stock (0.0013074)

will not be realized in the long-run (i.e after 14 days regardless of present state). Also,

depending on if the return is in a Fall, Rise, or Stable state, an investor can realize a

return that is greater than the overall average return only if the returns are in a rise state

after two days.

Finally, it was noticed that the expected return gotten from the CAPM will be realized

in the short run after two days if the return is in the fall or stable state, and after one day

if the return is in the rise state. Also regardless of present state of return the expected

return of the CAPM will be realized in the long-run. This hints that the stock was not

overpriced by the Capital asset pricing model. Hence it indicates that an investor will

realize a positive return regardless of the present state in the long run.

5.2 Recommendations

It is recommended that further research be carried out using a portfolio consisting of

different stocks or on other instruments like gold and foreign exchange returns. Also

since this work focuses on daily returns, more work can be done by analyzing smaller

or larger interval of returns, like hourly, monthly or yearly returns of stock. Also there

should be more work done to determine suitability of different threshold for different

instruments, as the choice of threshold is usually decided by the researcher.
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